WO2013094859A1 - 유기물 열가수분해 시스템의 운전로직 - Google Patents

유기물 열가수분해 시스템의 운전로직 Download PDF

Info

Publication number
WO2013094859A1
WO2013094859A1 PCT/KR2012/008167 KR2012008167W WO2013094859A1 WO 2013094859 A1 WO2013094859 A1 WO 2013094859A1 KR 2012008167 W KR2012008167 W KR 2012008167W WO 2013094859 A1 WO2013094859 A1 WO 2013094859A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
sludge
reactor
transfer
valve
Prior art date
Application number
PCT/KR2012/008167
Other languages
English (en)
French (fr)
Inventor
강석웅
Original Assignee
Kang Seok-Woong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110138957A external-priority patent/KR101264037B1/ko
Priority claimed from KR1020120035246A external-priority patent/KR101264050B1/ko
Application filed by Kang Seok-Woong filed Critical Kang Seok-Woong
Priority to CN201280063855.8A priority Critical patent/CN104010976B/zh
Priority to US14/368,103 priority patent/US20140346120A1/en
Priority to CA 2860182 priority patent/CA2860182A1/en
Priority to EP12859439.7A priority patent/EP2796419A4/en
Priority to JP2014548647A priority patent/JP2015506266A/ja
Publication of WO2013094859A1 publication Critical patent/WO2013094859A1/ko
Priority to IN4682CHN2014 priority patent/IN2014CN04682A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/18Treatment of sludge; Devices therefor by thermal conditioning
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/106Removal of contaminants of water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/086Hydrothermal carbonization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the present invention is to control the organic hydrothermal hydrolysis system according to the control program stored in the PLC or microcomputer according to the control program to increase the extinguishing efficiency, to minimize the dehydration cake during dehydration after digestion, and to configure the waste heat from the reactor to preheat the control tank PLC or microcomputer by connecting at least two reactors installed in parallel to the control tank and the melting probe in order to save operating energy and to efficiently use the thermal heat generated continuously from the cogeneration, and to perform thermal hydrolysis of organic matter. It is designed to improve the extinguishing efficiency by controlling according to the operation logic control program stored in the system, to minimize the dehydration cake when dehydrating after extinguishing, and to use the waste heat from the reaction tank to preheat the control tank to save the operating energy. It's about driving logic.
  • the logic of operating the conventional organic thermal hydrolysis system is operated by manual or operator's experience without setting and storing rules specifically, so it is not necessary to open and close pumps and valves efficiently by linking with various sensors, which requires a lot of work time, and There was a problem of low efficiency.
  • Waste heat generated by the cogeneration system is not efficiently used, and waste heat is often used as it is.In particular, there is a problem in that the organic thermal hydrolysis system necessary for sludge treatment cannot be efficiently used in connection with the cogeneration device. .
  • the technical problem of the present invention is to put into the reaction tank for thermal hydrolysis, and to use the heat and pressure remaining after the reaction to preheat the adjustment tank to significantly reduce the energy required for operation.
  • Another technical problem of the present invention is to automatically control a plurality of operating logic programs designed and manufactured according to the present invention using a programmable logic controller (PLC) or a microcomputer in operating an organic thermal hydrolysis system included in sludge.
  • PLC programmable logic controller
  • microcomputer in operating an organic thermal hydrolysis system included in sludge.
  • Another technical problem of the present invention is to install at least two reaction tanks between the adjusting tank and the dissolution tank or the flush tank so as to use the waste heat generated continuously in the cogeneration system. By heating the reactor to maintain the set temperature to achieve the organic thermal hydrolysis efficiently.
  • Another technical problem of the present invention is to install at least two reaction tanks in the control tank and the dissolution tank to reduce the size of the reaction tank to make the reaction more quickly and efficiently to reduce the dehydration cake and increase the utilization of the tank.
  • Another problem to be solved by the present invention is to significantly reduce the energy required for operation because the sludge is added to the reactor for thermal hydrolysis, and used to preheat the adjustment tank using the remaining heat and pressure after the reaction.
  • Another technical problem of the present invention is to minimize the occurrence of dehydration cake during dehydration after extinguishing by increasing the extinguishing efficiency by operating the operating time and conditions as efficiently as possible.
  • Technical solution of the present invention is the operational logic of the organic thermal hydrolysis system, a) operating the sludge supply pump in the organic thermal hydrolysis system by measuring the weight of the sludge injected from the sludge dehydration equipment by the sludge as a hopper Conveying, stopping the operation of the sludge supply pump, b) transferring the sludge from the hopper to the adjustment tank by a set amount using the hopper pump, c) operating the boiler to keep the reactor heated to the set temperature, Thermal hydrolysis of the sludge of the reactor while maintaining the pressure inside the reactor at a set value; and d) heating the steam inside the reactor by opening the reactor pressure reducing valve to efficiently use the high-temperature waste energy present in the upper part of the reactor.
  • Another technical solution of the present invention comprises the steps of: (a) operating the sludge supply pump to measure the weight of the sludge injected from the dehydration equipment to transfer the sludge to the hopper and stop the operation of the sludge supply pump; b) heating the reactor to maintain the temperature of the reactor at the set temperature by operating the boiler; and thermally decomposing the sludge by maintaining the pressure inside the reactor at the set value; and (c) the amount set by using the hopper pump during the boiler operation.
  • Another technical solution of the present invention is to (a) operate the sludge feed pump in the organic thermal hydrolysis system to transfer the sludge to the hopper and measure the weight of the sludge injected from the dehydration equipment and operate the sludge feed pump. Stopping, (b) transferring the sludge from the hopper to the adjustment tank by a set amount using the hopper pump, (c) operating the boiler to maintain the temperature of the reactor at the set temperature, and maintaining the pressure inside the reactor. Carrying out the sludge thermal hydrolysis while maintaining the set value; and (d) opening the reactor pressure reducing valve to efficiently use the high temperature waste energy present in the upper part of the reactor to transfer the steam inside the reactor to the heating tank.
  • Operating the melting tank pump to empty the melting tank for accommodating the sludge (f) opening the reactor valve to transfer the sludge which has completed the thermal hydrolysis reaction to the melting tank, closing the reactor valve, and (g) adjusting tank Opening the adjustment tank valve to transfer the sludge to the reaction tank, starting the adjustment tank pump to transfer the sludge by the set amount, stopping the operation of the adjustment tank pump and closing the adjustment tank valve, the organic heat configured to repeat the step It is to realize the operation logic of the hydrolysis system.
  • the regulator valve In order to open the regulator valve, operate the regulator pump to transfer the sludge by the set amount, stop the operation of the regulator pump and close the regulator valve, it is configured to repeat the above steps, the number of reactors at least Two or more units are installed in parallel between the adjusting tank and the dissolution tank or flush tank, and continuously It is to implement the operation logic of the organic thermal hydrolysis system that can be operated efficiently by maintaining the steam generated at a sequentially set temperature sequentially to prevent the generated steam to be cooled.
  • Another technical solution of the present invention comprises the steps of: (a) operating the sludge supply pump to measure the weight of the sludge injected from the dehydration equipment to transfer the sludge to the hopper and stop the operation of the sludge supply pump; b) heating the reactor to maintain the temperature of the reactor at the set temperature by operating the boiler; and thermally decomposing the sludge by maintaining the pressure inside the reactor at the set value; and (c) the amount set by using the hopper pump during the boiler operation.
  • Another technical solution of the present invention is to (a) operate the sludge feed pump in the organic thermal hydrolysis system to transfer the sludge to the hopper and measure the weight of the sludge injected from the dehydration equipment and operate the sludge feed pump. Stopping, (b) transferring the sludge from the hopper to the adjustment tank by a set amount using the hopper pump, (c) operating the boiler to maintain the temperature of the reactor at the set temperature, and maintaining the pressure inside the reactor. Carrying out the sludge thermal hydrolysis while maintaining the set value; and (d) opening the reactor pressure reducing valve to efficiently use the high temperature waste energy present in the upper part of the reactor to transfer the steam inside the reactor to the heating tank.
  • Comprising the step of stopping the operation of the pump and closing the adjustment tank valve it is configured to repeat the operation, at least two or more of the number of reaction tanks are installed in parallel between the adjustment tank and the dissolution tank or flush tank Organic materials that can be operated efficiently by continuously heating steam that is continuously generated to a temperature that is continuously set without cooling It is to realize the operation logic of the thermal hydrolysis system.
  • the present invention is equipped with a plurality of operating logic control program designed and manufactured according to the present invention using a PLC or a microcomputer in the operation of the organic thermal hydrolysis system to automatically control the fire extinguishing sludge digestion treatment time efficiently It has a beneficial effect.
  • Another effect of the present invention is to significantly reduce the energy required for operation because it is put into the reaction tank for thermal hydrolysis and used to preheat the adjustment tank using the remaining heat and pressure after the reaction.
  • Another effect of the present invention is to operate the organic thermal hydrolysis system by using a PLC or a microcomputer to control a number of operating logic control program designed and manufactured according to the present invention to automatically control the digestion and sludge digestion treatment efficiently It can save time.
  • Another effect of the present invention is to install at least two reaction tanks in parallel between the adjusting tank and the dissolution tank or the flush tank so as to use the waste heat generated continuously in the cogeneration, and thermal hydrolysis in succession sequentially. To achieve it efficiently.
  • Another effect of the present invention is to install at least two or more reaction tanks in parallel between the control tank and the dissolution tank or flush tank to reduce the size of the reaction tank to make the reaction more quickly and efficiently to reduce the dehydration cake and to reduce the reaction tank It is to increase the utilization.
  • Another effect of the present invention is to minimize the occurrence of dehydration cake during dehydration after extinguishing by increasing the extinguishing efficiency by operating the operating time and conditions as efficiently as possible.
  • FIG 1 illustrates an organic material thermal hydrolysis system to which an operation logic designed and manufactured according to the present invention is applied.
  • FIG. 2 shows one embodiment of the operating logic of the organic thermal hydrolysis system according to the present invention.
  • FIG. 3 shows another embodiment of the operating logic of the organic thermal hydrolysis system according to the present invention.
  • FIG. 4 shows another embodiment of the operating logic of the organic thermal hydrolysis system according to the present invention.
  • Figure 5 shows the operation logic of the system is provided with two or more reaction tanks designed and manufactured according to the present invention the control tank and the dissolution investigation.
  • 6 to 9 illustrate an operation logic of the organic thermal hydrolysis system when three reactors are installed in parallel between an adjustment tank and a dissolution tank or a flush tank according to the present invention.
  • 10 to 12 illustrate an operation logic of the organic thermal hydrolysis system in the case where four reactors are installed in parallel in the adjustment tank and the dissolution probe according to the present invention.
  • the best mode for carrying out the present invention is in the operating logic of the organic thermal hydrolysis system: a) operating the sludge supply pump in the organic thermal hydrolysis system to measure the weight of the sludge injected from the sludge dehydration facility, and then set the sludge by Transporting the sludge from the hopper to the adjustment tank by a predetermined amount by using the hopper pump, and c) heating the reactor to the set temperature by operating the boiler. Thermally decomposing the sludge of the reactor while maintaining the pressure inside the reactor at a set value; and d) opening the reactor pressure reducing valve to efficiently use the high-temperature waste energy present in the upper part of the reactor.
  • Another preferred embodiment for the practice of the present invention is the operating logic of the organic thermal hydrolysis system, a) operating the sludge feed pump in the organic thermal hydrolysis system is set while measuring the weight of the sludge injected from the sludge dehydration equipment Transporting the sludge to the hopper by the amount, stopping the operation of the sludge supply pump; b) transferring the sludge from the hopper to the adjustment tank by the set amount using the hopper pump; and c) opening the steam supply valve. Heating to the set temperature and closing the steam supply valve to maintain the set temperature, and thermally decomposing the sludge of the reactor while maintaining the pressure inside the reactor at the set value, and d) high temperature waste energy present in the upper part of the reactor.
  • the reactor pressure reducing valve For efficient use, open the reactor pressure reducing valve to control steam inside the reactor. Preheating the sludge of the adjusting tank and emptying the melting tank or flush tank by operating a melting tank or flush tank pump to accommodate the sludge which has completed the thermal hydrolysis reaction in the reactor. And e) closing the reactor pressure reducing valve, opening the reactor valve to transfer the sludge after the thermal hydrolysis reaction is completed to the dissolution tank or the Flush Tank, closing the reactor valve, and f) adjusting the sludge of the reactor tank.
  • An embodiment according to the present invention is the operating logic of the organic thermal hydrolysis system of FIGS. 2 to 4 to which the operation logic of FIG. 1 is applied, and the organic thermal hydrolysis of FIGS. 2 to 4 to which the driving logic is applied to FIG. 5. Described by dividing the operation logic of the system.
  • the present invention is to increase the extinguishing efficiency of the sludge, to improve the dehydration after digestion to significantly reduce the amount of dewatered sludge.
  • each sludge processing step and tank is automatically controlled by the time or weight set in the memory, and operated at the optimal time and weight to achieve the sludge treatment efficiently.
  • control logic using PLC or microcomputer, each sludge processing step and tank is automatically controlled by the time or weight set in the memory, and operated at the optimal time and weight to achieve the sludge treatment efficiently.
  • it is configured to use when preheating or heating peripheral equipment using waste energy and waste heat generated in the reactor.
  • the operation logic controlled by PLC or microcomputer is configured to proceed according to the value set in the memory by interlocking with the sensors step by step in time series by the program.
  • the sludge feed pump is used to temporarily store the sludge from the sludge reservoir and into the hopper to control the sludge flow.
  • the hopper controls the amount of sludge injected into the hopper by measuring the weight of the sludge injected by using a load cell installed in the lower part, but preferably sets and stores the set value at about 5 to 10 times the amount of sludge injected into the reactor. Do.
  • the sludge stored in the hopper 9 is transferred through the pipe to the adjustment tank 10 by using the hopper pump, and the adjustment tank 10 measures the weight of the sludge injected by using a load cell installed in the lower portion of the sludge by the amount set in the PLC. After the step of injecting, the amount of sludge injected into the reaction tank is almost the same, and the water content is preferably maintained between 70% to 90%.
  • the adjusting tank serves to preheat the sludge into the reaction tank so as to rapidly heat hydrolysis before injecting the sludge into the reactor, and the preheating temperature of the sludge is preferably maintained between 80 ° C and 100 ° C.
  • Preheating of the adjustment tank 10 is comprised so that heating may be performed using the steam heated on the upper part of the reaction tank 11.
  • the preheated sludge is transferred to the reaction tank through the pipe, and the reaction tank measures the weight of sludge continuously injected by using the load cell installed in the lower part and controls the injection by the amount set in PLC or microcomputer, but the volume of the reaction tank for efficient thermal hydrolysis. It is desirable to set the amount injected between 25% and 60%.
  • the temperature of the reactor is set to maintain the set value between 150 °C to 200 °C
  • the pressure is set to maintain the set value between 6bar to 12bar by hydrolyzing the polymer organic matter to low molecular weight organic matter to improve the digestion efficiency, after digestion This is to minimize the amount of sludge dewatering cake generated when dewatering.
  • the reaction time of the reactor is preferably 20 to 60 minutes, but this can be changed.
  • One side of the reactor is configured to install a temperature sensor and a pressure sensor to measure the heat and internal pressure generated when the boiler is heated to maintain the set value in the memory to efficiently heat hydrolysis.
  • All sludge which has completed the thermal hydrolysis reaction in the reaction tank is transferred through the pipe to the dissolution tank, and the sludge conveying means can be transported by installing a means using a pressure present in the reaction tank and a transfer pump.
  • a reactor valve is installed on one side of the pipe.
  • the dissolution tank is configured to dissolve the cell walls of the hydrolyzed microorganisms to recover the energy injected during the thermal hydrolysis treatment. It is configured to be used to preheat boiler water using waste heat or waste energy.
  • the sludge which dissolved the cell wall of the hydrolyzed microorganism is configured to be cooled through a heat exchanger and injected into the digester in order to lower the temperature to the digestion well. Suitable temperatures for digestion are between 35 ° C and 55 ° C.
  • Example 1 according to the present invention will be described based on FIG. 2.
  • the sludge supply pump 1-6 is operated to continuously measure the weight of the sludge injected by using the hopper load cell 7-1 installed at the lower end of the hopper. And transferring the sludge to the hopper through the transfer pipe and stopping the operation of the sludge supply pump.
  • the amount of sludge injected and stored in the hopper is preferably set in a set amount between 5 and 10 times the amount of sludge treated once in the reactor, which is the core configuration of the present invention.
  • the hopper valve 6-1 installed on one side of the pipe is opened to transfer the sludge stored in the hopper to the adjusting tank 10 through the connected feed pipe, and the hopper pump 1-1 and the adjusting tank load cell 7-2 are opened.
  • the sludge is transported to the adjustment tank by the set weight, and the operation of the hopper pump is stopped.
  • the set amount is determined using the adjustment tank load cell 7-2 for measuring the sludge weight injected into the adjustment tank, it is preferable to set the set value to the same or similar amount of sludge treated once in the reaction tank.
  • the reactor Before operating the organic thermohydrolysis system according to the present invention, the reactor starts operation with a single throughput already injected. This is to save the energy injected during the sludge treatment during operation and to allow the sludge treatment to be performed automatically at the start stage.
  • the adjustment tank valve (5-1) installed on one side of the pipe in order to transfer the sludge of the adjustment tank to the reactor 11 through the connected pipe by using the adjustment tank pump (1-2), the adjustment tank pump (1-2) It can be made by the step of transporting the sludge to the reaction tank 11 by the set amount, stopping the operation of the adjusting tank pump and closing the adjusting tank valve (5-1).
  • the operation of the hopper pump 1-1 is stopped, and the boiler (14 in FIG. Maintaining the set temperature between °C and 200 °C, and the pressure inside the reactor to maintain the set value between 6 bar to 12 bar to perform the thermal hydrolysis.
  • the time of thermal hydrolysis is different depending on the temperature, the pressure and the amount of sludge injected, and is preferably set between 30 minutes and 60 minutes.
  • the reactor pressure reducing valve 5-3 is opened to efficiently use the high-temperature waste energy present in the upper portion of the reactor. And operating the logic to transfer the steam for heating the bath and to preheat the sludge stored in the bath. At the same time, the operation logic of the step of emptying the dissolution tank to the set weight by operating the dissolution tank pump (1-3) in order to accommodate the sludge finished the thermal hydrolysis reaction in the reaction tank.
  • the means for emptying the dissolution tank 12 may be performed in conjunction with the dissolution tank load cell 7-4 installed at the lower part of the dissolution tank 12. That is, the weight of the sludge in the dissolution tank 12 is continuously measured to reduce the weight. When the weight is reached, it can be configured to stop the operation of the dissolution tank pump (1-3).
  • the reactor pressure reducing valve (5-3) is closed, the reactor valve (5-2) is opened to transfer the sludge which has completed the thermal hydrolysis reaction for the set time to the dissolution tank, and the reactor valve (5-2) is closed.
  • the weight set to transfer the sludge to the dissolution tank 12 is the weight of the sludge inside the reaction tank 11 by continuously measuring the weight using the reaction vessel load cell (7-3) installed in the lower portion of the reaction tank to the set weight When it reaches, the reactor valve 5-2 can be configured to close automatically.
  • the adjustment tank valve 5-1 is opened to transfer the sludge of the adjustment tank 10 to the reaction tank 11, and the adjustment tank pump 1-2 and the adjustment tank load cell 7-2 are operated in conjunction with each other to set the amount.
  • the sludge is transferred as much as possible, the operation of the adjustment tank pump 1-2 is stopped, and the adjustment tank valve 5-1 is closed.
  • Example 1 by repeating the above-described steps to include a driving logic to continuously process the sludge to increase the digestion efficiency, it is configured to minimize the amount of dehydration cake during dehydration after digestion.
  • the sludge feed pump 1-6 is operated to transfer the sludge to the hopper by measuring the weight of the injected sludge using a load cell 7-1 installed at the bottom of the hopper. And stopping the operation of the sludge supply pump.
  • Load cell installed in the lower part of the hopper and the sludge supply pump are interlocked with each other to continuously measure the amount of sludge injected into the hopper by the load cell and inject the sludge by the amount set in the PLC or microcomputer.
  • the amount of sludge injected and stored in the hopper is preferably injected into the sludge by setting a set amount between 5 and 10 times the amount of sludge treated once in the reactor, which is the core configuration of the present invention.
  • the adjustment tank pump (1-2) may include a step of moving the sludge to the reaction tank 11 by the set amount to empty the adjusting tank, stopping the operation of the adjusting tank pump (1-2), and closing the adjusting tank valve (5-1).
  • the operation logic designed and manufactured according to the present invention may be automatically controlled.
  • the operation of the hopper pump is stopped and the boiler (14 in FIG. 1) is operated to operate the reactor. Maintaining a temperature set between 150 ° C. and 200 ° C., and maintaining a set value between 6 bar and 12 bar in the reactor to perform thermal hydrolysis for a set time.
  • the time of thermal hydrolysis is different depending on the temperature, pressure and amount of sludge injected, and in consideration of this, it is preferable to set a set value between 30 minutes and 60 minutes.
  • the sludge amount transferred from the hopper 9 to the adjustment tank 10 is set to the weight of the sludge amount that can be processed once in the reaction tank 11 by using the adjustment tank load cell 7-2 installed under the adjustment tank 10. To determine the transfer and perform the step of stopping the operation of the hopper pump (1-10).
  • the thermal hydrolysis When the thermal hydrolysis is completed by performing thermal hydrolysis for a time set in the PLC or the microcomputer, the waste of high temperature existing in the upper portion of the reaction tank 11 before the sludge inside the reaction tank 11 is transferred to the dissolution tank 12.
  • the step of opening the reactor pressure reducing valve 5-3 is performed to transfer steam inside the reactor for heating of the adjustment tank 10 to preheat the sludge stored in the adjustment tank.
  • the emptying step of the dissolution tank 12 is to measure the sludge weight continuously using the dissolution tank load cell 7-4 installed in the lower part of the dissolution tank, and when the sludge weight inside the dissolution tank decreases to reach the set weight, the dissolution tank pump 1-3 It can be configured to stop operation.
  • the reactor pressure reducing valve (5-3) is closed, the reactor valve (5-2) is opened to transfer the sludge finished the thermal hydrolysis reaction for the weight or time set to the dissolution tank, and the reactor valve (5-2) is closed.
  • the weight set to transfer the sludge to the dissolution tank is configured to close the reactor valve (5-2) when the sludge weight of the reaction tank reaches the set weight by reducing the sludge weight using the reactor load cell (7-3). .
  • Means for transferring the sludge from the reaction tank 11 to the dissolution tank 12 may be configured by using the residual pressure inside the remaining reaction tank after transferring the steam to the adjustment tank or using a separate transfer pump.
  • Example 2 By repeating the above-described steps in Example 2, it is equipped with an operation logic to continuously process the sludge to increase the extinguishing efficiency, it is configured to minimize the amount of dehydration cake during dehydration after digestion.
  • the third embodiment according to the present invention will be described based on the driving logic of FIG. 4.
  • the sludge supply pump 1-6 is operated to measure the weight of the sludge injected using the lung load cell 7-1 installed at the bottom of the hopper, and the sludge is fed into the hopper as the set amount. And stopping the operation of the sludge supply pump 1-6.
  • the amount of sludge injected into the hopper is measured using the hopper load cell 7-1 installed at the lower part of the hopper, and the sludge is injected into the hopper by the amount set in the PLC or the microcomputer.
  • the amount of sludge injected and stored in the hopper is preferably stored by injecting and setting a predetermined amount between 5 and 10 times the amount of sludge treated once in the reactor, which is the core configuration of the present invention.
  • Example 3 the reactor starts before the organic thermal hydrolysis system according to the present invention is operated in the same manner as in Examples 1 and 3, with a single sludge treatment amount already injected. This is to save the energy injected during the sludge treatment and to automatically control from the start stage by applying the operation logic designed according to the present invention.
  • the operation of the hopper pump is stopped and the boiler (14 in FIG. 1) is operated to maintain the temperature of the reaction tank set between 150 ° C. and 200 ° C.
  • the pressure in the reactor is maintained at a set value between 6 bar and 12 bar to carry out thermal hydrolysis for a set time.
  • the time of thermal hydrolysis is different depending on the temperature, pressure and amount of sludge injected, and in consideration of this, it is preferable to set a set value between 30 minutes and 60 minutes.
  • the sludge amount transferred from the hopper (9) to the adjustment tank is the set value of the sludge amount that can be processed once in the reaction tank by interlocking the hopper load cell (7-1) and the hopper pump (1-1) installed in the lower part of the adjustment tank. It is preferable to convey the sludge in a fixed manner.
  • thermal hydrolysis is completed by performing thermal hydrolysis for the time set in PLC or microcomputer, in order to efficiently use the high temperature waste heat or waste energy existing in the upper part of the reactor before transferring the sludge to the dissolution tank. Opening the reactor pressure reducing valve (5-3) to transfer the steam in the reaction tank for heating the adjustment tank to perform the step of preheating the sludge stored in the adjustment tank.
  • the emptying step of the dissolution tank 12 is configured to interlock the dissolution tank load cell 7-4 and the adjustment tank pump installed at the lower part of the dissolution tank so that the weight of the sludge inside the dissolution tank decreases to reach the set weight. It is configured to stop.
  • the set weight for transporting the sludge to the dissolution tank is continuously measured by the sludge weight of the reaction vessel load cell (7-3) installed in the lower portion of the reaction tank to reduce the sludge weight inside the reaction tank to reach the set weight reactor tank (5-2) Is configured to close.
  • the adjustment tank valve 5-1 is opened in order to transfer the sludge of the adjustment tank to the reaction tank, the adjustment tank pump 1-2 is operated to transfer the sludge as much as the sludge throughput of the reaction tank. The operation is stopped and the adjustment tank valve 5-1 is closed.
  • Example 3 By repeating the above-described steps in Example 3 performs the operation logic to continuously process the sludge, so as to increase the digestion efficiency, it is configured to minimize the amount of dehydration cake during dehydration after digestion.
  • Example 3 (a) operating the sludge supply pump in the organic thermal hydrolysis system to transfer the sludge to the hopper and measure the weight of the sludge injected from the dehydration equipment and the sludge supply pump (B) transferring the sludge from the hopper to the adjusting tank by a predetermined amount by using the hopper pump, and (c) operating the boiler to maintain the temperature of the reactor at a predetermined temperature and to maintain the inside of the reactor. Carrying out the sludge hydrohydrolysis while maintaining the pressure at the set value; and (d) to open the reactor pressure reducing valve to heat the steam in the reactor in order to efficiently use the high temperature waste energy existing in the upper part of the reactor.
  • Preheating the sludge stored in the adjustment tank and closing the pressure reducing valve Operating a dissolution tank pump to empty the dissolution tank for accommodating the finished sludge, (f) opening the reactor valve to transfer the sludge after the thermal hydrolysis reaction to the dissolution tank, and closing the reactor valve; g) opening the adjusting tank valve to transfer the sludge of the adjusting tank to the reaction tank, operating the adjusting tank pump to transfer the sludge by the set amount, stopping the operation of the adjusting tank pump and closing the adjusting tank valve, the step (a) Operating logic of the organic thermal hydrolysis system configured to repeat operation (g) to (g).
  • the means for transferring the sludge from the reaction tank to the dissolution tank may be obtained by using the residual pressure in the remaining reaction tank after using steam for preheating the control tank or by using a separate transfer pump. It can be configured to transfer.
  • the exhaust valve 5-5 provided at the upper part of the adjustment tank of FIG. 1 is opened after stopping the operation of the sludge supply pump 1-6, and is configured to close after the operation of the hopper pump 1-1 stops.
  • the sludge stirrer 8-2 installed in the dissolution tank of FIG. 1 operates at the same time as the operation of the sludge treatment system of FIG. 1 starts to stop after the operation of the heat exchanger circulation pump 5-9 for a set time. Consists of.
  • the exhaust valve 5-7 provided on the upper part of the dissolution tank is opened after stopping the operation of the boiler 14 in Embodiments 1 to 3, and is configured to close after the set time after the reactor valve 5-2 is closed.
  • the agitator 8-1 installed inside the adjusting tank starts operation after the set time has elapsed after the adjusting tank exhaust valve 5-5 is closed, and the set time after the melting tank exhaust valve 5-7 is closed. It is configured to stop the operation after this elapses.
  • the exhaust valve 5-6 installed on the upper part of the reactor is opened after a set time has elapsed after the operation of the dissolution tank stirrer 8-1 has stopped, and the adjustment tank valve 5-1 is the reactor exhaust valve 5-6.
  • the adjustment tank valve 5-1 is opened after the set time has elapsed since the reactor exhaust valve 5-6 is opened, and the adjustment tank pump 1-2 has been adjusted.
  • -1) It is configured to operate after the set time has elapsed since opening.
  • control tank pump 1-2 stops, the adjustment tank valve 5-1 is closed after the set time has elapsed, and the reaction tank exhaust valve 5 after the set time has cured after the adjustment tank valve 5-1 is closed. -6) is configured to close.
  • the set time is set differently according to the type of sludge, the temperature and pressure of the reaction tank, the capacity of the reactor, etc., but may be determined from several seconds to several tens of injections, or may be out of this.
  • the sludge thermal hydrolysis reactor operated at high temperature and high pressure and the melting tank and the adjustment tank operated at a somewhat lower temperature are installed with a pressure sensor and a temperature sensor to operate at a set temperature and pressure in conjunction with a steam supply valve and / or a boiler. can do.
  • Each tank and one side of the pipe is fixed so that various sensors, valves, pumps, etc. necessary for automatic control by a PLC or a microcomputer are installed to be interlocked with each other.
  • a deodorization facility vessel for removing odor generated in the reaction tank, an air supply pipe of the adjustment tank, a cooling water supply pipe and a boiler water supply pipe to the heat exchanger may be further installed as necessary.
  • reaction tank 5 is a view of employing two or more reaction tanks, except that all of the reference numbers associated with the reaction tank is given the same number as in FIG. 1, but only the drawing number according to the installation of two or more reaction tanks are described differently, for the number described It is described in detail in the detailed description.
  • the cogeneration unit configured to continuously generate electricity uses about 30% of the energy injected to produce electricity, and the remaining 70% is treated as waste heat.
  • Waste heat generated continuously in such a system is configured to be used in an organic thermohydrolysis system for thermal hydrolysis of organic matter contained in the sludge according to the present invention, so that the heat hydrolysis of the sludge can be efficiently utilized by using the waste heat generated in the cogeneration system. It is to increase the efficiency of decomposition and extinguishing and to improve the dehydration during dehydration after digestion, which greatly reduces the amount of dewatered sludge.
  • the present invention is used to heat the reactor by making a steam by operating the boiler using the waste heat generated continuously in the cogeneration device.
  • the present invention is to achieve at least two or more reaction tanks in parallel between the control tank and the dissolution tank or flush tank, each of the reaction tanks using the waste heat continuously generated in the cogeneration unit sequentially with a time difference
  • Each reactor is heated to a set temperature for thermal hydrolysis, and other reactors are heated for a time required for hydrolysis to efficiently use waste heat.
  • the size of the reaction tank which is an important component in the entire organic thermal hydrolysis system, can be reduced, so that the thermal hydrolysis efficiency decreases when the amount of sludge in the reaction tank is large.
  • the problem can be improved, and the utilization of the reaction tank can be increased because the reactor can be configured to efficiently use the reaction and the reaction time and the transfer time.
  • At least two reactors installed in the adjusting tank and the dissolution tank or the instantaneous feed irradiator are each provided with pipes for receiving or subtracting sludges, and valves are installed at one side of the pipes, and a transfer pump for transfer is installed. Can be.
  • each sludge processing step and tank is automatically controlled by the time or weight set in the memory, and operated at the optimal time and weight to achieve the sludge treatment efficiently.
  • control logic using PLC or microcomputer, each sludge processing step and tank is automatically controlled by the time or weight set in the memory, and operated at the optimal time and weight to achieve the sludge treatment efficiently.
  • it is configured to use when preheating or heating peripheral equipment using waste energy and waste heat generated in the reactor.
  • the operation logic controlled by PLC or microcomputer is configured to proceed according to the value set in the memory by interlocking with the sensors step by step in time series by the control program mounted in the memory of the organic thermal hydrolysis system.
  • the sludge feed pump is used to continuously control the sludge flow by temporarily storing several times more than the processing capacity of the sludge in the organic thermal hydrolysis system. Inject as much as the quantity set by the hopper.
  • the hopper controls the amount of sludge injected into the hopper by measuring the weight of the sludge injected by using a load cell installed in the lower part, and sets the set value at about 5 to 10 times the sum of the amount of sludge injected into at least two reactors. It is desirable to establish and maintain the storage.
  • the sludge stored in the hopper 9 is transferred through the pipe to the adjustment tank 10 by using the hopper pump, and the adjustment tank 10 measures the weight of the sludge injected by using a load cell installed in the lower portion of the sludge by the amount set in the PLC.
  • the step of injecting at least two or more reactors are injected in substantially equal to the sum of the amount of sludge injected, and the water content is preferably maintained between 70% and 90%.
  • the adjusting tank serves to preheat the sludge injecting the sludge into the respective reaction tanks so that the organic hydrothermal decomposition can be rapidly carried out.
  • the preheating temperature of the sludge is preferably maintained between 80 ° C and 100 ° C.
  • Preheating of the adjustment tank 10 is comprised so that heating may be performed using the steam heated on the upper part of each reaction tank 11.
  • the preheated sludge is configured to be sequentially transferred to each reaction tank through the pipe, and each reaction tank is injected and controlled by the amount set in the PLC or the microcomputer by measuring the weight of the sludge continuously injected using a load cell installed at the lower part. For efficient thermal hydrolysis of organics, it is desirable to set the amount injected between 25% and 60% of the volume of the reactor.
  • each reactor the temperature is maintained at a set value between 150 ° C and 200 ° C, and the pressure is maintained at a set value between 6bar and 12bar to hydrolyze the polymer organic matter into low molecular weight organic matters, thereby improving digestion efficiency. It is to minimize the amount of sludge dewatering cakes generated when dehydrating after digestion.
  • the reaction time of each reactor is preferably 20 minutes to 120 minutes, but this can be changed and set according to conditions such as temperature and pressure inside the reactor.
  • a temperature sensor and a pressure sensor for measuring the heat and internal pressure generated is installed to maintain the set value in the memory is configured to efficiently thermally decompose.
  • each reactor all the sludge which has completed the thermal hydrolysis reaction is transferred through the pipe to the melting tank or the instant transfer tank by opening the corresponding valve, and the sludge conveying means is installed by means of using the pressure existing in each reactor and the transfer pump. You can.
  • Each reactor valve is provided at one side of the pipe.
  • the dissolution tank or the instant transfer tank is configured to dissolve the cell wall of the hydrolyzed microorganism and recover energy injected during the organic thermohydrolysis treatment. It is configured to be used to preheat boiler water using waste heat or waste energy.
  • the sludge which dissolved the cell wall of the hydrolyzed microorganism is configured to be cooled through a heat exchanger and injected into the digester in order to lower the temperature to the digestion well. Suitable temperatures for digestion are between 35 ° C and 55 ° C.
  • FIG. 5 shows an adjustment tank valve 5-1-1, a reaction tank valve 5-2-1, a reaction pressure reducing valve 5-3-1, a reaction tank exhaust valve 5-6-1 associated with the first reactor, The load cell 7-3-1 and steam supply valve 14-1 are shown.
  • the second to fourth reactors to be mentioned in Examples 1 and 2 which will be described later are thermally connected in parallel with the first reactor, each of which has a plurality of valves and respective load cells mentioned above. It will be easy to understand.
  • 6 to 9 are installed three reactors in parallel between the adjustment tank and the dissolution irradiation, and after heating each reactor in sequence using the waste heat generated from the cogeneration unit, after maintaining for the time required for the reaction sequentially
  • the operating logic configured to transport the sludge is shown.
  • 6 to 9 are divided into four figures in which the letters and figures showing the respective structures are too small in the case of a single figure.
  • adjustment tank valves (5-1-1, 5-1-2, 5-1-3) and reactor tank valves (5-2-1, 5-2-2, 5-2-3) are installed, respectively.
  • Reaction pressure reducing valves (5-3-1, 5-3-2, 5-3-3), which are used to preheat the control tank by using steam in the reaction tank, are provided, respectively.
  • Reactors exhaust valves (5-6-1, 5-6-2, 5-6-3) are installed to discharge, and load cells (7-3-1, 7-3-2 and 7-3-3) are provided respectively.
  • the adjustment tank valve 5-1-1, the reactor valve 5-2-1, the reactor pressure reducing valve 5-3-1, and the reactor tank exhaust valve 5-5-6- 1) and load cell 7-3-1 Regarding the first reactor 11-1, the adjustment tank valve 5-1-1, the reactor valve 5-2-1, the reactor pressure reducing valve 5-3-1, and the reactor tank exhaust valve 5-5-6- 1) and load cell 7-3-1.
  • Pipes for supplying steam for heating the first to third reactors are installed in the boiler 14 and the reaction probe, respectively, and steam supply valves 14-1, 14-2, 14-3 on one side of the pipe. Each is installed so that steam can be supplied or cut off.
  • each of the three reaction tanks is installed in parallel to the adjusting tank and the dissolution tank or the instant transfer irradiation, and pipes for transferring the sludge from the adjusting tank to the respective reaction tanks are respectively provided, and each of the installed pipes has an adjusting tank valve 5-1. -1, 5-1-2, 5-1-3) are installed to block or allow the transport of sludge.
  • Pipes for transporting sludge from each reactor to the dissolution tank or the instant transfer tank are respectively installed, and each of the installed pipes is equipped with reactor valves (5-2-1, 5-2-2, 5-2-3) It is configured to block or allow the transfer of the hydrolyzed sludge.
  • One specific example is to transfer the sludge from the adjusting tank to the first reactor and then open the steam supply valve 14-1 installed in the pipe for 45 minutes by heating the steam generated continuously in the cogeneration system, and keep the temperature at the set temperature. After 90 minutes of reaction at the set temperature, it is configured to transfer the sludge after thermal hydrolysis to the dissolution tank or the instant transfer tank.
  • the steam supplied to the piping is continuously supplied from the cogeneration unit to the sludge transferred from the adjusting tank to the second reactor.
  • the valve 14-1 is opened to be heated for 45 minutes to a set temperature, and reacted at the set temperature for 90 minutes, and then the sludge is transferred to the dissolution tank.
  • the steam which is continuously generated in the cogeneration system by the sludge transferred from the adjusting tank to the third reactor is installed in the steam supply pipe. It is configured to open the supply valve 14-1 to heat for 45 minutes to maintain the temperature at the set temperature, and to react the sludge at 90 ° C. for 90 minutes at the set temperature, and then transfer the sludge after the thermal decomposition of the organic material to the dissolution tank.
  • the sludge transferred from the adjusting tank to the first reactor is used for 45 minutes using the steam continuously generated in the cogeneration unit. Since it is configured to heat, it is possible to achieve efficient thermal hydrolysis by continuously heating small reaction tanks sequentially.
  • the heating time of the reaction tank is 45 minutes, and the time for transferring the sludge from the control tank to each reaction tank and the time for transferring the sludge from each reaction tank to the dissolution tank or the instant transfer tank may be included in the reaction time of 90 minutes.
  • the heating time of each reaction tank is preferably set between 20 minutes and 60 minutes, the time for transferring the sludge to each reaction tank in the adjusting tank, the dissolution tank in each reaction tank or the like. It can be set between 60 and 120 minutes, including the time and reaction time for sludge transfer to the instant transfer tank.
  • the warming time and the reaction time can be sequentially controlled by changing the time by changing the set value of the temperature and pressure inside the reactor.
  • three reactors connected in parallel to the control tank and the dissolution tank or the instant transfer irradiator can be divided into 45 minute units and heated continuously and sequentially, so that waste heat generated from the cogeneration unit can be minimized.
  • the size of the reactor can be reduced, the temperature and pressure inside the reactor can be easily adjusted to the set conditions, thereby increasing the reaction efficiency of organic sludge and minimizing the amount of dewatered cake when dehydrating digested sludge by high reaction efficiency. It has a beneficial effect.
  • the sludge supply pump 1-6 is operated to continuously measure the weight of the sludge injected using the hopper load cell 7-1 installed at the lower end of the hopper, and then set the sludge as much as the set amount. And transferring the sludge to the hopper through the transfer pipe and stopping the operation of the sludge supply pump.
  • the amount of sludge injected and stored in the hopper is preferably set to a set amount between 5 and 10 times the sum of the amount of sludge treated once in a reaction tank installed in parallel with the adjusting tank and the dissolution probe, which are the core components of the present invention. .
  • the hopper valve 6-1 installed on one side of the pipe is opened to transfer the sludge stored in the hopper to the adjusting tank 10 through the connected feed pipe, and the hopper pump 1-1 and the adjusting tank load cell 7-2 are opened.
  • the sludge is transferred to the adjustment tank by the set weight, and the operation of the hopper pump is stopped.
  • the set amount is determined using an adjustment tank load cell 7-2 for measuring the sludge weight injected into the adjustment tank, and is equal to the sum of the sludge amount processed once in the reaction tank in which the three adjustment tanks and the melting probe are installed in parallel. It is desirable to set the set value in a similar amount.
  • each reactor installed in parallel starts normal operation with a single throughput already injected. This is to save the energy injected during the sludge treatment during operation and to allow the sludge treatment to be performed automatically at the start stage.
  • three reactors (11-1, 11-2, 11-3) are installed in parallel between the adjusting tank and the dissolution tank or the instantaneous transfer irradiation through the pipe connected with the sludge of the adjusting tank using the adjusting tank pump (1-2). Opening and closing the adjusting tank valves (5-1-1, 5-1-2, 5-1-3) on one side of each pipe to transfer the gas to the adjusting tank pump (1-2) by the amount of sludge Transfer to each reaction tank 11-1, 11-2, 11-3, stop the operation of the adjustment tank pump, and close the adjustment tank valves 5-1-1, 5-1-2, 5-1-3. Steps may be provided.
  • a boiler operated by waste heat generated in the cogeneration device (see FIG. 1).
  • the temperature of the reactor is maintained at a temperature set between 150 ° C. and 200 ° C., and the thermal hydrolysis is performed by maintaining the set pressure between 6 bar and 12 bar in the reactor. It includes a step.
  • the time of thermal hydrolysis is different depending on the temperature, the pressure and the amount of sludge injected, and is preferably set between 20 minutes and 120 minutes.
  • the hydrothermal decomposition of the organic material is completed, and in order to efficiently use the high-temperature waste energy existing in the upper part of each reactor before the sludge inside the three reactors is transferred to the dissolution tank or the instant transfer tank (5). -3-1, 5-3-2, 5-3-3), the operation logic to perform the step of preheating the sludge stored in the tank by opening the corresponding valve to transfer the steam in the reactor for heating the tank. .
  • the operation logic includes emptying the dissolution tank or the instant transfer tank with the set weight by operating the dissolution tank or the instant transfer pump pump (1-3) to accommodate the sludge in which the organic thermal hydrolysis reaction is completed in three reactors. .
  • the means for emptying the dissolution tank or the instant transfer tank 12 may be performed in conjunction with the dissolution tank load cell 7-4 installed below the dissolution tank or the instant transfer tank 12, that is, inside the dissolution tank or the instant transfer tank 12.
  • the corresponding valves among the pressure reducing valves (5-3-1, 5-3-2, 5-3-3) are closed, and the reactor valves (5-2-1, 5-2-2) are closed. , 5-2-3), and open the corresponding valve to transfer the sludge which has completed the thermal hydrolysis reaction for the set time as the dissolution tank or the instant transfer tank, and the reactor valve (5-2-1, 5-2-2, 5- Close the corresponding valve in 2-3).
  • the weight set in order to transfer the sludge to the dissolution tank or the instant transfer tank 12 is the weight of the sludge inside each reactor (11-1, 11-2, 11-3), each reactor load cell installed in the lower portion of each reactor ( 7-3-1, 7-3-2, 7-3-3) continuously measure the weight and when the weight decreases and reaches the set weight, the reactor valve (5-2-1, 5-2-2) , 5-2-3) is configured to automatically close the corresponding valve.
  • the corresponding adjustment tank valve 5-1-1, 5-1-2, 5-1- 3) open, and the adjustment tank pump (1-2) and the adjustment tank load cell (7-2) is operated in conjunction with each other to transfer the sludge by the set amount, the operation of the adjustment tank pump (1-2) is stopped and the corresponding adjustment tank valve (5-1-1, 5-1-2, 5-1-3) is closed.
  • Example 4 By repeating the above-described steps in Example 4 is equipped with an operation logic to continuously process the sludge to increase the digestion efficiency, it is configured to minimize the amount of dehydration cake during dehydration after digestion.
  • a sludge dehydration system is operated by operating a sludge supply pump in the organic thermal hydrolysis system. Transferring the sludge to the hopper while measuring the weight of the sludge injected from the sludge, stopping the operation of the sludge supply pump, and b) transferring the sludge from the hopper to the adjusting tank by the hopper pump.
  • Conveying, stopping the operation of the adjusting tank pump and closing the adjusting valve it is configured to repeat the steps (a) to (f), three reactors are installed in parallel to the adjusting tank and the dissolution tank cogeneration
  • the steam continuously generated by the unit is warmed up to the sequentially set temperature without cooling. Not to be used to implement the logic operation of the organic thermal hydrolysis system which can operate efficiently.
  • Steps (a) to (a) for organic thermal hydrolysis including opening a valve, operating the adjusting tank pump (1-2) to transfer the sludge by a set amount, stopping the operation of the adjusting tank pump and closing the adjusting tank valve.
  • f) can be operated repeatedly, but three reactors can be installed in parallel to the control tank and the melting chamber to efficiently operate the steam continuously generated by the cogeneration unit without heating up to sequentially set temperatures.
  • the organic thermal hydrolysis system is configured to repeat the above steps (a) to (g), and three reaction tanks are installed in parallel to the control tank and the dissolution tank or the instant transfer irradiator, which are continuously generated by the cogeneration device.
  • the steam can be operated efficiently by continuously warming it to the set temperature without cooling. It is to realize the operation logic of organic thermal hydrolysis system.
  • the fifth embodiment according to the present invention will be described based on the driving logic of FIGS. 10 to 12.
  • FIGS. 10 to 12 The driving logic of FIGS. 10 to 12 is divided into three figures because the fonts and the figures showing the respective configurations are too small when shown in one drawing.
  • 10 to 12 illustrate an operation logic in which the number of three reactors in Example 4 is increased by four reactors.
  • the adjustment tank valve (5-1-1, 5-1-2, 5-1-3, 5-1-4) and the reactor valve (5-2-1, 5-2-2, 5- 2-3, 5-2-4) are installed and the reaction pressure reducing valves (5-3-1, 5-3-2, 5-3-3, 5-3-4) is installed.
  • Reactor exhaust valves (5-6-1, 5-6-2, 5-6-3, 5-6-4) are installed at the top of each reactor, and sludge weight is placed at the bottom of each reactor.
  • Load cells (7-3-1, 7-3-2, 7-3-3, 7-3-4) are installed to measure.
  • the adjustment tank valve (5-1-1), the reactor valve (5-2-1), the reaction tank pressure reducing valve (5-3-1), the reactor tank exhaust valve (5-6-1), and the load cell ( 7-3-1) is installed.
  • the adjustment tank valve 5-1-2, the reactor valve 5-2-2, the reactor pressure reducing valve 5-3-2, the reactor exhaust valve 5-6-2 and the load cell ( 7-3-2) is installed.
  • the adjustment valve 5-1-3, the reactor valve 5-2-3, the reactor pressure reducing valve 5-3-3, the reactor exhaust valve 5-6-3 and the load cell 7-3-3) is installed.
  • the adjustment tank valve 5-1-4, the reactor valve 5-2-4, the reactor pressure reducing valve 5-3-3, the reactor exhaust valve 5-6-4 and the load cell 7-3-4) is installed.
  • Pipes for supplying steam for heating the first to fourth reactors are installed between the boiler and each reactor, and steam supply valves 14-1, 14-2, 14-3, 14 on one side of each pipe. -4) It is configured to supply or block steam by installing.
  • Each of the four reactors is equipped with pipes for transferring sludge from the control tank to each reactor, and each of the installed pipes has control valves (5-1-1, 5-1-2, 5-1-3, 5-). 1-4) is installed to block or transport the sludge.
  • Pipes for transporting sludge from each reactor to the dissolution tank or the instant transfer tank are respectively installed, and each of the installed pipes has reactor valves (5-2-1, 5-2-2, 5-2-3, 5-2-). 4) are installed to block or transport the sludge after the organic hydrolysis is completed.
  • steam continuously generated by the cogeneration unit is opened by heating the steam supply valve 14-1 installed in the pipe for 30 minutes. It is configured to make the set temperature, and react for 90 minutes at the set temperature, and then transfer the sludge after the thermal hydrolysis is completed to the dissolution tank or the instant transfer tank.
  • the steam is continuously installed in the cogeneration system after transferring the sludge from the adjusting tank to the third reactor.
  • the valve 14-3 is opened and heated for 30 minutes to keep warm at the set temperature, and reacted for 90 minutes at the set temperature, and then transfer the sludge after the thermal hydrolysis is completed to the dissolution tank or the instant transfer tank.
  • the steam supply valve installed in the piping to continuously generate steam from the cogeneration Since it is configured to open for 30 minutes to heat it can be efficiently thermally hydrolyzed by sequentially heating small reactors sequentially.
  • the heating time of the reaction tank is 30 minutes, and the time for transferring the sludge from the adjusting tank to each reaction tank and the time for transferring the sludge from each reaction tank to the dissolution tank can be included in the reaction time of 90 minutes.
  • the numerical value shows one specific example, and the heating time of each reaction tank is set between 20 minutes and 60 minutes, the time for transferring the sludge from each control tank to each reaction tank, and the sludge from each reaction tank to the dissolution tank. It can be set between 60 and 120 minutes, including the transfer time and reaction time.
  • the warming time and the reaction time can be sequentially controlled by changing the time by changing the set value of the temperature and pressure inside the reactor.
  • the size of the reactor can be reduced, the temperature and pressure conditions inside the reactor can be easily matched to increase the reaction efficiency of the organic sludge, and the amount of dehydration cake can be minimized when the digested sludge is dehydrated by high reaction efficiency. That has a beneficial effect.
  • the sludge supply pump 1-6 is operated to continuously measure the weight of the sludge injected using the hopper load cell 7-1 installed at the lower end of the hopper, and then set the sludge as much as the set amount. And transferring the sludge to the hopper through the transfer pipe and stopping the operation of the sludge supply pump.
  • the amount of sludge injected into the hopper is measured using the hopper load cell 7-1 installed under the hopper and transferred to the hopper by the amount set in the PLC.
  • the amount of sludge injected and stored in the hopper is set between 5 to 10 times the sum of the amount of sludge treated once in a reactor and a tank in which four units are installed in parallel to the control tank, which is the core configuration of the present invention, and the instant transfer irradiation. It is preferable.
  • the hopper valve 6-1 installed on one side of the pipe is opened to transfer the sludge stored in the hopper to the adjusting tank 10 through the connected feed pipe, and the hopper pump 1-1 and the adjusting tank load cell 7-2 are opened.
  • the sludge is transferred to the adjustment tank by the set weight, and the operation of the hopper pump is stopped.
  • the set amount is determined using an adjustment tank load cell 7-2 for measuring the weight of sludge injected into the adjustment tank, and the sum of the sludge amount processed once in a reaction tank in which four units are installed in parallel to the adjustment tank and the dissolution tank or the instant transfer irradiation. It is desirable to set the setting value in an amount equal to or similar to.
  • each reactor installed in parallel starts normal operation with a single throughput already injected. This is to save the energy injected during the sludge treatment during operation and to allow the sludge treatment to be performed automatically at the start stage.
  • a boiler operated by waste heat generated in the cogeneration device (see FIG. 1).
  • the temperature of the reactor is maintained at a temperature set between 150 ° C. and 200 ° C., and the thermal hydrolysis is performed by maintaining the set pressure between 6 bar and 12 bar in the reactor. It includes a step.
  • the time of thermal hydrolysis is different depending on the temperature, the pressure and the amount of sludge injected, and is preferably set between 20 minutes and 120 minutes.
  • the means for emptying the dissolution tank or the instant transfer tank 12 may be performed in conjunction with the dissolution tank load cell 7-4 installed below the dissolution tank or the instant transfer tank 12, that is, inside the dissolution tank or the instant transfer tank 12.
  • the weight set in order to transfer the sludge to the dissolution tank 12 is the weight of the sludge inside each reactor (11-1, 11-2, 11-3, 11-4), each reactor load cell installed in the lower portion of each reactor ( 7-3-1, 7-3-2, 7-3-3, 7-3-4) continuously measure the weight and when the weight decreases and reaches the set weight, the reactor valve (5-2-1) , 5-2-2, 5-2-3, 5-2-4) can be configured to automatically close the corresponding valve.
  • the adjustment tank valves 5-1-1, 5-1-2, 5- in order to transfer the sludge from the adjustment tank 10 to the respective reaction tanks 11-1, 11-2, 11-3, 11-4. 1-3, 5-1-4) are opened, and the adjustment tank pump 1-2 and the adjustment tank load cell 7-2 are operated in conjunction with each other to transfer sludge by a set amount, and the adjustment tank pump 1-2 Shut down and close the adjustment valves (5-1-1, 5-1-2, 5-1-3, 5-1-4).
  • Example 4 By repeating the above-described steps in Example 4 is equipped with an operation logic to continuously process the sludge to increase the digestion efficiency, it is configured to minimize the amount of dehydration cake during dehydration after digestion.
  • It consists of the step of stopping the operation of the adjustment tank pump and closing the adjustment tank valve, it is configured to repeat the steps (a) to (f), four reactors in parallel to the adjustment tank and the dissolution tank or instant transfer irradiation Steam installed continuously by the cogeneration unit is installed in order to uncool It is to realize the operation logic of organic hydrothermal decomposition system that can be operated efficiently by keeping it at the set temperature.
  • the organic thermal hydrolysis system is configured to repeat steps (a) to (f) by operating the control tank pump to transfer sludge by a set amount, stopping the operation of the control tank pump, and closing the control valve.
  • the reactor is installed in parallel with the control tank and the dissolution tank or the instantaneous feed irradiator.
  • the organic hydrothermal decomposition system can be operated efficiently by keeping the steam generated continuously by the cogeneration unit unheated and sequentially operated at a set temperature. To implement driving logic.
  • Preheating the sludge stored in the adjusting tank and closing the reactor pressure reducing valve Operating the dissolution tank or the feed tank pump to empty the dissolution tank or the feed tank to accommodate the sludge which has completed the thermal hydrolysis reaction in the tank, and (f) dissolving the sludge after the heat hydrolysis reaction is completed by opening the reactor valve. Or transfer to the instant transfer tank, close the reactor valve, (g) open the adjustment tank valve to transfer the sludge of the adjustment tank to the reaction tank, start the adjustment tank pump, transfer the sludge by the set amount, and stop the operation of the adjustment tank pump.
  • the organic thermal hydrolysis system is operated to repeat the steps (a) to (g) in the step of closing the control tank valve, and the four reactors are installed in parallel to the control tank and the dissolution tank or the instantaneous transfer irradiation. Efficiently keeps the steam continuously generated at a set temperature without cooling It is to realize the operation logic of the organic thermal hydrolysis system which can be operated.
  • the means for transferring the sludge from the reaction tank to the dissolution tank is used for the preheating of the control tank, using the residual pressure inside the reaction tank or using a separate transfer pump to transfer the sludge from the reaction tank to the dissolution tank or the instantaneous transfer. It can be configured to be transferred to the jaw.
  • the boiler it is preferable to configure the boiler to heat the boiler using waste heat of cogeneration as described above, and to sequentially heat and heat a plurality of reactors installed in parallel using steam generated by heating.
  • Heating the boiler by means of a separate gas, electricity or other heating means to generate steam continuously and sequentially supply and heat the generated steam to a plurality of reactors installed in parallel or directly heating and heating multiple reactors installed in parallel
  • the present invention can be achieved by the configuration, all of which belong to the protection scope of the present invention.
  • the exhaust valve 5-5 provided in the upper part of the adjusting tank of FIG. 5 is opened after stopping the operation of the sludge supply pump 1-6, and is configured to close after stopping the operation of the hopper pump 1-1.
  • the sludge agitator 8-2 installed in the dissolution tank of FIG. 5 operates simultaneously with the start of the operation of the sludge treatment system of FIG. 5 to stop after the operation of the heat exchanger circulation pump 5-9 for a set time. Consists of.
  • the exhaust valves 5-7 provided on the upper part of the dissolution tank are opened after stopping the operation of the boiler 14 in Examples 1 to 3, and are configured to close after the set time after each reactor valve is closed.
  • the agitator 8-1 installed inside the adjusting tank starts operation after the set time has elapsed after the adjusting tank exhaust valve 5-5 is closed, and the set time after the melting tank exhaust valve 5-7 is closed. It is configured to stop the operation after this elapses.
  • the exhaust valve 5-6 installed on the upper part of the reactor is opened after a set time has elapsed after the operation of the dissolution tank or the instant transfer tank stirrer 8-1 has stopped, and each of the adjustment tank valves has a corresponding reactor exhaust valve opened.
  • each regulating tank valve opens after the set time has elapsed since the corresponding reactor exhaust valve was opened, and the regulating tank pump 1-2 operated after the set time had elapsed after each regulating tank valve was opened. It is configured to.
  • the operation of the adjustment tank pump (1-2) is stopped, the corresponding adjustment valve is closed after the set time has elapsed, and the corresponding reaction valve exhaust valve is closed after the set time has cured after the corresponding adjustment valve is closed. .
  • the set time is set differently according to the type of sludge, the temperature and pressure of the reaction tank, the capacity of the reactor, etc., but may be determined from several seconds to several tens of injections, or may be out of this.
  • a pressure sensor and a temperature sensor are installed to interlock with a steam supply valve and / or a boiler to set the temperature and pressure. It can be configured to work on.
  • Each tank and one side of the pipe is fixed so that various sensors, valves, pumps, etc. necessary for automatic control by a PLC or a microcomputer are installed to be interlocked with each other.
  • a deodorization facility vessel for removing odor generated in each reaction tank, an air supply pipe of the adjustment tank, a cooling water supply pipe and a boiler water supply pipe to the heat exchanger may be further installed as necessary.
  • the number of reaction tanks installed in parallel to the adjustment tank and the dissolution probe was explained as three to four, but based on the description, the number of the reaction tanks can be easily applied to two or five or more reactors. It belongs to the protection scope of the invention.
  • the present invention is to control the digestion efficiency by controlling the operation logic control program stored in the PLC or the microcomputer using one or two or more reaction tank in the organic thermal hydrolysis system, to minimize the dehydration cake when dehydration after digestion, in the reaction tank
  • the waste heat from the waste water can be used for preheating the control tank to save operating energy, continuously use the waste heat generated continuously, and greatly reduce the sludge treatment time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은 유기물 열가수분해 시스템에서 반응조를 하나 또는 둘 이상 사용하여 PLC 또는 마이컴에 저장된 운전로직 제어프로그램에 따라 제어하여 소화효율을 높이고, 소화 후 탈수 시 탈수케익을 최소화하며, 반응조에서 나오는 폐열을 조정조 예열에 사용하도록 구성하여 운전 에너지를 절약하고, 연속적으로 발생한 폐열을 연속적으로 이용할 수 있는 유기물 열가수분해 시스템의 운전로직에 관한 것이다.

Description

유기물 열가수분해 시스템의 운전로직
본 발명은 유기물 열가수분해 시스템을 PLC 또는 마이컴에 저장된 운전로직에 제어프로그램에 따라 제어하여 소화효율을 높이고, 소화 후 탈수 시 탈수케익을 최소화하며, 반응조에서 나오는 폐열을 조정조 예열에 사용하도록 구성하여 운전 에너지를 절약하고, 열병합발전에서 연속적으로 발생되는 폐열을 효율적으로 이용하여 유기물 열가수분해를 효율적으로 수행하기 위하여 조정조와 용해조사이에 설치되는 반응조 수를 적어도 2대 이상 병렬로 연결하여 PLC 또는 마이컴에 저장된 운전로직 제어프로그램에 따라 제어하여 소화효율을 높이고, 소화 후 탈수 시 탈수케익을 최소화하며, 반응조에서 나오는 폐열을 조정조 예열에 사용하도록 구성하여 운전 에너지를 절약할 수 있는 유기물 열가수분해 시스템의 운전로직에 관한 것이다.
종래의 유기물 열가수분해 시스템을 운전하는 로직은 구체적으로 설정 저장된 규칙 없이 수동이나 작업자의 경험에 의하여 운전하므로 다양한 센서들과 연동시켜 효율적으로 펌프 및 밸브를 열고 닫지 못하여 작업시간이 많이 소요되고, 소화효율이 떨어지는 문제점이 있었다.
또한, 슬러지를 열가수분해하는 반응조에서 발생하는 폐에너지를 효율적으로 사용하지 못하여 운전에 필요한 에너지가 과도하게 주입되는 문제점이 있다.
또한, 효율적인 소화가 이루어지지 아니하여 소화 후 슬러지를 탈수할 때 탈수케익이 많이 발생하는 문제점이 있다.
열병합발전 장치에서 연속적으로 발생하는 폐열을 효율적으로 이용하지 못하여 폐열을 그대로 낭비하는 경우가 많고, 특히 슬러지 처리를 위하여 필요한 유기물 열가수분해 시스템을 열병합발전 장치와 연계하여 효율적으로 이용하지 못하는 문제점이 있다.
본 발명의 기술적 과제는 열가수분해를 위하여 반응조에 투입되고, 반응 후 남은 열과 압력을 이용하여 조정조를 예열하는데 사용하므로 운전에 소요되는 에너지를 크게 절약하는데 있다.
본 발명의 또 다른 기술적 과제는 슬러지 속에 포함된 유기물 열가수분해 시스템을 운전함에 있어서 PLC(programable logic controller) 또는 마이컴을 이용하여 본 발명에 따라 설계 제작된 다수의 운전로직 프로그램을 탑재시켜 자동으로 제어함으로써 슬러지 소화처리 시간을 단축하고, 효율적으로 소화를 이루는데 있다.
본 발명의 또 다른 기술적 과제는 열병합발전 장치에서 연속적으로 발생하는 폐열을 이용할 수 있도록 조정조와 용해조 혹은 순간이송조(Flush Tank)사이에 반응조를 적어도 2대 이상 설치하여 순차적으로 연속적으로 페열을 이용하여 반응조를 가열하여 설정된 온도를 유지하여 유기물 열가수분해를 효율적으로 이루는데 있다.
본 발명의 또 다른 기술적 과제는적어도 2대 이상의 반응조를 조정조와 용해조사이에 설치하므로 반응조의 크기를 줄일 수 있어 반응을 보다 신속하고 효율적으로 이루어 탈수케익을 줄이고 탱크의 활용도를 높이는데 있다.
본 발명이 해결하려는 또 다른 과제는 슬러지를 열가수분해를 위하여 반응조에 투입되고, 반응 후 남은 열과 압력을 이용하여 조정조를 예열하는데 사용하므로 운전에 소요되는 에너지를 크게 절약하는데 있다.
본 발명의 또 다른 기술적 과제는 운전 시간과 조건을 최대한 효율적으로 설정하여 운전함에 의하여 소화효율을 높여서 소화 후 탈수 시 탈수케익 발생을 최소화하는데 있다.
본 발명의 기술적 해결방법은 유기물 열가수분해 시스템의 운전로직에 있어서, a) 유기물 열가수분해 시스템에서 슬러지 공급펌프을 동작시켜 슬러지 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고, 슬러지공급펌프의 동작을 정지하는 단계와, b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, c) 보일러를 가동하여 반응조를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 반응조의 슬러지를 열가수분해하는 단계와, d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조의 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조를 비우는 단계와, e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브를 닫는 단계와, f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지 슬러지상기 단계를 반복 운전하계와, f된 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
본 발명의 또 다른 기술적 해결방법은 (a) 슬러지 공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계와, (b) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하여 슬러지를 열가수분해하는 단계와, (c) 상기 보일러 가동 시 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열하기 위하여 이송하여 조정조에 저장된 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조를 비우는 단계와, (e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브를 닫는 단계와, (f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지며, 상기 단계를 반복 운전하도록 구성된 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
본 발명의 또 다른 기술적 해결방법은 (a) 유기물 열가수분해 시스템에서 슬러지공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계와, (b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, (c) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계와, (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열하기 위하여 이송하여 조정조에 저장된 슬러지를 예열하고 감압밸브를 닫는 단계와, (e) 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조를 비우는 단계와, (f) 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브를 닫는 단계와, (g) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지며, 상기 단계를 반복 운전하도록 구성된 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
본 발명의 또 다른 기술적 해결방법은 유기물 열가수분해 시스템의 운전로직에 있어서, a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 슬러지 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고, 슬러지공급펌프의 동작을 정지하는 단계와, b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, c) 스팀공급밸브를 열어서 반응조를 설정된 온도로 가열한 후 스팀공급밸브를 닫아서 설정된 온도를 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 반응조의 슬러지를 열가수분해하는 단계와, d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조의 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 혹은 순간이송조(Flush Tank) 펌프를 가동하여 용해조 혹은 순간이송조(Flush Tank)를 비우는 단계와, e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조 혹은 순간이송조(Flush Tank)로 이송하고, 반응조 밸브를 닫는 단계와, f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지며, 상기 단계를 반복 운전하도록 구성하되, 반응조의 수를 적어도 2대 이상을 조정조와 용해조 혹은 순간이송조(Flush Tank)사이에 병렬로 설치하여 열병합발전에 의하여 연속적으로 발생하는 스팀을 냉각되지 않도록 순차적으로 설정된 온도로 순차적으로 연속적으로 설정된 온도로 가열 유지하여 효율적으로 운전할 수 있는 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
본 발명의 또 다른 기술적 해결방법은 (a) 슬러지 공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계와, (b) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하여 슬러지를 열가수분해하는 단계와, (c) 상기 보일러 가동 시 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열하기 위하여 이송하여 조정조에 저장된 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 혹은 순간이송조(Flush Tank) 펌프를 가동하여 용해조 혹은 순간이송조(Flush Tank)를 비우는 단계와, (e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조 혹은 순간이송조(Flush Tank)로 이송하고, 반응조 밸브를 닫는 단계와, (f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지며, 상기 단계를 반복 운전하도록 구성하되, 반응조의 수를 적어도 2대 이상을 조정조와 용해조 혹은 순간이송조(Flush Tank)사이에 병렬로 설치하여 열병합발전 장치에 의하여 연속적으로 발생하는 스팀을 냉각되지 않은 순차적으로 연속적으로 설정된 온도로 가열 유지하여 효율적으로 운전할 수 있는 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
본 발명의 또 다른 기술적 해결방법은 (a) 유기물 열가수분해 시스템에서 슬러지공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계와, (b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, (c) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계와, (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열하기 위하여 이송하여 조정조에 저장된 슬러지를 예열하고 감압밸브를 닫는 단계와, (e) 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 혹은 순간이송조(Flush Tank) 펌프를 가동하여 용해조 혹은 순간이송조(Flush Tank)를 비우는 단계와, (f) 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조 혹은 순간이송조(Flush Tank)로 이송하고, 반응조 밸브를 닫는 단계와, (g) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지며, 상기 단계를 반복 운전하도록 구성하되, 반응조의 수를 적어도 2대 이상을 조정조와 용해조 혹은 순간이송조(Flush Tank)사이에 병렬로 설치하여 연속적으로 발생하는 스팀을 냉각되지 않은 순차적으로 연속적으로 설정된 온도로 가열 유지하여 효율적으로 운전할 수 있는 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
본 발명은 유기물 열가수분해 시스템을 운전함에 있어서 PLC 또는 마이컴을 이용하여 본 발명에 따라 설계 제작된 다수의 운전로직 제어프로그램을 탑재하여 자동으로 제어함으로써 효율적으로 소화를 이루고 슬러지 소화처리 시간을 단축하는 유리한 효과가 있다.
본 발명의 또 다른 효과는 열가수분해를 위하여 반응조에 투입되고 반응 후 남은 열과 압력을 이용하여 조정조를 예열하는데 사용하므로 운전에 소요되는 에너지를 크게 절약하는데 있다.
본 발명의 또 다른 효과는 유기물 열가수분해 시스템을 운전함에 있어서 PLC 또는 마이컴을 이용하여 본 발명에 따라 설계 제작된 다수의 운전로직 제어프로그램을 탑재하여 자동으로 제어함으로써 효율적으로 소화를 이루고 슬러지 소화처리 시간을 단축할 수 있다.
본 발명의 또 다른 효과는 열병합 발전에서 연속적으로 발생하는 폐열을 이용할 수 있도록 조정조와 용해조 혹은 순간이송조(Flush Tank)사이에 반응조를 적어도 2대 이상 병렬로 설치하여 순차적으로 연속적으로 열가수분해를 효율적으로 이루는데 있다.
본 발명의 또 다른 효과는 적어도 2대 이상의 반응조를 조정조와 용해조 혹은 순간이송조(Flush Tank)사이에 병렬로 설치하므로 반응조의 크기를 줄일 수 있어 반응을 보다 신속하고 효율적으로 이루어 탈수케익을 줄이고 반응조 활용도를 높이는데 있다.
본 발명의 또 다른 효과는 운전시간과 조건을 최대한 효율적으로 설정 운전함에 의하여 소화효율을 높여서 소화 후 탈수 시 탈수케익 발생을 최소화하는데 있다.
도 1은 본 발명에 따라 설계 제작된 운전로직이 적용된 유기물 열가수분해 시스템을 도시한 것이다.
도 2는 본 발명에 따른 유기물 열가수분해 시스템의 운전로직의 하나의 실시 예를 도시한 것이다.
도 3은 본 발명에 따른 유기물 열가수분해 시스템의 운전로직의 또 다른 실시 예를 도시한 것이다.
도 4는 본 발명에 따른 유기물 열가수분해 시스템의 운전로직의 또 다른 실시 예를 도시한 것이다.
도 5는 본 발명에 따라 설계 제작된 조정조와 용해조사이에 2 개 이상의 반응조가 설치된 시스템의 운전로직을 도시한 것이다.
도 6 내지 도 9는 본 발명에 따른 조정조와 용해조 혹은 순간이송조(Flush Tank)사이에 3대의 반응조를 병렬로 설치한 경우의 유기물 열가수분해 시스템의 운전로직을 하나의 실시 예로 도시한 것이다.
도 10 내지 도 12는 본 발명에 따른 조정조와 용해조사이에 4대의 반응조를 병렬로 설치한 경우의 유기물 열가수분해 시스템의 운전로직을 하나의 실시 예로 도시한 것이다.
<도면부호에 대한 간단한 설명>
1-1; 호파 펌프 1-2; 조정조 펌프
1-3; 용해조 펌프 1-6; 슬러지공급펌프
2-2; 반응조 압력계 3-2; 반응조 온도계
5-1; 조정조 밸브 5-2; 반응조 밸브
5-3; 반응조 감압밸브 5-4; 조정조 압축공기 공급밸브
5-5; 조정조 배기 밸브 5-6; 반응조 배기 밸브
5-7; 용해조 배기밸브 5-9; 열교환기 순환펌프
7-1; 호파 로드셀 7-2; 조정조 로드셀
7-3; 반응조 로드셀 7-4; 용해조 로드셀
8-1; 조정조 교반기 8-2; 용해조교반기
9; 호파 10; 조정조
11; 반응조 12; 용해조
13; 열교환기 14; 보일러
15; 슬러지 공급탱크
본 발명의 실시를 위한 최선의 형태는 유기물 열가수분해 시스템의 운전로직에 있어서, a) 유기물 열가수분해 시스템에서 슬러지 공급펌프을 동작시켜 슬러지 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고, 슬러지공급펌프의 동작을 정지하는 단계와, b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, c) 보일러를 가동하여 반응조를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 반응조의 슬러지를 열가수분해하는 단계와, d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조의 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조를 비우는 단계와, e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브를 닫는 단계와, f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지 슬러지상기 단계를 반복 운전하계와, f된 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
또 다른 본 발명의 실시를 위한 최선의 형태는 유기물 열가수분해 시스템의 운전로직에 있어서, a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 슬러지 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고, 슬러지공급펌프의 동작을 정지하는 단계와, b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, c) 스팀공급밸브를 열어서 반응조를 설정된 온도로 가열한 후 스팀공급밸브를 닫아서 설정된 온도를 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 반응조의 슬러지를 열가수분해하는 단계와, d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조의 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 혹은 순간이송조(Flush Tank) 펌프를 가동하여 용해조 혹은 순간이송조(Flush Tank)를 비우는 단계와, e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조 혹은 순간이송조(Flush Tank)로 이송하고, 반응조 밸브를 닫는 단계와, f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지며, 상기 단계를 반복 운전하도록 구성하되, 반응조의 수를 적어도 2대 이상을 조정조와 용해조 혹은 순간이송조(Flush Tank)사이에 병렬로 설치하여 열병합발전에 의하여 연속적으로 발생하는 스팀을 냉각되지 않도록 순차적으로 설정된 온도로 순차적으로 연속적으로 설정된 온도로 가열 유지하여 효율적으로 운전할 수 있는 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
본 발명의 구체적인 실시 예를 도면에 기초하여 살펴본다.
본 발명에 따른 실시 예는 도 1에 의한 운전로직이 적용된 도 2 내지 도 4에 대한 유기물 열가수분해 시스템의 운전로직과, 도 5에 운전로직이 적용된 도 2 내지 도 4에 대한 유기물 열가수분해 시스템의 운전로직으로 나누어서 기술한다.
도 1 내지 도4는 조정조와 용해조사이에 하나의 반응조를 설치한 경우의 운전 로직에 대하여 도시되고 기술한 것이고, 도 5의 운전로직이 적용된 도 6 내지 도 12는 조정조와 용해조사이에 둘 이상의 반응조를 설치한 경우의 운전 로직에 대하여 도시되고 기술한 것이다.
본 발명은 슬러지의 소화 효율을 높이고, 소화 후 탈수성을 향상시켜 탈수 슬러지 량을 크게 줄이는데 있다.
또한, PLC 또는 마이컴을 이용한 제어로직을 적용하여 각각의 슬러지 처리 단계 및 조에서 메모리에 설정된 시간 또는 무게로 자동으로 제어하고, 최적의 시간과 무게로 운영하여 효율적으로 슬러지 처리를 이룰 수 있도록 구성되며, 반응조에서 발생되는 폐에너지 및 폐열을 이용하여 주변 기기를 예열하거나 가열할 때 사용하도록 구성하여 에너지 효율을 높이는데 있다.
PLC 또는 마이컴을 이용하여 제어하는 운전로직은 프로그램에 의하여 시계열로 단계별로 센서들과 연동하여 메모리에 설정된 값에 맞추어서 진행되도록 구성되어 있다.
먼저, 도 1 내지 도 4를 바탕으로, 하나의 반응조를 이용한 본 발명에 따른 유기물 열가수분해 시스템의 운전로직을 구성하기 위한 전체적인 구성을 살펴본다.
슬러지 공급펌프를 이용하여 슬러지 저장조로부터 슬러지를 일시적으로 저장하여 슬러지 흐름을 제어하기 위한 호파로 주입된다.
호파는 하부에 설치된 로드셀을 이용하여 주입되는 슬러지의 무게를 측정하여 호파에 주입된 슬러지 량을 제어하되, 반응조에 주입되는 슬러지 량의 5내지 10 배 정도에서 설정 값을 정하여 저장 유지하도록 하는 것이 바람직하다.
호파(9)에 저장된 슬러지는 호파펌프를 이용하여 조정조(10)로 배관을 통해서 이송되며, 조정조(10)는 하부에 설치된 로드셀을 이용하여 주입되는 슬러지의 무게를 측정하여 PLC 에 설정된 량만큼 슬러지를 주입하는 단계를 거치되, 반응조에 주입되는 슬러지 량과 거의 동일하게 주입하고, 함수율은 70%내지 90%사이에서 유지하는 것이 바람직하다.
조정조는 슬러지를 반응조로 주입하기 전에 반응조로 슬러지 주입 시 신속한 열가수분해가 이루어질 수 있도록 예열하는 역할을 하며, 슬러지의 예열온도는 80℃내지 100℃사이에서 유지하는 것이 바람직하다.
조정조(10)의 예열은 반응조(11)의 상부에 가열된 스팀을 이용하여 가열이 이루어지도록 구성되어 있다.
예열된 슬러지는 배관을 통해서 반응조로 이송되며, 반응조는 하부에 설치된 로드셀을 이용하여 연속적으로 주입되는 슬러지의 무게를 측정하여 PLC 또는 마이컴에 설정된 량만큼 주입 제어하되, 효율적인 열가수분해를 위하여 반응조 용적의 25%내지 60%사이에서 주입되는 량을 설정하는 것이 바람직하다.
반응조의 조건은 온도를 150℃ 내지 200℃사이에서 설정 값을 정하여 유지하고, 압력은 6bar내지 12bar 사이에서 설정 값을 정하여 유지하여 고분자 유기물을 저분자 유기물로 가수분해하여 소화효율을 향상시키고, 소화 후 탈수할 때 발생하는 슬러지 탈수케익 량을 최소화하는데 있다. 반응조의 반응시간은 20분내지 60분이 바람직하나, 이는 변경 설정할 수 있다.
반응기 내부 일측에는 보일러로 가열할 때, 발생하는 열과 내부 압력을 측정하기 위한 온도센서와 압력센서를 설치하여 메모리에 설정된 값을 유지하여 효율적으로 열가수분해가 이루어지도록 구성되어 있다.
반응조에서 열가수분해 반응을 종료한 모든 슬러지는 용해조로 배관을 통해서 이송되며, 슬러지 이송수단은 반응조에 존재하는 압력을 이용하는 수단과 이송펌프를 설치하여 이송시킬 수 있다. 배관 일측에는 반응조 밸브가 설치되어 있다.
용해조는 가수분해된 미생물의 세포벽을 용해(lysis)시켜서 열가수분해 처리 시 주입된 에너지를 회수하도록 구성되어 있다. 폐열 또는 폐에너지를 이용하여 보일러 수를 예열하는데 사용되도록 구성되어 있다.
가수분해된 미생물의 세포벽을 용해시킨 슬러지는 소화가 잘 이루어지는 온도로 낮추기 위하여 열교환기를 통해서 냉각시켜 소화조로 주입되도록 구성되어 있다. 소화에 적당한 온도는 35℃내지 55℃사이이다.
상기 유기물 열가수분해 시스템으로 구성된 소화슬러지의 소화효율을 높이고, 소화 후 탈수 시 탈수케익의 량을 최소화하기 위한 본 발명에 따라 설계 제작된 유기물 열가수분해 시스템의 운전로직을 이루기 위한 구체적인 기술적 구성에 대하여 살펴본다.
<실시 예1>
본 발명에 따른 실시 예1을 도 2에 기초하여 살펴본다.
도 1의 유기물 열가수분해 시스템에서 슬러지공급펌프(1-6)을 동작시켜 호파의 하단에 설치된 호파 로드셀(7-1)을 이용하여 주입되는 슬러지의 무게를 연속적으로 측정하면서 설정된 량만큼 슬러지를 이송 배관을 통해서 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계를 구비한다.
호파의 하부에 설치된 호파로드셀(7-1)을 이용하여 호파로 주입된 슬러지 량을 측정하여 PLC에 설정된 량만큼 호파로 이송한다. 호파에 주입 저장되는 슬러지 량은 본 발명의 핵심 구성인 반응조에서 1회 처리하는 슬러지 량의 5배 내지 10배사이에서 설정량을 정하는 것이 바람직하다.
다음은 호파에 저장된 슬러지를 연결된 이송배관을 통해서 조정조(10)로 이송하기 위하여 배관 일측에 설치된 호파밸브(6-1)을 열고, 호파펌프(1-1)와 조정조 로드셀(7-2)를 이용하여 슬러지를 설정된 무게 량만큼 조정조로 이송하고 호파펌프의 동작을 정지하는 단계를 구비한다.
상기 설정된 량은 조정조로 주입되는 슬러지 무게를 측정하는 조정조 로드셀(7-2)을 이용하여 결정하며, 반응조에서 1회 처리되는 슬러지 량과 동일내지 유사한 량으로 설정 값을 정하는 것이 바람직하다.
본 발명에 따른 유기물 열가수분해 시스템을 가동하기 전에 반응조에는 1회 처리량이 이미 주입된 상태에서 가동을 시작한다. 이는 가동 시 슬러지 처리 시 주입되는 에너지를 절약하고 시작단계에서 자동으로 슬러지 처리가 이루어지도록 하기 위한 것이다.
그러하지 않은 경우에는 조정조 펌프(1-2)를 이용하여 조정조의 슬러지를 연결된 배관을 통해서 반응조(11)로 이송하기 위하여 배관 일측에 설치된 조정조 밸브(5-1)을 열고 조정조 펌프(1-2)를 가동하여 슬러지를 설정된 량만큼 반응조(11)로 이송하고, 조정조 펌프의 동작을 정지하고 조정조 밸브(5-1)를 닫는 단계로 이루어질 수 있다.
상기 호파펌프(1-1)를 이용하여 슬러지를 조정조로 설정된 량만큼 이송한 후 호파펌프(1-1)의 동작을 멈춘한 후, 보일러(도 1의 14)를 가동하여 반응조의 온도가 150℃내지 200℃사이에서 설정된 온도를 유지하고, 반응조 내부의 압력이 6 bar내지 12 bar사이에서 설정된 값을 유지하여 열가수분해를 수행하는 단계를 포함한다.
열가수분해의 시간은 온도, 압력 및 주입된 슬러지 량 등에 의하여 차이가 있으며, 30분 내지 60분사이에서 설정하는 것이 바람직하다.
설정된 시간이 경과하여 열가수분해가 종료되면, 반응조 내부의 슬러지를 용해조로 이송하기 전에 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브(5-3)를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조에 저장된 슬러지를 예열하는 단계를 수행하는 운전로직을 포함한다. 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프(1-3)를 가동하여 설정된 무게로 용해조를 비우는 단계의 운전로직을 포함한다.
용해조(12)를 비우는데 수단은 용해조(12) 하부에 설치된 용해조 로드셀(7-4)과 연동시켜 수행할 수 있으며, 즉 용해조(12) 내부의 슬러지 무게를 연속적으로 측정하여 무게가 감소하여 설정된 무게에 도달하면 용해조 펌프(1-3)의 동작을 멈추도록 구성할 수 있다.
다음은 반응조 감압밸브(5-3)를 닫고, 반응조 밸브(5-2)를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 설정된 시간동안 이송하고, 반응조 밸브(5-2)를 닫는 단계를 거친다.
상기 슬러지를 용해조(12)로 이송하기 위하여 설정된 무게는 반응조(11) 내부의 슬러지 무게를 반응조 하부에 설치된 반응조 로드셀(7-3)을 이용하여 연속적으로 무게를 측정하여 무게가 감소하여 설정된 무게에 도달하면 반응조 밸브(5-2)가 자동으로 닫히도록 구성할 수 있다.
다음은 조정조(10)의 슬러지를 반응조(11)로 이송하기 위하여 조정조 밸브(5-1)를 열고, 조정조 펌프(1-2)와 조정조 로드셀(7-2)을 서로 연동시켜 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프(1-2)의 가동을 중단하고 조정조 밸브(5-1)를 닫는 단계를 거친다.
실시 예1에서 앞서 기술한 단계를 반복 수행하여 슬러지를 연속적으로 처리하는 운전로직을 구비하여 소화 효율을 높이고, 소화 후 탈수 시 탈수케익량을 최소화하도록 구성되어 있다.
앞서 기술된 기술적 구성으로부터 실시 예1에 따른 운전 로직을 요약하면, 유기물 열가수분해 시스템의 운전로직에 있어서, a) 유기물 열가수분해 시스템에서 슬러지 공급펌프을 동작시켜 슬러지 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고, 슬러지공급펌프의 동작을 정지하는 단계와, b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, c) 보일러를 가동하여 반응조를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 반응조의 슬러지를 열가수분해하는 단계와, d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조의 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조를 비우는 단계와, e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브를 닫는 단계와, f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지며, 상기 단계(a) 내지 (f)를 반복 운전하도록 구성된 운전로직이다.
<실시 예2>
본 발명에 따른 실시 예2를 도 3의 운전로직에 기초하여 살펴본다.
도 1의 유기물 열가수분해 시스템에서 슬러지공급펌프(1-6)를 동작시켜 호파의 하단에 설치된 로드셀(7-1)을 이용하여 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지 공급펌프의 동작을 정지하는 단계를 포함한다.
호파의 하부에 설치된 로드셀과 슬러지공급펌프를 서로 연동시켜 호파로 주입된 슬러지 량을 로드셀로 연속적으로 측정하여 PLC 또는 마이컴에 설정된 량만큼 슬러지를 주입한다. 호파에 주입 저장되는 슬러지 량은 본 발명의 핵심 구성인 반응조에서 1회 처리하는 슬러지 량의 5배 내지 10배사이에서 설정 량을 정하여 슬러지를 주입하는 것이 바람직하다.
본 발명에 따른 유기물 열가수분해 시스템을 자동으로 가동하기 전에 반응조에는 1회 처리량이 이미 주입된 상태에서 시작하는 것이 바람직하다. 이는 슬러지 처리 시 주입되는 에너지를 절약하고, 본 발명에 따른 운전로직을 즉시 적용하여 자동으로 가동하기 위한 것이다.
그러하지 않은 경우에는 조정조 펌프(1-2)를 이용하여 조정조의 슬러지를 연결된 배관을 통해서 반응조(11)로 이송하기 위하여 배관 일측에 설치된 조정조 밸브(5-1)를 열고 조정조 펌프(1-2)를 가동하여 슬러지를 설정된 량만큼 반응조(11)로 이송하여 조정조를 비우고, 조정조 펌프(1-2)의 동작을 정지하고, 조정조 밸브(5-1)를 닫는 단계를 별도로 포함시킬 수 있다.
슬러지 저장조로부터 반응조로 직접 반응조에서 1회 처리할 수 있는 량을 직접 주입한 후 본 발명에 따라 설계 제작된 운전로직으로 자동으로 제어할 수도 있다.
상기 호파펌프(1-1)와 호파로드셀(7-1)를 이용하여 슬러지를 조정조로 설정된 량만큼 이송한 후, 호파펌프의 동작을 중지하고, 보일러(도 1의 14)를 가동하여 반응조의 온도가 150℃내지 200℃사이에서 설정된 온도를 유지하고, 반응조 내부의 압력이 6 bar내지 12 bar사이에서 설정된 값을 유지하여 설정된 시간동안 열가수분해를 수행하는 단계를 포함한다.
열가수분해의 시간은 온도, 압력 및 주입된 슬러지 량 등에 의하여 차이가 있으며, 이를 고려하여 30분 내지 60분사이에서 설정 값을 정하는 것이 바람직하다.
상기 보일러(14)를 가동하여 반응조(11)를 가열을 시작함과 동시에 호파펌프(1-1)와 조정조 로드셀(7-2)을 이용하여 조정조(10)로 슬러지를 이동하는 단계를 수행한다.
호파(9)에서 조정조(10)로 이송되는 슬러지 량은 조정조(10) 하부에 설치된 조정조 로드셀(7-2)을 이용하여 반응조(11)에서 1회 처리할 수 있는 슬러지 량의 무게를 설정 값으로 정하여 이송하고 호파펌프(1-10의 동작을 중지하는 단계를 수행한다.
PLC 또는 마이컴에 설정된 시간동안 열가수분해를 수행하는 단계를 거쳐서 열가수분해가 종료되면, 반응조(11) 내부의 슬러지를 용해조(12)로 이송하기 전에 반응조(11) 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브(5-3)를 열어서 반응조 내부의 스팀을 조정조(10) 가열을 위하여 이송하여 조정조에 저장된 슬러지를 예열하는 단계를 수행한다.
이와 동시에 반응조(11)에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프(1-3)를 가동하여 용해조(12)를 비우는 단계를 수행한다.
용해조(12)를 비우는 단계는 용해조 하부에 설치된 용해조 로드셀(7-4)을 이용하여 슬러지 무게를 연속적으로 측정하여 용해조 내부의 슬러지 무게가 감소하여 설정된 무게에 도달하면 용해조 펌프(1-3)의 동작을 멈추도록 구성할 수 있다.
다음은 반응조 감압밸브(5-3)를 닫고, 반응조 밸브(5-2)를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 설정된 무게 또는 시간동안 이송하고, 반응조 밸브(5-2)를 닫는 단계를 거친다.
상기 슬러지를 용해조로 이송하기 위하여 설정된 무게는 반응조 내부의 슬러지 무게를 반응조 로드셀(7-3)을 이용하여 슬러지 무게가 감소하여 설정된 무게에 도달하면 반응조 밸브(5-2)가 닫히도록 구성되어 있다.
상기 반응조(11)에서 용해조(12)로 슬러지를 이송하는 수단은 스팀을 조정조로 이송한 후 남은 반응조 내부의 잔압을 이용하거나 별도의 이송펌프를 사용하여 구성할 수 있다.
다음은 조정조 슬러지를 반응조로 이송하기 위하여 반응조 밸브(5-1)를 열고, 조정조 펌프(1-2)를 가동하여 반응조에 1회 슬러지 처리량만큼 슬러지를 이송하고, 조정조 펌프(1-2)의 가동을 중단하고 반응조 밸브(5-1)를 닫는 단계를 수행한다.
실시 예2에서 앞서 기술한 단계를 반복 수행하여 슬러지를 연속적으로 처리하는 운전로직을 구비하여 소화 효율을 높이고, 소화 후 탈수 시 탈수케익량을 최소화하도록 구성되어 있다.
앞서 실시 예2에서 살핀 기술적 구성을 요약하면, (a) 슬러지 공급펌프를 동작시켜 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계와, (b) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하여 슬러지를 열가수분해하는 단계와, (c) 상기 보일러 가동 시 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열하기 위하여 이송하여 조정조에 저장된 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조를 비우는 단계와, (e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브를 닫는 단계와, (f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지며, 상기 단계 (a) 내지 (f)를 반복 운전하도록 구성된 유기물 열가수분해 시스템의 운전로직이다.
<실시 예3>
본 발명에 따른 실시 예3를 도 4의 운전로직에 기초하여 살펴본다.
도 1의 유기물 열가수분해 시스템에서 슬러지 공급펌프(1-6)를 동작시켜 호파의 하단에 설치된 허파 로드셀(7-1)을 이용하여 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고, 슬러지 공급펌프(1-6)의 동작을 정지하는 단계를 구비한다.
호파의 하부에 설치된 호파 로드셀(7-1)을 이용하여 호파로 주입된 슬러지 량을 측정하여 PLC 또는 마이컴에 설정된 량만큼 슬러지를 호파로 주입한다. 호파에 주입 저장되는 슬러지 량은 본 발명의 핵심 구성인 반응조에서 1회 처리하는 슬러지 량의 5배 내지 10배사이에서 설정 량을 정하여 주입 저장하는 것이 바람직하다.
호파펌프(1-1)를 가동시켜 조정조로 설정된 무게만큼 슬러지를 이송하고 호파펌프의 가동을 중단하는 단계를 수행한다.
실시 예3에서도 실시 예1과 실시 예3과 동일하게 본 발명에 따른 유기물 열가수분해 시스템을 정상적으로 가동하기 전에 반응조에는 1회 슬러지 처리량이 이미 주입된 상태에서 시작한다. 이는 슬러지 처리 시 주입되는 에너지를 절약하고 본 발명에 따라 설계 제작된 운전로직을 적용하여 시작 단계부터 자동 제어할 수 있도록 하기 위한 것이다.
상기 호파펌프를 이용하여 슬러지를 조정조로 설정된 량만큼 이송한 후 호파펌프의 동작을 중지한 후 보일러(도 1의 14)를 가동하여 반응조의 온도가 150℃내지 200℃사이에서 설정된 온도를 유지하고, 반응조 내부의 압력이 6 bar내지 12 bar사이에서 설정된 값을 유지하여 설정된 시간동안 열가수분해를 수행하는 단계를 거친다.
열가수분해의 시간은 온도, 압력 및 주입된 슬러지 량 등에 의하여 차이가 있으며, 이를 고려하여 30분 내지 60분사이에서 설정 값을 정하는 것이 바람직하다.
호파(9)에서 조정조로 이송되는 슬러지 량은 조정조 하부에 설치된 호파 로드셀(7-1)과 호파펌프(1-1)를 연동시켜 반응조에서 1회 처리할 수 있는 슬러지 량의 무게를 설정 값으로 정하여 슬러지를 이송하는 것이 바람직하다.
PLC 또는 마이컴에 설정된 시간동안 열가수분해를 수행하는 단계를 거쳐서 열가수분해가 종료되면, 반응조 내부의 슬러지를 용해조로 이송하기 전에 반응조 상부에 존재하는 고온의 폐열 또는 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브(5-3)를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조에 저장된 슬러지를 예열하는 단계를 수행한다.
이와 동시에 반응조(11)에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프(1-3)를 가동하여 용해조를 비우는 단계를 수행한다.
용해조(12)를 비우는 단계는 용해조 하부에 설치된 용해조 로드셀(7-4)과 조정조 펌프를 서로 연동하도록 구성하여 용해조 내부의 슬러지 무게가 감소하여 설정된 무게에 도달하면 용해조 펌프(1-3)의 동작을 멈추도록 구성되어 있다.
다음은 반응조 감압밸브(5-3)를 닫고, 반응조 밸브(5-2)를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 설정된 무게 또는 설정된 시간동안 잔압을 이용하여 슬러지를 이송하고, 반응조 밸브(5-2)를 닫는 단계를 거친다.
상기 슬러지를 용해조로 이송하기 위한 설정된 무게는 반응조 하부에 설치된 반응조 로드셀(7-3)로 연속적으로 슬러지 무게를 측정하여 반응조 내부의 슬러지 무게가 감소하여 설정된 무게에 도달하면 반응조 밸브(5-2)가 닫히도록 구성되어 있다.
다음은 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브(5-1)를 열고, 조정조 펌프(1-2)를 가동하여 반응조 1회 슬러지 처리량만큼 슬러지를 이송하고, 조정조 펌프(1-2)의 가동을 중단하고 조정조 밸브(5-1)를 닫는 단계를 수행한다.
실시 예3에서 앞서 기술한 단계를 반복 수행하여 슬러지를 연속적으로 처리하는 운전로직을 수행하므로 소화 효율을 높이고, 소화 후 탈수 시 탈수케익량을 최소화하도록 구성되어 있다.
앞서 실시 예3에서 기재된 기술적 구성을 요약하면, (a) 유기물 열가수분해 시스템에서 슬러지공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계와, (b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, (c) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계와, (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열하기 위하여 이송하여 조정조에 저장된 슬러지를 예열하고 감압밸브를 닫는 단계와, (e) 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조를 비우는 단계와, (f) 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브를 닫는 단계와, (g) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지며, 상기 단계 (a) 내지 (g)를 반복 운전하도록 구성된 유기물 열가수분해 시스템의 운전로직이다.
앞서 기술한 실시 예1, 2 및 3에서 반응조에서 용해조로 슬러지를 이송하는 수단은 스팀을 조정조 예열을 위하여 사용한 후 남은 반응조 내부의 잔압을 이용하거나 별도의 이송펌프를 사용하여 슬러지를 반응조에서 용해조로 이송시키도록 구성할 수 있다.
앞서 기술한 실시 예1, 2 및 3의 운전로직에서, 도 1에 도시된 주변의 밸브와 펌프들의 동작시점에 대하여 구체적으로 살펴본다.
도 1의 조정조 상부에 설치된 배기밸브(5-5)는 슬러지 공급펌프(1-6)의 가동을 멈춘 후 열리고, 호파펌프(1-1)의 가동이 멈춘 후 닫히도록 구성되어 있다.
도 1의 용해조에 설치된 슬러지 교반기(8-2)는 도 1의 슬러지 처리시스템의 동작이 시작됨과 동시에 동작하여, 열교환기 순환펌프(5-9)의 동작을 멈춘 후 설정된 시간동안 동작 후에 멈추도록 구성되어 있다.
도 1에서, 용해조 상부에 설치된 배기밸브(5-7)는 실시 예1내지 3에서 보일러 14의 가동을 멈춘 후 열리고, 반응조 밸브(5-2)가 닫힌 후 설정된 시간 후에 닫히도록 구성되어 있다.
도 1에서, 조정조 내부에 설치된 교반기(8-1)는 조정조 배기밸브(5-5)가 닫힌 후 설정된 시간이 경과한 후에 동작을 시작하고, 용해조 배기밸브(5-7)가 닫힌 후 설정된 시간이 경과한 후에 동작을 멈추도록 구성되어 있다.
도 1에서 반응조 상부에 설치된 배기밸브(5-6)는 용해조 교반기(8-1)의 동작을 멈춘 후 설정된 시간이 경과 후에 열리고, 조정조 밸브(5-1)는 반응조 배기밸브(5-6)가 열린 후 설정된 시간이 경과 후에 열리며, 조정조 밸브(5-1)는 반응조 배기밸브(5-6)가 열린 후 설정된 시간이 경과한 후에 열리고, 조정조 펌프(1-2)는 조정조 밸브(5-1)가 열린 후 설정된 시간이 경과한 후에 동작하도록 구성되어 있다.
상기 조정조 펌프(1-2)의 가동이 멈추고, 설정된 시간이 경과 후에 조정조 밸브(5-1)가 닫히며, 조정조 밸브(5-1)가 닫힌 후 설정된 시간이 경화한 후에 반응조 배기밸브(5-6)가 닫히도록 구성되어 있다.
상기 설정된 시간은 슬러지의 종류, 반응조의 온도 및 압력, 반응기의 용량 등에 따라 다르게 설정되며, 수초내지 수십 분사이에서 정하여지나, 이를 벗어날 수도 있다.
고온 고압으로 운전되는 슬러지 열가수분해 반응조와 이보다는 다소 낮은 온도로 운전되는 용해조와 조정조 등에는 압력 센서와 온도센서를 설치하여 스팀 공급밸브 및/또는 보일러 등과 연동시켜 설정된 온도와 압력에서 동작하도록 구성할 수 있다.
각각의 조와 배관 일측에는 PLC 또는 마이컴에 의하여 자동으로 제어하기 위하여 필요한 각종 센서, 밸브, 펌프 등을 고정 설치하여 서로 연동할 수 있도록 구성되어 있다.
또한, 반응조에서 발생하는 냄새를 제거하기 위한 탈취시설배과, 조정조의 에어공급배관, 열교환기에 냉각수 공급 및 보일러 수 공급배관 등을 필요에 의하여 더 부가하여 설치할 수 있다.
다음은 도 5 내지 도 12를 바탕으로 반응조를 둘 이상 채용한 본 발명의 운전로직이 적용된 유기물 열가수분해 시스템의 운전로직에 대하여 살펴본다.
도 5는 둘 이상의 반응조를 채용한 것에 대한 도면이며, 반응조와 관련된 도면번호 외에는 모두 도 1과 동일한 번호를 부여 하였으나, 두 개 이상의 반응조를 설치함에 따른 도면번호만을 달리 기재하였으며, 기재된 번호에 대하여서는 상세한 설명에 구체적으로 기재하였습니다.
연속적으로 전기를 생산하도록 구성된 열병합발전 장치는 주입되는 에너지의 30%정도를 전기를 생산하는데 사용하고, 나머지 70% 정도가 폐열로 처리된다.
이러한 시스템에서 연속적으로 발생하는 폐열을 본 발명에 따른 슬러지 속에 포함된 유기물을 열가수분해하기 위한 유기물 열가수분해 시스템에 사용하도록 구성하므로 열병합발전 장치에서 발생하는 폐열을 효율적으로 이용하여 슬러지의 열가수분해 및 소화 효율을 높이고, 소화 후 탈수 시 탈수성을 향상시켜 탈수 슬러지 량을 크게 줄이는데 있다.
본 발명은 열병합발전 장치에서 연속적으로 발생하는 폐열을 이용하여 보일러를 가동하여 스팀을 만들어서 반응조를 가온하는데 사용한다.
본 발명은 이를 이루기 위하여 조정조와 용해조 혹은 순간이송조(Flush Tank)사이에 적어도 2대 이상의 반응조를 병렬로 설치하고, 각각의 반응조들은 시간차를 두고 순차적으로 열병합발전 장치에서 연속적으로 발생하는 폐열을 이용하여 각각의 반응조를 열가수분해에 필요한 설정된 온도까지 가열하고, 가수분해를 위하여 필요한 시간동안 다른 반응조들을 가열하도록 구성하여 효율적으로 폐열을 이용하도록 구성되어 있다.
도 5에서 조정조와 용해조 혹은 순간이송조사이에 적어도 2대 이상의 반응조를 설치할 경우에 전체 유기물 열가수분해 시스템에서 중요한 구성인 반응조의 크기를 줄일 수 있으므로 반응조 속의 슬러지 량이 많을 경우에 열가수분해 효율이 떨어지는 문제점을 개선할 수 있고, 반응조의 가열 및 반응시간과 이송시간 등을 효율적으로 이용할 수 있도록 구성할 수 있으므로 반응조의 활용도를 높일 수 있다.
도 5에서, 조정조와 용해조 혹은 순간이송조사이에 적어도 2대 이상 설치된 각각의 반응조는 각각 슬러지들을 이송받거나 아송하기 위한 배관이 설치되고, 배관의 일측에는 밸브가 설치되며, 이송을 위한 이송펌프를 설치할 수 있다.
또한, PLC 또는 마이컴을 이용한 제어로직을 적용하여 각각의 슬러지 처리 단계 및 조에서 메모리에 설정된 시간 또는 무게로 자동으로 제어하고, 최적의 시간과 무게로 운영하여 효율적으로 슬러지 처리를 이룰 수 있도록 구성되며, 반응조에서 발생되는 폐에너지 및 폐열을 이용하여 주변 기기를 예열하거나 가열할 때 사용하도록 구성하여 에너지 효율을 높이는데 있다.
PLC 또는 마이컴을 이용하여 제어하는 운전로직은 유기물 열가수분해 시스템의 메모리에 탑재된 제어프로그램에 의하여 시계열로 단계별로 센서들과 연동하여 메모리에 설정된 값에 맞추어서 진행되도록 구성되어 있다.
먼저, 본 발명에 따른 유기물 열가수분해 시스템의 운전로직을 구성하기 위한 전체적인 구성을 살펴본다.
슬러지 저장조에 저장된 슬러지를 연속적이면서 효율적으로 열가수분해하기 위하여 유기물 열가수분해 시스템의 1회 슬러지의 처리용량의 수 배 이상을 일시적으로 저장하여 슬러지 흐름을 연속적으로 제어하기 위하여 슬러지 공급펌프를 이용하여 호파로 설정된 량 만큼 주입한다.
호파는 하부에 설치된 로드셀을 이용하여 주입되는 슬러지의 무게를 측정하여 호파에 주입되는 슬러지 량을 제어하되, 적어도 2대 이상의 반응조에 주입되는 슬러지 량을 합한 값의 5내지 10 배 정도에서 설정 값을 정하여 저장 유지하도록 하는 것이 바람직하다.
호파(9)에 저장된 슬러지는 호파펌프를 이용하여 조정조(10)로 배관을 통해서 이송되며, 조정조(10)는 하부에 설치된 로드셀을 이용하여 주입되는 슬러지의 무게를 측정하여 PLC 에 설정된 량만큼 슬러지를 주입하는 단계를 거치되, 적어도 2대 이상의 반응조에 주입되는 슬러지 량의 합과 거의 동일하게 주입하고, 함수율은 70%내지 90%사이에서 유지하는 것이 바람직하다.
조정조는 슬러지를 각각의 반응조로 주입하기 전에 각각 반응조로 슬러지 주입 시 신속한 유기물 열가수분해가 이루어질 수 있도록 예열하는 역할을 하며, 슬러지의 예열온도는 80℃내지 100℃사이에서 유지하는 것이 바람직하다.
조정조(10)의 예열은 각각의 반응조(11)의 상부에 가열된 스팀을 이용하여 가열이 이루어지도록 구성되어 있다.
예열된 슬러지는 배관을 통해서 각각의 반응조로 순차적으로 이송되도록 구성되며, 각각의 반응조는 하부에 설치된 로드셀을 이용하여 연속적으로 주입되는 슬러지의 무게를 측정하여 PLC 또는 마이컴에 설정된 량만큼 주입 제어하되, 효율적인 유기물 열가수분해를 위하여 반응조 용적의 25%내지 60%사이에서 주입되는 량을 설정하는 것이 바람직하다.
각각의 반응조의 조건은 온도를 150℃ 내지 200℃사이에서 설정 값을 정하여 유지하고, 압력은 6bar내지 12bar 사이에서 설정 값을 정하여 유지하여 고분자 유기물을 저분자 유기물로 가수분해하여 소화효율을 향상시키고, 소화 후 탈수할 때 발생하는 슬러지 탈수케익 량을 최소화하는데 있다. 각각의 반응조의 반응시간은 20분내지 120분이 바람직하나, 이는 반응조 내부의 온도 및 압력 등의 조건에 따라 변경 설정할 수 있다.
각각의 반응기 내부 일측에는 보일러로 가열할 때, 발생하는 열과 내부 압력을 측정하기 위한 온도센서와 압력센서를 설치하여 메모리에 설정된 값을 유지하여 효율적으로 열가수분해가 이루어지도록 구성되어 있다.
각각의 반응조에서 열가수분해 반응을 종료한 모든 슬러지는 해당 밸브를 열어서 용해조 혹은 순간이송조로 배관을 통해서 이송되며, 슬러지 이송수단은 각각의 반응조에 존재하는 압력을 이용하는 수단과 이송펌프를 설치하여 이송시킬 수 있다. 배관 일측에는 각각의 반응조 밸브가 설치되어 있다.
용해조 혹은 순간이송조는 가수분해된 미생물의 세포벽을 용해(lysis)시켜서 유기물 열가수분해 처리 시 주입된 에너지를 회수하도록 구성되어 있다. 폐열 또는 폐에너지를 이용하여 보일러 수를 예열하는데 사용되도록 구성되어 있다.
가수분해된 미생물의 세포벽을 용해시킨 슬러지는 소화가 잘 이루어지는 온도로 낮추기 위하여 열교환기를 통해서 냉각시켜 소화조로 주입되도록 구성되어 있다. 소화에 적당한 온도는 35℃ 내지 55℃사이이다.
상기 유기물 열가수분해 시스템으로 구성된 소화슬러지의 소화효율을 높이고, 소화 후 탈수 시 탈수케익의 량을 최소화하기 위하여 본 발명에 따라 설계 제작된 유기물 열가수분해 시스템의 운전로직을 이루기 위한 구체적인 기술적 구성에 대하여 살펴본다.
도 5는 제1 반응조와 관련된 조정조 밸브(5-1-1), 반응조 밸브(5-2-1), 반응조감압밸브(5-3-1), 반응조 배기밸브(5-6-1), 로드셀(7-3-1) 및 스팀공급 밸브(14-1)가 도시되어 있다.
후술될 실시 예1과 실시 예2에서 언급될 제2 반응조 내지 제4 반응조는 상기 제1 반응조와 병렬로 열결되고, 상기 언급된 다수의 밸브와 각각의 로드셀을 각각 구비하고 있으며, 기술된 내용으로부터 용이하게 이해할 수 있을 것이다.
<실시 예4>
본 발명에 따른 실시 예4를 도 6 내지 도 9에 기초하여 살펴본다. 도 6 내지 도 9는 조정조와 용해조사이에 3대의 반응조를 병렬로 설치하고, 열병합발전 장치로부터 발생되는 폐열을 이용하여 각각의 반응조를 순차적으로 가열한 후, 반응에 필요한 시간동안 유지한 후 순차적으로 슬러지를 이송시키도록 구성된 운전로직을 도시한 것이다.
도 6 내지 도 9는 하나의 도면으로 도시할 경우에 각각의 구성을 나타내는 글씨 및 도면이 너무 작아서 4 개의 도면으로 나누어서 도시한 것이다.
도 5에서, 3대의 반응조가 조정조와 용해조 혹은 순간이송조사이에 병렬로 설치될 경우에는 각각의 반응조들이 조정조 및 용해조 혹은 순간이송조와 연동하여 자동으로 제어되도록 하기 위하여 각각의 반응조와 조정조사이와 각각의 반응조와 용해조 혹은 순간이송조사이에 각각 슬러지 이송을 위한 배관이 설치되어 있다.
설치된 배관 일측에는 조정조 밸브(5-1-1, 5-1-2, 5-1-3)와 반응조 밸브(5-2-1, 5-2-2, 5-2-3)가 각각 설치되어 있고, 반응조의 스팀을 이용하여 조정조를 예열할 때 사용하는 반응조감압밸브(5-3-1, 5-3-2, 5-3-3)가 각각 설치되며, 각각의 반응조 상부에는 가스를 배출할 수 있도록 반응조 배기밸브(5-6-1, 5-6-2, 5-6-3)가 각각 설치되고, 각각의 반응조 하부에는 무게를 측정할 수 있는 로드셀(7-3-1, 7-3-2, 7-3-3)이 각각 설치되어 있다.
제1 반응조(11-1)와 관련하여 조정조 밸브(5-1-1), 반응조 밸브(5-2-1), 반응조감압밸브(5-3-1), 반응조 배기밸브(5-6-1) 및 로드셀(7-3-1)이 설치된다.
제2 반응조(11-2)와 관련하여 조정조 밸브(5-1-2), 반응조 밸브(5-2-2), 반응조감압밸브(5-3-2), 반응조 배기밸브(5-6-2) 및 로드셀(7-3-2)이 설치된다.
제3 반응조(11-3)와 관련하여 조정조 밸브(5-1-3), 반응조 밸브(5-2-3), 반응조감압밸브(5-3-3), 반응조 배기밸브(5-6-3) 및 로드셀(7-3-3)이 설치된다.
제1 반응조 내지 제3 반응조를 가열하기 위한 스팀을 공급하기 위한 배관이 보일러(14)와 반응조사이에 각각 설치되고, 배관의 일측에는 스팀공급 밸브(14-1, 14-2, 14-3)를 각각 설치하여 스팀을 공급 또는 차단할 수 있도록 구성되어 있다.
도 5에서, 3대의 반응조 각각은 조정조와 용해조 혹은 순간이송조사이에 병렬로 설치되고, 조정조에서 각각의 반응조로 슬러지를 이송시키기 위한 배관이 각각 설치되며, 설치된 각각의 배관에는 조정조 밸브(5-1-1, 5-1-2, 5-1-3)를 설치하여 슬러지의 이송을 차단하거나 허락할 수 있도록 구성되어 있다.
각각의 반응조에서 용해조 혹은 순간이송조로 슬러지를 이송시키기 위한 배관이 각각 설치되며, 설치된 각각의 배관에는 반응조 밸브(5-2-1, 5-2-2, 5-2-3)를 설치하여 열가수분해를 마친 슬러지의 이송을 차단하거나 허락할 수 있도록 구성되어 있다.
하나의 구체적인 예를 조정조에서 슬러지를 제1 반응조로 이송한 후 열병합발전에서 연속적으로 발생하는 스팀을 배관에 설치된 스팀공급 밸브(14-1)을 열어서 45분 동안 가열하여 설정된 온도로 가온하여 유지하고, 설정된 온도에서 90분 반응시킨 후 용해조 혹은 순간이송조로 열가수분해를 마친 슬러지를 이송하도록 구성되어 있다.
다음은 열병합발전 장치에서 연속적으로 발생하는 스팀을 이용하기 위하여 제1 반응조의 가열을 종료한 후, 조정조에서 제2 반응조로 이송한 슬러지를 열병합발전 장치에서 연속적으로 발생하는 스팀을 배관에 설치된 스팀공급 밸브(14-1)을 열어서 45분 동안 가열하여 설정된 온도로 만들고, 설정된 온도에서 90분 반응시킨 후 용해조로 유기물 열가수분해가 종료된 슬러지를 이송하도록 구성되어 있다.
다음은 열병합발전에서 연속적으로 발생하는 스팀을 이용하기 위하여 제2 반응조의 가열을 종료한 후, 조정조에서 제3 반응조로 이송한 슬러지를 열병합발전 장치에서 연속적으로 발생하는 스팀을 스팀공급 배관에 설치된 스팀공급 밸브(14-1)을 열어서 45분 동안 가열하여 설정된 온도로 가온하여 유지하도록 구성하고, 설정된 온도에서 90분 반응시킨 후 용해조로 유기물 열가수분해를 마친 슬러지를 이송하도록 구성되어 있다.
다음은 열병합발전 장치에서 연속적으로 발생하는 스팀을 이용하기 위하여 제3 반응조의 가열을 종료한 후, 조정조에서 제1 반응조로 이송된 슬러지를 열병합발전 장치에서 연속적으로 발생하는 스팀을 이용하여 45분 동안 가열하도록 구성하므로 크기가 작은 반응조를 순차적으로 연속적으로 가열하여 효율적으로 열가수분해를 이룰 수 있다.
반응조의 가온시간은 45분으로 하고, 조정조에서 슬러지를 각각의 반응조로 이송하는 시간과 각각의 반응조에서 용해조 혹은 순간이송조로 슬러지를 이송하는 시간은 반응시간 90 분에 포함시킬 수 있다.
상기 수치는 하나의 구체적인 예를 나타낸 것이고, 각각의 반응조의 가온시간은 20분 내지 60분사이에서 설정하는 것이 바람직하고, 조정조에서 슬러지를 각각의 반응조로 이송하는 시간과, 각각의 반응조에서 용해조 혹은 순간이송조로 슬러지를 이송하는 시간 및 반응시간을 포함하여 60분내지 120분사이에서 설정할 수 있다.
이러한 가온시간 및 반응시간은 반응기 내부의 온도와 압력의 설정 값을 달리하여 시간을 변경하여 연속적으로 순차적 제어를 할 수 있다.
즉, 조정조와 용해조 혹은 순간이송조사이에 병렬로 연결된 반응조 3 대를 각각 45분 단위로 나누어 연속적이면서 순차적으로 가열할 수 있으므로 열병합발전 장치로부터 연속적으로 발생하는 폐열의 낭비를 최소화할 수 있도록 구성되어 있다.
반응조의 크기를 줄일 수 있으므로 반응조 내부의 온도 및 압력을 설정된 조건으로 용이하게 맞출 수 있어 유기물 슬러지의 반응효율을 높일 수 있고, 높은 반응효율에 의한 소화 슬러지를 탈수할 경우에 탈수케익 량을 최소화할 수 있는 유리한 효과가 있다.
도 5에 기초하여 실시 예1에 따른 유기물 열가수분해 시스템 운전로직의 전체적인 흐름을 살펴본다.
도 5의 유기물 열가수분해 시스템에서 슬러지공급펌프(1-6)를 동작시켜 호파의 하단에 설치된 호파 로드셀(7-1)을 이용하여 주입되는 슬러지의 무게를 연속적으로 측정하면서 설정된 량만큼 슬러지를 이송 배관을 통해서 호파로 이송하고, 슬러지공급펌프의 동작을 정지하는 단계를 구비한다.
호파 하부에 설치된 호파로드셀(7-1)을 이용하여 호파로 주입된 슬러지 량을 측정하여 PLC에 설정된 량만큼 호파로 이송한다. 호파에 주입 저장되는 슬러지 량은 본 발명의 핵심 구성인 조정조와 용해조사이에 3 대가 병렬로 설치되는 반응조에서 1회 처리하는 슬러지 량을 합한 것의 5배 내지 10배사이에서 설정량을 정하는 것이 바람직하다.
다음은 호파에 저장된 슬러지를 연결된 이송배관을 통해서 조정조(10)로 이송하기 위하여 배관 일측에 설치된 호파밸브(6-1)을 열고, 호파펌프(1-1)와 조정조 로드셀(7-2)를 이용하여 슬러지를 설정된 무게 량만큼 조정조로 이송하고 호파펌프의 동작을 정지하는 단계를 포함한다.
상기 설정된 량은 조정조로 주입되는 슬러지 무게를 측정하는 조정조 로드셀(7-2)을 이용하여 결정하며, 조정조와 용해조사이에 3 대가 병렬로 설치되는 반응조에서 1회 처리되는 슬러지 량의 합과 동일내지 유사한 량으로 설정 값을 정하는 것이 바람직하다.
본 발명에 따른 유기물 열가수분해 시스템을 가동하기 전에 병렬로 설치된 각각의 반응조에는 1회 처리량이 이미 주입된 상태에서 정상 가동을 시작한다. 이는 가동 시 슬러지 처리 시 주입되는 에너지를 절약하고 시작단계에서 자동으로 슬러지 처리가 이루어지도록 하기 위한 것이다.
그러하지 않은 경우에는 조정조 펌프(1-2)를 이용하여 조정조의 슬러지를 연결된 배관을 통해서 조정조와 용해조 혹은 순간이송조사이에 3 대가 병렬로 설치되는 반응조(11-1, 11-2, 11-3)로 이송하기 위하여 각각의 배관 일측에 설치된 조정조 밸브(5-1-1, 5-1-2, 5-1-3)를 열고 닫으면서 조정조 펌프(1-2)를 가동하여 슬러지를 설정된 량만큼 각각의 반응조(11-1, 11-2, 11-3)로 이송하고, 조정조 펌프의 동작을 정지하고 조정조 밸브(5-1-1, 5-1-2, 5-1-3)를 닫는 단계를 구비할 수 있다.
상기 호파펌프(1-1)를 이용하여 슬러지를 조정조로 설정된 량만큼 이송한 후 호파펌프(1-1)의 동작을 멈춘 후, 열병합발전 장치에서 발생하는 폐열에 의하여 가동되는 보일러(도 1의 14)에서 발생하는 스팀을 이용하여 반응조의 온도가 150℃ 내지 200℃사이에서 설정된 온도로 가온하여 유지하고, 반응조 내부의 압력이 6 bar내지 12 bar사이에서 설정된 값을 유지하여 열가수분해를 수행하는 단계를 포함한다.
열가수분해의 시간은 온도, 압력 및 주입된 슬러지 량 등에 의하여 차이가 있으며, 20분 내지 120분사이에서 설정하는 것이 바람직하다.
설정된 시간이 경과하여 유기물 열가수분해가 종료되면, 3대의 반응조 내부의 슬러지를 용해조 혹은 순간이송조로 이송하기 전에 각각의 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브(5-3-1, 5-3-2, 5-3-3) 중에서 해당하는 밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조에 저장된 슬러지를 예열하는 단계를 수행하는 운전로직을 포함한다.
이와 동시에 3대의 반응조에서 유기물 열가수분해 반응이 종료된 슬러지를 수용하기 위하여 용해조 혹은 순간이송조 펌프(1-3)를 가동하여 설정된 무게로 용해조 혹은 순간이송조를 비우는 단계가 운전로직에 포함된다.
용해조 혹은 순간이송조(12)를 비우는데 수단은 용해조 혹은 순간이송조(12) 하부에 설치된 용해조 로드셀(7-4)과 연동시켜 수행할 수 있으며, 즉 용해조 혹은 순간이송조(12) 내부의 슬러지 무게를 연속적으로 측정하여 무게가 감소하여 설정된 무게에 도달하면 용해조 펌프(1-3)의 동작을 멈추도록 구성할 수 있다.
다음은 3 대의 반응조 중에서 각각의 감압밸브(5-3-1, 5-3-2, 5-3-3) 중에서 해당하는 밸브를 닫고, 반응조 밸브(5-2-1, 5-2-2, 5-2-3) 중에서 해당하는 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조 혹은 순간이송조로 설정된 시간동안 이송하고, 반응조 밸브(5-2-1, 5-2-2, 5-2-3) 중에서 해당하는 밸브를 닫는 단계를 거친다.
상기 슬러지를 용해조 혹은 순간이송조(12)로 이송하기 위하여 설정된 무게는 각각의 반응조(11-1, 11-2, 11-3) 내부의 슬러지 무게를 각각의 반응조 하부에 설치된 각각의 반응조 로드셀(7-3-1, 7-3-2, 7-3-3)을 이용하여 연속적으로 무게를 측정하여 무게가 감소하여 설정된 무게에 도달하면 반응조 밸브(5-2-1, 5-2-2, 5-2-3) 중에서 해당하는 밸브가 자동으로 닫히도록 구성되어 있다.
다음은 조정조(10)의 슬러지를 각각의 반응조(11-1, 11-2, 11-3)로 이송하기 위하여 해당하는 조정조 밸브(5-1-1, 5-1-2, 5-1-3)를 열고, 조정조 펌프(1-2)와 조정조 로드셀(7-2)을 서로 연동시켜 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프(1-2)의 가동을 중단하고 해당하는 조정조 밸브(5-1-1, 5-1-2, 5-1-3)를 닫는 단계를 거친다.
실시 예4에서 앞서 기술한 단계를 반복 수행하여 슬러지를 연속적으로 처리하는 운전로직을 구비하여 소화 효율을 높이고, 소화 후 탈수 시 탈수케익량을 최소화하도록 구성되어 있다.
앞서 기술된 기술적 구성으로부터 실시 예4에 따른 유기물 열가수분해 시스템의 운전로직을 요약하면, 유기물 열가수분해 시스템의 운전로직에 있어서, a) 유기물 열가수분해 시스템에서 슬러지 공급펌프을 동작시켜 슬러지 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고, 슬러지공급펌프의 동작을 정지하는 단계와, b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, c) 보일러를 가동하여 반응조를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 반응조의 슬러지를 열가수분해하는 단계와, d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조의 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조 혹은 순간이송조를 비우는 단계와, e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브를 닫는 단계와, f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지며, 상기 단계(a) 내지 (f)를 반복 운전하도록 구성하되, 3대의 반응조를 조정조와 용해조사이에 병렬로 설치하여 열병합발전 장치에 의하여 연속적으로 발생하는 스팀을 냉각되지 않은 상태로 순차적으로 설정된 온도로 가온 유지하여 효율적으로 운전할 수 있는 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
또 다른 유기물 열가수분해 시스템의 운전로직에 있어서, (a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계와, (b) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계와, (c) 상기 보일러 가동 시 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조에 저장된 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조 혹은 순간이송조를 비우는 단계와. (e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조 혹은 순간이송조로 이송하고, 반응조 밸브를 닫는 단계와, (f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프(1-2)를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계를 포함하는 유기물 열가수분해를 위하여 상기 단계(a)내지 (f)를 반복 운전하도록 구성하되, 3대의 반응조를 조정조와 용해조사이에 병렬로 설치하여 열병합발전 장치에 의하여 연속적으로 발생하는 스팀을 냉각되지 않은 상태로 순차적으로 설정된 온도로 가온 유지하여 효율적으로 운전할 수 있는 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
또 다른 유기물 열가수분해 시스템의 운전로직에 있어서, (a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계와, (b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, (c) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계와, (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조를 가열하기 위하여 이송하여 조정조에 저장된 슬러지를 예열하고 반응조 감압밸브를 닫는 단계와, (e) 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조 혹은 순간이송조를 비우는 단계와, (f) 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조 혹은 순간이송조로 이송하고, 반응조 밸브를 닫는 단계와, (g) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 유기물 열가수분해 시스템을 상기 단계(a)내지 (g)를 반복 운전하도록 구성하되, 3대의 반응조를 조정조와 용해조 혹은 순간이송조사이에 병렬로 설치하여 열병합발전 장치에 의하여 연속적으로 발생하는 스팀을 냉각되지 않은 상태로 순차적으로 설정된 온도로 가온 유지하여 효율적으로 운전할 수 있는 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
도 9에서, 반응조3(reactor3)에 스팀 공급이 종료되면, 다시 반응조1(reactor1)로 순환시켜 스팀을 순차적이면서 연속적으로 공급되도록 구성되어 있다.
<실시 예5>
본 발명에 따른 실시 예5를 도 10 내지 도 12의 운전로직에 기초하여 살펴본다.
도 10 내지 도 12의 운전로직은 하나의 도면으로 도시할 경우에 각각의 구성을 나타내는 글씨 및 도면이 너무 작아서 3 개의 도면으로 나누어서 도시한 것이다.
도 10 내지 도 12에 기초한 실시 예5는 실시 예4에서 3대의 반응조를 사용한 것을 4대의 반응조로 그 수를 증가시켜 적용한 운전로직을 도시한 것이다.
도 5의 유기물 열가수분해 시스템에서, 4대의 반응조가 조정조와 용해조사이에 병렬로 설치될 경우에는 각각의 반응조를 조정조 및 용해조와 연동시켜 자동으로 제어하기 위하여 각각의 반응조와 조정조사이와 각각의 반응조와 용해조사이에 각각 슬러지 이송을 위한 배관이 설치된다.
각각 설치된 배관 일측에는 조정조 밸브(5-1-1, 5-1-2, 5-1-3, 5-1-4)와 반응조 밸브(5-2-1, 5-2-2, 5-2-3, 5-2-4)가 설치되어 있고, 반응조의 스팀을 이용하여 조정조를 예열할 때 사용하는 반응조감압밸브(5-3-1, 5-3-2, 5-3-3, 5-3-4)가 설치되어 있다.
각각의 반응조 상부에는 가스를 배출할 수 있도록 반응조 배기밸브(5-6-1, 5-6-2, 5-6-3, 5-6-4)가 설치되고, 각각의 반응조 하부에는 슬러지 무게를 측정하기 위한 로드셀(7-3-1, 7-3-2, 7-3-3, 7-3-4)이 설치되어 있다.
제1 반응조와 관련하여 조정조 밸브(5-1-1), 반응조 밸브(5-2-1), 반응조감압밸브(5-3-1), 반응조 배기밸브(5-6-1) 및 로드셀(7-3-1)이 설치된다.
제2 반응조와 관련하여 조정조 밸브(5-1-2), 반응조 밸브(5-2-2), 반응조감압밸브(5-3-2), 반응조 배기밸브(5-6-2) 및 로드셀(7-3-2)이 설치된다.
제3 반응조와 관련하여 조정조 밸브(5-1-3), 반응조 밸브(5-2-3), 반응조감압밸브(5-3-3), 반응조 배기밸브(5-6-3) 및 로드셀(7-3-3)이 설치된다.
제4 반응조와 관련하여 조정조 밸브(5-1-4), 반응조 밸브(5-2-4), 반응조감압밸브(5-3-3), 반응조 배기밸브(5-6-4) 및 로드셀(7-3-4)이 설치된다.
제1 반응조 내지 제4 반응조를 가열하기 위한 스팀을 공급하기 위한 배관이 보일러와 각각의 반응기사이에 설치되고, 각각의 배관 일측에는 스팀공급 밸브(14-1, 14-2, 14-3, 14-4)를 설치하여 스팀을 공급 또는 차단할 수 있도록 구성되어 있다.
4대의 반응조 각각은 조정조에서 각각의 반응조로 슬러지를 이송시키기 위한 배관이 각각 설치되며, 설치된 각각의 배관에는 조정조 밸브(5-1-1, 5-1-2, 5-1-3, 5-1-4)를 각각 설치하여 슬러지의 이송을 차단하거나 이송할 수 있도록 구성되어 있다.
각각의 반응조에서 용해조 혹은 순간이송조로 슬러지를 이송시키기 위한 배관이 각각 설치되며, 설치된 각각의 배관에는 반응조 밸브(5-2-1, 5-2-2, 5-2-3, 5-2-4)를 각각 설치하여 유기물 열가수분해가 종료된 슬러지의 이송을 차단하거나 이송할 수 있도록 구성되어 있다.
보다 구체적으로 하나의 예를들어 살펴보면, 조정조에서 슬러지를 제1 반응조로 이송한 후, 열병합발전 장치에서 연속적으로 발생하는 스팀을 배관에 설치된 스팀공급 밸브(14-1)을 열어서 30분 동안 가열하여 설정된 온도로 만들고, 설정된 온도에서 90분 반응시킨 후 용해조 혹은 순간이송조로 열가수분해가 종료된 슬러지를 이송하도록 구성되어 있다.
다음은 열병합발전 장치에서 연속적으로 발생하는 스팀을 이용하기 위하여 제1 반응조의 가열을 종료한 후, 조정조에서 제2 반응조로 이송한 슬러지를 열병합발전에서 연속적으로 발생하는 스팀을 배관에 설치된 스팀공급 밸브(14-2)을 열어서 30분 동안 가열하여 설정된 온도로 가온 유지하도록 하고, 설정된 온도에서 90분 반응시킨 후 용해조로 열가수분해가 종료된 슬러지를 이송하도록 구성되어 있다.
다음은 열병합발전 장치에서 연속적으로 발생하는 스팀을 이용하기 위하여 제2 반응조의 가열을 종료한 후, 조정조에서 제3 반응조로 슬러지를 이송한 후 열병합발전에서 연속적으로 발생하는 스팀을 배관에 설치된 스팀공급 밸브(14-3)을 열어서 30분 동안 가열하여 설정된 온도로 가온 유지하고, 설정된 온도에서 90분 반응시킨 후 용해조 혹은 순간이송조로 열가수분해가 종료된 슬러지를 이송하도록 구성되어 있다.
다음은 열병합발전 장치에서 연속적으로 발생하는 스팀을 이용하기 위하여 제3 반응조의 가열을 종료한 후, 조정조에서 제4 반응조로 슬러지를 이송한 후, 열병합발전에서 연속적으로 발생하는 스팀을 배관에 설치된 스팀공급 밸브(14-1)을 열어서 30분 동안 가열하여 설정된 온도로 가온 유지하고, 설정된 온도에서 90분 반응시킨 후 용해조 혹은 순간이송조로 열가수분해가 종료된 슬러지를 이송하도록 구성되어 있다.
다음은 열병합발전에서 연속적으로 발생하는 스팀을 이용하기 위하여 제4 반응조의 가열을 종료한 후, 조정조에서 제1 반응조로 슬러지를 이송한 후 열병합발전에서 연속적으로 발생하는 스팀을 배관에 설치된 스팀공급 밸브을 열어서 30분 동안 가열하도록 구성하므로 크기가 작은 반응조를 순차적으로 연속적으로 가열하여 효율적으로 열가수분해를 이룰 수 있다.
반응조의 가온시간은 30분으로 하고, 조정조에서 슬러지를 각각의 반응조로 이송하는 시간과 각각의 반응조에서 용해조로 슬러지를 이송하는 시간은 반응시간 90 분에 포함시킬 수 있다.
상기 수치는 하나의 구체적인 하나의 예를 나타낸 것이고, 각각의 반응조의 가온시간은 20분 내지 60분사이에서 설정하고, 조정조에서 슬러지를 각각의 반응조로 이송하는 시간과, 각각의 반응조에서 용해조로 슬러지를 이송하는 시간 및 반응시간을 포함하여 60분내지 120분사이에서 설정할 수 있다.
이러한 가온시간 및 반응시간은 반응기 내부의 온도와 압력의 설정 값을 달리하여 시간을 변경하여 연속적으로 순차적 제어를 할 수 있다.
즉, 조정조와 용해조 혹은 순간이송조사이에 병렬로 연결된 반응조 4 대를 각각 30분 단위로 나누어 연속적이면서 순차적으로 가열할 수 있으므로 열병합발전 장치로부터 나오는 폐열을 연속적으로 사용할 수 있도록 구성하므로 폐열의 낭비를 최소화할 수 있다.
반응조의 크기를 줄일 수 있으므로 반응조 내부의 온도 및 압력 조건을 용이하게 맞출 수 있어 유기물 슬러지의 반응효율을 높일 수 있고, 높은 반응효율에 의하여 소화된 슬러지를 탈수할 경우에 탈수케익 량을 최소화할 수 있는 유리한 효과가 있다.
도 5에 기초하여 실시 예5에 따른 유기물 열가수분해 시스템 운전로직의 전체적인 흐름을 살펴본다.
도 5의 유기물 열가수분해 시스템에서 슬러지공급펌프(1-6)를 동작시켜 호파의 하단에 설치된 호파 로드셀(7-1)을 이용하여 주입되는 슬러지의 무게를 연속적으로 측정하면서 설정된 량만큼 슬러지를 이송 배관을 통해서 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계를 구비한다.
호파 하부에 설치된 호파 로드셀(7-1)을 이용하여 호파로 주입된 슬러지 량을 측정하여 PLC에 설정된 량만큼 호파로 이송한다. 호파에 주입 저장되는 슬러지 량은 본 발명의 핵심 구성인 조정조와 용해조 혹은 순간이송조사이에 4 대가 병렬로 설치되는 반응조에서 1회 처리하는 슬러지 량을 합한 것의 5배 내지 10배사이에서 설정량을 정하는 것이 바람직하다.
다음은 호파에 저장된 슬러지를 연결된 이송배관을 통해서 조정조(10)로 이송하기 위하여 배관 일측에 설치된 호파밸브(6-1)를 열고, 호파펌프(1-1)와 조정조 로드셀(7-2)를 이용하여 슬러지를 설정된 무게 량만큼 조정조로 이송하고 호파펌프의 동작을 정지하는 단계를 포함한다.
상기 설정된 량은 조정조로 주입되는 슬러지 무게를 측정하는 조정조 로드셀(7-2)을 이용하여 결정하며, 조정조와 용해조 혹은 순간이송조사이에 4 대가 병렬로 설치되는 반응조에서 1회 처리되는 슬러지 량의 합과 동일내지 유사한 량으로 설정 값을 정하는 것이 바람직하다.
본 발명에 따른 유기물 열가수분해 시스템을 가동하기 전에 병렬로 설치된 각각의 반응조에는 1회 처리량이 이미 주입된 상태에서 정상 가동을 시작한다. 이는 가동 시 슬러지 처리 시 주입되는 에너지를 절약하고 시작단계에서 자동으로 슬러지 처리가 이루어지도록 하기 위한 것이다.
그러하지 않은 경우에는 조정조 펌프(1-2)를 이용하여 조정조의 슬러지를 연결된 배관을 통해서 조정조와 용해조사이에 4 대가 병렬로 설치되는 반응조(11-1, 11-2, 11-3, 11-4)로 이송하기 위하여 각각의 배관 일측에 설치된 조정조 밸브(5-1-1, 5-1-2, 5-1-3, 5-1-4)를 열고 닫으면서 조정조 펌프(1-2)를 가동하여 슬러지를 설정된 량만큼 각각의 반응조(11)로 이송하고, 조정조 펌프의 동작을 정지하고 조정조 밸브(5-1-1, 5-1-2, 5-1-3, 5-1-4)를 닫는 단계를 포함할 수 있다.
상기 호파펌프(1-1)를 이용하여 슬러지를 조정조로 설정된 량만큼 이송한 후 호파펌프(1-1)의 동작을 멈춘 후, 열병합발전 장치에서 발생하는 폐열에 의하여 가동되는 보일러(도 1의 14)에서 발생하는 스팀을 이용하여 반응조의 온도가 150℃ 내지 200℃사이에서 설정된 온도로 가온하여 유지하고, 반응조 내부의 압력이 6 bar내지 12 bar사이에서 설정된 값을 유지하여 열가수분해를 수행하는 단계를 포함한다.
열가수분해의 시간은 온도, 압력 및 주입된 슬러지 량 등에 의하여 차이가 있으며, 20분 내지 120분사이에서 설정하는 것이 바람직하다.
설정된 시간이 경과하여 열가수분해가 종료되면, 4대의 반응조 내부의 슬러지를 용해조 혹은 순간이송조로 이송하기 전에 각각의 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브(5-3-1, 5-3-2, 5-3-3, 5-3-4) 중에서 해당하는 밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조에 저장된 슬러지를 예열하는 단계를 수행하는 운전로직을 포함한다.
이와 동시에 4대의 반응조에서 유기물 열가수분해 반응이 종료된 슬러지를 수용하기 위하여 용해조 펌프(1-3)를 가동하여 설정된 무게로 용해조 혹은 순간이송조를 비우는 단계의 운전로직을 포함한다.
용해조 혹은 순간이송조(12)를 비우는데 수단은 용해조 혹은 순간이송조(12) 하부에 설치된 용해조 로드셀(7-4)과 연동시켜 수행할 수 있으며, 즉 용해조 혹은 순간이송조(12) 내부의 슬러지 무게를 연속적으로 측정하여 무게가 감소하여 설정된 무게에 도달하면 용해조 펌프(1-3)의 동작을 멈추도록 구성할 수 있다.
다음은 반응조 감압밸브(5-3-1, 5-3-2, 5-3-3, 5-3-4) 중에서 해당하는 밸브를 닫고, 반응조 밸브(5-2-1, 5-2-2, 5-2-3, 5-2-4) 중에서 해당하는 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 설정된 시간동안 이송하고, 반응조 밸브(5-2-1, 5-2-2, 5-2-3, 5-2-4) 중에서 해당하는 밸브를 닫는 단계를 거친다.
상기 슬러지를 용해조(12)로 이송하기 위하여 설정된 무게는 각각의 반응조(11-1, 11-2, 11-3, 11-4) 내부의 슬러지 무게를 각각의 반응조 하부에 설치된 각각의 반응조 로드셀(7-3-1, 7-3-2, 7-3-3, 7-3-4)을 이용하여 연속적으로 무게를 측정하여 무게가 감소하여 설정된 무게에 도달하면 반응조 밸브(5-2-1, 5-2-2, 5-2-3, 5-2-4) 중에서 해당하는 밸브가 자동으로 닫히도록 구성할 수 있다.
다음은 조정조(10)의 슬러지를 각각의 반응조(11-1, 11-2, 11-3, 11-4)로 이송하기 위하여 조정조 밸브(5-1-1, 5-1-2, 5-1-3, 5-1-4)를 열고, 조정조 펌프(1-2)와 조정조 로드셀(7-2)을 서로 연동시켜 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프(1-2)의 가동을 중단하고 조정조 밸브(5-1-1, 5-1-2, 5-1-3, 5-1-4)를 닫는 단계를 거친다.
실시 예4에서 앞서 기술한 단계를 반복 수행하여 슬러지를 연속적으로 처리하는 운전로직을 구비하여 소화 효율을 높이고, 소화 후 탈수 시 탈수케익량을 최소화하도록 구성되어 있다.
앞서 기술된 기술적 구성으로부터 실시 예5에 따른 운전로직을 요약하면, 유기물 열가수분해 시스템의 운전로직에 있어서, a) 유기물 열가수분해 시스템에서 슬러지 공급펌프을 동작시켜 슬러지 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고, 슬러지공급펌프의 동작을 정지하는 단계와, b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, c) 보일러를 가동하여 반응조를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 반응조의 슬러지를 열가수분해하는 단계와, d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조의 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 혹은 순간이송조 펌프를 가동하여 용해조 혹은 순간이송조를 비우는 단계와, e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조 혹은 순간이송조로 이송하고, 반응조 밸브를 닫는 단계와, f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 이루어지며, 상기 단계(a) 내지 (f)를 반복 운전하도록 구성하되, 4대의 반응조를 조정조와 용해조 혹은 순간이송조사이에 병렬로 설치하여 열병합발전 장치에 의하여 연속적으로 발생하는 스팀을 냉각되지 않은 상태로 순차적으로 설정된 온도로 가온 유지하여 효율적으로 운전할 수 있는 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
또 다른 유기물 열가수분해 시스템의 운전로직에 있어서, (a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계와, (b) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계와, (c) 상기 보일러 가동 시 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조에 저장된 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조를 비우는 단계와. (e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브를 닫는 단계와, (f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 유기물 열가수분해 시스템을 상기 단계(a)내지 (f)를 반복 운전하도록 구성하되, 4대의 반응조를 조정조와 용해조 혹은 순간이송조사이에 병렬로 설치하여 열병합발전 장치에 의하여 연속적으로 발생하는 스팀을 냉각되지 않은 상태로 순차적으로 설정된 온도로 가온 유지하여 효율적으로 운전할 수 있는 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
또 다른 유기물 열가수분해 시스템의 운전로직에 있어서, (a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계와, (b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계와, (c) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계와, (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조를 가열하기 위하여 이송하여 조정조에 저장된 슬러지를 예열하고 반응조 감압밸브를 닫는 단계와, (e) 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 혹은 순간이송조 펌프를 가동하여 용해조 혹은 순간이송조를 비우는 단계와, (f) 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조 혹은 순간이송조로 이송하고, 반응조 밸브를 닫는 단계와, (g) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계로 유기물 열가수분해 시스템을 상기 단계(a)내지 (g)를 반복 운전하도록 구성하되, 4대의 반응조를 조정조와 용해조 혹은 순간이송조사이에 병렬로 설치하여 열병합발전 장치에 의하여 연속적으로 발생하는 스팀을 냉각되지 않은 상태로 순차적으로 설정된 온도로 가온유지하여 효율적으로 운전할 수 있는 유기물 열가수분해 시스템의 운전로직을 구현하는데 있다.
도 5에서, 반응조4(reactor4)에 스팀 공급이 종료되면, 다시 반응조1(reactor1)로 순환시켜 스팀을 순차적이면서 연속적으로 공급되도록 구성되어 있다.
앞서 기술한 실시 예4 및 5에서 반응조에서 용해조로 슬러지를 이송하는 수단은 스팀을 조정조 예열을 위하여 사용한 후 남은 반응조 내부의 잔압을 이용하거나 별도의 이송펌프를 사용하여 슬러지를 반응조에서 용해조 혹은 순간이송조로 이송시키도록 구성할 수 있다.
앞서 기술한 실시 예4 및 실시 예5의 운전로직에서, 도 5에 도시된 주변의 밸브와 펌프들의 동작시점에 대하여 구체적으로 살펴본다.
도 5을 바탕으로, 앞서 기술한 설명에서와 같이 열병합발전의 폐열을 이용하여 보일러를 가열하고, 가열에 의하여 발생한 스팀을 이용하여 병렬로 설치된 다수의 반응조를 순차적으로 가열 가온하도록 구성하는 것이 바람직하나, 별도의 가스, 전기 또는 다른 가열 수단으로 보일러를 가열하여 스팀을 연속적으로 발생하고 발생한 스팀을 병렬로 설치된 다수의 반응조에 순차적으로 공급 가열하는 구성 또는 병렬로 설치된 다수의 반응조를 순차적으로 직접 가열 가온하는 구성으로 본 발명을 이룰 수 있으며, 이들 모두 본 발명의 보호범위에 속한다.
도 5의 조정조 상부에 설치된 배기밸브(5-5)는 슬러지 공급펌프(1-6)의 가동을 멈춘 후 열리고, 호파펌프(1-1)의 가동이 멈춘 후 닫히도록 구성되어 있다.
도 5의 용해조에 설치된 슬러지 교반기(8-2)는 도 5의 슬러지 처리시스템의 동작이 시작됨과 동시에 동작하여, 열교환기 순환펌프(5-9)의 동작을 멈춘 후 설정된 시간동안 동작 후에 멈추도록 구성되어 있다.
도 5에서, 용해조 상부에 설치된 배기밸브(5-7)는 실시 예1내지 3에서 보일러 (14)의 가동을 멈춘 후 열리고, 각각의 반응조 밸브가 닫힌 후 설정된 시간 후에 닫히도록 구성되어 있다.
도 5에서, 조정조 내부에 설치된 교반기(8-1)는 조정조 배기밸브(5-5)가 닫힌 후 설정된 시간이 경과한 후에 동작을 시작하고, 용해조 배기밸브(5-7)가 닫힌 후 설정된 시간이 경과한 후에 동작을 멈추도록 구성되어 있다.
도 5에서 반응조 상부에 설치된 배기밸브(5-6)는 용해조 혹은 순간이송조 교반기(8-1)의 동작을 멈춘 후 설정된 시간이 경과 후에 열리고, 각각의 조정조 밸브는 해당하는 반응조 배기밸브가 열린 후 설정된 시간이 경과 후에 열리며, 각각의 조정조 밸브는 해당하는 반응조 배기밸브가 열린 후 설정된 시간이 경과 후에 열리고, 조정조 펌프(1-2)는 각각의 조정조 밸브가 열린 후 설정된 시간이 경과 후에 동작하도록 구성되어 있다.
상기 조정조 펌프(1-2)의 가동이 멈추고, 설정된 시간이 경과 후에 해당하는 조정조 밸브가 닫히며, 해당하는 조정조 밸브가 닫힌 후 설정된 시간이 경화한 후에 해당하는 반응조 배기밸브가 닫히도록 구성되어 있다.
상기 설정된 시간은 슬러지의 종류, 반응조의 온도 및 압력, 반응기의 용량 등에 따라 다르게 설정되며, 수초내지 수십 분사이에서 정하여지나, 이를 벗어날 수도 있다.
고온 고압으로 운전되는 슬러지 열가수분해 반응조와, 이보다는 다소 낮은 온도로 운전되는 용해조 혹은 순간이송조와 조정조 등에는 압력 센서와 온도센서를 설치하여 스팀 공급밸브 및/또는 보일러 등과 연동시켜 설정된 온도와 압력에서 동작하도록 구성할 수 있다.
각각의 조와 배관 일측에는 PLC 또는 마이컴에 의하여 자동으로 제어하기 위하여 필요한 각종 센서, 밸브, 펌프 등을 고정 설치하여 서로 연동할 수 있도록 구성되어 있다.
또한, 각각의 반응조에서 발생하는 냄새를 제거하기 위한 탈취시설배과, 조정조의 에어공급배관, 열교환기에 냉각수 공급 및 보일러 수 공급배관 등을 필요에 의하여 더 부가하여 설치할 수 있다.
구체적인 실시 예로 조정조와 용해조사이에 병렬로 설치되는 반응조의 수를 3~4대로 설명을 하였으나, 설명 내용을 바탕으로 반응조의 수가 2대 또는 5대 이상에서도 용이하게 적용할 수 있을 것이며, 이 또한 본 발명의 보호범위에 속한다.
본 발명은 본 발명은 유기물 열가수분해 시스템에서 반응조를 하나 또는 둘 이상 사용하여 PLC 또는 마이컴에 저장된 운전로직 제어프로그램에 따라 제어하여 소화효율을 높이고, 소화 후 탈수 시 탈수케익을 최소화하며, 반응조에서 나오는 폐열을 조정조 예열에 사용하도록 구성하여 운전 에너지를 절약하고, 연속적으로 발생한 폐열을 연속적으로 이용할 수 있으며, 슬러지 처리시간을 크게 단축시킬 수 있으므로 산업상 이용가능성이 매우 높다.

Claims (29)

  1. 유기물 열가수분해 시스템의 운전로직에 있어서,
    a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 슬러지 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고, 슬러지공급펌프의 동작을 정지하는 단계;
    b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계;
    c) 보일러를 가동하여 반응조를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값을 유지하면서 슬러지 열가수분해를 수행하는 단계;
    d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브(5-3)를 열어서 반응조 내부의 스팀을 조정조로 이송하여 조정조의 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프(1-3)를 가동하여 용해조를 비우는 단계;
    e) 반응조 감압밸브(5-3)을 닫고, 반응조 밸브(5-2)를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브(5-2)를 닫는 단계; 및
    f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브(5-1)를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브(5-1)를 닫는 단계를 포함하는 유기물 열가수분해에서 상기 단계(a)내지 (f)를 반복 운전하도록 구성된 유기물 열가수분해 시스템의 운전로직.
  2. 유기물 열가수분해 시스템의 운전로직에 있어서,
    (a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계;
    (b) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계;
    (c) 상기 보일러 가동 시 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계;
    (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브(5-3)를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조에 저장된 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조를 비우는 단계;
    (e) 반응조 감압밸브(5-3)를 닫고, 반응조 밸브(5-2)를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브(5-2)를 닫는 단계; 및
    (f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브(5-1)를 열고, 조정조 펌프(1-2)를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브(5-1)를 닫는 단계를 포함하는 유기물 열가수분해에서 상기 단계(a)내지 (f)를 반복 운전하도록 구성된 유기물 열가수분해 시스템의 운전로직.
  3. 유기물 열가수분해 시스템의 운전로직에 있어서,
    (a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계;
    (b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계;
    (c) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계;
    (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브(5-3)를 열어서 반응조 내부의 스팀을 조정조를 가열하기 위하여 이송하여 조정조에 저장된 슬러지를 예열하고 반응조 감압밸브(5-3)를 닫는 단계;
    (e) 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 펌프를 가동하여 용해조를 비우는 단계;
    (f) 반응조 밸브(5-2)를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브(5-2)를 닫는 단계; 및
    (g) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브(5-1)를 열고, 조정조 펌프(1-2)를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브(5-1)를 닫는 단계를 포함하는 유기물 열가수분해에서 상기 단계(a)내지 (f)를 반복 운전하도록 구성된 유기물 열가수분해 시스템의 운전로직.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 반응조에서 열가수분해를 종료한 슬러지를 용해조로 이송하는 수단은 반응조의 잔압을 이용하거나 별도의 이송펌프로 구성됨을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  5. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 조정조에서 반응조로 주입되는 슬러지는 반응조 용적의 25%내지 60%사이에서 설정된 값으로 주입함을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  6. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 반응조의 조건은 고분자 유기물을 저분자 유기물로 변환하기 위하여 열가수분해하여 소화효율을 향상시키기 위하여 온도를 150℃내지 200℃사이에서 설정된 값으로 유지하고, 압력은 6bar내지 12bar 사이에서 설정된 값으로 유지하면서 반응조의 반응시간은 20분내지 60분사이에서 설정된 값으로 제어함을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  7. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 호파, 조정조, 반응조, 용해조 하부에는 슬러지 주입량을 측정할 수 있는 로드셀을 설치하고, 메모리에 설정된 무게만큼 주입할 수 있도록 구성됨을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  8. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 조정조 상부에 설치된 배기밸브(5-5)는 슬러지 공급펌프(1-6)의 가동을 멈춘 후 열리고, 호파펌프(1-1)의 가동이 멈춘 후 닫히도록 구성된 유기물 열가수분해 시스템의 운전로직.
  9. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 용해조에 설치된 슬러지 교반기(8-2)는 슬러지 처리시스템의 동작시작과 동시에 가동하고, 열교환기 순환펌프(5-9)의 동작을 멈춘 후 설정된 시간 동안 동작한 후 멈추도록 구성된 유기물 열가수분해 시스템의 운전로직.
  10. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 용해조 상부에 설치된 배기밸브(5-7)는 보일러(14)의 가동을 멈춘 후 열리고, 반응조 밸브(5-2)가 닫힌 후 설정된 시간 동안 동작한 후에 닫히도록 구성된 유기물 열가수분해 시스템의 운전로직.
  11. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 조정조 내부에 설치된 교반기(8-1)는 조정조 배기밸브(5-5)가 닫힌 후 설정된 시간이 경과한 후에 동작을 시작하고, 용해조 배기밸브(5-7)가 닫힌 후 설정된 시간동안 동작한 후에 멈추도록 구성된 유기물 열가수분해 시스템의 운전로직.
  12. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 반응조 상부에 설치된 배기밸브(5-6)는 용해조 교반기(8-1)의 동작을 멈춘 후 설정된 시간이 경과한 후에 열리고, 조정조 밸브(5-1)는 반응조 배기밸브(5-6)가 열린 후 설정된 시간이 경과한 후에 열리며, 조정조 밸브(5-1)는 반응조 배기밸브(5-6)가 열린 후 설정된 시간이 경과한 후에 열리고, 조정조 펌프(1-2)는 조정조 밸브(5-1)가 열린 후 설정된 시간이 경과한 후에 동작하도록 구성되며,
    상기 조정조 펌프(1-2)의 가동이 멈추고, 설정된 시간이 경과한 후에 조정조 밸브(5-1)가 닫히며, 조정조 밸브(5-1)가 닫히고, 설정된 시간이 경화한 후에 반응조 배기밸브(5-6)가 닫히도록 구성된 유기물 열가수분해 시스템의 운전로직.
  13. 유기물 열가수분해 시스템의 운전로직에 있어서,
    a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 슬러지 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고, 슬러지공급펌프의 동작을 정지하는 단계;
    b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계;
    c) 연속적으로 발생하는 스팀을 이용하여 적어도 2개 이상의 반응조를 설정된 온도로 가열 유지하고, 각각의 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계;
    d) 각각의 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 각각의 반응조 감압밸브를 열어서 각각의 반응조 내부의 스팀을 조정조로 이송하여 조정조의 슬러지를 예열하고, 이와 동시에 각각의 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 혹은 순간이송조 펌프를 가동하여 용해조 혹은 순간이송조를 비우는 단계;
    e) 각각의 반응조 감압밸브를 닫고, 각각의 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조 혹은 순간이송조로 이송하고, 각각의 반응조 밸브를 닫는 단계; 및
    f) 조정조의 슬러지를 각각의 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계를 포함하는 유기물 열가수분해에서 상기 단계(a)내지 (f)를 반복 운전하도록 구성하되,
    적어도 2개 이상의 반응조를 조정조와 용해조 혹은 순간이송조사이에 병렬로 설치하여 연속적으로 발생하는 스팀을 이용하여 순차적이면서 연속적으로 가온 유지하도록 구성된 유기물 열가수분해 시스템의 운전로직.
  14. 유기물 열가수분해 시스템의 운전로직에 있어서,
    (a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계;
    (b) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계;
    (c) 상기 보일러 가동 시 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계;
    (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조 가열을 위하여 이송하여 조정조에 저장된 슬러지를 예열하고, 이와 동시에 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 혹은 순간이송조 펌프를 가동하여 용해조 혹은 순간이송조를 비우는 단계;
    (e) 반응조 감압밸브를 닫고, 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조로 이송하고, 반응조 밸브를 닫는 단계; 및
    (f) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계를 포함하는 유기물 열가수분해에서 상기 단계(a)내지 (f)를 반복 운전하도록 구성하되,
    적어도 2개 이상의 반응조를 조정조와 용해조 혹은 순간이송조사이에 병렬로 설치하여 연속적으로 발생하는 스팀을 이용하여 순차적이면서 연속적으로 가온 유지하도록 구성된 유기물 열가수분해 시스템의 운전로직.
  15. 유기물 열가수분해 시스템의 운전로직에 있어서,
    (a) 유기물 열가수분해 시스템에서 슬러지 공급펌프를 동작시켜 탈수설비로부터 주입되는 슬러지의 무게를 측정하면서 설정된 량만큼 슬러지를 호파로 이송하고 슬러지공급펌프의 동작을 정지하는 단계;
    (b) 호파펌프를 이용하여 설정된 량만큼 슬러지를 호파에서 조정조로 이송하는 단계;
    (c) 보일러를 가동하여 반응조의 온도를 설정된 온도로 가열 유지하고, 반응조 내부의 압력을 설정된 값으로 유지하면서 슬러지 열가수분해를 수행하는 단계;
    (d) 반응조 상부에 존재하는 고온의 폐에너지를 효율적으로 사용하기 위하여 반응조 감압밸브를 열어서 반응조 내부의 스팀을 조정조를 가열하기 위하여 이송하여 조정조에 저장된 슬러지를 예열하고 반응조 감압밸브를 닫는 단계;
    (e) 반응조에서 열가수분해 반응을 종료한 슬러지를 수용하기 위하여 용해조 혹은 순간이송조 펌프를 가동하여 용해조 혹은 순간이송조를 비우는 단계;
    (f) 반응조 밸브를 열어서 열가수분해 반응을 종료한 슬러지를 용해조 혹은 순간이송조로 이송하고, 반응조 밸브를 닫는 단계; 및
    (g) 조정조의 슬러지를 반응조로 이송하기 위하여 조정조 밸브를 열고, 조정조 펌프(1-2)를 가동하여 설정된 량만큼 슬러지를 이송하고, 조정조 펌프의 가동을 중단하고 조정조 밸브를 닫는 단계를 포함하는 유기물 열가수분해에서 상기 단계(a)내지 (f)를 반복 운전하도록 구성하되,
    적어도 2개 이상의 반응조를 조정조와 용해조 혹은 순간이송조사이에 병렬로 설치하여 연속적으로 발생하는 스팀을 이용하여 순차적이면서 연속적으로 가온 유지하도록 구성된 유기물 열가수분해 시스템의 운전로직.
  16. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    유기물 열가수분해 시스템에서 유기물 열가수분해를 위하여 반응조를 설정된 온도로 가열하여 유지하기 위하여 열병합발전 장치의 폐열을 이용하여 보일러를 가열하여 스팀을 발생시키고,
    발생한 스팀을 이용하여 반응조를 가열하도록 구성함을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  17. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    유기물 열가수분해 시스템에서 조정조와 용해조 혹은 순간이송조사이에 병렬로 설치되는 반응조의 수가 2 대 내지 6 대사이에서 구성됨을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  18. 청구항 17에 있어서,
    유기물 열가수분해 시스템의 운전로직에는 조정조와 용해조사이에 병렬로 연결되는 반응조의 수가 2~6대인 경우에 각각의 반응조를 가온하는 시간은 20분 내지 60분사이에서 설정하고, 조정조에서 각각의 반응조로 슬러지를 이송하는 시간, 각각의 반응조에서 용해조로 슬러지를 이송하는 시간 및 반응시간을 포함하여 60분내지 120분사이에서 설정함을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  19. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    조정조와 각각의 반응조사이에는 슬러지 이송을 위한 배관이 각각 설치되고, 각각 설치된 배관 일측에는 슬러지 이송을 차단 또는 이송할 수 있도록 밸브가 설치되며, 각각의 반응조와 용해조 혹은 순간이송조사이에는 슬러지 이송을 위한 배관이 각각 설치되고, 각각 설치된 배관 일측에는 슬러지 이송을 차단 또는 이송할 수 있도록 밸브가 설치됨을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  20. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    상기 반응조에서 열가수분해를 종료한 슬러지를 용해조 혹은 순간이송조로 이송하는 수단은 반응조의 잔압으로 이송하거나 별도의 이송펌프로 구성됨을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  21. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    상기 조정조에서 반응조에 주입되는 슬러지는 반응조 용적의 25%내지 60%사이에서 설정된 값으로 주입함을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  22. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    반응조의 조건은 고분자 유기물을 저분자 유기물로 변환하기 위하여 열가수분해하여 소화효율을 향상시키기 위하여 온도를 150℃ 내지 200℃사이에서 설정 값으로 유지하고, 압력은 6bar내지 12bar 사이에서 설정된 값으로 제어함을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  23. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    상기 호파, 조정조, 반응조, 용해조 혹은 순간이송조 하부에는 슬러지 주입량을 측정할 수 있는 로드셀을 설치하고, 메모리에 설정된 무게만큼 주입할 수 있도록 구성됨을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
  24. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    상기 조정조 상부에 설치된 배기밸브(5-5)는 슬러지 공급펌프(1-6)의 가동을 멈춘 후 열리고, 호파펌프(1-1)의 가동이 멈춘 후 닫히도록 구성된 유기물 열가수분해 시스템의 운전로직.
  25. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    상기 용해조 혹은 순간이송조에 설치된 슬러지 교반기(8-2)는 슬러지 처리시스템의 동작을 시작함과 동시에 가동하고, 열교환기 순환펌프(5-9)의 동작을 멈춘 후 설정된 시간 동안 동작을 한 후 멈추도록 구성된 유기물 열가수분해 시스템의 운전로직.
  26. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    상기 용해조 혹은 순간이송조 상부에 설치된 배기밸브(5-7)는 보일러(14)의 가동을 멈춘 후 열리고, 해당 반응조 밸브가 닫힌 후 설정된 시간 동안 동작한 후에 닫히도록 구성된 유기물 열가수분해 시스템의 운전로직.
  27. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    상기 조정조 내부에 설치된 교반기(8-1)는 조정조 배기밸브(5-5)가 닫힌 후 설정된 시간이 경과한 후에 동작을 시작하고, 용해조 혹은 순간이송조 배기밸브(5-7)가 닫힌 후 설정된 시간동안 동작한 후에 동작을 멈추도록 구성된 유기물 열가수분해 시스템의 운전로직.
  28. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    각각의 반응조 상부에 설치된 배기밸브는 용해조 혹은 순간이송조 교반기(8-1)의 동작을 멈춘 후 설정된 시간이 경과한 후에 열리고, 조정조 밸브는 각각의 반응조 배기밸브가 열린 후 설정된 시간이 경과한 후에 열리며, 조정조 밸브는 각각의 반응조 배기밸브가 열린 후 설정된 시간이 경과한 후에 열리고, 조정조 펌프(1-2)는 조정조 밸브가 열린 후 설정된 시간이 경과한 후에 동작하도록 구성되며,
    상기 조정조 펌프(1-2)의 가동이 멈추고, 설정된 시간이 경과한 후에 조정조 밸브가 닫히며, 조정조 밸브가 닫히고, 설정된 시간이 경화한 후에 각각의 반응조 배기밸브가 닫히도록 구성된 유기물 열가수분해 시스템의 운전로직.
  29. 청구항 17에 있어서,
    적어도 2대 이상의 반응조를 가온하기 위하여 보일러로부터 스팀을 공급하기 위한 배관이 보일러와 반응조사이에 각각 설치되고, 각각 설치된 배관 일측에는 스팀공급 밸브가 각각 설치됨을 특징으로 하는 유기물 열가수분해 시스템의 운전로직.
PCT/KR2012/008167 2011-12-21 2012-10-09 유기물 열가수분해 시스템의 운전로직 WO2013094859A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280063855.8A CN104010976B (zh) 2011-12-21 2012-10-09 有机物热加水分解系统的运行方法
US14/368,103 US20140346120A1 (en) 2011-12-21 2012-10-09 Operational method of an organic material thermal hydrolysis system
CA 2860182 CA2860182A1 (en) 2011-12-21 2012-10-09 Operation method of an organic material thermal hydrolysis system
EP12859439.7A EP2796419A4 (en) 2011-12-21 2012-10-09 LOGIC OF OPERATION OF A SYSTEM OF THERMOHYDROLYSIS OF ORGANIC MATERIALS
JP2014548647A JP2015506266A (ja) 2011-12-21 2012-10-09 有機物熱加水分解システムの運転ロジッグ
IN4682CHN2014 IN2014CN04682A (ko) 2011-12-21 2014-06-20

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0138957 2011-12-21
KR1020110138957A KR101264037B1 (ko) 2011-12-21 2011-12-21 유기물 열가수분해 시스템의 운전로직
KR10-2012-0035246 2012-04-05
KR1020120035246A KR101264050B1 (ko) 2012-04-05 2012-04-05 유기물 열가수분해 시스템의 운전로직

Publications (1)

Publication Number Publication Date
WO2013094859A1 true WO2013094859A1 (ko) 2013-06-27

Family

ID=48668709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008167 WO2013094859A1 (ko) 2011-12-21 2012-10-09 유기물 열가수분해 시스템의 운전로직

Country Status (7)

Country Link
US (1) US20140346120A1 (ko)
EP (1) EP2796419A4 (ko)
JP (1) JP2015506266A (ko)
CN (1) CN104010976B (ko)
CA (1) CA2860182A1 (ko)
IN (1) IN2014CN04682A (ko)
WO (1) WO2013094859A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623120A (zh) * 2017-03-21 2018-10-09 上海利泽环保科技有限公司 一种组合物及其制备方法和用途

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2523106A (en) * 2014-02-12 2015-08-19 Cde Global Ltd Sludge Conditioning apparatus
FR3032193B1 (fr) * 2015-02-02 2020-01-31 Degremont Optimisation d'un procede de traitement de pulpe
CN109422436B (zh) * 2017-08-17 2022-07-29 蓝德环保科技集团股份有限公司 一种热酸处理强化污泥脱水的方法
WO2020252682A1 (en) * 2019-06-19 2020-12-24 The Hong Kong Research Institute Of Textiles And Apparel Limited Semi-continuous hydrothermal reaction system
CN110377083A (zh) * 2019-07-23 2019-10-25 中国农业大学 一种生物质连续水热液化装置的监控系统及监控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089742A (ja) * 2004-09-25 2006-04-06 Alpo Co Ltd 廃合成高分子化合物の連続式熱分解システム
KR100728816B1 (ko) * 2006-08-23 2007-06-19 주식회사 케이벡코리아 하수슬러지 처리 장치 및 방법
KR20090010519A (ko) * 2007-07-23 2009-01-30 (주)이코스텍 알칼리 분쇄와 초음파 공정을 이용한 하·폐수 슬러지감량화 방법 및 장치
KR100943315B1 (ko) * 2009-06-09 2010-02-19 (주)정봉 열가수분해와 고온 혐기성 소화를 이용한 유기성 슬러지 처리장치 및 처리방법
KR100974324B1 (ko) * 2008-09-26 2010-08-06 고등기술연구원연구조합 유기성 슬러지로부터 고체 고형물과 액상 탈리액을 함유하는 고액 슬러리를 제조하는, 유기성 슬러지의 연속식처리 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428268A (en) * 1977-08-04 1979-03-02 Mitsubishi Electric Corp Sludge treating apparatus of freezing and thawing type
US5540847A (en) * 1993-04-29 1996-07-30 Stultz; Jeffrey H. Sludge digestion
JP2882993B2 (ja) * 1994-03-01 1999-04-19 ライト工業株式会社 建設汚泥処理材の搬送方法とその装置
NO300094B1 (no) * 1994-09-28 1997-04-07 Cambi As Fremgangsmate og anordning ved hydrolyse av organisk materiale under reduserende betingelser
GB9700015D0 (en) * 1997-01-02 1997-02-19 R3 Management Limited Treating sewage or like sludge
FR2820735B1 (fr) * 2001-02-14 2004-05-14 Vivendi Water Systems Procede et installation pour l'hydrolyse thermique des boues
JP4145049B2 (ja) * 2002-01-16 2008-09-03 株式会社神鋼環境ソリューション 有機性固形物の処理装置及びその処理方法
CN2520676Y (zh) * 2002-02-06 2002-11-20 程新生 负压除虫、灭菌、保鲜柜
JP4158470B2 (ja) * 2002-09-30 2008-10-01 株式会社明電舎 汚泥移送システム及び汚泥加熱処理施設
JP4518827B2 (ja) * 2004-04-05 2010-08-04 株式会社タクマ 凍結融解システムと凍結融解方法
JP4160973B2 (ja) * 2005-07-14 2008-10-08 川崎重工業株式会社 汚泥濃縮システム
CN101428954B (zh) * 2007-11-07 2012-11-28 深圳市环源科技发展有限公司 乏蒸汽热能循环利用系统及工艺
CN102211844B (zh) * 2011-04-29 2012-07-04 江苏金山环保科技股份有限公司 深度脱水干化低温热解处理污泥装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089742A (ja) * 2004-09-25 2006-04-06 Alpo Co Ltd 廃合成高分子化合物の連続式熱分解システム
KR100728816B1 (ko) * 2006-08-23 2007-06-19 주식회사 케이벡코리아 하수슬러지 처리 장치 및 방법
KR20090010519A (ko) * 2007-07-23 2009-01-30 (주)이코스텍 알칼리 분쇄와 초음파 공정을 이용한 하·폐수 슬러지감량화 방법 및 장치
KR100974324B1 (ko) * 2008-09-26 2010-08-06 고등기술연구원연구조합 유기성 슬러지로부터 고체 고형물과 액상 탈리액을 함유하는 고액 슬러리를 제조하는, 유기성 슬러지의 연속식처리 장치
KR100943315B1 (ko) * 2009-06-09 2010-02-19 (주)정봉 열가수분해와 고온 혐기성 소화를 이용한 유기성 슬러지 처리장치 및 처리방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623120A (zh) * 2017-03-21 2018-10-09 上海利泽环保科技有限公司 一种组合物及其制备方法和用途
CN108623120B (zh) * 2017-03-21 2021-05-28 上海利泽环保科技有限公司 一种组合物及其制备方法和用途

Also Published As

Publication number Publication date
CN104010976B (zh) 2016-01-06
CN104010976A (zh) 2014-08-27
EP2796419A4 (en) 2015-10-28
IN2014CN04682A (ko) 2015-09-18
JP2015506266A (ja) 2015-03-02
US20140346120A1 (en) 2014-11-27
EP2796419A1 (en) 2014-10-29
CA2860182A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
WO2013094859A1 (ko) 유기물 열가수분해 시스템의 운전로직
WO2020175743A1 (ko) 여과기와 커넥팅 구조를 이루는 연속식 열수가압 활성탄 재생장치 및 이를 이용한 연속식 활성탄 재생 방법
WO2018084330A1 (ko) 연속식 열분해 장치 및 열분해 방법
WO2010008211A2 (ko) 배치식 열처리 장치 및 이에 적용되는 히터
WO2015122688A1 (ko) 바이오 촤 생산 시스템 및 바이오 촤 생산 방법
WO2012074283A2 (ko) 저온 액화물 가압 송출 장치
WO2012144700A1 (ko) 바이오매스 고형체 제조시스템 및 제조방법
WO2018093064A1 (ko) 선박용 연료유 전환 시스템 및 방법
WO2020180082A1 (ko) 양방향 수전해 시스템 및 이의 동작방법
WO2011081267A1 (ko) 슬래그의 유가금속 회수 및 다기능성 골재의 제조 방법 및 그 장치
WO2023075265A1 (ko) 소화액 처리수와 유기물 건조물질의 혼합액을 이용하여 바이오가스를 생산하는 시스템
WO2012026756A2 (ko) 연소기구 및 이를 구비한 온풍기와 난방장치
WO2018066845A1 (ko) 하이브리드형 발전 시스템
WO2017159960A1 (ko) 엑스선관모듈의 절연유 교체장치와 절연유 교체방법
WO2018048179A1 (ko) 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템
WO2009093844A2 (ko) 바이오디젤 제조시스템 및 그의 제어방법
WO2020197120A1 (ko) 양방향 수전해 시스템 및 이의 동작방법
WO2013089473A1 (ko) 태양전지의 제조방법
WO2023068454A1 (ko) 바이오매스 가스화 시스템
WO2014142398A1 (ko) 태양광 발전설비의 효율향상설비
WO2023113413A1 (ko) 폐합성고분자 열분해 시스템
WO2021132955A1 (ko) 선박의 액화가스 공급 시스템 및 방법 그리고 선박의 액화가스 연료 공급 시스템
WO2010107263A2 (ko) 슬러지 가수분해 장치, 이를 이용한 슬러지 가수분해 방법, 슬러지 가수분해 장치에 구비되는 접촉식 열교환 유니트 및 증기식 열교환 유니트
WO2024034743A1 (ko) 에너지 소비효율을 향상시킨 열가수분해 장치가 결합된 유기성 폐기물의 혐기성 소화 시스템
WO2017164471A1 (ko) 연료 전지 시스템 및 그 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2860182

Country of ref document: CA

Ref document number: 2014548647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14368103

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012859439

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012859439

Country of ref document: EP