WO2016204560A1 - 열 회수 장치 - Google Patents

열 회수 장치 Download PDF

Info

Publication number
WO2016204560A1
WO2016204560A1 PCT/KR2016/006462 KR2016006462W WO2016204560A1 WO 2016204560 A1 WO2016204560 A1 WO 2016204560A1 KR 2016006462 W KR2016006462 W KR 2016006462W WO 2016204560 A1 WO2016204560 A1 WO 2016204560A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant flow
flows
refrigerant
heat
Prior art date
Application number
PCT/KR2016/006462
Other languages
English (en)
French (fr)
Inventor
김태우
이성규
신준호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/573,331 priority Critical patent/US10591219B2/en
Priority to CN201680035776.4A priority patent/CN107771266B/zh
Priority to JP2017554564A priority patent/JP6458169B2/ja
Publication of WO2016204560A1 publication Critical patent/WO2016204560A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/04Other direct-contact heat-exchange apparatus the heat-exchange media both being liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present application relates to a heat recovery apparatus and method.
  • heat exchange takes place at various routes through a reactor or distillation column, and the waste heat generated after such heat exchange can be reused or discarded.
  • the waste heat is a lower heat source of less than 120 ° C., for example, between 70 ° C. and 110 ° C.
  • the temperature is too low to be substantially reusable, and thus condensed by condensate. Is being thrown away.
  • low pressure or high pressure steam is used for various purposes in the industrial field, in particular, in the chemical process, high temperature and high pressure steam is mainly used.
  • the high-temperature and high-pressure steam generally produces high-temperature and high-pressure steam by heating the water at atmospheric pressure and room temperature to the vaporization point and increasing the internal energy by applying a high pressure to the water turned into steam. In order to vaporize the water in the state, a large amount of energy consumption is required.
  • Patent Document 1 discloses a heat recovery apparatus for recovering a lower heat source using a heat pump system.
  • the heat recovery apparatus since only one refrigerant flow is exchanged with the waste heat flow to recover the waste heat energy, in order to compress the low and low pressure refrigerant flows into the compressor into the high and high refrigerant flow, There was a problem that requires energy.
  • Patent Document 1 KR 2015-0000422A
  • the present application provides a heat recovery apparatus and method.
  • the present application relates to a heat recovery device.
  • the heat recovery device of the present application it is possible to generate steam by using a lower heat source of less than 120 °C discharged from industrial sites or various chemical processes, for example, petrochemical product manufacturing process, the generated steam Since it can be used in various processes, it is possible to reduce the amount of high-temperature steam, which is an external heat source for use in a reactor or a distillation column, to maximize energy saving efficiency.
  • the heat recovery apparatus using a conventional heat pump system only one refrigerant flow is exchanged with the waste heat flow to recover the energy of the waste heat.
  • the single refrigerant flow is multistage ( By dividing the cascade into circulation, at least two refrigerant streams can be heat-exchanged with the waste heat stream, and the pressure of the refrigerant stream flowing into the compressor can be adjusted relatively higher than that of the heat recovery apparatus using only one refrigerant stream. Therefore, the amount of energy required for compression in the compressor can be reduced. In addition, it is possible to prevent some vaporization of the refrigerant generated during isotropic compression of the refrigerant, thereby increasing the heat exchange efficiency of the heat recovery device.
  • FIG. 2 is a diagram schematically showing an exemplary heat recovery apparatus 10 according to an embodiment of the present application.
  • the heat recovery device 10 of the present application includes a first heat exchange device 100, a compression device 200, a second heat exchange device 300, and at least two pressure drop devices 400.
  • the first heat exchange device 100, the compression device 200, the second heat exchange device 300, and at least two pressure drop devices 400 may be connected through a pipe, for example, a refrigerant or the like through the pipe. It may be fluidically connected to allow fluid to flow.
  • the piping through which the refrigerant flows is the refrigerant in the first heat exchange device 100, the compression device 200, the second heat exchange device 300, and at least two or more pressure drop device 400 in order It may be a circulating loop or a circulating system connected to circulate.
  • heat exchange device may refer to an assembly including two or more heat exchangers or a heat exchange unit including two or more heat exchangers. This may mean only one heat exchanger.
  • first heat exchanger 100 and the third heat exchanger 800 to be described later may be a heat exchanger unit including two or more heat exchangers, and the second heat exchanger 300 may include only one heat exchanger. It may be a device.
  • compression device refers to a compression unit comprising one assembly or two or more compressors in which two or more compressors are coupled.
  • the heat recovery apparatus 10 of the present application includes a circulation loop through which at least two streams of refrigerant circulate.
  • a circulation loop through which at least two streams of refrigerant circulate.
  • the heat recovery apparatus 10 of the present application by dividing and circulating one refrigerant flow into two or more refrigerant flows, at least two or more refrigerant flows can be heat-exchanged stepwise with the waste heat flow, and the refrigerant flowing into the compressor The pressure of the flow can be adjusted relatively high compared to a heat recovery apparatus using one refrigerant flow, thereby reducing the amount of energy required for compression in the compressor.
  • At least two or more refrigerant flows F D including a first refrigerant flow F D1 and a second refrigerant flow F D2 are formed in the first heat exchange. Inflow and outflow into the device 100 and the compression device 200, respectively.
  • the at least two or more of the coolant flow (F D), the first refrigerant flow (F D1) and the second refrigerant flow (F D2) 2 of the refrigerant flow the first refrigerant flow consisting of (F D1)
  • the Three refrigerant flows consisting of two refrigerant flows F D2 and a third refrigerant flow F D3 , or a first refrigerant flow F D1 , a second refrigerant flow F D2 , and a third refrigerant flow F D3
  • a fourth refrigerant flow consisting of a fourth refrigerant flow F D4 .
  • the total flow rate of the refrigerant flow (F D ) circulating through the piping is 5,000 kg / hr to 100,000 kg / hr, for example 10,000 kg / hr to 95,000 kg / hr or 30,000 kg / hr to 90,000 kg / hr And, preferably, it may be from 75,000 kg / hr to 95,000 kg / hr, but is not limited thereto.
  • the flow rate of each of the at least two refrigerant flows F D circulating through the piping is 5,000 kg / hr to 50,000 kg / hr, for example 10,000 kg / hr to 45,000 kg / hr or 20,000 kg /. hr to 40,000 kg / hr, and preferably, 25,000 kg / hr to 35,000 kg / hr, but is not limited thereto.
  • the heat recovery apparatus 10 in the heat recovery apparatus 10 according to the embodiment of the present application, at least two or more refrigerant flows F D including the first refrigerant flow F D1 and the second refrigerant flow F D2 . Is introduced into the first heat exchanger (100).
  • the first heat exchange device 100 is included in the heat recovery device 10 of the present application in order to heat exchange at least two or more refrigerant flows F D and a fluid flow introduced from the outside, and through the heat exchange, the refrigerant
  • the vaporized gas may flow out of the first heat exchange apparatus 100 in a gaseous flow relatively hotter than a refrigerant flow introduced into the first heat exchange apparatus 100.
  • gas phase refers to a state in which a gas component flow is rich in all components of the refrigerant flow, for example, a state in which the mole fraction of the gas component flow in the components of the refrigerant flow is 0.9 to 1.0.
  • the first heat exchange device 100 may be introduced into the first fluid flow (W 1 ), such as at least two or more refrigerant flow (F D ) and waste heat flow through the fluid connection pipe, the inflow After at least two refrigerant flows F D and the first fluid flow W 1 are mutually heat exchanged in the first heat exchange device 100, each flows out of the first heat exchange device 100 through the fluidly connected piping. Can be.
  • W 1 first fluid flow
  • F D refrigerant flow
  • W 1 waste heat flow
  • the first refrigerant flow F D1 introduced into the first heat exchanger 100 is heat-exchanged with the first fluid flow W 1 introduced into the first heat exchanger 100
  • the first fluid flow W 1 which is heat-exchanged with the first refrigerant flow F D1 , is heat-exchanged with the second refrigerant flow F D2 introduced to the first heat exchange device 100.
  • the first refrigerant flow F D1 is The first-1 heat exchanger 101 flows in, and the second refrigerant flow F D2 flows into the 1-2 heat exchanger 102, respectively. It may be heat-exchanged with the flow (W 1 ), for example, waste heat flow passing through, that is, the first through the first heat exchanger 101 and the first 1-2 heat exchanger (102). In one example, the first refrigerant flow F D1 introduced into the first heat exchanger 100 is transferred to the first heat exchanger 100, for example, the 1-1 heat exchanger 101.
  • the device 100 may be heat-exchanged with, for example, the second refrigerant flow F D2 introduced into the 1-2 heat exchanger 102.
  • the first fluid stream W 1 introduced into the first heat exchange device 100 may be, for example, a waste heat stream or a flow of condensate passing through a condenser, and the waste heat flow may be, for example, an exothermic reactor. May be cooling water, but is not limited thereto.
  • waste heat flow of a lower heat source at a level below 120 ° C., for example 70 ° C. to 110 ° C. can be preferably used.
  • the temperature of the first refrigerant flow (F D1 ) flowing out of the first heat exchange apparatus 100 and the temperature of the first fluid flow (W 1 ) flowing into the first heat exchange apparatus 100 are as follows. Formula 1 may be satisfied.
  • T F1 represents the temperature of the first fluid flow W 1 flowing into the first heat exchange apparatus 100
  • T R1 represents the first refrigerant flow flowing out of the first heat exchange apparatus 100.
  • the temperature of (F D1 ) is shown.
  • F1 -T R1 can be adjusted in the range of 1 to 35 ° C, for example 1 to 10 ° C, 7 to 15 ° C, 15 to 35 ° C or 20 to 25 ° C.
  • the temperature of the first refrigerant flow F D1 flowing out of the first heat exchange apparatus 100 and the temperature of the first fluid flow W 1 flowing into the first heat exchange apparatus 100 satisfy the general formula ( 1 ).
  • the second stage flow F D2 , the third refrigerant stream F D3 , or the fourth refrigerant stream F D4 which are later heat exchanged with the waste heat stream, may be relatively cooled.
  • the first refrigerant flow F D1 which is first heat exchanged with the waste heat stream at the front end, may be introduced into a compression apparatus to be described later in a state of high temperature and high pressure.
  • the amount of energy used in the compressor can be reduced.
  • the temperature of the first refrigerant flow F D1 flowing out of the first heat exchange apparatus 100 and the temperature of the first fluid flow W 1 flowing into the first heat exchange apparatus 100 satisfy the general formula ( 1 ). If so, it is not particularly limited and may be variously adjusted according to the type of process to be applied and the conditions of each process.
  • the temperature of the first fluid flow (W 1 ) flowing into the first heat exchange apparatus 100 is 60 ° C. to 110 ° C., for example.
  • the temperature may be 60 ° C. to 80 ° C., 70 ° C. to 85 ° C., 90 ° C. to 95 ° C., or 90 ° C.
  • the temperature of the first refrigerant flow F D1 flowing out of the first heat exchange apparatus 100, for example, the first-first heat exchanger 101 is 50 ° C. to 100 ° C., for example, It may be 50 °C to 70 °C, 60 °C to 75 °C, 80 °C to 85 °C, or 80 °C to 100 °C, but is not particularly limited thereto.
  • the first fluid flow W 1 flowing out after the heat exchange with the first refrigerant flow F D1 in the first heat exchange apparatus 100, for example, the first-first heat exchanger 101 is performed.
  • the temperature of the first refrigerant flow F D1 flowing into the first heat exchange device 100 for example, the first heat exchanger 101, flows into the first heat exchange device 100.
  • the pressure of the first refrigerant flow (F D1 ) flowing into the first heat exchange device 100 may vary depending on the type of refrigerant and operating conditions, and is not particularly limited.
  • the pressure of the first refrigerant flow (F D1 ) flowing into the first heat exchange device 100 is 2 kgf / cm 2 g to 15 kgf / cm 2 g, for example, 2 kgf / cm 2 g To 7 kgf / cm 2 g, 3 kgf / cm 2 g to 6 kgf / cm 2 g, or 4 kgf / cm 2 g to 15 kgf / cm 2 g, but is not limited thereto.
  • the pressure of the first refrigerant flow (F D1 ) flowing into the first heat exchange device 100 By adjusting the pressure of the first refrigerant flow (F D1 ) flowing into the first heat exchange device 100 to 2 kgf / cm 2 g to 15 kgf / cm 2 g, it is possible to easily adjust the compression ratio of the compression device. .
  • the outflow pressure of the compressor is determined according to the temperature, but when the inflow pressure is high, the compression ratio can be kept low. As the compression ratio is higher, it is possible to generate hot steam from a low temperature heat source, but in this case, the coefficient of performance is reduced, and as the compression ratio is lower, the coefficient of performance increases, but to generate hot steam from a low temperature heat source. Difficult problems arise.
  • the pressure unit kgf / cm 2 g means gauge pressure.
  • the pressure of the first fluid flow W 1 flowing into and exiting the first heat exchange device 100 is not particularly limited.
  • the flow rate of the first fluid flow W 1 flowing into the first heat exchange device 100 is 5,000 kg / hr or more, for example, 10,000 kg / hr or more, 20,000 kg / hr, or 25,000 kg / hr. It may be more than, but is not limited thereto.
  • the outlet temperature of the first fluid stream W 1 flowing out after heat transfer is maintained high even when the same amount of heat is transferred to the refrigerant.
  • the outlet temperature of the first refrigerant flow F D1 flowing out of the first heat exchange apparatus 100 may be maintained high.
  • the upper limit of the flow rate of the first fluid flow W 1 flowing into the first heat exchange apparatus 100 is not particularly limited, and in consideration of the efficiency and economic efficiency of the apparatus, for example, 500,000 kg / hr Or less than or equal to 350,000 kg / hr, but is not limited thereto.
  • the first heat exchange device 100 refers to a device or machine for performing heat exchange between the flowing fluid and the refrigerant. As described above, one assembly or two heat exchangers are coupled to each other. It may be a heat exchange unit comprising two or more heat exchangers. In one embodiment, the first heat exchange apparatus 100 may include at least two heat exchangers, and the heat exchanger may be an evaporator that evaporates the liquid refrigerant flow into the gaseous refrigerant flow.
  • At least two or more refrigerant flows F D including the first and second refrigerant flows F D1 and F D2 flowing out of the first heat exchange apparatus 100 are compressed.
  • the compression device 200 is configured to compress the at least two or more gaseous refrigerant flows F D flowing out of the first heat exchange device 100 and to increase the temperature and the pressure of the heat recovery device 10 of the present application. Included in, and is compressed by passing through the compression device 200, compared to the at least two or more refrigerant flows flowing out of the first heat exchanger 100 is a relatively high temperature and high pressure refrigerant flow of the second heat exchange which will be described later It may flow into the device 300.
  • At least two or more refrigerant flows F D flowing out of the first heat exchange device 100 may be introduced into the compression device 200 through fluidly connected piping, and the at least two or more refrigerant flows ( F D ) may be discharged through the fluid-connected pipe after being compressed in the compression device 200.
  • the first first refrigerant flow is flowing out of the heat exchange device 100 that flows to the compression unit 200 (F D1), the first refrigerant flow flowing out of the pressure and the compression device 200 of the (F D1
  • the ratio of the pressure of) may satisfy the following general formula (2).
  • P C1 represents the pressure bar of the first refrigerant flow F D1 flowing out of the compression device 200
  • P H1 flows out of the first heat exchange device 100 to compress the compression device ( And a pressure bar of the first refrigerant flow F D1 flowing into the tank 200.
  • the ratio P C1 / P H1 can be adjusted in the range of 2 to 6, for example 2 to 5, preferably 2.2 to 3.
  • Non-P C1 / P H1 of the pressure of the first refrigerant flow (F D1) flowing out of the pressure and the first heat exchange device 100 of the first refrigerant flow (F D1) flowing out from the compressor (200) It is a value calculated based on the case where the pressure unit is bar, and when the value of the specific pressure converted according to the unit of the pressure to be measured is different, the ratio of the pressure may not satisfy the general formula (2). Self-explanatory Therefore, the general formula 2 may include all cases of satisfying the value of the measured pressure in terms of bar pressure unit.
  • the compression device 200 of the (F D1) flowing in the first flow out from the heat exchanger 100, compressor 200 the ratio
  • when compressing the refrigerant vaporized in the first heat exchange apparatus 100 can reduce the amount of energy per unit mass required by the compressor.
  • the pressure of the first refrigerant flow F D1 flowing out of the first heat exchange device 100 and flowing into the compression device 200 and the pressure of the first refrigerant flow F D1 flowing out of the compression device 200 are measured. If the general formula 2 is satisfied, it is not particularly limited and may be variously adjusted according to the type of process to be applied and the conditions of each process. In one example, the pressure of the first refrigerant flow (F D1 ) flowing out of the first heat exchange device 100 and introduced into the compression device 200 is the first flow out of the first heat exchange device 100 described above.
  • the pressure of the refrigerant flow F D1 May be the same as or different from the pressure of the refrigerant flow F D1 , for example 2 kgf / cm 2 g to 15 kgf / cm 2 g, 2 kgf / cm 2 g to 7 kgf / cm 2 g or 4 kgf / cm 2 g to 15 kgf / cm 2 g, but is not limited thereto.
  • the pressure of the first refrigerant flow (F D1 ) flowing out of the compression device 200 is 10 to 35 kgf / cm 2 g, for example, 15 to 25 kgf / cm 2 g, 18 to 24 kgf / cm 2 g, or 20 to 35 kgf / cm 2 g, but is not limited thereto.
  • the temperature of the at least two or more refrigerant flows F D flowing out after being compressed in the compression device 200 may be 100 ° C. to 160 ° C., for example, 110 ° C. to 130 ° C., or 105 ° C. to 145 ° C. May be, but is not limited thereto.
  • any compression device 200 capable of compressing the flow of gaseous phase may be used without limitation various compression devices 200 known in the art. As described above, two or more compressors are combined.
  • the compressor may be a single assembly or a compression unit including two or more compressors. In one example, the compressor may be a compressor, but is not limited thereto.
  • At least two or more refrigerant flows F D including the first refrigerant flow F D1 discharged from the compression device 200 may be formed. 2 may be introduced into the heat exchange device (300).
  • the second heat exchanger is included in the heat recovery device 10 of the present application in order to exchange heat between the refrigerant flow flowing out of the compression device 200 and the second fluid flow W 2 flowing from the outside.
  • the refrigerant may be discharged to a relatively low temperature liquid flow compared to the refrigerant flow flowing out of the compression apparatus 200 after the condensation, and the second fluid flow W 2 may be generated when the refrigerant is condensed.
  • liquid phase means a state in which a liquid component flow is rich in all the components of the refrigerant flow, for example, a state in which the mole fraction of the liquid component flow in the components of the refrigerant flow is 0.9 to 1.0.
  • the second fluid W 2 flowing into the second heat exchanger may be make-up water, and in this case, the water heat-exchanged in the second heat exchanger 300 may be the refrigerant.
  • a second fluid flow W 2 may be introduced into the second heat exchange device 300 to heat exchange at least two or more refrigerant flows flowing out of the compression device 200 through a fluidly connected pipe.
  • the at least two or more refrigerant flows F D and the second fluid flows W 2 are mutually heat exchanged in the second heat exchanger 300, and then, in the second heat exchanger 300 through the fluidly connected pipe. Each can be spilled.
  • the temperature and pressure of the second fluid flow W 2 flowing into the second heat exchange device 300 are not particularly limited, and the second fluid flow W 2 having various temperatures and pressures is introduced into the second heat exchange device. You can. For example, a temperature of 70 ° C. to 120 ° C., for example 88v to 96 ° C., or 115 ° C. to 118 ° C., and 0.0 to 30.0 kg f / cm 2 g, for example 0.5 to 18.0 kgf / cm 2 g
  • the second fluid stream W 2 may be introduced into the second heat exchanger 300 at a pressure.
  • the flow rate of the second fluid stream W 2 flowing into the second heat exchange device 300 is not particularly limited, and may be 5,000 kg / hr to 500,000 kg / hr, for example, 5,000 kg / hr to 40,000 kg / hr, 50,000 kg / hr to 100,000 kg / hr, or 150,000 kg / hr to 400,000 kg / hr.
  • the high temperature and high pressure refrigerant flow F D discharged from the compression device 200 and the water W 2 heat exchanged in the second heat exchange device 300 are 100 ° C. to 170 ° C., for example , 115 ° C. to 120 ° C., 120 ° C. to 150 ° C., or 140 ° C. to 165 ° C. and 0.0 kgf / cm 2 g to 7.0 kgf / cm 2 g, for example, 0.6 to 2.8 kgf / cm 2 g Steam may have an outlet from the second heat exchanger (300).
  • At least two or more refrigerant flows F D heat exchanged with the second fluid stream W 2 in the second heat exchange device 300 may be 115 ° C. to 130 ° C., for example, 118 ° C. to 125 ° C. or 120. Although it may flow out from the second heat exchange device 300 at a temperature of °C to 128 °C, preferably 120 °C to 125 °C, but is not limited thereto.
  • the pressure of the refrigerant flow F D heat exchanged with the second fluid flow W 2 in the second heat exchange device 300 may vary according to the type of refrigerant and operating conditions, and may be 5.0 to 45.0 kgf / the second at a pressure of cm 2 g, for example 5.0-13.0 kgf / cm 2 g, 8.0-25.0 kgf / cm 2 g, 20.0-28.0 kgf / cm 2 g, or 33.0-45.0 kgf / cm 2 g Although it may flow out from the heat exchange device 300, it is not limited thereto.
  • the second heat exchange device 300 refers to a device or a machine for performing heat exchange between the flowing fluid, in one embodiment, the second heat exchange device 300 to condense the refrigerant flow in the gas phase into the liquid refrigerant flow It may be a condenser.
  • Exemplary heat recovery device 10 of the present application may further include a storage tank 500.
  • the storage tank 500 may be provided in fluid connection with the second heat exchanger 300 through a pipe.
  • the storage tank 500 is a device for supplying the second fluid flow (W 2 ) flowing into the second heat exchange device 300, the storage tank 500 is introduced into the second heat exchange device 300.
  • the second fluid W 2 may be stored, for example water.
  • the second fluid flow W 2 flowing out of the storage tank 500 flows into the second heat exchange device 300 along the pipe, and the refrigerant flow F D introduced into the second heat exchange device 300.
  • the heat-exchanged second fluid stream W 2 for example, water of high temperature and high pressure, may be re-introduced into the storage tank, and then depressurized and discharged in the form of steam.
  • the heat recovery apparatus 10 of the present application may include a fluid mixer.
  • the fluid mixer 600 is a member for combining at least two or more refrigerant flows flowing out of the compression device 200 into a single flow, whereby the mixed refrigerant flow F M combined into the single flow is It may flow into the second heat exchange device 300.
  • the fluid mixer 600 may be formed in a pipe through which the refrigerant flows, and for example, at least two or more refrigerant streams F D flowing out of the compression device 200 may have a second heat exchange. It may be located in the pipe formed to enter the device 300.
  • the fluid mixer 600 may include at least two refrigerant flows F D including the first and second refrigerant flows F D1 and F D2 discharged from the compression device 200. It may be formed to be introduced into the 600 after the mixture is introduced into the second heat exchange device 300, in this case, the mixed single refrigerant flow (F M ) introduced into the second heat exchange device 300 is It may be heat exchanged with the second fluid flow (W 2 ) flowing into the second heat exchange device (300).
  • the heat recovery apparatus 10 of the present application may further include a fluid splitter.
  • the fluid distributor 700 is a member for dividing the single refrigerant flow F M combined in the fluid mixer 600 back into at least two refrigerant flows F D , and thus, the fluid mixer 600 described above.
  • the combined flow of refrigerant F M ) may be divided into two or more refrigerant flows F D in the fluid distributor 700 and then introduced into the aforementioned first heat exchanger 100.
  • the fluid distributor 700 is formed in a pipe through which the refrigerant flows, for example, formed at the front end of at least two or more pressure drop devices 400 or between at least two or more pressure drop devices 400. It may be.
  • the fluid distributor 700 may flow out of the second heat exchanger 300 after at least two or more refrigerant streams F D flowing out of the compression device 200 are mixed through the fluid mixer 600. If so, the mixed single refrigerant flow F M flowing out of the second heat exchanger 300 may be located in a pipe formed to be introduced into at least two pressure drop devices 400.
  • the refrigerant flow F M mixed in the above-described fluid mixer 600 flows out from the second heat exchanger 300 after being heat exchanged in the second heat exchanger 300, and the mixed refrigerant flow F M ) may be introduced into the first heat exchange apparatus 100 after passing through the fluid distributor 700 and again separated into at least two or more refrigerant flows F D.
  • the fluid distributor 700 may be located between at least two pressure drop device 400.
  • the fluid distributor 700 may be configured such that a single refrigerant flow decompressed through one pressure drop device, for example, a first pressure drop device 401, is provided in the remaining pressure drop device, for example, a second pressure drop device.
  • one reduced pressure refrigerant stream for example a first refrigerant stream ( F D1 ) may be introduced into the first heat exchanger 100 without passing through a pressure drop device, and the remaining reduced pressure refrigerant flows, for example, the second and third refrigerant flows F D2 , F D3 And the third pressure drop devices 402 and 403, respectively, and then flow into the first heat exchange device 100.
  • the mixed refrigerant flow F M flowing out of the second heat exchanger 300 flows into the fluid distributor 700, and the mixed refrigerant flow F flows into the fluid distributor 700.
  • M is separated from the fluid distributor 700 and is separated into at least two or more refrigerant streams F D including the first and second refrigerant flows F D1 and F D2 and thereafter at least two or more. It is introduced into the pressure drop device 400.
  • the refrigerant flow flowing out of the second heat exchange device 300 is respectively introduced into at least two pressure drop devices 400.
  • the pressure drop device 400, the heat recovery device 10 of the present application in order to expand the at least two or more liquid refrigerant flow (F D ) flowing out of the second heat exchange device 300 and lower the temperature and pressure And at least two or more refrigerant flows F D passed through the pressure drop device in the above-described state at a relatively low temperature and a low pressure state as compared with the refrigerant flow flowing out of the second heat exchanger 300 after being expanded. 1 may be re-introduced into the heat exchange device (100).
  • At least two or more liquid refrigerant streams F D flowing out of the second heat exchange device 300 may be introduced into the pressure drop device 400 through fluidly connected pipes, After each of the refrigerant flows F D is expanded in the pressure drop device 400, the refrigerant flows F D may be discharged through the fluid connected pipe at a relatively low temperature and a low pressure state compared to the refrigerant flow flowing out of the second heat exchange device 300.
  • the at least two or more refrigerant flows flowing out of the pressure drop device 400 are 40 ° C. to 110 ° C., for example 45 ° C. to 55 ° C. or 74 ° C. to 82 v, preferably 85 ° C. to 90 ° C.
  • the temperature may drop from the pressure drop device 400, but is not limited thereto.
  • the pressure of at least two or more refrigerant flows F D flowing out of the pressure drop device 400 may vary according to the type of refrigerant and operating conditions, for example, 5.0 kgf / cm 2 g to 45.0 kgf / cm 2 g, for example, 5.1 kgf / cm 2 g to 8.3 kgf / cm 2 g, 12.0 kgf / cm 2 g to 14.5 kgf / cm 2 g or 5.6 kgf / cm 2 g to 8.8 kgf / cm It may be 2 g, preferably from the pressure drop device at a pressure of 5.2 kgf / cm 2 g to 9.3 kgf / cm 2 g, but is not limited thereto.
  • the temperature and pressure of the at least two or more refrigerant flows F D respectively flowing out of the at least two or more pressure drop devices 400 may be adjusted differently from each other, and accordingly,
  • the first fluid stream W 1 flowing into the first heat exchange device 100 may be heat-exchanged step by step with the at least two or more refrigerant streams F D.
  • the first refrigerant flow (F D1 ) that is first exchanged with the first fluid flow (W 1 ) flowing into the first heat exchange device (100) passes through the first pressure drop device (401), 50 May flow out of the first pressure drop device 400 at a temperature of from 100 ° C. to 100 ° C., for example from 58 ° C.
  • it may flow out of the second pressure drop device 402 at a temperature of 48 ° C to 52 ° C, 60 ° C to 75 ° C, 72 ° C to 78 ° C, or 70 ° C to 80 ° C, and also 3.0 to 15.0 kg / cm 2 g, for example, 3.0 to 5.0 kg / cm 2 g, 4.2 to 6.2 kg / cm 2 g, 5.2 to 7.1 kg / cm 2 g or 11.0 to 15.0 kg / cm 2 g
  • After flowing out of the pressure drop device 402 may be introduced to the first heat exchange device 100 described above.
  • the pressure drop device 400 may be, for example, a control valve or a turbine installed in a pipe through which at least two or more refrigerant flows F D flowed out of the third heat exchange device 300.
  • the turbine when the pressure drop device 400 is a turbine, the turbine may be a power generation device.
  • the pressure drop device 400 may be a hydraulic turbine capable of converting the mechanical energy of the refrigerant flowing through the pipe, that is, the fluid into electrical energy, and when the aberration is used, Since the power can be produced by the heat recovery device itself, the performance coefficient of the recovery device can be increased.
  • the heat exchange apparatus of the present application may be a single assembly having two or more heat exchangers coupled thereto or a heat exchange unit including two or more heat exchangers, and the compression apparatus 200 may be one assembly having two or more compressors coupled thereto. Or a compression unit comprising two or more compressors.
  • the first heat exchange device 100 may include at least two heat exchangers, and the compression device 200 may include at least two compressors.
  • FIG. 3 is a diagram schematically showing an embodiment of the heat recovery device 10 of the present application having two refrigerant flows.
  • the first heat exchanger 100 includes a 1-1 heat exchanger 101 and a 1-2 heat exchanger 102
  • the compression device 200 includes a first compressor 201.
  • a second compressor 202 wherein the pressure drop device 400 may include a first pressure drop device 401 and a second pressure drop device 402.
  • the first fluid flow F D1 flows into the first-first heat exchanger 101 and the first fluid flow exits the first-first heat exchanger 101.
  • W 1 may be introduced into the 1-2 heat exchanger (102).
  • the first refrigerant flow F D1 may be introduced into the first heat exchanger 101
  • the second refrigerant flow F D2 may be introduced into the 1-2 heat exchanger 102.
  • the first refrigerant flow F D1 introduced into the first heat exchanger 101 may include the first fluid flow W 1 introduced into the first heat exchanger 101 and the first fluid flow.
  • the second refrigerant flow F D2 which is heat-exchanged in the -1 heat exchanger 101, and flows into the 1-2 heat exchanger 102, flows out of the 1-1 heat exchanger 101 to be discharged from the 1-1 heat exchanger.
  • the first fluid flow W 1 introduced into the second heat exchanger 102 and the 1-2 heat exchanger 102 may be heat exchanged.
  • the first refrigerant flow F D1 flowing out after the heat exchange in the 1-1 heat exchanger 101 may flow into the first compressor 201, and the 1-2 heat exchanger 102 may be introduced into the first compressor 201.
  • the second refrigerant flow (F D2 ) flowing out from the second compressor 202 may be introduced into the second compressor 202.
  • the first refrigerant flow F D1 introduced into the first-1 heat exchanger 101 is, as described above, compared to the second refrigerant flow F D2 in the first pressure drop device 401. Since it is adjusted to have a relatively high temperature and pressure flows into the first heat exchange device 100, the first refrigerant flow flowing into the compression device 200, for example, the first compressor 201 after heat exchange The temperature and pressure of (F D1 ) can be kept high, and energy required for compression can be reduced.
  • first refrigerant flow F D1 discharged from the first compressor 201 and the second refrigerant flow F D2 discharged from the second compressor 202 flow into the second heat exchange device 300.
  • the first and second refrigerant flows F D1 and F D2 introduced into the second heat exchanger 300 may include a second fluid flow W 2 introduced into the second heat exchanger 300, For example, it may be heat exchanged with water to produce steam.
  • the first refrigerant flow F D1 flowing out of the second heat exchanger 300 flows into the first pressure drop device 401 to be relatively higher in temperature and pressure than the second refrigerant flow F D2 . It may be reduced to have a, the second refrigerant flow (F D2 ) flowed out of the second heat exchange device 300 is introduced into the second pressure drop device 402 and than the first refrigerant flow (F D1 ) The pressure may be reduced to have a relatively low temperature and pressure.
  • the first refrigerant flow F D1 discharged after being decompressed by the first pressure drop device 401 may flow into the first-1 heat exchanger 101, and the second pressure drop device 402 may be introduced into the first heat exchanger 101.
  • the second refrigerant flow (F D2 ) that flows out after depressurizing may be introduced into the 1-2 heat exchanger 102.
  • FIG. 4 is a diagram schematically showing an embodiment of the heat recovery device 10 of the present application having three refrigerant flows.
  • the first heat exchange apparatus 100 includes a first heat exchanger 101, a second heat exchanger 102, and a first to third heat exchanger.
  • the first fluid flow W 1 flows into the first heat exchanger 101 and the first fluid flow flows out of the first heat exchanger 101.
  • W 1 may flow into the 1-2 heat exchanger 102, and the first fluid flow W 1 flowing out of the 1-2 heat exchanger 102 may be the 1-3 heat exchanger. And may flow into 103.
  • a first refrigerant flow F D1 may be introduced into the first heat exchanger 101, and the second refrigerant flow F D2 may be introduced into the 1-2 heat exchanger 102.
  • the third refrigerant flow F D3 may flow into the first 1-3 heat exchanger 103.
  • the first refrigerant flow F D1 introduced into the first heat exchanger 101 may include the first fluid flow W 1 introduced into the first heat exchanger 101 and the first fluid flow.
  • the second refrigerant flow F D2 which may be heat exchanged in the ⁇ 1 heat exchanger 101, and flows into the 1-2 heat exchanger 102, flows out of the 1-1 heat exchanger 101 and is discharged from the first heat exchanger 101.
  • the heat exchanger may exchange heat with the first fluid flow W 1 introduced into the heat exchanger 102
  • the third refrigerant flow F D3 introduced into the first heat exchanger 103 may be the first fluid flow.
  • the second fluid may be exchanged with the first fluid flow W 1 flowing out of the heat exchanger 102 and introduced into the first 1-3 heat exchanger 103.
  • first refrigerant flow (F D1 ) flowing out of the 1-1 heat exchanger 101 may flow into the first compressor 201 and flow out of the 1-2 heat exchanger 102.
  • the second refrigerant flow F D2 may be introduced into the second compressor 202
  • the third refrigerant flow F D3 flowing out of the first 1-3 heat exchanger 103 may be the third compressor 203. ) Can be introduced into.
  • the first refrigerant flow F D1 introduced into the first-1 heat exchanger 101 is performed by the first pressure drop device 401 and the second refrigerant flow F D2 and the first refrigerant flow F D2 . Since it is adjusted to have a relatively high temperature and pressure compared to the three refrigerant flow (F D3 ) and flows into the first heat exchange device 100, accordingly, after the heat exchange, the compression device 200, for example, the first compressor ( The temperature and the pressure of the first refrigerant flow F D1 flowing into 201 may be maintained high, thereby reducing energy required for compression.
  • the third refrigerant flow F D3 may be introduced into the second heat exchange device 300, and the first, second and third refrigerant flows F D1 and F D2 introduced into the second heat exchange device 300 are provided.
  • F D3 may be heat-exchanged with a second fluid stream W 2 flowing into the second heat exchange device 300, for example, water, to generate steam.
  • the first refrigerant flow F D1 flowing out of the second heat exchange device 300 flows into the first pressure drop device 401 to allow the second refrigerant flow F D2 and the third refrigerant flow ( F D3 ) may be decompressed to have a relatively higher temperature and pressure, and the second refrigerant flow F D2 flowing out of the second heat exchange device 300 flows into the second pressure drop device 402.
  • the pressure may be reduced to have a relatively lower temperature and pressure than the first refrigerant flow F D1 .
  • the third refrigerant flow (F D3 ) flowing out of the second heat exchange device (300) flows into the third pressure drop device (403) and is lower than the first and second refrigerant flows (F D1 , F D2 ).
  • the pressure may be reduced to have a relatively low temperature and pressure.
  • the first refrigerant flow F D1 discharged after being decompressed by the first pressure drop device 401 may flow into the first-1 heat exchanger 101, and the second pressure drop device ( The second refrigerant flow F D2 discharged after depressurizing at 402 may flow into the 1-2 heat exchanger 102, and the third refrigerant flow flowing out of the third pressure drop device 403 may be introduced. F D3 ) may flow into the first 1-3 heat exchanger 103.
  • FIG. 5 is a diagram schematically showing an embodiment of the heat recovery device 10 of the present application having four refrigerant flows.
  • the first heat exchange apparatus 100 may include a first heat exchanger 101, a second heat exchanger 102, and a first to third heat exchanger.
  • a heat exchanger (103) and a first to fourth heat exchanger (104) wherein the compression device (200) comprises a first compressor (201), a second compressor (202), a third compressor (203), and a fourth compressor.
  • the pressure drop device 400 includes a first pressure drop device 401, a second pressure drop device 402, a third pressure drop device 403, and a fourth pressure drop device 404. It may include.
  • the first fluid flow W 1 flows into the first-first heat exchanger 101 and the first fluid flow exits the first-first heat exchanger 101.
  • W 1 may flow into the 1-2 heat exchanger 102, and the first fluid flow W 1 flowing out of the 1-2 heat exchanger 102 may be the 1-3 heat exchanger.
  • the first fluid flow W 1 flowing into the 103 and flowing out of the first 1-3 heat exchanger 103 may flow into the first-4 heat exchanger 104.
  • the first refrigerant flow F D1 may be introduced into the first heat exchanger 101, and the second refrigerant flow F D2 may be introduced into the 1-2 heat exchanger 102.
  • the third refrigerant flow F D3 may flow into the first 1-3 heat exchanger 103, and the fourth refrigerant flow F D4 flows into the first-4 heat exchanger 104.
  • the first refrigerant flow F D1 introduced into the first heat exchanger 101 may be heat-exchanged with the first fluid flow W 1 introduced into the first heat exchanger 101.
  • the second refrigerant flow F D2 introduced into the 1-2 heat exchanger 102 flows out of the 1-1 heat exchanger 101 and flows into the 1-2 heat exchanger 102.
  • Heat exchanged with the first fluid flow (W 1 ) the third refrigerant flow (F D3 ) introduced into the first 1-3 heat exchanger 103 is discharged from the 1-2 heat exchanger (102)
  • the first fluid flow W 1 introduced into the 1-3 heat exchanger 103 may be heat-exchanged
  • the fourth refrigerant flow F D4 introduced into the 1-4 heat exchanger 104 may be formed by the first fluid flow W 1 .
  • the first refrigerant flow (F D1 ) flowing out of the 1-1 heat exchanger 101 may flow into the first compressor 201 and flow out of the 1-2 heat exchanger 102.
  • the second refrigerant flow F D2 may be introduced into the second compressor 202, and the third refrigerant flow F D3 flowing out of the first 1-3 heat exchanger 103 is the third compressor 203.
  • the fourth refrigerant flow (F D4 ) flowing out of the 1-4 heat exchanger 104 may be introduced into the fourth compressor 204.
  • the first refrigerant flow F D1 introduced into the first-1 heat exchanger 101 is formed by the second refrigerant flow F D2 and the first refrigerant pressure drop device 401. Since it is controlled to have a relatively high temperature and pressure compared to the third refrigerant flow (F D3 ) and the fourth refrigerant flow (F D4 ) to flow into the first heat exchange device (100), accordingly, after the heat exchange, the compression device (200) For example, the temperature and pressure of the first refrigerant flow F D1 flowing into the first compressor 201 can be maintained high, thereby reducing energy required for compression.
  • first refrigerant flow F D1 flowed out of the first compressor 201, the second refrigerant flow F D2 flowed out of the second compressor 202, and the third refrigerant flow out of the third compressor 203 flow out.
  • the third refrigerant flow F D3 and the fourth refrigerant flow F D4 discharged from the fourth compressor 204 may flow into the second heat exchange device 300, and the second heat exchange device 300 may be used.
  • the first refrigerant flow F D1 discharged from the second heat exchange device 300 flows into the first pressure drop device 401 to allow the second, third and fourth refrigerant flows F D2 and F to flow.
  • D3 , F D4 ) may be reduced in pressure and have a relatively higher temperature and pressure
  • the second refrigerant flow F D2 flowing out of the second heat exchange device 300 is transferred to the second pressure drop device 402.
  • Inflow may be reduced in pressure to have a temperature and pressure relatively lower than the first refrigerant flow (F D1 ).
  • the third refrigerant flow F D3 flowing out of the second heat exchange device 300 flows into the third pressure drop device 403 and is relatively higher than the first and second refrigerant flows F D1 and F D2 .
  • the fourth refrigerant flow (F D4 ) flowing out of the second heat exchanger is introduced into the fourth pressure drop device (404) and thus the first, second, and first It may be reduced in pressure to have a temperature and pressure relatively lower than the three refrigerant flows (F D1 , F D2 , F D3 ).
  • the first refrigerant flow F D1 discharged after being decompressed by the first pressure drop device 401 may flow into the first-1 heat exchanger 101, and the second pressure drop device ( The second refrigerant flow F D2 discharged after decompression at 402 may flow into the 1-2 heat exchanger 102.
  • the third refrigerant flow F D3 discharged after decompression by the third pressure drop device 403 may flow into the first to third heat exchanger 103, and the fourth pressure drop device 404 may be used.
  • the fourth refrigerant flow F D4 which is discharged after depressurizing at), may flow into the first to fourth heat exchanger 104.
  • the refrigerant flow passing through the first heat exchange device 100, the compression device 200, the second heat exchange device 300 and the pressure drop device 400 through the pipe Have different temperature and pressure characteristics, respectively, and flow into the first heat exchange device 100, the compression device 200, the second heat exchange device 300, and the pressure drop device 400 in a gaseous and / or liquid flow.
  • latent heat according to temperature, pressure and state changes of the refrigerant flow can be used as a heat source for steam generation.
  • the at least two or more refrigerant streams F D introduced into the first heat exchange device 100 may be a liquid phase flow, and the volume fraction of the liquid phase flow in the at least two or more refrigerant streams is 0.5 to 1.0, For example, it may be 0.9 to 1.0, preferably 0.99 to 1.0.
  • At least two or more refrigerant flows F D flowing out of the first heat exchange device 100 and flowing into the compression device 200 may be gaseous flows, and a volume fraction of the gaseous flows in the at least two or more refrigerant flows is 0.9.
  • 1.0 for example, 0.95 to 1.0, preferably 0.99 to 1.0.
  • the at least two or more refrigerant streams F D flowing out after isotropic compression in the compression device 200 may be a gaseous flow, and the volume fraction of the gaseous flow in the at least two or more refrigerant streams is 0.7 to 1.0, for example.
  • it may be 0.95 to 1.0, preferably 0.99 to 1.0.
  • the refrigerant flow (F D ) flowing out of the second heat exchange device 300 and introduced into the pressure drop device 400 may be a liquid flow, and the volume fraction of the liquid flow in the mixed refrigerant flow is 0.9 to 1.0. For example, it may be 0.95 to 1.0, preferably 0.99 to 1.0.
  • the at least two or more refrigerant flows F D flowing out of the pressure drop device 400 may be a liquid phase flow, and the fraction of the gaseous flow in the at least two or more refrigerant flows is 0 to 0.5, for example, 0. To 0.3, preferably 0 to 0.1.
  • the volume fraction means a ratio of the volume flow rate of the liquid flow or the gaseous flow to the volume flow rate of the entire refrigerant flow flowing through the pipe, wherein the volume flow rate is the fluid flowing per unit time. It represents the volume of and can be calculated
  • volumetric flow rate Av (m 3 / s)
  • A represents the cross-sectional area (m 2 ) of the pipe
  • v represents the flow rate (m / s) of the refrigerant flow.
  • Another embodiment of the heat recovery apparatus 10 of the present application includes a third heat exchange apparatus 800.
  • 6 is a diagram schematically showing still another embodiment of the heat recovery device 10 of the present application.
  • the heat recovery device 10 of the present application further includes a third heat exchange device 800 positioned between the first heat exchange device and the compression device 200 and between the second heat exchange device and the pressure drop device.
  • the third heat exchanger 800 may be a pipe connected between the first heat exchanger 100 and the compression device 200 and a pipe connected between the second heat exchanger 300 and the pressure drop device 400.
  • the third heat exchange device 800 the at least two or more refrigerant flows (F D ) flowing out of the first heat exchange device 100 is the third heat exchange device (800). After passing through the compression device 200 and the refrigerant flow flowing out of the second heat exchange device 300 passes through the third heat exchange device 800 and the pipe to be introduced to the pressure drop device 400.
  • the heat recovery device 10 of the present application includes the third heat exchange device 800, it is possible to prevent some vaporization of the refrigerant generated during isotropic compression of the refrigerant, and thus, the heat recovery device 10. ) Can increase the heat exchange efficiency.
  • isentropic compression means compressing under a condition in which entropy of a system is kept constant.
  • the isentropic compression may refer to adiabatic compression process of compressing in a state without heat exchange with the surroundings of the system.
  • the refrigerant circulating in the heat recovery apparatus 10 may be a refrigerant having a positive slope in the tangent of the saturated vapor curve of the temperature-entropy diagram, as shown in FIG. 7.
  • the slope of the tangential of the saturated steam curve of the temperature-entropy diagram of the refrigerant whose horizontal axis is entropy (J / kgK) and vertical axis is temperature (° C) is 1 to 3 at 50 ° C to 130 ° C.
  • the saturated steam curve in the temperature-entropy diagram means the portion of the curve to the right of the diagram based on the critical point of the diagram.
  • the heat recovery device 10 of the present application may include the third heat exchange device 800, thereby increasing the heat exchange efficiency of the heat recovery device 10. You can.
  • refrigerant if the slope of the tangent of the saturated steam curve of the temperature-entropy diagram is a refrigerant having a positive value, various refrigerants known in the art may be used, but are not particularly limited.
  • R245fa One or more refrigerants selected from the group consisting of R1234ze and R1234yf can be used.
  • At least two or more including first and second refrigerant flows F D1 and F D2 flowing out of the first heat exchange device 100 are introduced into the pressure drop device 400 after being introduced into the third heat exchange device 800, and in the first heat exchange device 100.
  • At least two refrigerant flows F D flowing out and the refrigerant flow flowing out of the second heat exchange device 300 may be heat-exchanged in the third heat exchange device 800.
  • the first refrigerant flow F D1 flowed out of the first heat exchanger 100 and the first refrigerant flow flown out of the second heat exchanger 200 ( F D1) is subject to heat exchange, and the first second coolant flow flowing out of the heat exchanger (100) (F D2) and a second refrigerant flow which the second outlet from the heat exchanger (300) (F D2) the heat exchange Can be.
  • the heat recovery device 10 may further include a fluid mixer 600 and a fluid distributor 700.
  • the fluid mixer is a member for combining at least two or more refrigerant flows F D flowing out of the compression device 200 into a single flow, and thus, the mixed refrigerant combined into the single flow.
  • Flow F M may enter the second heat exchange device 300.
  • the fluid mixer 600 may be formed in a pipe through which the refrigerant flows, and for example, at least two or more refrigerant streams F D flowing out of the compression device 200 may have a second heat exchange. It may be formed in a pipe formed to enter the device 300.
  • the fluid mixer 600 may include at least two refrigerant flows F D including the first and second refrigerant flows F D1 and F D2 discharged from the compression device 200. It may be formed to be introduced into the 600 after the mixture is introduced into the second heat exchange device 300, in this case, the mixed single refrigerant flow (F M ) introduced into the second heat exchange device 300 is Heat exchange with the second fluid flow (F D2 ) flowing into the second heat exchange device 300.
  • the fluid distributor 700 is a member for dividing the single refrigerant flow F M combined in the fluid mixer 600 into at least two refrigerant flows F D again.
  • the flow of the refrigerant F M combined in the above-described fluid mixer 600 may be divided into two or more refrigerant flows F D in the fluid distributor 700 and then introduced into the above-described first heat exchanger 100. have.
  • the fluid distributor 700 is formed in a pipe through which the refrigerant flows, for example, formed at the front end of at least two or more pressure drop devices 400 or between at least two or more pressure drop devices 400. It may be.
  • the fluid distributor 700 enters the second heat exchanger 300 after at least two or more refrigerant flows F D flowing out of the compression device 200 are mixed through the fluid mixer 600.
  • the mixed refrigerant flow F M flows out of the second heat exchanger 300 after heat exchange in the second heat exchanger 300, the mixed refrigerant flow F M flows out of the second heat exchanger 300.
  • the refrigerant flow F M may be located in a pipe formed to enter the at least two pressure drop device 400 through the third heat exchange device 800.
  • the refrigerant flow F M mixed in the above-described fluid mixer 600 flows out from the second heat exchanger 300 after being heat exchanged in the second heat exchanger 300, and the mixed refrigerant flow F M ) flows into the third heat exchanger 800, and the mixed refrigerant flow F M flowing out after the heat exchange in the third heat exchanger 800 passes through the fluid distributor 700 and is again at least two or more.
  • each may be introduced into the aforementioned first heat exchanger.
  • the fluid distributor 700 may be located between at least two or more pressure drop devices 400.
  • the fluid distributor 700 may be configured such that a single refrigerant flow decompressed through one pressure drop device, for example, a first pressure drop device 401, is provided in the remaining pressure drop device, for example, a second pressure drop device. And after being separated into at least two or more refrigerant streams F D via the fluid distributor 700, before entering the third pressure drop device 402, 403, one reduced pressure refrigerant stream, for example a first one.
  • Refrigerant flow (F D1 ) may be introduced into the first heat exchange device (100) without passing the pressure drop device, the remaining pressure-reduced refrigerant flow, for example, the second and third refrigerant flow (F D2 , F D3 ) May be formed to flow into the first heat exchange device 100 after flowing into the second and third pressure drop devices 402 and 403, respectively.
  • At least two or more coolant streams F D including the first and second coolant streams F D1 , F D2 exiting the compression device 200 may comprise the fluid mixer.
  • the second heat exchanger 300 may be introduced, and the mixed refrigerant flow F M introduced into the second heat exchanger 300 is the second heat exchanger 300.
  • the refrigerant flow flowing into the fluid distributor 700 is separated into at least two refrigerant flows F D including the first and second refrigerant flows F D1 , F D2 , and then at least two pressure drops. Can each enter the device 400.
  • the first refrigerant flow F D1 flowed out of the first heat exchanger 100 and the mixed refrigerant flow F flowed out of the second heat exchanger 300 are performed.
  • M is heat exchanged with each other, and the second refrigerant flow F D2 discharged from the first heat exchanger 100 and the mixed refrigerant flow F M heat exchanged with the first refrigerant flow F D1 are mutually different.
  • the temperature of the first refrigerant flow (F D1 ) flowing out of the third heat exchange device 800 and introduced into the compression device 200 and the second heat exchange device 300 are discharged from the third heat exchange device 300.
  • the temperature of the mixed refrigerant flow F M introduced into 800 may satisfy the following general formula (3).
  • T R3Cout represents the temperature of the first refrigerant flow (F D1 ) flowing out of the third heat exchange device 800 and flows into the compression device 200
  • T R3Hin represents the second heat exchange device (300).
  • the difference T R3Hin -T R3Cout of the temperature of the mixed refrigerant flow (F M ) introduced into the furnace is 1 ° C to 30 ° C, for example 3 ° C to 30 ° C, 5 ° C to 28 ° C, 10 ° C to 30 ° C or 5.0 It may be adjusted in the range of °C to 15.0 °C.
  • the temperature of the first refrigerant flow (F D1 ) flowing out of the third heat exchange device 800 and flowing into the compression device 200 and the second heat exchange device 300 are discharged from the third heat exchange device 800 and flow into the third heat exchange device 800.
  • the temperature of the mixed refrigerant flow F M is satisfied by the general formula 3
  • the temperature of the refrigerant flow flowing into the compression device 200 may be sufficiently increased to prevent some of the above-described vaporization of the refrigerant.
  • the heat exchange efficiency of the heat recovery device 10 may be increased.
  • the temperature of the first refrigerant flow (F D1 ) flowing out of the third heat exchange device 800 and flowing into the compression device 200 and the second heat exchange device 300 are discharged from the third heat exchange device 800 and flow into the third heat exchange device 800.
  • the temperature of the mixed refrigerant flow F M is not particularly limited, as long as it satisfies Formula 3, and may be variously adjusted according to the type of process to be applied and the conditions of each process.
  • the first refrigerant flow F D1 flowing out of the third heat exchange device 800 and flowing into the compression device 200 is 60 ° C. to 120 ° C., for example, 68 ° C. to 82 ° C., and 75 ° C.
  • the temperature of the mixed refrigerant flow F M flowing out of the second heat exchanger 300 and flowing into the third heat exchanger 800 is 100 ° C to 170 ° C, for example, 110 ° C to 125 ° C. °C, 125 °C to 140 °C or 150 °C to 170 °C, but is not particularly limited thereto.
  • At least two or more refrigerant flows F D flowing out of the third heat exchange device 800 and flowing into the compression device 200 may be gaseous flows, and the volume fraction of the gaseous flows in the at least two or more refrigerant flows is 0.9.
  • 1.0 for example, 0.95 to 1.0, preferably 0.99 to 1.0.
  • the mixed refrigerant flow F M flowing out of the second heat exchange device 300 and flowing into the third heat exchange device 800 may be a liquid flow, and the volume fraction of the liquid flow in the mixed refrigerant flow may be 0.9 to 1.0, for example, 0.95 to 1.0, preferably 0.99 to 1.0.
  • the heat exchange apparatus of the present application may be a single assembly having two or more heat exchangers coupled thereto or a heat exchange unit including two or more heat exchangers, and the compression apparatus 200 may be one assembly having two or more compressors coupled thereto. Or a compression unit comprising two or more compressors.
  • the first heat exchange apparatus 100 and the third heat exchange apparatus 800 may include at least two heat exchangers, and the compression apparatus 200 may include at least two compressors.
  • FIG. 8 is a diagram schematically showing an embodiment of the heat recovery device 10 of the present application having two refrigerant flows.
  • the first heat exchanger 100 includes a 1-1 heat exchanger 101 and a 1-2 heat exchanger 102.
  • the third heat exchange device 800 includes a 3-1 heat exchanger 801 and a 3-2 heat exchanger 802, and the compression device 200 includes a first compressor 201 and a second compressor 202.
  • the pressure drop device 400 may include a first pressure drop device 401 and a second pressure drop device 402.
  • the first fluid flow W 1 may flow into the first-first heat exchanger 101, and the first flow-out of the first-1 heat exchanger 101 may be introduced.
  • the fluid flow W 1 may be introduced into the first 1-2 heat exchanger 102
  • the first refrigerant flow F D1 may be introduced into the first-1 heat exchanger 101
  • the second refrigerant flow F D2 may be introduced into the 1-2 heat exchanger 102.
  • the first refrigerant flow F D1 introduced into the first heat exchanger 101 may be heat-exchanged with the first fluid flow W 1 introduced into the first heat exchanger 101.
  • the second refrigerant flow F D2 introduced into the 1-2 heat exchanger 102 flows out of the 1-1 heat exchanger 101 and flows into the 1-2 heat exchanger 102. It may be heat exchanged with the first fluid stream W 1 .
  • the first refrigerant flow (F D1 ) flowing out of the 1-1 heat exchanger 101 may flow into the first compressor 201 after flowing into the 3-1 heat exchanger 801,
  • the second refrigerant flow F D2 flowing out of the 1-2 heat exchanger 102 may flow into the second compressor 202 after entering the 3-2 heat exchanger 802.
  • the first refrigerant flow F D1 introduced into the first-1 heat exchanger 101 is, as described above, compared to the second refrigerant flow F D2 in the first pressure drop device 401. Since it is adjusted to have a relatively high temperature and pressure flows into the first heat exchange device 100, accordingly, after the heat exchange in the 3-1 heat exchanger 801, the compression device 200, for example, the first compressor The temperature and pressure of the first refrigerant flow F D1 flowing into the 201 can be maintained high, thereby reducing energy required for compression.
  • the first refrigerant flow F D1 discharged from the first compressor 201 and the second refrigerant flow F D2 discharged from the second compressor 202 are the fluid mixer 600.
  • the mixed refrigerant flow F M introduced into the second heat exchanger 300 flows into the second heat exchanger 300.
  • the second fluid stream W 2 for example, can be heat exchanged with water to produce steam.
  • the mixed refrigerant flow F M flowing out after the heat exchange with the second fluid flow W 2 in the second heat exchange device 300 may flow into the 3-1 heat exchanger 801, and thus The first refrigerant flow F D1 flowing out of the first heat exchanger 101 and the mixed refrigerant flow F M flowing out of the second heat exchanger 300 are the third heat exchanger. Heat exchange at 801.
  • the mixed refrigerant flow flowing out after the heat exchange with the first refrigerant flow F D1 in the 3-1 heat exchanger 801 may flow into the 3-2 heat exchanger 802.
  • the second refrigerant flow F D2 flowing out of the 1-2 heat exchanger 102 and the mixed refrigerant flow F M flowing out of the 3-1 heat exchanger 801 are generated by the third refrigerant.
  • -2 may be heat exchanged in heat exchanger 802.
  • the mixed refrigerant flow F M flowing out after the heat exchange in the 3-2 heat exchanger 802 may flow into the fluid distributor 700, and flow into the fluid distributor 700.
  • the mixed refrigerant flow F M may be separated into the first refrigerant flow F D1 and the second refrigerant flow F D2 in the fluid distributor 700.
  • the first refrigerant flow F D1 separated from the fluid distributor 700 flows into the first pressure drop device 401 to reduce the temperature and pressure to be relatively higher than the second refrigerant flow F D2 .
  • the second refrigerant flow F D2 separated from the fluid distributor 700 flows into the second pressure drop device 402 to be relatively lower in temperature and pressure than the first refrigerant flow F D1 . It can be reduced to have a.
  • the first refrigerant flow F D1 discharged after being decompressed in the first pressure drop device 401 may flow into the first-1 heat exchanger 101, and the second pressure drop device
  • the second refrigerant flow F D2 discharged after decompression at 402 may flow into the 1-2 heat exchanger 102.
  • FIG. 9 is a view schematically showing an embodiment of the heat recovery device 10 of the present application having three refrigerant flows.
  • the first heat exchange apparatus 100 includes a first heat exchanger 101, a second heat exchanger 102, and a first to third heat exchanger.
  • the third heat exchanger 800 may include a third heat exchanger 801, a third-2 heat exchanger 802, and a third third heat exchanger 803.
  • the compression device 200 may include a first compressor 201, a second compressor 202, and a third compressor 203, and the pressure drop device 400 may include a first pressure drop.
  • the device 401, the second pressure drop device 402 and the third pressure drop device 403 can be included.
  • the first fluid flow W 1 flows into the first heat exchanger 101 and the first fluid flow flows out of the first heat exchanger 101.
  • W 1 may flow into the 1-2 heat exchanger 102, and the first fluid flow W 1 flowing out of the 1-2 heat exchanger 102 may be the 1-3 heat exchanger. And may flow into 103.
  • the first refrigerant flow F D1 may flow into the first-first heat exchanger 101, and the second refrigerant flow F D2 flows into the 1-2 heat exchanger 102.
  • the third refrigerant flow F D3 may be introduced into the first 1-3 heat exchanger 103.
  • the first refrigerant flow F D1 introduced into the first heat exchanger 101 may be heat-exchanged with the first fluid flow W 1 introduced into the first heat exchanger 101.
  • the second refrigerant flow F D2 introduced into the 1-2 heat exchanger 102 flows out of the 1-1 heat exchanger 101 and flows into the 1-2 heat exchanger 102.
  • the third refrigerant flow (F D3 ) introduced into the first 1-3 heat exchanger 103 is discharged from the 1-2 heat exchanger (102) Heat exchange with the first fluid flow (W 1 ) introduced into the 1-3 heat exchanger (103).
  • first refrigerant flow (F D1 ) flowing out of the 1-1 heat exchanger 101 may flow into the first compressor 201 after being introduced into the 3-1 heat exchanger 801.
  • the second refrigerant flow F D2 flowing out of the 1-2 heat exchanger 102 may flow into the second compressor 202 after entering the 3-2 heat exchanger 802.
  • the third refrigerant flow F D3 flowing out of the first to third heat exchanger 103 may be introduced to the third compressor 203 after being introduced to the third or third heat exchanger 803.
  • the first refrigerant flow F D1 introduced into the first-1 heat exchanger 101 is performed by the first pressure drop device 401 and the second refrigerant flow F D2 and the first refrigerant flow F D2 . Since it is adjusted to have a relatively high temperature and pressure compared to the three refrigerant flow (F D3 ) flows into the first heat exchange device, accordingly, after the heat exchange in the 3-1 heat exchanger 801, the compression device 200, For example, the temperature and pressure of the first refrigerant flow F D1 flowing into the first compressor 201 can be maintained high, thereby reducing energy required for compression.
  • the first refrigerant flow F D1 discharged from the first compressor 201, the second refrigerant flow F D2 discharged from the second compressor 202, and the third compressor may be introduced into the fluid mixer 600 to be combined and then introduced into the second heat exchanger 300, and the mixture introduced into the second heat exchanger 300 may be mixed.
  • the refrigerant flow F M may be heat-exchanged with the second fluid stream W 2 , for example, water, which flows into the second heat exchange device 300 to generate steam.
  • the mixed refrigerant flow F M flowing out of the second heat exchange device 300 may flow into the 3-1 heat exchanger 801, and thus, in the 1-1 heat exchanger 101.
  • the outflowed first refrigerant flow F D1 and the mixed refrigerant flow F M flowing out from the second heat exchanger may be heat exchanged in the 3-1 heat exchanger 801.
  • the mixed refrigerant flow F M flowing out of the 3-1 heat exchanger 801 may flow into the 3-2 heat exchanger 802, and thus, the 1-2 heat exchanger 102.
  • the second refrigerant flow (F D2 ) and the mixed refrigerant flow (F M ) flowing out of the 3-1 heat exchanger 801 may be heat exchanged in the 3-2 heat exchanger (802). .
  • the mixed refrigerant flow F M flowing out of the third-2 heat exchanger 802 may flow into the third-3 heat exchanger 803, and thus, the first 1-3 heat exchanger
  • the third refrigerant flow F D3 that flows out of the 103 and the mixed refrigerant flow F M that flows out of the 3-2 heat exchanger 802 may be heat-exchanged in the 3-3 heat exchanger 803. Can be.
  • the mixed refrigerant flow F M flowing out of the third-3 heat exchanger 803 may flow into the fluid distributor 700, and the mixture flowed into the fluid distributor 700.
  • the refrigerant flow F M may be separated into the first refrigerant flow F D1 , the second refrigerant flow F D2 , and the third refrigerant flow F D3 in the fluid distributor 700.
  • the first refrigerant flow F D1 separated from the fluid distributor 700 flows into the first pressure drop device 401 and is relative to the second refrigerant flow F D2 and the third refrigerant flow F D3 .
  • a second refrigerant flow F D2 separated from the fluid distributor 700 may be introduced into the second pressure drop device 402 to allow the first refrigerant flow F to be reduced.
  • D1 ) may be decompressed to have a lower temperature and pressure
  • the third refrigerant flow F D3 separated from the fluid distributor 700 flows into the third pressure drop device 403 to be supplied to the first pressure drop device 403.
  • the first refrigerant flow F D1 discharged after being decompressed in the first pressure drop device 401 may flow into the first-1 heat exchanger 101, and the second pressure drop device
  • the second refrigerant flow F D2 discharged after depressurizing at 402 may flow into the 1-2 heat exchanger 102, and the third refrigerant flow flowed out of the third pressure drop device 403.
  • F D3 may be introduced into the first 1-3 heat exchanger 103.
  • FIG. 10 is a view schematically showing an embodiment of a heat recovery device 10 of the present application having four refrigerant flows.
  • the first heat exchanger 100 includes a first heat exchanger 101, a second heat exchanger 102, and a first to third heat exchanger.
  • a heat exchanger 103 and a 1-4 heat exchanger 104 wherein the third heat exchange apparatus 800 includes a 3-1 heat exchanger 801, a 3-2 heat exchanger 802, and a third heat exchanger.
  • a fourth compressor 204 wherein the pressure drop device 400 includes a first pressure drop device 401, a second pressure drop device 402, a third pressure drop device 403, and a fourth pressure drop device ( 404).
  • the first fluid flow W 1 may flow into the first-first heat exchanger 101 and the first flow-out of the first-1 heat exchanger 101. Fluid flow W 1 may enter the 1-2 heat exchanger 102. The first fluid flow W 1 flowing out of the 1-2 heat exchanger 102 may flow into the first 1-3 heat exchanger 103 and flow out of the 1-3 heat exchanger 103. First fluid stream W 1 may be introduced into the first to fourth heat exchanger 104.
  • the first refrigerant flow F D1 may be introduced into the first-1 heat exchanger 101, and the second refrigerant flow F D2 may be introduced into the 1-2 heat exchanger 102.
  • the third refrigerant flow F D3 may flow into the first 1-3 heat exchanger 103, and the fourth refrigerant flow F D4 may flow into the first-4 heat exchanger 104. Can be.
  • the first refrigerant flow F D1 introduced into the first heat exchanger 101 may be heat-exchanged with the first fluid flow W 1 introduced into the first heat exchanger 101.
  • the second refrigerant flow F D2 introduced into the 1-2 heat exchanger 102 flows out of the 1-1 heat exchanger 101 and flows into the 1-2 heat exchanger 102.
  • Heat exchanged with the first fluid flow (W 1 ) the third refrigerant flow (F D3 ) introduced into the first 1-3 heat exchanger 103 is discharged from the 1-2 heat exchanger (102)
  • the first fluid flow W 1 introduced into the 1-3 heat exchanger 103 may be heat-exchanged
  • the fourth refrigerant flow F D4 introduced into the 1-4 heat exchanger 104 may be formed by the first fluid flow W 1 .
  • first refrigerant flow (F D1 ) flowing out of the 1-1 heat exchanger 101 may flow into the first compressor 201 after being introduced into the 3-1 heat exchanger 801.
  • the second refrigerant flow F D2 flowing out of the 1-2 heat exchanger 102 may flow into the second compressor 202 after entering the 3-2 heat exchanger 802.
  • the third refrigerant flow F D3 flowing out of the first 1-3 heat exchanger 103 may flow into the third compressor 203 after flowing into the third-3 heat exchanger 803, and
  • the fourth refrigerant flow F D4 flowing out of the 1-4 heat exchanger 104 may flow into the fourth compressor 204 after entering the 3-4 heat exchanger 804.
  • the first refrigerant flow F D1 introduced into the first-1 heat exchanger 101 is formed by the second refrigerant flow F D2 and the first refrigerant pressure drop device 401. Since it is adjusted to have a relatively high temperature and pressure compared to the third refrigerant flow (F D3 ) and the fourth refrigerant flow (F D4 ) and flows into the first heat exchange device (100), the 3-1 heat exchanger ( After the heat exchange at 801, the temperature and pressure of the first refrigerant flow F D1 flowing into the compression device 200, for example, the first compressor 201, can be maintained high, thereby reducing energy required for compression. have.
  • the first refrigerant flow F D1 flowing out of the first compressor 201, the second refrigerant flow F D2 flowing out of the second compressor 202, and the third compressor ( The third refrigerant flow F D3 and the fourth refrigerant flow F D4 , which are discharged from the fourth compressor 204, flow into the fluid mixer 600 and are mixed with each other. 300 may be introduced into the second heat exchange apparatus 300, and the mixed refrigerant flow F M introduced into the second heat exchange apparatus 300 may include a second fluid flow W 2 flowing into the second heat exchange apparatus 300, for example. For example, it can exchange heat with water to produce steam.
  • the mixed refrigerant flow F M flowing out of the second heat exchanger 300 may flow into the 3-1 heat exchanger 801, and thus, the 1-1 heat exchanger 101.
  • the first refrigerant flow (F D1 ) and the mixed refrigerant flow (F M ) flowing out of the 1-2 heat exchanger 102 may be heat exchanged in the 3-1 heat exchanger (801). .
  • the mixed refrigerant flow F M flowing out of the 3-1 heat exchanger 801 may flow into the 3-2 heat exchanger 802, and thus, the 1-2 heat exchanger 102.
  • the second refrigerant flow F D2 flowed out from the mixed refrigerant flow F M flowing out of the 3-1 heat exchanger 801 may be heat-exchanged in the 3-2 heat exchanger 802.
  • the mixed refrigerant flow F M flowing out of the 3-2 heat exchanger 802 may flow into the 3-3 heat exchanger 803, and accordingly, the 1-3 heat exchanger 103
  • the third refrigerant flow (F D3 ) and the mixed refrigerant flow (F M ) flowing out of the 3-2 heat exchanger 802 may be heat-exchanged in the 3-3 heat exchanger (803).
  • the mixed refrigerant flow F M flowing out of the 3-3 heat exchanger 803 may flow into the 3-4 heat exchanger 804, and thus, the 1-4 heat exchanger.
  • the fourth refrigerant flow F D4 discharged from the 104 and the mixed refrigerant flow F M discharged from the third-3 heat exchanger 803 may be heat-exchanged in the third-4 heat exchanger 804. Can be.
  • the mixed refrigerant flow F M flowing out of the 3-4 heat exchanger 804 may flow into the fluid distributor 700, and the mixture flowed into the fluid distributor 700.
  • Refrigerant flow F M is generated in the fluid distributor 700 by the first refrigerant flow F D1 , the second refrigerant flow F D2 , the third refrigerant flow F D3 , and the fourth refrigerant flow F D4. ) Can be separated.
  • the first refrigerant flow F D1 separated from the fluid distributor 700 flows into the first pressure drop device 401 to allow the second, third and fourth refrigerant flows F D2 , F D3,. F D4 ) may be decompressed to have a relatively higher temperature and pressure, and the second refrigerant flow F D2 separated from the fluid distributor 700 flows into the second pressure drop device 402 to provide the first pressure drop. It may be reduced in pressure to have a temperature and pressure relatively lower than the one refrigerant flow (F D1 ).
  • the third refrigerant flow F D3 separated from the fluid distributor 700 flows into the third pressure drop device 403 and is relatively smaller than the first and second refrigerant flows F D1 and F D2 .
  • the fourth refrigerant flow F D4 separated from the fluid distributor 700 may be introduced into the fourth pressure drop device 404 to be reduced in pressure and have a low temperature and a pressure. It can be reduced in pressure to have a temperature and pressure relatively lower than the three refrigerant flows (F D1 , F D2 , F D3 ).
  • the first refrigerant flow F D1 discharged after being decompressed in the first pressure drop device 401 may flow into the first-1 heat exchanger 101, and the second pressure drop device The outflowed second refrigerant flow F D2 decompressed at 402 may flow into the 1-2 heat exchanger 102.
  • the third refrigerant flow F D3 discharged after decompression by the third pressure drop device 403 may flow into the first to third heat exchanger 103, and the fourth pressure drop device 404 may be used.
  • the fourth refrigerant flow (F D4 ) flowing out from) may be introduced into the 1-4 heat exchanger (104).
  • Another embodiment of the present application provides a heat recovery method.
  • Exemplary heat recovery methods can be performed using the above-described heat recovery apparatus 10, through which, as described above, in an industrial site or various chemical processes, for example, in the production of petrochemical products Steam can be generated by using the lower heat source below 120 ° C without discarding it, and the generated steam can be used in various processes, thereby reducing the use of high temperature steam, which is an external heat source for use in a reactor or a distillation column. Energy efficiency can be maximized.
  • by dividing and circulating one refrigerant stream in cascade at least two or more refrigerant streams may be heat-exchanged with the waste heat stream, and the heat recovery apparatus using the single refrigerant flow as the pressure of the refrigerant flow flowing into the compressor (10). It can be adjusted relatively high compared to), thereby reducing the amount of energy required for compression in the compressor.
  • the heat recovery method includes a refrigerant circulation step, a first heat exchange step and a second heat exchange step and a third heat exchange step.
  • the heat recovery method the refrigerant to circulate the refrigerant flow through the first heat exchange device 100, the compression device 200, the second heat exchange device 300 and the pressure drop device 400 in sequence.
  • the heat recovery method may include (i) introducing at least two or more refrigerant streams F D including a refrigerant stream and a second refrigerant stream into the first heat exchange apparatus 100, and (ii) the first heat exchange apparatus 100.
  • At least two or more refrigerant flows F D flowing out of the heat exchange device 100 are introduced into the compression device 200, and (iii) the first and second refrigerant flows F D1 , After mixing at least two or more refrigerant stream (F D ) including F D2 ) to the second heat exchange device (300), (iv) the mixed refrigerant flow (F) flowing out of the second heat exchange device (300) M ) is introduced into the pressure drop device 400, (v) the refrigerant flow flowing out of the pressure drop device 400 comprises the first refrigerant flow (F D1 ) and the second refrigerant flow (F D2 ) and separating at least two or more refrigerant flow (F D), (vi) the separation of the first refrigerant flow (F D1) and a second port for a refrigerant flow (F D2) It may include a coolant circulation step which comprises introducing at least two refrigerant flow (F D) to the first heat exchange device 100 to.
  • the heat recovery method the first refrigerant flow (F D ) flowing into the first heat exchange device 100 to heat exchange with the first fluid flow (W 1 ) flowing into the first heat exchange device (100).
  • a first heat exchange step comprising; A second heat exchange comprising exchanging the first fluid flow W 1 heat exchanged with the first refrigerant flow F D1 with a second refrigerant flow F D2 flowing into the first heat exchange device 100. step; And a third heat exchange step of exchanging the mixed refrigerant flow F M introduced into the second heat exchange device 300 with the second fluid flow W 2 introduced into the second heat exchange device 300.
  • the refrigerant circulation step, the first heat exchange step, the second heat exchange step and the third heat exchange step may be performed sequentially or independently of one another in any order.
  • the process of (i) to (vi) of the refrigerant circulation step is a circulation process, as long as the refrigerant flow can be circulated as described above, any process may be performed first.
  • the temperature of the first refrigerant flow (F D1 ) flowing out of the first heat exchange apparatus 100 and the first fluid flow (W 1 flowing into the first heat exchange apparatus 100) ) can satisfy the following general formula (1).
  • T F1 represents the temperature of the first fluid flow W 1 flowing into the first heat exchange apparatus 100
  • T R1 represents the first refrigerant flow flowing out of the first heat exchange apparatus 100 ( F D1 ) is shown.
  • the temperature of the first refrigerant flow F D1 flowing out of the first heat exchange apparatus 100 and the temperature of the first fluid flow W 1 flowing into the first heat exchange apparatus 100 satisfy the general formula ( 1 ).
  • the first refrigerant in the front stage is relatively higher than the flow in the next stage of the refrigerant flow in the plurality of stages, for example, the second refrigerant flow F D2 , the third refrigerant flow F D3 , or the fourth refrigerant flow F D4 .
  • the flow F D1 may be introduced into the compression device 200 in a state of high temperature and high pressure. Thus, the amount of energy used in the compressor can be reduced.
  • the pressure of the first refrigerant flow (F D1 ) flowing out of the first heat exchange device 100 and introduced into the compression device 200 and the first discharged from the compression device 200 may satisfy the following general formula (2).
  • P C1 represents a pressure bar of the first refrigerant flow F D1 flowing out of the compression device 200
  • P H1 flows out of the first heat exchange device 100 and is compressed in the compression device 200.
  • the pressure of the first refrigerant flow (F D1 ) flowing out of the first heat exchange device 100 and the pressure of the first refrigerant flow (F D1 ) flowing out of the compression device 200) Detailed description thereof is the same as that described in the above-described heat recovery device 10, and will be omitted.
  • the first heat exchange device 100, the compression device 200, the second heat exchange device 200 and the pressure drop device 400 in sequence, the first heat exchange device 100, the compression device 200, the second heat exchange device 200 and the pressure drop device 400 in sequence
  • the refrigerant circulating to be a refrigerant having a positive slope of the tangent of the saturated steam curve of the temperature-entropy diagram for example, the horizontal axis is entropy (J / kg ⁇ K), the vertical axis is the temperature (°C
  • the slope of the tangent of the saturated steam curve of the temperature-entropy line may be 1 to 3 at 50 ° C to 130 ° C.
  • the refrigerant circulation step may be introduced into the compression device 200 after the at least two or more refrigerant flow (F D ) flowing out of the first heat exchange device 100 flows into the third heat exchange device (800),
  • the mixed refrigerant flow F M flowing out of the second heat exchange device 300 may be introduced into the third heat exchange device 800, and then introduced into the pressure drop device 400.
  • the heat recovery method of the present application the first refrigerant flow (F D1 ) flowing out of the first heat exchange device 100 and the mixed refrigerant flow (F D ) flowing out of the second heat exchange device (300).
  • the temperature of the first refrigerant flow F D1 flowing out of the third heat exchange device 800 and flowing into the compression device 200 and the second heat exchange device 300 are discharged from the third heat exchange device 300.
  • the temperature of the mixed refrigerant flow (F M ) introduced into 800 may satisfy the following general formula (3).
  • T R3Cout represents the temperature of the first refrigerant flow (F D1 ) flowing out of the third heat exchange device 800 and introduced into the compression device 200
  • T T3Hin is the second heat exchange device (300)
  • the temperature of the mixed refrigerant stream F M flowing out from and introduced into the third heat exchanger 800 is shown.
  • the temperature of the first refrigerant flow (F D1 ) flowing out of the third heat exchange device 800 and flowing into the compression device 200 and the second heat exchange device 300 are discharged from the third heat exchange device 800 and flow into the third heat exchange device 800.
  • the temperature of the mixed refrigerant flow F M is satisfied by the general formula 3
  • the temperature of the refrigerant flow flowing into the compression device 200 may be sufficiently increased to prevent some of the above-described vaporization of the refrigerant.
  • the heat exchange efficiency of the heat recovery device 10 may be increased.
  • detailed descriptions of specific temperature, pressure, and flow rate conditions are the same as described above in the heat recovery apparatus 10, and thus will be omitted.
  • the second fluid W 2 flowing into the second heat exchange device 300 may be water
  • the exemplary heat recovery method of the present application may be The method may further include a steam generation step of discharging the heat exchanged water and the refrigerant flow flowing into the second heat exchange device 300 as steam.
  • another embodiment of the heat recovery method may further include condensing and discharging the first fluid stream W 1 flowing out of the first heat exchange apparatus 100.
  • the heat recovery apparatus 10 and method of the present application can be applied to various petrochemical processes.
  • the temperature of the waste heat generated in the process is about 85 ° C.
  • the calorific value of about 6.8 Gcal / hr is discarded, it is possible to apply to the cumene manufacturing process.
  • the temperature of the waste heat generated in the absorber is about 75 ° C. In this case, the heat amount of about 1.6 to 3.4 Gcal / hr is discarded, and it is applicable to the process of producing acrylic acid.
  • steam can be generated by using a lower heat source of less than 120 ° C. discharged from an industrial site or various chemical processes, for example, a petrochemical product manufacturing process. Since steam can be used in various processes, it is possible to reduce the use of high temperature steam, which is an external heat source for use in a reactor or a distillation column, to maximize energy saving efficiency and to convert a single refrigerant flow into a cascade.
  • high temperature steam which is an external heat source for use in a reactor or a distillation column
  • the pressure of the refrigerant flow flowing into the compressor can be adjusted relatively higher than that of a heat recovery apparatus using a single refrigerant flow. The amount of energy needed for compression can be reduced.
  • FIG. 1 is a view schematically showing a conventional waste heat treatment apparatus.
  • FIGS. 2 and 6 are diagrams schematically showing an exemplary heat recovery apparatus of the present application.
  • 3 and 8 are diagrams schematically showing an embodiment of the heat recovery apparatus of the present application having two refrigerant flows.
  • FIGS 4 and 9 are diagrams schematically showing an embodiment of the heat recovery device of the present application having three refrigerant flows.
  • FIG 5 and 10 are diagrams schematically showing an embodiment of the heat recovery apparatus of the present application having four refrigerant flows.
  • FIG. 7 is a graph exemplarily illustrating a temperature-entropy diagram of a refrigerant of the present application.
  • 11 and 12 are diagrams schematically showing a heat recovery apparatus according to a comparative example of the present application.
  • compression device 201 first compressor
  • first pressure drop device 402 second pressure drop device
  • F D at least two refrigerant flows
  • F D1 first refrigerant flow
  • the first refrigerant flow in a state of 90.0 ° C., 9.3 kgf / cm 2 g (10.1 bar), and a gas volume fraction of 0.0 is introduced into the first heat exchanger at a flow rate of 30,000 kg / hr, and at the same time the first ⁇ 1 heat exchanger was introduced into a heat exchanger at a flow rate of 100,000 kg / hr at 110.0 ° C., 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0.
  • the waste heat flow was discharged from the 1-1 heat exchanger at a flow rate of 100,000 kg / hr with a flow rate of 100.3 ° C., 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0. -2 was introduced into the heat exchanger.
  • the second heat exchanger was introduced at a flow rate of 29,000 kg / hr by introducing a second refrigerant flow having a flow rate of 80.0 ° C., 7.1 kgf / cm 2 g (7.94 bar), and a gas volume fraction of 0.0 at a flow rate of 29,000 kg / hr. .
  • the waste heat flow was discharged from the 1-2 heat exchanger at a flow rate of 100,000 kg / hr with 90.1 ° C., 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0. It was introduced into 1-3 heat exchanger. At the same time, the heat exchanger was introduced into the first 1-3 heat exchanger by introducing a third refrigerant flow having a flow rate of 70.0 ° C., 5.2 kgf / cm 2 g (6.1 bar) and a gas volume fraction of 0.0 at a flow rate of 26,000 kg / hr. .
  • the waste heat flow was flowed out of the 1-3 heat exchanger at a flow rate of 100,000 kg / hr at 80.3 ° C., 1.0 kgf / cm 2 g and a gas volume fraction of 0.0.
  • the first refrigerant flow flowed out at 90.0 ° C., 9.3 kgf / cm 2 g (10.1 bar), and a gas volume fraction of 1.0 was flowed into the first compressor.
  • the second refrigerant flow flowing out after the heat exchange in the 1-2 heat exchanger was introduced into the second compressor after flowing out at a state of 80.1 ° C, 7.1 kgf / cm 2 g (7.94 bar), and a gas volume fraction of 1.0.
  • the third refrigerant flow flowed out at 70.3 ° C., 5.2 kgf / cm 2 g (6.1 bar), and the gas volume fraction was 1.0 and flowed into the third compressor.
  • the first refrigerant stream compressed by the first compressor was discharged from the first compressor at a state of 125.0 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 0.83.
  • the first compressor The amount of work used at was 146,754.0 W.
  • the second refrigerant stream compressed in the second compressor flowed out of the second compressor at a state of 125.0 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 0.79.
  • the second compressor The amount of work used at was 183,232.0 W.
  • the third refrigerant stream compressed by the third compressor was discharged from the third compressor in a state of 125.0 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 0.75.
  • the amount of work used in the three compressors was 202,341.0 W.
  • the first, second and third refrigerant flows flowing out of the first, second and third compressors, respectively, were introduced into the fluid mixer and mixed, and 125.0 ° C., 20.7 kgf / cm 2 g (21.3 bar) ),
  • a mixed refrigerant flow with a gas volume fraction of 0.79 was introduced into the second heat exchanger condenser at a flow rate of 85,000 kg / hr.
  • the condenser was introduced at 115.0 ° C., 0.7 kgf / cm 2 g, and a gas volume fraction of 0.0 at a flow rate of 10,000 kg / hr to exchange heat with the refrigerant.
  • the mixed refrigerant stream was separated into first and second refrigerant streams having a gas volume fraction of 125.0 ° C., 20.7 kgf / cm 2 g (21.3 bar), respectively, and the first refrigerant.
  • the flow flows into the first control valve at a flow rate of 30,000 kg / hr
  • the second refrigerant flow flows into the second control valve at a flow rate of 29,000 kg / hr
  • the third refrigerant flow flows at 26,000 kg / hr.
  • the flow rate was reduced by flowing into the third control valve.
  • the coefficient of performance of the heat recovery apparatus was calculated by the following general formula 5, shown in Table 1 below.
  • the coefficient of performance represents the amount of heat absorbed by the heat exchange medium to the energy input into the compressor, that is, the ratio of the energy recovered to the energy input. For example, if the coefficient of performance is 3, it means that three times the amount of heat of the input electricity is obtained.
  • Q represents the amount of heat condensed by the condenser
  • W represents the total amount of work done by the compressor
  • Three refrigerants (1,1,1,3,3-pentafluoropropane, R245fa) flow through the first heat exchanger, the third heat exchanger, the compression unit, the second heat exchanger, the third heat exchanger and at least two control valves.
  • the refrigerant was circulated to pass sequentially.
  • the first refrigerant flow in a state of 90.0 ° C., 9.3 kgf / cm 2 g (10.1 bar) and a gas volume fraction of 0.0 is introduced into the 1-1 heat exchanger at a flow rate of 30,000 kg / hr, and at the same time
  • the heat exchanger was introduced into a 1-1 heat exchanger at 110.0 ° C., 1.0 kgf / cm 2 g, and a waste heat stream having a gas volume fraction of 0.0 at a flow rate of 100,000 kg / hr.
  • the waste heat flow was discharged from the 1-1 heat exchanger at a flow rate of 100,000 kg / hr with a flow rate of 100.3 ° C., 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0. -2 was introduced into the heat exchanger.
  • the second heat exchanger was introduced at a flow rate of 29,000 kg / hr by introducing a second refrigerant flow having a flow rate of 80.0 ° C., 7.1 kgf / cm 2 g (7.94 bar), and a gas volume fraction of 0.0 at a flow rate of 29,000 kg / hr. .
  • the waste heat flow was discharged from the 1-2 heat exchanger at a flow rate of 100,000 kg / hr with 90.1 ° C., 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0. It was introduced into 1-3 heat exchanger. At the same time, the heat exchanger was introduced into the first 1-3 heat exchanger by introducing a third refrigerant flow having a flow rate of 70.0 ° C., 5.2 kgf / cm 2 g (6.1 bar) and a gas volume fraction of 0.0 at a flow rate of 26,000 kg / hr. .
  • the waste heat flow was flowed out of the 1-3 heat exchanger at a flow rate of 100,000 kg / hr at 80.3 ° C., 1.0 kgf / cm 2 g and a gas volume fraction of 0.0.
  • the first refrigerant flow flowing out after the heat exchange in the first heat exchanger flows into the third heat exchanger, and the first refrigerant flows out of the first heat exchanger and flows into the third heat exchanger.
  • the first refrigerant flow flowed out of the 3-1 heat exchanger after heat exchange and flowed into the first compressor.
  • the second refrigerant flow which flows out after the heat exchange in the 1-2 heat exchanger is introduced into the 3-2 heat exchanger, and the second refrigerant flows out of the 1-2 heat exchanger and flows into the 3-2 heat exchanger.
  • the refrigerant flow flowed out of the 3-2 heat exchanger after the heat exchange and flowed into the second compressor.
  • the third refrigerant flow flowing out after the heat exchange in the first 1-3 heat exchanger is introduced into the third-3 heat exchanger, and the third refrigerant flowed out of the first 1-3 heat exchanger and introduced into the third-3 heat exchanger.
  • the refrigerant flow flowed out of the 3-3 heat exchanger after heat exchange and flowed into the third compressor.
  • the first, second and third refrigerant flows flowing out of the first, second and third compressors are introduced into a condenser, which is a second heat exchanger, to exchange heat with the fluid flow passing through the condenser.
  • the flow of refrigerant flowed out from the gas flows into the 3-1 heat exchanger again, and after the heat exchange with the flow of the first refrigerant flowed out of the 1-1 heat exchanger and flowed into the 3-1 heat exchanger, the 3-2 heat exchange Flowed into the
  • the refrigerant flowed out of the condenser and flowed out after the heat exchange in the 3-1 heat exchanger was introduced into the 3-2 heat exchanger, and flowed out of the 1-2 heat exchanger to the 3-2 heat exchanger.
  • the mixture was introduced into the third-3 heat exchanger.
  • a third refrigerant flowed out after the heat exchange by sequentially passing through the 3-1 heat exchanger and the 3-2 heat exchanger and flows out of the 1-3 heat exchanger and flows into the 3-3 heat exchanger After the heat exchange with the refrigerant flow through the control valve.
  • the first refrigerant flow flowing out after the heat exchange in the first heat exchanger is 90.0 ° C., 9.3 kgf / cm 2 g (10.1 bar), and the gas volume fraction is flowed out in a state of 1.0 to 3-1 heat exchange.
  • the first refrigerant flow flowing out after the heat exchange in the 3-1 heat exchanger was introduced into the first compressor at 115.0 ° C., 9.3 kgf / cm 2 g (10.1 bar), and a gas volume fraction of 1.0. .
  • the second refrigerant flow flowing out after the heat exchange in the 1-2 heat exchanger is 80.1 ° C., 7.1 kgf / cm 2 g (7.94 bar), and the gas volume fraction flows out in a state of 1.0 to the 3-2 heat exchanger.
  • the second refrigerant flow flowed out after the heat exchange in the 3-2 heat exchanger was introduced into the second compressor at a state of 107.4 ° C, 7.1 kgf / cm 2 g (7.94 bar), and a gas volume fraction of 1.0.
  • 1-3 wherein the heat exchanger of the third refrigerant stream after heat exchange from the outlet is let flowing groups 3-1 after heat outflow to a 70.3 °C, 5.2 kgf / cm 2 g (6.1 bar), a 1.0 gas volume fraction state
  • the third refrigerant flow flowing out after the heat exchange in the 3-1 heat exchanger flowed into the third compressor at a state of 103.1 ° C., 5.2 kgf / cm 2 g (6.1 bar), and a gas volume fraction of 1.0.
  • the first refrigerant stream compressed in the first compressor was discharged from the first compressor at a state of 133.5 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 1.00.
  • the amount of work used in the first compressor was 160,677.0 W.
  • the second refrigerant flow compressed in the second compressor flowed out of the second compressor in a state of 131.8 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 1.00, in this case, the second compressor.
  • the amount of work used at was 203,121.0 W.
  • the third refrigerant stream compressed by the third compressor was discharged from the third compressor in a state of 133.7 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 1.00.
  • the amount of work used in the three compressors was 228,863.0 W.
  • the mixed refrigerant flow introduced into the third heat exchanger after the heat exchange in the third heat exchanger flows out of the third heat exchanger and flows into the third heat exchanger.
  • the flow 113.0 ° C., 20.7 kgf / cm 2 g (21.3 bar), with a gas volume fraction of 0.00, flowed out of the third-3 heat exchanger and then flowed into the fluid distributor.
  • the mixed refrigerant stream in the fluid distributor was separated into first and third refrigerant streams having 113 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 0.00, respectively, and the first refrigerant.
  • the flow flows into the first control valve at a flow rate of 30,000 kg / hr
  • the second refrigerant flow flows into the second control valve at a flow rate of 29,000 kg / hr
  • the third refrigerant flow flows at 26,000 kg / hr.
  • the flow rate was reduced by flowing into the third control valve.
  • Two refrigerants (1,1,1,3,3-pentafluoropropane, R245fa) flow through the first heat exchanger, the third heat exchanger, the compression unit, the second heat exchanger, the third heat exchanger and at least two control valves.
  • the refrigerant was circulated to pass sequentially.
  • the first refrigerant flow in a state of 90.0 ° C., 9.3 kgf / cm 2 g (10.1 bar) and a gas volume fraction of 0.0 is introduced into the 1-1 heat exchanger at a flow rate of 45,000 kg / hr, and at the same time
  • the heat exchanger was introduced into a 1-1 heat exchanger at 110.0 ° C., 1.0 kgf / cm 2 g, and a waste heat stream having a gas volume fraction of 0.0 at a flow rate of 100,000 kg / hr.
  • the waste heat flow was discharged from the 1-1 heat exchanger at a flow rate of 100,000 kg / hr with 95.4 ° C., 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0. -2 was introduced into the heat exchanger.
  • the heat exchanger was introduced into the 1-2 heat exchanger by introducing a second refrigerant flow having a flow rate of 70.0 ° C., 5.2 kgf / cm 2 g (6.1 bar) and a gas volume fraction of 0.0 at a flow rate of 43,000 kg / hr. .
  • the waste heat flow was discharged from the 1-2 heat exchanger at a flow rate of 100,000 kg / hr at 80.0 ° C., 1.0 kgf / cm 2 g and a gas volume fraction of 0.0.
  • the first refrigerant flow flowing out after the heat exchange in the first heat exchanger flows into the third heat exchanger, and the first refrigerant flows out of the first heat exchanger and flows into the third heat exchanger.
  • the first refrigerant flow flowed out of the 3-1 heat exchanger after heat exchange and flowed into the first compressor.
  • the second refrigerant flow which flows out after the heat exchange in the 1-2 heat exchanger is introduced into the 3-2 heat exchanger, and the second refrigerant flows out of the 1-2 heat exchanger and flows into the 3-2 heat exchanger.
  • the first and second refrigerant flows flowing out of the first and second compressors are introduced into the condenser, which is a second heat exchanger, and are heat exchanged with the fluid flow passing through the condenser.
  • the mixture was introduced into the 3-1 heat exchanger again, exchanged with the first refrigerant flow flowing out of the 1-1 heat exchanger and introduced into the 3-1 heat exchanger, and then introduced into the 3-2 heat exchanger.
  • the refrigerant flowed out of the condenser and flowed out after the heat exchange in the 3-1 heat exchanger was introduced into the 3-2 heat exchanger, and flowed out of the 1-2 heat exchanger to the 3-2 heat exchanger. After heat exchange with the introduced second refrigerant flow, it was passed through a control valve.
  • the first refrigerant flow flowing out after the heat exchange in the first heat exchanger is 90.0 ° C., 9.3 kgf / cm 2 g (10.1 bar), and the gas volume fraction is flowed out in a state of 1.0 to 3-1 heat exchange.
  • the first refrigerant flow flowing out after the heat exchange in the 3-1 heat exchanger was introduced into the first compressor at 115.0 ° C., 9.3 kgf / cm 2 g (10.1 bar), and a gas volume fraction of 1.0. .
  • the second refrigerant flow flowing out after the heat exchange in the 1-2 heat exchanger is 70.0 ° C., 5.2 kgf / cm 2 g (6.1 bar), and the gas volume fraction flows out in a state of 0.95 to the 3-2 heat exchanger.
  • the second refrigerant flow flowing out after the heat exchange in the 3-2 heat exchanger was introduced into the second compressor at a state of 101.3 ° C., 5.2 kgf / cm 2 g (6.1 bar), and a gas volume fraction of 1.0.
  • the first refrigerant stream compressed in the first compressor was discharged from the first compressor at a state of 133.5 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 1.00.
  • the amount of work used in the first compressor was 241,006.0 W.
  • the second refrigerant flow compressed in the second compressor flowed out of the second compressor at a state of 131.9 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 1.00.
  • the second compressor The amount of work used at was 376,775.0 W.
  • the first and second refrigerant flows respectively flowing out of the first and second compressors were introduced into the fluid mixer and mixed, and 132.7 ° C., 20.7 kgf / cm 2 g (21.3 bar), and the gas volume fraction were 1.00.
  • the mixed refrigerant flow in the phosphorus state was introduced into the second heat exchanger condenser at a flow rate of 88,000 kg / hr.
  • the condenser was introduced at 115.0 ° C., 0.7 kgf / cm 2 g, and a gas volume fraction of 0.0 at a flow rate of 10,000 kg / hr to exchange heat with the refrigerant.
  • the mixed refrigerant flow is 119.7 ° C., 20.7 kgf / cm 2 g after the heat exchange with the first refrigerant flow flowing out of the 1-1 heat exchanger in the 3-1 heat exchanger and introduced into the 3-1 heat exchanger (21.3 bar), discharged from the 3-1 heat exchanger with a gas volume fraction of 0.00, flowed into the 3-2 heat exchanger, and after the heat exchange in the 3-1 heat exchanger, the 3-2 heat exchanger
  • the mixed refrigerant flow flowing into the air is discharged from the 1-2 heat exchanger and heat exchanged with the second refrigerant flow flowing into the 3-2 heat exchanger, followed by 111.3 ° C., 20.7 kgf / cm 2 g (21.3 bar),
  • the gas was flowed out of the third heat exchanger with a volume fraction of 0.00, and then flowed into the fluid distributor.
  • the mixed refrigerant stream was separated into first and second refrigerant streams having 113 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 0.00, respectively.
  • the flow rate of 45,000 kg / hr was introduced into the first control valve, and the second refrigerant flow flowed into the second control valve at a flow rate of 43,000 kg / hr to reduce the pressure.
  • a first refrigerant flow at 85.0 ° C., 8.1 kgf / cm 2 g (8.92 bar), with a gas volume fraction of 0.0 was introduced into the heat exchanger 1-1 at a flow rate of 45,000 kg / hr, and at the same time the first-1
  • the heat exchanger was introduced into a heat exchanger at a flow rate of 100,000 kg / hr at 110.0 ° C., 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0.
  • the waste heat flow was discharged from the 1-1 heat exchanger at a flow rate of 100,000 kg / hr with 94.9 ° C., 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0.
  • the heat exchanger was introduced into the 1-2 heat exchanger by introducing a second refrigerant flow having a flow rate of 80.0 ° C., 7.1 kgf / cm 2 g (7.94 bar), and a gas volume fraction of 0.0 at a flow rate of 14,500 kg / hr. .
  • the waste heat flow was discharged from the 1-2 heat exchanger at a flow rate of 100,000 kg / hr with 90.0 ° C., 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0. It was introduced into 1-3 heat exchanger.
  • the third heat exchanger was heat exchanged by introducing a third refrigerant flow in a state of 75.0 ° C., 6.1 kgf / cm 2 g (6.96 bar), and a gas volume fraction of 0.0 at a flow rate of 20,000 kg / hr. .
  • the waste heat flow was discharged from the first to third heat exchanger at a flow rate of 100,000 kg / hr at 85.0 ° C., 1.0 kgf / cm 2 g and a gas volume fraction of 0.0.
  • the flow of the first refrigerant flowed out at 85.0 ° C., 8.1 kgf / cm 2 g (8.92 bar), and a gas volume fraction of 1.0 was introduced into the 3-1 heat exchanger.
  • the first refrigerant flow flowing out after the heat exchange in the 3-1 heat exchanger was introduced into the first compressor at 115.0 ° C., 8.1 kgf / cm 2 g (8.92 bar), and a gas volume fraction of 1.0.
  • the second refrigerant flow flowed out after the heat exchange in the 1-2 heat exchanger is 80.0 °C, 7.1 kgf / cm 2 g (7.94 bar), the gas volume fraction is flowed in the state of 0.96 and then to the 3-2 heat exchanger
  • the second refrigerant flow flowing out after the heat exchange in the 3-2 heat exchanger was introduced into the second compressor at a state of 105.4 ° C., 7.1 kgf / cm 2 g (7.94 bar), and a gas volume fraction of 1.0.
  • the third refrigerant flow flowed out at 75.0 ° C., 6.1 kgf / cm 2 g (6.96 bar), and the gas volume fraction was 1.0, and then flowed into the 3-1 heat exchanger.
  • the third refrigerant flow flowing out after the heat exchange in the 3-1 heat exchanger flowed into the third compressor at a state of 97.0 ° C., 6.1 kgf / cm 2 g (6.96 bar), and a gas volume fraction of 1.0.
  • the first refrigerant flow compressed in the first compressor was discharged from the first compressor in a state of 136.5 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 1.00.
  • the amount of work used in the first compressor was 280,414.0 W.
  • the second refrigerant flow compressed in the second compressor flowed out of the second compressor at a state of 129.7 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 1.00.
  • the second compressor The amount of work used at was 101,026.0 W.
  • the third refrigerant stream compressed by the third compressor was discharged from the third compressor in a state of 125.0 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 0.99.
  • the amount of work used in the three compressors was 154,381.0 W.
  • the mixed refrigerant flow is 117.0 ° C., 20.7 kgf / cm 2 g after the heat exchange with the first refrigerant flow flowing out of the 1-1 heat exchanger in the 3-1 heat exchanger and flowing into the 3-1 heat exchanger (21.3 bar), discharged from the 3-1 heat exchanger with a gas volume fraction of 0.00, flowed into the 3-2 heat exchanger, and after the heat exchange in the 3-1 heat exchanger, the 3-2 heat exchanger
  • the mixed refrigerant flow flowing into the air is discharged from the 1-2 heat exchanger and heat exchanged with the second refrigerant flow flowing into the 3-2 heat exchanger, followed by 115.4 ° C., 20.7 kgf / cm 2 g (21.3 bar),
  • the gas volume fraction was discharged from the 3-2 heat exchanger in a state of 0.00 and flowed into the 3-3 heat exchanger.
  • the mixed refrigerant flow introduced into the third heat exchanger after the heat exchange in the third heat exchanger flows out of the third heat exchanger and flows into the third heat exchanger. After heat exchange with the flow, it was discharged from the 3-3 heat exchanger at 107.0 ° C., 20.7 kgf / cm 2 g (21.3 bar), with a gas volume fraction of 0.00, then introduced into the fluid distributor.
  • the mixed refrigerant stream in the fluid distributor was separated into first and second refrigerant streams having a state of 107.0 ° C., 20.7 kgf / cm 2 g (21.3 bar) and a gas volume fraction of 0.00, respectively, and the first refrigerant.
  • the flow was introduced into the first control valve at a flow rate of 45,000 kg / hr, the second refrigerant flow was introduced into the second control valve at a flow rate of 14,500 kg / hr, and the third refrigerant flow was 20,000 kg / hr.
  • the flow rate was reduced by flowing into the third control valve.
  • a first refrigerant flow at 85.0 ° C., 8.1 kgf / cm 2 g (8.92 bar), with a gas volume fraction of 0.0 is introduced into the heat exchanger 1-1 at a flow rate of 30,000 kg / hr, and at the same time the first-1 110.0 ° C., 1.0 kgf / cm 2 g, and a waste heat flow with a gas volume fraction of 0.0 were introduced into a heat exchanger at a flow rate of 200,000 kg / hr for heat exchange. After the heat exchange, the waste heat flow was discharged from the 1-1 heat exchanger at a flow rate of 200,000 kg / hr with 94.9 ° C., 1.0 kgf / cm 2 g and a gas volume fraction of 0.0.
  • the second heat exchanger was introduced at a flow rate of 29,000 kg / hr by introducing a second refrigerant flow having a flow rate of 80.0 ° C., 7.1 kgf / cm 2 g (7.94 bar), and a gas volume fraction of 0.0 at a flow rate of 29,000 kg / hr. .
  • the waste heat flow was discharged from the 1-2 heat exchanger at a flow rate of 200,000 kg / hr with 90.0 ° C., 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0. It was introduced into 1-3 heat exchanger.
  • the third heat exchanger was heat exchanged by introducing a third refrigerant flow having a flow rate of 13,000 kg / hr at 77.5 ° C., 6.6 kgf / cm 2 g (7.45 bar), and a gas volume fraction of 0.0. .
  • the waste heat flow was discharged from the 1-3 heat exchanger at a flow rate of 200,000 kg / hr at 87.7 ° C., 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0.
  • the flow of the first refrigerant flowed out at 85.0 ° C., 8.1 kgf / cm 2 g (8.92 bar), and a gas volume fraction of 1.0 was introduced into the 3-1 heat exchanger.
  • the first refrigerant flow flowing out after the heat exchange in the 3-1 heat exchanger was introduced into the first compressor at 115.0 ° C., 8.1 kgf / cm 2 g (8.92 bar), and a gas volume fraction of 1.0.
  • the second refrigerant flow flowed out after the heat exchange in the 1-2 heat exchanger is 80.0 °C, 7.1 kgf / cm 2 g (7.94 bar), the gas volume fraction is flowed in the state of 0.96 and then to the 3-2 heat exchanger
  • the second refrigerant flow flowing out after the heat exchange in the 3-2 heat exchanger was introduced into the second compressor at a state of 104.4 ° C., 7.1 kgf / cm 2 g (7.94 bar), and a gas volume fraction of 1.0.
  • the third refrigerant flow flowed out at 77.5 ° C., 6.6 kgf / cm 2 g (7.45 bar), with a gas volume fraction of 1.0, and flowed into the 3-1 heat exchanger.
  • the third refrigerant flow flowing out after the heat exchange in the 3-1 heat exchanger flowed into the third compressor at a state of 102.4 ° C., 6.6 kgf / cm 2 g (7.45 bar), and a gas volume fraction of 1.0.
  • the first refrigerant flow compressed in the first compressor was discharged from the first compressor in a state of 136.5 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 1.00.
  • the amount of work used in the first compressor was 186,943.0 W.
  • the second refrigerant stream compressed in the second compressor flowed out of the second compressor in a state of 128.7 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 1.00, in this case, the second compressor.
  • the amount of work used at was 201,548.0 W.
  • the third refrigerant flow compressed in the third compressor flowed out of the third compressor in a state of 128.2 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 1.00.
  • the amount of work used in the three compressors was 95,781.0 W.
  • the first, second and third refrigerant flows flowing out of the first, second and third compressors, respectively, were introduced into the fluid mixer and mixed, and 131.9 ° C. and 20.7 kgf / cm 2 g (21.3 bar) were mixed. ),
  • a mixed refrigerant flow with a gas volume fraction of 1.00 was introduced into the second heat exchanger condenser at a flow rate of 72,000 kg / hr.
  • the condenser was introduced at 115.0 ° C., 0.7 kgf / cm 2 g, and a gas volume fraction of 0.0 at a flow rate of 10,000 kg / hr to exchange heat with the refrigerant.
  • the mixed refrigerant flow is 119.0 ° C., 20.7 kgf / cm 2 g after the heat exchange with the first refrigerant flow flowing out of the 1-1 heat exchanger in the 3-1 heat exchanger and flowing into the 3-1 heat exchanger (21.3 bar), discharged from the 3-1 heat exchanger with a gas volume fraction of 0.00, flowed into the 3-2 heat exchanger, and after the heat exchange in the 3-1 heat exchanger, the 3-2 heat exchanger
  • the mixed refrigerant flow flowing into the air is discharged from the 1-2 heat exchanger and heat exchanged with the second refrigerant flow flowing into the 3-2 heat exchanger, followed by 114.4 ° C., 20.7 kgf / cm 2 g (21.3 bar),
  • the gas volume fraction was discharged from the 3-2 heat exchanger in a state of 0.00 and flowed into the 3-3 heat exchanger.
  • the mixed refrigerant flow introduced into the third heat exchanger after the heat exchange in the third heat exchanger flows out of the third heat exchanger and flows into the third heat exchanger. After heat exchange with the flow, it flowed out of the 3-3 heat exchanger at 112.4 ° C., 20.7 kgf / cm 2 g (21.3 bar), with a gas volume fraction of 0.00, then flowed into the fluid distributor.
  • the mixed refrigerant stream in the fluid distributor was separated into first and second refrigerant streams having a state of 112.4 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 0.00, respectively, and the first refrigerant.
  • the flow flows into the first control valve at a flow rate of 30,000 kg / hr
  • the second refrigerant flow flows into the second control valve at a flow rate of 29,000 kg / hr
  • the third refrigerant flow flows at 13,000 kg / hr.
  • the flow rate was reduced by flowing into the third control valve.
  • the waste heat flow was flowed at a flow rate of 100,000 kg / hr in a state of 80.0 ° C, 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0, and the refrigerant flow was 70.0 ° C, 5.2 kgf / cm 2 g (6.1 bar). ),
  • the gas volume fraction flowed out into a state of 1.0 and then introduced into a compressor and compressed.
  • the refrigerant flow compressed in the compressor flowed out of the compressor at 125.0 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 0.75.
  • the amount of work used in the compressor was 629,387.0 W.
  • the refrigerant flowed out of the compressor flows into the second heat exchanger, and at the same time, water of 115.0 ° C., 0.7 kgf / cm 2 g, and a gas volume fraction of 0.0 flows into the second heat exchanger at a flow rate of 10,000 kg / hr.
  • Heat exchange with the refrigerant flow After the heat exchange, water was discharged to steam at 115.0 ° C., 0.7 kgf / cm 2 g, and a gas volume fraction of 0.29.
  • the condensed refrigerant flow was 125.0 ° C., 20.7 kgf / cm 2 g (21.3 bar), a gas volume fraction.
  • the refrigerant flow flowing into the control valve was 70.0 ° C., 5.2 kgf / cm 2 g (6.1 bar), flowed out of the control valve with a gas volume fraction of 0.0, and then flowed into the first heat exchanger.
  • the refrigerant (1,1,1,3,3-pentafluoropropane, R245fa) sequentially passes through the first heat exchanger, the third heat exchanger, the compressor, the second heat exchanger, the third heat exchanger and the control valve. Circulated at the same flow rate of 81,000 kg / hr. Specifically, a refrigerant flow of 70.0 ° C., 5.2 kgf / cm 2 g (6.1 bar) and a gas volume fraction of 0.0 is introduced into the first heat exchanger, and at the same time, 110.0 ° C. and 1.0 kgf / cm 2 into the first heat exchanger.
  • the waste heat flow with a gas volume fraction of 0.0 was introduced at a flow rate of 100,000 kg / hr for heat exchange.
  • the waste heat flow was flowed at a flow rate of 100,000 kg / hr in a state of 80.0 ° C, 1.0 kgf / cm 2 g, and a gas volume fraction of 0.0, and the refrigerant flow was 70.0 ° C, 5.2 kgf / cm 2 g (6.1 bar).
  • the gas volume fraction flowed into the third heat exchanger after being discharged with 1.0.
  • the refrigerant flow flowing out of the first heat exchanger and flowing into the third heat exchanger flows into the compressor, and the refrigerant flow flowing out of the compressor flows into the second heat exchanger to exchange heat with the fluid flow passing through the second heat exchanger.
  • the refrigerant flow which flowed out from the 2nd heat exchanger flows into a 3rd heat exchanger again, exchanges with the refrigerant flow which flowed out from the 1st heat exchanger and flowed into the 3rd heat exchanger, and passes through a control valve.
  • the flow of the refrigerant heat-exchanged in the third heat exchanger was 115.0 ° C., 5.2 kgf / cm 2 g (6.1 bar), and the gas volume fraction was flowed out of the third heat exchanger in a state of 1.0 and then introduced into the compressor.
  • the refrigerant flow compressed in the compressor flowed out of the compressor at a state of 146.0 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction of 1.0.
  • the amount of work used in the compressor was 735,139.0 W.
  • the refrigerant flowed out of the compressor flows into the second heat exchanger, and at the same time, water of 115.0 ° C., 0.7 kgf / cm 2 g, and a gas volume fraction of 0.0 flows into the second heat exchanger at a flow rate of 10,000 kg / hr.
  • Heat exchange with the refrigerant flow After the heat exchange, water was discharged as steam at 115.0 ° C., 0.7 kgf / cm 2 g, and a gas volume fraction of 0.47, and the condensed refrigerant flow was 125.0 ° C., 20.7 kgf / cm 2 g (21.3 bar), and a gas volume fraction. After flowing out in the state of 0.0, it flowed into the 3rd heat exchanger.
  • the second is condensed after being heat-exchanged by the heat exchanger a flow of the refrigerant flowing groups third heat exchange is after the first is flowing out of the first heat exchanger the heat exchange with a flow of the refrigerant flowing groups third heat exchange, 105.3 °C, 20.7 kgf / cm 2 g (21.3 bar), exiting the third heat exchanger with a gas volume fraction of 0.0 and entering the control valve.
  • the refrigerant flow flowing into the control valve was 70.0 ° C., 5.2 kgf / cm 2 g (6.1 bar), flowed out of the control valve with a gas volume fraction of 0.0, and then flowed into the first heat exchanger.
  • Example 1 Example 2 Example 3 T F1 (°C) T R1 (°C) 110.0 90.0 110.0 90.0 110.0 90.0 T F1 -T R1 (°C) 20.0 20.0 20.0 P C1 (bar) P H1 (bar) 21.3 10.1 21.3 10.1 21.3 10.1 21.3 10.1 P C1 / P H1 2.1 2.1 2.1 T R3Hin (°C) T R3Cout (°C) - - 125.0 115.0 125.0 115.0 T R3Hin -T R3Cout (°C) n / a 10.0 10.0 Q (W) 2,009,300.0 2,727,930.0 2,817,820.0 Total W (W) 532,327.0 592,661.0 617,781.0 COP 3.77 4.60 4.56 n / a: not available
  • Example 4 T F1 (°C) T R1 (°C) 110.0 85.0 110.0 85.0 T F1 -T R1 (°C) 25.0 25.0 P C1 (bar) P H1 (bar) 21.3 8.92 21.3 8.92 P C1 / P H1 2.4 2.4 T R3Hin (°C) T R3Cout (°C) 125.0 115.0 125.0 115.0 T R3Hin -T R3Cout (°C) 10.0 10.0 Q (W) 2,541,894.8 2,290,520.0 Total W (W) 535,821.0 484,272.0 COP 4.74 4.73

Abstract

본 출원은 열 회수 장치 및 방법에 관한 것으로서, 본 출원의 열 회수 장치 및 방법에 의하면, 산업 현장 또는 다양한 화학 공정, 예를 들면 석유 화학 제품의 제조 공정에서 배출되는 100℃ 미만의 저급 열원을 버리지 않고 이용하여 스팀을 생성할 수 있으며, 생성된 스팀을 다양한 공정에 사용할 수 있으므로, 반응기 또는 증류탑에 사용되기 위한 외부 열원인 고온 스팀의 사용량을 절감할 수 있어, 에너지 절감 효율을 극대화 시킬 수 있을 뿐만 아니라, 하나의 냉매 흐름을 다단(cascade)으로 나누어 순환시킴으로써, 적어도 2 이상의 냉매 흐름을 폐열 흐름과 열교환 할 수 있고, 압축기로 유입되는 냉매 흐름의 압력을 단일의 냉매 흐름을 이용한 열 회수 장치에 비하여 상대적으로 높게 조절할 수 있으며, 이에 따라, 압축기에서 압축시에 필요로 하는 에너지의 양을 감소시킬 수 있다.

Description

열 회수 장치
본 출원은 열 회수 장치 및 방법에 관한 것이다.
본 출원은 2015.06.18.자 한국 특허 출원 제10-2015-0086501호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
일반적인 화학 공정에서는, 반응기 또는 증류탑을 거치는 다양한 루트에서 열교환이 이루어지며, 이러한 열교환 후 발생하는 폐열은, 재사용되거나 폐기될 수 있다. 예를 들면, 도 1 과 같이, 상기 폐열이 120℃ 미만, 예를 들어, 70℃ 내지 110℃ 수준의 저급 열원일 경우에는, 온도가 너무 낮아 실질적으로 재사용이 불가능하며, 따라서 응축수에 의하여 응축된 후 버려지고 있다.
한편, 저압 또는 고압의 스팀은 산업 분야에서 다양한 용도로 사용되고 있으며, 특히, 화학 공정에서는, 고온 및 고압의 스팀이 주로 사용되고 있다. 상기 고온 및 고압의 스팀은 일반적으로 상압 및 상온의 물을 기화점까지 가열하고, 수증기로 변한 물에 고압의 압력을 가하여 내부 에너지를 증가시킴으로써 고온 및 고압의 스팀을 생산하고 있으며, 이 경우, 액체 상태의 물을 기화시키기 위하여, 많은 양의 에너지 소모를 필요로 한다.
상기와 같은 문제를 해결하기 위하여, 특허문헌 1에는, 히트 펌프 시스템을 이용하여, 저급 열원을 회수하는 열 회수 장치가 개시되어 있다. 그러나, 상기 열 회수 장치의 경우, 오직 하나의 냉매 흐름을 폐열 흐름과 열교환시켜 폐열의 에너지를 회수하였으므로, 압축기로 유입되는 저온 및 저압의 냉매 흐름을 고온 및 고압의 냉매 흐름으로 압축하기 위하여, 많은 에너지를 필요로 하는 문제가 존재하였다.
(특허문헌 1) KR 2015-0000422A
본 출원은 열 회수 장치 및 방법을 제공한다.
본 출원은 열 회수 장치에 관한 것이다. 본 출원의 열 회수 장치에 의하면, 산업 현장 또는 다양한 화학 공정, 예를 들면 석유 화학 제품의 제조 공정에서 배출되는 120℃ 미만의 저급 열원을 버리지 않고 이용하여 스팀을 생성할 수 있으며, 생성된 스팀을 다양한 공정에 사용할 수 있으므로, 반응기 또는 증류탑에 사용되기 위한 외부 열원인 고온 스팀의 사용량을 절감할 수 있어, 에너지 절감 효율을 극대화 시킬 수 있다. 또한, 종래의 히트 펌프 시스템을 이용한 열 회수 장치의 경우, 오직 하나의 냉매 흐름을 폐열 흐름과 열교환시켜 폐열의 에너지를 회수하였으며, 대체로 현열로 존재하는 폐열의 특성상 많은 양의 에너지를 회수할수록 더 낮은 온도로 폐열을 회수하게 되므로, 압축기로 유입되는 저압의 냉매 흐름을 고온 및 고압의 냉매 흐름으로 압축하기 위하여 많은 에너지를 필요로 하였으나, 본 출원의 열 회수 장치에서는, 상기 하나의 냉매 흐름을 다단(cascade)으로 나누어 순환시킴으로써, 적어도 2 이상의 냉매 흐름을 폐열 흐름과 열교환 시킬 수 있고, 압축기로 유입되는 냉매 흐름의 압력을 오직 하나의 냉매 흐름을 이용한 열 회수 장치에 비하여 상대적으로 높게 조절할 수 있으며, 이에 따라, 압축기에서 압축에 필요로 하는 에너지의 양을 감소시킬 수 있다. 뿐만 아니라, 냉매의 등엔트로피 압축 시에 발생하는 냉매의 일부 기화 현상을 막을 수 있으며, 이에 따라, 상기 열 회수 장치의 열교환 효율을 상승시킬 수 있다.
이하, 첨부된 도면을 참조하여, 본 출원의 다양한 구현예들을 설명하나, 첨부된 도면은 예시적인 것으로, 본 출원에 의한 열 회수 장치의 권리 범위를 제한하는 것은 아니다.
도 2는 본 출원의 일 구현예에 따른 예시적인 열 회수 장치(10)를 모식적으로 도시한 도면이다.
도 2와 같이 본 출원의 열 회수 장치(10)는, 제 1 열교환 장치(100), 압축 장치(200), 제 2 열교환 장치(300) 및 적어도 2 이상의 압력 강하 장치(400)를 포함한다. 상기 제 1 열교환 장치(100), 압축 장치(200), 제 2 열교환 장치(300) 및 적어도 2 이상의 압력 강하 장치(400)는 배관을 통하여 연결될 수 있으며, 예를 들어, 상기 배관을 통하여 냉매 또는 유체가 흐를 수 있도록 유체 연결(fluidically connected)되어 있을 수 있다. 하나의 예시에서, 상기 냉매가 흐르는 배관은 상기 냉매가 상기 제 1 열교환 장치(100), 압축 장치(200), 제 2 열교환 장치(300), 및 적어도 2 이상의 압력 강하 장치(400)를 순차로 순환하도록 연결된 순환 루프 또는 순환 시스템일 수 있다. 상기에서 용어 「열교환 장치(heat exchange device)」는 2 이상의 열교환기(heat exchanger)가 결합되어 있는 하나의 조립체(assembly) 또는 2 이상의 열교환기를 포함하는 열교환 유닛(unit)을 의미할 수 있으며, 또한, 오직 하나의 열교환기를 의미할 수 도 있다. 예를 들어, 제 1 열교환 장치(100) 및 후술할 제 3 열교환 장치(800)는, 2 이상의 열교환기를 포함하는 열교환 유닛일 수 있으며, 상기 제 2 열교환 장치(300)는 오직 하나의 열교환기로 구성된 장치일 수 있다. 상기에서 용어 「압축 장치(compression device)」는 둘 이상의 압축기(compressor)가 결합되어 있는 하나의 조립체(assembly) 또는 2 이상의 압축기를 포함하는 압축 유닛을 의미한다.
도 2에 나타나듯이, 본 출원의 열 회수 장치(10)는, 적어도 2 이상의 냉매의 흐름(stream)이 순환하는 순환 루프를 포함한다. 예를 들어, 본 출원의 열 회수 장치(10)에서는, 하나의 냉매 흐름을 2 이상의 냉매 흐름으로 나누어 순환시킴으로써, 적어도 2 이상의 냉매 흐름을 폐열 흐름과 단계적으로 열교환시킬 수 있고, 압축기로 유입되는 냉매 흐름의 압력을 하나의 냉매 흐름을 이용한 열 회수 장치에 비하여 상대적으로 높게 조절할 수 있으며, 이에 따라, 압축기에서 압축 시에 필요로 하는 에너지의 양을 감소시킬 수 있다. 하나의 예시에서, 본 출원의 열 회수 장치(10)에서, 제 1 냉매 흐름(FD1) 및 제 2 냉매 흐름(FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)은 상기 제 1 열교환 장치(100) 및 압축 장치(200)로 각각 유입되고 유출된다. 예를 들어, 상기 적어도 2 이상의 냉매 흐름(FD)은, 제 1 냉매 흐름(FD1) 및 제 2 냉매 흐름(FD2)으로 이루어진 2개의 냉매 흐름, 제 1 냉매 흐름(FD1), 제 2 냉매 흐름(FD2) 및 제 3 냉매 흐름(FD3)으로 이루어진 3개의 냉매 흐름, 또는 제 1 냉매 흐름(FD1), 제 2 냉매 흐름(FD2), 제 3 냉매 흐름(FD3) 및 제 4 냉매 흐름(FD4)으로 이루어진 4개의 냉매 흐름일 수 있다. 상기 냉매 흐름의 개수가 많을수록 보다 우수한 효율로 열을 회수할 수 있으므로, 상기 냉매 흐름의 총 개수의 상한 값은 특별히 제한되는 것은 아니나, 장치의 설비비 및 공정의 경제성 등을 고려하였을 때, 상기 냉매 흐름의 총 개수는 5 이하일 수 있다.
상기 배관을 통해 순환하는 냉매 흐름(FD)의 총 유량은 5,000 kg/hr 내지 100,000 kg/hr, 예를 들어, 10,000 kg/hr 내지 95,000 kg/hr 또는 30,000 kg/hr 내지 90,000 kg/hr일 수 있으며, 바람직하게는, 75,000 kg/hr 내지 95,000 kg/hr일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 배관을 통해 순환하는 적어도 2 이상의 냉매 흐름(FD)의 각각의 유량은, 5,000 kg/hr 내지 50,000 kg/hr, 예를 들어, 10,000 kg/hr 내지 45,000 kg/hr 또는 20,000 kg/hr 내지 40,000 kg/hr일 수 있으며, 바람직하게는, 25,000 kg/hr 내지 35,000 kg/hr일 수 있으나, 이에 제한되는 것은 아니다.
도 2와 같이, 본 출원의 구현예에 따른 열 회수 장치(10)에서는, 상기 제 1 냉매 흐름(FD1) 및 제 2 냉매 흐름(FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)은 제 1 열교환 장치(100)로 유입된다. 상기 제 1 열교환 장치(100)는, 적어도 2 이상의 냉매 흐름(FD)과 외부에서 유입되는 유체 흐름을 열교환시키기 위하여, 본 출원의 열 회수 장치(10)에 포함되며, 상기 열교환을 통하여, 냉매는 기화된 후 상기 제 1 열교환 장치(100)로 유입되는 냉매 흐름보다 상대적으로 고온의 기상 흐름으로 상기 제 1 열교환 장치(100)로부터 유출될 수 있다. 상기에서 「기상」은 냉매 흐름 전체 성분 중 기체 성분 흐름이 농후(rich)한 상태를 의미하며, 예를 들어, 상기 냉매 흐름 전체 성분 중 기체 성분 흐름의 몰분율이 0.9 내지 1.0인 상태를 의미한다.
일 구현예에서, 상기 제 1 열교환 장치(100)로는 유체 연결된 배관을 통하여 적어도 2 이상의 냉매 흐름(FD) 및 폐열 흐름 등의 제 1 유체 흐름(W1)이 유입될 수 있으며, 유입된 상기 적어도 2 이상의 냉매 흐름(FD) 및 제 1 유체 흐름(W1)은 상기 제 1 열교환 장치(100)에서 상호 열교환된 후에, 상기 유체 연결된 배관을 통하여 상기 제 1 열교환 장치(100)에서 각각 유출될 수 있다. 보다 구체적으로, 상기 제 1 열교환 장치(100)로 유입된 상기 제 1 냉매 흐름(FD1)은 상기 제 1 열교환 장치(100)로 유입된 제 1 유체 흐름(W1)과 열교환되고, 상기 제 1 냉매 흐름(FD1)과 열교환된 상기 제 1 유체 흐름(W1)은 제 1 열교환 장치(100)로 유입된 상기 제 2 냉매 흐름(FD2)과 열교환 된다.
예를 들어, 상기 제 1 열교환 장치(100)가 제 1-1 열교환기(101) 및 제 1-2 열교환기(102)를 포함하는 열교환 유닛인 경우, 상기 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입되고, 상기 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 각각 유입될 수 있으며, 상기 제 1 열교환 장치(100)를 통과하는, 즉, 제 1-1 열교환(101)기 및 상기 제 1-2 열교환기(102)를 순차로 통과하는 유체의 흐름(W1), 예를 들면, 폐열 흐름과 열교환될 수 있다. 하나의 예시에서, 상기 제 1 열교환 장치(100)로 유입된 상기 제 1 냉매 흐름(FD1)은 상기 제 1 열교환 장치(100), 예를 들어, 상기 제 1-1 열교환기(101)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있고, 상기 제 1 냉매 흐름(FD1)과 상기 제 1-1 열교환기에서 열교환된 상기 제 1 유체 흐름(W1)은 상기 제 1 열교환 장치(100), 예를 들어, 상기 제 1-2 열교환기(102)로 유입된 상기 제 2 냉매 흐름(FD2)과 열교환될 수 있다.
상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)은, 예를 들어, 폐열 흐름 또는 응축기를 통과한 응축수의 흐름일 수 있으며, 상기 폐열 흐름은, 예를 들어, 발열 반응기의 냉각수일 수 있으나, 이제 제한되는 것은 아니다. 본 출원에서는 특히, 120℃ 미만, 예를 들어, 70℃ 내지 110℃ 수준의 저급 열원의 폐열 흐름을 바람직하게 사용할 수 있다.
하나의 예시에서, 상기 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 온도와 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 온도는 하기 일반식 1을 만족할 수 있다.
[일반식 1]
1℃ ≤ TF1 - TR1 ≤ 35℃
상기 일반식 1에서, TF1는 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 온도를 나타내고, TR1은 상기 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 온도를 나타낸다.
예를 들면, 상기 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 온도와 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 온도의 차 TF1 - TR1는 1 내지 35℃, 예를 들어, 1 내지 10℃, 7 내지 15℃, 15 내지 35℃ 또는 20 내지 25℃의 범위로 조절될 수 있다.
상기 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 온도와 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 온도가 상기 일반식 1을 만족함으로써, 상대적으로 다단의 냉매 흐름 중 후단의 흐름, 예를 들어, 폐열 흐름과 나중에 열교환되는 제 2 냉매 흐름(FD2), 제 3 냉매 흐름(FD3) 또는 제 4 냉매 흐름(FD4)에 비하여 전단에서 폐열 흐름과 가장 먼저 열교환되는 제 1 냉매 흐름(FD1)이 고온 및 고압의 상태로 후술할 압축 장치로 유입될 수 있다. 이에 따라, 압축기에서 사용되는 에너지의 양을 감소시킬 수 있다.
상기 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 온도와 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 온도는 상기 일반식 1을 만족한다면, 특별히 제한되는 것은 아니며, 적용하고자 하는 공정의 종류 및 각 공정의 조건에 따라 다양하게 조절할 수 있다. 하나의 예시에서, 상기 제 1 열교환 장치(100), 예를 들면, 상기 제 1-1 열교환기(101)로 유입되는 제 1 유체 흐름(W1)의 온도는 60℃ 내지 110℃, 예를 들어, 60℃ 내지 80℃, 70℃ 내지 85℃, 90℃ 내지 95℃ 또는 90℃ 내지 110℃일 수 있으나, 특별히 이에 제한되는 것은 아니다. 또한, 상기 제 1 열교환 장치(100), 예를 들면, 상기 제 1-1 열교환기(101)에서 유출되는 제 1 냉매 흐름(FD1)의 온도는, 50℃ 내지 100℃, 예를 들어, 50℃ 내지 70℃, 60℃ 내지 75℃, 80℃ 내지 85℃, 또는 80℃ 내지 100℃일 수 있으나, 특별히 이에 제한되는 것은 아니다. 이 경우, 상기 제 1 열교환 장치(100), 예를 들면, 상기 제 1-1 열교환기(101)에서 상기 제 1 냉매 흐름(FD1)과 열교환된 후에 유출되는 상기 제 1 유체 흐름(W1)의 온도는 40℃ 내지 110℃, 예를 들어, 40℃ 내지 60℃, 55℃ 내지 90℃, 70℃ 내지 85℃, 또는 80℃ 내지 110℃일 수 있으나, 특별히 이에 제한되는 것은 아니다. 또한, 상기 제 1 열교환 장치(100), 예를 들면, 상기 제 1-1 열교환기(101)로 유입되는 제 1 냉매 흐름(FD1)의 온도는, 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 온도보다는 낮은 온도, 55℃ 내지 105℃, 예를 들어, 55℃ 내지 75℃, 65℃ 내지 80℃, 85℃ 내지 90℃ 또는 85℃ 내지 105℃일 수 있으나, 이에 제한되는 것은 아니다.
상기 제 1 열교환 장치(100)로 유입되는 제 1 냉매 흐름(FD1)의 압력은 냉매의 종류 및 운전 조건에 따라 달라질 수 있으며, 특별히 제한되는 것은 아니다. 예를 들어, 상기 제 1 열교환 장치(100)로 유입되는 제 1 냉매 흐름(FD1)의 압력은 2 kgf/cm2g 내지 15 kgf/cm2g, 예를 들어, 2 kgf/cm2g 내지 7 kgf/cm2g, 3 kgf/cm2g 내지 6 kgf/cm2g 또는 4 kgf/cm2g 내지 15 kgf/cm2g일 수 있으나, 이에 제한되는 것은 아니다. 상기 제 1 열교환 장치(100)로 유입되는 상기 제 1 냉매 흐름(FD1)의 압력을 2 kgf/cm2g 내지 15 kgf/cm2g로 조절함으로써, 압축 장치의 압축비를 용이하게 조절할 수 있다. 일반적으로, 압축기의 유출 압력은 온도에 따라 정해지나, 유입 압력이 높아지면, 압축비를 낮게 유지할 수 있다. 상기 압축비가 높아질수록, 저온의 열원으로부터 고온의 스팀을 생성할 수 있으나, 이 경우, 성능 계수가 감소하게 되며, 압축비가 낮아질수록, 성능 계수는 증가하나, 저온의 열원으로부터 고온의 스팀을 생성하기 어려운 문제가 발생한다. 상기에서, 압력 단위 kgf/cm2g는 계기 압력(gauge pressure)을 의미한다.
상기 제 1 열교환 장치(100)로 유입되고, 유출되는 제 1 유체 흐름(W1)의 압력은 특별히 제한되는 것은 아니며, 예를 들면, 0.5 kgf/cm2g 내지 15 kgf/cm2g, 1 kgf/cm2g 내지 7 kgf/cm2g 또는 1 kgf/cm2g 내지 15 kgf/cm2g일 수 있다.
또한, 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 유량은 5,000 kg/hr 이상, 예를 들어, 10,000 kg/hr 이상, 20,000 kg/hr 또는, 25,000 kg/hr 이상일 수 있으나, 이에 제한되는 것은 아니다. 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 유량이 증가할수록, 동일한 열량을 냉매로 전달해도 열전달 후 유출되는 제 1 유체 흐름(W1)의 유출 온도가 높게 유지되어, 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 유출 온도도 높게 유지할 수 있다. 따라서, 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 유량의 상한은 특별히 제한되는 것은 아니며, 상기 장치의 효율성 및 경제성을 고려하여, 예를 들면, 500,000 kg/hr 이하, 또는 350,000 kg/hr 이하일 수 있으나, 이에 제한되는 것은 아니다.
상기 제 1 열교환 장치(100)는 흐르는 유체와 냉매 사이의 열교환을 수행하는 장치 또는 기계를 의미하며, 전술한 바와 같이, 둘 이상의 열교환기(heat exchanger)가 결합되어 있는 하나의 조립체(assembly) 또는 둘 이상의 열교환기를 포함하는 열교환 유닛(unit)일 수 있다. 일 구현예에서, 상기 제 1 열교환 장치(100)는 적어도 2 이상의 열교환기를 포함할 수 있으며, 상기 열교환기는 액상의 냉매 흐름을 기상의 냉매 흐름으로 증발시키는 증발기(evaporator)일 수 있다.
일 구현예에서, 도 2와 같이, 상기 제 1 열교환 장치(100)에서 유출되는 제 1 및 제 2 냉매 흐름(FD1, FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)은 상기 압축 장치(200)로 유입된다. 상기 압축 장치(200)는, 상기 제 1 열교환 장치(100)에서 유출되는 적어도 2 이상의 기상의 냉매 흐름(FD)을 압축시키고 온도 및 압력을 상승시키기 위하여, 본 출원의 열 회수 장치(10)에 포함되며, 상기 압축 장치(200)를 통과하여 압축되고, 상기 제 1 열교환 장치(100)에서 유출되는 적어도 2 이상의 냉매 흐름에 비하여 상대적으로 고온 및 고압의 기상의 냉매 흐름은 후술할 제 2 열교환 장치(300)로 유입될 수 있다.
예를 들어, 제 1 열교환 장치(100)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)은 유체 연결된 배관을 통하여 상기 압축 장치(200)로 유입될 수 있으며, 유입된 상기 적어도 2 이상의 냉매 흐름(FD)은 상기 압축 장치(200)에서 압축된 후에, 상기 유체 연결된 배관을 통하여 유출될 수 있다.
하나의 예시에서, 상기 제 1 열교환 장치(100)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 압력과 압축 장치(200)에서 유출되는 제 1 냉매 흐름(FD1)의 압력의 비는 하기 일반식 2를 만족할 수 있다.
[일반식 2]
2 ≤ PC1/PH1 ≤ 6
상기 일반식 2에서, PC1는 압축 장치(200)에서 유출되는 제 1 냉매 흐름(FD1)의 압력(bar)을 나타내고, PH1은 상기 제 1 열교환 장치(100)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 압력(bar)을 나타낸다.
즉, 상기 제 1 열교환 장치(100)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 압력과 압축 장치(200)에서 유출되는 제 1 냉매 흐름(FD1)의 압력의 비 PC1/PH1는 2 내지 6, 예를 들어, 2 내지 5, 바람직하게는 2.2 내지 3의 범위로 조절될 수 있다. 상기 압력의 비 PC1/PH1는 상기 압축 장치(200)에서 유출되는 제 1 냉매 흐름(FD1)의 압력 및 상기 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 압력의 단위가 bar인 경우를 기초로 하여 계산된 값이며, 측정되는 압력의 단위에 따라 환산되는 구체적인 압력의 값이 달라지는 경우, 상기 압력의 비가 일반식 2를 만족하지 않을 수 있는 것은 기술분야에서 자명하다. 따라서, 상기 일반식 2는 측정된 압력의 값을 bar의 압력 단위로 환산하여 만족하는 모든 경우를 포함할 수 있다.
상기 제 1 열교환 장치(100)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 압력과 압축 장치(200)에서 유출되는 제 1 냉매 흐름(FD1)의 압력의 비가 상기 일반식 2를 만족함으로써, 상기 제 1 열교환 장치(100)에서 기화된 냉매를 압축하는 경우 압축기에서 필요한 단위 질량 당 에너지의 양을 줄일 수 있다.
상기 제 1 열교환 장치(100)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 압력과 압축 장치(200)에서 유출되는 제 1 냉매 흐름(FD1)의 압력은 상기 일반식 2를 만족한다면, 특별히 제한되는 것은 아니며, 적용하고자 하는 공정의 종류 및 각 공정의 조건에 따라 다양하게 조절할 수 있다. 하나의 예시에서, 상기 제 1 열교환 장치(100)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 압력은, 전술한 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 압력과 동일하거나 다를 수 있으며, 예를 들어, 2 kgf/cm2g 내지 15 kgf/cm2g, 2 kgf/cm2g 내지 7 kgf/cm2g 또는 4 kgf/cm2g 내지 15 kgf/cm2g일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 압축 장치(200)에서 유출되는 제 1 냉매 흐름(FD1)의 압력은 10 내지 35 kgf/cm2g, 예를 들어, 15 내지 25 kgf/cm2g, 18 내지 24 kgf/cm2g, 또는 20 내지 35 kgf/cm2g일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 압축 장치(200)에서 압축된 후에 유출되는 상기 적어도 2 이상의 냉매 흐름(FD)의 온도는 100℃ 내지 160℃, 예를 들어, 110℃ 내지 130℃, 또는 105℃ 내지 145℃일 수 있으나, 이에 제한되는 것은 아니다.
상기 압축 장치(200)로는, 기상의 흐름을 압축시킬 수 있는 압축 장치라면, 기술 분야에서 알려진 다양한 압축 장치(200)를 제한 없이 사용할 수 있으며, 전술한 바와 같이, 둘 이상의 압축기(compressor)가 결합되어 있는 하나의 조립체(assembly) 또는 둘 이상의 압축기를 포함하는 압축 유닛(unit)일 수 있고, 하나의 예시에서, 상기 압축기는 콤프레셔일 수 있으나, 이에 제한되는 것은 아니다.
도 2와 같이, 예시적인 본 출원의 열 회수 장치(10)에서, 상기 압축 장치(200)에서 유출된 제 1 냉매 흐름(FD1)을 포함하는 적어도 2 이상의 냉매 흐름(FD)은, 제 2 열교환 장치(300)로 유입될 수 있다.
상기 제 2 열교환 장치는, 상기 압축 장치(200)에서 유출된 냉매 흐름과 외부에서 유입되는 제 2 유체 흐름(W2)을 열교환시키기 위하여, 본 출원의 열 회수 장치(10)에 포함되며, 상기 열교환을 통하여, 냉매는 응축된 후 압축 장치(200)에서 유출되는 냉매 흐름에 비하여 상대적으로 저온의 액상 흐름으로 유출될 수 있으며, 상기 제 2 유체 흐름(W2)은 상기 냉매가 응축시에 발생하는 잠열을 흡수할 수 있다. 상기에서 「액상」은 냉매 흐름 전체 성분 중 액체 성분 흐름이 농후한 상태를 의미하며, 예를 들어, 상기 냉매 흐름 전체 성분 중 액체 성분 흐름의 몰분율이 0.9 내지 1.0인 상태를 의미한다.
하나의 예시에서, 상기 제 2 열교환 장치로 유입되는 제 2 유체(W2)는 물(make-up water)일 수 있으며, 이 경우, 상기 제 2 열교환 장치(300)에서 열교환된 물은 상기 냉매가 응축시에 발생하는 잠열을 흡수하여 기화되고, 스팀 형태로 배출될 수 있다.
예를 들어, 상기 제 2 열교환 장치(300)로는 유체 연결된 배관을 통하여 압축 장치(200)로부터 유출된 적어도 2 이상의 냉매 흐름을 열교환 시키기 위한 제 2 유체 흐름(W2)이 유입될 수 있으며, 유입된 상기 적어도 2 이상의 냉매 흐름(FD) 및 제 2 유체 흐름(W2)은 상기 제 2 열교환 장치(300)에서 상호 열교환된 후에, 상기 유체 연결된 배관을 통하여 상기 제 2 열교환 장치(300)에서 각각 유출될 수 있다.
상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2)의 온도 및 압력은 특별히 제한되지 않으며, 다양한 온도 및 압력의 제 2 유체 흐름(W2)을 상기 제 2 열교환 장치로 유입시킬 수 있다. 예를 들어, 70℃ 내지 120℃, 예를 들어, 88v 내지 96℃, 또는 115℃ 내지 118℃의 온도 및 0.0 내지 30.0 kgf/cm2g, 예를 들어, 0.5 내지 18.0 kgf/cm2g의 압력으로 제 2 유체 흐름(W2)을 상기 제 2 열교환 장치(300)로 유입될 수 있다.
또한, 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2)의 유량은, 특별히 제한되는 것은 아니며, 5,000 kg/hr 내지 500,000 kg/hr, 예를 들어, 5,000 kg/hr 내지 40,000 kg/hr, 50,000 kg/hr 내지 100,000 kg/hr, 또는, 150,000 kg/hr 내지 400,000 kg/hr일 수 있다.
하나의 예시에서, 상기 압축 장치(200)에서 유출된 고온 고압의 냉매 흐름(FD)과 상기 제 2 열교환 장치(300)에서 열교환된 물(W2)은 100℃ 내지 170℃, 예를 들어, 115℃ 내지 120℃, 120℃ 내지 150℃, 또는 140℃ 내지 165℃의 온도 및 0.0 kgf/cm2g 내지 7.0 kgf/cm2g, 예를 들어, 0.6 내지 2.8 kgf/cm2g의 압력을 가지는 스팀으로 상기 제 2 열교환 장치(300)에서 유출될 수 있다.
또한, 상기 제 2 열교환 장치(300)에서 상기 제 2 유체 흐름(W2)과 열교환된 적어도 2 이상의 냉매 흐름(FD)은 115℃ 내지 130℃, 예를 들어, 118℃ 내지 125℃ 또는 120℃ 내지 128℃, 바람직하게는 120℃ 내지 125℃의 온도로 상기 제 2 열교환 장치(300)에서 유출될 수 있으나, 이에 제한되는 것은 아니다. 상기 제 2 열교환 장치(300)에서 상기 제 2 유체 흐름(W2)과 열교환된 냉매 흐름(FD)의 압력은, 냉매의 종류 및 운전 조건에 따라 다양하게 변할 수 있으며, 5.0 내지 45.0 kgf/cm2g, 예를 들어, 5.0 내지 13.0 kgf/cm2g, 8.0 내지 25.0 kgf/cm2g, 20.0 내지 28.0 kgf/cm2g, 또는 33.0 내지 45.0 kgf/cm2g의 압력으로 상기 제 2 열교환 장치(300)에서 유출될 수 있으나, 이에 제한되는 것은 아니다.
상기 제 2 열교환 장치(300)는 흐르는 유체 사이의 열교환을 수행하는 장치 또는 기계를 의미하며, 일 구현예에서, 상기 제 2 열교환 장치(300)는 기상의 냉매 흐름을 액상의 냉매 흐름으로 응축시키는 응축기(condenser)일 수 있다.
예시적인 본 출원의 열 회수 장치(10)는 또한, 저장 탱크(500)를 추가로 포함할 수 있다. 도 2 에 나타나듯이, 상기 저장 탱크(500)는 제 2 열교환 장치(300)와 배관을 통해 유체 연결된 상태로 구비될 수 있다. 상기 저장 탱크(500)는 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2)을 공급하기 위한 장치로서, 상기 저장 탱크(500)에는, 제 2 열교환 장치(300)로 유입되는 제 2 유체(W2), 예를 들어, 물이 저장되어 있을 수 있다.
상기 저장 탱크(500)에서 유출된 제 2 유체 흐름(W2)은 배관을 따라 제 2 열교환 장치(300)로 유입되며, 상기 제 2 열교환 장치(300)로 유입된 냉매 흐름(FD)과 열교환될 수 있다. 이 경우, 상기 열교환된 제 2 유체 흐름(W2), 예를 들어, 고온 고압의 물은 상기 저장 탱크로 재유입 된 후, 감압 되어, 스팀 형태로 배출될 수 있다.
일 구현예에서, 도 2와 같이, 본 출원의 열 회수 장치(10)는 유체 혼합기(flow mixer)를 포함할 수 있다.
상기 유체 혼합기(600)는, 상기 압축 장치(200)에서 유출되는 적어도 2 이상의 냉매 흐름을 단일의 흐름으로 합치기 위한 부재이며, 이에 따라, 상기 단일의 흐름으로 합쳐진 혼합된 냉매 흐름(FM)이 상기 제 2 열교환 장치(300)로 유입될 수 있다.
하나의 예시에서, 상기 유체 혼합기(600)는, 상기 냉매가 흐르는 배관에 형성될 수 있으며, 예를 들어, 상기 압축 장치(200)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)이 제 2 열교환 장치(300)로 유입되도록 형성된 배관에 위치할 수 있다. 예를 들어, 상기 유체 혼합기(600)는 상기 압축 장치(200)에서 유출된 제 1 및 제 2 냉매 흐름(FD1, FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)이 상기 유체 혼합기(600)로 유입되어 혼합된 후에 상기 제 2 열교환 장치(300)로 유입되도록 형성될 수 있으며, 이 경우, 상기 제 2 열교환 장치(300)로 유입된 혼합된 단일의 냉매 흐름(FM)은 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2)과 열교환될 수 있다.
또한, 도 2와 같이, 본 출원의 열 회수 장치(10)는 유체 분배기(flow splitter)를 추가로 포함할 수 있다.
상기 유체 분배기(700)는, 상기 유체 혼합기(600)에서 합쳐진 단일의 냉매 흐름(FM)을 다시 적어도 2 이상의 냉매 흐름(FD)으로 나누기 위한 부재이며, 이에 따라, 전술한 유체 혼합기(600)에서 합쳐진 냉매의 흐름(FM)은 상기 유체 분배기(700)에서 2 이상의 냉매 흐름(FD)으로 나뉘어진 후에 전술한 제 1 열교환 장치(100)로 유입될 수 있다.
하나의 예시에서, 상기 유체 분배기(700)는, 상기 냉매가 흐르는 배관에 형성되며, 예를 들어, 적어도 2 이상의 압력 강하 장치(400)의 전단 또는 적어도 2 이상의 압력 강하 장치(400) 사이에 형성되어 있을 수 있다. 예를 들면, 상기 유체 분배기(700)는, 압축 장치(200)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)이 상기 유체 혼합기(600)를 거쳐 혼합된 후에 제 2 열교환기(300)에서 유출되는 경우, 상기 제 2 열교환기(300)에서 유출되는 혼합된 단일의 냉매 흐름(FM)이 적어도 2 이상의 압력 강하 장치(400)로 유입되도록 형성된 배관에 위치할 수 있다. 이 경우, 전술한 유체 혼합기(600)에서 혼합된 냉매 흐름(FM)은 제 2 열교환기(300)에서 열교환된 후에, 제 2 열교환기(300)에서 유출되며, 상기 혼합된 냉매 흐름(FM)은 유체 분배기(700)를 통과하여 다시 적어도 2 이상의 냉매 흐름(FD)으로 분리된 후에 제 1 열교환 장치(100)로 각각 유입될 수 있다. 또한, 상기 유체 분배기(700)는, 적어도 2 이상의 압력 강하 장치(400) 사이에 위치할 수 있다. 예를 들면, 상기 유체 분배기(700)는, 하나의 압력 강하 장치, 예를 들면, 제 1 압력 강하 장치(401)를 거쳐 감압된 단일의 냉매 흐름이 나머지 압력 강하 장치, 예를 들면, 제 2 및 제 3 압력 강하 장치(402, 403)로 유입되기 전에, 상기 유체 분배기를 거쳐 적어도 2 이상의 냉매 흐름(FD)으로 분리된 후에, 하나의 감압된 냉매 흐름, 예를 들어 제 1 냉매 흐름(FD1)은 압력 강하 장치를 거치지 않은 채 제 1 열교환 장치(100)로 유입될 수 있고, 나머지 감압된 냉매 흐름, 예를 들어 제 2 및 제 3 냉매 흐름(FD2, FD3)은 제 2 및 제 3 압력 강하 장치(402, 403)로 각각 유입된 후에 제 1 열교환 장치(100)로 유입되도록 형성되어 있을 수 있다.
하나의 예시에서, 상기 제 2 열교환 장치(300)에서 유출된 혼합된 냉매 흐름(FM)은 상기 유체 분배기(700)로 유입되고, 상기 유체 분배기(700)로 유입된 혼합된 냉매 흐름(FM)은 상기 유체 분배기(700)에서 분리되어 상기 제 1 냉매 흐름(FD1) 및 제 2 냉매 흐름(FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)으로 분리된 후에 상기 적어도 2 이상의 압력 강하 장치(400)로 유입된다.
일 구현예에서, 도 2와 같이, 상기 제 2 열교환 장치(300)에서 유출된 냉매 흐름은 적어도 2 이상의 압력 강하 장치(400)로 각각 유입된다.
상기 압력 강하 장치(400)는, 상기 제 2 열교환 장치(300)에서 유출되는 적어도 2 이상의 액상의 냉매 흐름(FD)을 팽창시키고 온도 및 압력을 낮추기 위하여, 본 출원의 열 회수 장치(10)에 포함되며, 상기 압력 강하 장치를 통과한, 적어도 2 이상의 냉매 흐름(FD)은 팽창된 후 상기 제 2 열교환기(300)에서 유출되는 냉매 흐름에 비하여 상대적으로 저온 및 저압 상태로 전술한 제 1 열교환 장치(100)로 재유입될 수 있다.
예를 들어, 제 2 열교환 장치(300)에서 유출되는 적어도 2 이상의 액상의 냉매 흐름(FD)은 유체 연결된 배관을 통하여 상기 압력 강하 장치(400)로 유입될 수 있으며, 유입된 상기 적어도 2 이상의 냉매 흐름(FD)은 상기 압력 강하 장치(400)에서 각각 팽창된 후에, 상기 제 2 열교환 장치(300)에서 유출되는 냉매 흐름에 비하여 상대적으로 저온 및 저압 상태로 상기 유체 연결된 배관을 통하여 유출될 수 있다. 하나의 예시에서, 상기 압력 강하 장치(400)에서 유출되는 적어도 2 이상의 냉매 흐름은 40℃ 내지 110℃, 예를 들어, 45℃ 내지 55℃ 또는 74℃ 내지 82v, 바람직하게는 85℃ 내지 90℃의 온도로 상기 압력 강하 장치(400)에서 유출될 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 압력 강하 장치(400)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)의 압력은, 냉매의 종류 및 운전 조건에 따라 다양하게 변할 수 있으며, 예를 들어, 5.0 kgf/cm2g 내지 45.0 kgf/cm2g, 예를 들어, 5.1 kgf/cm2g 내지 8.3 kgf/cm2g, 12.0 kgf/cm2g 내지 14.5 kgf/cm2g 또는 5.6 kgf/cm2g 내지 8.8 kgf/cm2g일 수 있으며, 바람직하게는 5.2 kgf/cm2g 내지 9.3 kgf/cm2g의 압력으로 상기 압력 강하 장치에서 유출될 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 열 회수 장치(10)에서, 상기 적어도 2 이상의 압력 강하 장치(400)에서 각각 유출되는 적어도 2 이상의 냉매 흐름(FD)의 온도 및 압력은 서로 상이하게 조절될 수 있으며, 이에 따라, 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)을 상기 적어도 2 이상의 냉매 흐름(FD)과 단계적으로 열교환시킬 수 있다. 일 구현예에서, 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)과 가장 먼저 열교환되는 제 1 냉매 흐름(FD1)은 제 1 압력 강하 장치(401)를 통과하여, 50℃ 내지 100℃, 예를 들어, 58℃ 내지 62℃, 70℃ 내지 85℃ 또는 82℃ 내지 88℃의 온도로 제 1 압력 강하 장치(400)에서 유출될 수 있으며, 또한, 1 내지 16 kg/cm2g, 예를 들어, 4 내지 10.0 kg/cm2g, 또는 5.2 내지 9.3 kg/cm2g 의 압력으로 제 1 압력 강하 장치(401)에서 유출된 후에 전술한 제 1 열교환 장치(100)로 유입될 수 있다. 또한, 상기 제 1 냉매 흐름(FD1)과 열교환된 제 1 유체 흐름(W1)과 열교환되며, 제 1 열교환 장치(100)로 유입되는 제 2 냉매 흐름(FD2)은 40℃ 내지 100℃, 예를 들어, 48℃ 내지 52℃, 60℃ 내지 75℃, 72℃ 내지 78℃ 또는 70℃ 내지 80℃의 온도로 제 2 압력 강하 장치(402)에서 유출될 수 있으며, 또한, 3.0 내지 15.0 kg/cm2g, 예를 들어, 3.0 내지 5.0 kg/cm2g, 4.2 내지 6.2 kg/cm2g, 5.2 내지 7.1 kg/cm2g 또는 11.0 내지 15.0 kg/cm2g의 압력으로 제 2 압력 강하 장치(402)에서 유출된 후에 전술한 제 1 열교환 장치(100)로 유입될 수 있다.
상기 압력 강하 장치(400)는, 예를 들어 상기 제 3 열교환 장치(300)에서 유출된 적어도 2 이상의 냉매 흐름(FD)이 흐르는 배관에 각각 설치된 컨트롤 밸브 또는 터빈일 수 있다.
하나의 예시에서, 상기 압력 강하 장치(400)가 터빈일 경우, 상기 터빈은 발전 장치일 수 있다. 예를 들어, 상기 압력 강하 장치(400)는 배관을 통해 흐르는 냉매, 즉 유체의 역학적 에너지를 전기 에너지로 변환시킬 수 있는 수차(hydraulic turbine)일 수 있으며, 상기 수차를 이용할 경우, 압축기에서 소모되는 전력을 열 회수 장치 자체적으로 생산할 수 있으므로, 상기 회수 장치의 성능 계수를 증가시킬 수 있다.
전술한 바와 같이, 본 출원의 열교환 장치는 둘 이상의 열교환기가 결합되어 있는 하나의 조립체 또는 둘 이상의 열교환기를 포함하는 열교환 유닛일 수 있으며, 압축 장치(200)는 둘 이상의 압축기가 결합되어 있는 하나의 조립체 또는 둘 이상의 압축기를 포함하는 압축 유닛일 수 있다.
하나의 예시에서, 상기 제 1 열교환 장치(100)는 적어도 2 이상의 열교환기를 포함하고, 상기 압축 장치(200)는 적어도 2 이상의 압축기를 포함할 수 있다.
도 3은, 2개의 냉매 흐름을 가지는 본 출원의 열 회수 장치(10)의 일 구현예를 모식적으로 나타낸 도면이다.
도 3에 나타나듯이, 상기 제 1 열교환 장치(100)는 제 1-1 열교환기(101) 및 제 1-2 열교환기(102)를 포함하고, 압축 장치(200)는 제 1 압축기(201) 및 제 2 압축기(202)를 포함하고, 상기 압력 강하 장치(400)는 제 1 압력 강하 장치(401) 및 제 2 압력 강하 장치(402)를 포함할 수 있다.
이 경우, 도 3에 나타나듯이, 상기 제 1 유체 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입되며, 상기 제 1-1 열교환기(101)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-2 열교환기(102)로 유입될 수 있다. 또한, 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입되며, 제 2 냉매 흐름(FD2)이 상기 제 1-2 열교환기(102)로 유입될 수 있다.
이에 따라, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입된 제 1 유체 흐름(W1)과 상기 제 1-1 열교환기(101)에서 열교환되며, 상기 제 1-2 열교환기(102)로 유입된 제 2 냉매 흐름(FD2)은 상기 제 1-1 열교환기(101)에서 유출되어 상기 제 1-2 열교환기(102)로 유입된 제 1 유체 흐름(W1)과 상기 제 1-2 열교환기(102)에서 열교환될 수 있다. 또한, 상기 제 1-1 열교환기(101)에서 열교환된 후에 유출된 제 1 냉매 흐름(FD1)은 상기 제 1 압축기(201)로 유입될 수 있으며, 상기 제 1-2 열교환기(102)에서 유출된 제 2 냉매 흐름(FD2)은 상기 제 2 압축기(202)로 유입될 수 있다.
이 때, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 전술한 바와 같이, 제 1 압력 강하 장치(401)에서 상기 제 2 냉매 흐름(FD2)에 비하여 상대적으로 높은 온도 및 압력을 갖도록 조절되어 상기 제 1 열교환 장치(100)로 유입되므로, 이에 따라, 열교환 후에 상기 압축 장치(200), 예를 들어 제 1 압축기(201)로 유입되는 제 1 냉매 흐름(FD1)의 온도 및 압력을 높게 유지할 수 있어, 압축에 필요한 에너지를 절감할 수 있다.
한편, 상기 제 1 압축기(201)에서 유출된 제 1 냉매 흐름(FD1) 및 상기 제 2 압축기(202)에서 유출된 제 2 냉매 흐름(FD2)은 상기 제 2 열교환 장치(300)로 유입될 수 있으며, 상기 제 2 열교환 장치(300)로 유입된 제 1 및 제 2 냉매 흐름(FD1, FD2)은 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2), 예를 들어, 물과 열교환되어 스팀을 생성할 수 있다.
또한, 상기 제 2 열교환 장치(300)에서 유출된 제 1 냉매 흐름(FD1)은 상기 제 1 압력 강하 장치(401)로 유입되어 상기 제 2 냉매 흐름(FD2)보다 상대적으로 높은 온도 및 압력을 가지도록 감압될 수 있으며, 상기 제 2 열교환 장치(300)에서 유출된 제 2 냉매 흐름(FD2)은 상기 제 2 압력 강하 장치(402)로 유입되어 상기 제 1 냉매 흐름(FD1)보다 상대적으로 낮은 온도 및 압력을 가지도록 감압될 수 있다.
상기와 같이 제 1 압력 강하 장치(401)에서 감압된 후 유출된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입될 수 있으며, 상기 제 2 압력 강하 장치(402)에서 감압된 후 유출된 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 유입될 수 있다.
도 4는, 3개의 냉매 흐름을 가지는 본 출원의 열 회수 장치(10)의 일 구현예를 모식적으로 나타낸 도면이다.
도 4에 나타나듯이, 본 출원의 열 회수 장치(10)에서, 상기 제 1 열교환 장치(100)는 제 1-1 열교환기(101), 제 1-2 열교환기(102) 및 제 1-3 열교환기(103)를 포함하고, 상기 압축 장치(200)는 제 1 압축기(201), 제 2 압축기(202) 및 제 3 압축기(203)를 포함하며, 상기 압력 강하 장치(400)는 제 1 압력 강하 장치(401), 제 2 압력 강하 장치(402) 및 제 3 압력 강하 장치(403)를 포함할 수 있다.
이 경우, 도 4에 나타나듯이, 상기 제 1 유체 흐름(W1)은 상기 제 1-1 열교환기(101)로 유입되며, 상기 제 1-1 열교환기(101)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-2 열교환기(102)로 유입될 수 있고, 상기 제 1-2 열교환기(102)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-3 열교환기(103)로 유입될 수 있다. 또한, 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입되며, 상기 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 유입될 수 있고, 상기 제 3 냉매 흐름(FD3)은 상기 제 1-3 열교환기(103)로 유입될 수 있다.
이에 따라, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입된 제 1 유체 흐름(W1)과 상기 제 1-1 열교환기(101)에서 열교환될 수 있고, 상기 제 1-2 열교환기(102)로 유입된 제 2 냉매 흐름(FD2)은 상기 제 1-1 열교환기(101)에서 유출되어 상기 제 1-2 열교환기(102)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있으며, 상기 제 1-3 열교환기(103)로 유입된 제 3 냉매 흐름(FD3)은 상기 제 1-2 열교환기(102)에서 유출되어 상기 제 1-3 열교환기(103)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있다. 또한, 상기 제 1-1 열교환기(101)에서 유출된 제 1 냉매 흐름(FD1)은 상기 제 1 압축기(201)로 유입될 수 있으며, 상기 제 1-2 열교환기(102)에서 유출된 제 2 냉매 흐름(FD2)은 상기 제 2 압축기(202)로 유입될 수 있고, 상기 제 1-3 열교환기(103)에서 유출된 제 3 냉매 흐름(FD3)은 상기 제 3 압축기(203)로 유입될 수 있다.
이 때, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 전술한 바와 같이, 제 1 압력 강하 장치(401)에서 상기 제 2 냉매 흐름(FD2) 및 제 3 냉매 흐름(FD3)에 비하여 상대적으로 높은 온도 및 압력을 갖도록 조절되어 상기 제 1 열교환 장치(100)로 유입되므로, 이에 따라, 열교환 후에 상기 압축 장치(200), 예를 들어 제 1 압축기(201)로 유입되는 제 1 냉매 흐름(FD1)의 온도 및 압력을 높게 유지할 수 있어, 압축에 필요한 에너지를 절감할 수 있다.
한편, 상기 제 1 압축기(201)에서 유출된 제 1 냉매 흐름(FD1), 상기 제 2 압축기(202)에서 유출된 제 2 냉매 흐름(FD2) 및 상기 제 3 압축기(203)에서 유출된 제 3 냉매 흐름(FD3)은 상기 제 2 열교환 장치(300)로 유입될 수 있으며, 상기 제 2 열교환 장치(300)로 유입된 제 1, 제 2 및 제 3 냉매 흐름(FD1, FD2, FD3)은 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2), 예를 들어, 물과 열교환되어 스팀을 생성할 수 있다.
또한, 상기 제 2 열교환 장치(300)에서 유출된 제 1 냉매 흐름(FD1)은 상기 제 1 압력 강하 장치(401)로 유입되어 상기 제 2 냉매 흐름(FD2) 및 상기 제 3 냉매 흐름(FD3) 보다 상대적으로 높은 온도 및 압력을 가지도록 감압될 수 있으며, 상기 제 2 열교환 장치(300)에서 유출된 제 2 냉매 흐름(FD2)은 상기 제 2 압력 강하 장치(402)로 유입되어 상기 제 1 냉매 흐름(FD1)보다 상대적으로 낮은 온도 및 압력을 가지도록 감압될 수 있다. 또한, 상기 제 2 열교환 장치(300)에서 유출된 제 3 냉매 흐름(FD3)은 상기 제 3 압력 강하 장치(403)로 유입되어 상기 제 1 및 제 2 냉매 흐름(FD1, FD2)보다 상대적으로 낮은 온도 및 압력을 가지도록 감압될 수 있다.
상기와 같이 상기 제 1 압력 강하 장치(401)에서 감압된 후 유출된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입될 수 있으며, 상기 제 2 압력 강하 장치(402)에서 감압된 후 유출된 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 유입될 수 있고, 상기 제 3 압력 강하 장치(403)에서 유출된 제 3 냉매 흐름(FD3)은 상기 제 1-3 열교환기(103)로 유입될 수 있다.
도 5는, 4개의 냉매 흐름을 가지는 본 출원의 열 회수 장치(10)의 일 구현예를 모식적으로 나타낸 도면이다.
도 5에 나타나듯이, 본 출원의 열 회수 장치(10)에서, 상기 제 1 열교환 장치(100)는 제 1-1 열교환기(101), 제 1-2 열교환기(102), 제 1-3 열교환기(103) 및 제 1-4 열교환기(104)를 포함하고, 상기 압축 장치(200)는 제 1 압축기(201), 제 2 압축기(202), 제 3 압축기(203) 및 제 4 압축기(204)를 포함하며, 상기 압력 강하 장치(400)는 제 1 압력 강하 장치(401), 제 2 압력 강하 장치(402), 제 3 압력 강하 장치(403) 및 제 4 압력 강하 장치(404)를 포함할 수 있다.
이 경우, 도 5에 나타나듯이, 상기 제 1 유체 흐름(W1)은 상기 제 1-1 열교환기(101)로 유입되며, 상기 제 1-1 열교환기(101)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-2 열교환기(102)로 유입될 수 있고, 상기 제 1-2 열교환기(102)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-3 열교환기(103)로 유입되며, 상기 제 1-3 열교환기(103)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-4 열교환기(104)로 유입될 수 있다. 또한, 상기 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입되며, 상기 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 유입될 수 있고, 상기 제 3 냉매 흐름(FD3)은 상기 제 1-3 열교환기(103)로 유입될 수 있으며, 상기 제 4 냉매 흐름(FD4)은 상기 제 1-4 열교환기(104)로 유입될 수 있다.
이에 따라, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있고, 상기 제 1-2 열교환기(102)로 유입된 제 2 냉매 흐름(FD2)은 상기 제 1-1 열교환기(101)에서 유출되어 상기 제 1-2 열교환기(102)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있으며, 상기 제 1-3 열교환기(103)로 유입된 제 3 냉매 흐름(FD3)은 상기 제 1-2 열교환기(102)에서 유출되어 상기 제 1-3 열교환기(103)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있고, 상기 제 1-4 열교환기(104)로 유입된 제 4 냉매 흐름(FD4)은 상기 제 1-3 열교환기(103)에서 유출되어 상기 제 1-4 열교환기(104)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있다. 또한, 상기 제 1-1 열교환기(101)에서 유출된 제 1 냉매 흐름(FD1)은 상기 제 1 압축기(201)로 유입될 수 있고, 상기 제 1-2 열교환기(102)에서 유출된 제 2 냉매 흐름(FD2)은 상기 제 2 압축기(202)로 유입될 수 있으며, 상기 제 1-3 열교환기(103)에서 유출된 제 3 냉매 흐름(FD3)은 상기 제 3 압축기(203)로 유입될 수 있고, 상기 제 1-4 열교환기(104)에서 유출된 제 4 냉매 흐름(FD4)은 상기 제 4 압축기(204)로 유입될 수 있다.
이 때, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 전술한 바와 같이, 제 1 압력 강하 장치(401)에서 상기 제 2 냉매 흐름(FD2), 제 3 냉매 흐름(FD3) 및 제 4 냉매 흐름(FD4)에 비하여 상대적으로 높은 온도 및 압력을 갖도록 조절되어 상기 제 1 열교환 장치(100)로 유입되므로, 이에 따라, 열교환 후에 상기 압축 장치(200), 예를 들어 제 1 압축기(201)로 유입되는 제 1 냉매 흐름(FD1)의 온도 및 압력을 높게 유지할 수 있어, 압축에 필요한 에너지를 절감할 수 있다.
한편, 상기 제 1 압축기(201)에서 유출된 제 1 냉매 흐름(FD1), 상기 제 2 압축기(202)에서 유출된 제 2 냉매 흐름(FD2), 상기 제 3 압축기(203)에서 유출된 제 3 냉매 흐름(FD3) 및 상기 제 4 압축기(204)에서 유출된 제 4 냉매 흐름(FD4)은 상기 제 2 열교환 장치(300)로 유입될 수 있으며, 상기 제 2 열교환 장치(300)로 유입된 제 1, 제 2, 제 3 및 제 4 냉매 흐름(FD1, FD2, FD3, FD4)은 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2), 예를 들어, 물과 열교환되어 스팀을 생성할 수 있다.
또한, 상기 제 2 열교환 장치(300)에서 유출된 제 1 냉매 흐름(FD1)은 상기 제 1 압력 강하 장치(401)로 유입되어 상기 제 2, 제 3 및 제 4 냉매 흐름(FD2, FD3, FD4)보다 상대적으로 높은 온도 및 압력을 가지도록 감압될 수 있으며, 상기 제 2 열교환 장치(300)에서 유출된 제 2 냉매 흐름(FD2)은 상기 제 2 압력 강하 장치(402)로 유입되어 상기 제 1 냉매 흐름(FD1)보다 상대적으로 낮은 온도 및 압력을 가지도록 감압될 수 있다. 또한, 상기 제 2 열교환 장치(300)에서 유출된 제 3 냉매 흐름(FD3)은 상기 제 3 압력 강하 장치(403)로 유입되어 제 1 및 제 2 냉매 흐름(FD1, FD2)보다 상대적으로 낮은 온도 및 압력을 가지도록 감압될 수 있으며, 상기 제 2 열교환 장치에서 유출된 제 4 냉매 흐름(FD4)은 상기 제 4 압력 강하 장치(404)로 유입되어 상기 제 1, 제 2 및 제 3 냉매 흐름(FD1, FD2, FD3)보다 상대적으로 낮은 온도 및 압력을 가지도록 감압될 수 있다.
상기와 같이 상기 제 1 압력 강하 장치(401)에서 감압된 후 유출된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입될 수 있으며, 상기 제 2 압력 강하 장치(402)에서 감압된 후 유출된 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 유입될 수 있다. 또한, 상기 제 3 압력 강하 장치(403)에서 감압된 후 유출된 제 3 냉매 흐름(FD3)은 상기 제 1-3 열교환기(103)로 유입될 수 있으며, 상기 제 4 압력 강하 장치(404)에서 감압된 후 유출된 제 4 냉매 흐름(FD4)은 상기 제 1-4 열교환기(104)로 유입될 수 있다.
본 출원의 열 회수 장치(10)에서는, 상기 배관을 통하여, 제 1 열교환 장치(100), 압축 장치(200), 제 2 열교환 장치(300) 및 압력 강하 장치(400)를 통과하는 냉매 흐름이 각각 상이한 온도 및 압력 특성을 가지며, 기상 및/또는 액상의 흐름으로 상기 제 1 열교환 장치(100), 압축 장치(200), 제 2 열교환 장치(300), 및 압력 강하 장치(400)로 유입 또는 유출됨으로써, 상기 냉매 흐름의 온도, 압력 및 상태 변화에 따른 잠열을 스팀 생성을 위한 열원으로서 사용할 수 있다.
하나의 예시에서, 상기 제 1 열교환 장치(100)로 유입되는 적어도 2 이상의 냉매 흐름(FD)은 액상의 흐름일 수 있으며, 상기 적어도 2 이상의 냉매 흐름 내의 액상 흐름의 부피 분율은 0.5 내지 1.0, 예를 들어, 0.9 내지 1.0, 바람직하게는 0.99 내지 1.0일 수 있다.
상기 제 1 열교환 장치(100)에서 유출되어 압축 장치(200)로 유입되는 적어도 2 이상의 냉매 흐름(FD)은 기상의 흐름일 수 있으며, 상기 적어도 2 이상의 냉매 흐름 내의 기상 흐름의 부피 분율은 0.9 내지 1.0, 예를 들어, 0.95 내지 1.0, 바람직하게는 0.99 내지 1.0일 수 있다.
또한, 상기 압축 장치(200)에서 등엔트로피 압축 후에 유출되는 적어도 2 이상의 냉매 흐름(FD)은 기상의 흐름일 수 있으며, 상기 적어도 2 이상의 냉매 흐름 내의 기상 흐름의 부피 분율은 0.7 내지 1.0, 예를 들어, 0.95 내지 1.0, 바람직하게는 0.99 내지 1.0일 수 있다.
상기 제 2 열교환 장치(300)에서 유출되어 상기 압력 강하 장치(400)로 유입되는 냉매 흐름(FD)은 액상의 흐름일 수 있으며, 상기 혼합된 냉매 흐름 내의 액상 흐름의 부피 분율은 0.9 내지 1.0, 예를 들어, 0.95 내지 1.0, 바람직하게는 0.99 내지 1.0일 수 있다.
또한, 상기 압력 강하 장치(400)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)은 액상의 흐름일 수 있으며, 상기 적어도 2 이상의 냉매 흐름 내의 기상 흐름의 분율은 0 내지 0.5, 예를 들어, 0 내지 0.3, 바람직하게는 0 내지 0.1일 수 있다.
상기에서, 부피 분율(volume fraction)은 상기 배관을 통하여 흐르는 냉매 흐름 전체의 체적 유량(volume flow rate)에 대한 액상 흐름 또는 기상 흐름의 체적 유량의 비율을 의미하며, 상기 체적 유량은 단위 시간당 흐르는 유체의 체적을 나타내며, 하기 일반식 4에 의하여 구할 수 있다.
[일반식 4]
체적 유량 = Av (m3/s)
상기 일반식 4에서, A는 배관의 단면적(m2)을 나타내고, v는 냉매 흐름의 유속(m/s)을 나타낸다.
본 출원의 열 회수 장치(10)의 또 하나의 구현예는, 제 3 열교환 장치(800)를 포함한다. 도 6은, 본 출원의 열 회수 장치(10)의 또 다른 구현예를 모식적으로 나타낸 도면이다.
도 6에 나타나듯이, 본 출원의 열 회수 장치(10)는 상기 제 1 열교환 장치와 압축 장치(200) 사이 및 제 2 열교환 장치 및 압력 강하 장치 사이에 위치하는 제 3 열교환 장치(800)를 추가로 포함한다. 예를 들어, 상기 제 3 열교환 장치(800)는 상기 제 1 열교환 장치(100)와 압축 장치(200) 사이에 연결된 배관 및 제 2 열교환 장치(300) 및 압력 강하 장치 사이(400)에 연결된 배관에 연결되어 있을 수 있으며, 하나의 예시에서, 상기 제 3 열교환 장치(800)는, 제 1 열교환 장치(100)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)이 상기 제 3 열교환 장치(800)를 통과한 후 압축 장치(200)로 유입되고, 제 2 열교환 장치(300)에서 유출되는 냉매 흐름이 상기 제 3 열교환 장치(800)를 통과한 후 상기 압력 강하 장치(400)로 유입되도록 상기 배관에 유체 연결되어 있을 수 있다. 본 출원의 열 회수 장치(10)가 상기 제 3 열교환 장치(800)를 포함함으로써, 냉매의 등엔트로피 압축시에 발생하는 냉매의 일부 기화 현상을 막을 수 있으며, 이에 따라, 상기 열 회수 장치(10)의 열교환 효율을 상승시킬 수 있다. 상기에서 「등엔트로피 압축」은 계의 엔트로피를 일정하게 유지하는 조건에서 압축시키는 것을 의미하며, 예를 들어, 계의 주변과 열교환이 없는 상태에서 압축시키는 단열 압축과정을 의미할 수 있다.
도 7은, 본 출원의 예시적인 냉매의 온도-엔트로피 선도를 도시한 그래프이다. 하나의 예시에서, 상기 열 회수 장치(10)를 순환하는 상기 냉매는, 도 7에 나타나듯이, 온도-엔트로피 선도의 포화증기곡선(saturated vapor curve)의 접선의 기울기가 양의 기울기를 가지는 냉매일 수 있으며, 예를 들어, 가로축은 엔트로피(J/kg·K), 세로축은 온도(℃)인 상기 냉매의 온도-엔트로피 선도의 포화증기곡선의 접선의 기울기는 50℃ 내지 130℃에서 1 내지 3일 수 있다. 상기 온도-엔트로피 선도에서 포화증기곡선은 선도의 임계점(critical point)을 기준으로 하여 선도 우측의 곡선 부분을 의미한다. 즉, 도 7에 나타나 듯이, 냉매의 온도-엔트로피 선도에서, 상기 냉매가 등-엔트로피 압축될 경우(도 7의 화살표 방향), 상기 냉매의 포화증기곡선의 접선의 기울기가 양의 기울기를 가지므로 기상에서 액상으로 상변화가 발생하는 구간이 존재하게 되며, 이에 따라, 압축 장치(200) 내에서 냉매 흐름의 일부가 기화되는 현상이 발생할 수 있다. 상기 냉매의 일부 기화 현상을 방지하기 위하여, 본 출원의 열 회수 장치(10)는 상기 제 3 열교환 장치(800)를 포함할 수 있으며, 이에 따라, 상기 열 회수 장치(10)의 열교환 효율을 상승시킬 수 있다.
상기 냉매로는, 온도-엔트로피 선도의 포화증기곡선의 접선의 기울기가 양의 값을 가지는 냉매라면, 기술 분야에서 공지된 다양한 냉매를 사용할 수 있으나, 특별히 제한되는 것은 아니며, 예를 들어, R245fa, R1234ze 및 R1234yf로 이루어진 군으로부터 선택된 1종 이상의 냉매를 사용할 수 있다.
도 6과 같이, 본 출원의 구현예에 따른 열 회수 장치(10)에서는, 제 1 열교환 장치(100)에서 유출되는 제 1 및 제 2 냉매 흐름(FD1, FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)은 상기 제 3 열교환 장치(800)로 유입된 후에, 상기 압축 장치(200)로 유입되고, 상기 제 2 열교환 장치(300)에서 유출되는 제 1 및 제 2 냉매 흐름(FD1, FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)은 상기 제 3 열교환 장치(800)로 유입된 후에 상기 압력 강하 장치(400)로 유입되며, 상기 제 1 열교환 장치(100)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)과 상기 제 2 열교환 장치(300)에서 유출되는 냉매 흐름은 상기 제 3 열교환 장치(800)에서 열교환될 수 있다.
예를 들어, 상기 제 3 열교환 장치(800)에서는, 상기 제 1 열교환 장치(100)에서 유출된 제 1 냉매 흐름(FD1)과 상기 제 2 열교환 장치(200)에서 유출된 제 1 냉매 흐름(FD1)이 열교환될 수 있으며, 상기 제 1 열교환 장치(100)에서 유출되는 제 2 냉매 흐름(FD2)과 상기 제 2 열교환 장치(300)에서 유출되는 제 2 냉매 흐름(FD2)이 열교환 될 수 있다.
일 구현예에서, 도 6과 같이, 상기 열 회수 장치(10)는 유체 혼합기(600) 및 유체 분배기(700)를 추가로 포함할 수 있다.
상기 유체 혼합기는, 전술한 바와 같이, 상기 압축 장치(200)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)을 단일의 흐름으로 합치기 위한 부재이며, 이에 따라, 상기 단일의 흐름으로 합쳐진 혼합된 냉매 흐름(FM)이 상기 제 2 열교환 장치(300)로 유입될 수 있다.
하나의 예시에서, 상기 유체 혼합기(600)는, 상기 냉매가 흐르는 배관에 형성될 수 있으며, 예를 들어, 상기 압축 장치(200)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)이 제 2 열교환 장치(300)로 유입되도록 형성된 배관에 형성될 수 있다. 예를 들어, 상기 유체 혼합기(600)는 상기 압축 장치(200)에서 유출된 제 1 및 제 2 냉매 흐름(FD1, FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)이 상기 유체 혼합기(600)로 유입되어 혼합된 후에 상기 제 2 열교환 장치(300)로 유입되도록 형성될 수 있으며, 이 경우, 상기 제 2 열교환 장치(300)로 유입된 혼합된 단일의 냉매 흐름(FM)은 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(FD2)과 열교환될 수 있다.
또한, 전술한 바와 같이, 상기 유체 분배기(700)는, 상기 유체 혼합기(600)에서 합쳐진 단일의 냉매 흐름(FM)을 다시 적어도 2 이상의 냉매 흐름(FD)으로 나누기 위한 부재이며, 이에 따라, 전술한 유체 혼합기(600)에서 합쳐진 냉매의 흐름(FM)은 상기 유체 분배기(700)에서 2 이상의 냉매 흐름(FD)으로 나뉘어진 후에 전술한 제 1 열교환 장치(100)로 유입될 수 있다.
하나의 예시에서, 상기 유체 분배기(700)는, 상기 냉매가 흐르는 배관에 형성되며, 예를 들어, 적어도 2 이상의 압력 강하 장치(400)의 전단 또는 적어도 2 이상의 압력 강하 장치(400) 사이에 형성되어 있을 수 있다. 예를 들면, 상기 유체 분배기(700)는, 압축 장치(200)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)이 상기 유체 혼합기(600)를 거쳐 혼합된 후에 제 2 열교환기(300)로 유입되고, 상기 혼합된 냉매 흐름(FM)이 상기 제 2 열교환기(300)에서 열교환된 후에 상기 제 2 열교환기(300)에서 유출되는 경우, 상기 제 2 열교환기(300)에서 유출되는 혼합된 냉매 흐름(FM)이 제 3 열교환 장치(800)를 거쳐 적어도 2 이상의 압력 강하 장치(400)로 유입되도록 형성된 배관에 위치할 수 있다. 이 경우, 전술한 유체 혼합기(600)에서 혼합된 냉매 흐름(FM)은 제 2 열교환기(300)에서 열교환된 후에, 제 2 열교환기(300)에서 유출되며, 상기 혼합된 냉매 흐름(FM)은 제 3 열교환 장치(800)로 유입되고, 상기 제 3 열교환 장치(800)에서 열교환 된 후에 유출되는 혼합된 냉매 흐름(FM)은 상기 유체 분배기(700)를 통과하여 다시 적어도 2 이상의 냉매 흐름(FD)으로 분리된 후에 전술한 제 1 열교환 장치로 각각 유입될 수 있다. 또한, 상기 유체 분배기(700)는, 적어도 2 이상의 압력 강하 장치 사이(400)에 위치할 수 있다. 예를 들면, 상기 유체 분배기(700)는, 하나의 압력 강하 장치, 예를 들면, 제 1 압력 강하 장치(401)를 거쳐 감압된 단일의 냉매 흐름이 나머지 압력 강하 장치, 예를 들면, 제 2 및 제 3 압력 강하 장치(402, 403)로 유입되기 전에, 상기 유체 분배기(700)를 거쳐 적어도 2 이상의 냉매 흐름(FD)으로 분리된 후에, 하나의 감압된 냉매 흐름, 예를 들어 제 1 냉매 흐름(FD1)은 압력 강하 장치를 거치지 않은 채 제 1 열교환 장치(100)로 유입될 수 있고, 나머지 감압된 냉매 흐름, 예를 들어 제 2 및 제 3 냉매 흐름(FD2, FD3)은 제 2 및 제 3 압력 강하 장치(402, 403)로 각각 유입된 후에 제 1 열교환 장치(100)로 유입되도록 형성되어 있을 수 있다.
하나의 예시에서, 도 6에 나타나듯이, 상기 압축 장치(200)에서 유출된 제 1 및 제 2 냉매 흐름(FD1, FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)은 상기 유체 혼합기(600)로 유입되어 혼합된 후에 상기 제 2 열교환 장치(300)로 유입될 수 있으며, 상기 제 2 열교환 장치(300)로 유입된 혼합된 냉매 흐름(FM)은 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2), 예를 들어, 물과 열교환되어 스팀을 생성할 수 있다.
또한, 도 6과 같이, 상기 제 2 열교환 장치(300)에서 열교환 후에 유출된 혼합된 냉매 흐름(FM)은 상기 제 3 열교환 장치(800)로 유입된 후에 상기 유체 분배기(700)로 유입될 수 있고, 상기 유체 분배기(700)로 유입된 냉매 흐름은 제 1 및 제 2 냉매 흐름(FD1, FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)으로 분리된 후에 적어도 2 이상의 압력 강하 장치(400)로 각각 유입될 수 있다.
이 경우, 상기 제 3 열교환 장치(800)에서는, 상기 제 1 열교환 장치(100)에서 유출된 제 1 냉매 흐름(FD1)과 상기 제 2 열교환 장치(300)에서 유출된 혼합된 냉매 흐름(FM)이 서로 열교환되며, 상기 제 1 열교환 장치(100)에서 유출된 제 2 냉매 흐름(FD2)과 상기 제 1 냉매 흐름(FD1)과 열교환된 상기 혼합된 냉매 흐름(FM)이 서로 열교환될 수 있다.
하나의 예시에서, 상기 제 3 열교환 장치(800)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 온도와 제 2 열교환 장치(300)에서 유출되어 상기 제 3 열교환 장치(800)로 유입되는 혼합된 냉매 흐름(FM)의 온도는 하기 일반식 3을 만족할 수 있다.
[일반식 3]
1℃ ≤ TR3Hin - TR3Cout ≤ 30℃
상기 일반식 3에서, TR3Cout는 제 3 열교환 장치(800)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 온도를 나타내고, TR3Hin는 상기 제 2 열교환 장치(300)에서 유출되어 상기 제 3 열교환 장치(800)로 유입되는 혼합된 냉매 흐름(FM)의 온도를 나타낸다.
즉, 상기 제 3 열교환 장치(800)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 온도와 제 2 열교환 장치(300)에서 유출되어 상기 제 3 열교환 장치(800)로 유입되는 혼합된 냉매 흐름(FM)의 온도의 차 TR3Hin - TR3Cout은 1℃ 내지 30℃, 예를 들어, 3℃ 내지 30℃, 5℃ 내지 28℃, 10℃ 내지 30℃ 또는 5.0℃ 내지 15.0℃의 범위로 조절될 수 있다.
상기 제 3 열교환 장치(800)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 온도와 제 2 열교환 장치(300)에서 유출되어 상기 제 3 열교환 장치(800)로 유입되는 혼합된 냉매 흐름(FM)의 온도가 상기 일반식 3을 만족함으로써, 전술한 냉매의 일부 기화 현상을 막을 수 있을 정도로 상기 압축 장치(200)로 유입되는 냉매 흐름의 온도를 충분히 상승시킬 수 있으며, 이에 따라, 상기 열 회수 장치(10)의 열교환 효율을 상승시킬 수 있다.
상기 제 3 열교환 장치(800)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 온도와 제 2 열교환 장치(300)에서 유출되어 상기 제 3 열교환 장치(800)로 유입되는 혼합된 냉매 흐름(FM)의 온도는 상기 일반식 3을 만족한다면, 특별히 제한되는 것은 아니며, 적용하고자 하는 공정의 종류 및 각 공정의 조건에 따라 다양하게 조절할 수 있다. 하나의 예시에서, 상기 제 3 열교환 장치(800)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)은 60℃ 내지 120℃, 예를 들어, 68℃ 내지 82℃, 75℃ 내지 90℃ 또는 90℃ 내지 120℃의 온도로 상기 압축 장치(200)로 유입될 수 있으나, 특별히 이에 제한되는 것은 아니다. 또한, 상기 제 2 열교환 장치(300)에서 유출되어 상기 제 3 열교환 장치(800)로 유입되는 혼합된 냉매 흐름(FM)의 온도는, 100℃ 내지 170℃, 예를 들어, 110℃ 내지 125℃, 125℃ 내지 140℃ 또는 150℃ 내지 170℃일 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 제 3 열교환 장치(800)에서 유출되어 압축 장치(200)로 유입되는 적어도 2 이상의 냉매 흐름(FD)은 기상의 흐름일 수 있으며, 상기 적어도 2 이상의 냉매 흐름 내의 기상 흐름의 부피 분율은 0.9 내지 1.0, 예를 들어, 0.95 내지 1.0, 바람직하게는 0.99 내지 1.0일 수 있다.
상기 제 2 열교환 장치(300)에서 유출되어 상기 제 3 열교환 장치(800)로 유입되는 혼합된 냉매 흐름(FM)은 액상의 흐름일 수 있으며, 상기 혼합된 냉매 흐름 내의 액상 흐름의 부피 분율은 0.9 내지 1.0, 예를 들어, 0.95 내지 1.0, 바람직하게는 0.99 내지 1.0일 수 있다.
전술한 바와 같이, 본 출원의 열교환 장치는 둘 이상의 열교환기가 결합되어 있는 하나의 조립체 또는 둘 이상의 열교환기를 포함하는 열교환 유닛일 수 있으며, 압축 장치(200)는 둘 이상의 압축기가 결합되어 있는 하나의 조립체 또는 둘 이상의 압축기를 포함하는 압축 유닛일 수 있다.
하나의 예시에서, 상기 제 1 열교환 장치(100) 및 제 3 열교환 장치(800)는 적어도 2 이상의 열교환기를 포함하고, 압축 장치(200)는 적어도 2 이상의 압축기를 포함할 수 있다.
도 8은 2개의 냉매 흐름을 가지는 본 출원의 열 회수 장치(10)의 일 구현예를 모식적으로 나타낸 도면이다.
도 8에 나타나듯이, 본 출원의 열 회수 장치(10)에서, 상기 제 1 열교환 장치(100)는 제 1-1 열교환기(101) 및 제 1-2 열교환기(102)를 포함하고, 상기 제 3 열교환 장치(800)는 제 3-1 열교환기(801) 및 제 3-2 열교환기(802)를 포함하며, 상기 압축 장치(200)는 제 1 압축기(201) 및 제 2 압축기(202)를 포함하고, 상기 압력 강하 장치(400)는 제 1 압력 강하 장치(401) 및 제 2 압력 강하 장치(402)를 포함할 수 있다.
이 경우, 도 8에 나타나듯이, 상기 제 1 유체 흐름(W1)은 상기 제 1-1 열교환기(101)로 유입될 수 있으며, 상기 제 1-1 열교환기(101)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-2 열교환기(102)로 유입될 수 있고, 상기 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입될 수 있으며, 상기 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 유입될 수 있다.
이에 따라, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있고, 상기 제 1-2 열교환기(102)로 유입된 제 2 냉매 흐름(FD2)은 상기 제 1-1 열교환기(101)에서 유출되어 상기 제 1-2 열교환기(102)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있다. 또한, 상기 제 1-1 열교환기(101)에서 유출된 제 1 냉매 흐름(FD1)은 상기 제 3-1 열교환기로(801) 유입된 후에 상기 제 1 압축기(201)로 유입될 수 있고, 상기 제 1-2 열교환기(102)에서 유출된 제 2 냉매 흐름(FD2)은 상기 제 3-2 열교환기(802)로 유입된 후에 상기 제 2 압축기(202)로 유입될 수 있다.
이 때, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 전술한 바와 같이, 제 1 압력 강하 장치(401)에서 상기 제 2 냉매 흐름(FD2)에 비하여 상대적으로 높은 온도 및 압력을 갖도록 조절되어 상기 제 1 열교환 장치(100)로 유입되므로, 이에 따라, 제 3-1 열교환기(801)에서 열교환 후에 상기 압축 장치(200), 예를 들어 제 1 압축기(201)로 유입되는 제 1 냉매 흐름(FD1)의 온도 및 압력을 높게 유지할 수 있어, 압축에 필요한 에너지를 절감할 수 있다.
한편, 도 8과 같이, 상기 제 1 압축기(201)에서 유출된 제 1 냉매 흐름(FD1) 및 상기 제 2 압축기(202)에서 유출된 제 2 냉매 흐름(FD2)은 유체 혼합기(600)로 유입되어 혼합된 후에 상기 제 2 열교환 장치(300)로 유입될 수 있으며, 상기 제 2 열교환 장치(300)로 유입된 혼합된 냉매 흐름(FM)은 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2), 예를 들어, 물과 열교환되어 스팀을 생성할 수 있다.
상기 제 2 열교환 장치(300)에서 제 2 유체 흐름(W2)과 열교환 후에 유출된 상기 혼합된 냉매 흐름(FM)은 상기 제 3-1 열교환기(801)로 유입될 수 있고, 이에 따라, 상기 제 1-1 열교환기(101)에서 유출된 제 1 냉매 흐름(FD1)과 상기 제 2 열교환 장치(300)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-1 열교환기(801)에서 열교환될 수 있다. 또한, 상기 제 3-1 열교환기(801)에서 상기 제 1 냉매 흐름(FD1)과 열교환된 후에 유출된 상기 혼합된 냉매 흐름은 상기 제 3-2 열교환기(802)로 유입될 수 있으며, 이에 따라, 상기 제 1-2 열교환기(102)에서 유출된 제 2 냉매 흐름(FD2)과 상기 제 3-1 열교환기(801)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-2 열교환기(802)에서 열교환될 수 있다.
한편, 도 8과 같이, 상기 제 3-2 열교환기(802)에서 열교환 후에 유출된 혼합된 냉매 흐름(FM)은 유체 분배기(700)로 유입될 수 있으며, 상기 유체 분배기(700)로 유입된 혼합된 냉매 흐름(FM)은 상기 유체 분배기(700)에서 상기 제 1 냉매 흐름(FD1) 및 제 2 냉매 흐름(FD2)으로 분리될 수 있다.
상기 유체 분배기(700)에서 분리된 제 1 냉매 흐름(FD1)은 상기 제 1 압력 강하 장치(401)로 유입되어 상기 제 2 냉매 흐름(FD2)보다 상대적으로 높은 온도 및 압력을 가지도록 감압될 수 있고, 상기 유체 분배기(700)에서 분리된 제 2 냉매 흐름(FD2)은 상기 제 2 압력 강하 장치(402)로 유입되어 상기 제 1 냉매 흐름(FD1)보다 상대적으로 낮은 온도 및 압력을 가지도록 감압될 수 있다.
상기와 같이, 상기 제 1 압력 강하 장치(401)에서 감압된 후 유출된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입될 수 있고, 상기 제 2 압력 강하 장치(402)에서 감압된 후 유출된 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 유입될 수 있다.
도 9는 3개의 냉매 흐름을 가지는 본 출원의 열 회수 장치(10)의 일 구현예를 모식적으로 나타낸 도면이다.
도 9에 나타나듯이, 본 출원의 열 회수 장치(10)에서, 상기 제 1 열교환 장치(100)는 제 1-1 열교환기(101), 제 1-2 열교환기(102) 및 제 1-3 열교환기(103)를 포함할 수 있고, 상기 제 3 열교환 장치(800)는 제 3-1 열교환기(801), 제 3-2 열교환기(802) 및 제 3-3 열교환기(803)를 포함할 수 있으며, 상기 압축 장치(200)는 제 1 압축기(201), 제 2 압축기(202) 및 제 3 압축기(203)를 포함할 수 있고, 상기 압력 강하 장치(400)는 제 1 압력 강하 장치(401), 제 2 압력 강하 장치(402) 및 제 3 압력 강하 장치(403)를 포함할 수 있다.
이 경우, 도 9에 나타나듯이, 상기 제 1 유체 흐름(W1)은 상기 제 1-1 열교환기(101)로 유입되며, 상기 제 1-1 열교환기(101)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-2 열교환기(102)로 유입될 수 있고, 상기 제 1-2 열교환기(102)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-3 열교환기(103)로 유입될 수 있다. 또한, 상기 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입될 수 있고, 상기 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 유입될 수 있으며, 상기 제 3 냉매 흐름(FD3)은 상기 제 1-3 열교환기(103)로 유입될 수 있다.
이에 따라, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있고, 상기 제 1-2 열교환기(102)로 유입된 제 2 냉매 흐름(FD2)은 상기 제 1-1 열교환기(101)에서 유출되어 상기 제 1-2 열교환기(102)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있으며, 상기 제 1-3 열교환기(103)로 유입된 제 3 냉매 흐름(FD3)은 상기 제 1-2 열교환기(102)에서 유출되어 상기 제 1-3 열교환기(103)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있다. 또한, 상기 제 1-1 열교환기(101)에서 유출된 제 1 냉매 흐름(FD1)은 상기 제 3-1 열교환기(801)로 유입된 후에 상기 제 1 압축기(201)로 유입될 수 있고, 상기 제 1-2 열교환기(102)에서 유출된 제 2 냉매 흐름(FD2)은 상기 제 3-2 열교환기(802)로 유입된 후에 상기 제 2 압축기(202)로 유입될 수 있으며, 상기 제 1-3 열교환기(103)에서 유출된 제 3 냉매 흐름(FD3)은 상기 제 3-3 열교환기(803)로 유입된 후에 상기 제 3 압축기(203)로 유입될 수 있다.
이 때, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 전술한 바와 같이, 제 1 압력 강하 장치(401)에서 상기 제 2 냉매 흐름(FD2) 및 제 3 냉매 흐름(FD3)에 비하여 상대적으로 높은 온도 및 압력을 갖도록 조절되어 상기 제 1 열교환 장치로 유입되므로, 이에 따라, 제 3-1 열교환기(801)에서 열교환 후에 상기 압축 장치(200), 예를 들어 제 1 압축기(201)로 유입되는 제 1 냉매 흐름(FD1)의 온도 및 압력을 높게 유지할 수 있어, 압축에 필요한 에너지를 절감할 수 있다.
한편, 도 9와 같이, 상기 제 1 압축기(201)에서 유출된 제 1 냉매 흐름(FD1), 상기 제 2 압축기(202)에서 유출된 제 2 냉매 흐름(FD2) 및 상기 제 3 압축기(203)에서 유출된 제 3 냉매 흐름(FD3)은 유체 혼합기(600)로 유입되어 합쳐진 후에 상기 제 2 열교환 장치(300)로 유입될 수 있으며, 상기 제 2 열교환 장치(300)로 유입된 혼합된 냉매 흐름(FM)은 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2), 예를 들어, 물과 열교환되어 스팀을 생성할 수 있다.
상기 제 2 열교환 장치(300)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-1 열교환기(801)로 유입될 수 있고, 이에 따라, 상기 제 1-1 열교환기(101)에서 유출된 제 1 냉매 흐름(FD1)과 상기 제 2 열교환 장치에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-1 열교환기(801)에서 열교환될 수 있다. 상기 제 3-1 열교환기(801)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-2 열교환기(802)로 유입될 수 있고, 이에 따라, 상기 제 1-2 열교환기(102)에서 유출된 제 2 냉매 흐름(FD2)과 상기 제 3-1 열교환기(801)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-2 열교환기(802)에서 열교환될 수 있다. 또한, 상기 제 3-2 열교환기(802)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-3 열교환기(803)로 유입될 수 있고, 이에 따라, 상기 제 1-3 열교환기(103)에서 유출된 제 3 냉매 흐름(FD3)과 상기 제 3-2 열교환기(802)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-3 열교환기(803)에서 열교환될 수 있다.
한편, 도 9와 같이, 상기 제 3-3 열교환기(803)에서 유출된 혼합된 냉매 흐름(FM)은 유체 분배기(700)로 유입될 수 있으며, 상기 유체 분배기(700)로 유입된 혼합된 냉매 흐름(FM)은 상기 유체 분배기(700)에서 상기 제 1 냉매 흐름(FD1), 제 2 냉매 흐름(FD2) 및 제 3 냉매 흐름(FD3)으로 분리될 수 있다.
상기 유체 분배기(700)에서 분리된 제 1 냉매 흐름(FD1)은 상기 제 1 압력 강하 장치(401)로 유입되어 상기 제 2 냉매 흐름(FD2) 및 제 3 냉매 흐름(FD3)보다 상대적으로 높은 온도 및 압력을 가지도록 감압될 수 있고, 상기 유체 분배기(700)에서 분리된 제 2 냉매 흐름(FD2)은 상기 제 2 압력 강하 장치(402)로 유입되어 상기 제 1 냉매 흐름(FD1)보다 상대적으로 낮은 온도 및 압력을 가지도록 감압될 수 있으며, 상기 유체 분배기(700)에서 분리된 제 3 냉매 흐름(FD3)은 상기 제 3 압력 강하 장치(403)로 유입되어 상기 제 1 및 제 2 냉매 흐름(FD1, FD2)보다 상대적으로 낮은 온도 및 압력을 가지도록 감압될 수 있다.
상기와 같이, 상기 제 1 압력 강하 장치(401)에서 감압된 후 유출된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입될 수 있고, 상기 제 2 압력 강하 장치(402)에서 감압된 후 유출된 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 유입될 수 있으며, 상기 제 3 압력 강하 장치(403)에서 유출된 제 3 냉매 흐름(FD3)은 상기 제 1-3 열교환기(103)로 유입될 수 있다.
도 10은 4개의 냉매 흐름을 가지는 본 출원의 열 회수 장치(10)의 일 구현예를 모식적으로 나타낸 도면이다.
도 10에 나타나듯이, 본 출원의 열 회수 장치(10)에서, 상기 제 1 열교환 장치(100)는 제 1-1 열교환기(101), 제 1-2 열교환기(102), 제 1-3 열교환기(103) 및 제 1-4 열교환기(104)를 포함하고, 상기 제 3 열교환 장치(800)는 제 3-1 열교환기(801), 제 3-2 열교환기(802), 제 3-3 열교환기(803) 및 제 3-4 열교환기(804)를 포함하며, 상기 압축 장치(200)는 제 1 압축기(201), 제 2 압축기(202), 제 3 압축기(203) 및 제 4 압축기(204)를 포함하고, 상기 압력 강하 장치(400)는 제 1 압력 강하 장치(401), 제 2 압력 강하 장치(402), 제 3 압력 강하 장치(403) 및 제 4 압력 강하 장치(404)를 포함할 수 있다.
이 경우, 도 10에 나타나듯이, 상기 제 1 유체 흐름(W1)은 상기 제 1-1 열교환기(101)로 유입될 수 있으며, 상기 제 1-1 열교환기(101)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-2 열교환기(102)로 유입될 수 있다. 상기 제 1-2 열교환기(102)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-3 열교환기(103)로 유입될 수 있고, 상기 제 1-3 열교환기(103)에서 유출된 제 1 유체 흐름(W1)은 상기 제 1-4 열교환기(104)로 유입될 수 있다. 또한, 상기 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입될 수 있고, 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 유입될 수 있으며, 제 3 냉매 흐름(FD3)은 상기 제 1-3 열교환기(103)로 유입될 수 있고, 제 4 냉매 흐름(FD4)이 상기 제 1-4 열교환기(104)로 유입될 수 있다.
이에 따라, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있고, 상기 제 1-2 열교환기(102)로 유입된 제 2 냉매 흐름(FD2)은 상기 제 1-1 열교환기(101)에서 유출되어 상기 제 1-2 열교환기(102)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있으며, 상기 제 1-3 열교환기(103)로 유입된 제 3 냉매 흐름(FD3)은 상기 제 1-2 열교환기(102)에서 유출되어 상기 제 1-3 열교환기(103)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있고, 상기 제 1-4 열교환기(104)로 유입된 제 4 냉매 흐름(FD4)은 상기 제 1-3 열교환기(103)에서 유출되어 상기 제 1-4 열교환기(104)로 유입된 제 1 유체 흐름(W1)과 열교환될 수 있다. 또한, 상기 제 1-1 열교환기(101)에서 유출된 제 1 냉매 흐름(FD1)은 상기 제 3-1 열교환기(801)로 유입된 후에 상기 제 1 압축기(201)로 유입될 수 있고, 상기 제 1-2 열교환기(102)에서 유출된 제 2 냉매 흐름(FD2)은 상기 제 3-2 열교환기(802)로 유입된 후에 상기 제 2 압축기(202)로 유입될 수 있으며, 상기 제 1-3 열교환기(103)에서 유출된 제 3 냉매 흐름(FD3)은 상기 제 3-3 열교환기(803)로 유입된 후에 상기 제 3 압축기(203)로 유입될 수 있고, 상기 제 1-4 열교환기(104)에서 유출된 제 4 냉매 흐름(FD4)은 상기 제 3-4 열교환기(804)로 유입된 후에 상기 제 4 압축기(204)로 유입될 수 있다.
이 때, 상기 제 1-1 열교환기(101)로 유입된 제 1 냉매 흐름(FD1)은 전술한 바와 같이, 제 1 압력 강하 장치(401)에서 상기 제 2 냉매 흐름(FD2), 제 3 냉매 흐름(FD3) 및 제 4 냉매 흐름(FD4)에 비하여 상대적으로 높은 온도 및 압력을 갖도록 조절되어 상기 제 1 열교환 장치(100)로 유입되므로, 이에 따라, 제 3-1 열교환기(801)에서 열교환 후에 상기 압축 장치(200), 예를 들어 제 1 압축기(201)로 유입되는 제 1 냉매 흐름(FD1)의 온도 및 압력을 높게 유지할 수 있어, 압축에 필요한 에너지를 절감할 수 있다.
한편, 도 10과 같이, 상기 제 1 압축기(201)에서 유출된 제 1 냉매 흐름(FD1), 상기 제 2 압축기(202)에서 유출된 제 2 냉매 흐름(FD2), 상기 제 3 압축기(203)에서 유출된 제 3 냉매 흐름(FD3) 및 상기 제 4 압축기(204)에서 유출된 제 4 냉매 흐름(FD4)은 유체 혼합기(600)로 유입되어 혼합된 후에 상기 제 2 열교환 장치(300)로 유입될 수 있고, 상기 제 2 열교환 장치(300)로 유입된 혼합된 냉매 흐름(FM)은 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2), 예를 들어 물과 열교환되어 스팀을 생성할 수 있다.
또한, 상기 제 2 열교환 장치(300)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-1 열교환기(801)로 유입될 수 있고, 이에 따라, 상기 제 1-1 열교환기(101)에서 유출된 제 1 냉매 흐름(FD1)과 상기 제 1-2 열교환기(102)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-1 열교환기(801)에서 열교환될 수 있다. 제 3-1 열교환기(801)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-2 열교환기(802)로 유입될 수 있고, 이에 따라, 상기 제 1-2 열교환기(102)에서 유출된 제 2 냉매 흐름(FD2)과 상기 제 3-1 열교환기(801)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-2 열교환기(802)에서 열교환될 수 있다. 상기 제 3-2 열교환기(802)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-3 열교환기(803)로 유입될 수 있고, 이에 따라, 상기 제 1-3 열교환기(103)에서 유출된 제 3 냉매 흐름(FD3)과 상기 제 3-2 열교환기(802)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-3 열교환기(803)에서 열교환될 수 있다. 또한, 상기 제 3-3 열교환기(803)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-4 열교환기(804)로 유입될 수 있고, 이에 따라, 상기 제 1-4 열교환기(104)에서 유출된 제 4 냉매 흐름(FD4)과 상기 제 3-3 열교환기(803)에서 유출된 혼합된 냉매 흐름(FM)은 상기 제 3-4 열교환기(804)에서 열교환될 수 있다.
한편, 도 10과 같이, 상기 제 3-4 열교환기(804)에서 유출된 혼합된 냉매 흐름(FM)은 유체 분배기(700)로 유입될 수 있으며, 상기 유체 분배기(700)로 유입된 혼합된 냉매 흐름(FM)은 상기 유체 분배기(700)에서 상기 제 1 냉매 흐름(FD1), 제 2 냉매 흐름(FD2), 제 3 냉매 흐름(FD3) 및 제 4 냉매 흐름(FD4)으로 분리될 수 있다.
또한, 상기 유체 분배기(700)에서 분리된 제 1 냉매 흐름(FD1)은 상기 제 1 압력 강하 장치(401)로 유입되 상기 제 2, 제 3 및 제 4 냉매 흐름(FD2, FD3, FD4)보다 상대적으로 높은 온도 및 압력을 가지도록 감압될 수 있고, 상기 유체 분배기(700)에서 분리된 제 2 냉매 흐름(FD2)은 상기 제 2 압력 강하 장치(402)로 유입되어 상기 제 1 냉매 흐름(FD1)보다 상대적으로 낮은 온도 및 압력을 가지도록 감압될 수 있다. 또한, 상기 유체 분배기(700)에서 분리된 제 3 냉매 흐름(FD3)은 상기 제 3 압력 강하 장치(403)로 유입되어 상기 제 1 및 제 2 냉매 흐름(FD1, FD2)보다 상대적으로 낮은 온도 및 압력을 가지도록 감압될 수 있고, 상기 유체 분배기(700)에서 분리된 제 4 냉매 흐름(FD4)은 상기 제 4 압력 강하 장치(404)로 유입되어 상기 제 1, 제 2 및 제 3 냉매 흐름(FD1, FD2, FD3)보다 상대적으로 낮은 온도 및 압력을 갖도록 감압될 수 있다.
상기와 같이, 상기 제 1 압력 강하 장치(401)에서 감압된 후 유출된 제 1 냉매 흐름(FD1)은 상기 제 1-1 열교환기(101)로 유입될 수 있고, 상기 제 2 압력 강하 장치(402)에서 감압된 유출된 제 2 냉매 흐름(FD2)은 상기 제 1-2 열교환기(102)로 유입될 수 있다. 또한, 상기 제 3 압력 강하 장치(403)에서 감압된 후 유출된 제 3 냉매 흐름(FD3)은 상기 제 1-3 열교환기(103)로 유입될 수 있고, 상기 제 4 압력 강하 장치(404)에서 유출된 제 4 냉매 흐름(FD4)은 상기 제 1-4 열교환기(104)로 유입될 수 있다.
본 출원의 또 다른 구현예는, 열 회수 방법을 제공한다.
예시적인 상기 열 회수 방법은, 전술한 열 회수 장치(10)를 사용하여, 수행될 수 있으며, 이를 통하여, 전술한 바와 같이, 산업 현장 또는 다양한 화학 공정, 예를 들면 석유 화학 제품의 제조 공정에서 배출되는 120℃ 미만의 저급 열원을 버리지 않고 이용하여 스팀을 생성할 수 있으며, 생성된 스팀을 다양한 공정에 사용할 수 있으므로, 반응기 또는 증류탑에 사용되기 위한 외부 열원인 고온 스팀의 사용량을 절감할 수 있어, 에너지 절감 효율을 극대화 시킬 수 있다. 또한, 하나의 냉매 흐름을 다단(cascade)으로 나누어 순환시킴으로써, 적어도 2 이상의 냉매 흐름을 폐열 흐름과 열교환 할 수 있고, 압축기로 유입되는 냉매 흐름의 압력을 단일의 냉매 흐름을 이용한 열 회수 장치(10)에 비하여 상대적으로 높게 조절할 수 있으며, 이에 따라, 압축기에서 압축 시에 필요로 하는 에너지의 양을 감소시킬 수 있다.
본 출원의 일 구현예에 의한 상기 열 회수 방법은 냉매 순환 단계, 제 1 열교환 단계 및 제 2 열교환 단계 및 제 3 열교환 단계를 포함한다.
하나의 예시에서, 상기 열 회수 방법은, 냉매 흐름을 제 1 열교환 장치(100), 압축 장치(200), 제 2 열교환 장치(300) 및 압력 강하 장치(400)를 순차로 통과하도록 순환시키는 냉매 순환 단계를 포함한다. 예를 들어, 상기 열 회수 방법은, (i) 냉매 흐름 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름(FD)을 제 1 열교환 장치(100)로 유입시키고, (ii) 상기 제 1 열교환 장치(100)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)을 압축 장치(200)로 유입시키며, (iii) 상기 압축 장치(200)에서 유출되는 제 1 및 제 2 냉매 흐름(FD1, FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)을 혼합한 후에 제 2 열교환 장치(300)로 유입시키고, (iv) 상기 제 2 열교환 장치(300)에서 유출되는 혼합된 냉매 흐름(FM)을 압력 강하 장치(400)로 유입시키며, (v) 상기 압력 강하 장치(400)에서 유출되는 냉매 흐름을 상기 제 1 냉매 흐름(FD1) 및 제 2 냉매 흐름(FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)으로 분리하고, (vi) 상기 분리된 제 1 냉매 흐름(FD1) 및 제 2 냉매 흐름(FD2)을 포함하는 적어도 2 이상의 냉매 흐름(FD)을 상기 제 1 열교환 장치(100)로 유입시키는 것을 포함하는 냉매 순환 단계를 포함할 수 있다.
또한, 상기 열 회수 방법은, 상기 제 1 열교환 장치(100)로 유입되는 제 1 냉매 흐름(FD)을 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)과 열교환시키는 것을 포함하는 제 1 열교환 단계; 상기 제 1 냉매 흐름(FD1)과 열교환된 상기 제 1 유체 흐름(W1)을 상기 제 1 열교환 장치(100)로 유입되는 제 2 냉매 흐름(FD2)과 열교환시키는 것을 포함하는 제 2 열교환 단계; 및 상기 제 2 열교환 장치(300)로 유입된 혼합된 냉매 흐름(FM)을 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체 흐름(W2)과 열교환시키는 제 3 열교환 단계를 포함한다.
상기 냉매 순환 단계, 제 1 열교환 단계, 제 2 열교환 단계 및 제 3 열교환 단계는 순차적으로 이루어지거나, 또는 순서에 관계없이 서로 독립적으로 이루어질 수 있다. 또한, 상기 냉매 순환 단계의 (i) 내지 (vi)의 과정은 순환 과정이므로, 상기와 같이 냉매 흐름이 순환될 수만 있다면, 어느 과정이 먼저 수행되더라도 무방하다.
예시적인 본 출원의 열 회수 방법에서, 상기 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 온도와 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 온도가 하기 일반식 1을 만족할 수 있다.
[일반식 1]
1℃ ≤ TF1 - TR1 ≤ 35℃
상기 일반식 1에서, TF1는 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 온도를 나타내고, TR1은 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 온도를 나타낸다.
상기 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 온도와 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 온도가 상기 일반식 1을 만족함으로써, 상대적으로 다단의 냉매 흐름 중 후단의 흐름, 예를 들어, 제 2 냉매 흐름(FD2), 제 3 냉매 흐름(FD3) 또는 제 4 냉매 흐름(FD4)에 비하여 전단의 제 1 냉매 흐름(FD1)이 고온 및 고압의 상태로 압축 장치(200)로 유입될 수 있다. 이에 따라, 압축기에서 사용되는 에너지의 양을 감소시킬 수 있다. 상기 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 온도와 상기 제 1 열교환 장치(100)로 유입되는 제 1 유체 흐름(W1)의 온도 조건에 관한 자세한 설명은, 전술한 열 회수 장치(10)에서 설명한 바와 동일한 바, 생략하기로 한다.
또한, 본 출원의 열 회수 방법에서는, 제 1 열교환 장치(100)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 압력과 상기 압축 장치(200)에서 유출되는 제 1 냉매 흐름(FD1)의 압력의 비가 하기 일반식 2를 만족할 수 있다.
[일반식 2]
2 ≤ PC1/PH1 ≤ 6
상기 일반식 2에서, PC1는 압축 장치(200)에서 유출되는 제 1 냉매 흐름(FD1)의 압력(bar)을 나타내고, PH1은 제 1 열교환 장치(100)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 압력(bar)을 나타낸다.
상기 제 1 열교환 장치(100)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 압력과 압축 장치(200)에서 유출되는 제 1 냉매 흐름(FD1)의 압력의 비가 상기 일반식 2를 만족함으로써, 상기 제 1 열교환 장치(100)에서 기화된 냉매를 압축하는 경우 압축기에서 필요한 에너지의 총 양을 줄일 수 있다. 본 출원의 열 회수 방법에서, 상기 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)의 압력과 압축 장치(200)에서 유출되는 제 1 냉매 흐름(FD1))의 압력에 관한 자세한 설명은, 전술한 열 회수 장치(10)에서 설명한 바와 동일한 바, 생략하기로 한다.
또한, 본 출원의 열 회수 방법에서, 구체적인 온도, 압력 및 유량 조건에 관한 자세한 설명은 상기 열 회수 장치(10)에서 전술한 바와 동일한 바, 생략하기로 한다.
본 출원의 열 회수 방법의 또 다른 구현예에서, 상기 냉매 순환 단계에서 제 1 열교환 장치(100), 압축 장치(200), 제 2 열교환 장치(200) 및 압력 강하 장치(400)를 순차로 통과하도록 순환하는 상기 냉매는, 온도-엔트로피 선도의 포화증기곡선의 접선의 기울기가 양의 기울기를 가지는 냉매일 수 있으며, 예를 들어, 가로축은 엔트로피(J/kg·K), 세로축은 온도(℃)인 상기 온도-엔트로피 선도의 포화증기곡선의 접선의 기울기는 50℃ 내지 130℃에서 1 내지 3일 수 있다.
또한, 이 경우, 상기 냉매 순환 단계는 제 1 열교환 장치(100)에서 유출되는 적어도 2 이상의 냉매 흐름(FD)을 제 3 열교환 장치(800)로 유입시킨 후에 압축 장치(200)로 유입시키며, 제 2 열교환 장치(300)에서 유출되는 혼합된 냉매 흐름(FM)을 상기 제 3 열교환 장치(800)로 유입시킨 후에 압력 강하 장치(400)로 유입시키는 것을 추가로 포함할 수 있다. 하나의 예시에서, 본 출원의 열 회수 방법은, 상기 제 1 열교환 장치(100)에서 유출되는 제 1 냉매 흐름(FD1)과 상기 제 2 열교환 장치(300)에서 유출되는 혼합된 냉매 흐름(FM)을 상기 제 3 열교환 장치(800)에서 열교환시키는 제 4 열교환 단계; 및 상기 제 1 냉매 흐름(FD1)과 열교환된 혼합된 냉매 흐름(FM)과 상기 제 1 열교환 장치(100)에서 유출된 제 2 냉매 흐름(FD2)을 상기 제 3 열교환 장치(800)에서 열교환시키는 제 5 열교환 단계를 추가로 포함할 수 있다.
이에 따라, 전술한 바와 같이, 냉매의 등엔트로피 압축시에 발생하는 냉매의 일부 기화 현상을 막을 수 있으며, 상기 열 회수 장치(10)의 열교환 효율을 상승시킬 수 있다.
하나의 예시에서, 제 3 열교환 장치(800)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 온도와 제 2 열교환 장치(300)에서 유출되어 상기 제 3 열교환 장치(800)로 유입되는 혼합된 냉매 흐름(FM)의 온도가 하기 일반식 3을 만족할 수 있다.
[일반식 3]
1℃ ≤ TR3Hin - TR3Cout ≤ 30℃
상기 일반식 3에서, TR3Cout는 제 3 열교환 장치(800)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 온도를 나타내고, TR3Hin는 제 2 열교환 장치(300)에서 유출되어 제 3 열교환 장치(800)로 유입되는 혼합된 냉매 흐름(FM)의 온도를 나타낸다.
상기 제 3 열교환 장치(800)에서 유출되어 압축 장치(200)로 유입되는 제 1 냉매 흐름(FD1)의 온도와 제 2 열교환 장치(300)에서 유출되어 상기 제 3 열교환 장치(800)로 유입되는 혼합된 냉매 흐름(FM)의 온도가 상기 일반식 3을 만족함으로써, 전술한 냉매의 일부 기화 현상을 막을 수 있을 정도로 상기 압축 장치(200)로 유입되는 냉매 흐름의 온도를 충분히 상승시킬 수 있으며, 이에 따라, 상기 열 회수 장치(10)의 열교환 효율을 상승시킬 수 있다. 또한, 상기 열 회수 방법에서, 구체적인 온도, 압력 및 유량 조건에 관한 자세한 설명은 상기 열 회수 장치(10)에서 전술한 바와 동일한 바, 생략하기로 한다.
하나의 예시에서, 상기 열 회수 방법의 또 다른 구현예에서, 상기 제 2 열교환 장치(300)로 유입되는 제 2 유체(W2)는 물일 수 있으며, 또한, 예시적인 본 출원의 열 회수 방법은 상기 제 2 열교환 장치(300)로 유입되는 냉매 흐름과 열교환된 물을 스팀으로 배출시키는 스팀 생성 단계를 추가로 포함할 수 있다
또한, 상기 열 회수 방법의 다른 구현예는, 상기 제 1 열교환 장치(100)에서 유출되는 제 1 유체 흐름(W1)을 응축시켜 배출하는 단계를 추가로 포함할 수 있다.
본 출원의 열 회수 장치(10) 및 방법은 다양한 석유 화학 공정에 적용될 수 있다.
예를 들어, n-부탄올 제조 시 옥소 반응 공정의 경우, 공정에서 발생하는 폐열의 온도는 약 85℃로, 이 경우, 약 7.6 Gcal/hr의 열량이 버려지므로, 상기 옥소 반응 공정에 적용될 수 있다. 또한, 알킬레이션 반응을 통한 큐멘의 제조 공정의 경우 약 6.8 Gcal/hr의 열량이 버려지고 있어, 상기 큐멘의 제조 공정에도 적용이 가능하다. 또한, 아크릴산의 제조 공정 시, 흡수기에서 발생하는 폐열의 온도는 약 75℃로, 이 경우, 약 1.6 내지 3.4 Gcal/hr의 열량이 버려지고 있어, 상기 아크릴산의 제조 공정에도 적용이 가능하다.
본 출원의 열 회수 장치 및 방법에 의하면, 산업 현장 또는 다양한 화학 공정, 예를 들면 석유 화학 제품의 제조 공정에서 배출되는 120℃ 미만의 저급 열원을 버리지 않고 이용하여 스팀을 생성할 수 있으며, 생성된 스팀을 다양한 공정에 사용할 수 있으므로, 반응기 또는 증류탑에 사용되기 위한 외부 열원인 고온 스팀의 사용량을 절감할 수 있어, 에너지 절감 효율을 극대화 시킬 수 있을 뿐만 아니라, 하나의 냉매 흐름을 다단(cascade)으로 나누어 순환시킴으로써, 적어도 2 이상의 냉매 흐름을 폐열 흐름과 열교환 할 수 있고, 압축기로 유입되는 냉매 흐름의 압력을 단일의 냉매 흐름을 이용한 열 회수 장치에 비하여 상대적으로 높게 조절할 수 있으며, 이에 따라, 압축기에서 압축 시에 필요로 하는 에너지의 양을 감소시킬 수 있다.
도 1은 종래의 폐열 처리 장치를 모식적으로 나타낸 도면이다.
도 2 및 도 6은 본 출원의 예시적인 열 회수 장치를 모식적으로 도시한 도면이다.
도 3 및 도 8은, 2개의 냉매 흐름을 가지는 본 출원의 열 회수 장치의 일 구현예를 모식적으로 나타낸 도면이다
도 4 및 도 9는, 3개의 냉매 흐름을 가지는 본 출원의 열 회수 장치의 일 구현예를 모식적으로 나타낸 도면이다
도 5 및 도 10은, 4개의 냉매 흐름을 가지는 본 출원의 열 회수 장치의 일 구현예를 모식적으로 나타낸 도면이다.
도 7은 본 출원의 냉매의 온도-엔트로피 선도를 예시적으로 나타낸 그래프이다.
도 11 및 도 12는 본 출원의 비교예에 따른 열 회수 장치를 모식적으로 나타낸 도면이다.
10: 열 회수 장치 100: 제 1 열교환 장치
101: 제 1-1 열교환기 102: 제 1-2 열교환기
103: 제 1-3 열교환기 104: 제 1-4 열교환기
200: 압축 장치 201: 제 1 압축기
202: 제 2 압축기 203: 제 3 압축기
204: 제 4 압축기 300: 제 2 열교환 장치
400: 적어도 2 이상의 압력 강하 장치
401: 제 1 압력 강하 장치 402: 제 2 압력 강하 장치
403: 제 3 압력 강하 장치 404: 제 4 압력 강하 장치
500: 저장 탱크 600: 유체 혼합기
700: 유체 분배기
FD: 적어도 2 이상의 냉매 흐름 FD1: 제 1 냉매 흐름
FD2: 제 2 냉매 흐름 FD3: 제 3 냉매 흐름
FD4: 제 4 냉매 흐름 FM: 혼합된 냉매 흐름
W1: 제 1 유체 흐름 W2: 제 2 유체 흐름
이하 본 출원에 따르는 실시예 및 본 출원에 따르지 않는 비교예를 통하여 본 출원을 보다 상세히 설명하나, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1
도 4의 열 회수 장치를 이용하여, 스팀을 생성하였다.
3개의 냉매(1,1,1,3,3-pentafluoropropane, R245fa)의 흐름이 각각 제 1 열교환 장치, 압축 장치, 제 2 열교환 장치 및 적어도 2 이상의 컨트롤 밸브를 순차로 통과하도록, 상기 냉매를 순환시켰다. 구체적으로, 90.0℃, 9.3 kgf/cm2g(10.1 bar), 기체 부피 분율이 0.0인 상태의 제 1 냉매 흐름을 30,000 kg/hr의 유량으로 제 1 열교환기로 유입시키고, 이와 동시에 상기 제 1-1 열교환기로 110.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 폐열 흐름을 100,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 100.3℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 제 1-1 열교환기로부터 유출시켰으며, 상기 열교환된 폐열 흐름은 제 1-2 열교환기로 유입시켰다. 이와 동시에, 상기 제 1-2 열교환기로는 80.0℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 0.0인 상태의 제 2 냉매 흐름을 29,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 90.1℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 상기 제 1-2 열교환기로부터 유출시켰으며, 상기 열교환된 폐열 흐름은 제 1-3 열교환기로 유입시켰다. 이와 동시에, 상기 제 1-3 열교환기로는 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 0.0인 상태의 제 3 냉매 흐름을 26,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 80.3℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 상기 제 1-3 열교환기로부터 유출시켰다. 상기 제 1-1 열교환기에서 열교환 후 유출된 제 1 냉매 흐름은 90.0℃, 9.3 kgf/cm2g(10.1 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 1 콤프레셔로 유입하였다. 또한, 상기 제 1-2 열교환기에서 열교환 후 유출된 제 2 냉매 흐름은 80.1℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 2 콤프레셔로 유입하였으며, 상기 제 1-3 열교환기에서 열교환 후 유출된 제 3 냉매 흐름은 70.3℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 3 콤프레셔로 유입하였다
상기 제 1 콤프레셔에서 압축된 제 1 냉매 흐름은 125.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.83인 상태로 상기 제 1 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 1 콤프레셔에서 사용된 일의 양은 146,754.0 W였다. 상기 제 2 콤프레셔에서 압축된 제 2 냉매 흐름은 125.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.79인 상태로 상기 제 2 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 2 콤프레셔에서 사용된 일의 양은 183,232.0 W였다. 또한, 상기 제 3 콤프레셔에서 압축된 제 3 냉매 흐름은 125.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.75인 상태로 상기 제 3 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 3 콤프레셔에서 사용된 일의 양은 202,341.0 W였다.
그 후에, 상기 제 1 콤프레셔, 제 2 콤프레셔 및 제 3 콤프레셔에서 각각 유출된 제 1, 제 2 및 제 3 냉매 흐름을 유체 혼합기로 유입하여 혼합하였으며, 125.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.79인 상태의 혼합된 냉매 흐름을 85,000 kg/hr의 유량으로 제 2 열교환 장치인 응축기로 유입하였다. 이와 동시에 상기 응축기로 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 물을 10,000 kg/hr의 유량으로 유입시켜 상기 냉매 흐름과 열교환을 시켰다. 상기 열교환 후 물은 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.33인 상태의 스팀으로 배출되었으며, 상기 혼합된 냉매 흐름은 응축되어 125℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.0인 상태로 유출시킨 후에 유체 분배기로 유입되었다.
상기 유체 분배기에서 상기 혼합된 냉매 흐름은 각각 125.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태의 제 1 제 2 및 제 3 냉매 흐름으로 분리하였으며, 상기 제 1 냉매 흐름은 30,000 kg/hr의 유량으로 제 1 컨트롤 밸브로 유입시키고, 상기 제 2 냉매 흐름은 29,000 kg/hr의 유량으로 제 2 컨트롤 밸브로 유입시켰으며, 상기 제 3 냉매 흐름은 26,000 kg/hr의 유량으로 제 3 컨트롤 밸브로 유입시켜 감압하였다.
상기 제 1 컨트롤 밸브를 통과한 감압된 제 1 냉매 흐름을 90.0℃, 9.3 kgf/cm2g(10.1 bar), 기체 부피 분율이 0.00인 상태로 상기 제 1 컨트롤 밸브에서 유출시킨 후 30,000 kg/hr의 유량으로 제 1-1 열교환기로 재유입시켰다. 또한, 상기 제 2 컨트롤 밸브를 통과한 감압된 제 2 냉매 흐름을 80.0℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 0.00인 상태로 상기 제 2 컨트롤 밸브에서 유출시킨 후 29,000 kg/hr의 유량으로 제 1-2 열교환기로 재유입시켰으며, 상기 제 3 컨트롤 밸브를 통과한 제 3 냉매 흐름을 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3 컨트롤 밸브에서 유출시킨 후 26,000 kg/hr의 유량으로 제 1-3 열교환기로 재유입시켰다.
이 경우, 열 회수 장치의 성능 계수를 하기 일반식 5에 의하여 계산하였으며, 하기 표 1에 나타내었다. 상기 성능계수는, 상기 콤프레셔에 투입된 에너지 대비 열교환 매체가 흡수한 열량을 나타내며, 즉, 에너지 투입량 대비 회수한 에너지의 비율을 의미한다. 예를 들어, 성능 계수가 3이라면, 투입한 전기의 3배의 열량을 얻은 것을 의미한다.
[일반식 5]
Figure PCTKR2016006462-appb-I000001
상기 일반식 5에서, Q는 응축기에 의하여 응축된 열량을 나타내며, W는 콤프레셔가 한 일의 총 양을 나타낸다.
실시예 2
도 9의 열 회수 장치를 이용하여, 스팀을 생성하였다.
3개의 냉매(1,1,1,3,3-pentafluoropropane, R245fa)의 흐름이 제 1 열교환 장치, 제 3 열교환 장치, 압축 장치, 제 2 열교환 장치, 제 3 열교환 장치 및 적어도 2 이상의 컨트롤 밸브를 순차로 통과하도록, 상기 냉매를 순환시켰다. 구체적으로, 90.0℃, 9.3 kgf/cm2g(10.1 bar), 기체 부피 분율이 0.0인 상태의 제 1 냉매 흐름을 30,000 kg/hr의 유량으로 제 1-1 열교환기로 유입시키고, 이와 동시에 상기 제 1-1 열교환기로 110.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 폐열 흐름을 100,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 100.3℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 제 1-1 열교환기로부터 유출시켰으며, 상기 열교환된 폐열 흐름은 제 1-2 열교환기로 유입시켰다. 이와 동시에, 상기 제 1-2 열교환기로는 80.0℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 0.0인 상태의 제 2 냉매 흐름을 29,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 90.1℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 상기 제 1-2 열교환기로부터 유출시켰으며, 상기 열교환된 폐열 흐름은 제 1-3 열교환기로 유입시켰다. 이와 동시에, 상기 제 1-3 열교환기로는 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 0.0인 상태의 제 3 냉매 흐름을 26,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 80.3℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 상기 제 1-3 열교환기로부터 유출시켰다. 그 후에, 상기 제 1-1 열교환기에서 열교환 후 유출된 제 1 냉매 흐름은 제 3-1 열교환기로 유입시켰으며, 상기 제 1-1 열교환기에서 유출되어 상기 제 3-1 열교환기로 유입된 제 1 냉매 흐름은 열교환 후에 상기 제 3-1 열교환기에서 유출하여 제 1 콤프레셔로 유입시켰다. 그리고, 상기 제 1-2 열교환기에서 열교환 후 유출된 제 2 냉매 흐름은 제 3-2 열교환기로 유입시켰으며, 상기 제 1-2 열교환기에서 유출되어 상기 제 3-2 열교환기로 유입된 제 2 냉매 흐름은 열교환 후에 상기 제 3-2 열교환기에서 유출하여 제 2 콤프레셔로 유입시켰다. 또한, 상기 제 1-3 열교환기에서 열교환 후 유출된 제 3 냉매 흐름은 제 3-3 열교환기로 유입시켰으며, 상기 제 1-3 열교환기에서 유출되어 상기 제 3-3 열교환기로 유입된 제 3 냉매 흐름은 열교환 후에 상기 제 3-3 열교환기에서 유출하여 제 3 콤프레셔로 유입시켰다. 또한, 상기 제 1, 제 2 및 제 3 콤프레셔에서 유출시킨 제 1, 제 2 및 제 3 냉매 흐름은 제 2 열교환 장치인 응축기로 유입시켜, 상기 응축기를 통과하는 유체 흐름과 열교환 시켰으며, 상기 응축기에서 유출시킨 냉매 흐름은 다시 제 3-1 열교환기로 유입시켜, 상기 제 1-1 열교환기에서 유출되어 상기 제 3-1 열교환기로 유입된 제 1 냉매 흐름과 열교환 시킨 뒤에, 상기 제 3-2 열교환기로 유입시켰다. 또한, 상기 응축기에서 유출되어 상기 제 3-1 열교환기에서 열교환 후에 유출된 냉매 흐름을 상기 제 3-2 열교환기로 유입시켰으며, 상기 제 1-2 열교환기에서 유출되어 상기 제 3-2 열교환기로 유입된 제 2 냉매 흐름과 열교환시킨 뒤에, 상기 제 3-3 열교환기로 유입시켰다. 또한, 상기 제 3-1 열교환기 및 제 3-2 열교환기를 순차로 통과하여 열교환된 후에 유출된 냉매 흐름을, 상기 제 1-3 열교환기에서 유출되어 상기 제 3-3 열교환기로 유입된 제 3 냉매 흐름과 열교환 시킨 뒤에 컨트롤 밸브를 통과하도록 하였다. 구체적으로, 상기 제 1-1 열교환기에서 열교환 후 유출된 제 1 냉매 흐름은 90.0℃, 9.3 kgf/cm2g(10.1 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 3-1 열교환기로 유입시켰으며, 상기 제 3-1 열교환기에서 열교환 후 유출된 제 1 냉매 흐름은 115.0℃, 9.3 kgf/cm2g(10.1 bar), 기체 부피 분율이 1.0인 상태로 제 1 콤프레셔로 유입하였다. 또한, 상기 제 1-2 열교환기에서 열교환 후 유출된 제 2 냉매 흐름은 80.1℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 3-2 열교환기로 유입시켰으며, 상기 제 3-2 열교환기에서 열교환 후 유출된 제 2 냉매 흐름은 107.4℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 1.0인 상태로 제 2 콤프레셔로 유입하였다. 상기 제 1-3 열교환기에서 열교환 후 유출된 제 3 냉매 흐름은 70.3℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 3-1 열교환기로 유입시켰으며, 상기 제 3-1 열교환기에서 열교환 후 유출된 제 3 냉매 흐름은 103.1℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 1.0인 상태로 제 3 콤프레셔로 유입하였다. . 그 후, 상기 제 1 콤프레셔에서 압축된 제 1 냉매 흐름은 133.5℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태로 상기 제 1 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 1 콤프레셔에서 사용된 일의 양은 160,677.0 W였다. 상기 제 2 콤프레셔에서 압축된 제 2 냉매 흐름은 131.8℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태로 상기 제 2 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 2 콤프레셔에서 사용된 일의 양은 203,121.0 W였다. 또한, 상기 제 3 콤프레셔에서 압축된 제 3 냉매 흐름은 133.7℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태로 상기 제 3 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 3 콤프레셔에서 사용된 일의 양은 228,863.0 W였다.
그 후에, 상기 제 1 콤프레셔, 제 2 콤프레셔 및 제 3 콤프레셔에서 각각 유출된 제 1, 제 2 및 제 3 냉매 흐름을 유체 혼합기로 유입하여 혼합하였으며, 133℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태의 혼합된 냉매 흐름을 85,000 kg/hr의 유량으로 제 2 열교환 장치인 응축기로 유입하였다. 이와 동시에 상기 응축기로 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 물을 10,000 kg/hr의 유량으로 유입시켜 상기 냉매 흐름과 열교환을 시켰다. 상기 열교환 후 물은 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.44인 상태의 스팀으로 배출되었으며, 상기 혼합된 냉매 흐름은 응축되어 125℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.0인 상태로 유출시킨 후에 상기 제 3-1 열교환기로 유입시켰다. 상기 혼합된 냉매 흐름은 상기 제 3-1 열교환기에서 상기 제 1-1 열교환기에서 유출되어 상기 제 3-1 열교환기로 유입된 제 1 냉매 흐름과 열교환된 후에 121.4℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3-1 열교환기에서 배출하였고, 제 3-2 열교환기로 유입하였으며, 상기 제 3-1 열교환기에서 열교환된 후에 상기 제 3-2 열교환기로 유입된 혼합된 냉매 흐름은, 상기 제 1-2 열교환기에서 유출되어 상기 제 3-2 열교환기로 유입된 제 2 냉매 흐름과 열교환된 후에 117.4℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3-2 열교환기에서 배출하였고, 제 3-3 열교환기로 유입하였다. 또한, 상기 제 3-2 열교환기에서 열교환된 후에 상기 제 3-3 열교환기로 유입된 혼합된 냉매 흐름은, 상기 제 1-3 열교환기에서 유출되어 상기 제 3-3 열교환기로 유입된 제 3 냉매 흐름과 열교환된 후에 113.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3-3 열교환기에서 유출시켰으며, 그 후에 유체 분배기로 유입되었다.
상기 유체 분배기에서 상기 혼합된 냉매 흐름은 각각 113℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태의 제 1 제 2 및 제 3 냉매 흐름으로 분리하였으며, 상기 제 1 냉매 흐름은 30,000 kg/hr의 유량으로 제 1 컨트롤 밸브로 유입시키고, 상기 제 2 냉매 흐름은 29,000 kg/hr의 유량으로 제 2 컨트롤 밸브로 유입시켰으며, 상기 제 3 냉매 흐름은 26,000 kg/hr의 유량으로 제 3 컨트롤 밸브로 유입시켜 감압하였다.
상기 제 1 컨트롤 밸브를 통과한 감압된 제 1 냉매 흐름을 90.0℃, 9.3 kgf/cm2g(10.1 bar), 기체 부피 분율이 0.00인 상태로 상기 제 1 컨트롤 밸브에서 유출시킨 후 30,000 kg/hr의 유량으로 제 1-1 열교환기로 재유입시켰다. 또한, 상기 제 2 컨트롤 밸브를 통과한 감압된 제 2 냉매 흐름을 80.0℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 0.00인 상태로 상기 제 2 컨트롤 밸브에서 유출시킨 후 29,000 kg/hr의 유량으로 제 1-2 열교환기로 재유입시켰으며, 상기 제 3 컨트롤 밸브를 통과한 제 3 냉매 흐름을 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3 컨트롤 밸브에서 유출시킨 후 26,000 kg/hr의 유량으로 제 1-3 열교환기로 재유입시켰다. 이 경우, 열 회수 장치의 성능 계수를 하기 표 1에 나타내었다.
실시예 3
도 8의 열 회수 장치를 이용하여, 스팀을 생성하였다.
2개의 냉매(1,1,1,3,3-pentafluoropropane, R245fa)의 흐름이 제 1 열교환 장치, 제 3 열교환 장치, 압축 장치, 제 2 열교환 장치, 제 3 열교환 장치 및 적어도 2 이상의 컨트롤 밸브를 순차로 통과하도록, 상기 냉매를 순환시켰다. 구체적으로, 90.0℃, 9.3 kgf/cm2g(10.1 bar), 기체 부피 분율이 0.0인 상태의 제 1 냉매 흐름을 45,000 kg/hr의 유량으로 제 1-1 열교환기로 유입시키고, 이와 동시에 상기 제 1-1 열교환기로 110.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 폐열 흐름을 100,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 95.4℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 제 1-1 열교환기로부터 유출시켰으며, 상기 열교환된 폐열 흐름은 제 1-2 열교환기로 유입시켰다. 이와 동시에, 상기 제 1-2 열교환기로는 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 0.0인 상태의 제 2 냉매 흐름을 43,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 80.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 상기 제 1-2 열교환기로부터 유출시켰다. 그 후에, 상기 제 1-1 열교환기에서 열교환 후 유출된 제 1 냉매 흐름은 제 3-1 열교환기로 유입시켰으며, 상기 제 1-1 열교환기에서 유출되어 상기 제 3-1 열교환기로 유입된 제 1 냉매 흐름은 열교환 후에 상기 제 3-1 열교환기에서 유출하여 제 1 콤프레셔로 유입시켰다. 그리고, 상기 제 1-2 열교환기에서 열교환 후 유출된 제 2 냉매 흐름은 제 3-2 열교환기로 유입시켰으며, 상기 제 1-2 열교환기에서 유출되어 상기 제 3-2 열교환기로 유입된 제 2 냉매 흐름은 열교환 후에 상기 제 3-2 열교환기에서 유출하여 제 2 콤프레셔로 유입시켰다. 또한, 상기 제 1 및 제 2 콤프레셔에서 유출시킨 제 1 및 제 2 냉매 흐름은 제 2 열교환 장치인 응축기로 유입시켜, 상기 응축기를 통과하는 유체 흐름과 열교환 시켰으며, 상기 응축기에서 유출시킨 냉매 흐름은 다시 제 3-1 열교환기로 유입시켜, 상기 제 1-1 열교환기에서 유출되어 상기 제 3-1 열교환기로 유입된 제 1 냉매 흐름과 열교환 시킨 뒤에, 상기 제 3-2 열교환기로 유입시켰다. 또한, 상기 응축기에서 유출되어 상기 제 3-1 열교환기에서 열교환 후에 유출된 냉매 흐름을 상기 제 3-2 열교환기로 유입시켰으며, 상기 제 1-2 열교환기에서 유출되어 상기 제 3-2 열교환기로 유입된 제 2 냉매 흐름과 열교환시킨 뒤에, 컨트롤 밸브를 통과하도록 하였다. 구체적으로, 상기 제 1-1 열교환기에서 열교환 후 유출된 제 1 냉매 흐름은 90.0℃, 9.3 kgf/cm2g(10.1 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 3-1 열교환기로 유입시켰으며, 상기 제 3-1 열교환기에서 열교환 후 유출된 제 1 냉매 흐름은 115.0℃, 9.3 kgf/cm2g(10.1 bar), 기체 부피 분율이 1.0인 상태로 제 1 콤프레셔로 유입하였다. 또한, 상기 제 1-2 열교환기에서 열교환 후 유출된 제 2 냉매 흐름은 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 0.95인 상태로 유출시킨 후 제 3-2 열교환기로 유입시켰으며, 상기 제 3-2 열교환기에서 열교환 후 유출된 제 2 냉매 흐름은 101.3℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 1.0인 상태로 제 2 콤프레셔로 유입하였다. 그 후, 상기 제 1 콤프레셔에서 압축된 제 1 냉매 흐름은 133.5℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태로 상기 제 1 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 1 콤프레셔에서 사용된 일의 양은 241,006.0 W였다. 상기 제 2 콤프레셔에서 압축된 제 2 냉매 흐름은 131.9℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태로 상기 제 2 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 2 콤프레셔에서 사용된 일의 양은 376,775.0 W였다.
그 후에, 상기 제 1 콤프레셔 및 제 2 콤프레셔에서 각각 유출된 제 1 및 제 2 냉매 흐름을 유체 혼합기로 유입하여 혼합하였으며, 132.7℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태의 혼합된 냉매 흐름을 88,000 kg/hr의 유량으로 제 2 열교환 장치인 응축기로 유입하였다. 이와 동시에 상기 응축기로 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 물을 10,000 kg/hr의 유량으로 유입시켜 상기 냉매 흐름과 열교환을 시켰다. 상기 열교환 후 물은 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.46인 상태의 스팀으로 배출되었으며, 상기 혼합된 냉매 흐름은 응축되어 125℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.0인 상태로 유출시킨 후에 상기 제 3-1 열교환기로 유입시켰다. 상기 혼합된 냉매 흐름은 상기 제 3-1 열교환기에서 상기 제 1-1 열교환기에서 유출되어 상기 제 3-1 열교환기로 유입된 제 1 냉매 흐름과 열교환된 후에 119.7℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3-1 열교환기에서 배출하였고, 제 3-2 열교환기로 유입하였으며, 상기 제 3-1 열교환기에서 열교환된 후에 상기 제 3-2 열교환기로 유입된 혼합된 냉매 흐름은, 상기 제 1-2 열교환기에서 유출되어 상기 제 3-2 열교환기로 유입된 제 2 냉매 흐름과 열교환된 후에 111.3℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3-2 열교환기에서 유출시켰으며, 그 후에 유체 분배기로 유입되었다.
상기 유체 분배기에서 상기 혼합된 냉매 흐름은 각각 113℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태의 제 1 및 제 2 냉매 흐름으로 분리하였으며, 상기 제 1 냉매 흐름은 45,000 kg/hr의 유량으로 제 1 컨트롤 밸브로 유입시키고, 상기 제 2 냉매 흐름은 43,000 kg/hr의 유량으로 제 2 컨트롤 밸브로 유입시켜 감압하였다.
상기 제 1 컨트롤 밸브를 통과한 감압된 제 1 냉매 흐름을 90.0℃, 9.3 kgf/cm2g(10.1 bar), 기체 부피 분율이 0.00인 상태로 상기 제 1 컨트롤 밸브에서 유출시킨 후 45,000 kg/hr의 유량으로 제 1-1 열교환기로 재유입시켰다. 또한, 상기 제 2 컨트롤 밸브를 통과한 감압된 제 2 냉매 흐름을 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 0.00인 상태로 상기 제 2 컨트롤 밸브에서 유출시킨 후 43,000 kg/hr의 유량으로 제 1-2 열교환기로 재유입시켰다. 이 경우, 열 회수 장치의 성능 계수를 하기 표 1에 나타내었다.
실시예 4
하기와 같이 조건을 달리한 것을 제외하고는 실시예 2와 동일한 방법으로 스팀을 생성하였으며, 이 경우, 열 회수 장치의 성능 계수를 하기 표 2에 나타내었다.
85.0℃, 8.1 kgf/cm2g(8.92 bar), 기체 부피 분율이 0.0인 상태의 제 1 냉매 흐름을 45,000 kg/hr의 유량으로 제 1-1 열교환기로 유입시키고, 이와 동시에 상기 제 1-1 열교환기로 110.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 폐열 흐름을 100,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 94.9℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 제 1-1 열교환기로부터 유출시켰으며, 상기 열교환된 폐열 흐름은 제 1-2 열교환기로 유입시켰다. 이와 동시에, 상기 제 1-2 열교환기로는 80.0℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 0.0인 상태의 제 2 냉매 흐름을 14,500 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 90.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 상기 제 1-2 열교환기로부터 유출시켰으며, 상기 열교환된 폐열 흐름은 제 1-3 열교환기로 유입시켰다. 이와 동시에, 상기 제 1-3 열교환기로는 75.0℃, 6.1 kgf/cm2g(6.96 bar), 기체 부피 분율이 0.0인 상태의 제 3 냉매 흐름을 20,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 85.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 상기 제 1-3 열교환기로부터 유출시켰다. 상기 제 1-1 열교환기에서 열교환 후 유출된 제 1 냉매 흐름은 85.0℃, 8.1 kgf/cm2g(8.92 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 3-1 열교환기로 유입시켰으며, 상기 제 3-1 열교환기에서 열교환 후 유출된 제 1 냉매 흐름은 115.0℃, 8.1 kgf/cm2g(8.92 bar), 기체 부피 분율이 1.0인 상태로 제 1 콤프레셔로 유입하였다. 또한, 상기 제 1-2 열교환기에서 열교환 후 유출된 제 2 냉매 흐름은 80.0℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 0.96인 상태로 유출시킨 후 제 3-2 열교환기로 유입시켰으며, 상기 제 3-2 열교환기에서 열교환 후 유출된 제 2 냉매 흐름은 105.4℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 1.0인 상태로 제 2 콤프레셔로 유입하였다. 상기 제 1-3 열교환기에서 열교환 후 유출된 제 3 냉매 흐름은 75.0℃, 6.1 kgf/cm2g(6.96 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 3-1 열교환기로 유입시켰으며, 상기 제 3-1 열교환기에서 열교환 후 유출된 제 3 냉매 흐름은 97.0℃, 6.1 kgf/cm2g(6.96 bar), 기체 부피 분율이 1.0인 상태로 제 3 콤프레셔로 유입하였다. . 그 후, 상기 제 1 콤프레셔에서 압축된 제 1 냉매 흐름은 136.5℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태로 상기 제 1 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 1 콤프레셔에서 사용된 일의 양은 280,414.0 W였다. 상기 제 2 콤프레셔에서 압축된 제 2 냉매 흐름은 129.7℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태로 상기 제 2 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 2 콤프레셔에서 사용된 일의 양은 101,026.0 W였다. 또한, 상기 제 3 콤프레셔에서 압축된 제 3 냉매 흐름은 125.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.99인 상태로 상기 제 3 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 3 콤프레셔에서 사용된 일의 양은 154,381.0 W였다.
그 후에, 상기 제 1 콤프레셔, 제 2 콤프레셔 및 제 3 콤프레셔에서 각각 유출된 제 1, 제 2 및 제 3 냉매 흐름을 유체 혼합기로 유입하여 혼합하였으며, 132.2℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태의 혼합된 냉매 흐름을 79,500 kg/hr의 유량으로 제 2 열교환 장치인 응축기로 유입하였다. 이와 동시에 상기 응축기로 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 물을 10,000 kg/hr의 유량으로 유입시켜 상기 냉매 흐름과 열교환을 시켰다. 상기 열교환 후 물은 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.41인 상태의 스팀으로 배출되었으며, 상기 혼합된 냉매 흐름은 응축되어 125℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.0인 상태로 유출시킨 후에 상기 제 3-1 열교환기로 유입시켰다. 상기 혼합된 냉매 흐름은 상기 제 3-1 열교환기에서 상기 제 1-1 열교환기에서 유출되어 상기 제 3-1 열교환기로 유입된 제 1 냉매 흐름과 열교환된 후에 117.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3-1 열교환기에서 배출하였고, 제 3-2 열교환기로 유입하였으며, 상기 제 3-1 열교환기에서 열교환된 후에 상기 제 3-2 열교환기로 유입된 혼합된 냉매 흐름은, 상기 제 1-2 열교환기에서 유출되어 상기 제 3-2 열교환기로 유입된 제 2 냉매 흐름과 열교환된 후에 115.4℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3-2 열교환기에서 배출하였고, 제 3-3 열교환기로 유입하였다. 또한, 상기 제 3-2 열교환기에서 열교환된 후에 상기 제 3-3 열교환기로 유입된 혼합된 냉매 흐름은, 상기 제 1-3 열교환기에서 유출되어 상기 제 3-3 열교환기로 유입된 제 3 냉매 흐름과 열교환된 후에 107.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3-3 열교환기에서 유출시켰으며, 그 후에 유체 분배기로 유입되었다.
상기 유체 분배기에서 상기 혼합된 냉매 흐름은 각각 107.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태의 제 1 제 2 및 제 3 냉매 흐름으로 분리하였으며, 상기 제 1 냉매 흐름은 45,000 kg/hr의 유량으로 제 1 컨트롤 밸브로 유입시키고, 상기 제 2 냉매 흐름은 14,500 kg/hr의 유량으로 제 2 컨트롤 밸브로 유입시켰으며, 상기 제 3 냉매 흐름은 20,000 kg/hr의 유량으로 제 3 컨트롤 밸브로 유입시켜 감압하였다.
상기 제 1 컨트롤 밸브를 통과한 감압된 제 1 냉매 흐름을 85.0℃, 8.1 kgf/cm2g(8.92 bar), 기체 부피 분율이 0.00인 상태로 상기 제 1 컨트롤 밸브에서 유출시킨 후 45,000 kg/hr의 유량으로 제 1-1 열교환기로 재유입시켰다. 또한, 상기 제 2 컨트롤 밸브를 통과한 감압된 제 2 냉매 흐름을 80.0℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 0.00인 상태로 상기 제 2 컨트롤 밸브에서 유출시킨 후 14,500 kg/hr의 유량으로 제 1-2 열교환기로 재유입시켰으며, 상기 제 3 컨트롤 밸브를 통과한 제 3 냉매 흐름을 75.0℃, 6.1 kgf/cm2g(6.96 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3 컨트롤 밸브에서 유출시킨 후 20,000 kg/hr의 유량으로 제 1-3 열교환기로 재유입시켰다.
실시예 5
하기와 같이 조건을 달리한 것을 제외하고는 실시예 2와 동일한 방법으로 스팀을 생성하였으며, 이 경우, 열 회수 장치의 성능 계수를 하기 표 2에 나타내었다.
85.0℃, 8.1 kgf/cm2g(8.92 bar), 기체 부피 분율이 0.0인 상태의 제 1 냉매 흐름을 30,000 kg/hr의 유량으로 제 1-1 열교환기로 유입시키고, 이와 동시에 상기 제 1-1 열교환기로 110.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 폐열 흐름을 200,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 94.9℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 200,000 kg/hr의 유량으로 제 1-1 열교환기로부터 유출시켰으며, 상기 열교환된 폐열 흐름은 제 1-2 열교환기로 유입시켰다. 이와 동시에, 상기 제 1-2 열교환기로는 80.0℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 0.0인 상태의 제 2 냉매 흐름을 29,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 90.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 200,000 kg/hr의 유량으로 상기 제 1-2 열교환기로부터 유출시켰으며, 상기 열교환된 폐열 흐름은 제 1-3 열교환기로 유입시켰다. 이와 동시에, 상기 제 1-3 열교환기로는 77.5℃, 6.6 kgf/cm2g(7.45 bar), 기체 부피 분율이 0.0인 상태의 제 3 냉매 흐름을 13,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름을 87.7℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 200,000 kg/hr의 유량으로 상기 제 1-3 열교환기로부터 유출시켰다. 상기 제 1-1 열교환기에서 열교환 후 유출된 제 1 냉매 흐름은 85.0℃, 8.1 kgf/cm2g(8.92 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 3-1 열교환기로 유입시켰으며, 상기 제 3-1 열교환기에서 열교환 후 유출된 제 1 냉매 흐름은 115.0℃, 8.1 kgf/cm2g(8.92 bar), 기체 부피 분율이 1.0인 상태로 제 1 콤프레셔로 유입하였다. 또한, 상기 제 1-2 열교환기에서 열교환 후 유출된 제 2 냉매 흐름은 80.0℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 0.96인 상태로 유출시킨 후 제 3-2 열교환기로 유입시켰으며, 상기 제 3-2 열교환기에서 열교환 후 유출된 제 2 냉매 흐름은 104.4℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 1.0인 상태로 제 2 콤프레셔로 유입하였다. 상기 제 1-3 열교환기에서 열교환 후 유출된 제 3 냉매 흐름은 77.5℃, 6.6 kgf/cm2g(7.45 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 3-1 열교환기로 유입시켰으며, 상기 제 3-1 열교환기에서 열교환 후 유출된 제 3 냉매 흐름은 102.4℃, 6.6 kgf/cm2g(7.45 bar), 기체 부피 분율이 1.0인 상태로 제 3 콤프레셔로 유입하였다. . 그 후, 상기 제 1 콤프레셔에서 압축된 제 1 냉매 흐름은 136.5℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태로 상기 제 1 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 1 콤프레셔에서 사용된 일의 양은 186,943.0 W였다. 상기 제 2 콤프레셔에서 압축된 제 2 냉매 흐름은 128.7℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태로 상기 제 2 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 2 콤프레셔에서 사용된 일의 양은 201,548.0 W였다. 또한, 상기 제 3 콤프레셔에서 압축된 제 3 냉매 흐름은 128.2℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태로 상기 제 3 콤프레셔에서 유출시켰으며, 이 경우, 상기 제 3 콤프레셔에서 사용된 일의 양은 95,781.0 W였다.
그 후에, 상기 제 1 콤프레셔, 제 2 콤프레셔 및 제 3 콤프레셔에서 각각 유출된 제 1, 제 2 및 제 3 냉매 흐름을 유체 혼합기로 유입하여 혼합하였으며, 131.9℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.00인 상태의 혼합된 냉매 흐름을 72,000 kg/hr의 유량으로 제 2 열교환 장치인 응축기로 유입하였다. 이와 동시에 상기 응축기로 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 물을 10,000 kg/hr의 유량으로 유입시켜 상기 냉매 흐름과 열교환을 시켰다. 상기 열교환 후 물은 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.37인 상태의 스팀으로 배출되었으며, 상기 혼합된 냉매 흐름은 응축되어 125℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.0인 상태로 유출시킨 후에 상기 제 3-1 열교환기로 유입시켰다. 상기 혼합된 냉매 흐름은 상기 제 3-1 열교환기에서 상기 제 1-1 열교환기에서 유출되어 상기 제 3-1 열교환기로 유입된 제 1 냉매 흐름과 열교환된 후에 119.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3-1 열교환기에서 배출하였고, 제 3-2 열교환기로 유입하였으며, 상기 제 3-1 열교환기에서 열교환된 후에 상기 제 3-2 열교환기로 유입된 혼합된 냉매 흐름은, 상기 제 1-2 열교환기에서 유출되어 상기 제 3-2 열교환기로 유입된 제 2 냉매 흐름과 열교환된 후에 114.4℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3-2 열교환기에서 배출하였고, 제 3-3 열교환기로 유입하였다. 또한, 상기 제 3-2 열교환기에서 열교환된 후에 상기 제 3-3 열교환기로 유입된 혼합된 냉매 흐름은, 상기 제 1-3 열교환기에서 유출되어 상기 제 3-3 열교환기로 유입된 제 3 냉매 흐름과 열교환된 후에 112.4℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3-3 열교환기에서 유출시켰으며, 그 후에 유체 분배기로 유입되었다.
상기 유체 분배기에서 상기 혼합된 냉매 흐름은 각각 112.4℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.00인 상태의 제 1 제 2 및 제 3 냉매 흐름으로 분리하였으며, 상기 제 1 냉매 흐름은 30,000 kg/hr의 유량으로 제 1 컨트롤 밸브로 유입시키고, 상기 제 2 냉매 흐름은 29,000 kg/hr의 유량으로 제 2 컨트롤 밸브로 유입시켰으며, 상기 제 3 냉매 흐름은 13,000 kg/hr의 유량으로 제 3 컨트롤 밸브로 유입시켜 감압하였다.
상기 제 1 컨트롤 밸브를 통과한 감압된 제 1 냉매 흐름을 85.0℃, 8.1 kgf/cm2g(8.92 bar), 기체 부피 분율이 0.00인 상태로 상기 제 1 컨트롤 밸브에서 유출시킨 후 30,000 kg/hr의 유량으로 제 1-1 열교환기로 재유입시켰다. 또한, 상기 제 2 컨트롤 밸브를 통과한 감압된 제 2 냉매 흐름을 80.0℃, 7.1 kgf/cm2g(7.94 bar), 기체 부피 분율이 0.00인 상태로 상기 제 2 컨트롤 밸브에서 유출시킨 후 29,000 kg/hr의 유량으로 제 1-2 열교환기로 재유입시켰으며, 상기 제 3 컨트롤 밸브를 통과한 제 3 냉매 흐름을 77.5℃, 6.6 kgf/cm2g(7.45 bar), 기체 부피 분율이 0.00인 상태로 상기 제 3 컨트롤 밸브에서 유출시킨 후 13,000 kg/hr의 유량으로 제 1-3 열교환기로 재유입시켰다.
비교예 1
도 11의 열 회수 장치를 이용하여, 스팀을 생성하였다.
냉매(1,1,1,3,3-pentafluoropropane, R245fa)가 제 1 열교환기, 콤프레셔, 제 2 열교환기, 및 컨트롤 밸브를 순차로 통과하도록, 상기 냉매를 81,000 kg/hr의 동일한 유량으로 순환시켰다. 구체적으로, 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 0.0인 상태의 냉매 흐름을 제 1 열교환기로 유입시키고, 이와 동시에 상기 제 1 열교환기로 110.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 폐열 흐름을 100,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름은 80.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 유출시켰으며, 냉매 흐름은 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 콤프레셔로 유입하여 압축하였다. 상기 콤프레셔에서 압축된 냉매 흐름은 125.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.75인 상태로 콤프레셔에서 유출시켰다. 이 경우, 상기 콤프레셔에서 사용된 일의 양은 629,387.0 W였다. 상기 콤프레셔에서 유출된 냉매 흐름을 제 2 열교환기로 유입시키고, 이와 동시에 상기 제 2 열교환기로 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 물을 10,000 kg/hr의 유량으로 유입시켜 상기 냉매 흐름과 열교환을 시켰다. 상기 열교환 후 물은 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.29인 상태의 스팀으로 배출되었으며, 응축된 냉매 흐름은 125.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.0인 상태로 유출시킨 후 컨트롤 밸브로 유입되었다. 상기 컨트롤 밸브로 유입된 냉매 흐름을 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 0.0인 상태로 상기 컨트롤 밸브에서 유출시킨 후 제 1 열교환기로 유입시켰다.
이 경우, 열 회수 장치의 성능 계수를 하기 표 3에 나타내었다.
비교예 2
도 12의 열 회수 장치를 이용하여, 스팀을 생성하였다.
냉매(1,1,1,3,3-pentafluoropropane, R245fa)가 제 1 열교환기, 제 3 열교환기, 콤프레셔, 제 2 열교환기, 제 3 열교환기 및 컨트롤 밸브를 순차로 통과하도록, 상기 냉매를 81,000 kg/hr의 동일한 유량으로 순환시켰다. 구체적으로, 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 0.0인 상태의 냉매 흐름을 제 1 열교환기로 유입시키고, 이와 동시에 상기 제 1 열교환기로 110.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 폐열 흐름을 100,000 kg/hr의 유량으로 유입시켜 열교환을 시켰다. 상기 열교환 후 폐열 흐름은 80.0℃, 1.0 kgf/cm2g, 기체 부피 분율이 0.0인 상태로 100,000 kg/hr의 유량으로 유출시켰으며, 냉매 흐름은 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 1.0인 상태로 유출시킨 후 제 3 열교환기로 유입하였다. 상기 제 1 열교환기에서 유출되어 상기 제 3 열교환기로 유입된 냉매 흐름은 콤프레셔로 유입시키고, 상기 콤프레셔에서 유출시킨 냉매 흐름은 제 2 열교환기로 유입시켜, 제 2 열교환기를 통과하는 유체 흐름과 열교환시켰으며, 제 2 열교환기에서 유출시킨 냉매 흐름은 다시 제 3 열교환기로 유입시켜, 상기 제 1 열교환기에서 유출되어 상기 제 3 열교환기로 유입된 냉매 흐름과 열교환시킨 뒤에, 컨트롤 밸브를 통과하도록 하였다. 구체적으로, 상기 제 3 열교환기에서 열교환된 냉매 흐름을 115.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 1.0인 상태로 상기 제 3 열교환기에서 유출시킨 뒤에 콤프레셔로 유입시켰다. 또한, 상기 콤프레셔에서 압축된 냉매 흐름은 146.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 1.0인 상태로 콤프레셔에서 유출시켰다. 이 경우, 상기 콤프레셔에서 사용된 일의 양은 735,139.0 W였다. 상기 콤프레셔에서 유출된 냉매 흐름을 제 2 열교환기로 유입시키고, 이와 동시에 상기 제 2 열교환기로 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.0인 상태의 물을 10,000 kg/hr의 유량으로 유입시켜 상기 냉매 흐름과 열교환을 시켰다. 상기 열교환 후 물은 115.0℃, 0.7 kgf/cm2g, 기체 부피 분율이 0.47인 상태의 스팀으로 배출되었으며, 응축된 냉매 흐름은 125.0℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.0인 상태로 유출시킨 후 제 3 열교환기로 유입시켰다. 상기 제 2 열교환기에서 열교환된 후에 응축되어 제 3 열교환기로 유입된 냉매 흐름은 상기 제 1 열교환기에서 유출되어 제 3 열교환기로 유입된 냉매 흐름과 열교환 된 후에, 105.3℃, 20.7 kgf/cm2g(21.3 bar), 기체 부피 분율이 0.0인 상태로 상기 제 3 열교환기에서 유출되었으며, 컨트롤 밸브로 유입되었다. 상기 컨트롤 밸브로 유입된 냉매 흐름을 70.0℃, 5.2 kgf/cm2g(6.1 bar), 기체 부피 분율이 0.0인 상태로 상기 컨트롤 밸브에서 유출시킨 후 제 1 열교환기로 유입시켰다.
이 경우, 열 회수 장치의 성능 계수를 하기 표 3에 나타내었다.
실시예 1 실시예 2 실시예 3
TF1(℃) TR1(℃) 110.0 90.0 110.0 90.0 110.0 90.0
TF1 - TR1(℃) 20.0 20.0 20.0
PC1(bar) PH1(bar) 21.3 10.1 21.3 10.1 21.3 10.1
PC1/PH1 2.1 2.1 2.1
TR3Hin(℃) TR3Cout(℃) - - 125.0 115.0 125.0 115.0
TR3Hin - TR3Cout(℃) n/a 10.0 10.0
Q(W) 2,009,300.0 2,727,930.0 2,817,820.0
Total W(W) 532,327.0 592,661.0 617,781.0
COP 3.77 4.60 4.56
n/a: not available
실시예 4 실시예 5
TF1(℃) TR1(℃) 110.0 85.0 110.0 85.0
TF1 - TR1(℃) 25.0 25.0
PC1(bar) PH1(bar) 21.3 8.92 21.3 8.92
PC1/PH1 2.4 2.4
TR3Hin(℃) TR3Cout(℃) 125.0 115.0 125.0 115.0
TR3Hin - TR3Cout(℃) 10.0 10.0
Q(W) 2,541,894.8 2,290,520.0
Total W(W) 535,821.0 484,272.0
COP 4.74 4.73
비교예 1 비교예 2
TF1(℃) TR1(℃) 110.0 70.0 110.0 70.0
TF1 - TR1(℃) 40.0 40.0
PC1(bar) PH1(bar) 21.3 6.1 21.3 6.1
PC1/PH1 3.5 3.5
TR3Hin(℃) TR3Cout(℃) n/a n/a 125.0 115.0
TR3Hin - TR3Cout(℃) n/a 10.0
Q(W) 1,807,740.0 2,913,630.0
Total W(W) 629,387.0 735,139.0
COP 2.87 3.96

Claims (29)

  1. 냉매가 흐르는 배관을 통하여 유체 연결된 제 1 열교환 장치, 압축 장치, 제 2 열교환 장치 및 적어도 2 이상의 압력 강하 장치를 포함하고,
    제 1 냉매 흐름 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름이 상기 제 1 열교환 장치로 유입되며,
    상기 제 1 열교환 장치로 유입된 상기 제 1 냉매 흐름은 상기 제 1 열교환 장치로 유입된 제 1 유체 흐름과 열교환되고, 상기 제 1 냉매 흐름과 열교환된 상기 제 1 유체 흐름은 상기 제 2 냉매 흐름과 열교환되며,
    상기 제 1 열교환 장치에서 유출된 제 1 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름은 상기 압축 장치로 유입되고,
    상기 압축 장치에서 유출된 제 1 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름은 상기 제 2 열교환 장치로 유입되며,
    상기 제 2 열교환 장치로 유입된 제 1 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름은 상기 제 2 열교환 장치로 유입되는 제 2 유체 흐름과 열교환되고,
    상기 제 2 열교환 장치에서 유출된 제 1 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름은 상기 적어도 2 이상의 압력 강하 장치로 각각 유입되며,
    상기 적어도 2 이상의 압력 강하 장치에서 각각 유출된 제 1 냉매 흐름 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름은 상기 제 1 열교환 장치로 유입되는 열 회수 장치.
  2. 제 1 항에 있어서, 제 1 열교환 장치에서 유출되는 제 1 냉매 흐름의 온도와 상기 제 1 열교환 장치로 유입되는 제 1 유체 흐름의 온도가 하기 일반식 1을 만족하는 열 회수 장치:
    [일반식 1]
    1℃ ≤ TF1 - TR1 ≤ 35℃
    상기 일반식 1에서, TF1는 제 1 열교환 장치로 유입되는 제 1 유체 흐름의 온도를 나타내고, TR1은 제 1 열교환 장치에서 유출되는 제 1 냉매 흐름의 온도를 나타낸다.
  3. 제 1 항에 있어서, 제 1 열교환 장치에서 유출되어 압축 장치로 유입되는 제 1 냉매 흐름의 압력과 상기 압축 장치에서 유출되는 제 1 냉매 흐름의 압력의 비가 하기 일반식 2를 만족하는 열 회수 장치:
    [일반식 2]
    2 ≤ PC1/PH1 ≤ 6
    상기 일반식 2에서, PC1는 압축 장치에서 유출되는 제 1 냉매 흐름의 압력(bar)을 나타내고, PH1은 제 1 열교환 장치에서 유출되어 압축 장치로 유입되는 제 1 냉매 흐름의 압력(bar)을 나타낸다.
  4. 제 1 항에 있어서, 유체 혼합기를 추가로 포함하고,
    압축 장치에서 유출된 제 1 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름은 상기 유체 혼합기로 유입되어 혼합된 후에 상기 제 2 열교환 장치로 유입되며,
    상기 제 2 열교환 장치로 유입된 혼합된 냉매 흐름은 상기 제 2 열교환 장치로 유입되는 제 2 유체 흐름과 열교환되는 열 회수 장치.
  5. 제 4 항에 있어서, 유체 분배기를 추가로 포함하고, 제 2 열교환 장치에서 유출된 혼합된 냉매 흐름은 상기 유체 분배기로 유입되고, 상기 유체 분배기로 유입된 냉매 흐름은 상기 제 1 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름으로 분리된 후에 적어도 2 이상의 압력 강하 장치로 각각 유입되는 열 회수 장치.
  6. 제 1 항에 있어서, 제 1 열교환 장치는 적어도 2 이상의 열교환기를 포함하고, 압축 장치는 적어도 2 이상의 압축기를 포함하는 열 회수 장치.
  7. 제 6 항에 있어서, 제 1 열교환 장치는 제 1-1 열교환기 및 제 1-2 열교환기를 포함하고, 압축 장치는 제 1 압축기 및 제 2 압축기를 포함하며, 압력 강하 장치는 제 1 압력 강하 장치 및 제 2 압력 강하 장치를 포함하고,
    제 1 유체 흐름은 상기 제 1-1 열교환기로 유입되며, 상기 제 1-1 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-2 열교환기로 유입되고,
    제 1 냉매 흐름이 상기 제 1-1 열교환기로 유입되며, 제 2 냉매 흐름이 상기 제 1-2 열교환기로 유입되고,
    상기 제 1-1 열교환기로 유입된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입된 제 1 유체 흐름과 열교환되며, 상기 제 1-2 열교환기로 유입된 제 2 냉매 흐름은 상기 제 1-1 열교환기에서 유출되어 상기 제 1-2 열교환기로 유입된 제 1 유체 흐름과 열교환되고,
    상기 제 1-1 열교환기에서 유출된 제 1 냉매 흐름은 상기 제 1 압축기로 유입되며, 상기 제 2 열교환기에서 유출된 제 2 냉매 흐름은 상기 제 2 압축기로 유입되고,
    상기 제 1 압축기에서 유출된 제 1 냉매 흐름 및 상기 제 2 압축기에서 유출된 제 2 냉매 흐름은 상기 제 2 열교환 장치로 유입되며,
    상기 제 2 열교환 장치로 유입된 제 1 및 제 2 냉매 흐름은 상기 제 2 열교환 장치로 유입되는 제 2 유체 흐름과 열교환되고, 상기 제 2 열교환 장치에서 유출된 제 1 냉매 흐름은 상기 제 1 압력 강하 장치로 유입되며, 상기 제 2 열교환 장치에서 유출된 제 2 냉매 흐름은 상기 제 2 압력 강하 장치로 유입되고,
    상기 제 1 압력 강하 장치에서 유출된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입되며, 상기 제 2 압력 강하 장치에서 유출된 제 2 냉매 흐름은 상기 제 1-2 열교환기로 유입되는 열 회수 장치.
  8. 제 6 항에 있어서, 제 1 열교환 장치는 제 1-1 열교환기, 제 1-2 열교환기 및 제 1-3 열교환기를 포함하고, 압축 장치는 제 1 압축기, 제 2 압축기 및 제 3 압축기를 포함하며, 상기 압력 강하 장치는 제 1 압력 강하 장치, 제 2 압력 강하 장치 및 제 3 압력 강하 장치를 포함하고,
    제 1 유체 흐름은 상기 제 1-1 열교환기로 유입되며, 상기 제 1-1 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-2 열교환기로 유입되고, 상기 제 1-2 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-3 열교환기로 유입되며,
    제 1 냉매 흐름이 상기 제 1-1 열교환기로 유입되며, 제 2 냉매 흐름이 상기 제 1-2 열교환기로 유입되고, 제 3 냉매 흐름이 상기 제 1-3 열교환기로 유입되며,
    상기 제 1-1 열교환기로 유입된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입된 제 1 유체 흐름과 열교환되고, 상기 제 1-2 열교환기로 유입된 제 2 냉매 흐름은 상기 제 1-1 열교환기에서 유출되어 상기 제 1-2 열교환기로 유입된 제 1 유체 흐름과 열교환되며, 상기 제 1-3 열교환기로 유입된 제 3 냉매 흐름은 상기 제 1-2 열교환기에서 유출되어 상기 제 1-3 열교환기로 유입된 제 1 유체 흐름과 열교환되고,
    상기 제 1-1 열교환기에서 유출된 제 1 냉매 흐름은 상기 제 1 압축기로 유입되며, 상기 제 1-2 열교환기에서 유출된 제 2 냉매 흐름은 상기 제 2 압축기로 유입되고, 상기 제 1-3 열교환기에서 유출된 제 3 냉매 흐름은 상기 제 3 압축기로 유입되며,
    상기 제 1 압축기에서 유출된 제 1 냉매 흐름, 상기 제 2 압축기에서 유출된 제 2 냉매 흐름 및 상기 제 3 압축기에서 유출된 제 3 냉매 흐름은 상기 제 2 열교환 장치로 유입되고,
    상기 제 2 열교환 장치로 유입된 제 1, 제 2 및 제 3 냉매 흐름은 상기 제 2 열교환 장치로 유입되는 제 2 유체 흐름과 열교환되며, 상기 제 2 열교환 장치에서 유출된 제 1 냉매 흐름은 상기 제 1 압력 강하 장치로 유입되고, 상기 제 2 열교환 장치에서 유출된 제 2 냉매 흐름은 상기 제 2 압력 강하 장치로 유입되며, 상기 제 2 열교환 장치에서 유출된 제 3 냉매 흐름은 상기 제 3 압력 강하 장치로 유입되고,
    상기 제 1 압력 강하 장치에서 유출된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입되며, 상기 제 2 압력 강하 장치에서 유출된 제 2 냉매 흐름은 상기 제 1-2 열교환기로 유입되고, 상기 제 3 압력 강하 장치에서 유출된 제 3 냉매 흐름은 상기 제 1-3 열교환기로 유입되는 열 회수 장치.
  9. 제 6 항에 있어서, 제 1 열교환 장치는 제 1-1 열교환기, 제 1-2 열교환기, 제 1-3 열교환기 및 제 1-4 열교환기를 포함하고, 압축 장치는 제 1 압축기, 제 2 압축기, 제 3 압축기 및 제 4 압축기를 포함하며, 상기 압력 강하 장치는 제 1 압력 강하 장치, 제 2 압력 강하 장치, 제 3 압력 강하 장치 및 제 4 압력 강하 장치를 포함하고,
    제 1 유체 흐름은 상기 제 1-1 열교환기로 유입되며, 상기 제 1-1 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-2 열교환기로 유입되고, 상기 제 1-2 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-3 열교환기로 유입되며, 상기 제 1-3 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-4 열교환기로 유입되고,
    제 1 냉매 흐름이 상기 제 1-1 열교환기로 유입되며, 제 2 냉매 흐름이 상기 제 1-2 열교환기로 유입되고, 제 3 냉매 흐름이 상기 제 1-3 열교환기로 유입되고, 제 4 냉매 흐름이 상기 제 1-4 열교환기로 유입되며,
    상기 제 1-1 열교환기로 유입된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입된 제 1 유체 흐름과 열교환되고, 상기 제 1-2 열교환기로 유입된 제 2 냉매 흐름은 상기 제 1-1 열교환기에서 유출되어 상기 제 1-2 열교환기로 유입된 제 1 유체 흐름과 열교환되며, 상기 제 1-3 열교환기로 유입된 제 3 냉매 흐름은 상기 제 1-2 열교환기에서 유출되어 상기 제 1-3 열교환기로 유입된 제 1 유체 흐름과 열교환되고, 상기 제 1-4 열교환기로 유입된 제 4 냉매 흐름은 상기 제 1-3 열교환기에서 유출되어 상기 제 1-4 열교환기로 유입된 제 1 유체 흐름과 열교환되며,
    상기 제 1-1 열교환기에서 유출된 제 1 냉매 흐름은 상기 제 1 압축기로 유입되고, 상기 제 1-2 열교환기에서 유출된 제 2 냉매 흐름은 상기 제 2 압축기로 유입되며, 상기 제 1-3 열교환기에서 유출된 제 3 냉매 흐름은 상기 제 3 압축기로 유입되고, 상기 제 1-4 열교환기에서 유출된 제 4 냉매 흐름은 상기 제 4 압축기로 유입되며,
    상기 제 1 압축기에서 유출된 제 1 냉매 흐름, 상기 제 2 압축기에서 유출된 제 2 냉매 흐름, 상기 제 3 압축기에서 유출된 제 3 냉매 흐름 및 상기 제 4 압축기에서 유출된 제 4 냉매 흐름은 상기 제 2 열교환 장치로 유입되고,
    상기 제 2 열교환 장치로 유입된 제 1, 제 2, 제 3 및 제 4 냉매 흐름은 상기 제 2 열교환 장치로 유입되는 제 2 유체 흐름과 열교환되며, 상기 제 2 열교환 장치에서 유출된 제 1 냉매 흐름은 상기 제 1 압력 강하 장치로 유입되며, 상기 제 2 열교환 장치에서 유출된 제 2 냉매 흐름은 상기 제 2 압력 강하 장치로 유입되고, 상기 제 2 열교환 장치에서 유출된 제 3 냉매 흐름은 상기 제 3 압력 강하 장치로 유입되며, 상기 제 2 열교환 장치에서 유출된 제 4 냉매 흐름은 상기 제 4 압력 강하 장치로 유입되고,
    상기 제 1 압력 강하 장치에서 유출된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입되며, 상기 제 2 압력 강하 장치에서 유출된 제 2 냉매 흐름은 상기 제 1-2 열교환기로 유입되고, 상기 제 3 압력 강하 장치에서 유출된 제 3 냉매 흐름은 상기 제 1-3 열교환기로 유입되며, 상기 제 4 압력 강하 장치에서 유출된 제 4 냉매 흐름은 상기 제 1-4 열교환기로 유입되는 열 회수 장치.
  10. 제 1 항에 있어서, 냉매는, 온도-엔트로피 선도의 포화증기곡선의 접선의 기울기가 양의 기울기를 가지는 냉매인 열 회수 장치.
  11. 제 10 항에 있어서, 온도-엔트로피 선도의 포화증기곡선의 접선의 기울기는 50℃ 내지 130℃에서 1 내지 3인 열 회수 장치.
  12. 제 10 항에 있어서, 냉매는, R245fa, R1234ze 및 R1234yf로 이루어진 군으로부터 선택된 1종 이상인 열 회수 장치.
  13. 제 10 항에 있어서, 제 3 열교환 장치를 추가로 포함하고,
    제 1 열교환 장치에서 유출된 제 1 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름은 상기 제 3 열교환 장치로 유입된 후에 압축 장치로 유입되며,
    제 2 열교환 장치에서 유출된 제 1 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름은 상기 제 3 열교환 장치로 유입된 후에 압력 강하 장치로 유입되고,
    상기 제 1 열교환 장치에서 유출된 적어도 2 이상의 냉매 흐름과 상기 제 2 열교환 장치에서 유출된 적어도 2 이상의 냉매 흐름은 상기 제 3 열교환 장치에서 열교환되는 열 회수 장치.
  14. 제 13 항에 있어서, 제 1 열교환 장치에서 유출된 제 1 냉매 흐름과 제 2 열교환 장치에서 유출된 제 1 냉매 흐름은 제 3 열교환 장치에서 열교환되고, 상기 제 1 열교환 장치에서 유출된 제 2 냉매 흐름과 상기 제 2 열교환 장치에서 유출된 제 2 냉매 흐름은 제 3 열교환 장치에서 열교환되는 열 회수 장치.
  15. 제 13 항에 있어서, 유체 혼합기 및 유체 분배기를 추가로 포함하고,
    압축 장치에서 유출된 제 1 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름은 상기 유체 혼합기로 유입되어 혼합된 후에 상기 제 2 열교환 장치로 유입되며,
    상기 제 2 열교환 장치로 유입된 혼합된 냉매 흐름은 상기 제 2 열교환 장치로 유입되는 제 2 유체 흐름과 열교환되고,
    상기 제 2 열교환 장치에서 유출된 혼합된 냉매 흐름은 상기 제 3 열교환 장치로 유입된 후에 상기 유체 분배기로 유입되고,
    상기 유체 분배기로 유입된 냉매 흐름은 제 1 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름으로 분리된 후에 적어도 2 이상의 압력 강하 장치로 각각 유입되며,
    상기 제 1 열교환 장치에서 유출된 제 1 냉매 흐름과 상기 제 2 열교환 장치에서 유출된 혼합된 냉매 흐름은 상기 제 3 열교환 장치에서 열교환되며,
    상기 제 1 열교환 장치에서 유출된 제 2 냉매 흐름과 상기 제 1 냉매 흐름과 열교환된 상기 혼합된 냉매 흐름은 상기 제 3 열교환 장치에서 열교환되는 열 회수 장치.
  16. 제 15 항에 있어서, 제 3 열교환 장치에서 유출되어 압축 장치로 유입되는 제 1 냉매 흐름의 온도와 제 2 열교환 장치에서 유출되어 상기 제 3 열교환 장치로 유입되는 혼합된 냉매 흐름의 온도가 하기 일반식 3을 만족하는 열 회수 장치:
    [일반식 3]
    1℃ ≤ TR3Hin - TR3Cout ≤ 30℃
    상기 일반식 3에서, TR3Cout는 제 3 열교환 장치에서 유출되어 압축 장치로 유입되는 제 1 냉매 흐름의 온도를 나타내고, TR3Hin는 제 2 열교환 장치에서 유출되어 상기 제 3 열교환 장치로 유입되는 혼합된 냉매 흐름의 온도를 나타낸다.
  17. 제 15 항에 있어서, 제 1 열교환 장치 및 제 3 열교환 장치는 적어도 2 이상의 열교환기를 포함하고, 압축 장치는 적어도 2 이상의 압축기를 포함하는 열 회수 장치.
  18. 제 17 항에 있어서, 제 1 열교환 장치는 제 1-1 열교환기 및 제 1-2 열교환기를 포함하고, 제 3 열교환 장치는 제 3-1 열교환기 및 제 3-2 열교환기를 포함하며, 압축 장치는 제 1 압축기 및 제 2 압축기를 포함하고, 압력 강하 장치는 제 1 압력 강하 장치 및 제 2 압력 강하 장치를 포함하며,
    제 1 유체 흐름은 상기 제 1-1 열교환기로 유입되며, 상기 제 1-1 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-2 열교환기로 유입되고, 제 1 냉매 흐름이 상기 제 1-1 열교환기로 유입되고, 제 2 냉매 흐름이 상기 제 1-2 열교환기로 유입되며,
    상기 제 1-1 열교환기로 유입된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입된 제 1 유체 흐름과 열교환되고, 상기 제 1-2 열교환기로 유입된 제 2 냉매 흐름은 상기 제 1-1 열교환기에서 유출되어 상기 제 1-2 열교환기로 유입된 제 1 유체 흐름과 열교환되며,
    상기 제 1-1 열교환기에서 유출된 제 1 냉매 흐름은 상기 제 3-1 열교환기로 유입된 후에 상기 제 1 압축기로 유입되고, 상기 제 1-2 열교환기에서 유출된 제 2 냉매 흐름은 상기 제 3-2 열교환기로 유입된 후에 상기 제 2 압축기로 유입되며,
    상기 제 1 압축기에서 유출된 제 1 냉매 흐름 및 상기 제 2 압축기에서 유출된 제 2 냉매 흐름은 유체 혼합기로 유입되어 혼합된 후에 상기 제 2 열교환 장치로 유입되고,
    상기 제 2 열교환 장치로 유입된 혼합된 냉매 흐름은 상기 제 2 열교환 장치로 유입되는 제 2 유체 흐름과 열교환되며, 상기 제 2 열교환 장치에서 유출된 혼합된 냉매 흐름은 상기 제 3-1 열교환기로 유입되고,
    상기 제 3-1 열교환기에서 유출된 혼합된 냉매 흐름은 상기 제 3-2 열교환기로 유입되고, 상기 제 3-2 열교환기에서 유출된 혼합된 냉매 흐름은 유체 분배기로 유입되며,
    상기 유체 분배기로 유입된 혼합된 냉매 흐름은 상기 유체 분배기에서 상기 제 1 냉매 흐름 및 제 2 냉매 흐름으로 분리되고,
    상기 유체 분배기에서 분리된 제 1 냉매 흐름은 상기 제 1 압력 강하 장치로 유입되고, 상기 유체 분배기에서 분리된 제 2 냉매 흐름은 상기 제 2 압력 강하 장치로 유입되며,
    상기 제 1 압력 강하 장치에서 유출된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입되고, 상기 제 2 압력 강하 장치에서 유출된 제 2 냉매 흐름은 상기 제 1-2 열교환기로 유입되며,
    상기 제 1-1 열교환기에서 유출된 제 1 냉매 흐름과 상기 제 2 열교환 장치에서 유출된 혼합된 냉매 흐름은 상기 제 3-1 열교환기에서 열교환되고, 상기 제 1-2 열교환기에서 유출된 제 2 냉매 흐름과 상기 제 3-1 열교환기에서 유출된 혼합된 냉매 흐름은 상기 제 3-2 열교환기에서 열교환되는 열 회수 장치.
  19. 제 17 항에 있어서, 제 1 열교환 장치는 제 1-1 열교환기, 제 1-2 열교환기 및 제 1-3 열교환기를 포함하고, 제 3 열교환 장치는 제 3-1 열교환기, 제 3-2 열교환기 및 제 3-3 열교환기를 포함하며, 압축 장치는 제 1 압축기, 제 2 압축기 및 제 3 압축기를 포함하고, 압력 강하 장치는 제 1 압력 강하 장치, 제 2 압력 강하 장치 및 제 3 압력 강하 장치를 포함하며,
    제 1 유체 흐름은 상기 제 1-1 열교환기로 유입되며, 상기 제 1-1 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-2 열교환기로 유입되고, 상기 제 1-2 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-3 열교환기로 유입되며,
    제 1 냉매 흐름이 상기 제 1-1 열교환기로 유입되고, 제 2 냉매 흐름이 상기 제 1-2 열교환기로 유입되며, 제 3 냉매 흐름이 상기 제 1-3 열교환기로 유입되고,
    상기 제 1-1 열교환기로 유입된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입된 제 1 유체 흐름과 열교환되고, 상기 제 1-2 열교환기로 유입된 제 2 냉매 흐름은 상기 제 1-1 열교환기에서 유출되어 상기 제 1-2 열교환기로 유입된 제 1 유체 흐름과 열교환되며, 상기 제 1-3 열교환기로 유입된 제 3 냉매 흐름은 상기 제 1-2 열교환기에서 유출되어 상기 제 1-3 열교환기로 유입된 제 1 유체 흐름과 열교환되고,
    상기 제 1-1 열교환기에서 유출된 제 1 냉매 흐름은 상기 제 3-1 열교환기로 유입된 후에 상기 제 1 압축기로 유입되고, 상기 제 1-2 열교환기에서 유출된 제 2 냉매 흐름은 상기 제 3-2 열교환기로 유입된 후에 상기 제 2 압축기로 유입되며, 상기 제 1-3 열교환기에서 유출된 제 3 냉매 흐름은 상기 제 3-3 열교환기로 유입된 후에 상기 제 3 압축기로 유입되고,
    상기 제 1 압축기에서 유출된 제 1 냉매 흐름, 상기 제 2 압축기에서 유출된 제 2 냉매 흐름 및 상기 제 3 압축기에서 유출된 제 3 냉매 흐름은 유체 혼합기로 유입되어 합쳐진 후에 상기 제 2 열교환 장치로 유입되고,
    상기 제 2 열교환 장치로 유입된 혼합된 냉매 흐름은 상기 제 2 열교환 장치로 유입되는 제 2 유체 흐름과 열교환되며, 상기 제 2 열교환 장치에서 유출된 혼합된 냉매 흐름은 상기 제 3-1 열교환기로 유입되고,
    상기 제 3-1 열교환기에서 유출된 혼합된 냉매 흐름은 상기 제 3-2 열교환기로 유입되고, 상기 제 3-2 열교환기에서 유출된 혼합된 냉매 흐름은 상기 제 3-3 열교환기로 유입되며, 상기 제 3-3 열교환기에서 유출된 혼합된 냉매 흐름은 유체 분배기로 유입되고,
    상기 유체 분배기로 유입된 혼합된 냉매 흐름은 상기 유체 분배기에서 상기 제 1 냉매 흐름, 제 2 냉매 흐름 및 제 3 냉매 흐름으로 분리되고,
    상기 유체 분배기에서 분리된 제 1 냉매 흐름은 상기 제 1 압력 강하 장치로 유입되고, 상기 유체 분배기에서 분리된 제 2 냉매 흐름은 상기 제 2 압력 강하 장치로 유입되며, 상기 유체 분배기에서 분리된 제 3 냉매 흐름은 상기 제 3 압력 강하 장치로 유입되고,
    상기 제 1 압력 강하 장치에서 유출된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입되고, 상기 제 2 압력 강하 장치에서 유출된 제 2 냉매 흐름은 상기 제 1-2 열교환기로 유입되며, 상기 제 3 압력 강하 장치에서 유출된 제 3 냉매 흐름은 상기 제 1-3 열교환기로 유입되고,
    상기 제 1-1 열교환기에서 유출된 제 1 냉매 흐름과 상기 제 2 열교환 장치에서 유출된 혼합된 냉매 흐름은 상기 제 3-1 열교환기에서 열교환되고, 상기 제 1-2 열교환기에서 유출된 제 2 냉매 흐름과 상기 제 3-1 열교환기에서 유출된 혼합된 냉매 흐름은 상기 제 3-2 열교환기에서 열교환되며, 상기 제 1-3 열교환기에서 유출된 제 3 냉매 흐름과 상기 제 3-2 열교환 장치에서 유출된 혼합된 냉매 흐름은 상기 제 3-3 열교환기에서 열교환되는 열 회수 장치.
  20. 제 17 항에 있어서, 제 1 열교환 장치는 제 1-1 열교환기, 제 1-2 열교환기, 제 1-3 열교환기 및 제 1-4 열교환기를 포함하고, 제 3 열교환 장치는 제 3-1 열교환기, 제 3-2 열교환기, 제 3-3 열교환기 및 제 3-4 열교환기를 포함하며, 압축 장치는 제 1 압축기, 제 2 압축기, 제 3 압축기 및 제 4 압축기를 포함하고, 압력 강하 장치는 제 1 압력 강하 장치, 제 2 압력 강하 장치, 제 3 압력 강하 장치 및 제 4 압력 강하 장치를 포함하며,
    제 1 유체 흐름은 상기 제 1-1 열교환기로 유입되며, 상기 제 1-1 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-2 열교환기로 유입되고, 상기 제 1-2 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-3 열교환기로 유입되며, 상기 제 1-3 열교환기에서 유출된 제 1 유체 흐름은 상기 제 1-4 열교환기로 유입되고,
    제 1 냉매 흐름이 상기 제 1-1 열교환기로 유입되고, 제 2 냉매 흐름이 상기 제 1-2 열교환기로 유입되며, 제 3 냉매 흐름이 상기 제 1-3 열교환기로 유입되고, 제 4 냉매 흐름이 상기 제 1-4 열교환기로 유입되며,
    상기 제 1-1 열교환기로 유입된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입된 제 1 유체 흐름과 열교환되고, 상기 제 1-2 열교환기로 유입된 제 2 냉매 흐름은 상기 제 1-1 열교환기에서 유출되어 상기 제 1-2 열교환기로 유입된 제 1 유체 흐름과 열교환되며, 상기 제 1-3 열교환기로 유입된 제 3 냉매 흐름은 상기 제 1-2 열교환기에서 유출되어 상기 제 1-3 열교환기로 유입된 제 1 유체 흐름과 열교환되고, 상기 제 1-4 열교환기로 유입된 제 4 냉매 흐름은 상기 제 1-3 열교환기에서 유출되어 상기 제 1-4 열교환기로 유입된 제 1 유체 흐름과 열교환되며,
    상기 제 1-1 열교환기에서 유출된 제 1 냉매 흐름은 상기 제 3-1 열교환기로 유입된 후에 상기 제 1 압축기로 유입되고, 상기 제 1-2 열교환기에서 유출된 제 2 냉매 흐름은 상기 제 3-2 열교환기로 유입된 후에 상기 제 2 압축기로 유입되며, 상기 제 1-3 열교환기에서 유출된 제 3 냉매 흐름은 상기 제 3-3 열교환기로 유입된 후에 상기 제 3 압축기로 유입되고, 상기 제 1-4 열교환기에서 유출된 제 4 냉매 흐름은 상기 제 3-4 열교환기로 유입된 후에 상기 제 4 압축기로 유입되며,
    상기 제 1 압축기에서 유출된 제 1 냉매 흐름, 상기 제 2 압축기에서 유출된 제 2 냉매 흐름, 상기 제 3 압축기에서 유출된 제 3 냉매 흐름 및 상기 제 4 압축기에서 유출된 제 4 냉매 흐름은 유체 혼합기로 유입되어 혼합된 후에 상기 제 2 열교환 장치로 유입되고,
    상기 제 2 열교환 장치로 유입된 혼합된 냉매 흐름은 상기 제 2 열교환 장치로 유입되는 제 2 유체 흐름과 열교환되며, 상기 제 2 열교환 장치에서 유출된 혼합된 냉매 흐름은 상기 제 3-1 열교환기로 유입되고,
    상기 제 3-1 열교환기에서 유출된 혼합된 냉매 흐름은 상기 제 3-2 열교환기로 유입되고, 상기 제 3-2 열교환기에서 유출된 혼합된 냉매 흐름은 상기 제 3-3 열교환기로 유입되며, 상기 제 3-3 열교환기에서 유출된 혼합된 냉매 흐름은 상기 제 3-4 열교환기로 유입되고, 상기 제 3-4 열교환기에서 유출된 혼합된 냉매 흐름은 유체 분배기로 유입되고,
    상기 유체 분배기로 유입된 혼합된 냉매 흐름은 상기 유체 분배기에서 상기 제 1 냉매 흐름, 제 2 냉매 흐름, 제 3 냉매 흐름 및 제 4 냉매 흐름으로 분리되고,
    상기 유체 분배기에서 분리된 제 1 냉매 흐름은 상기 제 1 압력 강하 장치로 유입되고, 상기 유체 분배기에서 분리된 제 2 냉매 흐름은 상기 제 2 압력 강하 장치로 유입되며, 상기 유체 분배기에서 분리된 제 3 냉매 흐름은 상기 제 3 압력 강하 장치로 유입되고, 상기 유체 분배기에서 분리된 제 4 냉매 흐름은 상기 제 4 압력 강하 장치로 유입되며,
    상기 제 1 압력 강하 장치에서 유출된 제 1 냉매 흐름은 상기 제 1-1 열교환기로 유입되고, 상기 제 2 압력 강하 장치에서 유출된 제 2 냉매 흐름은 상기 제 1-2 열교환기로 유입되며, 상기 제 3 압력 강하 장치에서 유출된 제 3 냉매 흐름은 상기 제 1-3 열교환기로 유입되고, 상기 제 4 압력 강하 장치에서 유출된 제 4 냉매 흐름은 상기 제 1-4 열교환기로 유입되며,
    상기 제 1-1 열교환기에서 유출된 제 1 냉매 흐름과 상기 제 1-2 열교환 장치에서 유출된 혼합된 냉매 흐름은 상기 제 3-1 열교환기에서 열교환되고, 상기 제 1-2 열교환기에서 유출된 제 2 냉매 흐름과 상기 제 3-1 열교환기에서 유출된 혼합된 냉매 흐름은 상기 제 3-2 열교환기에서 열교환되며, 상기 제 1-3 열교환기에서 유출된 제 3 냉매 흐름과 상기 제 3-2 열교환기에서 유출된 혼합된 냉매 흐름은 상기 제 3-3 열교환기에서 열교환되고, 상기 제 1-4 열교환기에서 유출된 제 4 냉매 흐름과 상기 제 3-3 열교환기에서 유출된 혼합된 냉매 흐름은 상기 제 3-4 열교환기에서 열교환되는 열 회수 장치.
  21. 제 1 냉매 흐름 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름을 제 1 열교환 장치로 유입시키고, 상기 제 1 열교환 장치에서 유출되는 적어도 2 이상의 냉매 흐름을 압축 장치로 유입시키며, 상기 압축 장치에서 유출되는 제 1 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름을 혼합한 후에 제 2 열교환 장치로 유입시키고, 상기 제 2 열교환 장치에서 유출되는 혼합된 냉매 흐름을 압력 강하 장치로 유입시키며, 상기 압력 강하 장치에서 유출되는 냉매 흐름을 상기 제 1 냉매 흐름 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름으로 분리하고, 상기 분리된 제 1 냉매 흐름 및 제 2 냉매 흐름을 포함하는 적어도 2 이상의 냉매 흐름을 상기 제 1 열교환 장치로 유입시키는 것을 포함하는 냉매 순환 단계;
    상기 제 1 열교환 장치로 유입되는 제 1 냉매 흐름을 상기 제 1 열교환 장치로 유입되는 제 1 유체 흐름과 열교환시키는 것을 포함하는 제 1 열교환 단계;
    상기 제 1 냉매 흐름과 열교환된 상기 제 1 유체 흐름을 상기 제 1 열교환 장치로 유입되는 제 2 냉매 흐름과 열교환시키는 것을 포함하는 제 2 열교환 단계; 및
    상기 제 2 열교환 장치로 유입된 혼합된 냉매 흐름을 상기 제 2 열교환 장치로 유입되는 제 2 유체 흐름과 열교환시키는 제 3 열교환 단계를 포함하는 열 회수 방법.
  22. 제 21 항에 있어서, 제 1 열교환 장치에서 유출되는 제 1 냉매 흐름의 온도와 상기 제 1 열교환 장치로 유입되는 제 1 유체 흐름의 온도가 하기 일반식 1을 만족하는 열 회수 방법:
    [일반식 1]
    1℃ ≤ TF1 - TR1 ≤ 35℃
    상기 일반식 1에서, TF1는 제 1 열교환 장치로 유입되는 제 1 유체 흐름의 온도를 나타내고, TR1은 제 1 열교환 장치에서 유출되는 제 1 냉매 흐름의 온도를 나타낸다.
  23. 제 21 항에 있어서, 제 1 열교환 장치에서 유출되어 압축 장치로 유입되는 제 1 냉매 흐름의 압력과 상기 압축 장치에서 유출되는 제 1 냉매 흐름의 압력의 비가 하기 일반식 2를 만족하는 열 회수 방법:
    [일반식 2]
    2 ≤ PC1/PH1 ≤ 6
    상기 일반식 2에서, PC1는 압축 장치에서 유출되는 제 1 냉매 흐름의 압력(bar)을 나타내고, PH1은 제 1 열교환 장치에서 유출되어 압축 장치로 유입되는 냉매 흐름의 압력(bar)을 나타낸다.
  24. 제 21 항에 있어서, 냉매는, 온도-엔트로피 선도의 포화증기곡선의 접선의 기울기가 양의 기울기를 가지는 냉매인 열 회수 방법.
  25. 제 24 항에 있어서, 온도-엔트로피 선도의 포화증기곡선의 접선의 기울기는 50℃ 내지 130℃에서 1 내지 3인 열 회수 방법.
  26. 제 24 항에 있어서, 냉매 순환 단계는 제 1 열교환 장치에서 유출되는 적어도 2 이상의 냉매 흐름을 제 3 열교환 장치로 유입시킨 후에 압축 장치로 유입시키며, 제 2 열교환 장치에서 유출되는 혼합된 냉매 흐름을 상기 제 3 열교환 장치로 유입시킨 후에 압력 강하 장치로 유입시키는 것을 추가로 포함하고;
    상기 제 1 열교환 장치에서 유출되는 제 1 냉매 흐름과 상기 제 2 열교환 장치에서 유출되는 혼합된 냉매 흐름을 상기 제 3 열교환 장치에서 열교환시키는 제 4 열교환 단계; 및
    상기 제 1 냉매 흐름과 열교환된 혼합된 냉매 흐름과 상기 제 1 열교환 장치에서 유출된 제 2 냉매 흐름을 상기 제 3 열교환 장치에서 열교환시키는 제 5 열교환 단계를 추가로 포함하는 열 회수 방법.
  27. 제 26 항에 있어서, 제 3 열교환 장치에서 유출되어 압축 장치로 유입되는 제 1 냉매 흐름의 온도와 제 2 열교환 장치에서 유출되어 상기 제 3 열교환 장치로 유입되는 혼합된 냉매 흐름의 온도가 하기 일반식 3을 만족하는 열 회수 방법:
    [일반식 3]
    1℃ ≤ TR3Hin - TR3Cout ≤ 30℃
    상기 일반식 3에서, TR3Cout는 제 3 열교환 장치에서 유출되어 압축 장치로 유입되는 제 1 냉매 흐름의 온도를 나타내고, TR3Hin는 제 2 열교환 장치에서 유출되어 제 3 열교환 장치로 유입되는 혼합된 냉매 흐름의 온도를 나타낸다.
  28. 제 21 항에 있어서, 제 2 열교환 장치로 유입되는 제 2 유체는 물인 열 회수 방법.
  29. 제 28 항에 있어서, 제 2 열교환 장치로 유입되는 혼합된 냉매 흐름과 열교환된 물을 스팀으로 배출시키는 스팀 생성 단계를 추가로 포함하는 열 회수 방법.
PCT/KR2016/006462 2015-06-18 2016-06-17 열 회수 장치 WO2016204560A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/573,331 US10591219B2 (en) 2015-06-18 2016-06-17 Heat recovery apparatus
CN201680035776.4A CN107771266B (zh) 2015-06-18 2016-06-17 热回收设备
JP2017554564A JP6458169B2 (ja) 2015-06-18 2016-06-17 熱回収装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150086501A KR101839781B1 (ko) 2015-06-18 2015-06-18 열 회수 장치
KR10-2015-0086501 2015-06-18

Publications (1)

Publication Number Publication Date
WO2016204560A1 true WO2016204560A1 (ko) 2016-12-22

Family

ID=57546701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006462 WO2016204560A1 (ko) 2015-06-18 2016-06-17 열 회수 장치

Country Status (5)

Country Link
US (1) US10591219B2 (ko)
JP (1) JP6458169B2 (ko)
KR (1) KR101839781B1 (ko)
CN (1) CN107771266B (ko)
WO (1) WO2016204560A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017524117A (ja) * 2014-06-10 2017-08-24 エルジー・ケム・リミテッド 熱回収装置
DE102018114762B4 (de) * 2017-07-10 2023-12-28 Hanon Systems Verfahren zum Betreiben einer Klimaanlage eines Kraftfahrzeuges
KR102476990B1 (ko) * 2019-05-28 2022-12-13 주식회사 엘지화학 폐수 소각 방법 및 폐수 소각 장치
KR102489173B1 (ko) 2019-07-04 2023-01-18 주식회사 엘지화학 열교환 시스템 및 이를 포함하는 디에스터계 조성물 제조 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443815B1 (ko) * 2001-12-24 2004-08-09 주식회사 세기센추리 폐열회수 열펌프 유닛
JP2009133624A (ja) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp 冷凍空調装置
US20100319346A1 (en) * 2009-06-23 2010-12-23 General Electric Company System for recovering waste heat
JP2013151931A (ja) * 2012-01-04 2013-08-08 General Electric Co <Ge> 廃熱回収システム
KR20150000422A (ko) * 2013-06-24 2015-01-02 주식회사 엘지화학 열 회수 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201058A (en) 1976-02-05 1980-05-06 Vaughan Raymond C Method and apparatus for generating steam
KR100569779B1 (ko) * 2004-12-27 2006-04-11 주식회사 동양에스코 냉, 온수겸용 폐열회수식 복합형 히트펌프 장치
EP2049848A4 (en) * 2006-08-08 2012-02-15 Carrier Corp TANDEM COMPRESSORS COMPRISING A TIME-PULSED MODULATION SUCTION VALVE
JP2012127606A (ja) * 2010-12-17 2012-07-05 Mitsubishi Electric Corp 冷凍空調装置
JP5845590B2 (ja) * 2011-02-14 2016-01-20 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP5691844B2 (ja) 2011-05-30 2015-04-01 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP2013148330A (ja) 2011-12-21 2013-08-01 Daikin Industries Ltd ヒートポンプ
CN102997383A (zh) * 2012-02-28 2013-03-27 张育仁 一种空调压缩机出口能量的回收和利用方法
JP5279105B1 (ja) 2012-03-31 2013-09-04 株式会社東洋製作所 二元冷凍装置の立ち上げ制御方法
CN106104172B (zh) * 2014-03-17 2019-05-28 三菱电机株式会社 制冷循环装置
CN104089513B (zh) * 2014-07-14 2016-03-30 武汉广弘环保工程有限公司 一种热能回收利用系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443815B1 (ko) * 2001-12-24 2004-08-09 주식회사 세기센추리 폐열회수 열펌프 유닛
JP2009133624A (ja) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp 冷凍空調装置
US20100319346A1 (en) * 2009-06-23 2010-12-23 General Electric Company System for recovering waste heat
JP2013151931A (ja) * 2012-01-04 2013-08-08 General Electric Co <Ge> 廃熱回収システム
KR20150000422A (ko) * 2013-06-24 2015-01-02 주식회사 엘지화학 열 회수 장치

Also Published As

Publication number Publication date
JP6458169B2 (ja) 2019-01-23
KR101839781B1 (ko) 2018-03-20
KR20160150150A (ko) 2016-12-29
CN107771266A (zh) 2018-03-06
US20180135914A1 (en) 2018-05-17
CN107771266B (zh) 2020-05-15
JP2018513956A (ja) 2018-05-31
US10591219B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2016204560A1 (ko) 열 회수 장치
WO2021132866A1 (en) Air conditioning apparatus
WO2013172644A1 (ko) 액화가스 처리 시스템 및 방법
WO2017111503A1 (ko) 제철 부생가스로부터 이산화탄소 포집, 수소 회수 방법 및 장치
WO2016089167A1 (ko) 냉수생성 탱크 및 이를 구비하는 냉수기
WO2010097048A1 (zh) 回热式发生-吸收系统与回热式第二类吸收式热泵
WO2017171164A1 (ko) 선박용 증발가스 재액화 장치 및 방법
WO2019027065A1 (ko) 증발가스 재액화 시스템 및 증발가스 재액화 시스템 내의 윤활유 배출 방법
WO2021015483A1 (ko) 차량용 열관리 장치 및 차량용 열관리 방법
WO2015034332A4 (en) Dehumidifier
WO2019143195A1 (ko) 멀티형 공기조화기
WO2019117631A1 (ko) 가스 히트펌프 시스템
WO2021137408A1 (en) Air conditioning apparatus
WO2010098607A2 (ko) 케스케이드 열교환기를 이용한 냉난방 시스템
WO2019117630A1 (ko) 가스 히트펌프 시스템
WO2020197044A1 (en) Air conditioning apparatus
WO2011059131A1 (ko) 히트 펌프를 이용한 발전장치
WO2018066845A1 (ko) 하이브리드형 발전 시스템
WO2020235786A1 (en) Air conditioning apparatus and control method thereof
WO2021172671A1 (en) Air conditioner and water filling method therefor
WO2017115966A1 (ko) 열교환장치 및 열전발전장치의 통합 시스템, 및 그 작동 방법
WO2015190823A1 (ko) 열 회수 장치
WO2021112522A1 (ko) 차량용 히트펌프 시스템
WO2019143198A1 (ko) 멀티형 공기조화기
WO2020235801A1 (en) Air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554564

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15573331

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811973

Country of ref document: EP

Kind code of ref document: A1