WO2018048179A1 - 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템 - Google Patents

열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템 Download PDF

Info

Publication number
WO2018048179A1
WO2018048179A1 PCT/KR2017/009726 KR2017009726W WO2018048179A1 WO 2018048179 A1 WO2018048179 A1 WO 2018048179A1 KR 2017009726 W KR2017009726 W KR 2017009726W WO 2018048179 A1 WO2018048179 A1 WO 2018048179A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
high temperature
heat medium
converter
temperature converter
Prior art date
Application number
PCT/KR2017/009726
Other languages
English (en)
French (fr)
Inventor
류태우
곽현
한종일
Original Assignee
주식회사 한울엔지니어링
주식회사 이엠이노베이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한울엔지니어링, 주식회사 이엠이노베이션 filed Critical 주식회사 한울엔지니어링
Publication of WO2018048179A1 publication Critical patent/WO2018048179A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features

Definitions

  • the present invention relates to a method and a system for thermochemical conversion of a combustible material of thermal circulation type, and in particular, heat from various combustible materials of lower grades such as sludge, vinyl, waste, biomass, lower liquid fuel, oil sand, and oil shale.
  • a device and system for recovering energy through chemical conversion, and a method and system for heating and thermocycling combustible thermochemical conversion for energy production including such devices.
  • combustible materials such as waste vinyl, plastic, waste wood, biomass, low solid fuel, low liquid fuel, oil sand, oil sale, and the like also have very low energy recovery efficiency in the energy recovery process.
  • the technical problem to be solved by the present invention is to solve the conventional problems, a high-efficiency heat medium circulation type combustible material that recovers energy through drying, evaporation, pyrolysis, gasification, or combustion of the combustible material using a heated heat medium It is to provide a thermochemical conversion method and system.
  • the technical problem to be achieved by the present invention is to solve the conventional problems, thermally converting the combustible material using the heat medium to produce a variety of forms of energy in a high efficiency by thermally converting the heat medium circulating combustible material thermochemical conversion method and To provide a system.
  • the technical problem to be achieved by the present invention is to solve the conventional problem, while passing through a multi-stage reactor using a heated heating medium, drying, evaporation, pyrolysis, gasification or combustion of the combustible material and reheating the heating medium prior to the reactor
  • the present invention provides a method and a system for thermochemical conversion of a thermally circulating combustible material that produces energy continuously by circulating the furnace.
  • thermochemical conversion system for solving this problem
  • a low temperature converter for producing a low temperature gas by heating a combustible material with a heat medium
  • a transfer device for transferring the residues produced after the conversion in the low temperature converter together with the heat medium
  • a high temperature converter for producing a hot gaseous gas and heating the heating medium while oxidizing, converting, or mixing and stirring by the high temperature conversion mixed gas for supplying the transferred residue and the heat medium to the outside;
  • a circulation supply device for circulating and supplying the heat medium heated in the high temperature converter to the low temperature converter
  • Condensate to produce a condensate and non-condensable gas by condensing the low-temperature gas gas discharged from the low-temperature converter.
  • the combustible material may be dried, evaporated, pyrolyzed, gasified, partially oxidized, or combusted in accordance with temperature rise, or dried, evaporated, pyrolyzed, gasified, partially oxidized, or combusted by the high temperature conversion mixed gas. It characterized in that it comprises a material capable of generating hot gaseous gas.
  • the material is high moisture sludge, organic sludge, condensed sludge, food sludge, industrial discharge organic sludge, vinyl, plastic, biomass, waste wood, waste, low solid fuel, low oil, oil sand, oil shale, It characterized by including a material that is mixed alone or in various ways.
  • the material may be introduced by mixing a certain ratio of waste paper, waste wood, biomass and the like in a non-molded form such as powder, chips, etc. when supplying sludge containing high moisture.
  • the waste paper, waste wood, biomass, etc. may be added by mixing a predetermined ratio in a powder, chip, or non-molded form. .
  • the heat medium The heat medium,
  • porous or non-porous, amorphous or amorphous material of the size of 0.01 to 100mm, including sand, combustible material / inorganic mixed powder, inorganic powder, catalyst powder, metal powder, and the like.
  • the combustible material is supplied in the form of a mixture of combustible material and inorganic material in a porous or non-porous form having a size of 0.01-100 mm, since the combustible material also plays a role of the heat medium, a separate heat medium is not required.
  • the low temperature converter is characterized in that it is operated at 100-900 °C, more specifically to drive to 100-300 °C to operate in a drying process, pyrolysis to 300-600 °C for the process, 600 for gasification
  • evaporation operating at ⁇ 900 ° C. it is preferably determined according to the evaporation temperature of the evaporation material.
  • the high temperature converter is characterized in that it operates at 700-1300 °C, more specifically 600-900 °C for partial oxidation, it is preferable to operate at 800-1200 °C for complete combustion.
  • a high temperature dust removal device may be added between the high temperature converter and the heat exchanger to remove dust contained in exhaust gas.
  • syngas When the high temperature converter is operated by gasification, syngas can be produced, and in this case, gas engine power generation can be achieved by cooling and cleaning the syngas. In addition, steam can be produced by using exhaust gas after power generation.
  • the heat medium and the residue can be transferred, circulated, and controlled by using the low temperature conversion mixed gas supply device and the high temperature conversion mixed gas supply device.
  • the amount of circulation can be controlled by the flow rate, pressure, supply position, etc. of the low-temperature conversion and high-temperature conversion mixed gas.
  • a screw feeder can be used as the feeder.
  • the heat medium circulation amount can be controlled by the screw rotation speed.
  • the low temperature converter and the high temperature converter may be separated into a thermal medium external circulation type, wherein each converter may use a fluidized bed, a circulating fluidized bed, a stocker, a rotary kiln, a fractionated bed, or a fixed bed. In this case, the heat medium is transported to the outside of each converter and circulated.
  • the circulation device for circulating the heat medium in all the converters
  • Fluidized bed heat medium circulation device circulating fluidized bed heat medium circulation device, roof seal device, screw feed device, conveyor feed device, and the like.
  • the amount of circulation can be controlled by the flow rate, pressure, supply position, etc. of the low-temperature conversion and high-temperature conversion mixed gas.
  • One or more converters having different operating temperatures may be installed between the low temperature converter and the high temperature converter.
  • Each converter supplies a mixed gas through a mixed gas supply device for mixing and converting the heat medium and the reactant in the converter.
  • the amount of circulation can be controlled by the flow rate, pressure, supply position, etc. of the low-temperature and high-temperature conversion mixed gas.
  • the heat medium and the combustible material supply a mixed gas through a mixed gas supply device for internal or external circulation, mixing, or conversion, wherein the mixed gas May be used alone or mixed with air, oxygen, and / or steam for the oxidation reaction, using a heated gas or a reactive gas for the conversion, and non-condensable gas or the hot gas phase of the low temperature gas for mixing and stirring.
  • the mixed gas may be mixed to use a non-condensable gas of gas, or to simultaneously perform oxidation reaction, conversion, and mixing agitation.
  • a cooling or heating device may be added for temperature control before feeding the heat medium to the reactor.
  • thermochemical conversion method for solving this problem
  • step b) transferring the residues and heat medium for producing and discharging the low temperature gas in step b) to the next step;
  • step d) producing hot gaseous gas and heating the heating medium while oxidizing, converting or mixing and stirring by a mixed gas for supplying the residue and the heating medium transferred from step c) to the outside;
  • step e separating the heated heating medium from the hot gas produced in step d) and circulating and supplying it to step b).
  • thermochemical conversion method The heat medium circulation type combustible thermochemical conversion method
  • step e separating and discharging the residues separately in step e);
  • step b) condensing the low-temperature gas discharged in step b) to separately produce the condensate and the non-condensable gas;
  • h) may further comprise the step of recovering energy from the hot gas gas discharged in step d).
  • the heating medium and the reaction residue heated in the high temperature converter are sprayed to the upper part, and the heat medium, which is solid, is sent to the low temperature converter through the transfer device, and the separated gas phase component may be sent to the energy conversion device.
  • thermochemical conversion such as drying, evaporation, pyrolysis, gasification, and combustion through a separate converter in stages using a heated heat medium.
  • thermochemical conversion such as drying, evaporation, pyrolysis, gasification, and combustion through a separate converter in stages using a heated heat medium.
  • thermochemical conversion of a heat medium circulating combustible material that produces various forms of energy by thermochemically converting a combustible material using a heat medium.
  • the combustible material can provide a method and a system for thermally converting the combustible material thermochemical conversion of the thermal medium circulating combustible material which is converted into energy materials such as dry matter, pyrolysis oil / non-condensable gas / residue, gasification syngas / residue, combustion flue gas, etc. at each stage. have.
  • the energy required for drying or pyrolysis which is an endothermic reaction, is heated by using heat generated through gasification (partial oxidation) or combustion (complete oxidation) to circulate and supply heat medium to the drying or pyrolysis process. It is possible to provide a method and system for phosphorus thermal cycling combustible thermochemical conversion.
  • FIGS. 1A to 1D are schematic diagrams of a heat medium internal circulation type combustible thermochemical conversion system according to first and second embodiments of the present invention.
  • FIGS. 2A to 2D are schematic diagrams of a thermomechanical internal circulation type combustible thermochemical conversion system according to first and second embodiments of the present invention.
  • 3A to 3C are schematic diagrams of a heat medium internal circulation type combustible thermochemical conversion system using screws according to the first and second embodiments of the present invention.
  • thermomechanical external circulation type combustible thermochemical conversion system according to a fourth embodiment of the present invention.
  • thermomechanical external circulation type combustible thermochemical conversion system according to a fifth embodiment of the present invention.
  • thermomechanical external circulation type combustible thermochemical conversion system according to a sixth embodiment of the present invention.
  • thermomechanical internal circulation type combustible thermochemical conversion system according to a seventh embodiment of the present invention.
  • thermomechanical external circulation type combustible thermochemical conversion system according to an eighth embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a method of thermochemical conversion of a heat medium circulation type combustible material according to an embodiment of the present invention.
  • thermomechanical internal circulation type combustible thermochemical conversion system according to first and second embodiments of the present invention.
  • the high temperature converter heat medium 94 and the hot gas gas 144 are simply injected into the upper portion by the high temperature conversion mixed gas 142 and supplied to the high temperature conversion heat medium transfer device 141 -R, where The high temperature converter heat medium 94 is circulated to the low temperature converter 110 and the hot gas gas 144 is supplied to the energy conversion device 145.
  • thermochemical conversion system Referring to Figure 1, the heat medium circulation type combustible thermochemical conversion system according to the first and second embodiments of the present invention
  • a supply device 100 supplying the combustible material 90
  • a low temperature converter 110 for heating the combustible material with a heat medium to produce a low temperature gas gas 114 and a low temperature conversion residue 101;
  • the oxidizer is mixed with the high temperature converter mixed gas 142 supplied from the low temperature converter residue 101 and the heat medium 91 supplied to the high temperature converter 140 to partially oxidize or completely burn the low temperature converter residue 101. It includes a high temperature converter 140 for producing a high temperature gas (144), and at the same time to heat the heat medium (91) to produce a high temperature heat medium (94).
  • the heat medium 94 heated in the high temperature converter 140 is separated from the hot gas gas 144 and circulated and supplied to the low temperature converter 110.
  • Residues 149 which are not converted in the high temperature converter 140 are discharged through the discharge device 148.
  • the low-temperature gas 114 produced by the low temperature converter 110 passes through the condenser 115, a part of the condensation to produce a condensate 117, the rest is discharged to the non-condensing gas (116).
  • the hot gas gas 144 produced by the high temperature converter 140 produces energy 147 by the energy conversion device 145 and is discharged to the exhaust gas 146.
  • the combustible material is characterized in that it comprises a material that can be dried, evaporated, pyrolyzed, gasified, burned, or partially oxidized or burned by the high-temperature conversion mixed gas in accordance with the temperature rises.
  • the material is high moisture sludge, organic sludge, condensed sludge, food sludge, industrial discharge organic sludge, vinyl, plastic, biomass, waste wood, waste, low solid fuel, low oil, oil sand, oil shale, It is characterized by including a material which is mixed alone or in various ways.
  • the material may be introduced by mixing a certain ratio of waste paper, waste wood, biomass and the like in a non-molded form such as powder, chips, etc. when supplying sludge containing high moisture.
  • the waste paper, waste wood, biomass, etc. may be added by mixing a predetermined ratio in a powder, chip, or non-molded form. .
  • the heat medium (91 or 94) (91 or 94),
  • It can be a porous or nonporous, amorphous or amorphous material of the size of 0.01-100 mm, including sand, combustible / inorganic mixed powder, inorganic powder, catalyst powder, metal powder, and the like.
  • the low temperature reactor 110 is characterized in that it is operated at 100-900 °C, more specifically to drive in a drying process 100 to 300 °C, the pyrolysis to the process to drive 300-700 °C, gasification It is preferable to operate at 600-900 ° C. for evaporation, and to determine the evaporation temperature of the evaporation target material.
  • the high temperature reactor 140 is characterized in that it operates at 700-1300 °C, more specifically 600-900 °C for partial oxidation, it is preferable to operate at 800-1200 °C for complete combustion. .
  • a high temperature dust removing device may be added between the high temperature converter 140 and the energy conversion device 145 to remove dust contained in the hot gas gas 144.
  • the hot gas gas 144 is a synthesis gas.
  • the synthesis gas is cooled and washed to produce electricity 147 through a gas engine / gas turbine and exhaust gas 146.
  • steam can be produced by using exhaust gas after power generation.
  • the hot gas 144 is a high temperature exhaust gas and produces steam 147 through a boiler and discharges the exhaust gas 146 to the outside.
  • the heat medium and the residue can be transferred, circulated, and controlled by using the low temperature conversion mixed gas supply device and the high temperature conversion mixed gas supply device.
  • the amount of circulation can be controlled by the flow rate, pressure, supply position, etc. of the low-temperature conversion and high-temperature conversion mixed gas.
  • a screw feeder can be used as the feeder.
  • the heat medium circulation amount can be controlled by the screw rotation speed.
  • the low temperature converter 110 and the high temperature converter 140 may be separated into a thermal medium external circulation type, wherein each of the converters 110 and 140 may use a fluidized bed, a circulating fluidized bed, a stocker, a rotary kiln, a fractionated bed, and a fixed bed. In this case, the heat medium is transported to the outside of each converter and circulated.
  • the circulation device for circulating the heat medium in all the converters
  • Fluidized bed heat medium circulation device circulating fluidized bed heat medium circulation device, roof seal device, screw feed device, conveyor feed device, and the like.
  • the amount of circulation can be controlled by the flow rate, pressure, supply position, etc. of the low-temperature conversion and high-temperature conversion mixed gas.
  • the low-temperature converter 110 and the high-temperature converter 140, the low-temperature conversion mixed gas 112 through the low-temperature conversion mixed gas supply device 113 The fluid medium 110 is fluidized and the high temperature conversion mixed gas 142 fluidizes the high temperature converter 140 through the high temperature conversion mixed gas supply device 143.
  • FIG. 1 shows that the heat medium 94 and the high temperature converter hot gas gas 144 heated in the high temperature converter 140 are circulated and supplied to the low temperature converter 110 through the upper part of the high temperature converter 140.
  • the heat medium 91 and the residue 101 of the low temperature converter are transferred to the lower portion of the high temperature converter 140 at a lower portion thereof in a plane different from this.
  • the circulation path of FIG. 2 is simply a low temperature converter heat medium 91, a low temperature converter residue 101, and a low temperature gas gas 114 are injected upward by the low temperature conversion mixed gas 112, and the low temperature conversion residue + heat medium transfer device ( 111-O), where the low temperature converter thermal medium 94 and the low temperature converter residue 101 are transferred to the high temperature converter 140 and the low temperature gas 114 is supplied to the low temperature gas condenser 115.
  • the high temperature converter heat medium 94 and the high temperature converter residue 104 are transferred to the lower part of the low temperature converter 110 at a lower position in the plane thereof.
  • the heating medium is heated in the high temperature converter 140 and supplied to the low temperature converter 110.
  • the heating medium is heated in the high temperature converter 140 and supplied to the low temperature converter 110.
  • the low temperature converter residue 101 is transferred to the high temperature converter 140 like the cooled heat medium 91.
  • the transferred low temperature converter residue 101 generates a high temperature gas gas 144 while exothermicly reacting with partial oxidation or complete combustion by the high temperature conversion mixed gas 142 supplied from the high temperature converter 140 to the bottom, and at the same time, the heat medium ( Heat 91).
  • the heated heating medium 94 is circulated and supplied to the upper portion of the low temperature converter 110 while being fluidized by the high temperature conversion mixed gas 142 supplied to the lower portion of the high temperature converter 140. At this time, the circulation amount of the heated heating medium 94 is controlled according to the flow rate, speed, and pressure of the supplied high-temperature conversion mixed gas 142.
  • the low-temperature converter residue 101 and the cooled heating medium 91 are automatically transferred to the lower portion of the high-temperature converter 140 by the amount of the heat medium 94 circulated.
  • the low temperature gas gas 114 produced by the low temperature converter 110 is condensed while passing through the low temperature gas condenser 115 to produce the low temperature gas condensate 117, and the non-condensed gas is converted into the low temperature noncondensing gas 116. Discharged.
  • the hot gas gas 144 produced by the high temperature converter 140 produces steam or electricity 147 while passing through the energy conversion device 145 and is discharged to the exhaust gas 146.
  • high moisture sludge when used as a combustible material, high moisture sludge can be dried efficiently, and the dried sludge can be gasified or burned to recover energy.
  • the high temperature sludge combustible material 90 is supplied to the low temperature reactor 110 and the low temperature converter 110 is operated at 100-300 ° C. using the heated heating medium 94 supplied from the high temperature reactor 140. .
  • the high moisture sludge supplied to the low temperature converter 110 is dried with the organic low temperature converter residue 101 having a moisture content of less than 30%, and then transferred to the high temperature converter 140 such as the heat medium 91.
  • the organic cryogenic converter residues transferred to the high temperature converter 140 are partially oxidized or burned by the high temperature conversion mixed gas 142, and the hot gas gas 144 is discharged and the heating medium 94 is heated.
  • the temperature of the high temperature converter 140 is operated at 700-900 ° C. and the gas component of the high temperature gas gas 144. Most of them are CO, H2, N2 and the rest is gasified syngas composed of CO2, CH4.
  • the energy conversion device 145 generates electricity through the gas engine while passing through a device for cooling and cleaning the synthesis gas, which is the hot gaseous gas 144, and the high temperature exhaust gas discharged after power generation is the exhaust gas after energy conversion.
  • the energy conversion flue gas 146 may be used to produce steam. Therefore, the energy 147 discharged from the energy conversion device becomes electricity and steam.
  • the temperature of the high temperature converter 140 becomes 800-1200 ° C. and the gas component of the high temperature gas gas 144. Most of them become hot combustion flue-gases that are N2 and CO2.
  • the energy conversion device 145 becomes a boiler for producing steam from the high-temperature combustion flue gas, and the energy 147 discharged from the energy conversion device becomes steam and the exhaust gas 146 after energy conversion discharged from the energy conversion device 145. ) Becomes the flue gas emitted from the boiler.
  • the high moisture sludge when used as a combustible material to apply this two-stage conversion process to an actual industrial site, the high moisture sludge can be dried efficiently and gasified or combusted, and the remainder is discharged and used as solid fuel. have.
  • the high temperature sludge flammable material 90 is supplied to the low temperature reactor 110, and the low temperature converter 110 is operated at 100 to 300 ° C. using the heated heating medium 94 supplied from the high temperature reactor 140.
  • the high moisture sludge supplied to the low temperature converter 110 is dried with the organic low temperature converter residue 101 having a moisture content of less than 30%, and then transferred to the high temperature converter 140 such as the heat medium 91.
  • the organic low-temperature converter residues transferred to the high-temperature converter 140 produce energy through partial oxidation or combustion using only a portion of the high-temperature converter residues 94 by using a high-temperature conversion mixed gas 142 mixed with a small amount of air. 94) is heated and supplied to the low temperature converter (110).
  • the operating temperature of the low-temperature converter 140 is 100-250 ° C
  • the operating temperature of the high-temperature converter 140 is slightly lower than the partial oxidation and complete
  • the residue 104 that is not converted is heated in the residue separation discharge device 148 ( 94) and discharged to the outside. Therefore, the energy 147 discharged from the energy conversion device is steam, the residue 149 can be utilized as a solid fuel.
  • the residue 104 of the high temperature converter may be circulated and supplied together with the heat medium 94.
  • the amount of the residue circulated together and the amount of the combustible material contained in the residue may vary depending on the operating state of the high temperature converter 140.
  • the combustible material contained in the residue 104 may be less than 5%.
  • the high temperature converter residue 104 is periodically or continuously discharged to the outside like the heat medium 94.
  • the heat medium is separated from the residue, and the heat medium may be supplied to a low temperature or high temperature converter again.
  • the second embodiment is operated in the same manner as the first embodiment, but in order to apply the two-stage conversion process to the actual industrial site, as a combustible material, instead of high moisture sludge,
  • a combustible material instead of high moisture sludge
  • high calorific material such as plastic, waste, biomass, etc.
  • the high calorific value combustible material 90 is supplied to the low temperature converter 110 and the low temperature converter 110 is 300-700 using the heated heating medium 94 supplied from the high temperature converter 140.
  • the high calorific value combustible material supplied to the low temperature converter 110 is pyrolyzed to produce a low temperature gas gas 114, the residue after the pyrolysis is supplied to the high temperature converter 140.
  • the pyrolysis residue 91 supplied to the high temperature converter 140 is partially oxidized or burned by the high temperature reaction mixture gas 142 supplied to the high temperature reactor 140, and discharges the high temperature gas 144.
  • the low temperature gas 114 is condensed by the low temperature gas condenser 115 to produce pyrolysis oil as the low temperature gas condensate 117 and discharge the non-condensing gas 146.
  • the hot gas gas 144 produced by the high temperature converter 140 produces steam or electricity 147 while passing through the energy conversion device 145 and is discharged to the exhaust gas 146.
  • FIG. 3 is a block diagram of a thermal fluid circulation type combustible thermochemical conversion system according to a third embodiment of the present invention.
  • the operation method is similar to that of the first and second embodiments, except that an additional screw is used in the heat medium transfer circulation.
  • the low-temperature reactor residue 101 and the heat medium 91 pass through the low-temperature conversion residue + thermal medium transfer device 111-O of FIG. 3 to the high-temperature reactor 140 in proportion to the screw rotation speed.
  • the heated heating medium 94 and the high temperature conversion residue 104 of the high temperature converter 140 automatically pass through the high temperature conversion heat medium circulation transfer device 141-R of FIG. It may be transported to the converter 110, the fluidized mixed gas 112, 142 is supplied from the lower temperature converter 110 and the lower temperature converter 140 to facilitate the transfer circulation process.
  • the heat medium circulation operation can be simply and continuously performed by the screw.
  • FIGS. 4A to 4C are schematic diagrams of a heat medium circulation type combustible thermochemical conversion system according to a fourth embodiment of the present invention.
  • the heat medium is transported to the outside of each reactor and is circulated and supplied. Also, the heat medium and the residue are used to transport and transport the respective converters.
  • FIG. 4A shows the external circulation type
  • FIG. 4B shows the concept of conveying the heating medium using the roof chamber
  • FIG. 4C shows the concept of separating the heat medium and gas.
  • the heat medium 91 and the low temperature conversion residue 101 in the low temperature converter 110 are supplied to the high temperature converter 140 through the transfer device 111 -O, and heated in the high temperature converter 140.
  • the heat medium 94 is separated from the hot gas 144 and is supplied to the low temperature converter 110 through the circulation supply device 141.
  • the heated heating medium 94 is circulated to the upper portion of the low temperature converter 110 while being fluidized by the high temperature conversion mixed gas 142 supplied to the lower portion of the high temperature converter 140. At this time, the amount of circulation of the heated heating medium 94 is controlled according to the amount of the high temperature conversion mixed gas 142 supplied.
  • FIG. 5 is a block diagram of a heat medium circulation type combustible material thermochemical conversion system according to a fifth embodiment of the present invention
  • Figure 6 is a block diagram of a heat medium circulation type combustible material thermochemical conversion system according to a sixth embodiment of the present invention to be.
  • the low-temperature converter and the high-temperature converter may be separated into a thermal medium external circulation type, wherein each reactor is fluidized bed, circulating fluidized bed, stocker, rotary kiln, fractionated bed, fixed bed type. Reactors can be used.
  • the circulation device for circulating the heat medium in the low temperature converter and the high temperature converter may be a fluidized bed heat medium circulation device, a circulating fluidized bed heat medium circulation device, a loop chamber device, a screw feed device, a conveyor feed device, or the like.
  • the heat medium circulation amount can be controlled by the flow rate or speed of each device for circulation.
  • the low temperature converter 110 or the high temperature converter 140 includes a rotary kiln, and the kiln has a predetermined angle between the inlet and the outlet. Due to the inclination of, the product generated inside is moved by the rotary motion of the kiln. Thus, the material produced therein can easily move.
  • a high and low temperature converter 120 and a low and high temperature converter 130 are disposed between the low temperature converter 110 and the high temperature converter 140.
  • One or more converters of different operating temperatures may be installed.
  • a plurality of converters When a plurality of converters are installed in FIG. 1, a plurality of converters may be installed in FIG. 2 in the same principle as in FIG. 7. 8 and 4, if a plurality of converters are installed in FIG.
  • FIG. 7 is a configuration diagram of a heat medium circulation type inflammable material thermochemical conversion system according to a seventh embodiment of the present invention
  • FIG. 8 is a configuration of the heat medium circulation type combustible material thermochemical conversion system according to an eighth embodiment of the present invention. It is also.
  • the cryogenic converter 120 the cryogenic conversion heat medium transfer apparatus 121-R, the cryogenic conversion residue + thermal medium transfer apparatus 121-O, the cryogenic conversion mixed gas 122 It is provided with a cryogenic conversion mixed gas supply device 123, a cryogenic gas phase condenser 125 to supply).
  • the cryogenic converter 120 produces a cryogenic gas phase 124, a non-condensing gas 126 after the cryogenic conversion condensation, and a cryogenic phase condensate 127.
  • the basic operation is a cryogenic converter 110 or a high temperature converter. Similar to 140.
  • the low-temperature converter 130 is a low-temperature conversion mixture for supplying a low-temperature conversion heating medium transfer device (131-R), a low-temperature conversion residue + thermal medium transfer device (131-O), low-temperature conversion mixed gas (132) It is provided with a gas supply device 133, low-temperature gas condenser 135, low-temperature conversion mixed gas 132, low-temperature gas gas 134, non-condensing gas 136 after low-temperature conversion condensation, low-temperature gas phase Produces condensate 137, the basic operation of which is similar to cryoconverter 110 or hyperconverter 140.
  • each converter 110, 120, 130, 140 can be controlled by the flow volume, the pressure, and / or the speed of each circulating apparatus.
  • the combustible material passes through a plurality of converters and undergoes thermal chemical conversion step by step in a drying, low temperature pyrolysis, high temperature pyrolysis, gasification, and combustion process, various types of energy can be efficiently converted.
  • FIG. 9 is a flowchart illustrating a method of converting a thermal fluid circulating combustible material thermochemically according to an exemplary embodiment of the present invention.
  • step b) transferring the residues and heat medium for producing and discharging the low temperature gas in step b) to the next step;
  • step d) producing hot gaseous gas and heating the heating medium while oxidizing, converting or mixing and stirring by a mixed gas for supplying the residue and the heating medium transferred from step c) to the outside;
  • step e separating the heated heating medium from the hot gas produced in step d) and circulating and supplying it to step b);
  • step e separating and discharging the residues separately in step e);
  • step b) condensing the low-temperature gas discharged in step b) to separately produce the condensate and the non-condensable gas;
  • the chemicals are converted and discharged thermochemically according to the temperature, and the remaining heat material is partially oxidized or burned by supplying the cooled heat medium and residues to another reactor after heating. Is converted to non-condensable gas, the heating medium is heated to high temperature, and the high temperature heating medium is circulated again to complete the continuous heating medium circulation thermochemical conversion reactor.
  • thermochemical conversion reactor when used in multiple stages, the combustible material is converted into drying, evaporation, pyrolysis, gasification, or combustion in various stages of each reactor, such as dry fuel, pyrolysis oil, gasification synthesis gas, high temperature flue gas, etc.
  • dry fuel pyrolysis oil
  • gasification synthesis gas high temperature flue gas, etc.
  • cryogenic converter residue 101 cryogenic converter residue
  • cryogenic converter residue 102 cryogenic converter residue
  • cryogenic gas gas 125 cryogenic gas condenser
  • thermochemical conversion such as drying, evaporation, pyrolysis, gasification, and combustion through a separate converter in stages using a heated heat medium.
  • thermochemical conversion such as drying, evaporation, pyrolysis, gasification, and combustion through a separate converter in stages using a heated heat medium.
  • thermochemical conversion of a heat medium circulating combustible material that produces various forms of energy by thermochemically converting a combustible material using a heat medium.
  • the combustible material can provide a method and a system for thermally converting the combustible material thermochemical conversion of the thermal medium circulating combustible material which is converted into energy materials such as dry matter, pyrolysis oil / non-condensable gas / residue, gasification syngas / residue, combustion flue gas, etc. at each stage. have.
  • the energy required for drying or pyrolysis which is an endothermic reaction, is heated by using heat generated through gasification (partial oxidation) or combustion (complete oxidation) to circulate and supply heat medium to the drying or pyrolysis process. It is possible to provide a method and system for phosphorus thermal cycling combustible thermochemical conversion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treatment Of Sludge (AREA)

Abstract

본 발명은 열매체를 가열하고 가열된 열매체를 이용하여 가연성물질을 가열하여 온도별로 다양한 형태의 에너지로 전환하고 열매체를 재 가열하여 순환시키는 연속적 에너지회수 장치 및 방법에 관한 것이다. 이러한 본 발명의 특징에 따른 열매체 순환형 가연성물질 열화학적 전환시스템은, 가연성물질을 열매체로 가열하여 저온기상가스를 생산하는 저온전환기; 상기 저온전환기에서 전환 후 생산되는 잔유물을 상기 열매체와 같이 이송하는 이송장치; 상기 이송된 잔유물 및 열매체를 외부에서 공급하는 고온전환 혼합가스에 의하여 고온기상가스를 생산하고 열매체를 가열하는 고온전환기; 상기 고온전환기에서 가열된 열매체를 분리하여 상기 저온전환기에 순환 공급하기위한 순환 공급장치; 상기 고온전환기에서 잔유물을 배출하는 배출장치; 상기 저온전환기에서 배출하는 저온기상가스를 응축하여 응축물과 비응축성가스를 생산하는 응축기를 포함한다.

Description

열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템
본 발명은 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템에 관한 것으로 특히, 슬러지, 비닐, 폐기물, 바이오매스, 저급액체연료, 오일샌드, 오일셰일(oil shale)등 저급의 다양한 가연성물질로 부터 열화학적 변환을 통해 에너지를 회수하기 위한 장치 와 시스템 및 이러한 장치를 포함한 에너지 생산을 위한 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템에 관한 것이다.
일반적으로 폐수/하수슬러지, 축분슬러지, 음식물슬러지, 산업배출 유기성 슬러지 등의 해양 투기가 현재 금지되고 있어 이에 대한 처리문제는 중요하다.
그리고 이러한 물질들은 높은 수분함량 때문에 경제적인 에너지 회수도 어려운 문제가 있다.
또한, 폐비닐, 플라스틱, 폐목재, 바이오매스, 저급고체 연료, 저급액체연료, 오일샌드, 오일세일 등의 가연성 물질도 에너지를 회수하는 공정에서 에너지 회수 효율이 매우 낮은 문제가 있다.
종래에는 이러한 문제를 해결하기위해 다양한 에너지 회수 기술들이 소개 되어 왔다.
예를 들어 고수분 슬러지로부터 에너지 회수를 위해 소각로 배가스를 이용한 열풍건조, 바이오건조, 로터리킬른 스팀건조, 유중건조, 가압건조 등의 기술이 공개되어 있다.
또한 폐비닐, 플라스틱, 폐기물로 부터의 에너지를 회수하기위한 STR(Stirred Tank Reacter), 로터리킬른, 스크류, 스토커, 유동층 기술이 소개되어 있다. (국내등록특허 10-1131170, 국내등록특허 10-1293272, 국내등록특허 10-1397378)
그러나 이러한 종래의 기술들은 에너지 회수 구조가 복잡하여 비용이 많이 소요되고 에너지 회수 효율이 낮다.
따라서 보다 경제적인 에너지 회수 기술이 필요한 실정이다.
본 발명이 이루고자 하는 기술적 과제는 종래의 문제점을 해결하고자 하는 것으로서, 가열된 열매체를 이용하여 가연성 물질을 건조, 증발, 열분해, 가스화, 또는 연소 등을 통해 에너지를 회수하는 고효율의 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템을 제공하는 것이다.
또한, 본 발명이 이루고자 하는 기술적 과제는 종래의 문제점을 해결하고자 하는 것으로서, 가연성물질을 열매체를 이용하여 열화학적으로 전환하여 고효율로 다양한 형태의 에너지를 생산하는 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템을 제공하는 것이다.
또한, 본 발명이 이루고자 하는 기술적 과제는 종래의 문제점을 해결하고자 하는 것으로서, 가열된 열매체를 이용하여 다단계 반응기를 통과 시키면서 가연성물질을 건조, 증발, 열분해, 가스화, 또는 연소하고 열매체를 재가열하여 이전 반응기로 순환 공급하므로 연속적으로 에너지를 생산하는 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템을 제공하는 것이다.
이러한 과제를 해결하기 위한 본 발명의 특징에 따른 열매체 순환형 가연성물질 열화학적 전환시스템은,
가연성물질을 열매체로 가열하여 저온기상가스를 생산하는 저온전환기;
상기 저온전환기에서 전환 후 생산되는 잔유물을 상기 열매체와 같이 이송하는 이송장치;
상기 이송된 잔유물 및 열매체를 외부에서 공급하는 고온전환 혼합가스에 의하여 산화 반응, 전환, 또는 혼합 교반하면서 고온기상가스를 생산하고 열매체를 가열하는 고온전환기;
상기 고온전환기에서 가열된 열매체를 분리하여 상기 저온전환기에 순환 공급하기위한 순환 공급장치;
상기 고온전환기에서 배출하는 잔유물을 분리 배출하는 배출장치;
상기 저온전환기에서 배출하는 저온기상가스를 응축하여 응축물과 비응축성가스를 생산하는 응축기를 포함한다.
상기 가연성물질은 온도 상승에 따라 온도 단계별로, 건조, 증발, 열분해, 가스화, 부분산화, 또는 연소가 가능하거나 상기 고온전환 혼합가스에 의해 건조, 증발, 열분해, 가스화, 부분산화 또는 연소반응을 통해 고온기상가스 생성이 가능한 물질을 포함하는 것을 특징으로 한다.
보다 구체적으로는 상기 물질은 고수분슬러지, 유기성슬러지, 축분슬러지, 음식물슬러지, 산업배출 유기성슬러지, 비닐, 플라스틱, 바이오매스, 폐목재, 폐기물, 저급고체연료, 저급오일, 오일샌드, 오일셰일, 등을 단독 또는 다양한 방식으로 혼합한 물질을 포함하는 것을 특징으로 한다.
보다 구체적으로는, 상기 물질은 고수분을 함유한 슬러지를 공급할 때 폐종이, 폐목재, 바이오매스 등을 분말, 칩, 등의 비성형 형태로 일정 비율 혼합하여 투입할 수 있다.
보다 구체적으로는, 상기 물질은 비닐 및 플라스틱 등 고온에서 용융이 되는 물질을 투입할 때, 폐종이, 폐목재, 바이오매스 등을 분말, 칩, 또는 비성형 형태로 일정 비율 혼합하여 투입할 수 있다.
상기 열매체는,
모래, 가연성물질/무기물 혼합 분말, 무기물 분말, 촉매 분말, 금속분말, 등을 포함하는 0.01 - 100mm 크기의 다공성 또는 비다공성, 정형 또는 비정형 물질인 것을 특징으로 한다.
또한 상기 가연성물질이 가연성물질과 무기물 물질이 혼합된 형태로 0.01 - 100mm 크기의 다공성 또는 비다공성 형태로 공급될 경우 상기 가연성물질이 상기 열매체의 역할도 같이 수행하므로 별도 열매체 투입이 필요하지 않다.
상기 저온전환기는 100-900℃로 운전하는 것을 특징으로 하나, 보다 구체적으로 건조공정으로 운전하기 위해서는 100-300℃로 운전하고, 열분해를 공정을 위해서는 300-600℃로 운전하고, 가스화를 위해서는 600-900℃로 운전하는, 증발을 위해서는 증발대상 물질의 증발 온도에 따라 결정되는 것이 바람직하다.
상기 고온전환기는 700-1300℃로 운전하는 것을 특징으로 하나, 보다 구체적으로는 부분산화를 위해서는 600-900℃, 완전연소를 위해서는 800-1200℃로 운전하는 것을 특징으로 하는 것이 바람직하다.
상기 고온전환기와 상기 열교환기 사이에 배가스에 포함된 분진을 제거하기위한 고온 분진 제거장치를 추가할 수 있다.
상기 고온전환기를 가스화로 운전할 경우 합성가스를 생산할 수 있고, 이 경우 합성가스를 냉각 및 세정을 통해 가스엔진 발전을 할 수 있다. 또한 가스엔진 발전 후 배출 배가스를 이용하여 스팀을 생산할 수 있다.
내부순환형
상기 저온전환기 및 상기 고온전환기가 통합된 내부순환형의 경우 열매체 및 잔유물은 저온전환 혼합가스 공급장치와 고온전환 혼합가스 공급장치를 이용하여 이송, 순환, 및 제어할 수 있다. 이때 순환량은 저온전환 및 고온전환 혼합가스의 유량, 압력, 공급위치, 등으로 제어할 수 있다.
또는 이송장치로 스크류 이송장치를 사용 할 수 있다. 이때 열매체 순환량은 스크류 회전속도로 제어할 수 있다.
외부순환형
상기 저온전환기 및 고온전환기는 열매체 외부순환형으로 분리될 수 있고, 이때 각 전환기는 유동층, 순환유동층, 스토커, 로터리킬른, 분류층, 고정층 형태를 사용할 수 있다. 이 경우 상기 열매체가 각 전환기 외부로 이송되어 순환된다,
상기, 모든 전환기에 열매체를 순환시키는 순환장치는,
유동층 열매체 순환장치, 순환유동층 열매체 순환장치, 루프실장치, 스크류 이송장치, 컨베이어 이송장치, 등을 특징으로 한다.
이때 순환량은 저온전환 및 고온전환 혼합가스의 유량, 압력, 공급위치, 등으로 제어할 수 있다.
다수의 전환기
상기 저온전환기 및 상기 고온전환기 사이에 고저온, 저고온 등 운전온도가 다른 하나 또는 다수의 전환기가 설치 될 수 있다.
상기 각 전환기는 열매체 및 반응물의 전환기 내부 혼합 및 전환을 위해 혼합가스 공급장치를 통해 혼합가스를 공급한다.
다수의 전환기에서의 이때 순환량은 저온전환 및 고온전환 혼합가스의 유량, 압력, 공급위치, 등으로 제어할 수 있다.
혼합가스
상기 저온전환기, 상기 고온전환기, 상기 고저온전환기 및 상기 저고온전환기에서 상기 열매체 및 가연성물질이 내부 또는 외부 순환, 혼합, 또는 전환을 위해 혼합가스 공급장치를 통해 혼합가스를 공급하되, 상기 혼합가스는 산화반응을 위해서 공기, 산소, 또는/및 스팀을 단독 또는 혼합 사용할 수 있고, 전환을 위해서는 가열된 가스 또는 반응성 가스를 사용하고, 혼합 교반을 위해서는 상기 저온기상가스의 비응축가스 또는 상기 고온기상가스의 비응축가스를 사용하고, 또는 산화 반응, 전환, 혼합 교반을 동시에 수행하기 위해서는 상기 혼합가스를 혼합하여 사용할 수도 있다.
상기 열매체를 해당 반응기에 공급하기 전 온도제어를 위해 냉각 또는 가열장치를 추가할 수 있다.
이러한 과제를 해결하기 위한 본 발명의 특징에 따른 열매체 순환형 가연성물질 열화학적 전환 방법은,
a) 가연성물질을 투입하는 단계;
b) 상기 공급된 가연성물질을 열매체로 가열하여 저온기상가스를 생산하는 단계;
c) 상기 b) 단계에서 저온기상가스를 생산하고 배출하는 잔유물 및 열매체를 다음 단계로 이송하는 단계;
d) 상기 c) 단계에서 이송된 잔유물 및 열매체를 외부에서 공급하는 혼합가스에 의하여 산화반응, 전환, 또는 혼합 교반하면서 고온기상가스를 생산하고 열매체를 가열하는 단계;
e) 상기 d)단계에서 생산되는 고온기상가스로부터 가열된 열매체를 분리하여 b) 단계로 순환 공급하는 단계를 포함한다.
상기 열매체 순환형 가연성물질 열화학적 전환 방법은,
f) 상기 e) 단계에서 잔유물을 별도로 분리하여 배출하는 단계;
g) 상기 b) 단계에서 배출하는 저온기상가스를 응축하여 응축물과 비응축성가스를 분리 생산하는 단계;
h) 상기 d) 단계에서 배출하는 고온기상가스로부터 에너지를 회수하는 단계를 더 포함할 수 있다.
상기 고온전환기에서 가열된 열매체와 반응 잔유물을 상부로 분사하여 상기 이송장치를 통해 고체인 열매체는 상기 저온전환기로 보내고 분리된 기상성분은 상기 에너지전환장치로 보낼 수 있다.
본 발명의 실시 예에서는 가열된 열매체를 이용하여 가연성 물질을 단계적으로 별도의 전환기를 통해 건조, 증발, 열분해, 가스화, 연소 등의 열화학적 전환을 통해 에너지를 회수하는 고효율의 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템을 제공할 수 있다.
또한, 본 발명의 실시 예에서는, 가연성물질을 열매체를 이용하여 열화학적으로 전환하여 다양한 형태의 에너지를 생산하는 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템을 제공할 수 있다.
또한, 본 발명의 실시 예에서는, 가연성물질을 다단계 전환기에 통과 시키면서 열매체를 단계마다 재가열하여 이전 전환기로 순환 공급하므로 각 전환기의 전환 온도를 단계적으로 증가시키며, 가연성물질이 단계적으로 건조, 증발, 열분해, 가스화, 연소, 등으로 열화학적 전환이 된다. 이에 따라가연성물질은 각 단계마다 건조물, 열분해 오일/비응축성가스/잔유물, 가스화 합성가스/잔유물, 연소 배가스, 등의 에너지 물질로 전환되는 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템을 제공할 수 있다.
또한, 본 발명의 실시 예에서는 흡열반응인 건조 또는 열분해에 필요한 에너지를 가스화(부분산화) 또는 연소(완전산화)를 통해 발생하는 열을 이용하여 열매체를 가열하여 건조 또는 열분해 공정에 순환 공급하므로 경제적인 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템을 제공할 수 있다.
도 1a 내지 도 1d는 본 발명의 제1 및 제2 실시 예에 따른 열매체 내부순환형 가연성물질 열화학적 전환 시스템의 구성도이다.
도 2a 내지 도 2d는 본 발명의 제1 및 제2 실시 예에 따른 열매체 내부순환형 가연성물질 열화학적 전환 시스템의 구성도이다.
도 3a 내지 도 3c는 본 발명의 제1 및 제2 실시 예에 따른 스크류를 이용한 열매체 내부순환형 가연성물질 열화학적 전환 시스템의 구성도이다.
도 4a 내지 도 4c는 본 발명의 제4 실시 예에 따른 열매체 외부순환형 가연성물질 열화학적 전환 시스템의 구성도이다.
도 5는 본 발명의 제5 실시 예에 따른 열매체 외부순환형 가연성물질 열화학적 전환 시스템의 구성도이다.
도 6는 본 발명의 제6 실시 예에 따른 열매체 외부순환형 가연성물질 열화학적 전환 시스템의 구성도이다.
도 7a 내지 도 7c은 본 발명의 제7 실시 예에 따른 열매체 내부순환형 가연성물질 열화학적 전환 시스템의 구성도이다.
도 8은 본 발명의 제8 실시 예에 따른 열매체 외부순환형 가연성물질 열화학적 전환 시스템의 구성도이다.
도 9은 본 발명의 실시 예에 따른 열매체 순환형 가연성물질 열화학적 전환 방법의 흐름도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명의 제1 및 제2 실시 예에 따른 열매체 내부순환형 가연성물질 열화학적 전환 시스템이 구성도이다.
도 1의 순환 경로는 간단히 고온전환 혼합가스(142)에 의해 고온전환기 열매체(94) 및 고온기상가스(144)가 상부로 분사되어 고온전환 열매체 이송장치(141-R)로 공급되고, 여기에서 고온전환기 열매체(94)는 저온전환기(110)로 순환되고 고온기상가스(144)는 에너지 전환장치(145)로 공급된다.
도 1을 참조하면, 본 발명의 제1 및 제2 실시 예에 따른 열매체 순환형 가연성물질 열화학적 전환 시스템은,
가연성물질(90)을 공급하는 공급장치(100);
상기 가연성물질을 열매체로 가열하여 저온기상가스(114)과 저온전환 잔유물(101)을 생산하는 저온전환기(110);
상기 저온전환기(110)에서 배출하는 저온전환 잔유물(101)과 열매체(91)를 고온전환기(140)로 이송하는 고온전환 혼합가스 공급장치(143) 및 고온전환 혼합가스(142);
상기 고온전환기(140)로 공급된 저온전환기 잔유물(101)과 열매체(91)를 외부에서 공급되는 고온전환 혼합가스(142)에 산화제를 혼합하여 저온전환기 잔유물(101)을 부분산화 또는 완전 연소하여 고온기상가스(144)를 생산하고, 동시에 열매체(91)를 가열하여 고온의 열매체(94)를 생산하는 고온전환기(140)를 포함한다.
상기 고온전환기(140)에서 가열된 열매체(94)는 고온기상가스(144)로부터 분리되어 저온전환기(110)으로 순환 공급된다.
상기 고온전환기(140)에서 전환되지 못한 잔유물(149)은 배출장치(148)을 통해 배출된다.
그리고 저온전환기(110)에서 생산된 저온기상가스(114)는 응축기(115)를 통과하면서 일부는 응축되어 응축물(117)을 생성하고 나머지는 비응축가스(116)로 배출된다.
또한, 고온전환기(140)에서 생산된 고온기상가스(144)는 에너지 전환장치(145)에 의해 에너지(147)을 생산하고 배가스(146)로 배출된다.
상기 가연성물질은 온도 상승에 따라 온도 단계별로, 건조, 증발, 열분해, 가스화, 연소가 가능하거나 상기 고온전환 혼합가스에 의해 부분산화 또는 연소가 가능한 물질을 포함하는 것을 특징으로 한다.
보다 구체적으로는 상기 물질은 고수분슬러지, 유기성슬러지, 축분슬러지, 음식물슬러지, 산업배출 유기성슬러지, 비닐, 플라스틱, 바이오매스, 폐목재, 폐기물, 저급고체연료, 저급오일, 오일샌드, 오일셰일, 등을 단독 또는 다양한 방식으로 혼합한 물질을 포함하는 것을 특징한다.
보다 구체적으로는, 상기 물질은 고수분을 함유한 슬러지를 공급할 때 폐종이, 폐목재, 바이오매스 등을 분말, 칩, 등의 비성형 형태로 일정 비율 혼합하여 투입할 수 있다.
보다 구체적으로는, 상기 물질은 비닐 및 플라스틱 등 고온에서 용융이 되는 물질을 투입할 때, 폐종이, 폐목재, 바이오매스 등을 분말, 칩, 또는 비성형 형태로 일정 비율 혼합하여 투입할 수 있다.
상기 열매체(91 또는 94)는,
모래, 가연성물질/무기물 혼합 분말, 무기물 분말, 촉매 분말, 금속분말, 등을 포함하는 0.01 - 100mm 크기의 다공성 또는 비다공성, 정형 또는 비정형 물질일 수 있다.
또한 제 1항과 또는 제 3항에서, 상기 가연성물질이 가연성물질과 무기물 물질이 혼합된 형태로 0.01 - 100mm 크기의 다공성 또는 비다공성 물질의 형태로 공급될 경우 상기 열매체를 대체할 수 있다.
상기 저온반응기(110)는 100-900℃로 운전하는 것을 특징으로 하나, 보다 구체적으로 건조공정으로 운전하기위해서는 100-300℃로 운전하고, 열분해를 공정을 위해서는 300-700℃로 운전하고, 가스화를 위해서는 600-900℃로 운전하고, 증발을 위해서는 증발대상 물질의 증발 온도에 따라 결정되는 것이 바람직하다.
상기 고온반응기(140)는 700-1300℃로 운전하는 것을 특징으로 하나, 보다 구체적으로는 부분산화를 위해서는 600-900℃, 완전연소를 위해서는 800-1200℃로 운전하는 것을 특징으로 하는 것이 바람직하다.
상기 고온전환기(140)와 상기 에너지 전환장치(145) 사이에 고온기상가스(144)에 포함된 분진을 제거하기 위한 고온 분진 제거장치를 추가할 수 있다.
상기 고온전환기(140)가 가스화로 운전 될 경우 고온기상가스(144)는 합성가스이며 이 경우 합성가스를 냉각 및 세정을 통해 가스엔진/가스터빈을 통해 전기(147)를 생산하고 배가스(146)을 외부로 배출한다. 또한 가스엔진 발전 후 배출 배가스를 이용하여 스팀을 생산할 수 있다. 고온전환기(140)가 연소기로 운전 될 경우 고온기상가스(144)는 고온의 배가스이며 보일러를 통해 스팀(147)을 생산하고 배가스(146)을 외부로 배출한다.
상기 저온전환기 및 상기 고온전환기가 통합된 내부순환형의 경우 열매체 및 잔유물은 저온전환 혼합가스 공급장치와 고온전환 혼합가스 공급장치를 이용하여 이송, 순환, 및 제어할 수 있다. 이때 순환량은 저온전환 및 고온전환 혼합가스의 유량, 압력, 공급위치, 등으로 제어할 수 있다.
또는 이송장치로 스크류 이송장치를 사용 할 수 있다. 이때 열매체 순환량은 스크류 회전속도로 제어할 수 있다.
상기 저온전환기(110) 및 고온전환기(140)는 열매체 외부순환형으로 분리될 수 있고, 이때 각 전환기(110,140)는 유동층, 순환유동층, 스토커, 로터리킬른, 분류층, 고정층 형태를 사용할 수 있다. 이 경우 상기 열매체가 각 전환기 외부로 이송되어 순환된다,
상기, 모든 전환기에 열매체를 순환시키는 순환장치는,
유동층 열매체 순환장치, 순환유동층 열매체 순환장치, 루프실장치, 스크류 이송장치, 컨베이어 이송장치, 등을 특징으로 한다.
이때 순환량은 저온전환 및 고온전환 혼합가스의 유량, 압력, 공급위치, 등으로 제어할 수 있다.
이하, 이러한 본 발명의 다양한 실시 예에 관하여 상세히 설명하기로 한다.
<제1 실시 예> 건조 가스화 또는 연소
도 1 및 도 2를 참조하면, 본 발명의 제1 실시 예에서는 저온전환기(110) 및 고온전환기(140)는 저온전환 혼합가스(112)가 저온전환 혼합가스 공급장치(113)를 통해 저온전환기(110)를 유동화하고 고온전환 혼합가스(142)가 고온전환 혼합가스 공급장치(143)를 통해 고온전환기(140)를 유동화하는 열매체 내부순환형이다.
도 1은 고온전환기(140)에서 가열된 열매체(94) 및 고온전환기 고온기상가스(144)가 고온전환기(140) 상부를 통과하여 저온전환기(110)로 순환 공급되고, 저온전환기(110)의 열매체(91) 및 저온전환기의 잔유물(101)은 이와 평면적으로 다른 위치 하부에서 고온전환기(140) 하부로 이송된다.
도 2의 순환 경로는 간단히 저온전환 혼합가스(112)에 의해 저온전환기 열매체(91), 저온전환기 잔유물(101), 및 저온기상가스(114)가 상부로 분사되어 저온전환 잔유물+열매체 이송장치(111-O)로 공급되고, 여기에서 저온전환기 열매체(94) 및 저온전환기 잔유물(101)은 고온전환기(140)로 이송되고 저온기상가스(114)는 저온기상 응축기(115)로 공급된다.
도 2은 도 1과 같이 저온전환기(110)의 열매체(91), 저온전환기 잔유물(101), 및 저온기상가스(114)가 저온전환기(110) 상부를 통과하여 고온전환기(140)로 이송 공급되나, 고온전환기 열매체(94) 및 고온전환기 잔유물(104)은 이와 평면적으로 다른 위치 하부에서 저온전환기(110) 하부로 이송된다.
본 발명의 제1 실시 예에서는 가연성물질(90)을 가연성 물질 공급장치(100)을 통해 저온전환기(110)에 공급하면, 고온전환기(140)에서 가열되어 저온전환기(110)로 공급되는 열매체(94)에 의해서 가연성물질(90)을 가열하여 저온기상가스(114) 및 저온전환기 잔유물(101)을 생산한다.
이 저온전환기 잔유물(101)은 냉각된 열매체(91)와 같이 고온전환기(140)로 이송된다.
그리고 이송된 저온전환기 잔유물(101)은 고온전환기(140)에서 하부로 공급되는 고온전환 혼합가스(142)에 의해 부분산화 또는 완전연소로 발열 반응하면서 고온기상가스(144)를 생산하고 동시에 열매체(91)를 가열한다.
가열된 열매체(94)는 고온전환기(140) 하부로 공급되는 고온전환 혼합가스(142)에 의해 유동화 되면서 저온전환기(110) 상부로 순환 공급된다. 이때 공급되는 고온전환 혼합가스(142)의 유량, 속도, 압력에 따라 가열된 열매체(94)의 순환량이 제어된다.
또한, 순환되는 열매체(94)의 양 만큼 저온전환기 잔유물(101)및 냉각된 열매체(91)가 자동적으로 고온전환기(140) 하부로 이송된다.
저온전환기(110)에서 생산된 저온기상가스(114)는 저온기상응축기(115)를 통과하면서 응축되어 저온기상 응축물(117)을 생산하고 응축되지 않는 가스는 저온전환 비응축가스(116)로 배출된다.
그리고 고온전환기(140)에서 생산된 고온기상가스(144)는 에너지 전환장치(145)를 통과하면서 스팀 또는 전기(147)을 생산하고 배가스(146)로 배출된다.
이러한 2단계 전환 공정을 실제 산업현장에 적용을 하기 위해서 가연성물질로서 고수분슬러지를 사용할 경우 고수분슬러지를 에너지 효율적으로 건조하고, 건조된 슬러지를 가스화 또는 연소하여 에너지를 회수할 수 있다.
이를 위해서 고수분슬러지 가연성물질(90)을 저온반응기(110)에 공급하고 고온반응기(140)로 부터 공급되는 가열된 열매체(94)를 이용하여 저온전환기(110)를 100-300℃로 운전한다. 이 경우 저온전환기(110)로 공급되는 고수분슬러지는 수분함량 30% 미만의 유기성 저온전환기 잔유물(101)로 건조되어 열매체(91)과 같이 고온전환기(140)로 이송된다.
상기 고온전환기(140)로 이송된 유기성 저온전환기 잔유물은 고온전환 혼합가스(142)에 의해 부분산화 가스화 또는 연소되고 고온기상가스(144)를 배출되고 열매체(94)는 가열된다.
상기 고온전환기(140)가 공기가 포함된 고온전환 혼합가스(142)에 의해 부분산화 가스화 될 경우, 고온전환기(140)의 온도는 700-900℃로 운전되고 고온기상가스(144)의 가스 성분 대부분은 CO, H2, N2이며 나머지는 CO2, CH4로 구성되는 가스화 합성가스가 배출된다. 이 경우 에너지 전환장치(145)는 고온기상가스(144)인 합성가스를 냉각 및 세정하는 장치를 통과하면서 가스엔진을 통해 전기를 생산하고, 발전 후 배출하는 고온의 배가스가 에너지 전환 후 배가스(146)가 된다. 에너지 전환 배가스(146)를 이용하여 스팀을 생산할 수 있다. 따라서 에너지 전환장치에서 배출하는 에너지(147)은 전기와 스팀이 된다.
또는 상기 고온전환기(140)가 공기가 포함된 고온전환 혼합가스(142)에 의해 완전연소가 될 경우, 고온전환기(140)의 온도는 800-1200℃가 되며 고온기상가스(144)의 가스 성분 대부분은 N2 및 CO2가 되는 고온의 연소 배가스가 된다. 이 경우 에너지 전환장치(145)는 고온의 연소 배가스로부터 스팀을 생산하는 보일러가 되며 에너지 변환장치에서 배출하는 에너지(147)는 스팀이 되고 에너지 변환장치(145)에서 배출하는 에너지 전환 후 배가스(146)는 보일러에서 배출하는 배가스가 된다.
또는 이러한 2단계 전환 공정을 실제 산업현장에 적용을 하기 위해서 가연성물질로서 고수분슬러지를 사용할 경우 고수분슬러지를 에너지 효율적으로 건조하고, 일부를 가스화 또는 연소하고 나머지는 분리 배출하여 고체연료로 활용할 수 있다.
이를 위해서 고수분슬러지 가연성물질(90)을 저온반응기(110)에 공급하고 고온반응기(140)에서 공급되는 가열된 열매체(94)를 이용하여 저온전환기(110)를 100-300℃로 운전한다. 이 경우 저온전환기(110)로 공급되는 고수분슬러지는 수분함량 30% 미만의 유기성 저온전환기 잔유물(101)로 건조되어 열매체(91)과 같이 고온전환기(140)로 이송된다.
상기 고온전환기(140)로 이송된 유기성 저온전환기 잔유물은 소량의 공기를 혼합한 고온전환 혼합가스(142)를 이용하여 고온전환기 잔유물(94)의 일부만 부분산화 또는 연소를 통해 에너지를 생산하고 열매체(94)를 가열하여 저온전환기(110)에 공급한다. 저온전환기(140)의 운전 온도는 100-250℃이고, 고온전환기(140)의 운전온도는 부분산화 및 완전 대비 다소 낮아지고 전환 되지 못한 잔유물(104)은 잔유물 분리 배출장치(148)에서 열매체(94)로부터 분리되어 외부로 배출된다. 따라서 에너지 전환장치에서 배출하는 에너지(147)는 스팀이 되고, 잔유물(149)은 고체연료로 활용할 수 있다.
도 1 및 도 2에서 상기 가열된 고온전환기 열매체(94)를 저온전환기(110)로 순환 공급할 때 고온전환기의 잔유물(104)이 열매체(94)와 같이 동반 순환 공급될 수 있다. 이때 동반 순환되는 잔유물의 량 및 잔유물에 포함된 가연성물질의 량은 고온전환기(140)의 운전 상태에 따라 변할 수 있다. 상기 고온전환기(140)의 운전이 완전한 가스화 또는 연소가 진행될 경우 잔유물(104)에 포함된 가연성물질은 5% 미만이 될 수도 있다. 초기 저온전환기(110)에 공급한 가연성물질에 포함된 무기물성분이 계속 고온전환기(140)에 축적되는 것을 방지하기 위하여 고온전환기 잔유물(104)을 열매체(94)와 같이 주기적 또는 연속적으로 외부로 배출하여 잔유물로부터 열매체를 분리하고, 열매체는 다시 저온 또는 고온전환기로 공급할 수 있다.
<제2 실시 예> 열분해 가스화/연소
도 1 및 도 2를 참조하면, 제2 실시 예는 제1 실시 예와 같은 방식으로 운전되나 2단계 전환 공정을 실제 산업현장에 적용을 하기 위해서 가연성물질로서 고수분 슬러지 대신에 수분이 적은 비닐, 플라스틱, 폐기물, 바이오매스, 등의 고발열량 물질을 사용할 경우 가연성물질을 열분해하여 오일을 생산하고 잔유물은 가스화 또는 연소하여 에너지를 회수할 수 있다.
이를 위해서 제2 실시 예에서 상기 고발열량 가연성물질(90)을 저온전환기(110)에 공급하고 고온전환기(140)에서 공급되는 가열된 열매체(94)를 이용하여 저온전환기(110)를 300-700℃로 운전할 경우 저온전환기(110)로 공급되는 고발열량 가연성 물질은 열분해되어 저온기상가스(114)를 생산하고 열분해 후 잔유물은 고온전환기(140)로 공급된다.
이 고온전환기(140)로 공급된 열분해 잔유물(91)은 고온반응기(140)에 공급되는 고온반응 혼합가스(142)에 의해 부분산화 가스화 또는 연소되고 고온기상가스(144)를 배출한다.
그리고 저온기상가스(114)는 저온기상 응축기(115)에 의해 응축되어 저온기상응축물(117)로 열분해 오일을 생산하고 비응축가스(146)를 배출한다.
그리고 고온전환기(140)에서 생산된 고온기상가스(144)는 에너지 전환장치(145)를 통과하면서 스팀 또는 전기(147)을 생산하고 배가스(146)로 배출된다.
<제3 실시 예> 스크류
도 3는 본 발명의 제3 실시 예에 따른 열매체 순환형 가연성물질 열화학적 전환 시스템의 구성도이다.
도 3를 참조하면, 본 발명의 제3 실시 예에서 운전 방식은 제1 실시 예 및 제2 실시 예와 유사하며, 열매체 이송 순환에 스크류를 추가 이용하는 것이 차이점이다.
본 발명의 제3 실시 예에서는 스크류 회전수에 비례하여 저온반응기 잔유물(101)및 열매체(91)가 도 3의 저온전환 잔유물+열매체 이송장치(111-O)를 통과하여 고온반응기(140)로 이송될 때, 고온전환기(140)의 가열된 열매체(94) 및 고온전환 잔유물(104)은 평면적으로 다른 위치에 있는 도 3의 고온전환 열매체 순환 이송장치(141-R)를 자동적으로 통과하면서 저온전환기(110)로 이송 순환 될 수 있다, 이 이송 순환공정을 원활하게 하기 위해 저온전환기(110) 및 고온전환기(140) 하부에서 유동화 혼합가스(112, 142)를 공급한다.
따라서, 본 발명의 제3 실시 예에서는 도 1 및 도 2에 스크류를 추가하여 스크류에 의해 간단하게 연속적으로 열매체 순환 운전을 할 수 있다.
<제4 실시 예> 반응기 분리 ; 열매체 외부순환형
도 4a 내지 도 4c는 본 발명의 제4 실시 예에 따른 열매체 순환형 가연성물질 열화학적 전환 시스템의 구성도이다. 이 경우 상기 열매체가 각 반응기 외부로 이송되어 순환 공급된다, 또한 열매체 및 잔유물이 각 전환기를 이송 순환할 때 이송장치를 활용한다.
특히, 도 4a는 외부 순환형을 나타내고, 도 4b는 루프실 이용 열매체 이송 개념을 나타내고, 도 4c는 열매체 및 가스의 분리 개념을 나타낸다.
도 4a 내지 도 4c를 참조하면, 본 발명의 제4 실시 예는 도 1의 제1 실시 예와 운전 방식이 유사하나, 저온전환기(110) 및 고온전환기(140)가 분리되어 있다.
그리고 제4 실시 예는 저온전환기(110)에서 열매체(91)과 저온전환 잔유물(101)은 이송장치(111-O)를 통해 고온전환기(140)로 공급되고, 고온전환기(140)에서 가열된 열매체(94)는 고온기상가스(144)와 분리되어 순환 공급장치(141)를 통해 저온전환기(110)로 공급된다.
그리고 가열된 열매체(94)는 고온전환기(140) 하부로 공급되는 고온전환 혼합가스(142)에 의해 유동화 되면서 저온전환기(110) 상부로 순환된다. 이때 공급되는 고온전환 혼합가스(142)의 량에 따라 가열된 열매체(94)의 순환량이 제어 된다.
이하 제4 실시 예의 다른 동작 과정은 제1 실시 예 및 제2 실시 예와 같다.
<제5 실시 예 및 제6 실시 예> 로터리킬른 전환기
도 5는 본 발명의 제5 실시 예에 따른 열매체 순환형 가연성물질 열화학적 전환 시스템의 구성도이고, 도 6는 본 발명의 제6 실시 예에 따른 열매체 순환형 가연성물질 열화학적 전환 시스템의 구성도이다.
본 발명의 제5 실시 예 및 제6 실시 예에서는 상기 저온전환기 및 고온전환기가 열매체 외부순환형으로 분리될 수 있고, 이때 각 반응기는 유동층, 순환유동층, 스토커, 로터리킬른, 분류층, 고정층 형태의 반응기를 사용할 수 있다.
이 경우 상기 열매체가 각 반응기 외부로 이송되어 순환된다,
그리고, 저온전환기 및 고온전환기에 열매체를 순환시키는 순환장치는, 유동층 열매체 순환장치, 순환유동층 열매체 순환장치, 루프실장치, 스크류 이송장치, 컨베이어 이송장치 등이 될 수 있다. 이때 열매체 순환량은 각 순환시키는 장치의 유량 또는 속도로 제어할 수 있다.
그리고, 도 5 또는 도 6를 참조하면, 본 발명의 제5 실시 예 및 제6 실시 예에서는 저온전환기(110) 또는 고온전환기(140)가 로터리킬른으로 이루어져 있으며, 킬른은 입구과 출구 사이에 일정 각도의 경사를 가지고 있어서, 킬른의 회전 운동에 의해 내부의 생성 물질이 이동하게 된다. 따라서, 내부에서 생성된 물질이 용이하게 이동할 수 있다.
<제 7 실시 예, 제 8 실시 예, 및 제 9 실시 예>
도 1의 제1 실시 예, 도 2의 제2 실시 예, 도 4의 제4 실시 예에서 저온전환기(110) 및 고온전환기(140) 사이에 고저온전환기(120), 저고온전환기(130) 등 운전 온도가 다른 하나 이상의 다수의 전환기가 설치 될 수 있다. 도 1에 다수의 전환기가 설치되면 도 7, 같은 원리로 도 2에 다수의 전환기가 설치될 수 있다. 도 8, 도 4a에 다수의 전환기가 설치되면 도 8로 구성될 수 있다.
따라서 도 7은 본 발명의 제7 실시 예에 따른 열매체 순환형 가연성물질 열화학적 전환 시스템의 구성도이고, 도 8는 본 발명의 제 8 실시 예에 따른 열매체 순환형 가연성물질 열화학적 전환 시스템의 구성도이다.
도 7내지 도 8를 참조하면, 고저온전환기(120)는, 고저온전환 열매체 이송장치(121-R), 고저온전환 잔유물+열매체 이송장치(121-O), 고저온전환 혼합가스(122)를 공급하는 고저온전환 혼합가스 공급장치(123), 고저온기상 응축기(125)를 구비한다. 고저온전환기(120)는 고저온기상가스(124), 고저온전환 응축 후 비응축가스(126), 고저온기상 응축물(127)을 생산하며, 기본적인 동작은 저온전환기(110) 또는 고온전환기(140)와 유사하다.
또한, 저고온전환기(130)은 저고온전환 열매체 이송장치(131-R), 저고온전환 잔유물+열매체 이송장치(131-O), 저고온전환 혼합가스(132)를 공급하는 저고온전환 혼합가스 공급장치(133), 저고온기상 응축기(135)를 구비하며, 저고온전환 혼합가스(132), 저고온기상가스(134), 저고온전환 응축 후 비응축가스(136), 저고온기상 응축물(137)을 생산하며, 기본적인 동작은 저온전환기 (110) 또는 고온전환기(140)와 유사하다.
그리고 각 전환기(110, 120, 130, 140)에서의 열매체 순환량은 각 순환시키는 장치의 유량, 압력, 및/또는 속도로 제어할 수 있다.
본 발명은 가연성물질이 다수의 전환기를 통과하면서 건조, 저온열분해, 고온열분해, 가스화, 연소 공정으로 단계적으로 열화학적 전환을 진행하므로 다양한 형태의 에너지로 효율적으로 전환가능하다.
도 9는 본 발명의 실시 예에 따른 열매체 순환형 가연성물질 열화학적 전환 방법의 동작 흐름도이다.
도 9를 참조하면, 본 발명의 실시 예에 따른 열매체 순환형 가연성물질 열화학적 전환 방법은,
a) 가연성물질을 투입하는 단계;
b) 상기 공급된 가연성물질을 열매체로 가열하여 저온기상가스를 생산하는 단계;
c) 상기 b) 단계에서 저온기상가스를 생산하고 배출하는 잔유물 및 열매체를 다음 단계로 이송하는 단계;
d) 상기 c) 단계에서 이송된 잔유물 및 열매체를 외부에서 공급하는 혼합가스에 의하여 산화반응, 전환, 또는 혼합 교반하면서 고온기상가스를 생산하고 열매체를 가열하는 단계;
e) 상기 d)단계에서 생산되는 고온기상가스로부터 가열된 열매체를 분리하여 b) 단계로 순환 공급하는 단계;
f) 상기 e) 단계에서 잔유물을 별도로 분리하여 배출하는 단계;
g) 상기 b) 단계에서 배출하는 저온기상가스를 응축하여 응축물과 비응축성가스를 분리 생산하는 단계;
h) 상기 d) 단계에서 배출하는 고온기상가스로부터 에너지를 회수하는 단계를 포함한다.
이러한 방법은 상기 제1 내지 제8 실시 예를 통해 설명되었으므로 상세 설명은 생략한다.
이상에서 설명한 본 발명의 실시 예에 따르면 가연성물질을 고온의 열매체로 직접 가열하므로 온도에 따라 열화학적으로 전환되어 배출되고, 가열 후 냉각된 열매체 및 잔유물을 다른 반응기에 공급하여 부분산화 또는 연소하므로 잔유물은 비응축가스로 전환 배출되고 열매체는 고온으로 가열되며, 고온의 열매체를 다시 순환 공급하므로 연속적인 열매체 순환형 열화학적 전환 반응기가 완성된다. 이러한 2단 반응기를 통하여 건조연료생산 - 잔유물 가스화 합성가스 또는 연소 고온 배가스, 열분해오일생산 - 잔유물 가스화 합성가스 또는 연소 고온배가스, 등으로 열화학적 전환이 가능하다. 또한 이러한 열화학적 전환 반응기를 다단으로 이용하면 가연성물질을 각 반응기 단계별로 건조, 증발, 열분해, 가스화, 또는 연소, 등으로 다양하게 전환이 되어 건조연료, 열분해 오일, 가스화 합성가스, 고온 배가스, 등을 생산할 수 있다.
이상에서 본 발명의 실시 예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
90 : 가연성물질
91 : 저온전환기 열매체
92 : 고저온전환기 열매체
93 : 중고온전환기 열매체
94 : 고온전환기 열매체
100 : 가연성물질 공급장치
101 : 저온전환기 잔유물 102 : 고저온전환기 잔유물
103 : 저고온전환기 잔유물 104 : 고온전환기 잔유물
110 : 저온전환기 111-O : 저온전환 잔유물+열매체 이송장치
112 : 저온전환 혼합가스 113 : 저온전환 혼합가스 공급장치
114 : 저온기상가스 115 : 저온기상 응축기
116 : 저온전환 응축 후 비응축가스 117 : 저온기상 응축물
120 : 고저온전환기 121-R : 고저온전환 열매체 순환 이송장치
121-O : 고저온전환 잔유물+열매체 이송장치
122 : 고저온전환 혼합가스 123 : 고저온전환 혼합가스 공급장치
124 : 고저온기상가스 125 : 고저온기상 응축기
126 : 고저온전환 응축 후 비응축가스 127 : 고저온기상 응축물
130 : 저고온전환기 131-R : 저고온전환 열매체 순환 이송장치
131-O : 저고온전환 잔유물+열매체 이송장치
132 : 저고온전환 혼합가스 133 : 저고온전환 혼합가스 공급장치
134 : 저고온기상가스 135 : 저고온기상 응축기
136 : 저고온전환 응축 후 비응축가스 137 : 저고온기상 응축물
140 : 고온전환기 141-R : 고온전환 열매체 순환 이송장치
142 : 고온전환 혼합가스 143 : 고온전환 혼합가스 공급장치
144 : 고온기상가스
145 : 에너지 전환장치 (최종전환에서는 응축물이 없다고 가정)
146 : 에너지 전환 후 배가스
147 : 에너지 전환을 통한 생산된 에너지 (즉, 스팀 및/또는 전기)
148 : 잔유물 분리 배출장치 149 : 잔유물
본 발명의 실시 예에서는 가열된 열매체를 이용하여 가연성 물질을 단계적으로 별도의 전환기를 통해 건조, 증발, 열분해, 가스화, 연소 등의 열화학적 전환을 통해 에너지를 회수하는 고효율의 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템을 제공할 수 있다.
또한, 본 발명의 실시 예에서는, 가연성물질을 열매체를 이용하여 열화학적으로 전환하여 다양한 형태의 에너지를 생산하는 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템을 제공할 수 있다.
또한, 본 발명의 실시 예에서는, 가연성물질을 다단계 전환기에 통과 시키면서 열매체를 단계마다 재가열하여 이전 전환기로 순환 공급하므로 각 전환기의 전환 온도를 단계적으로 증가시키며, 가연성물질이 단계적으로 건조, 증발, 열분해, 가스화, 연소, 등으로 열화학적 전환이 된다. 이에 따라가연성물질은 각 단계마다 건조물, 열분해 오일/비응축성가스/잔유물, 가스화 합성가스/잔유물, 연소 배가스, 등의 에너지 물질로 전환되는 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템을 제공할 수 있다.
또한, 본 발명의 실시 예에서는 흡열반응인 건조 또는 열분해에 필요한 에너지를 가스화(부분산화) 또는 연소(완전산화)를 통해 발생하는 열을 이용하여 열매체를 가열하여 건조 또는 열분해 공정에 순환 공급하므로 경제적인 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템을 제공할 수 있다.

Claims (13)

  1. 가연성물질을 열매체로 가열하여 저온기상가스를 생산하는 저온전환기;
    상기 저온전환기에서 전환 후 생산되는 잔유물을 상기 열매체와 같이 이송하는 이송장치;
    상기 이송된 잔유물 및 열매체를 외부에서 공급하는 고온전환 혼합가스에 의하여 산화 반응, 전환 또는 혼합하면서 고온기상가스를 생산하고 열매체를 가열하는 고온전환기;
    상기 고온전환기에서 가열된 열매체를 상기 저온전환기에 순환 공급하기위한 순환 공급장치;
    상기 고온전환기에서 잔유물을 분리 배출하는 배출장치;
    상기 저온전환기에서 배출하는 저온기상가스를 응축하여 응축물과 비응축성가스를 생산하는 응축기를 포함하고,
    상기 저온전환기 및 고온전환기에서 열매체를 순환시키는 순환 공급장치는 스크류 이송장치인 열매체 순환형 가연성물질 열화학적 전환 시스템.
  2. 제1항에 있어서,
    상기 고온전환기에서 배출하는 고온기상가스로부터 에너지를 회수하는 에너지 전환장치;
    상기 가연성물질을 공급하는 공급장치를 더 포함하는 열매체 순환형 가연성물질 열화학적 전환 시스템.
  3. 제2항에 있어서,
    상기 고온전환기에서 가열된 열매체와 반응 고온기상가스을 상부로 분사하여 상기 이송장치를 통해 고체인 열매체는 상기 저온전환기로 보내고 분리된 기상성분은 상기 에너지전환장치로 보내는 것을 특징으로 하는 열매체 순환형 가연성물질 열화학적 전환 시스템.
  4. 제1항에 있어서,
    상기 저온전환기에서 생성된 잔유물과 열매체는 상기 고온전환기로 이송되는 것을 특징으로 하는 열매체 순환형 가연성물질 열화학적 전환 시스템.
  5. 제1항에 있어서,
    상기 가연성물질은 온도 상승에 따라 온도 단계별로, 건조, 증발, 열분해, 가스화, 부분산화, 또는 연소가 가능하거나 상기 고온전환 혼합가스에 의해 건조, 증발, 열분해, 가스화, 부분산화 또는 연소반응이 가능한 물질을 포함하는 물질인 것을 특징으로 하는 열매체 순환형 가연성물질 열화학적 전환 시스템.
  6. 제1항에 있어서,
    상기 열매체는,
    모래, 가연성물질/무기물 혼합 분말, 무기물 분말, 촉매 분말, 금속분말, 등을 포함하는 0.01 - 100mm 크기의 다공성 또는 비다공성, 정형 또는 비정형 물질인 것을 특징으로 하는 열매체 순환형 가연성물질 열화학적 전환 시스템.
  7. 제1항 또는 제4항에 있어서,
    상기 가연성물질이 가연성물질과 무기물 물질이 혼합된 형태로 0.01 - 100mm 크기의 다공성 또는 비다공성 물질의 형태로 공급될 경우 상기 가연성물질이 상기 열매체의 역할도 같이 수행하므로 별도 열매체 투입이 필요하지 않은 것을 특징으로 하는 열매체 순환형 가연성물질 열화학적 전환 시스템.
  8. 제1항에 있어서,
    상기 저온전환기는 100-900℃로 운전하는 것을 특징으로 하되, 건조공정으로 운전하기위해서 100-300℃로 운전하고, 열분해를 공정을 위해서 300-700℃로 운전하고, 가스화를 위해서는 600-900℃로 운전하며, 상기 고온전환기는 저온전환기보다 높은 온도에서 운전하는 것을 특징으로 하는 열매체 순환형 가연성물질 열화학적 전환 시스템.
  9. 제2항에 있어서,
    상기 고온전환기에서 잔유물의 가연성물질 일부만 가스화 또는 일부만 연소 할 경우 상기 고온전환기에서 배출되는 상기 고온기상가스는 합성가스 또는 연소 배가스이며, 가스화 또는 연소되지 못한 잔유물은 상기 잔유물 분리 배출장치를 통해 배출되거나,
    상기 고온전환기에서 잔유물의 가연성 물질 대부분을 가스화 할 경우 상기 고온전환기에서 배출되는 상기 고온기상가스는 합성가스이며, 이 경우 상기 에너지 전환장치는 생산된 합성가스를 냉각 및 세정을 통해 가스엔진 발전으로 전기를 생산하고, 가스엔진 발전 후 배출 배가스로부터 스팀을 생산하거나,
    또는 상기 고온전환기에서 잔유물의 가연성 물질 대부분을 가스화 할 경우 상기 고온전환기에서 배출되는 상기 고온기상가스는 합성가스이며, 이 경우 상기 에너지 전환장치는 합성가스를 연소하여 스팀을 생산하고 저온의 연소배가스를 배출하거나,
    또는 상기 고온전환기에서 잔유물의 가연성 물질 대부분을 산화 연소 운전할 경우 상기 고온전환기에서 배출되는 상기 고온기상가스는 고온의 연소 배가스이며, 이 경우 상기 에너지 전환장치는 고온의 연소배가스로부터 스팀을 생산하고 저온의 연소배가스를 배출하는 것을 특징으로 하는 열매체 순환형 가연성물질 열화학적 전환 시스템.
  10. 제1항에 있어서,
    상기 저온전환기 및 상기 고온전환기가 통합된 내부순환형의 경우 열매체 및 잔유물의 이송, 순환, 및 제어는 저온전환 혼합가스 공급장치와 고온전환 혼합가스 공급장치를 이용하여 수평적 다른 위치에서 하부 및 상부 이송/순환하는 열매체 순환형 가연성물질 열화학적 전환 시스템.
  11. 제1항 또는 제9항에 있어서,
    상기 저온전환기 또는 상기 고온전환기에서 상기 열매체 및 가연성물질이 내부 순환, 혼합, 또는 전환을 위해 혼합가스 공급장치를 통해 혼합가스를 공급하되, 상기 혼합가스는 산화반응을 위해서 공기, 산소, 또는/및 스팀을 단독 또는 혼합 사용할 수 있고, 혼합 교반을 위해서는 상기 저온기상가스의 비응축가스 또는 상기 고온기상가스의 비응축가스를 사용하는 열매체 순환형 가연성물질 열화학적 전환 시스템.
  12. a) 가연성물질을 투입하는 단계;
    b) 상기 공급된 가연성물질을 열매체로 가열하여 저온기상가스를 생산하는 단계;
    c) 상기 b) 단계에서 저온기상가스를 생산하고 배출하는 잔유물 및 열매체를 다음 단계로 이송하는 단계;
    d) 상기 c) 단계에서 이송된 잔유물 및 열매체를 외부에서 공급하는 혼합가스에 의하여 산화반응, 전환, 또는 혼합 교반하면서 고온기상가스를 생산하고 열매체를 가열하는 단계;
    e) 상기 d)단계에서 생산되는 고온기상가스로부터 가열된 열매체를 분리하여 b) 단계로 순환 공급하는 단계를 포함하고,
    f) 상기 e) 단계에서 잔유물을 별도로 분리하여 배출하는 단계;
    g) 상기 b) 단계에서 배출하는 저온기상가스를 응축하여 응축물과 비응축성가스를 분리 생산하는 단계;
    h) 상기 d) 단계에서 배출하는 고온기상가스로부터 에너지를 회수하는 단계를 더 포함하며,
    상기 e) 단계에서 상기 고온기상가스로부터 가열된 열매체를 분리하여 b) 단계로 순환 공급하는 순환 공급장치는 스크류 이송장치인 열매체 순환형 가연성물질 열화학적 전환 방법.
  13. 제13항에 있어서,
    고온전환기에서 가열된 열매체와 반응 잔유물을 상부로 분사하여 이송장치를 통해 고체인 열매체는 저온전환기로 보내고 분리된 기상성분은 에너지전환장치로 보내는 것을 특징으로 하는 열매체 순환형 가연성물질 열화학적 전환 방법.
PCT/KR2017/009726 2016-09-06 2017-09-05 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템 WO2018048179A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0114367 2016-09-06
KR1020160114367A KR101717724B1 (ko) 2016-09-06 2016-09-06 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템

Publications (1)

Publication Number Publication Date
WO2018048179A1 true WO2018048179A1 (ko) 2018-03-15

Family

ID=58587140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009726 WO2018048179A1 (ko) 2016-09-06 2017-09-05 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템

Country Status (2)

Country Link
KR (1) KR101717724B1 (ko)
WO (1) WO2018048179A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101717724B1 (ko) * 2016-09-06 2017-04-05 주식회사 한울엔지니어링 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템
CN114836231B (zh) * 2022-04-02 2023-05-26 晋能控股煤业集团有限公司 一种方便转换用于煤热解制取高品质热解油或合成气的装置及方法
KR102512850B1 (ko) * 2022-12-21 2023-03-23 한상동 폐절삭유와 폐유기용제류의 처리 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291134A (ja) * 2005-04-14 2006-10-26 Hitoshi Inoue バイオマスのガス化方法
WO2008029689A1 (fr) * 2006-09-08 2008-03-13 Ihi Corporation Procédé de gazéification en lit fluidisé réparti pour combustible solide et appareil de gazification approprié
JP2010121049A (ja) * 2008-11-20 2010-06-03 Jfe Engineering Corp 有機物原料のガス化装置及び方法
KR20130001284A (ko) * 2010-03-23 2013-01-03 우한 카이디 엔지니어링 테크놀로지 리서치 인스티튜트 코오퍼레이션 엘티디. 열분해에 의해 바이오매스로부터 합성 가스를 제조하는 시스템 및 방법
KR101717724B1 (ko) * 2016-09-06 2017-04-05 주식회사 한울엔지니어링 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291134A (ja) * 2005-04-14 2006-10-26 Hitoshi Inoue バイオマスのガス化方法
WO2008029689A1 (fr) * 2006-09-08 2008-03-13 Ihi Corporation Procédé de gazéification en lit fluidisé réparti pour combustible solide et appareil de gazification approprié
JP2010121049A (ja) * 2008-11-20 2010-06-03 Jfe Engineering Corp 有機物原料のガス化装置及び方法
KR20130001284A (ko) * 2010-03-23 2013-01-03 우한 카이디 엔지니어링 테크놀로지 리서치 인스티튜트 코오퍼레이션 엘티디. 열분해에 의해 바이오매스로부터 합성 가스를 제조하는 시스템 및 방법
KR101717724B1 (ko) * 2016-09-06 2017-04-05 주식회사 한울엔지니어링 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템

Also Published As

Publication number Publication date
KR101717724B1 (ko) 2017-04-05

Similar Documents

Publication Publication Date Title
WO2018084330A1 (ko) 연속식 열분해 장치 및 열분해 방법
WO2018048179A1 (ko) 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템
US8443741B2 (en) Waste treatment process and apparatus
CA2594842C (en) Waste treatment process and apparatus
US5849050A (en) Process for generating burnable gas
US8333951B2 (en) Method for producing a product gas rich in hydrogen
US7322301B2 (en) System and method for processing sewage sludge and other wet organic based feedstocks to generate useful end products
WO2015122688A1 (ko) 바이오 촤 생산 시스템 및 바이오 촤 생산 방법
WO2016175387A1 (ko) 폐기물로부터 합성가스를 생성하는 가스화 방법, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치 및 이를 포함하는 발전 시스템
JP5521187B2 (ja) 廃棄物をガス化する可燃ガス生成装置および可燃ガス製造方法
WO2012051958A1 (zh) 废弃物处理设备
GB2502115A (en) Waste processing with soot reduction
WO2018066845A1 (ko) 하이브리드형 발전 시스템
WO2023068454A1 (ko) 바이오매스 가스화 시스템
JP2000296378A (ja) 廃棄物の処理方法
KR101781729B1 (ko) 열매체 순환형 가연성물질 열화학적 전환 시스템
SK22893A3 (en) Means for producing combustible gases from low grad solid fuel and method for using same
WO2016006785A1 (ko) 연소기 독립형 유동층 간접 가스화 시스템
WO2022092422A1 (ko) 고온 플라즈마를 이용한 배치식 복합온도 처리기 및 이의 배가스 처리 방법
WO2013016866A1 (en) Novel microwave assisted flash pyrolysis system and method thereof
WO2010107263A2 (ko) 슬러지 가수분해 장치, 이를 이용한 슬러지 가수분해 방법, 슬러지 가수분해 장치에 구비되는 접촉식 열교환 유니트 및 증기식 열교환 유니트
WO2020235725A1 (ko) 저속 열분해를 통해 생성된 바이오 오일 포집 방법 및 장치
WO2022054974A1 (ko) 과열증기를 이용한 파울링이 억제된 소수성의 발전용 옥수수대 연료 제조 장치
WO2023033595A1 (ko) 개질 시스템 및 그 방법
WO2023054753A1 (ko) 유동층 간접 열교환 방식의 메탄 열분해를 통한 수소 및 탄소 생산 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17849063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17849063

Country of ref document: EP

Kind code of ref document: A1