WO2023033595A1 - 개질 시스템 및 그 방법 - Google Patents

개질 시스템 및 그 방법 Download PDF

Info

Publication number
WO2023033595A1
WO2023033595A1 PCT/KR2022/013211 KR2022013211W WO2023033595A1 WO 2023033595 A1 WO2023033595 A1 WO 2023033595A1 KR 2022013211 W KR2022013211 W KR 2022013211W WO 2023033595 A1 WO2023033595 A1 WO 2023033595A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis gas
reforming
hydrogen
unit
generating
Prior art date
Application number
PCT/KR2022/013211
Other languages
English (en)
French (fr)
Inventor
이봉주
이학주
Original Assignee
이봉주
이학주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이봉주, 이학주 filed Critical 이봉주
Priority to JP2024514633A priority Critical patent/JP2024531590A/ja
Priority to KR1020247008736A priority patent/KR20240099137A/ko
Priority to EP22865097.4A priority patent/EP4400209A1/en
Publication of WO2023033595A1 publication Critical patent/WO2023033595A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/342Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/049Composition of the impurity the impurity being carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form

Definitions

  • the present invention relates to a reforming system and method thereof, and more particularly, to a reforming system and method for obtaining hydrogen by reforming hydrocarbons.
  • Hydrocarbons such as natural gas and petroleum gas are reformed in the presence of a reforming material such as carbon dioxide, steam, and oxygen and a catalyst to be converted into hydrogen, carbon monoxide, and the like.
  • a reforming material such as carbon dioxide, steam, and oxygen
  • a catalyst to be converted into hydrogen, carbon monoxide, and the like.
  • This reaction can be used for a variety of purposes, eg for hydrogen supply in fuel cells which are considered one of the energy sources to replace fossil fuels.
  • a representative conventional hydrogen production method is to steam reforming naphtha generated in the process of refining natural gas or crude oil to produce it.
  • Republic of Korea Patent Registration No. 10-1594188 discloses a method for producing synthesis gas.
  • the above invention only focuses on energy efficiency through daytime operation and nighttime operation, and there is a limit to reducing the emission of a large amount of carbon dioxide generated in hydrogen production.
  • the present invention is to solve the above problems, and to provide a reforming system and method capable of reducing carbon dioxide emission while increasing the efficiency of hydrogen acquisition.
  • a reforming method for obtaining hydrogen by reforming a hydrocarbon, comprising: generating a first synthesis gas containing hydrogen and carbon dioxide from a hydrocarbon by reforming the hydrocarbon with steam plasma; cooling the first synthesis gas to a predetermined temperature, removing water vapor contained in the first synthesis gas, and then separating hydrogen from the first synthesis gas; generating hydrogen by reforming the first synthesis gas from which hydrogen is separated and hydrocarbons with steam plasma, and generating a second synthesis gas in which carbon dioxide is reduced; and cooling the second synthesis gas to a predetermined temperature, removing water vapor contained in the second synthesis gas, and then separating hydrogen from the second synthesis gas.
  • FIG. 1 is a schematic flow chart of a reforming method according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a reforming system according to an embodiment of the present invention.
  • FIG. 3 is a configuration diagram showing a specific first embodiment of a reforming system according to an embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing a specific second embodiment of a reforming system according to an embodiment of the present invention.
  • FIG. 5 is a schematic perspective view of a reforming section of a reforming system according to an embodiment of the present invention.
  • a reforming method for obtaining hydrogen by reforming a hydrocarbon, comprising: generating a first synthesis gas containing hydrogen and carbon dioxide from a hydrocarbon by reforming the hydrocarbon with steam plasma; cooling the first synthesis gas to a predetermined temperature, removing water vapor contained in the first synthesis gas, and then separating hydrogen from the first synthesis gas; Reforming the first synthesis gas from which hydrogen is separated and hydrocarbons with steam plasma to generate hydrogen and generate a second synthesis gas in which carbon dioxide is reduced; and cooling the second synthesis gas to a predetermined temperature, removing water vapor contained in the second synthesis gas, and then separating hydrogen from the second synthesis gas.
  • the hydrocarbon may be at least one or a combination of two or more of methane, LPG, methanol, and naphtha.
  • the reforming reactions in the step of generating the first synthesis gas may be represented by Chemical Formulas 1 and 2 below, and the reforming reactions in the step of generating the second synthesis gas may be represented by Chemical Formulas 3 and 4 below.
  • a reforming system embodying a reforming method includes a reforming unit that reforms hydrocarbons into steam plasma to generate a first synthesis gas containing hydrogen and carbon dioxide from hydrocarbons; and a post-processing unit that cools the first synthesis gas to a predetermined temperature, removes water vapor contained in the first synthesis gas, and then separates hydrogen from the first synthesis gas, wherein the reforming unit includes a hydrogen separation unit.
  • the first synthesis gas and the hydrocarbon are subjected to a reforming reaction with steam plasma to generate hydrogen and a second synthesis gas in which carbon dioxide is reduced, and the post-processing unit cools the second synthesis gas to a predetermined temperature, and the second synthesis gas is cooled to a predetermined temperature. After removing water vapor contained in the synthesis gas, hydrogen may be separated from the second synthesis gas.
  • the reforming reaction for generating the first synthesis gas in the reforming unit may be represented by Chemical Formulas 1 and 2 below, and the reforming reaction for generating the second synthesis gas in the reforming unit may be represented by Chemical Formulas 3 and 4 below.
  • the step of separating hydrogen from the second synthesis gas is to mix and mix the first synthesis gas and the second synthesis gas. After generating a gas, cooling the mixed gas to a predetermined temperature, and removing water vapor included in the mixed gas, hydrogen may be separated from the mixed gas.
  • char generated on the second synthesis gas may be collected.
  • a reforming system implementing the reforming method according to the first embodiment, wherein the reforming unit generates a first reforming unit for generating the first synthesis gas and a second reforming unit for generating the second synthesis gas and is separated from the first reforming unit.
  • a reforming part may be provided.
  • the first synthesis gas is received from the first reforming unit and the second synthesis gas is received from the second reforming unit, and the first synthesis gas and the second synthesis gas are mixed to generate a mixed gas.
  • the post-processing unit receives the mixed gas from the mixing unit, cools the mixed gas to a predetermined temperature, removes water vapor included in the mixed gas, and then removes water vapor from the mixed gas. Hydrogen can be separated.
  • the second reformer may collect char generated on the second syngas.
  • the method may further include generating carbon monoxide by reacting carbon dioxide and char in the separated first synthesis gas.
  • hydrogen may be generated by reacting the carbon monoxide generated in the generating of carbon monoxide with steam.
  • thermotreating the waste to generate a pre-treated gas containing char and methane from the waste further comprising the step of generating the pre-treated gas
  • the char produced on the pretreated gas can be collected.
  • the generating of the carbon monoxide may use char collected by the generating of the pretreatment gas.
  • the reforming system implementing the reforming method according to the second embodiment may further include a reaction unit generating carbon monoxide by reacting carbon dioxide and char in the first synthesis gas from which hydrogen is separated.
  • the reforming unit may generate hydrogen by reacting the carbon monoxide generated in the reaction unit with steam.
  • a preprocessing unit heat-treating the waste to generate a preprocessing gas containing char and methane from the waste, wherein the preprocessing unit collects the char generated on the preprocessing gas and converts the waste into the reaction unit. and the pretreatment gas may be delivered to the reforming unit.
  • FIG. 1 is a schematic flow chart of a reforming method according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a reforming system according to an embodiment of the present invention.
  • FIG. 3 is a configuration diagram showing a specific first embodiment of a reforming system according to an embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing a specific second embodiment of a reforming system according to an embodiment of the present invention.
  • FIG. 5 is a schematic perspective view of a reforming part of a reforming system according to an embodiment of the present invention.
  • a "unit” includes a unit realized by hardware, a unit realized by software, and a unit realized using both. Further, one unit may be realized using two or more hardware, and two or more units may be realized by one hardware.
  • the reforming method (S10) may refer to a method of obtaining hydrogen by reforming a hydrocarbon.
  • the hydrocarbon may be at least one or a combination of two or more organic compounds composed of only carbon and hydrogen, such as methane (CH 4 ), LPG, methanol, and naphtha.
  • Methane can be obtained from natural gas, petroleum gas, etc., or from biomass or waste treatment.
  • the reforming method (S10) may be largely composed of four steps as follows.
  • the reforming method (S10) includes reforming methane into steam plasma to generate a first synthesis gas containing hydrogen and carbon dioxide from methane (S100); Cooling the first synthesis gas to a predetermined temperature, removing water vapor contained in the first synthesis gas, and then separating hydrogen from the first synthesis gas (S200); Reforming the first synthesis gas from which hydrogen is separated and methane with steam plasma to generate hydrogen and generate a second synthesis gas in which carbon dioxide is reduced (S300); and cooling the second synthesis gas to a predetermined temperature, removing water vapor contained in the second synthesis gas, and then separating hydrogen from the second synthesis gas (S400).
  • the generating of the first synthesis gas (S100) may mean generating a first synthesis gas including hydrogen, carbon dioxide, and the like from methane by reforming methane into steam plasma.
  • the reforming reaction in the step of generating the first syngas (S100) may be Formula 1 and Formula 2 below.
  • methane (CH 4 ) in the step of generating the first syngas (S100) reacts with high-temperature/high-pressure steam (H 2 O) to produce carbon monoxide (CO) and hydrogen (3H 2 ) can be created.
  • the first synthesis gas generated by reforming methane (CH 4 ) is hydrogen (H 2 ), carbon dioxide (CO 2 ), and unreacted carbon monoxide It may be a gas including (CO), methane, and unreacted water vapor (H 2 O).
  • the generating of the first synthesis gas ( S100 ) may be implemented by the reforming unit 100 of the reforming system 10 .
  • the reformer 100 reforms methane into steam plasma to generate a first synthesis gas containing hydrogen and carbon dioxide from methane.
  • the reforming unit 100 may refer to a reaction chamber for reforming methane into steam plasma.
  • the reforming system 10 may further include a steam supply unit (not shown) supplying high-temperature and high-pressure steam (H 2 O) to the reforming unit 100, and the reforming unit 100 may further include plasma It may be provided with a plasma generator (not shown) that generates.
  • a steam supply unit (not shown) supplying high-temperature and high-pressure steam (H 2 O) to the reforming unit 100
  • the reforming unit 100 may further include plasma It may be provided with a plasma generator (not shown) that generates.
  • reforming reactions of Chemical Formula 1 and Chemical Formula 2 may occur in the reforming unit 100 .
  • Hydrogen may be separated from the first syngas.
  • Separating hydrogen from the first synthesis gas ( S200 ) may be implemented by the post-processing unit 200 of the reforming system 10 .
  • the post-processing unit 200 includes a heat exchange unit 210 that cools the first synthesis gas to a predetermined temperature and removes water vapor included in the first synthesis gas. It may be provided with a water vapor removal unit 220 and a hydrogen separation unit 230 for separating hydrogen from the first syngas.
  • the post-processing unit 200 receives the first synthesis gas from the reforming unit 100, cools the first synthesis gas to a predetermined temperature through the heat exchange unit 210, and then Water vapor contained in the first synthesis gas may be removed through the steam removal unit 220, and then hydrogen may be separated from the first synthesis gas through the hydrogen separation unit 230.
  • Hydrogen separated in the hydrogen separator 230 may be stored in a separate hydrogen storage unit (not shown).
  • the heat exchange unit 210 may cool the first synthesis gas to a preset temperature through a heat exchange medium.
  • any one of known heat exchange devices may be selected and disposed.
  • the water vapor removal unit 220 may be a demister, but is not limited thereto, and any configuration capable of removing water vapor may be applied in various ways from the point of view of those skilled in the art.
  • the hydrogen separation unit 230 is a component for separating hydrogen from the first syngas, and may be one of pressure swing absorption (PSA), temperature swing adsorption (TSA), or membrane method, Preferably, it may be a PSA method.
  • PSA pressure swing absorption
  • TSA temperature swing adsorption
  • membrane method Preferably, it may be a PSA method.
  • the first synthesis gas and methane from which hydrogen is separated by the step (S200) of separating hydrogen from the first synthesis gas are separated.
  • the reforming reaction with steam plasma may generate hydrogen and the second synthesis gas in which carbon dioxide is reduced.
  • the step of generating the second synthesis gas (S300) means a step of recycling the first synthesis gas to regenerate hydrogen through the first synthesis gas and further reducing carbon dioxide included in the first synthesis gas. can do.
  • the reforming reaction in generating the second synthesis gas (S300) may be represented by Chemical Formulas 3 and 4 below.
  • carbon dioxide (CO 2 ) contained in the first synthesis gas reacts with methane (CH 4 ) in a high temperature/high pressure environment to produce carbon monoxide (CO), water vapor (H 2 O), and carbon phosphorus Can generate char.
  • the reforming method (S10) has an effect of increasing the yield of hydrogen and reducing the emission of carbon dioxide.
  • the second synthesis gas generated by the step of generating the second synthesis gas (S300) is hydrogen (H 2 ), carbon dioxide (CO 2 ), tea (char), unreacted carbon monoxide (CO), It may be a gas containing reacted water vapor (H 2 O).
  • the generating of the second syngas ( S300 ) may be implemented by the reforming unit 100 of the reforming system 10 .
  • the reformer 100 receives the first synthesis gas from which hydrogen is separated from the post-processing unit 200, and converts the first synthesis gas and methane into steam It is possible to generate the second synthesis gas in which hydrogen is generated by a reforming reaction with plasma and carbon dioxide is reduced.
  • reforming reactions of Chemical Formulas 3 and 4 may occur in the reforming unit 100 .
  • Separating hydrogen from the second synthesis gas ( S400 ) may be implemented by the post-processing unit 200 of the reforming system 10 .
  • the post-processing unit 200 receives the second synthesis gas from the reforming unit 100 and passes through the heat exchange unit 210 to the second synthesis gas. is cooled to a predetermined temperature, and then the water vapor contained in the second synthesis gas is removed through the steam removal unit 220, and then hydrogen from the second synthesis gas through the hydrogen separation unit 230. can be separated.
  • Hydrogen separated in the hydrogen separator 230 may be stored in a separate hydrogen storage unit (not shown).
  • FIG 3 is a schematic configuration diagram of a reforming system 10A according to the first embodiment.
  • the reforming unit 100A includes a first reforming unit 110A generating the first synthesis gas and generating the second synthesis gas, but the first reforming unit 110A It may be provided with a second reforming unit (120A) separated from the.
  • first reforming unit 110A and the second reforming unit 120A may be independent chambers separated from each other.
  • the step of generating the first synthesis gas (S100) may be implemented in the first reformer 110A.
  • the reforming system 10A includes a storage unit K2 for storing methane and supplying methane to the first reforming unit 110A and supplying high-temperature/high-pressure steam to the first reforming unit 110A.
  • a steam supply unit K1 for supplying may be further included.
  • the first reformer 110A may generate the first synthesis gas including hydrogen and carbon dioxide from methane by reforming methane into steam plasma.
  • the reforming reaction in the first reforming part 110A may be the reaction of Chemical Formula 1 and Chemical Formula 2 above.
  • the step of separating hydrogen from the first synthesis gas (S200) may be implemented by the post-processing unit 200.
  • the post-processing unit 200 receives the first synthesis gas from the first reforming unit 110A, and converts the first synthesis gas to a predetermined temperature through the heat exchange unit 210. After cooling, the water vapor contained in the first synthesis gas is removed through the steam removal unit 220, and then hydrogen is separated from the first synthesis gas through the hydrogen separation unit 230. there is.
  • Hydrogen separated in the hydrogen separator 230 may be stored in the hydrogen storage unit K3.
  • generating the second synthesis gas (S300) may be implemented in the second reforming unit 120A.
  • the second reformer 120A may receive the first synthesis gas from which hydrogen is separated from the post-processing unit 200, and may receive high-temperature/high-pressure steam from the steam supply unit K1 and the storage unit ( Methane can be supplied from K2).
  • the second reforming unit 120A may generate hydrogen by reforming the first synthesis gas from which hydrogen is separated and methane and methane into steam plasma, and generate second synthesis gas in which carbon dioxide is reduced.
  • the reforming reaction in the second reforming unit 120A may be the reaction of Chemical Formulas 3 and 4 above.
  • step of generating the second synthesis gas (S300)
  • char generated on the second synthesis gas may be collected.
  • the second reforming unit 120A may include a collecting unit (not shown) that collects char generated on the second syngas.
  • the collecting unit collects steam supplied to the second reforming unit 120A for char contained in the second syngas and/or a filter installed in the second reforming unit 120A.
  • the char collected in the collecting unit can be recycled in various fields such as lightweight aggregates and soil improvers.
  • the step of separating hydrogen from the second synthesis gas (S400) may be implemented by the post-processing unit 200.
  • the post-processing unit 200 receives the second synthesis gas from the second reforming unit 120A, and converts the second synthesis gas to a predetermined temperature through the heat exchange unit 210. After cooling, the vapor contained in the second synthesis gas is removed through the vapor removal unit 220, and then hydrogen is separated from the second synthesis gas through the hydrogen separation unit 230. there is.
  • Hydrogen separated in the hydrogen separator 230 may be stored in the hydrogen storage unit K3.
  • the first synthesis gas and the second synthesis gas are mixed to generate a mixed gas, After cooling the mixed gas to a predetermined temperature and removing water vapor included in the mixed gas, hydrogen may be separated from the mixed gas.
  • the reforming system 10A receives the first synthesis gas from the first reforming unit 110A, and the second reforming unit 120A It may further include a mixing unit 300 receiving the second synthesis gas from and mixing the first synthesis gas and the second synthesis gas to generate a mixed gas.
  • the second synthesis gas generated in the second reforming unit 120A is delivered to the mixing unit 300, and the first synthesis gas generated in the first reforming unit 110A is also transferred to the mixing unit ( 300), the mixed gas in which the first synthesis gas and the second synthesis gas are mixed may be generated.
  • the The post-processing unit 200 receives the mixed gas from the mixing unit 300, cools the mixed gas to a predetermined temperature, removes water vapor included in the mixed gas, and then separates hydrogen from the mixed gas.
  • the first synthesis gas, the second synthesis gas, and the mixed gas may be efficiently post-processed using only one post-processing unit 200 .
  • the mixed gas post-processed by the post-processing unit 200 may be introduced into the second reforming unit 120A again.
  • the mixing unit 300 includes a first valve (not shown) for controlling whether or not the first synthesis gas generated in the first reforming unit 110A is introduced, and the second reforming unit 120A.
  • a second valve (not shown) may be provided to control whether or not the second synthesis gas is introduced.
  • the mixing unit 300 may selectively transfer the first synthesis gas and/or the second synthesis gas to the heat exchange unit 210 .
  • the mixing unit 300 opens the first valve and closes the second valve to receive only the first synthesis gas from the first reforming unit 110A, thereby generating the heat exchange unit 210.
  • the first synthesis gas may be delivered to the furnace, or the first valve may be closed and the second valve may be opened to receive only the second synthesis gas from the second reforming unit 120A to the heat exchange unit 210.
  • the second synthesis gas may be delivered, or both the first valve and the second valve may be opened to supply the first synthesis gas and the first synthesis gas from the first reforming unit 110A and the second reforming unit 120A. 2
  • the mixed gas generated by receiving the synthesis gas may be transferred to the heat exchange unit 210 .
  • FIG. 4 is a schematic configuration diagram of a reforming system 10B according to a second embodiment.
  • the reforming system 10B includes a preprocessing unit 400 that heat-treats waste to generate a preprocessed gas containing char and methane from the waste. can do.
  • the waste is heat-treated through the pretreatment unit 400 to obtain char and methane from the waste.
  • a step of generating a pretreatment gas containing the pretreatment gas may be further included.
  • the waste may be domestic waste, but the type is not limited, and if the preprocessing unit 400 pyrolyzes the waste to generate a pretreated gas containing char and methane, it may correspond to the waste. .
  • the pre-processing unit 400 may be configured to generate the pre-processing gas by burning waste in a high-temperature/high-pressure environment.
  • the preprocessing unit 400 may collect char generated on the preprocessing gas.
  • the reforming system 10B may further include a waste storage unit K4 that stores waste and transfers the waste to the pretreatment unit 400 .
  • generating the first syngas (S100) may be implemented in the reforming unit 100B.
  • the reforming unit 100B receives the pre-processing gas containing methane from the pre-processing unit 400 and reforms methane included in the pre-processing gas into steam plasma to obtain the first synthesis including hydrogen and carbon dioxide from methane. can produce gas.
  • the reforming system 10B according to the second embodiment may further include a steam supply unit (not shown) supplying high-temperature/high-pressure steam to the reforming unit 100B.
  • the reforming reaction in the reforming unit 100B may be the reaction of Formula 1 and Formula 2 above.
  • the step of separating hydrogen from the first synthesis gas (S200) may be implemented by the post-processing unit 200.
  • the post-processing unit 200 receives the first synthesis gas from the reforming unit 100B and cools the first synthesis gas to a predetermined temperature through the heat exchange unit 210. After that, water vapor contained in the first synthesis gas may be removed through the steam removal unit 220, and then hydrogen may be separated from the first synthesis gas through the hydrogen separation unit 230.
  • Hydrogen separated in the hydrogen separator 230 may be stored in the hydrogen storage unit K3.
  • step (S300) of generating the second synthesis gas of the reforming method (S10) according to the second embodiment may be implemented again in the reformer (100B).
  • the reforming unit 100B may receive the first synthesis gas from which hydrogen is separated from the post-processing unit 200, and may receive high-temperature/high-pressure steam from the steam supply unit K1 and the pre-processing unit 400. Methane can be supplied from
  • the reformer 100B may generate hydrogen by reforming the first synthesis gas from which hydrogen is separated and methane and methane into steam plasma to generate hydrogen and second synthesis gas in which carbon dioxide is reduced.
  • the reforming reaction in the reforming unit 100B may be the reaction of Formula 3 and Formula 4 above.
  • step of generating the second synthesis gas (S300)
  • char generated on the second synthesis gas may be collected.
  • the reforming unit 100B may include a collecting unit (not shown) that collects char generated on the second syngas.
  • the step of separating hydrogen from the second syngas (S400) of the reforming method (S10) according to the second embodiment may be implemented by the post-processing unit 200.
  • the post-processing unit 200 receives the second synthesis gas from the reforming unit 100B and cools the second synthesis gas to a predetermined temperature through the heat exchange unit 210. After that, the water vapor contained in the second synthesis gas is removed through the steam removal unit 220, and then hydrogen is separated from the second synthesis gas through the hydrogen separation unit 230.
  • Hydrogen separated in the hydrogen separator 230 may be stored in the hydrogen storage unit K3.
  • the hydrogen is separated.
  • the method may further include generating carbon monoxide by reacting carbon dioxide and char in the first synthesis gas.
  • the reforming system 10B In order to implement the step of generating the carbon monoxide, as shown in FIG. 4, the reforming system 10B according to the second embodiment reacts carbon dioxide and char in the first synthesis gas from which hydrogen is separated to A reaction unit 500 generating carbon monoxide may be further included.
  • the reaction unit 500 receives the first synthesis gas from which hydrogen is separated from the post-processing unit 200 by the step of separating hydrogen from the first synthesis gas (S200), and generates the pre-processing gas.
  • Carbon monoxide may be generated by receiving the collected tea from the preprocessing unit 400 and reacting the carbon dioxide included in the first syngas with the tea in a high-temperature/high-pressure environment.
  • the reaction formula in the reaction unit 500 is shown in Chemical Formula 5 below.
  • the step of generating the pre-processing gas in the pre-processing unit 400 is implemented, and then the first synthesis gas is generated in the reforming unit 100B.
  • the step of generating (S100) is implemented, and then the step of separating hydrogen from the first synthesis gas in the post-processing unit 200 (S200) is implemented, and then the step of generating the carbon monoxide in the reaction unit 500. is implemented, and then generating the second synthesis gas in the reforming unit 100B (S300) may be implemented.
  • hydrogen may be generated by reacting the carbon monoxide generated in the step of generating the carbon monoxide with steam.
  • the carbon monoxide generated in the reaction unit 500 may be included in the first synthesis gas and transferred to the reforming unit 100B, and the reforming unit 100B may convert the second synthesis gas.
  • the generating step (S300) carbon monoxide generated by the reaction unit 500 and steam react in a high-temperature/high-pressure environment to generate hydrogen and carbon dioxide.
  • carbon dioxide generated by Chemical Formula 6 may be reduced through the reactions of Chemical Formulas 3 and 4 in the reforming unit 100B.
  • the yield of hydrogen can be increased, but the emission of carbon dioxide can be reduced.
  • FIG. 5 is a schematic perspective view of the reforming unit 100 of the reforming system.
  • the reforming unit 100 has a high-temperature plasma torch introduced therein, and a plurality of inlets ( Hydrocarbon, water vapor, etc. described above may be introduced through the inlet.
  • the reformer 100 may include a catalyst module M generating hydrogen in an internal space.
  • the catalytic module M may include a cage forming a space for storing a predetermined catalyst and a catalyst stored in the cage.
  • the cage may include an inner wall and an outer wall, and a catalyst may be disposed between the inner wall and the outer wall of the cage.
  • the catalyst is capable of generating hydrogen from hydrocarbons in a high-temperature environment (eg, 400° C. or higher), and may be a nickel (Ni)-based catalyst, for example, Ni/alpha-Al 2 O 3 , Ni / SiO 2 , Ni-Zn-Al, etc., but is not limited thereto.
  • Ni nickel
  • the catalyst module M may be disposed in the case of the reforming unit 100 and heated (for example, at 400° C. or higher) by waste heat of a plasma torch that reforms and reacts hydrocarbons to additionally generate hydrogen.
  • the hydrocarbon introduced into the reforming unit 100 is firstly reformed by the high-temperature/high-pressure steam plasma and then secondarily reformed by the catalyst module M, resulting in a large amount of hydrogen with a relatively small amount of power. can be generated, and can be moved to the post-processing unit 200 through an outlet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

본 발명의 일 실시예에 따른 개질 방법은 탄화수소를 개질하여 수소를 획득하는 개질 방법에 관한 것으로서, 탄화수소를 스팀 플라즈마로 개질 반응시켜 탄화수소로부터 수소 및 이산화탄소를 포함하는 제1 합성 가스를 생성하는 단계; 상기 제1 합성 가스를 소정의 온도로 냉각시키고, 상기 제1 합성 가스에 포함된 수증기를 제거한 후, 제1 합성 가스로부터 수소를 분리하는 단계; 수소가 분리된 상기 제1 합성 가스와 탄화수소를 스팀 플라즈마로 개질 반응시켜 수소 생성하고, 이산화탄소를 저감한 제2 합성 가스를 생성하는 단계; 및 상기 제2 합성 가스를 소정의 온도로 냉각시키고, 상기 제2 합성 가스에 포함된 수증기를 제거한 후, 상기 제2 합성 가스로부터 수소를 분리하는 단계;를 포함할 수 있다.

Description

개질 시스템 및 그 방법
본 발명은 개질 시스템 및 그 방법에 관한 것으로서, 더욱 상세하게는 탄화수소를 개질하여 수소를 획득하는 개질 시스템 및 그 방법에 관한 것이다.
천연 가스, 석유 가스 등의 탄화 수소는 이산화탄소, 수증기, 산소 등의 개질 물질과 촉매의 존재 하에 개질되어 수소, 일산화탄소 등으로 전환된다.
이러한 반응은, 다양한 목적으로, 예컨대, 화석 연료를 대체할 에너지 공급원 중 하나로 고려되는 연료 전지에서의 수소 공급을 위해 사용될 수 있다.
여기서, 대표적인 종래의 수소 제조방법은 천연가스나 원유 정제과정에서 발생하는 납사를 수증기 개질하여 생산하는 것이다.
이 방법들은 잘 알려진 상용화된 수소 제조법이긴 하지만 반응물질인 천연가스나 납사가 모두 화석연료이며 이의 수증기 개질 반응과정에서 다량의 이산화탄소가 발생하게 마련이다.
화석연료 이용과정에서 발생하는 이산화탄소는 지구온난화 원인인 대표적 온실가스로 알려져 있기 때문에 유럽 각국에서는 화석연료에 고가의 탄소세를 부가하고 있으며 탄소배출량 총량제나 탄소배출권 거래제도 등을 도입하여 본격적으로 화석연료의 사용을 제한하고 있다.
이에 따라 신·재생에너지원으로부터 연료전지용 수소를 생산하는 방법에 각국은 연구개발 노력을 기울이고 있다.
한편, 대한민국 등록특허 제10-1594188호(2016.02.15)에서는 합성 가스의 제조 방법을 개시하고 있다.
그러나, 상기 발명은 주간 작동 및 야간 작동을 통해 에너지 효율 측면에만 집중하고 있을 뿐, 수소 제조에서 발생되는 다량의 이산화탄소의 배출을 저감하는 것에는 한계가 있다.
본 발명은 상기와 같은 문제를 해결하기 위한 것으로서, 수소 수득의 효율을 높이는 동시에 이산화탄소의 배출을 저감할 수 있는 개질 시스템 및 그 방법을 제공하고자 함이다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 개질 방법은 탄화수소를 개질하여 수소를 획득하는 개질 방법에 관한 것으로서, 탄화수소를 스팀 플라즈마로 개질 반응시켜 탄화수소로부터 수소 및 이산화탄소를 포함하는 제1 합성 가스를 생성하는 단계; 상기 제1 합성 가스를 소정의 온도로 냉각시키고, 상기 제1 합성 가스에 포함된 수증기를 제거한 후, 제1 합성 가스로부터 수소를 분리하는 단계; 수소가 분리된 상기 제1 합성 가스와 탄화수소를 스팀 플라즈마로 개질 반응시켜 수소를 생성하고, 이산화탄소를 저감한 제2 합성 가스를 생성하는 단계; 및 상기 제2 합성 가스를 소정의 온도로 냉각시키고, 상기 제2 합성 가스에 포함된 수증기를 제거한 후, 상기 제2 합성 가스로부터 수소를 분리하는 단계;를 포함할 수 있다.
본 발명의 일 실시예에 따른 개질 시스템에 의하면, 수소 수득의 효율을 높이는 동시에 이산화탄소의 배출을 저감할 수 있는 장점이 있다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 개질 방법의 개략 순서도.
도 2는 본 발명의 일 실시예에 따른 개질 시스템의 개략 구성도.
도 3은 본 발명의 일 실시예에 따른 개질 시스템의 구체적인 제1 실시예를 도시한 구성도.
도 4는 본 발명의 일 실시예에 따른 개질 시스템의 구체적인 제2 실시예를 도시한 구성도.
도 5는 본 발명의 일 실시예에 따른 개질 시스템의 개질부의 개략 투시도.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본원 발명 사상 범위 내에 포함된다고 할 것이다.
본 발명의 일 실시예에 따른 개질 방법은 탄화수소를 개질하여 수소를 획득하는 개질 방법에 관한 것으로서, 탄화수소를 스팀 플라즈마로 개질 반응시켜 탄화수소로부터 수소 및 이산화탄소를 포함하는 제1 합성 가스를 생성하는 단계; 상기 제1 합성 가스를 소정의 온도로 냉각시키고, 상기 제1 합성 가스에 포함된 수증기를 제거한 후, 제1 합성 가스로부터 수소를 분리하는 단계; 수소가 분리된 상기 제1 합성 가스와 탄화수소를 스팀 플라즈마로 개질 반응시켜 수소 생성하고, 이산화탄소를 저감한 제2 합성 가스를 생성하는 단계; 및 상기 제2 합성 가스를 소정의 온도로 냉각시키고, 상기 제2 합성 가스에 포함된 수증기를 제거한 후, 상기 제2 합성 가스로부터 수소를 분리하는 단계;를 포함할 수 있다.
상기 탄화수소는 메탄, LPG, 메탄올, 나프타 중 적어도 어느 하나 또는 둘 이상의 조합된 가스일 수 있다.
또, 상기 제1 합성 가스를 생성하는 단계에서의 개질 반응은 하기 화학식 1 및 화학식 2 이며, 상기 제2 합성 가스를 생성하는 단계에서의 개질 반응은 하기 화학식 3 및 화학식 4 일 수 있다.
[화학식 1]
Figure PCTKR2022013211-appb-img-000001
[화학식 2]
Figure PCTKR2022013211-appb-img-000002
[화학식 3]
Figure PCTKR2022013211-appb-img-000003
[화학식 4]
Figure PCTKR2022013211-appb-img-000004
본 발명의 일 실시예에 따른 개질 방법을 구현하는 개질 시스템은 탄화수소를 스팀 플라즈마로 개질 반응시켜 탄화수소로부터 수소 및 이산화탄소를 포함하는 제1 합성 가스를 생성하는 개질부; 및 상기 제1 합성 가스를 소정의 온도로 냉각시키고, 상기 제1 합성 가스에 포함된 수증기를 제거한 후, 제1 합성 가스로부터 수소를 분리하는 후처리부;를 포함하며, 상기 개질부는 수소가 분리된 상기 제1 합성 가스와 탄화수소를 스팀 플라즈마로 개질 반응시켜 수소 생성하고, 이산화탄소를 저감한 제2 합성 가스를 생성하고, 상기 후처리부는 상기 제2 합성 가스를 소정의 온도로 냉각시키고, 상기 제2 합성 가스에 포함된 수증기를 제거한 후, 상기 제2 합성 가스로부터 수소를 분리할 수 있다.
또, 상기 개질부에서 상기 제1 합성 가스를 생성하는 개질 반응은 하기 화학식 1 및 화학식 2 이며, 상기 개질부에서 상기 제2 합성 가스를 생성하는 개질 반응은 하기 화학식 3 및 화학식 4 일 수 있다.
[화학식 1]
Figure PCTKR2022013211-appb-img-000005
[화학식 2]
Figure PCTKR2022013211-appb-img-000006
[화학식 3]
Figure PCTKR2022013211-appb-img-000007
[화학식 4]
Figure PCTKR2022013211-appb-img-000008
본 발명의 일 실시예에 따른 개질 방법에 대한 구체적인 제1 실시예에 따른개질 방법으로서, 상기 제2 합성 가스로부터 수소를 분리하는 단계는 상기 제1 합성 가스와 상기 제2 합성 가스를 혼합하여 혼합 가스를 생성시키고, 상기 혼합 가스를 소정의 온도로 냉각시키며, 상기 혼합 가스에 포함된 수증기를 제거한 후, 상기 혼합 가스로부터 수소를 분리할 수 있다.
또, 상기 제2 합성 가스를 생성하는 단계는 상기 제2 합성 가스 상에 생성된 차(char)를 포집할 수 있다.
상기 제1 실시예에 따른 개질 방법을 구현하는 개질 시스템으로서, 상기 개질부는 상기 제1 합성 가스를 생성하는 제1 개질부 및 상기 제2 합성 가스를 생성하되 상기 제1 개질부와 분리된 제2 개질부를 구비할 수 있다.
또, 상기 제1 개질부로부터 상기 제1 합성 가스를 전달받고, 상기 제2 개질부로부터 상기 제2 합성 가스를 전달받아, 상기 제1 합성 가스와 상기 제2 합성 가스를 혼합하여 혼합 가스를 생성시키는 혼합부;를 더 포함하며, 상기 후처리부는 상기 혼합부로부터 상기 혼합 가스를 전달받아, 상기 혼합 가스를 소정의 온도로 냉각시키며, 상기 혼합 가스에 포함된 수증기를 제거한 후, 상기 혼합 가스로부터 수소를 분리할 수 있다.
또, 상기 제2 개질부는 상기 제2 합성 가스 상에 생성된 차(char)를 포집할 수 있다.
본 발명의 일 실시예에 따른 개질 방법에 대한 구체적인 제2 실시예에 따른개질 방법으로서, 상기 제1 합성 가스로부터 수소를 분리하는 단계 이후이고, 상기 제2 합성 가스를 생성하는 단계 이전에, 수소가 분리된 상기 제1 합성 가스 중 이산화탄소와 차(char)를 반응시켜 일산화탄소를 생성하는 단계;를 더 포함할 수 있다.
또, 상기 제2 합성 가스를 생성하는 단계는 상기 일산화탄소를 생성하는 단계에서 생성된 일산화탄소와 스팀을 반응시켜 수소를 생성할 수 있다.
또, 상기 제1 합성 가스를 생성하는 단계 이전에, 폐기물을 열처리하여 폐기물로부터 차(char) 및 메탄을 포함하는 전처리 가스를 생성하는 단계;를 더 포함하며, 상기 전처리 가스를 생성하는 단계는 상기 전처리 가스 상에 생성된 차(char)를 포집할 수 있다.
또, 상기 일산화탄소를 생성하는 단계는 상기 전처리 가스를 생성하는 단계에 의해 포집된 차(char)를 이용할 수 있다.
상기 제2 실시예에 따른 개질 방법을 구현하는 개질 시스템으로서, 수소가 분리된 상기 제1 합성 가스 중 이산화탄소와 차(char)를 반응시켜 일산화탄소를 생성하는 반응부;를 더 포함할 수 있다.
또, 상기 개질부는 상기 반응부에서 생성된 일산화탄소와 스팀을 반응시켜 수소를 생성할 수 있다.
또, 폐기물을 열처리하여 폐기물로부터 차(char) 및 메탄을 포함하는 전처리 가스를 생성하는 전처리부;를 더 포함하며, 상기 전처리부는 상기 전처리 가스 상에 생성된 차(char)를 포집하여 상기 반응부로 전달하고, 상기 전처리 가스를 상기 개질부로 전달할 수 있다.
각 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.
도 1은 본 발명의 일 실시예에 따른 개질 방법의 개략 순서도이다.
도 2는 본 발명의 일 실시예에 따른 개질 시스템의 개략 구성도이다.
도 3은 본 발명의 일 실시예에 따른 개질 시스템의 구체적인 제1 실시예를 도시한 구성도이다.
도 4는 본 발명의 일 실시예에 따른 개질 시스템의 구체적인 제2 실시예를 도시한 구성도이다.
도 5는 본 발명의 일 실시예에 따른 개질 시스템의 개질부의 개략 투시도이다.
첨부된 도면은 본 발명의 기술적 사상을 보다 명확하게 표현하기 위하여, 본 발명의 기술적 사상과 관련성이 떨어지거나 당업자로부터 용이하게 도출될 수 있는 부분은 간략화 하거나 생략하였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미하며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에 있어서 '부(部)'란, 하드웨어에 의해 실현되는 유닛(unit), 소프트웨어에 의해 실현되는 유닛, 양방을 이용하여 실현되는 유닛을 포함한다. 또한, 1 개의 유닛이 2 개 이상의 하드웨어를 이용하여 실현되어도 되고, 2 개 이상의 유닛이 1 개의 하드웨어에 의해 실현되어도 된다.
이하에서는 도 1 및 도 2를 참조하여, 본 발명의 일 실시예에 따른 개질 방법(S10) 및 이 방법을 구현하는 개질 시스템(10)을 설명하겠다.
일례로, 상기 개질 방법(S10)은 탄화수소를 개질하여 수소를 획득하는 방법을 의미할 수 있다.
일례로, 탄화수소는 메탄(CH4), LPG, 메탄올, 나프타 등 탄소와 수소만으로 이루어진 유기 화합물 중 적어도 어느 하나 또는 둘 이상의 조합된 가스일 수 있다.
다만, 설명의 편의를 위해 아래에서는 메탄(CH4)을 개질하여 수소를 획득하는 것으로 가정하고 설명하겠다.
메탄은 천연 가스, 석유 가스 등에서 얻을 수도 있고, 바이오 매스 또는 폐기물 처리를 통해 얻을 수도 있다.
일례로, 도 1에 도시한 바와 같이, 상기 개질 방법(S10)은 아래와 같이 크게 4단계로 이루어질 수 있다.
일례로, 상기 개질 방법(S10)은 메탄을 스팀 플라즈마로 개질 반응시켜 메탄으로부터 수소 및 이산화탄소를 포함하는 제1 합성 가스를 생성하는 단계(S100); 상기 제1 합성 가스를 소정의 온도로 냉각시키고, 상기 제1 합성 가스에 포함된 수증기를 제거한 후, 제1 합성 가스로부터 수소를 분리하는 단계(S200); 수소가 분리된 상기 제1 합성 가스와 메탄을 스팀 플라즈마로 개질 반응시켜 수소 생성하고, 이산화탄소를 저감한 제2 합성 가스를 생성하는 단계(S300); 및 상기 제2 합성 가스를 소정의 온도로 냉각시키고, 상기 제2 합성 가스에 포함된 수증기를 제거한 후, 상기 제2 합성 가스로부터 수소를 분리하는 단계(S400);를 포함할 수 있다.
이하에서는 각각의 단계에 대해 자세히 설명하겠다.
상기 제1 합성 가스를 생성하는 단계(S100)는 메탄을 스팀 플라즈마로 개질 반응시켜 메탄으로부터 수소, 이산화탄소 등을 포함하는 제1 합성 가스를 생성하는 것을 의미할 수 있다.
일례로, 상기 제1 합성 가스를 생성하는 단계(S100)에서의 개질 반응은 하기 화학식 1 및 화학식 2 일 수 있다.
[화학식 1]
Figure PCTKR2022013211-appb-img-000009
[화학식 2]
Figure PCTKR2022013211-appb-img-000010
상기 화학식 1에서 볼 수 있듯이, 상기 제1 합성 가스를 생성하는 단계(S100)에서의 메탄(CH4)은 고온/고압의 스팀(H2O)과 반응하여 일산화탄소(CO)와 수소(3H2)를 생성할 수 있다.
또한, 상기 화학식 2에서 볼 수 있듯이, 상기 화학식 1에서 생성된 일산화탄소(CO)는 고온/고압의 스팀(H2O)과 반응하여 수소(H2)와 이산화탄소(CO2)를 생성할 수 있다.
결과적으로, 상기 제1 합성 가스를 생성하는 단계(S100)에서, 메탄(CH4)의 개질에 의해 생성되는 상기 제1 합성 가스는 수소(H2), 이산화탄소(CO2), 미 반응된 일산화탄소(CO)와 메탄, 미 반응된 수증기(H2O)를 포함하는 가스일 수 있다.
상기 제1 합성 가스를 생성하는 단계(S100)는 상기 개질 시스템(10)의 개질부(100)에 의해 구현될 수 있다.
이를 보다 자세히 설명하자면, 도 2에 도시한 바와 같이, 상기 개질부(100)는 메탄을 스팀 플라즈마로 개질 반응시켜 메탄으로부터 수소 및 이산화탄소를 포함하는 제1 합성 가스를 생성할 수 있다.
일례로, 상기 개질부(100)는 메탄을 스팀 플라즈마로 개질 반응시키는 반응 챔버를 의미할 수 있다.
이를 위하여, 상기 개질 시스템(10)은 상기 개질부(100)로 고온 고압의 스팀(H2O)을 공급하는 스팀 공급부(미도시)를 더 포함할 수 있으며, 상기 개질부(100)는 플라즈마를 생성하는 플라즈마 발생부(미도시)를 구비할 수 있다.
그 결과, 상기 개질부(100)에서는 상기 화학식 1 및 화힉식 2의 개질 반응이 일어날 수 있다.
한편, 상기 개질 방법(S10)의 상기 제1 합성 가스로부터 수소를 분리하는 단계(S200)는 상기 제1 합성 가스를 소정의 온도로 냉각시키고, 상기 제1 합성 가스에 포함된 수증기를 제거한 후, 제1 합성 가스로부터 수소를 분리할 수 있다.
상기 제1 합성 가스로부터 수소를 분리하는 단계(S200)는 상기 개질 시스템(10)의 후처리부(200)에 의해 구현될 수 있다.
이를 보다 자세히 설명하자면, 도 2에 도시한 바와 같이, 상기 후처리부(200)는 상기 제1 합성 가스를 소정의 온도로 냉각시키는 열교환부(210), 상기 제1 합성 가스에 포함된 수증기를 제거하는 수증기 제거부(220) 및 제1 합성 가스로부터 수소를 분리하는 수소 분리부(230)를 구비할 수 있다.
그 결과, 상기 후처리부(200)는 상기 개질부(100)로부터 상기 제1 합성 가스를 전달 받아, 상기 열교환부(210)를 통해 상기 제1 합성 가스를 소정의 온도로 냉각시키고, 이 후 상기 수증기 제거부(220)를 통해 상기 제1 합성 가스에 포함된 수증기를 제거하고, 이 후 상기 수소 분리부(230)를 통해 상기 제1 합성 가스로부터 수소를 분리할 수 있다.
상기 수소 분리부(230)에서 분리된 수소는 별도의 수소 저장부(미 도시)에 저장될 수 있다.
일례로, 상기 열교환부(210)는 열교환 매체를 통해 상기 제1 합성 가스를 기 설정된 온도로 냉각시킬 수 있다.
상기 열교환부(210)는 공지의 열교환 장치 중 어느 하나가 선택되어 배치될 수 있다.
일례로, 상기 수증기 제거부(220)는 데미스터(demister)일 수 있으나, 여기에 한정되는 것은 아니며, 수증기를 제거할 수 있는 구성이라면 당업자의 입장에서 다양하게 적용 가능하다.
일례로, 상기 수소 분리부(230)는 상기 제1 합성 가스에서 수소를 분리하기 위한 구성으로서, PSA(Pressure Swing Absorption), TSA(Temperature Swing Adsorption) 또는 멤브레인(Membrane) 방식 중 하나일 수 있으나, 바람직하게는 PSA 방식일 수 있다.
한편, 상기 개질 방법(S10)의 상기 제2 합성 가스를 생성하는 단계(S300)는 상기 제1 합성 가스로부터 수소를 분리하는 단계(S200)에 의해 수소가 분리된 상기 제1 합성 가스와 메탄을 스팀 플라즈마로 개질 반응시켜 수소 생성하고, 이산화탄소를 저감한 상기 제2 합성 가스를 생성할 수 있다.
상기 제2 합성 가스를 생성하는 단계(S300)는 상기 제1 합성 가스를 재활용하여 상기 제1 합성 가스를 통해 수소를 재 생성하고, 나아가 상기 제1 합성 가스에 포함된 이산화탄소를 저감하는 단계를 의미할 수 있다.
일례로, 상기 제2 합성 가스를 생성하는 단계(S300)에서의 개질 반응은 하기 화학식 3 및 화학식 4 일 수 있다.
[화학식 3]
Figure PCTKR2022013211-appb-img-000011
[화학식 4]
Figure PCTKR2022013211-appb-img-000012
상기 화학식 3 에서 볼 수 있듯이, 상기 제1 합성 가스에 포함된 이산화탄소(CO2)는 고온/고압의 환경에서 메탄(CH4)과 반응하여 일산화탄소(CO), 수증기(H2O), 탄소인 차(char)를 생성할 수 있다.
또한, 상기 화학식 4 에서 볼 수 있듯이, 상기 제1 합성 가스에 포함되거나 상기 화학식 3 에 의해 생성된 일산화탄소(CO)는 고온/고압의 스팀(H2O)과 반응하여 수소(H2), 이산화탄소(CO2), 수증기(H2O)를 생성할 수 있다.
상기 화학식 3 및 상기 화학식 4 를 종합해 볼 때, 상기 화학식 3 및 상기 화학식 4 에서 볼 수 있듯이, 상기 제2 합성 가스를 생성하는 단계(S300)에서는 상기 제1 합성 가스를 재활용하여 수소(H2)가 추가 생성됨과 동시에, 상기 제1 합성 가스에 포함된 이산화탄소(CO2)는 저감됨을 알 수 있다.
따라서, 상기 개질 방법(S10)은 수소의 수득율을 높이는 동시에, 이산화탄소의 배출량을 줄일 수 있는 효과가 있다.
한편, 상기 제2 합성 가스를 생성하는 단계(S300)에 의해 생성된 상기 제2 합성 가스는 수소(H2), 이산화탄소(CO2), 차(char), 미 반응된 일산화탄소(CO), 미 반응된 수증기(H2O)를 포함하는 가스일 수 있다.
상기 제2 합성 가스를 생성하는 단계(S300)는 상기 개질 시스템(10)의 상기 개질부(100)에 의해 구현될 수 있다.
이를 보다 자세히 설명하자면, 도 2에 도시한 바와 같이, 상기 개질부(100)는 상기 후처리부(200)로부터 수소가 분리된 상기 제1 합성 가스를 전달받고, 상기 제1 합성 가스와 메탄을 스팀 플라즈마로 개질 반응시켜 수소 생성하고, 이산화탄소를 저감한 상기 제2 합성 가스를 생성할 수 있다.
그 결과, 상기 개질부(100)에서는 상기 화학식 3 및 화학식 4의 개질 반응이 일어날 수 있다.
한편, 상기 개질 방법(S10)의 상기 제2 합성 가스로부터 수소를 분리하는 단계(S400)는 상기 제2 합성 가스를 소정의 온도로 냉각시키고, 상기 제2 합성 가스에 포함된 수증기를 제거한 후, 제2 합성 가스로부터 수소를 분리할 수 있다.
상기 제2 합성 가스로부터 수소를 분리하는 단계(S400)는 상기 개질 시스템(10)의 상기 후처리부(200)에 의해 구현될 수 있다.
이를 보다 자세히 설명하자면, 도 2에 도시한 바와 같이, 상기 후처리부(200)는 상기 개질부(100)로부터 상기 제2 합성 가스를 전달 받아, 상기 열교환부(210)를 통해 상기 제2 합성 가스를 소정의 온도로 냉각시키고, 이 후 상기 수증기 제거부(220)를 통해 상기 제2 합성 가스에 포함된 수증기를 제거하고, 이 후 상기 수소 분리부(230)를 통해 상기 제2 합성 가스로부터 수소를 분리할 수 있다.
상기 수소 분리부(230)에서 분리된 수소는 별도의 수소 저장부(미 도시)에 저장될 수 있다.
이하에서는, 앞서 설명한 상기 개질 방법(S10) 및 상기 개질 시스템(10)의 구체적인 제1 실시예 및 제2 실시예를 더욱 자세히 설명하겠다.
한편, 앞서 설명한 기술적 사상과 동일하거나, 당업자의 입장에서 용이하게 유추할 수 있는 내용에 대해서는 그 설명을 생략하거나 간략히 하겠다.
1. 제1 실시예에 따른 개질 방법 및 개질 시스템(10A)
도 3은 제1 실시예에 따른 개질 시스템(10A)의 개략 구성도이다.
일례로, 도 3에 도시한 바와 같이, 상기 개질부(100A)는 상기 제1 합성 가스를 생성하는 제1 개질부(110A) 및 상기 제2 합성 가스를 생성하되 상기 제1 개질부(110A)와 분리된 제2 개질부(120A)를 구비할 수 있다.
즉, 상기 제1 개질부(110A)와 상기 제2 개질부(120A)는 상호 분리된 독립적인 챔버일 수 있다.
여기서, 일례로, 상기 제1 합성 가스를 생성하는 단계(S100)는 상기 제1 개질부(110A)에서 구현될 수 있다.
제1 실시예에 따른 개질 시스템(10A)은 메탄을 저장하며 상기 제1 개질부(110A)에 메탄을 공급하는 저장부(K2) 및 상기 제1 개질부(110A)에 고온/고압의 스팀을 공급하는 스팀 공급부(K1)를 더 포함할 수 있다.
즉, 상기 제1 개질부(110A)는 메탄을 스팀 플라즈마로 개질 반응시켜 메탄으로부터 수소 및 이산화탄소를 포함하는 상기 제1 합성 가스를 생성할 수 있다.
결과적으로, 상기 제1 개질부(110A)에서의 개질 반응은 상기 화학식 1 및 상기 화학식 2 의 반응일 수 있다.
이 후, 상기 제1 합성 가스로부터 수소를 분리하는 단계(S200)는 상기 후처리부(200)에 의해 구현될 수 있다.
도 3에 도시한 바와 같이, 상기 후처리부(200)는 상기 제1 개질부(110A)로부터 상기 제1 합성 가스를 전달 받아, 상기 열교환부(210)를 통해 상기 제1 합성 가스를 소정의 온도로 냉각시키고, 이 후 상기 수증기 제거부(220)를 통해 상기 제1 합성 가스에 포함된 수증기를 제거하고, 이 후 상기 수소 분리부(230)를 통해 상기 제1 합성 가스로부터 수소를 분리할 수 있다.
상기 수소 분리부(230)에서 분리된 수소는 수소 저장부(K3)에 저장될 수 있다.
이 후, 상기 제2 합성 가스를 생성하는 단계(S300)는 상기 제2 개질부(120A)에서 구현될 수 있다.
상기 제2 개질부(120A)는 상기 후처리부(200)로부터 수소가 분리된 상기 제1 합성 가스를 전달받을 수 있으며, 또한 상기 스팀 공급부(K1)로부터 고온/고압의 스팀과, 상기 저장부(K2)로부터 메탄을 공급받을 수 있다.
즉, 상기 제2 개질부(120A)는 수소가 분리된 상기 제1 합성 가스와 메탄을 스팀 플라즈마로 개질 반응시켜 수소 생성하고, 이산화탄소를 저감한 제2 합성 가스를 생성할 수 있다.
결과적으로, 상기 제2 개질부(120A)에서의 개질 반응은 상기 화학식 3 및 상기 화학식 4 의 반응일 수 있다.
여기서, 상기 제2 합성 가스를 생성하는 단계(S300)는 상기 제2 합성 가스 상에 생성된 차(char)를 포집할 수 있다.
즉, 상기 제2 개질부(120A)는 상기 제2 합성 가스 상에 생성된 차(char)를 포집하는 포집부(미도시)를 구비할 수 있다.
일례로, 상기 포집부는 상기 제2 합성 가스에 포함된 차(char)를 상기 제2 개질부(120A)에 공급되는 스팀 및/또는 상기 제2 개질부(120A)에 설치되는 필터 등의 포집 장치일 수 있다.
상기 포집부에 포집된 차(char)는 경량 골재, 토양 개량제 등 다양한 분야에 재활용될 수 있다.
이 후, 상기 제2 합성 가스로부터 수소를 분리하는 단계(S400)는 상기 후처리부(200)에 의해 구현될 수 있다.
도 3에 도시한 바와 같이, 상기 후처리부(200)는 상기 제2 개질부(120A)로부터 상기 제2 합성 가스를 전달 받아, 상기 열교환부(210)를 통해 상기 제2 합성 가스를 소정의 온도로 냉각시키고, 이 후 상기 수증기 제거부(220)를 통해 상기 제2 합성 가스에 포함된 수증기를 제거하고, 이 후 상기 수소 분리부(230)를 통해 상기 제2 합성 가스로부터 수소를 분리할 수 있다.
상기 수소 분리부(230)에서 분리된 수소는 수소 저장부(K3)에 저장될 수 있다.
한편, 상기 제1 실시예에 따른 개질 방법(S10)의 상기 제2 합성 가스로부터 수소를 분리하는 단계(S400)는 상기 제1 합성 가스와 상기 제2 합성 가스를 혼합하여 혼합 가스를 생성시키고, 상기 혼합 가스를 소정의 온도로 냉각시키며, 상기 혼합 가스에 포함된 수증기를 제거한 후, 상기 혼합 가스로부터 수소를 분리할 수 있다.
이를 위하여, 도 3에 도시한 바와 같이, 상기 제1 실시예에 따른 개질 시스템(10A)은 상기 제1 개질부(110A)로부터 상기 제1 합성 가스를 전달받고, 상기 제2 개질부(120A)로부터 상기 제2 합성 가스를 전달받아, 상기 제1 합성 가스와 상기 제2 합성 가스를 혼합하여 혼합 가스를 생성시키는 혼합부(300)를 더 포함할 수 있다.
즉, 상기 제2 개질부(120A)에서 생성된 상기 제2 합성 가스는 상기 혼합부(300)로 전달되며, 상기 제1 개질부(110A)에서 생성된 상기 제1 합성 가스 역시 상기 혼합부(300)로 전달되어 상기 제1 합성 가스와 상기 제2 합성 가스가 혼합된 상기 혼합 가스가 생성될 수 있다.
상기 혼합부(300)에서 생성된 상기 혼합 가스는 상기 혼합부(300)로부터 순차적으로 상기 열교환부(210), 상기 수증기 제거부(220), 상기 수소 분리부(230)를 거침에 따라, 상기 후처리부(200)는 상기 혼합부(300)로부터 상기 혼합 가스를 전달받아, 상기 혼합 가스를 소정의 온도로 냉각시키며, 상기 혼합 가스에 포함된 수증기를 제거한 후, 상기 혼합 가스로부터 수소를 분리할 수 있다.
따라서, 하나의 상기 후처리부(200) 만으로도 효율적으로 상기 제1 합성 가스, 상기 제2 합성 가스 및 상기 혼합 가스의 후처리가 가능할 수 있다.
이 후, 상기 후처리부(200)에 의해 후처리된 상기 혼합 가스는 다시 상기 제2 개질부(120A)로 유입될 수 있다.
그 결과, 수소의 수득 효율을 극대화할 수 있으며, 이산화탄소의 배출을 저감할 수 있다.
한편, 상기 혼합부(300)는 상기 제1 개질부(110A)에서 생성된 상기 제1 합성 가스의 유입 여부를 제어하는 제1 밸브(미 도시), 상기 제2 개질부(120A)에서 생성된 상기 제2 합성 가스의 유입 여부를 제어하는 제2 밸브(미 도시)를 구비할 수 있다.
따라서, 상기 혼합부(300)는 선택적으로 상기 열교환부(210)로 상기 제1 합성 가스 및/또는 상기 제2 합성 가스를 전달할 수 있다.
이를 보다 자세히 설명하자면, 상기 혼합부(300)는 상기 제1 밸브를 개방하고 상기 제2 밸브를 폐쇄하여 상기 제1 개질부(110A)로부터 상기 제1 합성 가스만을 유입받아 상기 열교환부(210)로 상기 제1 합성 가스를 전달할 수 있고, 또는 상기 제1 밸브를 폐쇄하고 상기 제2 밸브를 개방하여 상기 제2 개질부(120A)로부터 상기 제2 합성 가스만을 유입받아 상기 열교환부(210)로 상기 제2 합성 가스를 전달할 수도 있으며, 또는 상기 제1 밸브 및 상기 제2 밸브를 모두 개방하여 상기 제1 개질부(110A) 및 상기 제2 개질부(120A)로부터 상기 제1 합성 가스 및 상기 제2 합성 가스를 유입받아 생성된 상기 혼합 가스를 상기 열교환부(210)로 전달할 수도 있다.
2. 제2 실시예에 따른 개질 방법 및 개질 시스템(10B)
도 4는 제2 실시예에 따른 개질 시스템(10B)의 개략 구성도이다.
일례로, 도 4에 도시한 바와 같이, 제2 실시예에 따른 개질 시스템(10B)은 폐기물을 열처리하여 폐기물로부터 차(char) 및 메탄을 포함하는 전처리 가스를 생성하는 전처리부(400)를 포함할 수 있다.
즉, 제2 실시예에 따른 개질 방법(S10)은 상기 제1 합성 가스를 생성하는 단계(S100) 이전에, 상기 전처리부(400)를 통해 폐기물을 열처리하여 폐기물로부터 차(char) 및 메탄을 포함하는 전처리 가스를 생성하는 단계를 더 포함할 수 있다.
폐기물은 생활 쓰레기일 수 있으나, 그 종류에는 한정이 없으며, 상기 전처리부(400)가 폐기물을 열분해하여 차(char) 및 메탄을 포함하는 전처리 가스를 생성할 수 있는 종류라면 폐기물에 해당할 수 있다.
상기 전처리부(400)는 폐기물을 고온/고압 환경에서 태워 상기 전처리 가스를 생성하는 구성일 수 있다.
또한, 상기 전처리부(400)는 상기 전처리 가스 상에 생성된 차(char)를 포집할 수 있다.
여기서, 제2 실시예에 따른 개질 시스템(10B)은 폐기물을 저장하고 상기 전처리부(400)로 폐기물을 전달하는 폐기물 저장부(K4)를 더 포함할 수 있다.
한편, 상기 제1 합성 가스를 생성하는 단계(S100)는 개질부(100B)에서 구현될 수 있다.
상기 개질부(100B)는 상기 전처리부(400)로부터 메탄을 포함하는 상기 전처리 가스를 전달받아 상기 전처리 가스에 포함된 메탄을 스팀 플라즈마로 개질 반응시켜 메탄으로부터 수소 및 이산화탄소를 포함하는 상기 제1 합성 가스를 생성할 수 있다.
제2 실시예에 따른 개질 시스템(10B)은 상기 개질부(100B)에 고온/고압의 스팀을 공급하는 스팀 공급부(미도시)를 더 포함할 수 있다.
결과적으로, 상기 개질부(100B)에서의 개질 반응은 상기 화학식 1 및 상기 화학식 2 의 반응일 수 있다.
이 후, 상기 제1 합성 가스로부터 수소를 분리하는 단계(S200)는 상기 후처리부(200)에 의해 구현될 수 있다.
도 4에 도시한 바와 같이, 상기 후처리부(200)는 상기 개질부(100B)로부터 상기 제1 합성 가스를 전달 받아, 상기 열교환부(210)를 통해 상기 제1 합성 가스를 소정의 온도로 냉각시키고, 이 후 상기 수증기 제거부(220)를 통해 상기 제1 합성 가스에 포함된 수증기를 제거하고, 이 후 상기 수소 분리부(230)를 통해 상기 제1 합성 가스로부터 수소를 분리할 수 있다.
상기 수소 분리부(230)에서 분리된 수소는 수소 저장부(K3)에 저장될 수 있다.
이 후, 제2 실시예에 따른 개질 방법(S10)의 상기 제2 합성 가스를 생성하는 단계(S300)는 상기 개질부(100B)에서 다시 구현될 수 있다.
상기 개질부(100B)는 상기 후처리부(200)로부터 수소가 분리된 상기 제1 합성 가스를 전달받을 수 있으며, 또한 상기 스팀 공급부(K1)로부터 고온/고압의 스팀과, 상기 전처리부(400)로부터 메탄을 공급받을 수 있다.
즉, 상기 개질부(100B)는 수소가 분리된 상기 제1 합성 가스와 메탄을 스팀 플라즈마로 개질 반응시켜 수소를 생성하고, 이산화탄소를 저감한 제2 합성 가스를 생성할 수 있다.
결과적으로, 상기 개질부(100B)에서의 개질 반응은 상기 화학식 3 및 상기 화학식 4 의 반응일 수 있다.
여기서, 상기 제2 합성 가스를 생성하는 단계(S300)는 상기 제2 합성 가스 상에 생성된 차(char)를 포집할 수 있다.
즉, 상기 개질부(100B)는 상기 제2 합성 가스 상에 생성된 차(char)를 포집하는 포집부(미도시)를 구비할 수 있다.
이 후, 제2 실시예에 따른 개질 방법(S10)의 상기 제2 합성 가스로부터 수소를 분리하는 단계(S400)는 상기 후처리부(200)에 의해 구현될 수 있다.
도 4에 도시한 바와 같이, 상기 후처리부(200)는 상기 개질부(100B)로부터 상기 제2 합성 가스를 전달 받아, 상기 열교환부(210)를 통해 상기 제2 합성 가스를 소정의 온도로 냉각시키고, 이 후 상기 수증기 제거부(220)를 통해 상기 제2 합성 가스에 포함된 수증기를 제거하고, 이 후 상기 수소 분리부(230)를 통해 상기 제2 합성 가스로부터 수소를 분리할 수 있다.
상기 수소 분리부(230)에서 분리된 수소는 수소 저장부(K3)에 저장될 수 있다.
한편, 제2 실시예에 따른 개질 방법(S10)은 상기 제1 합성 가스로부터 수소를 분리하는 단계(S200) 이후이고, 상기 제2 합성 가스를 생성하는 단계(S300) 이전에, 수소가 분리된 상기 제1 합성 가스 중 이산화탄소와 차(char)를 반응시켜 일산화탄소를 생성하는 단계를 더 포함할 수 있다.
상기 일산화탄소를 생성하는 단계를 구현하기 위해, 도 4에 도시한 바와 같이, 제2 실시예에 따른 개질 시스템(10B)은 수소가 분리된 상기 제1 합성 가스 중 이산화탄소와 차(char)를 반응시켜 일산화탄소를 생성하는 반응부(500)를 더 포함할 수 있다.
상기 반응부(500)는 상기 제1 합성 가스로부터 수소를 분리하는 단계(S200)에 의해 상기 후처리부(200)로부터 수소가 분리된 상기 제1 합성 가스를 전달받고, 상기 전처리 가스를 생성하는 단계에 의해 포집된 차를 상기 전처리부(400)로부터 전달받아 상기 제1 합성 가스에 포함된 이산화탄소와 차를 고온/고압의 환경에서 반응시켜 일산화탄소를 생성할 수 있다.
상기 반응부(500)에서의 반응식은 하기 화학식 5 와 같다.
[화학식 5]
Figure PCTKR2022013211-appb-img-000013
즉, 제2 실시예에 따른 개질 방법(S10)을 순차적으로 살펴보면, 상기 전처리부(400)에서 상기 전처리 가스를 생성하는 단계가 구현되며, 이후 상기 개질부(100B)에서 상기 제1 합성 가스를 생성하는 단계(S100)가 구현되고, 이후 상기 후처리부(200)에서 상기 제1 합성 가스로부터 수소를 분리하는 단계(S200)가 구현되고, 이후 상기 반응부(500)에서 상기 일산화탄소를 생성하는 단계가 구현되고, 이후 상기 개질부(100B)에서 상기 제2 합성 가스를 생성하는 단계(S300)가 구현될 수 있다.
여기서, 상기 제2 합성 가스를 생성하는 단계(S300)는 상기 일산화탄소를 생성하는 단계에서 생성된 일산화탄소와 스팀을 반응시켜 수소를 생성할 수 있다.
이를 보다 자세히 설명하자면, 상기 반응부(500)에서 생성된 일산화탄소는 상기 제1 합성 가스에 포함되어 상기 개질부(100B)로 전달될 수 있으며, 상기 개질부(100B)는 상기 제2 합성 가스를 생성하는 단계(S300)에서 상기 반응부(500)에 의해 생성된 일산화탄소와 스팀이 고온/고압 환경에서 반응시켜 수소 및 이산화탄소를 생성할 수 있다.
이러한 반응의 반응식은 하기 화학식 6 과 같다.
[화학식 6]
Figure PCTKR2022013211-appb-img-000014
즉, 제2 실시예에 따른 개질 방법(S10)은 상기 반응부(500)에서 일산화탄소를 생성하고, 생성한 일산화탄소를 이용하여 상기 개질부(100B)에서 수증기와 반응시킴에 따라 수소를 더욱 많이 생성시킬 수 있다.
또한, 상기 화학식 6에 의해 생성된 이산화탄소는 상기 개질부(100B) 상에서 상기 화학식 3 및 화학식 4의 반응을 통해 저감될 수 있다.
그 결과, 수소의 수득율은 높이되, 이산화탄소의 배출량은 저감시킬 수 있다.
한편, 도 5는 상기 개질 시스템의 상기 개질부(100)의 개략 투시도로서, 도 5에 도시한 바와 같이, 상기 개질부(100)는 고온의 플라즈마 토치(torch)가 유입되고, 복수의 유입구(inlet)을 통해 앞서 설명한 탄화수소, 수증기 등이 유입될 수 있다.
한편, 상기 개질부(100)는 내부 공간에 수소를 생성하는 촉매 모듈(M)을 포함할 수 있다.
상기 촉매 모듈(M)은 소정의 촉매를 저장하는 공간을 형성하는 케이지(cage) 및 상기 케이지 내에 저장되는 촉매로 구성될 수 있다.
일례로, 상기 케이지는 내벽와 외벽으로 이루어질 수 있으며, 촉매는 상기 케이지의 내벽과 외벽 사이에 배치될 수 있다.
일례로, 상기 촉매는 고온 환경(예를 들어 400℃ 이상)에서 탄화수소로부터 수소를 생성할 수 있는 것으로서, 니켈(Ni) 베이스 촉매일 수 있으며, 예를 들어 Ni/alpha-Al2O3, Ni/SiO2, Ni-Zn-Al 등일 수 있으나 여기에 한정되는 것은 아니다.
한편, 상기 촉매 모듈(M)은 상기 개질부(100)의 케이스 내에 배치되어, 탄화수소를 개질 반응시키는 플라즈마 토치의 폐열에 의해 가열(예를 들어 400℃ 이상)되어 추가적으로 수소를 생성할 수 있다.
결과적으로, 상기 개질부(100)로 유입된 탄화수소는 고온/고압의 스팀 플라즈마로 인해 1차 개질되고, 상기 촉매 모듈(M)에 의해 2차 개질되어, 상대적으로 작은량의 전력으로 다량의 수소를 생성할 수 있고, 유출구(outlet)를 통해 상기 후처리부(200)로 이동될 수 있다.
상기에서는 본 발명에 따른 실시예를 기준으로 본 발명의 구성과 특징을 설명하였으나 본 발명은 이에 한정되지 않으며, 본 발명의 사상과 범위 내에서 다양하게 변경 또는 변형할 수 있음은 본 발명이 속하는 기술분야의 당업자에게 명백한 것이며, 따라서 이와 같은 변경 또는 변형은 첨부된 특허청구범위에 속함을 밝혀둔다.

Claims (15)

  1. 탄화수소를 개질하여 수소를 획득하는 개질 방법에 있어서,
    탄화수소를 스팀 플라즈마로 개질 반응시켜 탄화수소로부터 수소 및 이산화탄소를 포함하는 제1 합성 가스를 생성하는 단계;
    상기 제1 합성 가스를 소정의 온도로 냉각시키고, 상기 제1 합성 가스에 포함된 수증기를 제거한 후, 제1 합성 가스로부터 수소를 분리하는 단계;
    수소가 분리된 상기 제1 합성 가스와 탄화수소를 스팀 플라즈마로 개질 반응시켜 수소를 생성하고, 이산화탄소를 저감한 제2 합성 가스를 생성하는 단계; 및
    상기 제2 합성 가스를 소정의 온도로 냉각시키고, 상기 제2 합성 가스에 포함된 수증기를 제거한 후, 제2 합성 가스로부터 수소를 분리하는 단계;를 포함하는,
    개질 방법.
  2. 제1항에 있어서,
    상기 제2 합성 가스로부터 수소를 분리하는 단계는,
    상기 제1 합성 가스와 상기 제2 합성 가스를 혼합하여 혼합 가스를 생성시키고, 상기 혼합 가스를 소정의 온도로 냉각시키며, 상기 혼합 가스에 포함된 수증기를 제거한 후, 상기 혼합 가스로부터 수소를 분리하는,
    개질 방법.
  3. 제2항에 있어서,
    상기 제2 합성 가스를 생성하는 단계는,
    상기 제2 합성 가스 상에 생성된 차(char)를 포집하는,
    개질 방법.
  4. 제1항에 있어서,
    상기 제1 합성 가스로부터 수소를 분리하는 단계 이후이고, 상기 제2 합성 가스를 생성하는 단계 이전에, 수소가 분리된 상기 제1 합성 가스 중 이산화탄소와 차(char)를 반응시켜 일산화탄소를 생성하는 단계;를 더 포함하는,
    개질 방법.
  5. 제4항에 있어서,
    상기 제2 합성 가스를 생성하는 단계는,
    상기 일산화탄소를 생성하는 단계에서 생성된 일산화탄소와 스팀을 반응시켜 수소를 생성하는,
    개질 방법.
  6. 제5항에 있어서,
    상기 제1 합성 가스를 생성하는 단계 이전에, 폐기물을 열처리하여 폐기물로부터 차(char) 및 탄화수소를 포함하는 전처리 가스를 생성하는 단계;를 더 포함하며,
    상기 전처리 가스를 생성하는 단계는,
    상기 전처리 가스 상에 생성된 차(char)를 포집하는,
    개질 방법.
  7. 제6항에 있어서,
    상기 일산화탄소를 생성하는 단계는,
    상기 전처리 가스를 생성하는 단계에 의해 포집된 차(char)를 이용하는,
    개질 방법.
  8. 탄화수소를 개질하여 수소를 획득하는 개질 시스템에 있어서,
    탄화수소를 스팀 플라즈마로 개질 반응시켜 탄화수소로부터 수소 및 이산화탄소를 포함하는 제1 합성 가스를 생성하는 개질부; 및
    상기 제1 합성 가스를 소정의 온도로 냉각시키고, 상기 제1 합성 가스에 포함된 수증기를 제거한 후, 제1 합성 가스로부터 수소를 분리하는 후처리부;를 포함하며,
    상기 개질부는,
    수소가 분리된 상기 제1 합성 가스와 탄화수소를 스팀 플라즈마로 개질 반응시켜 수소 생성하고, 이산화탄소를 저감한 제2 합성 가스를 생성하고,
    상기 후처리부는,
    상기 제2 합성 가스를 소정의 온도로 냉각시키고, 상기 제2 합성 가스에 포함된 수증기를 제거한 후, 상기 제2 합성 가스로부터 수소를 분리하는,
    개질 시스템.
  9. 제8항에 있어서,
    상기 개질부는,
    수소를 생성하는 촉매 모듈을 포함하며,
    상기 촉매 모듈은,
    탄화수소를 개질 반응시키는 폐열에 가열되어 수소를 생성하는,
    개질 시스템.
  10. 제8항에 있어서,
    상기 개질부는,
    상기 제1 합성 가스를 생성하는 제1 개질부 및
    상기 제2 합성 가스를 생성하되 상기 제1 개질부와 분리된 제2 개질부를 구비하는,
    개질 시스템.
  11. 제10항에 있어서,
    상기 제1 개질부로부터 상기 제1 합성 가스를 전달받고, 상기 제2 개질부로부터 상기 제2 합성 가스를 전달받아, 상기 제1 합성 가스와 상기 제2 합성 가스를 혼합하여 혼합 가스를 생성시키는 혼합부;를 더 포함하며,
    상기 후처리부는,
    상기 혼합부로부터 상기 혼합 가스를 전달받아, 상기 혼합 가스를 소정의 온도로 냉각시키며, 상기 혼합 가스에 포함된 수증기를 제거한 후, 상기 혼합 가스로부터 수소를 분리하는,
    개질 시스템.
  12. 제11항에 있어서,
    상기 제2 개질부는,
    상기 제2 합성 가스 상에 생성된 차(char)를 포집하는,
    개질 시스템.
  13. 제9항에 있어서,
    수소가 분리된 상기 제1 합성 가스 중 이산화탄소와 차(char)를 반응시켜 일산화탄소를 생성하는 반응부;를 더 포함하는,
    개질 시스템.
  14. 제13항에 있어서,
    상기 개질부는,
    상기 반응부에서 생성된 일산화탄소와 스팀을 반응시켜 수소를 생성하는,
    개질 시스템.
  15. 제14항에 있어서,
    폐기물을 열처리하여 폐기물로부터 차(char) 및 탄화수소를 포함하는 전처리 가스를 생성하는 전처리부;를 더 포함하며,
    상기 전처리부는,
    상기 전처리 가스 상에 생성된 차(char)를 포집하여 상기 반응부로 전달하고,
    상기 전처리 가스를 상기 개질부로 전달하는,
    개질 시스템.
PCT/KR2022/013211 2021-09-06 2022-09-02 개질 시스템 및 그 방법 WO2023033595A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2024514633A JP2024531590A (ja) 2021-09-06 2022-09-02 改質システムおよびその方法
KR1020247008736A KR20240099137A (ko) 2021-09-06 2022-09-02 개질 시스템 및 그 방법
EP22865097.4A EP4400209A1 (en) 2021-09-06 2022-09-02 Reforming system and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/467,414 2021-09-06
US17/467,414 US20230070320A1 (en) 2021-09-06 2021-09-06 Reforming system and method

Publications (1)

Publication Number Publication Date
WO2023033595A1 true WO2023033595A1 (ko) 2023-03-09

Family

ID=85386516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013211 WO2023033595A1 (ko) 2021-09-06 2022-09-02 개질 시스템 및 그 방법

Country Status (5)

Country Link
US (1) US20230070320A1 (ko)
EP (1) EP4400209A1 (ko)
JP (1) JP2024531590A (ko)
KR (1) KR20240099137A (ko)
WO (1) WO2023033595A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407634B2 (en) * 2003-04-11 2008-08-05 Massachusetts Institute Of Technology Plasmatron fuel converter having decoupled air flow control
KR20110013999A (ko) * 2009-08-04 2011-02-10 조선대학교산학협력단 고압축 내연기관-플라즈마 반응기 일체형 개질장치 및 이를 이용한 수소 또는 합성가스 생산방법
KR101277123B1 (ko) * 2012-09-07 2013-06-20 한국기초과학지원연구원 플라즈마 건식 개질장치
KR101594188B1 (ko) 2007-05-11 2016-02-15 바스프 에스이 합성 가스의 제조 방법
KR20180116952A (ko) * 2017-04-18 2018-10-26 한국기계연구원 플라즈마 촉매 방식의 건식 개질 장치 및 그 방법
KR102135299B1 (ko) * 2018-11-13 2020-07-17 엄환섭 이산화탄소 제거장치 및 제거방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962993B1 (fr) * 2010-07-23 2013-11-01 IFP Energies Nouvelles Procede de production d'hydrogene avec purge a pression intermediaire
KR101557690B1 (ko) * 2014-10-31 2015-10-07 한국기초과학지원연구원 이산화탄소플라즈마 및 촉매를 이용한 하이브리드 개질시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407634B2 (en) * 2003-04-11 2008-08-05 Massachusetts Institute Of Technology Plasmatron fuel converter having decoupled air flow control
KR101594188B1 (ko) 2007-05-11 2016-02-15 바스프 에스이 합성 가스의 제조 방법
KR20110013999A (ko) * 2009-08-04 2011-02-10 조선대학교산학협력단 고압축 내연기관-플라즈마 반응기 일체형 개질장치 및 이를 이용한 수소 또는 합성가스 생산방법
KR101277123B1 (ko) * 2012-09-07 2013-06-20 한국기초과학지원연구원 플라즈마 건식 개질장치
KR20180116952A (ko) * 2017-04-18 2018-10-26 한국기계연구원 플라즈마 촉매 방식의 건식 개질 장치 및 그 방법
KR102135299B1 (ko) * 2018-11-13 2020-07-17 엄환섭 이산화탄소 제거장치 및 제거방법

Also Published As

Publication number Publication date
US20230070320A1 (en) 2023-03-09
EP4400209A1 (en) 2024-07-17
KR20240099137A (ko) 2024-06-28
JP2024531590A (ja) 2024-08-29

Similar Documents

Publication Publication Date Title
WO2018084330A1 (ko) 연속식 열분해 장치 및 열분해 방법
WO2017111503A1 (ko) 제철 부생가스로부터 이산화탄소 포집, 수소 회수 방법 및 장치
CZ2004440A3 (cs) Způsob řízení teploty vstupního paliva spalovací turbíny pro dosažení maximálního energetického výstupu
WO2016175387A1 (ko) 폐기물로부터 합성가스를 생성하는 가스화 방법, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치 및 이를 포함하는 발전 시스템
WO2023033595A1 (ko) 개질 시스템 및 그 방법
WO2016032284A1 (ko) 봉형 산화 몰리브덴의 제조방법 및 산화 몰리브덴 복합체의 제조방법
US5592888A (en) Process and apparatus for disposing of waste
WO2016204560A1 (ko) 열 회수 장치
WO2012138018A1 (en) Continuous manufacturing apparatus and method for carbon nanotubes having gas seperation units
WO2024205148A1 (ko) 저산소 바나듐 탄화물 및 이의 제조방법
JP4255279B2 (ja) 固体燃料ガス化システム
WO2012091437A2 (ko) 일관제철시스템 및 일관제철방법
WO2019216701A1 (ko) 촉매 재생기
WO2017003014A1 (ko) 환원가스 전처리 후 연속 반응-재생 및 유동식 올레핀 제조방법
WO2022050822A1 (ko) 수방전을 이용한 암모니아 생성 장치 및 방법
WO2024155083A1 (ko) 고온 개질 설비 및 이를 이용한 수소 제조 방법
WO2023068454A1 (ko) 바이오매스 가스화 시스템
JP3904161B2 (ja) 水素・一酸化炭素混合ガスの製造方法および製造装置
WO2020080808A1 (ko) 이산화탄소 배출 저감형 용철 제조장치 및 그 제조방법
WO2024155084A1 (ko) 고온 개질 설비
WO2012138191A2 (ko) 코크스 오븐 가스 처리 장치 및 방법
WO2018012847A1 (ko) 글리세롤의 전기촉매 반응장치와 바이오매스의 화학적촉매 반응장치를 포함하는 통합 시스템
WO2013069973A1 (ko) 연료전지 시스템 및 운전방법
JP4233175B2 (ja) 石炭熱分解反応生成物による発電方法
WO2022092429A1 (ko) 유기 황 화합물의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22865097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024514633

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022865097

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022865097

Country of ref document: EP

Effective date: 20240408