WO2011059131A1 - 히트 펌프를 이용한 발전장치 - Google Patents

히트 펌프를 이용한 발전장치 Download PDF

Info

Publication number
WO2011059131A1
WO2011059131A1 PCT/KR2009/007472 KR2009007472W WO2011059131A1 WO 2011059131 A1 WO2011059131 A1 WO 2011059131A1 KR 2009007472 W KR2009007472 W KR 2009007472W WO 2011059131 A1 WO2011059131 A1 WO 2011059131A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
turbine
heat exchanger
gas
pressure
Prior art date
Application number
PCT/KR2009/007472
Other languages
English (en)
French (fr)
Inventor
고제국
Original Assignee
Ko Jae-Kook
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ko Jae-Kook filed Critical Ko Jae-Kook
Publication of WO2011059131A1 publication Critical patent/WO2011059131A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/11Structural association with clutches, brakes, gears, pulleys or mechanical starters with dynamo-electric clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/10Gas turbines; Steam engines or steam turbines; Water turbines, e.g. located in water pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/17Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant

Definitions

  • the present invention relates to a power generator using a heat pump, and more particularly, to control the temperature and pressure value of the gas refrigerant input to the compressor to provide efficient cooling and heating function during the operation of the heat pump remaining in use during the heating and cooling process
  • the present invention relates to a power generation device that generates electricity by converting energy of a refrigerant into a state and using power generated therefrom and heat of air sucked in an evaporation process.
  • Waste heat can be obtained from low temperature bodies such as air, water and soil around us.
  • the heat pump defined in the present invention is an air source heat pump (air source heat pump) is a device for generating electricity by using the remaining energy to supply heat to a place that requires relatively high heat, such as indoor heating and heating and hot water supply It means. That is, the heat pump of this invention is a heat pump for both cold and hot heat.
  • air source heat pump air source heat pump
  • the heat pump is a device that transfers a low temperature heat source to a high temperature or a high temperature heat source to a low temperature by using heat generated from a refrigerant (for example, freon gas) or condensation heat, and has a structure in which both cooling and heating are combined.
  • a refrigerant for example, freon gas
  • Heat has the property of moving from high to low. Heat pumps are named because they raise heat from low to high temperatures.
  • the term heat pump was originally developed for evaporating compressed refrigerant such as refrigerators, freezers, and air conditioners to take away the surrounding heat, but now it is a cooling device that transfers a low temperature heat source to a high temperature using the heat of the refrigerant or the heat of condensation. It is used to encompass heating and cooling / heating devices that transfer heat sources at low temperatures.
  • the basic configuration of such a heat pump is a compressor (10) for compressing low-temperature gas, a condenser (20), which is a high-temperature heat exchanger, and an expansion valve for lowering the pressure of the refrigerant from the condenser.
  • expansion valve (30) and an evaporator (40), which is a low-temperature heat exchanger, whose operation principle is to evaporate the refrigerant compressed to high temperature and high pressure for heating,
  • the lower outward cycle is repeated, and in the case of cooling, condensed refrigerant is exchanged with the hot outside air to cool the target point to be cooled.
  • the temperature and pressure of the gas refrigerant flowing into the compressor has a value over the appropriate range, as described above
  • the compressor body that is discharged after the compression process is also often overheated and overpressured. In this case, the compressor may also be overheated and the compressor may be damaged.
  • power generators for driving various machinery and equipment generally use electric energy produced by rotating a generator using natural power and manpower such as engine power, wind power, hydraulic power, and tidal power.
  • natural power and manpower such as engine power, wind power, hydraulic power, and tidal power.
  • a huge amount of fuel is consumed compared to the power generated by the power of the engine, and if the natural force is used, the installation site is restricted and the cost is high. have.
  • the present invention was devised to solve all of the problems listed above. By maintaining the temperature and pressure of the refrigerant sucked into the compressor in an appropriate range regardless of the temperature change in the external environment, it is possible to always provide efficient heating and It is an object of the present invention to provide a heat pump that can operate normally without fear of damage, and a power generation device that is free of pollution and does not incur additional costs by generating power by converting a pressure difference of a refrigerant that changes during its operation into power.
  • the heat pump is used for cooling and heating the room through the heat cycle in which the refrigerant is supplied to the compressor and the refrigerant is compressed into the compressor and the refrigerant is sucked back into the compressor through the condenser, expansion valve, and evaporator.
  • the electrical energy (I 1 ) input to the compressor and the thermal energy (I 2 ) absorbed in the air through the evaporator are partly the electrical energy (O 1 ) through the above generator, and the other part is for cooling or heating energy (O 2 ), the rest is used as the loss energy (O 3 ),
  • Thermal energy (I 2 ) is the heat energy absorbed from the outside air through the evaporator installed in the heating outdoors when heating, the heat energy absorbed from the indoor air through the evaporator roll installed in the cooling room when cooling.
  • the heat pump is for heating cycle
  • a plate-shaped primary heat exchanger which is a condenser that receives a gaseous refrigerant of high temperature and high pressure into the first input terminal through a second connecting pipe connected to the first connector of the four sides, and outputs it to the first output terminal after heat exchange for heating. group;
  • a second heat exchanger that cools the refrigerant to the upper compressor with a low temperature and high pressure refrigerant supplied from the first heat exchanger
  • the low-temperature and high-pressure refrigerant When the low-temperature and high-pressure refrigerant is supplied to the tertiary heat exchanger from the secondary heat exchanger through the fourth connecting pipe when the temperature of the refrigerant exceeds the proper range, it is installed in the tertiary heat exchanger to cool down the heat and is within the proper range.
  • a first fan that does not operate;
  • a liquid level meter which checks the presence of moisture in the connection pipe at the initial stage of installation and is formed at the next stage of the dehumidifier on the fifth connection pipe so as to see the flow of the refrigerant in the fifth connection pipe and displays the presence or absence of humidity in color;
  • a second reverse valve installed in a sixth connection pipe for supplying refrigerant from the expansion turbine to the evaporator, the second opening being opened when heated and closed when cooled;
  • a third reverse valve installed in the third connection pipe and closed during heating and opened during cooling to prevent the refrigerant moving from the expansion turbine to the second reverse valve toward the first reverse valve;
  • the refrigerant passing through the evaporator is supplied through the seventh connector through the third connector on the four sides and back to the second connector and the eighth connector on the four sides and senses the temperature of the refrigerant gas. If this is the case, the refrigerant in the eighth connection tube is opened without passing through the secondary heat exchanger, and is directly sent to the gas-liquid separator to separate the liquid in the tube. If the temperature of the refrigerant is lower than the set value, the refrigerant is closed by closing the gas solenoid valve.
  • a temperature sensing unit configured to be sent to the gas-liquid separator through the secondary heat exchanger and the ninth connection tube through the tube;
  • a low pressure filter installed at a front end of the refrigerant passing through the gas-liquid separator on the ninth connection pipe to the compressor to remove foreign substances in the connection pipe;
  • the heating water is supplied through the first pump through the tenth connector and supplied to the second input terminal of the primary heat exchanger through the eleventh connector, and is connected to the expansion turbine in the tertiary heat exchanger. Opening and closing degree is controlled so that the refrigerant pressure of the connection pipe is within the appropriate range set in advance by the user, the valve is opened more when the refrigerant pressure is higher than the set value, the valve is closed more when the pressure is lower than the set value and the valve diameter is increased as the pressure increases; And
  • the heat pump is used for cooling cycle
  • the high-temperature and high-pressure refrigerant of the compressor is supplied through the seventh connection pipe through the third connector on the four sides, and the heat of the refrigerant is extracted by condensation with cold air of the outside, and then made into a refrigerant in a low-pressure, high-pressure gas gas state to perform a condenser function.
  • the rotation of the second fan installed in the above fourth heat exchanger is controlled so that the pressure of the refrigerant flowing through the fifth connection pipe connected from the third heat exchanger to the upper expansion turbine falls within a preset range by the user, but the refrigerant pressure is higher than the set value.
  • a fan controller which controls to rotate slowly when it is lower than a set value so that it rotates fast when it is high;
  • the low-temperature and high-pressure refrigerant When the low-temperature and high-pressure refrigerant is supplied to the tertiary heat exchanger from the secondary heat exchanger through the fourth connecting pipe when the temperature of the refrigerant exceeds the proper range, it is installed in the tertiary heat exchanger to cool down the heat and is within the proper range.
  • a first fan that does not operate;
  • a dehumidifier formed on the fifth connection tube and configured to remove moisture in the condensation refrigerant gas generated from an output end of the tertiary heat exchanger;
  • a liquid level meter which checks the presence of moisture in the connection pipe at the initial stage of installation and is formed at the next stage of the dehumidifier on the fifth connection pipe so as to see the flow of the refrigerant in the fifth connection pipe and displays the presence or absence of humidity in color;
  • the refrigerant which is expanded from the above expansion turbine and transformed into a gaseous state of low temperature and low pressure, is closed through heating and is supplied through the third reverse zone and the third connection pipe that is opened during cooling.
  • a primary heat exchanger that cools the room by removing the cold air and performs an evaporator function
  • the temperature of the refrigerant gas is sensed.
  • the refrigerant in the eighth connection tube is opened without passing through the secondary heat exchanger, and is directly sent to the gas-liquid separator to separate the liquid and gas. If the temperature of the refrigerant is lower than the set value, the gas solenoid is closed to close the refrigerant.
  • a temperature sensing unit configured to be sent to the gas-liquid separator through the secondary heat exchanger and the ninth connecting tube through the unit;
  • a low pressure filter installed at a front end of the refrigerant passing through the gas-liquid separator on the ninth connection pipe to the compressor to remove foreign substances in the connection pipe;
  • It is preferably configured to include an electronic valve for water supplying water to be closed when heated and opened when cooled to exchange heat with the primary heat exchanger.
  • valve aperture of the water-saving valve is preferably adjusted by the refrigerant pressure measured in the fifth connecting pipe.
  • a second planar turbine cylinder positioned between the first planar turban cylinder and the third planar turbine cylinder;
  • Refrigerant suction port formed in the circumferential end surface perpendicular to the rotation axis of the rotating plate
  • Refrigerant discharge port formed in the rotation axis direction of the rotating plate
  • a turbine housing for accommodating the first flat turbine cylinder, the second flat turbine cylinder, and the third flat turbine cylinder;
  • a turbine housing cover for covering the upper turbine housing
  • a first o-ring for maintaining the airtightness of the turbine housing and the turbine housing cover
  • a bearing cover installed between the first flat turbine cylinder and the turbine housing cover and between the third flat turbine cylinder and the turbine housing, the bearing cover having a nut and a nut;
  • Airtight means installed between said first planar turbine cylinder and said second planar turbine cylinder and between said second planar turbine cylinder and said third planar turbine cylinder;
  • a first magnetic housing made of aluminum formed at an end of the rotating shaft of the rotating plate
  • the magnet housing cover is made of aluminum for fixing the magnet of the first magnetic housing.
  • the first magnetic housing the first magnetic housing
  • Turbine rotary shaft end located at the rotary shaft end of the upper rotating plate
  • the turbine shaft end is preferably formed integrally by welding after fitting the end of the rotary shaft of the rotary plate.
  • the material of the turbine shaft end is preferably titanium.
  • the material of the upper end of the turbine shaft does not react to the magnetic force of the first magnet part or the second magnet part.
  • the second magnetic housing is located outside the first magnetic housing and connected to the generator rotation shaft through a shaft for the magnetic coupling and for fixing the magnet;
  • It is installed inside the second magnet housing and is uniformly disposed at 90 degree intervals at a position corresponding to the first magnet on the outer concentric circle outside the first magnet, so that the power of the turbine is generated through the first magnet by using the magnetic force. It is preferable to further comprise a plurality of second magnets to be transmitted to the rotating shaft.
  • it is made of nylon material to protect the first magnet housing and the second magnet housing and to prevent the refrigerant gas from leaking to the generator without being affected by the magnetic force of the first magnet part and the second magnet part. It is preferable to further include a magnet coupling housing for forming a cylindrical heat dissipation vent of a specific diameter in all directions from the magnet housing cover to release the high heat inside the second magnet housing cover to the atmosphere during high-speed rotation of the second magnet portion. .
  • the thickness of the upper rotating plate is preferably within 8 ⁇ 16 mm.
  • the width of the wing groove of the upper rotating plate is preferably within 1.6 ⁇ 3mm.
  • the wing groove depth of the upper rotating plate is preferably within 10 ⁇ 16 mm.
  • the linear spacing of the wing groove and the wing groove of the rotor is preferably 8 ⁇ 15 mm based on the outer diameter of the rotor plate.
  • the distance from the outer end of the groove on which the air sealing, which is mounted circumferentially to the rotor plate, at the depth end of the wing groove of the rotor is mounted is within 1 to 2.5 mm.
  • the center hole of the second planar turbine cylinder is formed by moving 1.5 to 4 mm from the original center in contact with the nozzle end.
  • the first discharge port is preferably installed spaced apart by the distance between the wing groove and the wing groove in the direction opposite to the nozzle on the horizontal line passing through the center of the second flat turbine cylinder above the nozzle.
  • the positive position of the last discharge port is installed 2 mm away from the nozzle in the opposite direction from the horizontal line passing through the center of the second flat turbine cylinder, centered on the nozzle, and the upper second flat plate for smooth discharge. It is preferable that the number of discharge ports provided in the side of a type
  • the end of the nozzle hole is in contact with the inner circumferential surface of the hole of the second planar turbine cylinder, and the nozzle position is adjusted in accordance with the diameter of the rotor plate.
  • the thickness of the second flat turbine cylinder is preferably within 8.005 ⁇ 15.005 mm.
  • the distance between the first planar turbine cylinder or the second planar turbine cylinder and the rotating plate is within 0.005 to 0.05 mm.
  • the material of the turbine housing and the turbine housing cover is preferably aluminum.
  • the distance between the air seal installed on the upper rotating plate and the rotating plate maintains 0.02 mm.
  • the minimum distance between the rotating plate outer surface of the upper turbine in the nozzle direction and the circumferential surface of the second flat turbine cylinder hole is 0.01 to 0.05 mm.
  • the high and low pressures of the compressor in the range preset by the user are preferably 26 kgf / cm 2 and 6 kgf / cm 2 , respectively.
  • the weather when the outside air temperature is below zero during heating, by closing the water-saving valve to increase the pressure of the condensate gas and increasing the pressure of the condensate gas to keep the pressure constant, the weather is below zero in the fourth-order heat exchanger installed outdoors.
  • Edo is also preferably capable of absorbing thermal energy from the outside air.
  • the heat pump according to the present invention prevents the compressor efficiency from being lowered by preventing the pressure of the refrigerant gas flowing into or out of the compressor from being within an appropriate range, thereby reducing fuel (heat) efficiency even in a cold environment.
  • the heating is smooth and the economy is excellent due to the reduction of fuel cost.
  • by using the difference in the pressure of the refrigerant gas that occurs naturally in the operation process to produce electricity can be produced for pollution-free, non-pollution.
  • the biggest advantage of this invention is that the energy of the atmosphere can be utilized as an input energy source for power generation and cooling and heating, so that the large output energy can be obtained with less input energy using the technology of the present invention.
  • 1 is a basic configuration diagram of a general heat pump.
  • FIG. 2 is a block diagram of the heat pump during heating operation according to the present invention.
  • FIG. 3 is a block diagram of the heat pump during cooling operation according to the present invention.
  • FIG. 4 is a block diagram of a state in which an expansion turbine and a generator are coupled to the power generator according to the present invention.
  • FIG. 5 is an exploded perspective view of a turbine cylinder according to the present invention.
  • FIG. 6 is a sectional view of an expansion turbine according to the invention.
  • FIG. 7 is a perspective view of a rotating plate according to the present invention.
  • FIG. 8 is a front view of a second planar turbine cylinder according to this invention.
  • FIG. 9 is an enlarged cross-sectional view of a portion A of FIG. 6.
  • FIG 10 is an exemplary view of a discharge port formed in a second flat turbine cylinder according to the present invention.
  • FIG. 11 is a graph showing the results of power generation experiments using the apparatus of the present invention.
  • FIG. 12 is a perspective view of the wing for the rotating plate of the present invention.
  • Figure 13 is a connection state of the rotating plate and the nipple of the present invention.
  • Fig. 14 is a block diagram showing the total energy input / output relationship of the present invention.
  • FIG. 16 is a right perspective view of the magnet housing according to the present invention.
  • expansion turbine 172 refrigerant outlet
  • liquid level meter 210 gas-liquid separator
  • check valve 300 electronic valve for water
  • discharge port 545a first discharge port
  • 571c magnet space forming unit 571d: magnet installation space
  • magnetic coupling housing made of nylon 601: shaft for the magnetic coupling
  • vane 655 wing groove
  • nipple 670 turbine rotation shaft
  • I1 Electric Energy (AC)
  • I2 Thermal Energy (Atmosphere)
  • L6 Distance (eccentric) away from the center of the second planar turbine cylinder O. 1.5-4 mm.
  • this invention basically performs heating and cooling, and absorbs the heat and pressure energy of the remaining refrigerant after heating and cooling, and the heat of the air (from outside air for heating and from indoor air for cooling). Generating power using the obtained heat energy can result in more energy than energy supplied directly to the heat pump (electrical energy), resulting in two effects: saving energy resources and utilizing idle energy. Now look at the heating, cooling and power generation process according to the invention in detail as described below.
  • FIG. 2 is a block diagram of the heat pump during heating operation according to the present invention.
  • the connectors are labeled (1), (2), ..., (9).
  • Compressor 110 for converting a low-temperature low-pressure gas refrigerant to a high-temperature high-pressure gas refrigerant using electrical energy supplied from the outside (can be replaced with other energy if necessary),
  • a plate-shaped primary that performs a function of a condenser by receiving a heat exchanger after receiving high temperature and high pressure refrigerant through a second connecting pipe 2 connected to the four sides 240 and exchanging heat.
  • Heat exchanger 120 When heating is selected, a plate-shaped primary that performs a function of a condenser by receiving a heat exchanger after receiving high temperature and high pressure refrigerant through a second connecting pipe 2 connected to the four sides 240 and exchanging heat.
  • the second type of heat exchanger 140 for warming the refrigerant is a formula that is sucked toward the compressor 110 by the low temperature and high pressure refrigerant supplied from the first heat exchanger 120,
  • a reverse valve that opens during heating and closes during cooling to connect the output terminal of the upper heat exchanger 120 and the first input terminal of the secondary heat exchanger 140 through a third connecting pipe 3 to prevent backflow.
  • the third heat exchanger is used to cool the heat when the temperature of the refrigerant exceeds an appropriate range.
  • a fan 155 installed and operated within 150 and not operating when within an appropriate range;
  • the expansion turbine is formed on the fifth connection pipe (5) next to the liquid level gauge 200 and is driven by the pressure generated while the refrigerant in the low temperature and high pressure liquid gas is expanded and converted into the low temperature low pressure gas gas state. 170),
  • a fourth heat exchanger 160 which performs the evaporator function by evaporating the low-temperature low-pressure vaporized refrigerant gas from the rotation of the expansion turbine 170 by removing the heat of the external air and vaporizing it with the low-temperature low-pressure refrigerant;
  • a reverse valve 260 installed in the sixth connecting pipe 6 for supplying the refrigerant from the expansion turbine 170 to the fourth heat exchanger 160 and opening when heating and closing when cooling, thereby preventing the backflow of the refrigerant;
  • the reverse side 280 is installed in the third connection pipe 3, which is closed when heated and opened when cooled.
  • the refrigerant passing through the fourth heat exchanger 160 passes through the third connector of the four sides 240 through the seventh connector 7 and the second connector 240 of the four sides 240 and the eighth connector 8. And the temperature of the refrigerant gas is sensed so that if the temperature of the refrigerant is above a certain temperature, the gas solenoid 250 is opened so that the refrigerant in the eighth connection pipe 8 is directly passed through the secondary heat exchanger 140 without being gas-liquid.
  • Supply to the separator 210 if the temperature of the refrigerant is less than a certain temperature temperature sensing unit for closing the electronic valve 250 for the gas to be delivered to the secondary heat exchanger 140 through the eighth connection pipe (8) 220,
  • the low pressure filter 230 is installed on the low pressure side to remove the foreign matter in the tube is installed in the front end to send the refrigerant passing through the gas-liquid separator 210 to the compressor 110 on the ninth connection pipe (9),
  • the heat storage tank 130 is supplied with heating water through the pump 320 through the tenth connecting pipe 10 and through the eleventh connecting pipe 11 to the second input terminal of the primary heat exchanger 120 and If the pressure of the fifth connection pipe (5) the refrigerant is more than the set pressure is more open, otherwise closed more to control the refrigerant pressure and the higher the refrigerant pressure, the water-saving valve (310),
  • the formula supplied to the second input terminal of the primary heat exchanger 120 includes a second output terminal in the primary heat exchanger 120 for supplying the heat storage tank 130 when the heating water is heated in the primary heat exchanger 120. It is composed.
  • the gas-liquid separator 210 separates the liquid and stores it in a separate tank in order to prevent the compressor 110 from breaking when the liquid in the connection pipe enters the compressor 110.
  • the liquid evaporates naturally when the heat pump stops. .
  • the movement path of the refrigerant according to the operation of the heat pump according to the present invention during heating operation is as follows:
  • High pressure output stage of the compressor 110 ⁇ the first pipe line (1) of the four sides (240) ⁇ primary heat exchanger (120) ⁇ reverse displacement ((290) ⁇ secondary heat exchanger 140) ⁇ tertiary heat exchanger (150) ) ⁇ Dehumidifier (190) ⁇ Level gauge (200) ⁇ Expansion turbine (170) ⁇ Reverse valve (260) ⁇ 4th order heat exchanger (160) ⁇ Third connector (7) ⁇ Four sides (240) Second connector ⁇ Connection After the refrigerant moves to the tube (8), if the temperature of the ninth connecting tube (9) is less than the appropriate range, the gas solenoid 250 is opened to the gas-liquid separator 210 ⁇ low pressure filter 230 ⁇ compressor 110 When the refrigerant is moved in the order of the low pressure input stage of the, and the temperature of the ninth connection pipe (9) is more than the appropriate range, the gas electron valve 250 is closed to go through the secondary heat exchanger (140) again, the gas-liquid separator (210) The refrigerant
  • the water warmed through the primary heat exchanger 120 is supplied to the heat storage tank 130 and the high temperature water stored in the heat storage tank 130 supplies heat energy to the room through a heater (not shown), the heat storage tank 130
  • the heat of the heat storage tank 130 is returned to the primary heat exchanger 120 through the water storage valve 310 through the pump 320 and is heated again.
  • the water passing through the pump 320 is connected to the water-saving valve 310 and the water solenoid valve 300 in the bypass form, the water solenoid valve 300 is closed during heating and is opened during cooling.
  • the fan 165 is also not used for heating.
  • the fourth heat exchanger 160 installed outside the low temperature by transferring the heat discarded from the primary heat exchanger 120 to the intake side of the compressor 110 through the secondary heat exchanger 140.
  • a method of controlling the electronic valve 250 for a gas according to the suction side temperature is applied so that an appropriate temperature and pressure are applied to a heat medium that is not evaporated in a liquid state and is sucked in a liquid state.
  • the heat pump according to the present invention includes a separate secondary heat exchanger 140 for adjusting the temperature and the pressure of the gas refrigerant flowing into the compressor 110 within an appropriate range when the temperature and pressure are less than the proper range.
  • the proper pressure of the gas refrigerant is preferably set to 6kgf / cm 2 ⁇ 26kgf / cm 2 (see Fig. 11).
  • the gas refrigerant discharged from the compressor 110 is converted into a liquid refrigerant through the primary heat exchanger 120, and the liquid refrigerant introduced into the first inlet of the secondary heat exchanger 140 via the connecting pipe 3 is Although the primary heat exchanger 120 consumes heat to raise the temperature of the feed water, it still contains residual heat. As such, the liquid refrigerant containing residual heat is the secondary heat exchanger 140 when the gas refrigerant introduced into another inlet (second inlet) of the secondary heat exchanger 140 has a temperature and a pressure below an appropriate range. Heat is transferred to the low-temperature, low-pressure gas refrigerant within the above proper range through heat exchange.
  • the gaseous refrigerant having a temperature and pressure in a proper range by receiving heat is discharged from the secondary heat exchanger 140 and passes through the ninth connection pipe 9, the gas-liquid separator 210, and the low pressure filter 230. Flows into the compressor 110.
  • the gas refrigerant having a temperature and pressure below the appropriate range flowing through the connection pipe 8 is closed and the gas electron valve 250 is connected to the secondary heat exchanger 140. Should be allowed to enter.
  • the gas refrigerant flowing through the ninth connecting pipe 9 has a temperature and pressure of an appropriate range or more, the gas electron valve 250 is controlled to be opened so as not to pass through the secondary heat exchanger 140.
  • the present invention measures whether the pressure of the liquid refrigerant is in an appropriate range and adjusts the supply amount of the heating water supply through the water saving valve 310 according to the measured value. For example, when the pressure of the condensation gas measured in the fifth connecting pipe (5) is measured to a value larger than an appropriate value, by opening more water-saving valve (310) to introduce more water, the primary heat exchanger (120) In the gas refrigerant, the temperature and pressure are further reduced in proportion to the increased amount of heating water.
  • the gas refrigerant in the primary heat exchanger 120 has a temperature proportional to the amount of the reduced supply water. And flows into the secondary heat exchanger 140 with a reduced pressure.
  • the gas refrigerant introduced at such a relatively high temperature may transfer a lot of heat to the gas refrigerant within a proper range introduced into the secondary heat exchanger 140 through the eighth connection pipe 8 within the secondary heat exchanger 140. Since it is possible to increase the temperature and pressure of the gas refrigerant to be introduced into the compressor 110 to an appropriate range.
  • the fan 155 installed in the tertiary heat exchanger 150 is operated to cool the heat.
  • the temperature / pressure of the liquid refrigerant flowing into the tertiary heat exchanger 150 is greater than an appropriate value, it means that the gaseous refrigerant flowing into or out of the compressor 110 is in a high temperature and high pressure state exceeding an appropriate range.
  • the gas refrigerant may carbonize the oil in the compressor 110 and eventually damage the compressor 110. Therefore, in this case, it is necessary to operate the fan 155 provided in the tertiary heat exchanger 150 to release heat of the high temperature liquid refrigerant to the outside.
  • the fan 155 installed in the tertiary heat exchanger 150 performs a function of condensing the liquid refrigerant when it is a high temperature and high pressure over an appropriate range. On the other hand, when the liquid refrigerant is within the proper range, the fan 155 of the tertiary heat exchanger 150 does not operate.
  • the present invention controls the opening and closing degree of the water-saving valve 310 so that the pressure of the refrigerant measured in the five connection pipe (5) falls within the appropriate range set by the user. For example, when the heating operation is to compensate for the phenomenon that the pressure of the high-pressure refrigerant is lowered due to a relatively low outside air temperature compared to the room temperature, by opening the water-saving valve 310 less so that the pressure of the refrigerant falls within the appropriate range.
  • the temperature of the refrigerant before passing through the compressor 110 is measured, and the refrigerant flows to the secondary heat exchanger 140 selectively by opening and closing the gas electron valve 250 according to whether the temperature is appropriate.
  • 5 controls the amount of water supplied from the water saving valve 310 to the primary heat exchanger 120 in accordance with the pressure of the connection pipe (5), and selectively operates the fan 155 installed in the tertiary heat exchanger (150) Let's do it.
  • the temperature and pressure of the refrigerant sucked into the compressor 110 may be always maintained in an appropriate range.
  • FIG. 3 shows the configuration of the heat pump in the cooling operation of the present invention.
  • the heat pump according to the present invention is opposite to the flow of FIG. 2.
  • the basic concept is the same or similar to heating.
  • the heat pump of this invention is the same or similar to heating.
  • Compressor 110 for converting the low-temperature low-pressure gas refrigerant to a high-temperature high-pressure gas refrigerant, and discharged;
  • the refrigerant of the high temperature and high pressure of the compressor 110 is supplied through the seventh connection pipe 7 through the third connector of the four sides 240, and the heat of the refrigerant is condensed by cold air of the outside and condensed.
  • a fourth heat exchanger 160 which is made of a refrigerant in a state and performs a function of a condenser;
  • the low-temperature, high-pressure gas refrigerant of the fourth heat exchanger 160 is supplied through the sixth connection pipe and the reverse valve 270 opened during cooling and opened during cooling, so that the gas-liquid separator (2) is connected through the second connector of the four sides 240 with the heat.
  • a tertiary heat exchanger 150 having a fan 155 for receiving a low temperature and high pressure refrigerant of the second heat exchanger 140 and maintaining the temperature of the refrigerant within an appropriate range;
  • a liquid level meter 200 installed at a stage next to the dehumidifier 190 on the fifth connector 5 to allow the flow of the refrigerant in the fifth connector 5 to be seen;
  • the generator 330 is connected to the expansion turbine 170 and the coupling 340 to generate electricity by the rotational force
  • the refrigerant that is expanded in the expansion turbine 170 and changed into a gaseous state of low temperature and low pressure is closed by heating and is supplied through a reverse valve 280 that is opened during cooling to take heat of indoor air to be cooled to vaporize the refrigerant, and heat into the room. Equipped with a first heat exchanger 120 to discharge the cold air to cool the room to perform the function of the evaporator,
  • the low-temperature, low-pressure vaporized gas gas refrigerant passing through the first heat exchanger 120 is connected to the second connector 2, the four sides 240, the second connector, the eighth connector 8, and the gas-liquid separator 210. Characterized by the suction through the compressor (110). Other configurations are the same as or similar to those when heating, so descriptions are omitted to avoid repetition.
  • the water solenoid valve 300 which was closed at the time of heating, is completely opened so that water is supplied to the first heat exchanger and the water saving valve 310 connected to the solenoid valve 300 in a bypass form does not perform a special function during cooling. .
  • the movement path of the refrigerant according to the operation of the heat pump according to the present invention during the cooling operation is as follows:
  • High pressure output stage of the compressor 110 ⁇ third connector of the four sides (240) ⁇ seventh connection (7) tube ⁇ fourth heat exchanger 160 ⁇ reverse valve 270 ⁇ secondary heat exchanger 140 ⁇ third Heat exchanger 150 ⁇ Dehumidifier 190 ⁇ Liquid level meter 200 ⁇ Expansion turbine 170 ⁇ Reverse displacement 280 ⁇ First heat exchanger 120 ⁇ Second connection pipe 2 ⁇ Four sides 240 The first connector ⁇ the second connector of the four sides 240 ⁇ the eighth connector (8) ⁇ the electromagnetic valve 250 for gas ⁇ gas-liquid separator 210 ⁇ low pressure filter 230 ⁇ low pressure input stage of the compressor 110 The refrigerant moves.
  • the gas solenoid 250 is closed, and the refrigerant is heated in the second heat exchanger 140 and then the gas-liquid separator 210 via the ninth connecting pipe 9. Go to).
  • Table 1 below shows the temperature and pressure of the refrigerant of the main part during the heating and cooling in this invention. Table 1 is the same for heating and cooling.
  • the refrigerant made of a gas gas of high temperature, high pressure by the compressor 10 is converted into a liquid gas of low temperature and high pressure while passing through the condenser 20.
  • the refrigerant condensed as described above is vaporized while passing through the expansion valve 30 and converted into a gas gas of low temperature and low pressure. At this time, the gas gas evaporates and absorbs the surrounding heat.
  • the low temperature low pressure refrigerant gas vaporized through the expansion valve 30 absorbs the surrounding heat while passing through the evaporator 40 to vaporize the refrigerant gas into a low temperature low pressure gas gas, and is sucked into the inlet of the compressor 10. . Heating and cooling are achieved while repeating this compression-condensation-expansion-evaporation process.
  • the first heat exchanger 120 installed indoors when the heating operation
  • the fourth heat exchanger 160 installed outdoors when the cooling operation is operated as a condenser, respectively
  • the liquid of low temperature and high pressure from the above process Power is generated when the gas passes through the expansion turbine 170 and is converted into vaporized gas at low temperature and low pressure, thereby driving the expansion turbine 170 and operating the generator 330 connected to the expansion turbine 170 to produce electricity.
  • it is provided with an expansion turbine 170 that can act as an expansion valve and change the gas pressure into kinetic energy.
  • the expansion turbine 170 has an inlet 174 indicated by a small circle into which the low temperature and high pressure condensed liquid gas enters, and an outlet 172 indicated by a large circle through which the low temperature low pressure liquid gas liquefies after expansion. And a heat release vent 176, and converts the power generated by the expansion of the gas using the high pressure and the low pressure of the phase change in the expansion valve during the refrigeration cycle into kinetic energy to convert the magnet in the coupling (340)
  • the electric generator 330 is rotated by the kinetic energy to produce electric energy by transmitting the electric power to the generator 330 via 572 and 591 and the shaft 601 for the magnetic coupling.
  • the coupling 340 transmits the kinetic energy of the expansion turbine 170 to the generator 330, and the coupling 340 is installed at the expansion turbine 170 side (see FIG. 6).
  • Fig. 15-16 show an embodiment of the coupling 340.
  • Fig. 15 shows a left perspective view of the magnet housing 571 according to the present invention
  • Fig. 16 shows a right perspective view of the magnet housing 571 according to the present invention.
  • the magnet housing 571 has a circular plate in contact with the cylindrical through-hole 571a and the end of the through-hole 571a for the turbine shaft shaft end 670a integrally connected to the turbine shaft 670 to pass therethrough.
  • 571b which is installed at the opposite side of the through hole 571a around the plate 571b, and has a concentric circle with a rotating shaft end through hole 571e and through hole 571e having the same inner diameter as the above through hole 571a.
  • magnets 582 having four strong magnetic forces are disposed, and around the shaft connected to the rotating shaft of the generator with a predetermined distance from the magnet 572 at a position corresponding to the magnet 572.
  • magnets 591 having a strong magnetic force formed therein are disposed.
  • the rotational force of the turbine 170 is transmitted to the magnet 572 fixed around the end 670a via the rotary shaft 670 and the rotary shaft end 670a, so that the magnet 572 rotates.
  • the rotational force of the magnet 572 rotates the magnet 591, which is isolated from the magnet 572 through the magnetic force, and the rotational force of the magnet 591 is transmitted back to the magnet housing 600.
  • the magnet housing 600 is constructed on the same principle as the magnet housing 571.
  • the kinetic energy of the magnet housing 600 is transmitted to the generator 330 via the magnet coupling shaft 601 connected to the bearing to rotate the generator 330. Therefore, the magnetic force of the magnets 572 and 591 used at this time must be quite strong. For example, a magnet that is strong enough to attract copper containing only a small amount of iron impurities is needed.
  • the magnet 572 and the magnet space forming part 571c are protected by the magnet housing cover 573.
  • the magnet 591 is protected by a separate magnet housing cover 590.
  • titanium is used as a material of the end of the rotating shaft 670a. This is to avoid unnecessary use of the magnetic force between the magnets 572 and 591.
  • the magnets 572 and 591 in the magnet housing 571 and 600 are respectively fixed by the magnet housing covers 573 and 590.
  • the magnet housings 571 and 600 and the magnet housing covers 573 and 590 are made of aluminum (see FIG. 6).
  • the magnet housing 571 has a plurality of magnets 572 that are fitted to the end 670a of the turbine rotation shaft 670 and are fixed by welding, and are constantly arranged at 90 degree intervals around the rotation shaft 670. It rotates according to the rotation of the rotating plate 542. And the material of the end 670a is preferably made of titanium in order to avoid the influence of the magnets 572 and 591.
  • the turbine rotation shaft 670 and the end 670a are integrally formed.
  • the magnet housing 600 is installed between the magnet housing 571 and the generator 330, the magnet housing 600 is installed in the inner concentric circle on the outside of the magnet 572 corresponding to the magnet 572 A plurality of magnets 591, and the magnets 591 are arranged at regular intervals at a 90-degree position to transfer the rotational force of the turbine 170 to the rotating shaft 601 toward the generator 330 through the magnet 572 using the magnetic force. It is further provided with a generator 330 rotating shaft 601 connected.
  • the present invention protects the magnet housings 571 and 600 and is made of nylon to prevent the turbine gas from flowing into the generator side without being affected by the magnetic force of the magnets 572 and 591.
  • the magnet coupling housing 580 also forms a plurality of cylindrical heat dissipation vents 176 having a specific diameter in all directions from 600 to discharge high heat inside the magnet housing 600 to the atmosphere during high-speed rotation of the magnet 591. Equipped.
  • Figure 5 is an exploded perspective view of the turbine cylinder according to the present invention from which it can be seen that three flat cylinders (530, 540, 550) are used in the turbine 170 used in the present invention.
  • Turbine cylinders are housed in the turbine housing 560 from the left side of FIG. 5, and magnets are housed in the magnet coupling housing 580 as part of a coupler 340 using magnets, the next stage of which is not shown. 330 is connected.
  • 6 is a cross-sectional view of the expansion turbine 170 used in the present invention. 6 is largely divided into two parts. The left part and the right part. The generator 330 is connected to the right side of the right part. The right part is the coupling part described in detail in FIGS. 15 to 16. The coupling part is disposed in the magnet coupling housing 580. The left portion has three flat turbine cylinders 530, 540, 550. The airtightness is maintained between the left part and the right part by the O-ring 541. The left side of the left portion is the housing cover 510, the center of the refrigerant discharge port is formed. The portion indicated as 510a is a space in which the refrigerant to be discharged resides.
  • interval between a 1st planar turbine cylinder or a 2nd planar turbine cylinder, and a rotating plate is within 0.005-0.05 mm.
  • the expansion turbine 170 includes a first planar turbine cylinder 530, a third planar turbine cylinder 550, a first planar turban cylinder 530, and a third planar turbine cylinder 550.
  • the blade of the rotating plate 542 formed in the circumference of the second plate-shaped turbine cylinder 540, the rotating plate 542 rotating in the second plate-shaped turbine cylinder 540, vane) the blade 650 which rotates the rotor plate 542 at high speed by the pressure that expands during vaporization of the low temperature and high pressure liquid refrigerant gas contained in the groove 655 and the wing groove 655 and sucked into the turbine 170, Refrigerant suction nipple 660 formed in a circumferential cross section perpendicular to the rotating shaft 670 of the rotating plate 542, the refrigerant discharge port 545 formed in the direction of the rotating shaft 670 of the upper rotating plate 542, the first flat turbine cylinder 530, the second flat turbine cylinder 540, the turbine housing 560
  • FIG. 7 is a perspective view of a rotating plate 542 according to this invention.
  • 640 is an air sealing groove formed on the surface of the rotating plate
  • 655 is a wing groove.
  • the thickness l1 of the rotating plate 542 is within 8 to 16 mm
  • the wing groove depth l2 of the rotating plate is within 10 to 16 mm
  • the width l3 of the wing groove of the rotating plate 542 is 1.6 to 3 mm.
  • the linear spacing l4 between the wing groove 655 and the wing groove 655 of the rotor plate 542 is within 8 to 15 mm based on the outer diameter of the rotor plate, and the wing groove 655 of the rotor plate 542.
  • the distance l5 from the outer diameter of the groove on which the air sealing to be mounted circumferentially to the rotating plate 542 at the depth end of the groove is to be within 1 to 2.5 mm.
  • FIG 8 is a front view of a second planar turbine cylinder 540 according to this invention.
  • a nipple 660 is connected to the lower left of the cylinder 540 and a nozzle (not shown) is provided at the end of the nipple.
  • FIG. 9 is an enlarged cross-sectional view of part A of FIG. 6.
  • 542 is a rotating plate
  • 531 and 542 are air sealing parts
  • 544 is a fixing bolt.
  • 11 indicates the separation distance between the rotating plate 542 and the air seals 531 and 541, preferably in the range of 1 to 2.5 mm.
  • FIG. 10 is an exemplary view of the discharge port 545 formed in the second flat turbine cylinder 540 according to the present invention.
  • (a) is the front view and the center of the cylinder 540 is indicated by O
  • (b) is the side view seen from the left side
  • 545a is the first discharge port
  • (c) is the side view seen from the right side
  • 545b is the last discharge port
  • the nozzle inlet 547 is provided
  • (d) is a top view
  • (e) is a bottom view.
  • l6 is the distance formed by moving the center hole of the second planar turbine cylinder 540 from the original center in the direction of contact with the nozzle end, and l7 from the horizontal line passing through the center O to the first outlet 545a.
  • l8 is the distance between the upper horizontal line and the last discharge port 545b
  • l9 is the distance between the upper horizontal line and the center line of the nipple 660
  • 2mmr is preferred
  • l10 represents the width of the cylinder 540 8.0 ⁇ 15.005 mm is preferred.
  • the connection portion of the nipple 660 is shown at the lower right of the cylinder 540.
  • the first discharge port 545a is installed at a horizontal line passing through the center of the second planar turbine cylinder 540 above the nozzle and spaced apart by the distance between the wing groove and the wing groove in a direction opposite to the nozzle, and the last discharge hole ( 545b) is installed 2 mm away from the nozzle in the horizontal direction passing through the center of the upper second flat turbine cylinder 540 centered on the nozzle, and the upper second flat turbine for smooth discharge
  • the number of discharge ports 545 provided on the side of the cylinder is a plurality.
  • the thickness of the 2nd planar turbine cylinder 540 is 8.005-15.005 mm or less.
  • the end of the nozzle hole is in contact with the inner circumferential surface of the hole of the second flat plate turbine cylinder 540, and it is preferable to set the nozzle position by adding or subtracting each according to the diameter of the rotating plate.
  • interval of the rotating plate outer surface of a turbine of a nozzle direction and the circumferential surface of the hole of the 2nd flat turbine cylinder 540 is 0.01-0.05 mm.
  • FIG. 11 is a graph showing the results of power generation experiments using the apparatus of the present invention.
  • the vertical axis is the voltage value [Volt] obtained through power generation
  • the horizontal axis is the pressure of the refrigerant [kgf / cm2]
  • the distance (g) between the outer circumference of the turbine rotor plate and the inner surface of the turbine cylinder is 0.11 [mm] and 0.09 [mm], respectively.
  • 0.04 [mm] Experimental results show that the output voltage has a value around 200 [Volt], and the narrower the interval (g) and the higher the pressure, the higher the output voltage is obtained and the larger the interval (g) and the higher the pressure. The lower the value, the lower the output voltage.
  • the gap g was narrowed to 0.04 [mm], increasing the pressure could cause the turbine to explode and thus did not attempt.
  • the device of this invention shows that the output voltage value can be controlled linearly by adjusting the pressure value.
  • FIG. 12 is a perspective view of a wing 650 for a rotating plate of the present invention.
  • An example of a vane 650 is 2 mm thick, 11.98 mm long, and 11.95 mm wide.
  • Wing material is synthetic resin material that can withstand long time use in high temperature and high pressure environment.
  • Figure 13 shows a connection diagram of the rotating plate and the nipple of the present invention.
  • the outermost circle is the turbine housing 560
  • the inner circumference is the O-ring 570
  • the inner quadrangle is the second flat turbine cylinder 540
  • the circle inside the cylinder is the rotating plate 542.
  • the center circle is the rotating shaft 670 and the bearing 551 around it.
  • the nipple 660 is connected to the lower right side.
  • 545c is a discharge port for the flow of gas and oil.
  • FIG. 14 is a block diagram showing the total energy input / output relationship of the present invention.
  • the energy conversion system (1000) When the electrical energy (I 1 ) and heat energy (I 2 ) in the air is input to the energy conversion system (1000) to the energy conversion system (1000) including a power generator using the heat pump of the present invention, the energy conversion system (1000). Silver converts the above electrical energy and thermal energy, and part of it is output as electrical energy (O 1 ), and the other part is output as thermal energy (O 2 ) and loss energy (O 3 ). Therefore, the input and output energy does not change as a whole to satisfy the law of energy conservation. If this is expressed as an equation, it may be expressed as Equation 1.
  • the energy conversion system 1000 of the present invention input the energy of 2,350 ⁇ 3,210cal corresponding to the difference between the input and output energy in the air from the indoor air through the evaporator (indoor). And this fact is logically considered considering the lost energy generated in the energy conversion system 1000 (for example, heat discharge to the outside through the outdoor unit, which is a condenser).
  • this invention is a magical energy production technology that can produce a greater amount of energy with a small amount of energy (actually, as mentioned above, the sum of input and output energy must be the same). It is thanks to the technology that combines high efficiency power generation system and heating and cooling technology. The application of these technologies can produce a lot of clean energy with less energy, helping to reduce environmental pollution. In particular, if the generator capacity is largely designed, the power generation efficiency will be higher, resulting in much better results than in the experimental stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

이 발명은 히트 펌프를 이용한 발전장치에 대한 것이며, 그 구성은, 전기에너지를 공급받아 냉매를 압축기(110)로 압축하여, 응축기(120), 팽창밸브(170), 증발기(160)를 거쳐 다시 압축기(110)로 냉매가 흡입하는 열 사이클을 통해 실내의 냉방과 난방에 사용하는 히트펌프가, 위 팽창밸브로서 동작하는 팽창터빈(170); 위 압축기(110)로부터 고온고압의 냉매를 인입하는 하나의 인입구와, 다수의 연결관과 연결하기 위한 다수 개의 연결구로 이루어지고 인입구가 위 압축기(110)의 고압 출력단과 연결되며 난방 가동시에만 전원이 공급되는 사방변(240); 위 팽창터빈(170)의 회전력을 자력을 이용하여 발전기(330)로 전달하는 커플링(340)을 구비하여 이루어진다. 압축기(110)에 입력되는 전기에너지(I1)와 증발기를 통해 공기 중에서 흡수하는 열에너지(I2)를 일부는 위 발전기(330)를 통해 전기에너지(O1)로, 다른 일부는 필요에 따라 냉방 또는 난방용 에너지(O2)로, 나머지는 손실에너지(O3)로 변환되며, I1 < O1 + O2 의 관계가 성립한다.

Description

히트 펌프를 이용한 발전장치
이 발명은 히트 펌프를 이용한 발전장치에 관한 것으로서, 더욱 상세하게는 압축기에 입력되는 기체 냉매의 온도 및 압력 값을 제어하여 효율적인 냉난방기능을 제공할 수 있는 히트 펌프의 작동 과정에서 냉난방에 사용하고 남은 냉매의 에너지를 상태 변환시켜 그로부터 발생하는 동력과 증발과정에서 흡입하는 공기의 열을 이용하여 전기를 발생시키는 발전장치에 관한 것이다.
일반적으로 열은 고온부에서 저온부로 흐르지만 히트펌프(heat pump)를 설치하면 열을 저온부에서 흡수하여 고온부로 보낼 수 있다. 그래서 히트펌프를 이용하여 온도가 낮은 폐열에서 열을 흡수하여 고온을 필요로 하는 곳에서 사용할 수 있어서 에너지 절약이 가능하다. 폐열은 우리 주변의 공기, 물, 흙과 같은 저온체로부터 얻을 수 있다.
한편 이 발명에서 정의하는 히트펌프는 공기열원히트펌프(air source heat pump)로서 실내 냉난방과 급탕과 같이 비교적 온도가 높지 않은 열을 필요로 하는 곳에 열을 공급하고 남는 에너지를 이용하여 전기를 만드는 장치를 뜻한다. 즉 이 발명의 히트펌프는 냉온열 겸용의 히트펌프이다.
히트 펌프는 냉매(예로서 프레온 가스)의 발열 또는 응축열을 이용해 저온의 열원을 고온으로 전달하거나 고온의 열원을 저온으로 전달하는 장치로서 대부분 냉방과 난방을 겸용하는 구조로 되어 있다.
열은 높은 곳에서 낮은 곳으로 이동하는 성질이 있는데 히트 펌프는 반대로 낮은 온도에서 높은 온도로 열을 끌어올린다 하여 붙여진 이름이다. 히트 펌프라는 용어는 처음에는 냉장고, 냉동고, 에어컨과 같이 압축된 냉매를 증발시켜 주위의 열을 빼앗는 용도로 개발되었으나 지금은 냉매의 발열 또는 응축열을 이용해 저온의 열원을 고온으로 전달하는 냉방장치, 고온의 열원을 저온으로 전달하는 난방장치, 냉난방 겸용장치를 포괄하는 의미로 쓰이고 있다.
이러한 히트 펌프의 기본적인 구성은 도 1에 나타난 바와 같이 저온의 기체를 압축하는 압축기(compressor)(10), 고온부 열교환기인 응축기(condenser)(20), 응축기에서 나온 냉매의 압력을 낮춰주는 팽창밸브(expansion valve)(30), 그리고 저온부 열교환기인 증발기(evaporator)(40)로 이루어져 있으며, 그 작동원리는 난방용의 경우 고온, 고압으로 압축된 냉매(refrigerant)를 기화시킨 다음 높은 온도의 열을 온도가 낮은 바깥쪽으로 내뿜는 사이클을 반복하도록 하는 것이며, 냉방용의 경우 이와 반대로 응축된 냉매가 더운 바깥 공기와 열교환 됨으로써 냉방을 하고자 하는 대상 지점을 차갑게 만들도록 하는 것이다.
그러나 위와 같은 종래의 히트 펌프는 겨울철과 같이 외부의 온도가 낮은 경우(일반적으로 -5℃ 이하)에는 열매체 증발이 극도로 저하되어 열을 흡수하는 증발기의 표면에 서리가 부착되어 증발기에서 열 흡수가 불가능해졌다. 즉, 외부온도가 낮은 경우 압축기에 유입되는 기체 냉매의 온도 및 압력은 적정범위 이하의 값을 갖게 되는데, 이와 같이 압축기에 적정범위 이하의 온도와 압력을 갖는 기체 냉매가 유입되면, 압축과정을 거친 후 배출되는 압축 기체 역시 원하는 범위의 온도 및 압력까지 상승시키는 것이 어렵다. 이러한 문제를 해결하기 위해 종래에는 보조가열기를 사용하였다.
한편 위의 경우와 반대로, 주위온도가 너무 높거나 난방을 위한 축열탱크 내의 난방수의 온도가 높은 경우에는, 압축기에 유입되는 기체 냉매의 온도 및 압력은 적정범위 이상의 값을 갖게 되는데, 이와 같이 압축기에 적정범위 이상의 기체냉매가 유입될 경우 압축과정을 거친 후 배출되는 압축기체 역시 과열, 과압되는 경우가 많고, 이 경우 압축기도 함께 과열되어 압축기가 파손되는 일이 발생할 수 있다.
따라서 압축기에 유입되는 기체 냉매의 온도 및 압력을 적정범위로 조절함으로써 외부환경 온도의 높고 낮음이나 축열 탱크의 난방수 온도에 관계없이 효율적인 난방을 제공할 수 있는 히트 펌프의 개발이 요청되고 있다.
또한 일반적으로 각종 기계장치나 설비 등을 구동하기 위한 동력발생장치는 연료를 사용하는 엔진의 힘이나 풍력, 수력, 조력 등의 자연력 및 인력을 이용하여 발전기를 회전시킴으로써 생산되는 전기 에너지를 사용하고 있는데, 엔진의 힘을 사용할 경우 발생되는 동력에 비하여 막대한 양의 연료가 소비되고, 자연력을 사용할 경우 설치 장소의 제약이 따름은 물론 설치에 많은 비용이 소모되며, 인력의 사용시 발전량의 한계가 있다는 문제점이 있다.
따라서 연료의 연소로 인한 환경오염의 문제가 없고, 저렴한 비용으로 설치 장소의 제약 없이 충분한 동력을 얻을 수 있는 발전장치의 개발 또한 요청되고 있는 실정이다.
이 발명은 위에 열거된 문제점들을 모두 해결하기 위하여 창안된 것으로서, 외부환경의 온도 변화에 관계없이 압축기에 흡입되는 냉매의 온도 및 압력을 적정범위로 유지함으로써 항상 효율적인 난방이 가능하도록 함과 동시에 압축기의 파손 염려 없이 정상적으로 작동할 수 있는 히트 펌프와, 그 작동 과정 중에서 변화하는 냉매의 압력 차이를 동력으로 변환하여 발전함으로써 공해가 없고 별도의 비용이 들지 않는 발전장치를 제공하는 것을 목적으로 한다.
이 발명의 다른 목적과 장점은 아래 기재된 발명의 실시를 위한 구체적인 내용을 읽고 첨부된 도면을 참조하면 더욱 명백해질 것이다.
이 발명에 따른 히트 펌프를 이용한 발전장치의 바람직한 일 실시예는,
전기에너지를 공급받아 냉매를 압축기로 압축하여, 응축기, 팽창밸브, 증발기를 거쳐 다시 압축기로 냉매가 흡입하는 열 사이클을 통해 실내의 냉방과 난방에 사용하는 히트펌프가,
위 팽창밸브로서 동작하는 팽창터빈;
위 압축기로부터 고온고압의 냉매를 인입하는 하나의 인입구와, 다수의 연결관과 연결하기 위한 다수 개의 연결구로 이루어지고 인입구가 위 압축기의 고압 출력단과 연결되며 난방 가동시에만 전원이 공급되는 사방변;
위 팽창터빈의 회전력을 자력을 이용하여 발전기로 전달하는 커플링을 구비하여 이루어지며,
압축기에 입력되는 전기에너지(I1)와 증발기를 통해 공기 중에서 흡수하는 열에너지(I2)를 일부는 위 발전기를 통해 전기에너지(O1)로, 다른 일부는 필요에 따라 냉방 또는 난방용 에너지(O2)로, 나머지는 손실에너지(O3)로 사용하며,
(식1)
Figure PCTKR2009007472-appb-I000001
(식2) I1 < O1 + O2
의 관계가 성립하고,
열에너지(I2)는 난방시에는 난방하는 실외에 설치된 증발기를 통해 외부 공기로부터 흡수하는 열에너지이고, 냉방 시에는 냉방 하는 실내에 설치된 증발기롤 통해 실내 공기로부터 흡수하는 열에너지인 것을 특징으로 한다.
이 실시예에서, 위 히트 펌프는 난방 사이클을 위해,
난방 선택시 위 사방변의 제 1연결구에 연결된 제 2연결관을 통해 제 1입력단으로 고온고압의 기체 상태의 가스 냉매를 받아들여 난방을 위한 열교환 후 제 1출력단으로 출력하는 응축기인 판형의 1차 열교환기;
위 1차 열교환기에서 공급받은 저온 고압의 냉매로 위 압축기 쪽으로 흡입되는 식은 냉매를 데워주는 2차 열교환기;
위 1차 열교환기의 출력단과 위 2차 열교환기의 제 1입력단을 제 3연결관을 통해 연결하여 난방시에만 열리고 냉방시에는 잠기는 제 1역지변;
제 4연결관을 통해 위 2차 열교환기에서 저온 고압의 냉매가 3 차열교환기로 공급되면 냉매의 온도가 적정범위를 넘는 경우 열을 식히기 위해 3 차열교환기 내에 설치되어 동작하고 적정범위 이내인 경우에는 동작하지 않는 제 1팬;
제 5연결관 상에 형성되어 위 3차 열교환기의 출력단으로부터 발생하는 응축 가스 내의 습기를 제거하기 위한 제습기;
설치 초기에 연결관 내의 습기 유무 확인 및 제 5연결관 상에 위 제습기 다음 단에 형성되어 제 5연결관 안 냉매의 흐름을 볼 수 있도록 하고 습도의 유무를 색으로 표시하는 액면계;
위 팽창터빈에서 증발기로 냉매를 공급하는 제 6연결관에 설치되어 난방시에는 열리고 냉방시에는 닫히는 제 2역지변;
위 팽창 터빈에서 제 2역지변으로 이동하던 냉매가 제 1역지변 쪽으로 역류하는 것을 방지하기 위해 제 3연결관에 설치되며 난방시 닫히고 냉방시 열리는 제 3역지변;
위 증발기를 거친 냉매가 제 7연결관을 통해 위 사방변의 제 3연결구를 거쳐 다시 위 사방변의 제 2연결구와 제 8연결관으로 공급되고 이 냉매가스의 온도를 감지하여 만약 냉매의 온도가 설정값 이상이면 제 8연결관의 냉매를 2차 열교환기를 거치지 않고 가스용 전자변을 열어 바로 기액분리기로 보내어 관내 액체를 분리하고, 만약 냉매의 온도가 설정값 미만이면 가스용 전자변을 닫아 냉매가 제 8연결관을 통해 2차 열교환기와 제 9 연결관을 거쳐 기액분리기로 보내지도록 하는 온도 센싱부;
제 9연결관 상에서 위 기액분리기를 거친 냉매를 위 압축기로 보내기 전단에 설치되어 연결관 내부의 이물질을 제거하는 저압필터;
축열조의 식은 난방수를 제 10 연결관을 거쳐 제 1펌프를 통해 공급받아 제11 연결관을 거쳐 위 1차열교환기의 제 2입력단으로 공급하고 3차열교환기에서 위 팽창 터빈으로 연결되는 제 5연결관의 냉매압력이 사용자가 미리 설정한 적정범위 안에 들도록 개폐 정도가 제어되며 냉매압력이 설정치보다 높으면 밸브가 더 열리고 설정치 이하이면 밸브가 더 닫히며 압력이 높아질수록 밸브 구경이 커지는 절수밸브; 및
위 1차열교환기에서 데워진 난방수를 실내의 난방장치로 공급하기 전에 저장하기 위한 축열조를 포함하여 구성되는 것이 바람직하다.
또한 이 실시예에서, 위 히트펌프는 냉방 사이클을 위해,
압축기의 고온고압의 냉매를 사방변의 제 3연결구를 통해 제7 연결관을 거쳐 공급받고 실외의 찬 공기로 냉매의 열을 뺏어 응축시킨 뒤 저온 고압의 기체가스상태의 냉매로 만들어 응축기 기능을 수행하는 제 4열교환기;
3차열교환기에서 위 팽창 터빈으로 연결되는 제 5연결관을 흐르는 냉매의 압력이 사용자가 미리 설정한 범위 안에 들도록 위 4차열교환기 내에 설치된 제 2팬의 회전을 제어하되 냉매 압력이 설정값 보다 높으면 빨리 회전하도록 설정값 보다 낮으면 천천히 회전하도록 제어하는 팬 제어기;
위 4차열교환기의 저온고압의 가스 냉매를 제6연결관과 난방시 닫히고 냉방시 열리는 제 4역지변을 거쳐 공급받아 그 열로 사방변의 제 2연결구를 통해 기액분리기로 공급되는 저온저압의 기체 가스 냉매를 데워주는 2차열교환기;
제 4연결관을 통해 위 2차 열교환기에서 저온 고압의 냉매가 3 차열교환기로 공급되면 냉매의 온도가 적정범위를 넘는 경우 열을 식히기 위해 3차열교환기 내에 설치되어 동작하고 적정범위 이내인 경우에는 동작하지 않는 제 1팬;
제 5연결관 상에 형성되며 위 3차 열교환기의 출력단으로부터 발생되는 응축 냉매 가스 내의 습기를 제거하기 위한 제습기;
설치 초기에 연결관 내의 습기 유무 확인 및 제 5연결관 상에 위 제습기 다음 단에 형성되어 제 5연결관 안 냉매의 흐름을 볼 수 있도록 하고 습도의 유무를 색으로 표시하는 액면계;
위 팽창 터빈에서 팽창되어 저온 저압의 기체 가스 상태로 바뀐 냉매를 난방시엔 닫히고 냉방시에 열리는 제 3역지변과 제 3연결관을 거쳐 공급받아 실내 공기의 열을 빼앗아 냉매를 기화시키고 실내로 열이 빼았긴 차가운 공기를 내보내어 실내를 냉방시켜서 증발기 기능을 수행하는 1차열교환기;
이때 1차열교환기를 거친 저온 저압의 기화된 기체가스 냉매가 제 2연결관, 사방변의 제 2연결구, 제 8연결관 으로 공급되면 이 냉매가스의 온도를 감지하여 만약 냉매의 온도가 설정값 이상이면 제 8연결관의 냉매를 2차열교환기를 거치지 않고 가스용 전자변을 열어 바로 기액분리기로 보내어 액체와 기체를 분리하고, 만약 냉매의 온도가 설정값 미만이면 가스용 전자변을 닫아 냉매가 제 8연결관을 통해 2차열교환기와 제 9 연결관을 거쳐 기액분리기로 보내지도록 하는 온도 센싱부;
제 9연결관 상에서 위 기액분리기를 거친 냉매를 위 압축기로 보내기 전단에 설치되어 연결관 내부의 이물질을 제거하는 저압필터; 및
난방시엔 닫히고 냉방시엔 열려서 1차열교환기와 열교환을 하도록 물을 공급하는 물용 전자변을 포함하여 구성되는 것이 바람직하다.
이 실시예에서, 위 절수밸브의 밸브 구경은 제 5연결관에서 측정된 냉매 압력에 의하여 조절되는 것이 바람직하다.
이 실시예에서, 위 팽창 터빈은
제 1평판형 터빈 실린더;
제 3평판형 터빈 실린더;
제 1평판형 터번 실린더와 제 3평판형 터빈 실린더 사이에 위치하는 제 2평판형 터빈 실린더;
제 2평판형 터빈 실린더 안에서 회전하는 회전판(wheel);
위 회전판의 원주부에 형성된 회전판의 날개(vane) 홈; 및
위 날개 홈 안에 들어 있고 터빈 안으로 흡입되는 저온 고압의 액체 냉매 가스의 기화시 팽창하는 압력에 의해 고속으로 위 회전판을 회전시키는 날개;
위 회전판의 회전축과 수직한 원주부 단면에 형성된 냉매 흡입구;
위 회전판의 회전축 방향으로 형성된 냉매 토출구;
위 제 1평판형 터빈 실린더, 제 2평판형 터빈 실린더, 제 3평판형 터빈 실린더를 수납하기 위한 터빈 하우징;
위 터빈 하우징을 덮어주기 위한 터빈 하우징 덮개;
위 터빈 하우징과 터빈 하우징 덮개의 기밀을 유지하기 위한 제 1오링;
위 제 1평판형 터빈 실린더와 터빈 하우징 덮개 사이와 제 3평판형 터빈 실린더와 터빈 하우징 사이에 각각 설치되며 베어링, 너트를 구비하는 베어링 덮개;
위 제 1평판형 터빈 실린더와 제 2평판형 터빈 실린더 사이와 위 제 2평판형 터빈 실린더와 제 3평판형 터빈 실린더 사이에 설치되는 기밀 수단;
위 회전판의 회전축 끝단에 형성된 알루미늄 재질의 제 1자석 하우징; 및
위 제 1자석 하우징의 자석을 고정시키기 위한 알루미늄 재질의 자석 하우징 덮개를 구비하여 이루어지는 것이 바람직하다.
이 실시예에서, 위 제 1자석 하우징은,
위 회전판의 회전축 끝에 위치한 터빈회전축끝단; 및
위 터빈회전축끝단 주위에 90도 간격으로 일정하게 배치되는 다수의 제 1자석부를 구비하여 이루어지며,
위 회전판의 회전에 따라 회전하는 것이 바람직하다.
이 실시예에서, 위 터빈회전축끝단은 회전판의 회전축 끝에 끼워 맞춤 뒤 용접에 의해 일체로 형성되는 것이 바람직하다.
이 실시예에서 위 터빈회전축끝단의 재질은 티타늄인 것이 바람직하다.
이 실시예에서, 위 터빈회전축끝단의 재질은 제 1자석부 또는 제 2자석부의 자력에 대해 반응하지 않는 것이 바람직하다.
이 실시예에서, 위 제 1자석 하우징 바깥쪽에 위치하고 자석커플링용 샤프트를 통해 발전기 회전축과 연결되며 자석을 고정시키기 위한 알루미늄 재질의 제 2자석 하우징; 및
위 제 2자석 하우징 내부에 설치되며 위 제 1자석부 바깥쪽 동심원상에 제 1자석부와 대응되는 위치에 90도 간격으로일정하게 배치되어 터빈의 회전력을 자력을 이용하여 제 1자석부를 통해 발전기 회전축으로 전달하는 다수의 제 2자석부를 더 구비하여 이루어지는 것이 바람직하다.
이 실시예에서, 위 제 1 자석 하우징 및 제 2자석 하우징을 보호하며 제 1자석부 및 제 2자석부의 자력의 영향을 받지 않고 냉매 가스가 발전기쪽으로 누설되는 것을 막기 위해 나일론 재질로 만들어지며 제 2자석 하우징 덮개로부터 사방으로 특정 구경의 원통형 열방출용 통기구를 형성하여 제 2자석부의 고속회전시 제 2자석 하우징 덮개 내부의 고열을 대기중으로 방출하기 위한 자석커플링 하우징을 더 포함하여 이루어지는 것이 바람직하다.
이 실시예에서, 위 회전판의 두께는 8~16 ㎜ 이내인 것이 바람직하다.
이 실시예에서, 위 회전판의 날개 홈의 너비는 1.6~3㎜ 이내인 것이 바람직하다.
이 실시예에서, 위 회전판의 날개 홈 깊이는 10~16 ㎜ 이내인 것이 바람직하다.
이 실시예에서, 위 회전자의 날개홈과 날개홈의 직선 간격은 회전판 외경을 기준으로 하여 8~15 ㎜인 것이 바람직하다.
이 실시예에서, 위 회전자의 날개 홈의 깊이 끝단에서 회전판에 원주형으로 장착되는 에어 실링(air sealing)이 장착될 홈의 외경과의 거리는 1 ~ 2.5 ㎜이내인 것이 바람직하다.
이 실시예에서, 위 제 2평판형 터빈 실린더의 중심 홀이 원래 중심에서 노즐끝단과 접하는 방향으로 1.5~4 ㎜ 이동하여 형성되는 것이 바람직하다.
이 실시예에서, 첫 번째 토출구는 노즐을 중심으로 하여 위 제 2평판형 터빈 실린더의 중심을 지나는 수평선에서 노즐과 반대방향으로 날개 홈과 날개 홈 사이의 거리만큼 이격되어 설치되는 것이 바람직하다.
이 실시예에서, 마지막 토출구의 정 위치는 노즐을 중심으로 하여 위 제 2평판형 터빈 실린더의 중심을 지나는 수평선에서 노즐과 반대방향으로 2 ㎜만큼 떨어져서 설치되고, 배출을 원활히 하기 위해 위 제 2평판형 터빈 실린더의 측면에 설치되는 토출구 수는 다수 개인 것이 바람직하다.
이 실시예에서, 노즐구멍의 끝단은 위 제 2평판형 터빈 실린더의 홀 내주면에 접하며 회전판 지름에 따라 각각 가감하여 노즐위치를 정하는 것이 바람직하다.
이 실시예에서, 위 제 2 평판형 터빈 실린더의 두께는 8.005~15.005 ㎜ 이내인 것이 바람직하다.
이 실시예에서, 위 제 1평판형 터빈실린더 또는 제 2평판형 터빈실린더와 회전판 사이의 간격이 0.005 ~ 0.05 ㎜ 이내인 것이 바람직하다.
이 실시예에서, 위 터빈 하우징 및 터빈 하우징 덮개의 재질은 알루미늄인 것이 바람직하다.
이 실시예에서, 위 회전판에 설치되는 에어 실링과 회전판 사이의 간격은 0.02 ㎜를 유지하는 것이 바람직하다.
이 실시예에서, 노즐 방향의 위 터빈의 회전판 외측면과 위 제 2평판형 터빈 실린더 홀 원주면과의 최소 간격은 0.01~0.05 ㎜인 것이 바람직하다.
이 실시예에서, 사용자가 미리 설정한 범위의 압축기의 고압 및 저압 압력은 각각 26 kgf/cm2 와 6 kgf/cm2 인 것이 바람직하다.
이 실시예에서, 난방시 외기 온도가 영하가 되면 응축가스의 압력을 높이기 위해 절수밸브를 닫아서 응축가스의 압력을 높여서 압력을 일정하게 유지하면 실외에 설치된 4차열교환기에 성애가 끼지 않아서 영하의 날씨에도 외기로부터 열에너지를 흡수할 수 있는 것이 바람직하다.
위에서 살펴 본 바와 같이 이 발명에 의한 히트 펌프는, 압축기에 유입되거나 배출되는 냉매 기체의 압력이 적정범위를 벗어나지 않도록 함으로써, 압축기 효율저하를 방지하고 이에 따라 추운 환경에서도 연료(열)효율이 저하되지 않아 난방을 원활하게 하고 연료비 절감으로 인한 경제성이 탁월하다. 또한 그 작동 과정에서 자연스럽게 발생하는 냉매 가스의 압력의 차이를 이용하여 전기를 생산함으로써 무공해, 무비용으로 전기를 생산할 수 있다.
이 발명의 가장 큰 장점은 대기중의 에너지를 발전과 냉난방의 입력 에너지원으로 활용할 수 있어서 이 발명의 기술을 이용하면 적은 입력에너지로 큰 출력에너지를 얻을 수 있다는 점이다.
도 1은 일반적인 히트 펌프의 기본 구성도이다.
도 2는 이 발명에 의한 히트 펌프의 난방 가동시의 구성도이다.
도 3은 이 발명에 의한 히트 펌프의 냉방 가동시의 구성도이다.
도 4는 이 발명에 의한 발전장치에서 팽창 터빈과 발전기가 결합한 상태의 구성도이다.
도 5는 이 발명에 따른 터빈 실린더의 분해 사시도.
도 6은 이 발명에 따른 팽창 터빈의 단면도.
도 7은 이 발명에 따른 회전판의 사시도.
도 8은 이 발명에 따른 제 2평판형 터빈 실린더의 정면도.
도 9는 도 6의 A 부분의 확대 단면도.
도 10은 이 발명에 따른 제 2평판형 터빈 실린더에 형성된 토출구의 예시도.
도 11은 이 발명의 장치를 이용한 발전 실험 결과를 나타내는 그래프.
도 12는 이 발명의 회전판용 날개부 사시도.
도 13은 이 발명의 회전판과 니플의 연결상태도.
도 14는 이 발명의 전체 에너지 입출력관계를 나타낸 블록도.
도 15는 이 발명에 따른 자석 하우징의 좌측 사시도.
도 16은 이 발명에 따른 자석 하우징 우측 사시도.
< 도면의 주요부분에 대한 부호의 설명 >
(1): 제1 연결관 (2): 제2 연결관
(3): 제3 연결관 (4): 제4 연결관
(5): 제5 연결관 (6): 제6 연결관
(7): 제7 연결관 (8): 제8 연결관
(9): 제9 연결관 (10): 제10 연결관
(11): 제11 연결관 10,110: 압축기
20: 응축기(凝縮機)(condenser) 30: 팽창밸브
40: 증발기
120: 1차열교환기. 응축기(난방시) 및 증발기(냉방시). 실내에 설치됨.
130: 축열조 140: 2차 열교환기
150: 3차 열교환기 155,165: 팬
160: 4차 열교환기. 증발기(난방시). 응축기(냉방시). 실외에 설치됨.
170: 팽창 터빈 172: 냉매출구
174: 냉매입구 176: 열방출용 통기구
180: 팬 제어기 190: 제습기
200: 액면계 210: 기액분리기
220: 온도센싱부 230: 저압필터
240: 사방변 250: 가스용 전자변
260,270,280,290: 역지변(check valve) 300: 물용 전자변
310: 절수밸브 320: 펌프
330: 발전기 340: 커플링
510,610: 하우징 덮개 510a: 토출가스체류공간
510b: 토출가스 토출구
520,532,541,542a,570: 오링(o-ring) 521: 베어링 덮개
522,523,552,553,593: 넛트 524,551: 베어링
530,540,550: 평판형 터빈 실린더 531,543: 에어 실링
542: 회전판 544: 고정볼트
545: 토출구 545a: 첫 토출구
545b: 마지막 토출구
545c: 가스 및 오일의 흐름을 위한 토출구 547: 노즐입구
560: 터빈 하우징 571,600: 자석 하우징
571a: 회전축 관통구 입구 571b: 판
571c: 자석공간 형성부 571d: 자석 설치용 공간
571e: 회전축 관통구 571f: 공간부
*572,591: 자석 573,590: 자석 하우징 덮개
580: 나일론 재질의 자석커플링 하우징 601: 자석커플링용 샤프트
620: 팬 제어기 640: 에어 실링 홈
650: 날개(vane) 655: 날개홈
660: 니플 670: 터빈회전축
670a: 터빈회전축 끝단 1000: 에너지 변환 시스템
I1: 전기에너지(교류) I2: 열에너지(대기)
ℓ1: 회전판(542)의 두께 ℓ2: 날개홈(655)의 깊이
ℓ3: 날개홈(655)의 폭
ℓ4: 날개홈(655) 사이의 직선거리
ℓ5: 날개홈(655) 밑면과 에어 실링 홈(640) 사이의 거리
ℓ6: 제 2평판형 터빈 실린더 중심점(O)에서 이격된(편심) 거리. 1.5 ~ 4mm.
ℓ7: 제 2평판형 터빈 실린더 중심점(O)을 지나는 중심선에서 첫 번째 토출구(545a)까지의 거리. 날개 사이의 거리만큼 이격됨.
ℓ8: 마지막 토출구(545b)와 제 2평판형 터빈 실린더 중심점(O)을 지나는 중심선과의 이격거리. 2mm 이격.
ℓ9: 제 2평판형 터빈 실린더 중심점(O)과 노즐 중심선 사이의 거리.
ℓ10: 제 2 평판형 터빈 실린더의 폭. 8.005 ~ 15.005mm.
ℓ11: 회전판(542)과 에어 실링(531,541) 사이의 이격거리
ℓ12: 노즐의 구멍위치 O1: 전기에너지
O2: 열에너지 O3: 손실에너지
위 목적을 달성하기 위한 이 발명의 히트 펌프의 구성을 도면을 참조하여 상세히 설명하면 다음과 같다. 일반적인 히트 펌프와 같이 이 발명에서도 난방과 냉방을 기본적으로 수행하며, 냉난방을 하고 남는 냉매의 열 및 압력 에너지와 증발과정에서 공기의 열(난방시엔 외부 공기에서, 냉방시엔 실내 공기에서)을 흡수하여 얻은 열에너지를 이용하여 발전을 하므로 결과적으로 히트 펌프에 직접적으로 공급한 에너지(전기에너지)보다 더 많은 양의 에너지를 얻을 수 있어서 에너지 자원의 절약과 유휴에너지 활용이라는 두 가지 효과를 거둘 수 있다. 이제 이 발명에 따른 난방, 냉방 및 발전과정에 대해 자세히 살펴보면 아래에 기술한 바와 같다.
1. 난방 과정
도 2는 이 발명에 의한 히트 펌프의 난방 가동시의 구성도이다. 도 2에서 연결관은 (1), (2), ... , (9)로 표시된다.
이 발명에 의한 히트 펌프는,
외부에서 공급되는 전기에너지(필요시 다른 에너지로 대체 가능함)를 이용하여 저온 저압의 기체 냉매를 고온 고압의 기체 냉매로 변환하는 압축기(110)와,
제1 연결관(1)을 통해 위 압축기(110)의 고압 출력단과 연결되며, 난방 가동시에만 전원이 공급되는 사방변(240)과,
난방 선택시 위 사방변(240)에 연결된 제2 연결관(2)을 통해 제1 입력단으로 고온고압의 냉매를 받아들여 열교환 시킨 후 제1 출력단으로 출력하여 응축기의 기능을 수행하는 판형의 1차 열교환기(120)와,
위 1차 열교환기(120)에서 공급받은 저온 고압의 냉매로 압축기(110) 쪽으로 흡입되는 식은 냉매를 데워주는 2차 열교환기(140)와,
위 1차 열교환기(120)의 출력단과 위 2차 열교환기(140)의 제1 입력단을 제3 연결관(3)을 통해 연결하여 역류를 방지하기 위해 난방시에는 열리고 냉방시에는 닫히는 역지변(290)과,
제4 연결관(4)을 통해 위 2차 열교환기(140)에서 저온 고압의 냉매가 3차 열교환기(150)로 공급되면 냉매의 온도가 적정범위를 넘는 경우 열을 식히기 위해 3차열교환기(150) 내에 설치되어 동작하고 적정범위 이내인 경우에는 동작하지 않는 팬(fan)(155)과,
위 제5 연결관(5) 상에 형성되며 위 3차 열교환기(150)의 출력단으로부터 발생되는 응축 가스 내의 습기를 제거하기 위한 제습기(190)와,
위 제5 연결관(5) 상에 위 제습기(190) 다음 단에 형성되어 제5 연결관(5) 안의 냉매의 흐름을 볼 수 있도록 하며, 설치 초기에 연결관 내 습도의 유무를 확인하여 습도가 있으면 노락색으로 습도가 없으면 초록색으로 표시하는 액면계(200)와,
위 제5 연결관(5) 상에 위 액면계(200) 다음 단에 형성되고 저온고압의 액체가스상태의 냉매가 팽창하여 저온저압의 기체가스상태로 변환되면서 발생하는 압력에 의해 구동되는 팽창 터빈(170)과,
위 팽창 터빈(170)과 커플링(340)으로 연결되어 회전력에 의해 전기를 만드는 발전기(330)(도 4 참조)와,
팽창 터빈(170)을 회전시키고 나온 저온저압의 기화된 냉매 가스를 외부 공기의 열을 빼았아 저온저압의 냉매로 기화시켜 증발기 기능을 수행하는 제 4열교환기(160)와,
팽창터빈(170)에서 제 4열교환기(160)로 냉매를 공급하는 제6 연결관(6)에 설치되어 난방시엔 열리고 냉방시엔 닫혀서 냉매의 역류를 방지하는 역지변(260)과,
팽창 터빈(170)에서 역지변(260)으로 이동하던 냉매가 역지변(290)쪽으로 역류하는 것을 방지하기 위해 제3 연결관(3)에 설치되어 난방시엔 닫히고 냉방시엔 열리는 역지변(280)과,
위 제 4열교환기(160)를 거친 냉매가 제7 연결관(7)을 통해 사방변(240)의 제 3연결구를 거쳐 다시 위 사방변(240) 제 2연결구와 제8 연결관(8)으로 공급되고, 냉매가스의 온도를 감지하여 만약 냉매의 온도가 특정 온도 이상이면 가스용 전자변(250)을 열어서 제8 연결관(8)의 냉매를 2차 열교환기(140)를 거치지 않고 바로 기액분리기(210)로 공급하고, 만약 냉매의 온도가 특정 온도 미만이면 가스용 전자변(250)을 닫아서 냉매가 제8연결관(8)을 통해 2차 열교환기(140)로 전달되도록 하는 온도 센싱부(220)와,
위 2차 열교환(140)기에서 데워진 냉매를 기액분리기(210)로 공급해주기 위한 제9 연결관(9)과,
제9 연결관(9) 상에서 위 기액분리기(210)를 거친 냉매를 위 압축기(110)로 보내기 전단에 설치되어 관내 이물질을 제거하기 위해 저압측에 설치되는 저압필터(230)와,
축열조(130)의 식은 난방수를 제10 연결관(10)을 거쳐 펌프(320)를 통해 공급받아 제11 연결관(11)을 거쳐 위 1차열교환기(120)의 제2입력단으로 공급하고 제5연결관(5) 냉매의 압력이 설정 압력 이상이면 더 열리고 그렇지 않으면 더 닫혀서 냉매 압력을 조절하며 냉매 압력이 높아질수록 밸브 구경이 커지는 절수밸브(310)와,
위 1차열교환기(120)의 제2 입력단으로 공급된 식은 난방수가 1차열교환기(120)에서 덥혀지면 축열조(130)로 공급하기 위한 1차 열교환기(120) 내 제2 출력단을 포함하여 구성된다.
이때, 기액분리기(210)는 연결관내 액체가 압축기(110) 안으로 들어가면 압축기(110)가 파손되므로 이를 막기 위해 액체를 분리해서 별도의 탱크에 저장하며 이 액체는 히트펌프가 멈추면 자연 증발해버린다.
그리고 난방시 외기 온도가 영하가 되면 응축가스의 압력을 높이기 위해 절수밸브(310)를 닫아서 응축가스의 압력을 높여서 압력을 일정하게 유지하면 실외에 설치된 제 4열교환기(160)에 성애가 끼지 않아서 영하의 날씨에도 외기로부터 열에너지를 흡수할 수 있는 것이 이 발명의 특징이다.
난방 가동시 이 발명에 의한 히트 펌프의 가동에 따른 냉매의 이동 경로는 다음과 같다:
압축기(110)의 고압 출력단 → 사방변(240)의 제1 관로(1) → 1차 열교환기(120) → 역지변((290) → 2차 열교환기(140) → 3차 열교환기(150) → 제습기(190) → 액면계(200) → 팽창 터빈(170) → 역지변(260) → 4차열교환기(160) → 제 3연결관(7) → 사방변(240) 제 2연결구 → 연결관(8)까지 냉매가 이동한 다음, 제9 연결관(9)의 온도가 적정범위 미만인 경우에는 가스용 전자변(250)이 열려서 기액분리기(210) → 저압필터(230) → 압축기(110)의 저압 입력단의 순서로 냉매가 이동하고, 제9 연결관(9)의 온도가 적정범위 이상인 경우에는 가스용 전자변(250)이 닫혀서 다시 2차 열교환기(140)를 거친 뒤 기액분리기(210)로 냉매가 이동한다.
그리고 1차열교환기(120)를 통과하여 데워진 물은 축열조(130)로 공급되고 축열조(130)에 저장된 고온의 물은 난방기(도시하지 않음)를 통해 실내에 열에너지를 공급한 뒤 축열조(130)로 회수되고, 축열조(130)의 식은 물은 펌프(320)를 통해 절수밸브(310)를 거쳐 1차열교환기(120)로 보내져서 다시 데워진다. 이때 펌프(320)를 통과한 물은 절수밸브(310)와 물용 전자밸브(300)와 바이패스 형태로 연결되어 있으며 난방시에는 물용 전자밸브(300)가 닫히고 냉방시에는 열린다. 팬(165)도 난방시에는 사용되지 않는다.
이제는 외부환경의 변화에 관계없이 압축기(110)에 흡입되는 냉매의 온도 및 압력을 적정범위로 유지함으로써 항상 효율적인 난방이 가능하도록 하는 이 발명의 목적을 달성하기 위한 수단들에 대하여 자세히 설명한다.
첫째, 이 발명에서는 1차 열교환기(120)에서 버려지는 열을 2차 열교환기(140)를 통해 압축기(110)의 흡입기 측에 전달함으로써 저온의 외부에 설치되어 있는 제 4열교환기(160)에서 증발이 이루어지지 않고 액상 상태로 흡입되는 열 매체에 적절한 온도와 압력이 가해지도록 가스용 전자변(250)을 흡입측 온도에 따라 조절하는 방식을 채택하였다. 즉, 이 발명에 의한 히트 펌프는 압축기(110)에 유입되는 기체 냉매의 온도 및 압력이 적정범위 미만인 경우 이를 적정범위 내로 조절하기 위한 별도의 2차 열교환기(140)를 구비하고 있다. 경험 및 실험 결과에 의하면 기체 냉매의 적정 압력은 6kgf/cm2 ~ 26kgf/cm2 으로 설정하는 것이 바람직하다(도 11 참조).
이제 기체 및 액체 냉매의 온도 및 압력의 조절방식에 대하여 구체적으로 설명하면 다음과 같다. 압축기(110)에서 배출되는 기체 냉매는 1차 열교환기(120)를 거쳐서 액체 냉매로 바뀌며, 연결관(3)을 경유하여 2차 열교환기(140)의 제1 유입구로 유입된 액체 냉매는, 비록 1차 열교환기(120)에서 공급수의 온도를 높이는 데에 열을 소비하기는 했으나, 여전히 잔열(殘熱)을 함유하고 있다. 이와 같이 잔열을 함유하고 있는 액체 냉매는, 2차 열교환기(140)의 또 다른 유입구(제2 유입구)로 유입된 기체 냉매가 적정범위 이하의 온도 및 압력을 가진 경우, 2차 열교환기(140) 내에서 위 적정범위 이하의 저온 저압의 기체 냉매에 열 교환을 통해 열을 전달한다. 이와 같이 열을 전달받음으로써 적정범위의 온도 및 압력을 갖게 된 기체 냉매는 2차열교환기(140)에서 배출되어 제 9연결관(9), 기액분리기(210), 저압필터(230)를 경유하여 압축기(110)로 유입된다.
한편 위와 같이 2차열교환기(140)에서 열 교환이 이루어지기 위해서는 가스용 전자변(250)이 닫히고 연결관(8)을 흐르는 적정범위 미만의 온도 및 압력을 가진 기체 냉매가 2차열교환기(140) 내로 유입되도록 하여야 한다. 반대로, 제 9연결관(9)을 흐르는 기체 냉매가 적정범위 이상의 온도 및 압력을 가진 경우에는 2차열교환기(140)를 거치지 않도록 가스용 전자변(250)이 열리게 제어한다.
둘째로, 이 발명에서는 액체 냉매의 압력이 적정범위인지 여부를 측정하고 그 측정값에 따라 절수밸브(310)를 통해 난방용 공급수의 공급량을 조절한다. 예컨대 제 5연결관(5)에서 측정한 응축가스의 압력이 적정 값보다 더 큰 값으로 측정된 경우, 절수밸브(310)를 더 열어서 더 많은 양의 물을 유입시키면 1차열교환기(120)에서 기체 냉매는 증가한 난방수의 양에 비례하여 온도 및 압력이 더 감소하게 된다.
반대로 냉매의 압력이 적정 값보다 낮은 값으로 측정된 경우엔, 절수밸브(310)를 조절하여 물의 유입량을 감소시키면 1차열교환기(120)에서 기체 냉매는 감소된 공급수의 양에 비례하여 온도 및 압력이 덜 감소하게 된 상태로 2차열교환기(140)로 유입된다. 이렇게 비교적 높은 온도로 유입된 기체냉매는 2차열교환기(140) 내에서, 제 8연결관(8)을 거쳐서 2차열교환기(140)로 유입되는 적정범위 미만의 기체 냉매에 많은 열을 전달할 수 있게 되므로 압축기(110)에 유입될 기체냉매의 온도 및 압력을 적정범위까지 상승시켜 주는 것이 가능하다.
셋째로, 이 발명에서는 3차 열교환기(150)를 경유하는 냉매의 온도와 압력이 적정범위를 넘는 경우 열을 식히기 위해 3차열교환기(150)에 설치된 팬(fan)(155)을 가동시킨다. 3차 열교환기(150)로 유입되는 액체 냉매의 온도/압력이 적정값 보다 크다는 것은, 압축기(110)에 유입되거나 배출되는 기체 냉매가 적정범위를 넘는 고온고압 상태임을 의미하고, 이와 같이 과열된 기체 냉매는 압축기(110) 내의 오일을 탄화시켜서 결국 압축기(110)를 파손시킬 가능성이 있다. 따라서 이 경우에는 3차 열교환기(150) 내에 설치된 팬(Fan)(155)을 가동시켜서 고온의 액체 냉매의 열을 외부로 방출시킬 필요가 있다. 3차열교환기(150)에 설치된 팬(155)은 액체 냉매가 적정범위 이상의 고온고압인 경우 이를 응축시키는 기능을 수행한다. 반면 액체 냉매가 적정범위 이내인 경우, 3차열교환기(150)의 팬(155)은 작동하지 않는다.
넷째로, 이 발명에서는 5연결관(5)에서 측정된 냉매의 압력이 사용자가 미리 설정한 적정범위에 들 수 있도록 절수밸브(310)의 개폐 정도를 제어한다. 예컨대 난방 가동시 실내 온도에 비하여 상대적으로 낮은 외기 온도로 인하여 고압 냉매의 압력이 저하되는 현상을 보완하고자 하는 경우에는 절수밸브(310)를 적게 열리게 함으로써 냉매의 압력이 적정 범위에 들도록 한다.
이상과 같이 이 발명에서는 압축기(110)를 통과하기 전의 냉매의 온도를 측정하여 그 온도의 적정 여부에 따라 가스용 전자변(250)을 개폐하여 선택적으로 2차 열교환기(140)로 냉매가 흐르게 하고, 5연결관(5)의 압력에 따라 절수밸브(310)에서 1차 열교환기(120)로 공급되는 물의 양을 조절하며, 3차 열교환기(150)에 설치된 팬(155)을 선택적으로 작동시킨다. 이와 같은 유기적인 상호작용에 의하여 압축기(110)에 흡입되는 냉매의 온도 및 압력이 항상 적정범위로 유지될 수 있다
2. 냉방 과정
도 3은 이 발명에 따른 히트펌프의 냉방 가동시의 구성도를 보여준다. 냉방 가동시의 이 발명에 의한 히트 펌프는 도 2의 흐름과 반대방향이 된다. 기본적인 개념은 난방시와 동일하거나 유사하다. 이 발명의 히트펌프는,
저온 저압의 기체 냉매를 고온 고압의 기체 냉매로 변환하여 배출하는 압축기(110)와,
압축기(110)의 고온고압의 냉매를 사방변(240)의 제 3연결구를 통해 제 7 연결관(7)을 거쳐 공급받고 실외의 찬 공기로 냉매의 열을 뺏어 응축시킨 뒤 저온고압의 기체가스상태의 냉매로 만들어 응축기의 기능을 수행하는 제 4열교환기(160)와,
제 4열교환기(160)의 저온고압의 가스 냉매를 제6연결관과 난방시 닫히고 냉방시 열리는 역지변(270)을 거쳐 공급받아 그 열로 사방변(240)의 제 2연결구를 통해 기액분리기(210)로 공급되는 저온저압의 기체 가스 냉매를 데워주는 제2 열교환기(140)와,
제2 열교환기(140)의 저온고압의 냉매를 공급받아 냉매의 온도를 적정 범위내로 유지하기 위한 팬(155)을 구비한 3차 열교환기(150)와,
위 제5 연결관(5) 상에 형성되며 위 3차 열교환기(150)의 출력단으로부터 발생되는 응축 냉매 가스 내의 습기를 제거하기 위한 제습기(190)와,
위 제5 연결관(5) 상에 위 제습기(190) 다음 단에 설치되어 제5 연결관(5) 안의 냉매의 흐름을 볼 수 있도록 하는 액면계(200)와,
위 액면계(200) 다음 단에 형성되고 액체가스상태의 냉매가 증발하여 기체 가스상태로 팽창하면서 발생하는 압력에 의해 구동되는 팽창 터빈(170)과,
위 팽창 터빈(170)과 커플링(340)으로 연결되어 회전력에 의해 전기를 만드는 발전기(330)와,
위 팽창 터빈(170)에서 팽창되어 저온저압의 기체 가스 상태로 바뀐 냉매를 난방시 닫히고 냉방시 열리는 역지변(280)을 거쳐 공급받아 냉방하려는 실내 공기의 열을 빼앗아 냉매를 기화시키고 실내로 열이 빼았긴 차가운 공기를 내보내어 실내를 냉방시켜 증발기의 기능을 수행하는 제 1열교환기(120)를 구비하여 이루어지고,
이때 제 1열교환기(120)를 거친 저온저압의 기화된 기체가스냉매는 제2 연결관(2), 사방변(240) 제 2연결구, 제8 연결관(8) 및 기액분리기(210)를 거쳐 압축기(110)로 흡입되는 것이 특징이다. 기타 구성은 난방시와 같거나 유사하여 반복을 피하기 위해 설명을 생략한다.
난방시에 닫혀있던 물용 전자밸브(300)가 완전히 열려서 물이 이를 통해 제 1열교환기로 공급되고 전자밸브(300)와 바이패스 형태로 연결된 절수밸브(310)는 냉방시에는 별다른 기능을 수행하지 못한다.
냉방 가동시 이 발명에 의한 히트 펌프의 가동에 따른 냉매의 이동 경로는 도 3에 나타낸 바와 같이 다음과 같다:
압축기(110)의 고압 출력단 → 사방변(240)의 제 3연결구 → 제7 연결(7)관 → 제 4열교환기(160) → 역지변(270) → 2차 열교환기(140) → 3차 열교환기(150) → 제습기(190) → 액면계(200) → 팽창 터빈(170) → 역지변(280) → 제 1열교환기(120) → 제 2연결관(2) → 사방변(240)의 제 1연결구→ 사방변(240)의 제 2연결구 → 제 8연결관(8) → 가스용 전자변(250) → 기액분리기(210) → 저압필터(230) → 압축기(110)의 저압 입력단의 순서로 냉매가 이동한다. 이때 압축기(110)의 흡입단의 냉매 온도가 적정값에 못 미치면 가스용 전자변(250)을 닫고 냉매가 제 2열교환기(140)에서 데워진 뒤 제 9연결관(9)을 거쳐 기액분리기(210)로 이동한다.
아래 표 1은 이 발명에서 냉난방시 주요 부분의 냉매의 온도 및 압력을 나타낸다. 표 1의 내용은 냉난방시 동일하다.
표 1
측정 위치 온도[℃] 압력[kgf/㎠]
제2연결관 130 24~26
제5연결관 50~60 24~26
제6연결관 2~4 4~6
7연결관 10~18 4~6
3. 발전 과정
다음으로, 이 발명에 의한 히트 펌프에서 전기를 생산하는 구성에 대하여 설명한다. 일반적인 히트 펌프에서 냉매의 상태 변환 과정을 살펴보면, 먼저 압축기(10)에 의하여 고온, 고압의 기체 가스로 만들어진 냉매는 응축기(20)를 통과하면서 저온고압의 액체 가스로 변환된다. 이렇게 응축된 냉매는 팽창밸브(30)를 통과하면서 기화하여 저온저압의 기체 가스로 변환되며 이때 기체 가스가 증발하면서 주위의 열을 흡수한다. 팽창밸브(30)를 통과하여 기화된 저온저압의 냉매가스는 증발기(40)를 통과하면서 주위의 열을 흡수하여 냉매가스를 저온저압의 기체 가스로 기화된 뒤 압축기(10)의 흡입구로 흡입된다. 이러한 압축-응축-팽창-증발의 과정을 반복하면서 난방 및 냉방이 이루어진다.
이 발명에서는 난방 가동시에는 실내에 설치되는 1차 열교환기(120)가, 냉방 가동시에는 실외에 설치된 4차 열교환기(160)가 각각 응축기로 동작하게 되며, 위 과정에서 나온 저온고압의 액체 가스가 팽창터빈(170)을 통과하면서 저온저압의 기화 가스로 변환될 때 생기는 힘을 이용하여 팽창터빈(170)을 구동시키고, 팽창터빈(170)과 연결된 발전기(330)를 가동시켜서 전기를 생산한다. 이를 위하여 팽창밸브의 역할을 하면서 위 가스 압력을 운동에너지로 바꿀 수 있는 팽창터빈(170)을 구비하고 있다.
도 4에 나타난 바와 같이 팽창터빈(170)은 저온고압의 응축된 액체 가스가 들어오는 작은 원으로 표시된 입구(174)와, 팽창 후 액화된 저온저압의 액체 가스가 나가는 큰 원으로 표시된 출구(172)와 열방출용 통기구(176)를 가지고 있으며, 냉동사이클 중에 팽창밸브에서 상변화 되는 고압과 저압의 압력을 이용한 가스의 팽창으로 인해 발생하는 동력을 운동에너지로 변환하여 커플링(340) 속의 자석(572)(591)과 자석커플링용 샤프트(601)를 거쳐 발전기(330)에 전달함으로써 이 운동에너지에 의해 발전기(330)가 회전하여 전기에너지를 생산한다. 이때 커플링(340)은 팽창터빈(170)의 운동에너지를 발전기(330)로 전달하며, 커플링(340)은 팽창터빈(170)측에 설치되어 있다(도 6참조).
도 15 내지 도 16은 커플링(340)의 실시예를 보여준다. 도 15는 이 발명에 따른 자석 하우징(571)의 좌측 사시도를, 도 16은 이 발명에 따른 자석 하우징(571)의 우측 사시도를 보여준다.
자석 하우징(571)에는 터빈 회전축(670)과 일체로 연결된 터빈 회전축 끝단(670a)이 관통하기 위한 원통형상의 관통구입구(571a), 관통구입구(571a)의 끝 부분과 접해 있는 원형의 판(571b), 판(571b)을 중심으로 관통구입구(571a)의 반대쪽에 설치되며 위 관통구입구(571a)의 내경과 같은 내경을 갖는 회전축 끝단 관통구(571e), 관통구(571e)와 동심원을 이루며 판(571b)보다 반경이 작고 관통구(571e)보다 반경이 큰 원통형상에서 특정 폭과 특정 깊이로 90도 간격으로 직육면체 모양의 자석설치용 공간(571d) 네 개가 형성되고, 이 공간(571d)들 사이에 네 개의 자석공간형성부(571c)가 형성되며, 자석공간형성부(571c)들은 서로 일체로 연결되어 판(571b)과 결합되어 있다. 그리고 관통구입구(571a), 판(571b), 자석공간형성부(571c)는 일체로 이루어진다. 그리고 판(571b)과 자석공간형성부(571c) 사이에는 일정 간격의 공간부(571f)가 마련되어 있다. 그것은 일체로 가공하기 위한 편리성 때문이다.
위 자석설치용 공간(571d)에는 모두 네 개의 강력한 자력을 갖는 자석(572)이 배치되며, 이 자석(572)과 대응되는 위치에 자석(572)과 소정의 간격을 두고서 발전기의 회전축과 연결된 축 주변에 형성된 강력한 자력을 갖는 자석(591) 네 개가 배치된다. 이때 터빈(170)의 회전력이 회전축(670)과 회전축 끝단(670a)을 거쳐 끝단(670a) 주변에 고정된 자석(572)으로 전달되어 자석(572)이 회전한다. 자석(572)의 회전력은 자력을 통해 자석(572)와 격리되어 있는 자석(591)을 회전시키고 자석(591)의 회전력은 다시 자석 하우징(600)으로 전달된다. 자석 하우징(600)은 자석 하우징(571)과 같은 원리로 구성되어 있다. 자석 하우징(600)의 운동에너지는 베어링으로 연결된 자석 커플링 샤프트(601)를 거쳐 발전기(330)로 전달되어 발전기(330)가 회전한다. 따라서 이때 사용되는 자석(572)(591)의 자력은 상당히 강력해야 한다. 예로서 철 성분의 불순물이 조금만 들어있는 구리도 세게 끌어당길 정도고 강력한 자력의 자석이 필요하다. 그리고 자석(572)과 자석공간형성부(571c)는 자석하우징덮개(573)에 의해 보호된다. 자석(591)은 별도의 자석하우징덮개(590)에 의해 보호된다. 이때 회전축 끝단(670a)의 재질로는 티타늄을 사용한다. 그것은 자석(572)(591) 간의 자력을 불필요하게 사용하지 않도록 하기 위함이다.
자석하우징(571)(600) 내부의 자석들(572,591)은 각각 자석 하우징 덮개(573)(590)에 의해 고정된다. 자석하우징(571)(600)과 자석하우징덮개(573)(590)는 알루미늄 재질이다.(도 6 참조).
자석 하우징(571)은, 터빈 회전축(670)의 끝단(670a)에 끼워 맞춤 된뒤 용접에 의해 고정되고, 회전축(670) 주위에 90도 간격으로 일정하게 배치되는 다수의 자석(572)을 구비하여 이루어지며 회전판(542)의 회전에 따라 회전한다. 그리고 끝단(670a)의 재질은 자석(572)(591)의 영향을 피하기 위해 티타늄으로 만드는 것이 바람직하다. 터빈 회전축(670)과 끝단(670a)은 일체로 형성된다.
그리고 이 발명은, 자석 하우징(571)과 발전기(330) 사이에 설치되는 자석 하우징(600), 자석 하우징(600) 내부에 설치되며 자석(572) 바깥쪽 동심원상에 자석(572)과 대응되는 위치에 90도 간격으로 일정하게 배치되어 터빈(170)의 회전력을 자력을 이용하여 자석(572)을 통해 발전기(330)쪽 회전축(601)으로 전달하는 다수의 자석(591), 및 자석(591)과 연결된 발전기(330) 회전축(601)을 더 구비한다.
그리고 이 발명은, 자석 하우징(571)(600)을 보호하며 자석(572)(591)의 자력의 영향을 받지 않고 터빈측 냉매가스가 발전기측으로 유입되는 것을 막기 위해 나일론 재질로 만들어지며 자석 하우징(600)으로부터 사방으로 특정 구경의 원통형 열방출용 통기구(176)를 다수개 형성하여 자석(591)의 고속회전시 자석 하우징(600) 내부의 고열을 대기중으로 방출하는 자석커플링 하우징(580)도 구비하고 있다.
한편, 도 5는 이 발명에 따른 터빈 실린더의 분해사시도이며 이로부터 이 발명에서 사용되는 터빈(170) 내부에는 세 개의 평판형 실린더(530,540,550)가 사용됨을 알 수 있다. 도 5의 왼쪽으로부터 터빈하우징(560) 안에 터빈 실린더들이 수납되고, 다음 단에는 자석을 이용한 커플러340) 부분으로서 자석커플링 하우징(580)에 자석들이 수납되어 있으며, 그 다음 단은 도시되지 않았지만 발전기(330)와 연결된다.
도 6은 이 발명에서 사용되는 팽창터빈(170)의 단면도이다. 도 6은 크게 두 부분으로 나눈다. 왼쪽 부분과 오른쪽 부분이다. 오른쪽 부분의 우측에 발전기(330)가 연결된다. 오른쪽 부분은 도 15 내지 도 16에서 상세히 설명되는 커플링부이다. 자석커플링 하우징(580) 내부에 커플링부가 배치되어 있다. 왼쪽 부분은 세 개의 평판형 터빈 실린더(530)(540)(550)가 배치되어 있다. 왼쪽 부분과 오른쪽 부분 사이는 오링(541)에 의해 기밀이 유지되고 있다. 왼쪽 부분의 맨 왼쪽에는 하우징 덮개(510)가 있으며 그 가운데에는 냉매 토출구가 형성되어 있다. 510a로 표시된 부분은 토출될 냉매들이 머무르는 공간이다.
그리고 이 발명에서는 제 1평판형 터빈실린더 또는 제 2평판형 터빈실린더와 회전판 사이의 간격이 0.005 ~ 0.05 ㎜ 이내인 것이 바람직하다.
이 발명의 팽창 터빈(170)은, 제 1평판형 터빈 실린더(530), 제 3평판형 터빈 실린더(550), 제 1평판형 터번 실린더(530)와 제 3평판형 터빈 실린더(550) 사이에 위치하는 제 2평판형 터빈 실린더(540), 제 2평판형 터빈 실린더(540) 안에서 회전하는 회전판(wheel)(542), 위 회전판(542)의 원주부에 형성된 회전판(542)의 날개(vane) 홈(655), 날개 홈(655) 안에 들어 있고 터빈(170) 안으로 흡입되는 저온 고압의 액체 냉매 가스의 기화시 팽창하는 압력에 의해 고속으로 회전판(542)을 회전시키는 날개(650), 회전판(542)의 회전축(670)과 수직한 원주부 단면에 형성된 냉매 흡입용 니플(660), 위 회전판(542)의 회전축(670) 방향으로 형성된 냉매 토출구(545), 제 1평판형 터빈 실린더(530), 제 2평판형 터빈 실린더(540), 제 3평판형 터빈 실린더(550)를 수납하기 위한 터빈 하우징(560), 위 터빈 하우징(560)을 덮어주기 위한 터빈 하우징 덮개(510), 터빈 하우징(560)과 터빈 하우징 덮개(510)의 기밀을 유지하기 위한 제 1오링(520), 위 제 1평판형 터빈 실린더(530)와 터빈 하우징 덮개(510) 사이와 제 3평판형 터빈 실린더(550)와 터빈 하우징(560) 사이에 각각 설치되며 베어링, 너트를 구비하는 베어링 덮개(521), 제 1평판형 터빈 실린더(530)와 제 2평판형 터빈 실린더(540) 사이와 위 제 2평판형 터빈 실린더(540)와 제 3평판형 터빈 실린더(550) 사이에 설치되는 기밀 수단들, 회전판(542)의 회전축(670) 끝단(670a)에 형성된 알루미늄 재질의 제 1자석 하우징(571) 및 제 1자석 하우징(571)을 덮어서 자석을 고정하기 위한 자석 하우징 덮개(573)를 구비하여 이루어진다.
도 7은 이 발명에 따른 회전판(542)의 사시도이다. 640은 회전판 표면에 형성되는 에어 실링 홈이고, 655는 날개홈이다. 이때 회전판(542)의 두께(ℓ1)는 8~16 ㎜ 이내가, 회전판의 날개 홈 깊이(ℓ2)는 10~16 ㎜ 이내가, 회전판(542)의 날개 홈의 너비(ℓ3)는 1.6~3㎜ 이내가, 회전판(542)의 날개홈(655)과 날개홈(655)의 직선 간격(ℓ4)은 회전판 외경을 기준으로 하여 8~15 ㎜ 이내가, 회전판(542)의 날개홈(655)의 깊이 끝단에서 회전판(542)에 원주형으로 장착되는 에어 실링(air sealing)이 장착될 홈의 외경과의 거리(ℓ5)는 1 ~ 2.5 ㎜이내인 것이 바람직하다.
도 8은 이 발명에 따른 제 2평판형 터빈 실린더(540)의 정면도이다. 실린더(540)의 좌측 하단에 니플(660)이 연결되어 있고 니플의 끝에는 노즐(도시되지 않음)이 있다.
도 9는 도 6의 A 부분의 확대 단면도이다. 542는 회전판이고, 531, 542는 에어 실링부이고, 544는 고정볼트를 나타낸다. ℓ11은 회전판(542)과 에어 실링(531,541) 사이의 이격거리를 나타내며 1~2.5mm 의 범위가 바람직하다.
도 10은 이 발명에 따른 제 2평판형 터빈 실린더(540)에 형성된 토출구(545)의 예시도이다. (a)는 정면도이고 실린더(540)의 중심을 O로 나타냈고 , (b)는 좌측에서 본 측면도로서 545a는 첫 토출구이고, (c)는 우측에서 본 측면도로서 545b는 마지막 토출구이고 맨 아래에 노즐입구(547)가 구비되어 있고, (d)는 평면도이고, (e)는 저면도이다. 여기서 ℓ6는 제 2평판형 터빈 실린더(540)의 중심 홀이 원래 중심에서 노즐끝단과 접하는 방향으로 1.5~4 ㎜ 이동하여 형성되는 거리이고, ℓ7은 중심 O를 지나는 수평선에서 첫 토출구(545a)까지의 이격거리이고, ℓ8은 위 수평선과 마지막 토출구(545b)와의 이격거리, ℓ9는 위 수평선과 니플(660) 중심선까지의 거리이고 2mmr가 바람직하며, ℓ10은 실린더(540)의 폭을 나타내며 8.005~15.005mm가 바람직하다. 또한 실린더(540)의 우측 하단에는 니플(660)의 연결부위가 도시되어 있다. 이때 첫 번째 토출구545a)는 노즐을 중심으로 하여 위 제 2평판형 터빈 실린더(540)의 중심을 지나는 수평선에서 노즐과 반대방향으로 날개 홈과 날개 홈 사이의 거리만큼 이격되어 설치되고, 마지막 토출구(545b)의 정 위치는 노즐을 중심으로 하여 위 제 2평판형 터빈 실린더(540)의 중심을 지나는 수평선에서 노즐과 반대방향으로 2 ㎜만큼 떨어져서 설치되고, 배출을 원활히 하기 위해 위 제 2평판형 터빈 실린더의 측면에 설치되는 토출구(545) 수는 다수 개인 것이 바람직하다. 그리고 제 2 평판형 터빈 실린더(540)의 두께는 8.005~15.005 ㎜ 이내인 것이 바람직하다. 또한 노즐구멍의 끝단은 위 제 2평판형 터빈 실린더(540)의 홀 내주면에 접하며 회전판 지름에 따라 각각 가감하여 노즐위치를 정하는 것이 바람직하다.
그리고 이 발명에서 노즐 방향의 터빈의 회전판 외측면과 제 2평판형 터빈 실린더(540) 홀 원주면과의 최소 간격은 0.01~0.05 ㎜인 것이 바람직하다.
한편, 도 11은 이 발명의 장치를 이용한 발전 실험결과를 나타내는 그래프이다. 여기서 세로축은 발전을 통해 얻은 전압값[Volt]이고, 가로축은 냉매의 압력[kgf/㎠]이고, 터빈회전판 외주면과 터빈 실린더 내측면의 간격(g)이 각각 0.11[mm], 0.09[mm] 및 0.04[mm]일 때의 실험값이다. 실험결과를 보면 출력전압은 대체적으로 200[Volt]를 전후한 값을 갖는 것이 확인되고, 간격(g)이 좁을수록 그리고 압력이 높을수록 높은 출력 전압이 얻어지고간격(g)이 클수록 그리고 압력이 낮을수록 출력 전압이 낮다. 간격(g)이 0.04[mm]로 좁을 때 압력을 높이면 터빈이 폭발할 염려가 있어서 시도하지 않았다.
그리고 이 실험에서 압력이 증가하면 그에 비례해서 출력되는 전압값이 모든 경우에서 거의 선형적으로 증가함을 알 수 있다. 다시 말해서 이 발명의 장치에서는 압력값을 조절함으로써 출력 전압값이 선형적으로 제어될 수 있음을 보여준다.
도 12는 이 발명의 회전판용 날개부(650)의 사시도이다. 날개(vane)(650)의 일 예는 두께가 2mm, 길이가 11.98mm, 폭이 11.95mm이다. 날개의 재질은 고온고압의 환경에서 장시간 사용해도 견딜 수 있는 합성수지재이다. 날개(650)는 날개홈(655)에 끼워지면 홈 밖으로 일부가 튀어 나와서 터빈 실린터 내측과의 사이로 공급되는 저온고압의 액체상태 냉매가 유입되면 그 압력에 의해 힘을 받아 터빈을 돌리며, 이때 날개(650)는 날개홈(655) 밖으로 튀어나와 터빈 실린더 내측벽과 부딪힌 뒤 다시 날개홈(655)으로 들어간다. 그래서 터빈 회전자와 실린더 내측 사이의 간격은 매우 좁아서 압력에 의해 날개(650)는 매우 큰 힘을 받는다.
도 13은 이 발명의 회전판과 니플의 연결상태도를 보여준다. 맨 외측의 원이 터빈 하우징(560)이고, 바로 그 안쪽 원주가 오링(570)이며, 그 안쪽 사각형이 제 2평판형 터빈 실린더(540)이고, 실린더 안쪽의 원이 회전판(542)이다. 그리고 제일 중심의 원이 회전축(670) 및 그 주위의 베어링(551)이다. 아래쪽 우측에 니플(660)이 연결되어 있다. 545c는 가스 및 오일의 흐름을 위한 토출구이다.
도 14는 이 발명의 전체 에너지 입출력관계를 나타낸 블록도이다. 이 발명의 히트 펌프를 이용한 발전장치를 포함하는 에너지변환시스템(1000)으로 전기 에너지(I1)와 공기중의 열에너지(I2)가 에너지변환시스템(1000)에 입력되면 에너지변환시스템(1000)은 위 전기에너지와 열에너지를 변환시켜 일부는 전기에너지(O1)로, 다른 일부는 열에너지(O2)와 손실에너지(O3)로 출력된다. 따라서 전체적으로는 입출력 에너지가 변함이 없어서 에너지 보존의 법칙을 만족시킨다. 이를 수식으로 나타내면 수학식 1과 같이 표현할 수 있다.
수학식 1
Figure PCTKR2009007472-appb-M000001
이 발명의 바람직한 일 실시예에 따르면 에너지변환시스템(1000)에 시간당7.5kWh(≒6,450cal)에 해당하는 전기에너지를 공급하면, 냉방시 위 전기에너지를 이용하여 냉방에 4,500cal를 사용하고, 약 5 ~ 6kWh(≒4,300 ~ 5,160cal)의 전기에너지를 생산할 수 있다. 즉 입력된 에너지는 6,450cal이지만 출력된 에너지는 8,800 ~ 9,660cal로서 에너지 보존법칙에 어긋나게 된다. 하지만 여기서 고려해야 할 부분은 이 발명의 에너지변환시스템(1000)이 대기 중에서 입출력에너지 사이의 차이에 해당하는 2,350 ~ 3,210cal의 에너지를 증발기(실내기)를 통해 실내공기로부터 입력하였다는 점이다. 그리고 이 에너지변환시스템(1000)에서 발생하는 손실에너지(예로서, 응축기인 실외기를 통한 외부로의 열방출)를 고려하면 이러한 사실이 논리적으로 타당함이 설명된다.
난방의 경우에는 압축기에 6,450cal의 전기에너지를 공급하면 난방에 4,500cal를 사용하고, 약 5 ~ 6kWh(≒4,300 ~ 5,160cal)의 전기에너지를 생산할 수 있으며, 이때 입출력 에너지의 차이에 해당하는 2,350 ~ 3,210cal의 에너지는 증발기에서 외부 공기의 열을 흡수하여 보충한다.
따라서 이 발명은 적은 량은 에너지로 더 많은 양의 에너지를 생산해낼 수 있는(실은 앞에서도 언급하였듯이 에너지보존의 법칙에 의해 입출력에너지의 합은 같을 수밖에 없음) 마법의 에너지 생산기술이라고 할 수 있다. 그것은 고효율의 발전시스템과 냉난방기술을 융합한 기술의 덕분이다. 이러한 기술을 응용한다면 적은 에너지로 많은 청정 에너지를 생산해낼 수 있게 되어 환경오염을 줄이는 데에도 일조할 수 있다. 특히 발전기 용량을 크게 설계하면 발전효율이 더 높아지게 되어 실험단계에서보다 훨씬 좋은 결과를 얻게 될 것으로 기대된다.
이처럼 이 발명은 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있으며 위에서 기술한 발명의 실시를 위한 구체적인 내용의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 이 발명은 위에서 기술한 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 이 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.

Claims (27)

  1. 전기에너지를 공급받아 냉매를 압축기로 압축하여, 응축기, 팽창밸브, 증발기를 거쳐 다시 압축기로 냉매가 흡입하는 열 사이클을 통해 실내의 냉방과 난방에 사용하는 히트펌프가,
    위 팽창밸브로서 동작하는 팽창터빈;
    위 압축기로부터 고온고압의 냉매를 인입하는 하나의 인입구와, 다수의 연결관과 연결하기 위한 다수 개의 연결구로 이루어지고 인입구가 위 압축기의 고압 출력단과 연결되며 난방 가동시에만 전원이 공급되는 사방변;
    위 팽창터빈의 회전력을 자력을 이용하여 발전기로 전달하는 커플링을 구비하여 이루어지며,
    압축기에 입력되는 전기에너지(I1)와 증발기를 통해 공기 중에서 흡수하는 열에너지(I2)를 일부는 위 발전기를 통해 전기에너지(O1)로, 다른 일부는 필요에 따라 냉방 또는 난방용 에너지(O2)로, 나머지는 손실에너지(O3)로 사용하며,
    (식1))
    Figure PCTKR2009007472-appb-I000002
    (식2) I1 < O1 + O2
    의 관계가 성립하고,
    열에너지(I2)는 난방시에는 난방하는 실외에 설치된 증발기를 통해 외부 공기로부터 흡수하는 열에너지이고, 냉방 시에는 냉방 하는 실내에 설치된 증발기롤 통해 실내 공기로부터 흡수하는 열에너지인 것을 특징으로 하는, 히트 펌프를 이용한 발전장치.
  2. 제 1항에서, 위 히트 펌프는 난방 사이클을 위해,
    난방 선택시 위 사방변의 제 1연결구에 연결된 제 2연결관을 통해 제 1입력단으로 고온고압의 기체 상태의 가스 냉매를 받아들여 난방을 위한 열교환 후 제 1출력단으로 출력하는 응축기인 판형의 1차 열교환기;
    위 1차 열교환기에서 공급받은 저온 고압의 냉매로 위 압축기 쪽으로 흡입되는 식은 냉매를 데워주는 2차 열교환기;
    위 1차 열교환기의 출력단과 위 2차 열교환기의 제 1입력단을 제 3연결관을 통해 연결하여 난방시에만 열리고 냉방시에는 잠기는 제 1역지변;
    제 4연결관을 통해 위 2차 열교환기에서 저온 고압의 냉매가 3 차열교환기로 공급되면 냉매의 온도가 적정범위를 넘는 경우 열을 식히기 위해 3 차열교환기 내에 설치되어 동작하고 적정범위 이내인 경우에는 동작하지 않는 제 1팬;
    제 5연결관 상에 형성되어 위 3차 열교환기의 출력단으로부터 발생하는 응축 가스 내의 습기를 제거하기 위한 제습기;
    설치 초기에 연결관 내의 습기 유무 확인 및 제 5연결관 상에 위 제습기 다음 단에 형성되어 제 5연결관 안 냉매의 흐름을 볼 수 있도록 하고 습도의 유무를 색으로 표시하는 액면계;
    위 팽창터빈에서 증발기로 냉매를 공급하는 제 6연결관에 설치되어 난방시에는 열리고 냉방시에는 닫히는 제 2역지변;
    위 팽창 터빈에서 제 2역지변으로 이동하던 냉매가 제 1역지변 쪽으로 역류하는 것을 방지하기 위해 제 3연결관에 설치되며 난방시 닫히고 냉방시 열리는 제 3역지변;
    위 증발기를 거친 냉매가 제 7연결관을 통해 위 사방변의 제 3연결구를 거쳐 다시 위 사방변의 제 2연결구와 제 8연결관으로 공급되고 이 냉매가스의 온도를 감지하여 만약 냉매의 온도가 설정값 이상이면 제 8연결관의 냉매를 2차 열교환기를 거치지 않고 가스용 전자변을 열어 바로 기액분리기로 보내어 관내 액체를 분리하고, 만약 냉매의 온도가 설정값 미만이면 가스용 전자변을 닫아 냉매가 제 8연결관을 통해 2차 열교환기와 제 9 연결관을 거쳐 기액분리기로 보내지도록 하는 온도 센싱부;
    제 9연결관 상에서 위 기액분리기를 거친 냉매를 위 압축기로 보내기 전단에 설치되어 연결관 내부의 이물질을 제거하는 저압필터;
    축열조의 식은 난방수를 제 10 연결관을 거쳐 제 1펌프를 통해 공급받아 제11 연결관을 거쳐 위 1차열교환기의 제 2입력단으로 공급하고 3차열교환기에서 위 팽창 터빈으로 연결되는 제 5연결관의 냉매압력이 사용자가 미리 설정한 적정범위 안에 들도록 개폐 정도가 제어되며 냉매압력이 설정치보다 높으면 밸브가 더 열리고 설정치 이하이면 밸브가 더 닫히며 압력이 높아질수록 밸브 구경이 커지는 절수밸브; 및
    위 1차열교환기에서 데워진 난방수를 실내의 난방장치로 공급하기 전에 저장하기 위한 축열조를 포함하여 구성되는 것이 특징인, 히트 펌프를 이용한 발전장치.
  3. 제 1항에서, 위 히트펌프는 냉방 사이클을 위해,
    압축기의 고온고압의 냉매를 사방변의 제 3연결구를 통해 제7 연결관을 거쳐 공급받고 실외의 찬 공기로 냉매의 열을 뺏어 응축시킨 뒤 저온 고압의 액체가스상태의 냉매로 만들어 응축기 기능을 수행하는 제 4열교환기;
    3차열교환기에서 위 팽창 터빈으로 연결되는 제 5연결관을 흐르는 냉매의 압력이 사용자가 미리 설정한 범위 안에 들도록 위 4차열교환기 내에 설치된 제 2팬의 회전을 제어하되 냉매 압력이 설정값 보다 높으면 빨리 회전하도록 설정값 보다 낮으면 천천히 회전하도록 제어하는 팬 제어기;
    위 4차열교환기의 저온고압의 가스 냉매를 제6연결관과 난방시 닫히고 냉방시 열리는 제 4역지변을 거쳐 공급받아 그 열로 사방변의 제 2연결구를 통해 기액분리기로 공급되는 저온저압의 기체 가스 냉매를 데워주는 2차열교환기;
    제 4연결관을 통해 위 2차 열교환기에서 저온 고압의 냉매가 3 차열교환기로 공급되면 냉매의 온도가 적정범위를 넘는 경우 열을 식히기 위해 3차열교환기 내에 설치되어 동작하고 적정범위 이내인 경우에는 동작하지 않는 제 1팬;
    제 5연결관 상에 형성되며 위 3차 열교환기의 출력단으로부터 발생되는 응축 냉매 가스 내의 습기를 제거하기 위한 제습기;
    설치 초기에 연결관 내의 습기 유무 확인 및 제 5연결관 상에 위 제습기 다음 단에 형성되어 제 5연결관 안 냉매의 흐름을 볼 수 있도록 하고 습도의 유무를 색으로 표시하는 액면계;
    위 팽창 터빈에서 팽창되어 저온 저압의 기체 가스 상태로 바뀐 냉매를 난방시엔 닫히고 냉방시에 열리는 제 3역지변과 제 3연결관을 거쳐 공급받아 실내 공기의 열을 빼앗아 냉매를 기화시키고 실내로 열이 빼았긴 차가운 공기를 내보내어 실내를 냉방시켜서 증발기 기능을 수행하는 1차열교환기;
    이때 1차열교환기를 거친 저온 저압의 기화된 기체가스 냉매가 제 2연결관, 사방변의 제 2연결구, 제 8연결관 으로 공급되면 이 냉매가스의 온도를 감지하여 만약 냉매의 온도가 설정값 이상이면 제 8연결관의 냉매를 2차열교환기를 거치지 않고 가스용 전자변을 열어 바로 기액분리기로 보내어 액체와 기체를 분리하고, 만약 냉매의 온도가 설정값 미만이면 가스용 전자변을 닫아 냉매가 제 8연결관을 통해 2차열교환기와 제 9 연결관을 거쳐 기액분리기로 보내지도록 하는 온도 센싱부;
    제 9연결관 상에서 위 기액분리기를 거친 냉매를 위 압축기로 보내기 전단에 설치되어 연결관 내부의 이물질을 제거하는 저압필터; 및
    난방시엔 닫히고 냉방시엔 열려서 1차열교환기와 열교환을 하도록 물을 공급하는 물용 전자변을 포함하여 구성되는 것이 특징인, 히트 펌프를 이용한 발전장치.
  4. 제 2항 또는 제 3항에서, 위 절수밸브의 밸브 구경은 제 5연결관에서 측정된 냉매 압력에 의하여 조절되는 것을 특징으로 하는, 히트 펌프를 이용한 발전장치.
  5. 제 2항 또는 제 3항에서, 위 팽창 터빈은
    제 1평판형 터빈 실린더;
    제 3평판형 터빈 실린더;
    제 1평판형 터번 실린더와 제 3평판형 터빈 실린더 사이에 위치하는 제 2평판형 터빈 실린더;
    제 2평판형 터빈 실린더 안에서 회전하는 회전판(wheel);
    위 회전판의 원주부에 형성된 회전판의 날개(vane) 홈; 및
    위 날개 홈 안에 들어 있고 터빈 안으로 흡입되는 저온 고압의 액체 냉매 가스의 기화시 팽창하는 압력에 의해 고속으로 위 회전판을 회전시키는 날개;
    위 회전판의 회전축과 수직한 원주부 단면에 형성된 냉매 흡입구;
    위 회전판의 회전축 방향으로 형성된 냉매 토출구;
    위 제 1평판형 터빈 실린더, 제 2평판형 터빈 실린더, 제 3평판형 터빈 실린더를 수납하기 위한 터빈 하우징;
    위 터빈 하우징을 덮어주기 위한 터빈 하우징 덮개;
    위 터빈 하우징과 터빈 하우징 덮개의 기밀을 유지하기 위한 제 1오링;
    위 제 1평판형 터빈 실린더와 터빈 하우징 덮개 사이와 제 3평판형 터빈 실린더와 터빈 하우징 사이에 각각 설치되며 베어링, 너트를 구비하는 베어링 덮개;
    위 제 1평판형 터빈 실린더와 제 2평판형 터빈 실린더 사이와 위 제 2평판형 터빈 실린더와 제 3평판형 터빈 실린더 사이에 설치되는 기밀 수단;
    위 회전판의 회전축 끝단에 형성된 알루미늄 재질의 제 1자석 하우징; 및
    위 제 1자석 하우징의 자석을 고정시키기 위한 알루미늄 재질의 자석 하우징 덮개를 구비하여 이루어지는 것이 특징인, 히트 펌프를 이용한 발전장치.
  6. 제 5 항에서, 위 제 1자석 하우징은,
    위 회전판의 회전축 끝에 위치한 터빈회전축끝단; 및
    위 터빈회전축끝단 주위에 90도 간격으로 일정하게 배치되는 다수의 제 1자석부를 구비하여 이루어지며,
    위 회전판의 회전에 따라 회전하는 것이 특징인, 히트 펌프를 이용한 발전장치.
  7. 제 6 항에서, 위 터빈회전축끝단은 회전판의 회전축 끝에 끼워 맞춤 뒤 용접에 의해 일체로 형성되는 것이 특징인, 히트 펌프를 이용한 발전장치.
  8. 제 6 항에서, 위 터빈회전축끝단의 재질은 티타늄인 것이 특징인, 히트 펌프를 이용한 발전장치.
  9. 제 6 항에서, 위 터빈회전축끝단의 재질은 제 1자석부 또는 제 2자석부의 자력의 영향을 받지 않는 것이 특징인, 히트 펌프를 이용한 발전장치.
  10. 제 6 항에서, 위 제 1자석 하우징 바깥쪽에 위치하고 자석커플링용 샤프트를 통해 발전기 회전축과 연결되며 자석을 고정시키기 위한 알루미늄 재질의 제 2자석 하우징; 및
    위 제 2자석 하우징 내부에 설치되며 위 제 1자석부 바깥쪽 동심원상에 제 1자석부와 대응되는 위치에 90도 간격으로일정하게 배치되어 터빈의 회전력을 자력을 이용하여 제 1자석부를 통해 발전기 회전축으로 전달하는 다수의 제 2자석부를 더 구비하여 이루어지는 것이 특징인, 히트 펌프를 이용한 발전장치.
  11. 제 10항에서, 위 제 1 자석 하우징 및 제 2자석 하우징을 보호하며 제 1자석부 및 제 2자석부의 자력의 영향을 받지 않고 냉매 가스가 발전기쪽으로 누설되는 것을 막기 위해 나일론 재질로 만들어지며 제 2자석 하우징 덮개로부터 사방으로 특정 구경의 원통형 열방출용 통기구를 형성하여 제 2자석부의 고속회전시 제 2자석 하우징 덮개 내부의 고열을 대기중으로 방출하기 위한 자석커플링 하우징을 더 포함하여 이루어지는 것이 특징인, 히트 펌프를 이용한 발전장치.
  12. 제 5항에서, 위 회전판의 두께는 8~16 ㎜ 이내인 것이 특징인, 히트 펌프를 이용한 발전장치.
  13. 제 5 항에서, 위 회전판의 날개 홈의 너비는 1.6~3㎜ 이내인 것이 특징인, 히트 펌프를 이용한 발전장치.
  14. 제 5 항에서, 위 회전판의 날개 홈 깊이는 10~16 ㎜ 이내인 것이 특징인, 히트 펌프를 이용한 발전장치.
  15. 제 5 항에서, 위 회전자의 날개홈과 날개홈의 직선 간격은 회전판 외경을 기준으로 하여 8~15 ㎜인 것이 특징인, 히트 펌프를 이용한 발전장치.
  16. 제 5 항에서, 위 회전자의 날개 홈의 깊이 끝단에서 회전판에 원주형으로 장착되는 에어 실링(air sealing)이 장착될 홈의 외경과의 거리는 1 ~ 2.5 ㎜이내인 것이 특징인, 히트 펌프를 이용한 발전장치.
  17. 제 5 항에서, 위 제 2평판형 터빈 실린더의 중심 홀이 원래 중심에서 노즐끝단과 접하는 방향으로 1.5~4 ㎜ 이동하여 형성되는 것이 특징인, 히트 펌프를 이용한 발전장치.
  18. 제 5 항에서, 첫 번째 토출구는 노즐을 중심으로 하여 위 제 2평판형 터빈 실린더의 중심을 지나는 수평선에서 노즐과 반대방향으로 날개 홈과 날개 홈 사이의 거리만큼 이격되어 설치되는 것이 특징인, 히트 펌프를 이용한 발전장치.
  19. 제 5 항에서, 마지막 토출구의 정 위치는 노즐을 중심으로 하여 위 제 2평판형 터빈 실린더의 중심을 지나는 수평선에서 노즐과 반대방향으로 2 ㎜만큼 떨어져서 설치되고, 배출을 원활히 하기 위해 위 제 2평판형 터빈 실린더의 측면에 설치되는 토출구 수는 다수 개인 것이 특징인, 히트 펌프를 이용한 발전장치.
  20. 제 5 항에서, 노즐구멍의 끝단은 위 제 2평판형 터빈 실린더의 홀 내주면에 접하며 회전판 지름에 따라 각각 가감하여 노즐위치를 정하는 것이 특징인, 히트 펌프를 이용한 발전장치.
  21. 제 5 항에서, 위 제 2 평판형 터빈 실린더의 두께는 8.005~15.005 ㎜ 이내인 것이 특징인, 히트 펌프를 이용한 발전장치.
  22. 제 5 항에서, 위 제 1평판형 터빈실린더 또는 제 2평판형 터빈실린더와 회전판 사이의 간격이 0.005 ~ 0.05 ㎜ 이내인 것이 특징인, 히트 펌프를 이용한 발전장치.
  23. 제 5 항에서, 위 터빈 하우징 및 터빈 하우징 덮개의 재질은 알루미늄인 것이 특징인, 히트 펌프를 이용한 발전장치.
  24. 제 5 항에서, 위 회전판에 설치되는 에어 실링과 회전판 사이의 간격은 0.02 ㎜를 유지하는 것이 특징인, 히트 펌프를 이용한 발전장치.
  25. 제 5 항에서, 노즐 방향의 위 터빈의 회전판 외측면과 위 제 2평판형 터빈 실린더 홀 원주면과의 최소 간격은 0.01~0.05 ㎜인 것이 특징인, 히트 펌프를 이용한 발전장치.
  26. 제 5 항에서, 사용자가 미리 설정한 범위의 압축기의 고압 및 저압 압력은 각각 26 kgf/cm2 와 6 kgf/cm2 인 것을 특징으로 하는, 히트 펌프를 이용한 발전장치.
  27. 제 2 항에서, 난방시 외기 온도가 영하가 되면 응축가스의 압력을 높이기 위해 절수밸브를 닫아서 응축가스의 압력을 높여서 압력을 일정하게 유지하면 실외에 설치된 4차열교환기에 성애가 끼지 않아서 영하의 날씨에도 외기로부터 열에너지를 흡수할 수 있는 것이 특징인, 히트 펌프를 이용한 발전장치.
PCT/KR2009/007472 2009-11-13 2009-12-14 히트 펌프를 이용한 발전장치 WO2011059131A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0109574 2009-11-13
KR1020090109574A KR100955235B1 (ko) 2009-11-13 2009-11-13 히트 펌프를 이용한 발전장치

Publications (1)

Publication Number Publication Date
WO2011059131A1 true WO2011059131A1 (ko) 2011-05-19

Family

ID=42220449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007472 WO2011059131A1 (ko) 2009-11-13 2009-12-14 히트 펌프를 이용한 발전장치

Country Status (2)

Country Link
KR (1) KR100955235B1 (ko)
WO (1) WO2011059131A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141805A1 (en) 2012-03-20 2013-09-26 Energihuset Försäljnings Ab Hardy Hollingworth Heat cycle for transfer of heat between media and for generation of electricity
CN103558430A (zh) * 2013-10-31 2014-02-05 杭州凯雅捷科技有限公司 一种电能表接线鼻

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101758179B1 (ko) 2010-07-23 2017-07-14 엘지전자 주식회사 히트 펌프식 급탕장치
JP2013051769A (ja) 2011-08-30 2013-03-14 Kobe Steel Ltd 動力発生装置および動力発生方法
KR101438045B1 (ko) 2013-04-09 2014-09-05 권보수 히트 펌프 냉난방 시스템용 터빈 발전기
WO2015041501A1 (ko) * 2013-09-23 2015-03-26 김영선 히트펌프 발전 시스템 및 그 운전방법
CN104033199B (zh) * 2014-06-24 2015-08-12 天津大学 一种使用混合有机工质的内置热泵的有机朗肯循环系统
CN104033200B (zh) * 2014-06-24 2015-08-12 天津大学 使用混合有机工质的内置热泵的有机朗肯循环系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608406A (ja) * 1983-06-28 1985-01-17 Shimadzu Corp 燃料電池発電用タ−ボコンプレツサ駆動システム
JP2005172336A (ja) * 2003-12-10 2005-06-30 Kansai Electric Power Co Inc:The 自然冷媒ヒートポンプシステム
KR20050086100A (ko) * 2004-02-25 2005-08-30 한라공조주식회사 차량용 냉동 사이클
KR20050119548A (ko) * 2004-06-16 2005-12-21 윤명혁 온수공급용 히트펌프 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608406A (ja) * 1983-06-28 1985-01-17 Shimadzu Corp 燃料電池発電用タ−ボコンプレツサ駆動システム
JP2005172336A (ja) * 2003-12-10 2005-06-30 Kansai Electric Power Co Inc:The 自然冷媒ヒートポンプシステム
KR20050086100A (ko) * 2004-02-25 2005-08-30 한라공조주식회사 차량용 냉동 사이클
KR20050119548A (ko) * 2004-06-16 2005-12-21 윤명혁 온수공급용 히트펌프 시스템

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141805A1 (en) 2012-03-20 2013-09-26 Energihuset Försäljnings Ab Hardy Hollingworth Heat cycle for transfer of heat between media and for generation of electricity
US9689599B2 (en) 2012-03-20 2017-06-27 Energihuset Försäljnings Ab Hardy Hollingworth Heat cycle for transfer of heat between media and for generation of electricity
CN103558430A (zh) * 2013-10-31 2014-02-05 杭州凯雅捷科技有限公司 一种电能表接线鼻

Also Published As

Publication number Publication date
KR100955235B1 (ko) 2010-04-30

Similar Documents

Publication Publication Date Title
WO2011059131A1 (ko) 히트 펌프를 이용한 발전장치
WO2016047937A1 (ko) 원전
WO2016013798A1 (en) Refrigerator and control method thereof
WO2021015483A1 (ko) 차량용 열관리 장치 및 차량용 열관리 방법
WO2017069440A1 (ko) 냉장고 및 그 제조 방법
WO2019093867A1 (ko) 가스 히트펌프 시스템
WO2021132866A1 (en) Air conditioning apparatus
WO2011062348A1 (en) Heat pump
WO2021172752A1 (ko) 베이퍼 인젝션 모듈 및 이를 이용하는 히트펌프 시스템
WO2017022874A1 (ko) 열전발전장치와 연료저장탱크의 발열장치 및 폐열 회수시스템
WO2018066845A1 (ko) 하이브리드형 발전 시스템
WO2019117631A1 (ko) 가스 히트펌프 시스템
WO2019117630A1 (ko) 가스 히트펌프 시스템
WO2015163661A1 (ko) 흡입기, 동력발생기, 흡입기와 동력발생기를 이용한 외연기관 시스템, 흡입기와 동력발생기를 이용한 내연기관 시스템, 흡입기와 동력발생기를 이용한 에어 하이브리드 동력발생 시스템.
WO2016204560A1 (ko) 열 회수 장치
WO2011062349A1 (ko) 히트 펌프
WO2022250232A1 (ko) 열원 공급 장치 및 공기조화 시스템
WO2020197044A1 (en) Air conditioning apparatus
WO2020197052A1 (en) Air conditioning apparatus
WO2019050077A1 (ko) 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 및 제어방법
WO2021187937A1 (ko) 히트펌프 시스템 및 이를 이용한 냉난방 시스템
WO2024034878A1 (ko) 볼 밸브 및 이를 포함하는 차량용 열관리 장치
WO2023003293A2 (ko) 태양에너지를 이용한 그린수소 생산 및 해수 담수화 시스템
WO2020235801A1 (en) Air conditioning apparatus
WO2021132977A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 17-09-2012)

122 Ep: pct application non-entry in european phase

Ref document number: 09851308

Country of ref document: EP

Kind code of ref document: A1