WO2012144700A1 - 바이오매스 고형체 제조시스템 및 제조방법 - Google Patents

바이오매스 고형체 제조시스템 및 제조방법 Download PDF

Info

Publication number
WO2012144700A1
WO2012144700A1 PCT/KR2011/007139 KR2011007139W WO2012144700A1 WO 2012144700 A1 WO2012144700 A1 WO 2012144700A1 KR 2011007139 W KR2011007139 W KR 2011007139W WO 2012144700 A1 WO2012144700 A1 WO 2012144700A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
biomass
tar
carbonization
hot water
Prior art date
Application number
PCT/KR2011/007139
Other languages
English (en)
French (fr)
Inventor
이형우
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2012144700A1 publication Critical patent/WO2012144700A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/083Torrefaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/48Removing dust other than cleaning filters, e.g. by using collecting trays
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • C10K1/046Reducing the tar content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a biomass solids manufacturing system and method, which can reduce the investment and management costs of the equipment, and can be recycled while removing the tar efficiently in the semi-carbonization process, and the quality of the biomass solids
  • the present invention relates to an environmentally friendly biomass solid production system and method for improving the production.
  • biomass which is attracting attention as an alternative to fossil-based energy such as petroleum, is very bulky due to its high porosity in the raw material, resulting in a considerably higher transportation cost per unit energy than conventional fossil-based energy. .
  • biomass raw materials can be manufactured by semi-carbonization to increase energy density per unit weight (Kcal / kg), while producing biomass raw materials in solid pellet form to reduce transportation cost per unit energy. Manufacturing methods have been developed.
  • the semi-carbonization treatment is to heat-treat the biomass raw material in a high temperature anoxic state to lower the weight by 30%.
  • the calorific value of the biomass is reduced by about 10%.
  • the calorific value per unit weight that is, the energy density (Kcal / kg) can be improved by about 30%.
  • the semi-carbonized biomass When the semi-carbonized biomass is molded into a solid material in a pellet form at high pressure, its volume can be reduced, thereby reducing transportation cost per unit energy by 30% or more.
  • tar due to pyrolysis is inevitably generated during the semi-carbonization treatment of biomass. Since the tar is a material having a very high viscosity, tar is adhered to a facility or a connection pipe in a treatment process to cause pyrolysis gas, etc. Problems that hinder the flow of water or cause the equipment to be inoperable have occurred.
  • an object of the present invention is to provide a biomass solid production system and a method for manufacturing that can be recycled while efficiently removing tar during semi-carbonization while reducing equipment investment and management costs.
  • a biomass solid production system comprising: a supply unit for supplying a biomass material; A semi-carbonization device for semi-carbonizing the biomass supplied from the supply unit, and a tar removal device for removing tar from the semi-carbonization gas generated in the semi-carbonization device and transferring the inert gas from which the tar is removed to the semi-carbonization device.
  • a processing unit It is achieved by a biomass solid production system, characterized in that it comprises a molding unit for molding the semi-carbonized biomass delivered from the semi-carbonization device of the processing unit into a solid body using the tar removed from the tar removal device.
  • the supply unit has a dryer for drying the biomass material, a dust collector for collecting the biomass dried in the dryer, and a storage tank for storing the biomass collected in the dust collector and transferring it to the semi-carbonization device.
  • the treatment unit may further include a heat exchanger for generating a heat medium oil and supplying the heat medium oil to a semi-carbonization device, and a burner for supplying combustion gas to the heat exchanger.
  • the semi-carbonization apparatus is a semi-carbon drying dryer for drying the biomass material supplied from the supply unit, a preheater for preheating the biomass material dried in the semi-carbon drying machine, and a semi-carbonized by receiving the biomass preheated in the preheater It is more preferable to have a semi-carbonization reactor and a cooler for cooling the semi-carbonized biomass in the semi-carbonization reactor.
  • the semi-carbonization reactor comprises a semi-carbonization chamber having a double jacket shape, a semi-carbon agitating means for stirring the biomass material supplied into the semi-carbonization chamber, and a semi-carbon heating for heating the inside of the semi-carbonization chamber. It is more effective to have the means.
  • the semi-carbonization chamber is a semi-carbon gas outlet for discharging the semi-carbonized gas to the tar removing device, an inert gas inlet through which the inert gas delivered from the tar removal device flows, and a thermal fluid hole into which the heat medium oil transferred from the heat exchanger is introduced. It is desirable to have a supply port.
  • the cooler preferably has a cooling chamber in which the biomass delivered from the semi-carbonization reactor resides, and a water jacket for cooling the cooling chamber.
  • hot water is generated by heat exchange in the process of cooling the biomass, and the hot water is effectively supplied to the tar removing device.
  • the tar removal device is a mesh conveyor for filtering the tar contained in the semi-carbon gas delivered from the semi-carbonization device, a hot water sprayer for separating the tar by spraying hot water to the mesh conveyor, and in the tar separated from the mesh conveyor It is more preferable to have a tar filter for filtering hot water and tar.
  • the mesh conveyor has a mesh member circulating on the moving path of the semi-carbonized gas toward the burner in the semi-carbonization apparatus, and the hot water chamber in which the mesh member is locked; It is effective to have a hot water injector having a water tank for storing hot water and an injection pump for spraying hot water stored in the water tank to a mesh conveyor located in the hot water chamber.
  • the hot water filtered from the tar filter is recycled to the water tank, it is effective to be used as a binder to form the biomass solid body is delivered to the filtered tar forming part.
  • the molding unit has a pulverizer for evenly crushing the semi-carbonized biomass delivered from the semi-carbonization device, and a pellet molding machine for molding the biomass pulverized in the pulverizer into pellets as solids.
  • the object is a biomass solid production method, the supplying step of supplying a biomass material;
  • Treatment step having a step: Biomass solids manufacturing method comprising the step of molding the semi-carbonized biomass delivered in the semi-carbonization step into a solid using the tar removed in the tar removal step Is also achieved.
  • the supplying step preferably includes a drying step of drying the biomass material and a dust collecting step of collecting the dried biomass.
  • the semi-carbonization step includes a semi-carbon drying step of drying the biomass material again, a pre-heating step of preheating the biomass material dried in the semi-carbon drying step, a semi-carbonization step of semi-carbonizing the preheated biomass, and It is effective to have a cooling step for cooling the semi-carbonized biomass in the semi-carbonization step.
  • the semi-carbonization step is preferably a step of heat-treating the biomass delivered from the preheating step for up to 30 minutes in an anoxic state of 260 °C to 300 °C.
  • the temperature of the semi-carbonization step is effective to be made by the transfer of the heat medium oil.
  • the semi-carbonization gas generated in the semi-carbonization step is preferably at least partially supplied back to the semi-carbonization step after the tar is removed in the tar removal step.
  • the cooling step is generated hot water by the heat exchange action, it is effective that the hot water is delivered to the tar removal step.
  • the tar removal step is more preferably having a tar separation step for filtering the tar contained in the semi-carbonization gas delivered in the semi-carbonization step, and a tar filtering step for filtering the separated tar.
  • the filtered hot water in the tar filtering step is supplied to the tar separation step, the tar is preferably transferred to the molding step is used as a binder for forming the biomass solids.
  • the molding step preferably has a grinding step of evenly crushing the semi-carbonized biomass delivered from the semi-carbonization step, and a pellet molding step of molding the pulverized biomass into pellets as a solid body.
  • a biomass solid production system and a manufacturing method which can reduce the equipment investment cost and management cost, and can be recycled while removing the tar efficiently in the semi-carbonization process.
  • FIG. 1 is a simplified process diagram of a biomass solid production system according to the present invention
  • FIG. 2 is a schematic view of a tar removal process in the biomass solid manufacturing process of FIG. 1;
  • FIG. 3 is a schematic diagram of a semi-carbonization plant in the biomass solid manufacturing process of FIG.
  • FIG. 4 is a schematic diagram of a semi-carbonization reactor of the semi-carbonization plant of FIG.
  • FIG. 5 is a simplified block diagram of a method for producing a biomass solid according to the present invention.
  • the biomass solid production system 1 has a supply portion 3 for supplying biomass, and a semi-carbonization treatment and a semi-carbonization treatment for the biomass supplied from the supply portion 3. And a processing unit 5 for removing tar generated in the process, and a molding unit 7 for forming semi-carbonized and tar-removed biomass into a solid body.
  • the supply unit 3 includes a dryer 3a for drying the biomass material, a dust collector 3b for collecting the biomass dried in the dryer 3a, and a storage tank for storing the biomass collected in the dust collector 3b. 3c).
  • the biomass collected in the dust collector 3b may be moved to the storage tank 3c by the blowing action of the blower 3d, and when the biomass is dried in the dryer 3a and moved to the dust collector 3b.
  • the combustion gas generated in the dust collector 3b may be discharged to the outside through a pipe or supplied as combustion gas of the burner 40 to be described later.
  • the processing unit 5 is a semi-carbonization apparatus 10 for semi-carbonizing the dried biomass material delivered from the storage tank 3c of the supply unit 3, and a process of semi-carbonizing the biomass in the semi-carbonization apparatus 10
  • the tar removal device 20 for removing tar contained in the semi-carbonized gas generated by the pyrolysis action in the heat exchanger and the combustion gas delivered from the burner 40 to be described later generates heat medium oil and semi-carbonizes the heat medium oil.
  • the heat exchanger 30 supplied to the apparatus 10 and the burner 40 for supplying combustion gas to the heat exchanger 30 are provided.
  • the semi-carbonization apparatus 10 includes a semi-carbonization dryer 11 for drying the biomass material supplied from the storage tank 3c of the supply unit 3 and a semi-carbonization dryer 11.
  • the preheater 13 for preheating the dried biomass material
  • the semi-carbonization reactor 15 for receiving and semi-carbonizing the biomass preheated in the preheater 13, and the semi-carbonized biomass in the semi-carbonization reactor 15 It may be composed of a cooler 17 for cooling, and an ejector 19 for moving the cooled biomass to the forming unit (7).
  • the semi-carbonized dryer 11 is for removing moisture that may be included in the biomass delivered from the storage tank 3c of the supply unit 3, and to increase the drying efficiency, the pre-dryer 11a and the main dryer ( 11b).
  • the preheater 13 is for preheating the biomass material from which the water is completely removed from the semi-carbonization dryer 11 to a high temperature close to the semi-carbonization temperature before being supplied to the semi-carbonization reactor 15, and the semi-carbonization reactor.
  • the semi-carbonization efficiency in (15) can be increased.
  • the preheater 13 may be provided with a preheat stirring means 13b for stirring the biomass in the cylindrical preheating chamber 13a and preheating means for heating the inside of the preheating chamber 13a to a preheating temperature.
  • the preheat stirring means (13b) may be in the form of a transfer screw that is rotated by a drive motor (not shown) to move the biomass from the supply side of the preheat chamber (13a) toward the discharge side, although not shown.
  • the preheat stirring means 13b may be a plurality of stirring plates that are rotated by a drive motor (not shown).
  • the preheating means may be provided in a form in which the outer circumferential surface of the preheating chamber 13a is formed in a double jacket structure, and circulates a high temperature preheating liquid into the double jacket to maintain the preheating chamber 13a at a preheating temperature.
  • the preheating liquid may be a heat medium oil transferred from the heat exchanger 30.
  • the semi-carbonization reactor 15 is a heat treatment of the biomass, which is heated and transferred from the preheater 13 at a high temperature and an anoxic state of 260 ° C to 300 ° C for up to 30 minutes, and the first reactor 15a and the second reactor ( 15b) may be subjected to semi-carbonization of the biomass sequentially.
  • the first and second reactors (15a, 15b), as shown in Figure 3, the semi-carbonized stirring means (15d) and the semi-carbonized heating means (15d) in the semi-carbonized chamber (15c) having a cylindrical shape of a double jacket ( 15e) may be provided.
  • the semi-carbon agitating means 15d may be in the form of a transfer screw that is rotated by a drive motor (not shown) to move the biomass from the supply side 15i of the semi-carbonization chamber 15c toward the discharge side 15j.
  • the semi-carbon stirring means 15d may be a plurality of stirring plates that are rotated by a drive motor (not shown).
  • the semi-carbonization heating means 15e forms the outer circumferential surface of the semi-carbonization chamber 15c in a double jacket structure, and circulates the high temperature heat medium oil transferred from the heat exchanger 30 into the inside of the double jacket. ) May be provided in the form of maintaining at a semi-carbonization temperature.
  • the first and second reactors 15a and 15b are transferred from the semi-carbonization gas outlet 15f for discharging the semi-carbonization gas generated in the semi-carbonization process to the tar removal device 20 and the tar removal device 20.
  • An inert gas inlet 15g into which the inert gas is introduced and a heat medium oil supply port 15h into which the heat medium oil transferred from the heat exchanger 30 flows are formed.
  • the inert gas inlet 15g and the heat medium oil supply port 15h are provided adjacent to the supply side 15i of the semi-carbonization chamber 15c, and the semi-carbon gas outlet 15f discharges the semi-carbonization chamber 15c. It is provided adjacent to the side 15j.
  • the cooler 17 is for receiving and cooling the semi-carbonized biomass from the semi-carbonization reactor 15, and supplies a cooling chamber 17a in which the biomass resides, and cooling water for cooling the cooling chamber 17a.
  • a water jacket 17b can be provided.
  • hot water is generated by heat exchange. The hot water is used to remove tar contained in the semi-carbon gas discharged from the semi-carbonization reactor 15. Supplied to the device 20.
  • the ejector 19 is installed from the discharge side of the cooling chamber 17a of the cooler 17 toward the pulverizer 7a of the molding section 7 to be described later, and forms the biomass after the completion of the semi-carbonization cooled by the cooler 17. It may be a discharge conveyor to deliver (7).
  • the tar removing device 20 filters the tar contained in the semi-carbon gas delivered from the semi-carbonization reactor 15 and the mesh conveyor 21 and the mesh conveyor 21 filtered. It has a hot water spraying machine 23 for separating the tar, and a tar filter 25 for filtering the tar separated from the mesh conveyor 21 with hot water.
  • the mesh conveyor 21 is provided with a structure for circulating the mesh member 21a on the movement path of the semi-carbonized gas from the semi-carbonization reactor 15 toward the burner 40, and the tar at the lower portion of the mesh conveyor 21.
  • the hot water chamber 21b is provided to be immersed in hot water in the process of circulating the filtered mesh member 21a.
  • the semi-carbonized gas passed through the mesh conveyor 21 is a state in which tar is filtered, part of which is used as combustion gas of the burner 40, and the other part of which is used as an inert gas for anoxic state composition of the semi-carbonization reactor 15.
  • the pipe for the movement of the gas from the position past the mesh conveyor 21 extends to the inert gas inlet (15g) of the burner 40 and the semi-carbonization reactor (15).
  • the hot water sprayer 23 may include a water tank 23a for storing hot water and an injection pump 23b for spraying hot water stored in the water tank 23a to the mesh conveyor 21 located in the hot water chamber 21b. .
  • the water tank 23a receives and stores the hot water generated in the above-described cooler 17, and may further include a heater 23c in consideration of a temperature drop of the hot water stored in the water tank 23a.
  • the water tank 23a may be provided with a drain 23d structure in consideration of cleaning of the water tank 23a.
  • the tar filter 25 filters the hot water contained in the tar when the tar filtered from the mesh conveyor 21 is received in the hot water chamber 21b together with the hot water and then discharged by the hot water injected into the mesh conveyor 21.
  • the hot water filtered by the tar filter 25 is recycled to the water tank 23a of the hot water sprayer 23, and the filtered tar is transferred to the pellet molding machine 7b of the molding unit 7 to form pellets which are biomass solids. It is used as a binder.
  • cellulose, hemicellulose, and lignin are highly viscous substances generated by thermal decomposition during semi-carbonization, and have adhesive strength.
  • tar is used as a binder for forming biomass into solid pellets.
  • the heat exchanger 30 generates heat medium oil by heat-exchanging a part of the combustion gas delivered from the burner 40, and supplies the heat medium oil to the semi-carbonization reactor (15).
  • a connection pipe is provided from the heat exchanger 30 toward the heat medium oil supply port 15h of the semi-carbonization reactor 15. The recovered heat medium oil recovered in the semi-carbonization reactor 15 is transferred to the heat exchanger 30 and circulated again.
  • the remaining combustion gas delivered from the burner 40 to the heat exchanger 30 is supplied to the dryer 3a of the supply unit 3 and used for drying the biomass material.
  • the burner 40 transfers the combustion gas generated while burning the pellets to the heat exchanger 30 so that the heat medium oil is generated in the heat exchanger 30.
  • the molding unit 7 is a pulverizer 7a for evenly crushing the semi-carbonized biomass delivered from the semi-carbonization device 10, and a pellet molding machine for molding the biomass pulverized in the pulverizer (7a) into pellets as a solid body (7b) can be provided.
  • the pellet molding machine 7b may further improve the strength and calorific value of the biomass solid by using the tar delivered from the tar removing device 20 as a binder.
  • Biomass solids manufacturing method using the biomass solids manufacturing system 1 according to the present invention having such a configuration is as shown in Figures 1 and 5, the supplying step (S10) for supplying the biomass material and
  • a treatment step (S20) of semi-carbonization and tar removal of the supplied biomass raw material there is a treatment step (S20) of semi-carbonization and tar removal of the supplied biomass raw material, and a molding step (S30) of forming the biomass, in which the semi-carbonization and tar removal is completed, as a solid.
  • the supplying step S10 may include a drying step S11 of drying the biomass material and a dust collecting step S12 of collecting the dried biomass.
  • the collected biomass may be stored in a predetermined storage tank 3c.
  • the combustion gas is discharged to the outside or combustion of the burner 40 to be described later It can be supplied as a gas.
  • the treatment step (S20) is a semi-carbonization step (S21) for semi-carbonizing the dried biomass material delivered in the supply step (S10), and pyrolysis in the process of semi-carbonizing the biomass in the semi-carbonization step (S21) Tar removal step (S22) to remove the tar contained in the semi-carbonization gas generated by the action.
  • the semi-carbon drying step (S21a) for drying the biomass material again, the preheating step (S21b) for preheating the biomass material dried in the semi-carbon drying step (S21a), and the preheated biomass It may be subdivided into a semi-carbonization step (S21c) for the semi-carbonization, and a cooling step (S21d) for cooling the semi-carbonized biomass in the semi-carbonization reaction (S21c).
  • Semi-carbonization drying step (S21a) is a step for removing moisture that may be included in the biomass delivered in the supply step (S10), can be further subdivided into a pre-drying step and the main drying step to increase the drying efficiency. .
  • the preheating step (S21b) is a process for preheating to a high temperature close to the semi-carbonization temperature before the biomass material from which the water is completely removed in the semi-carbonization drying step (S21a) is supplied to the semi-carbonization step (S21c). , It is possible to increase the semi-carbonization efficiency in the semi-carbonization step (S21c).
  • the preheating means used in this preheating step (S21b) may be a heat medium oil transferred from the heat exchanger 30 described above.
  • Semi-carbonization step (S21c) is a step of heat-treating the biomass delivered in the preheating step (S21b) for up to 30 minutes at a high temperature and an anoxic state of 260 °C ⁇ 300 °C, may be composed of the first reaction step and the second reaction step. have. At this time, the heat medium oil for semi-carbonization is delivered from the heat exchanger 30 described above.
  • the semi-carbonization gas generated in the semi-carbonization reaction step (S21c) is tar is removed in the tar removal step (S22) to be described later is supplied to some burners 40, the other half of the carbonization reaction step as an inert gas for semi-carbonization It is supplied again to S21c.
  • Cooling step (S21d) is a step of receiving and cooling the semi-carbonized biomass in the semi-carbonization step (S21c) to generate hot water by heat exchange action during the cooling process, this hot water is a semi-carbonization step (S21c) It is used to remove tar contained in semi-carbonized gas discharged from.
  • the tar removal step (S22) is a tar separation step (S22a) for filtering the tar contained in the semi-carbonization gas delivered in the semi-carbonization step (S21c) and a tar filtering step (S22b) for filtering the separated tar. It is composed.
  • the tar is separated from the semi-carbonized gas using the mesh conveyor 21.
  • Part of the semi-carbonized gas from which tar is separated is used as the combustion gas of the burner 40, and the remainder is used as an inert gas for anoxic state composition in the semi-carbonization step (S21c).
  • Tar filtering step (S22b) is used as a binder (binder) to form a pellet of biomass solids by supplying the tar to the forming step (S30) by filtering the hot water and tar from the tar separated in the tar separation step (S22a) Be sure to In addition, hot water is supplied to the tar separation step (S22a) is used for separating the tar contained in the semi-carbon gas.
  • Molding step (S30) is composed of a grinding step (S31) for evenly crushing the semi-carbonized biomass delivered from the semi-carbonization step (S21), and pellet molding step (S32) for molding the pulverized biomass into pellets as a solid body. do.
  • the pellet forming step (S32) it is possible to further improve the strength and calorific value of the biomass solid formed by using the tar delivered from the tar removal step (S22) as a binder.
  • tar can be efficiently removed during semi-carbonization and recycled as a binder of a biomass solid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은 바이오매스 고형체 제조시스템 및 제조방법에 관한 것으로서, 바이오매스 재료를 공급하는 공급부; 상기 공급부로부터 공급되는 바이오매스를 반탄화 처리하는 반탄화장치와, 상기 반탄화장치에서 발생하는 반탄화가스에서 타르를 제거하고 타르가 제거된 불활성가스를 상기 반탄화장치로 전달하는 타르제거장치를 갖는 처리부; 상기 처리부의 반탄화장치에서 전달되는 반탄화된 바이오매스를 상기 타르제거장치에서 제거된 타르를 이용하여 고형체로 성형하는 성형부를 포함하는 것을 특징으로 한다. 이에 의해, 설비 투자비용 및 관리비용을 절감함과 동시에, 반탄화 과정에서 타르를 효율적으로 제거하면서 재활용할 수 있는 바이오매스 고형체 제조시스템 및 제조방법이 제공된다. 또한, 바이오매스의 반탄화 과정에서 발생하는 열분해가스 및 타르를 재활용하여 바이오매스 고형체의 품질을 향상시킬 수 있고, 친환경적인 바이오매스 고형체 제조시스템 및 제조방법이 제공된다.

Description

바이오매스 고형체 제조시스템 및 제조방법
본 발명은 바이오매스 고형체 제조시스템 및 제조방법에 관한 것으로서, 설비 투자비용 및 관리비용을 절감함과 동시에, 반탄화 과정에서 타르를 효율적으로 제거하면서 재활용할 수 있고, 바이오매스 고형체의 품질을 향상시키면서 친환경적인 바이오매스 고형체 제조시스템 및 제조방법에 관한 것이다.
최근 석유 등과 같은 화석계 에너지의 대체 에너지로 주목받고 있는 바이오매스는 미가공 상태에서는 그 소재 내부의 공극률이 매우 높아서 부피가 크기 때문에, 기존 화석계 에너지에 비해 단위 에너지 당 수송비용이 상당히 고가로 형성된다.
이로 인해, 바이오매스의 장거리 수송, 특히, 해외로 수송하기 위한 해상 운송시 수송비용이 크게 상승하여 비경제적이며 경쟁력이 약화되는 단점을 가지고 있었다.
이에 최근에는 바이오매스 원재료를 반탄화 처리하여 단위 중량당 에너지밀도(Kcal/kg)를 높이면서, 바이오매스 원재료를 고형체인 펠릿 형태로 제조하여 단위 에너지 당 수송비용을 절감할 수 있는 바이오매스 펠릿의 제조방법이 개발된 바 있다.
여기서, 반탄화 처리는 고온의 무산소 상태에서 바이오매스 원재료를 열처리하여 중량을 30%정도 낮추는 것이다. 이때, 바이오매스의 발열량은 10%정도 감소되는데, 결과적으로는 단위중량당 발열량 즉, 에너지밀도(Kcal/kg)는 30%정도 향상되는 효과를 얻을 수 있다.
이렇게 반탄화 처리된 바이오메스를 고압으로 펠릿 형태의 고형체 물질로 성형하면, 그 부피가 줄어 단위 에너지당 수송비용을 30% 이상 절감할 수 있다.
그런데, 이러한 종래의 바이오매스 펠릿의 제조방법에 있어서는 반탄화 처리 과정에서 무산소 상태를 조성하기 위하여 질소나 과열 증기 등을 사용해야 하기 때문에, 질소 구매 및 질소공급 설비의 추가와 과열 증기 사용을 위한 설비 추가에 따른 투자비용 및 관리비용이 과도하게 상승하는 요구되는 문제점이 발생하였다.
또한, 바이오매스의 반탄화 처리 과정에서 열분해에 따른 타르(Tar)가 필연적으로 발생하게 되는데, 이 타르는 점도가 매우 높은 물질이기 때문에, 처리 공정 상의 설비나 연결 배관 등에 타르가 점착되어 열분해 가스 등의 유동을 방해하거나 설비의 가동 불능을 초래하는 문제점이 발생하였다.
또한, 바이오매스의 반탄화 과정에서 발생하는 열분해가스와 타르의 외부 배출에 따른 환경오염을 초래하는 문제점이 있었다.
따라서, 본 발명의 목적은 설비 투자비용 및 관리비용을 절감함과 동시에, 반탄화 과정에서 타르를 효율적으로 제거하면서 재활용할 수 있는 바이오매스 고형체 제조시스템 및 제조방법을 제공하는 것이다.
또한, 바이오매스의 반탄화 과정에서 발생하는 열분해가스 및 타르를 재활용하여 바이오매스 고형체의 품질을 향상시킬 수 있고, 친환경적인 바이오매스 고형체 제조시스템 및 제조방법을 제공하는 것이다.
상기 목적은 본 발명에 따라서, 바이오매스 고형체 제조시스템에 있어서, 바이오매스 재료를 공급하는 공급부; 상기 공급부로부터 공급되는 바이오매스를 반탄화 처리하는 반탄화장치와, 상기 반탄화장치에서 발생하는 반탄화가스에서 타르를 제거하고 타르가 제거된 불활성가스를 상기 반탄화장치로 전달하는 타르제거장치를 갖는 처리부; 상기 처리부의 반탄화장치에서 전달되는 반탄화된 바이오매스를 상기 타르제거장치에서 제거된 타르를 이용하여 고형체로 성형하는 성형부를 포함하는 것을 특징으로 하는 바이오매스 고형체 제조시스템에 의해 달성된다.
여기서, 공급부는 바이오매스 재료를 건조시키는 건조기와, 상기 건조기에서 건조된 바이오매스를 집진하는 집진기와, 상기 집진기에 집진된 바이오매스를 저장하여 반탄화장치로 전달하는 저장탱크를 갖는 것이 바람직하다.
그리고, 처리부는 열매체유를 생성하고 상기 열매체유를 반탄화장치로 공급하는 열교환기와, 상기 열교환기로 연소가스를 공급하는 버너를 더 포함하는 것이 효과적이다.
이때, 반탄화장치는 공급부로부터 공급되는 바이오매스 재료를 건조하는 반탄화건조기와, 상기 반탄화건조기에서 건조된 바이오매스 재료를 예열하는 예열기와, 상기 예열기에서 예열된 바이오매스를 전달받아 반탄화시키는 반탄화반응기와, 상기 반탄화반응기에서 반탄화된 바이오매스를 냉각시키는 냉각기를 갖는 것이 보다 바람직하다.
또한, 반탄화반응기는 이중재킷 형태의 통 형상을 갖는 반탄화챔버와, 상기 반탄화챔버 내부에 공급된 바이오매스 재료를 교반하는 반탄화교반수단과, 상기 반탄화챔버 내부를 가열하는 반탄화가열수단을 갖는 것이 보다 효과적이다.
또한, 반탄화챔버는 반탄화 가스를 타르제거장치로 배출하는 반탄화가스배출구와, 상기 타르제거장치에서 전달되는 불활성가스가 유입되는 불활성가스유입구와, 열교환기에서 전달되는 열매체유가 유입되는 열매체유공급구를 갖는 것이 바람직하다.
이때, 반탄화반응기는 복수로 마련되는 것이 효과적이다.
한편, 냉각기는 반탄화반응기로부터 전달되는 바이오매스가 체류하는 냉각챔버와, 상기 냉각챔버를 냉각시키기는 워터재킷을 갖는 것이 바람직하다.
그리고, 냉각챔버에서는 바이오매스를 냉각하는 과정에서 열교환작용에 의한 온수가 발생하며, 상기 온수는 타르제거장치로 공급되는 것이 효과적이다.
또한, 타르제거장치는 반탄화장치에서 전달되는 반탄화가스에 포함된 타르를 걸러내는 메쉬컨베이어와, 상기 메쉬컨베이어에 온수를 분사하여 타르를 분리하는 온수분사기와, 상기 메쉬컨베이어에서 분리된 타르에서 온수와 타르를 필터링하는 타르필터를 갖는 것이 보다 바람직하다.
이때, 메쉬컨베이어는 반탄화장치에서 버너를 향하는 반탄화가스의 이동 경로 상을 순환하는 메쉬부재와, 메쉬부재가 잠기는 온수챔버를 가지며; 온수분사기는 온수를 저장하는 수조와, 상기 수조에 저장된 온수를 상기 온수챔버 내에 위치하는 메쉬컨베이어에 분사하는 분사펌프를 갖는 것이 효과적이다.
그리고, 메쉬컨베이어를 거친 반탄화 가스의 일부는 버너로 전달되고, 나머지는 반탄화장치로 전달되는 것이 바람직하다.
또한, 타르필터에서 필터링된 온수는 수조로 재순환되며, 필터링된 타르는 성형부로 전달되어 바이오매스 고형체를 성형하는 결합제로 이용되는 것이 효과적이다.
한편, 성형부는 반탄화장치로부터 전달되는 반탄화된 바이오매스를 고르게 분쇄하는 분쇄기와, 상기 분쇄기에서 분쇄된 바이오매스를 고형체인 펠릿으로 성형하는 펠릿성형기를 갖는 것이 보다 바람직하다.
한편, 상기 목적은 바이오매스 고형체 제조방법에 있어서, 바이오매스 재료를 공급하는 공급단계; 상기 공급단계부로부터 공급되는 바이오매스를 반탄화 처리하는 반탄화단계와, 상기 반탄화단계에서 발생하는 반탄화가스에서 타르를 제거하고 타르가 제거된 불활성가스를 상기 반탄화단계로 전달하는 타르제거단계를 갖는 처리단계: 상기 반탄화단계에서 전달되는 반탄화된 바이오매스를 상기 타르제거단계에서 제거된 타르를 이용하여 고형체로 성형하는 성형단계를 포함하는 것을 특징으로 하는 바이오매스 고형체 제조방법에 의해서도 달성된다.
여기서, 공급단계는 바이오매스 재료를 건조하는 건조단계와, 건조된 바이오매스를 집진하는 집진단계를 포함하는 것이 바람직하다.
이때, 반탄화단계는 바이오매스 재료를 다시 건조하는 반탄화건조단계와, 상기 반탄화건조단계에서 건조된 바이오매스 재료를 예열하는 예열단계와, 예열된 바이오매스를 반탄화시키는 반탄화반응단계와, 반탄화반응단계에서 반탄화된 바이오매스를 냉각시키는 냉각단계를 갖는 것이 효과적이다.
그리고, 반탄화반응단계는 260℃ ~ 300℃의 무산소 상태에서 예열단계로부터 전달된 바이오매스를 최장 30분간 열처리하는 단계인 것이 바람직하다.
또한, 반탄화반응단계의 온도는 열매체유의 전달에 의해 이루어지는 것이 효과적이다.
또한, 반탄화반응단계에서 발생하는 반탄화 가스는 타르제거단계에서 타르가 제거된 다음 적어도 일부가 반탄화반응단계로 다시 공급되는 것이 바람직하다.
한편, 냉각단계에서는 열교환작용에 의한 온수가 발생하며, 상기 온수는 타르제거단계로 전달되는 것이 효과적이다.
그리고, 타르제거단계는 반탄화단계에서 전달되는 반탄화가스에 포함된 타르를 걸러내는 타르분리단계와, 분리된 타르를 필터링하는 타르필터링단계를 갖는 것이 보다 바람직하다.
이때, 타르분리단계에서 타르가 분리된 반탄화 가스의 일부는 반탄화단계에서 무산소 상태 조성을 위한 불활성가스로 이용되는 것이 보다 효과적이다.
또한, 타르필터링단계에서 필터링된 온수는 타르분리단계로 공급되고, 타르는 성형단계로 전달되어 바이오매스 고형체를 성형하는 결합제로 이용되는 것이 바람직하다.
한편, 성형단계는 반탄화단계로부터 전달되는 반탄화된 바이오매스를 고르게 분쇄하는 분쇄단계와, 분쇄된 바이오매스를 고형체인 펠릿으로 성형하는 펠릿성형단계를 갖는 것이 바람직하다.
본 발명에 따르면, 설비 투자비용 및 관리비용을 절감함과 동시에, 반탄화 과정에서 타르를 효율적으로 제거하면서 재활용할 수 있는 바이오매스 고형체 제조시스템 및 제조방법이 제공된다.
또한, 바이오매스의 반탄화 과정에서 발생하는 열분해가스 및 타르를 재활용하여 바이오매스 고형체의 품질을 향상시킬 수 있고, 친환경적인 바이오매스 고형체 제조시스템 및 제조방법이 제공된다.
도 1은 본 발명에 따른 바이오매스 고형체 제조시스템의 간략한 공정도,
도 2는 도 1의 바이오매스 고형체 제조 공정상의 타르 제거 공정의 개략도,
도 3은 도 1의 바이오매스 고형체 제조 공정상의 반탄화 설비 개략도,
도 4는 도 3의 반탄화 설비의 반탄화 반응기 개략도,
도 5는 본 발명에 따른 바이오매스 고형체 제조방법의 간략한 블록도.
이하에서는 첨부된 도면을 참고하여 본 발명에 대해 상세하게 설명한다.
도 1에 도시된 바와 같이, 본 발명에 따른 바이오매스 고형체 제조시스템(1)은 바이오매스를 공급하는 공급부(3)와, 공급부(3)로부터 공급되는 바이오매스를 반탄화 처리하고 반탄화 처리과정에서 발생하는 타르를 제거하는 처리부(5)와, 처리부(5)에서 반탄화 및 타르가 제거된 바이오매스를 고형체로 형성하는 성형부(7)를 포함한다.
공급부(3)는 바이오매스 재료를 건조하는 건조기(3a)와, 건조기(3a)에서 건조된 바이오매스를 집진하는 집진기(3b)와, 집진기(3b)에 집진된 바이오매스를 저장하는 저장탱크(3c)를 구비할 수 있다. 여기서, 집진기(3b)에 집진된 바이오매스는 송풍기(3d)의 송풍작용에 의해 저장탱크(3c)로 이동될 수 있으며, 건조기(3a)에서 바이오매스가 건조되어 집진기(3b)로 이동했을 때 집진기(3b) 내에 발생하는 연소가스는 배관을 통해 외부로 배출되거나 후술할 버너(40)의 연소가스로 공급될 수 있다.
처리부(5)는 공급부(3)의 저장탱크(3c)로부터 전달되는 건조된 바이오매스 재료를 반탄화 처리하는 반탄화장치(10)와, 반탄화장치(10)에서 바이오매스를 반탄화하는 과정에서 열분해 작용에 의해 발생하는 반탄화가스에 포함된 타르를 제거하는 타르제거장치(20)와, 후술할 버너(40)에서 전달되는 연소가스를 열교환하여 열매체유를 생성하고 이 열매체유를 반탄화장치(10)로 공급하는 열교환기(30)와, 열교환기(30)로 연소가스를 공급하기 위한 버너(40)를 가지고 있다.
반탄화장치(10)는 도 2에 도시된 바와 같이, 공급부(3)의 저장탱크(3c)로부터 공급되는 바이오매스 재료를 다시 건조하는 반탄화건조기(11)와, 반탄화건조기(11)에서 건조된 바이오매스 재료를 예열하는 예열기(13)와, 예열기(13)에서 예열된 바이오매스를 전달받아 반탄화시키는 반탄화반응기(15)와, 반탄화반응기(15)에서 반탄화된 바이오매스를 냉각시키는 냉각기(17)와, 냉각된 바이오매스를 성형부(7)로 이동시키는 배출기(19)로 구성될 수 있다.
반탄화건조기(11)는 공급부(3)의 저장탱크(3c)로부터 전달된 바이오매스에 포함되어 있을 수 있는 수분을 제거하기 위한 것으로서, 건조효율을 높이기 위해 예비건조기(11a)와, 주건조기(11b)로 구비될 수 있다.
그리고, 예열기(13)는 반탄화건조기(11)에서 수분이 완벽하게 제거된 바이오매스 재료가 반탄화반응기(15)로 공급되기 전 반탄화 처리온도에 근접한 고온으로 예열하기 위한 것으로서, 반탄화반응기(15)에서의 반탄화 효율을 증대시킬 수 있다.
이 예열기(13)는 통형상의 예열챔버(13a) 내에 바이오매스를 교반시키는 예열교반수단(13b)과, 예열챔버(13a) 내부를 예열온도로 가열하는 예열수단이 구비된 형태일 수 있다.
이때, 예열교반수단(13b)은 도시하지는 않았지만 예열챔버(13a)의 공급 측으로부터 배출 측을 향해 바이오매스를 이동시키도록 도시 않은 구동모터에 의해 회전하는 이송스크류 형태일 수 있다. 또는, 예열교반수단(13b)은 도시 않은 구동모터에 의해 회전하는 복수의 교반플레이트일 수 있다.
또한, 예열수단은 예열챔버(13a)의 외주면을 이중재킷 구조로 형성하고, 고온의 예열 액체를 이중재킷 내부로 순환시켜서 예열챔버(13a)를 예열온도로 유지시키는 형태로 마련될 수 있다. 여기서 예열 액체는 열교환기(30)로부터 전달되는 열매체유일 수 있다.
한편, 반탄화반응기(15)는 260℃ ~ 300℃의 고온과 무산소 상태에서 예열기(13)에서 에열되어 전달된 바이오매스를 최장 30분간 열처리하는 것으로서, 제1반응기(15a)와 제2반응기(15b)를 구비하여 바이오매스를 순차적으로 반탄화 처리할 수 있다.
이때, 제1 및 제2반응기(15a,15b)는 도 3에 도시된 바와 같이, 이중재킷 형태의 통 형상을 갖는 반탄화챔버(15c)에 반탄화교반수단(15d)과 반탄화가열수단(15e)이 구비된 형태일 수 있다.
반탄화교반수단(15d)은 반탄화챔버(15c)의 공급 측(15i)으로부터 배출 측(15j)을 향해 바이오매스를 이동시키도록 도시 않은 구동모터에 의해 회전하는 이송스크류 형태일 수 있다. 또는, 반탄화교반수단(15d)은 도시 않은 구동모터에 의해 회전하는 복수의 교반플레이트일 수 있다.
또한, 반탄화가열수단(15e)은 반탄화챔버(15c)의 외주면을 이중재킷 구조로 형성하고, 열교환기(30)로부터 전달되는 고온의 열매체유를 이중재킷 내부로 순환시켜서 반탄화챔버(15c)를 반탄화 온도로 유지시키는 형태로 마련될 수 있다.
그리고, 제1 및 제2반응기(15a,15b)에는 반탄화 과정에서 발생하는 반탄화 가스를 타르제거장치(20)로 배출하는 반탄화가스배출구(15f)와, 타르제거장치(20)에서 전달되는 불활성가스가 유입되는 불활성가스유입구(15g)와, 열교환기(30)에서 전달되는 열매체유가 유입되는 열매체유공급구(15h)가 형성되어 있다. 이때, 불활성가스유입구(15g) 및 열매체유공급구(15h)는 반탄화챔버(15c)의 공급 측(15i)에 인접하게 마련되며, 반탄화가스배출구(15f)는 반탄화챔버(15c)의 배출 측(15j)에 인접하게 마련된다.
냉각기(17)는 반탄화반응기(15)에서 반탄화 처리된 바이오매스를 전달받아 냉각시키기 위한 것으로서, 바이오매스가 체류하는 냉각챔버(17a)와, 냉각챔버(17a)를 냉각시키기 위한 냉각수를 공급하는 워터재킷(17b)을 구비할 수 있다. 냉각챔버(17a)에서 바이오매스를 냉각하는 과정에서 열교환작용에 의한 온수가 발생하게 되는데, 이 온수는 반탄화반응기(15)에사 배츨되는 반탄화가스에 포함된 타르를 제거하기 위한 용도로서 타르제거장치(20)로 공급된다.
배출기(19)는 냉각기(17)의 냉각챔버(17a) 배출 측으로부터 후술할 성형부(7)의 분쇄기(7a)를 향해 설치되어 냉각기(17)에서 냉각된 반탄화 완료 후의 바이오매스를 성형부(7)로 전달하는 배출컨베이어일 수 있다.
한편, 타르제거장치(20)는 도 4에 도시된 바와 같이, 반탄화반응기(15)에서 전달되는 반탄화가스에 포함된 타르를 걸러내는 메쉬컨베이어(21)와, 메쉬컨베이어(21)에 걸러진 타르를 분리하는 온수분사기(23)와, 메쉬컨베이어(21)에서 분리된 타르를 온수와 필터링하는 타르필터(25)를 갖는다.
메쉬컨베이어(21)는 반탄화반응기(15)에서 버너(40)를 향하는 반탄화가스의 이동 경로 상에 메쉬부재(21a)를 순환 시키는 구조로 마련되며, 메쉬컨베이어(21)의 하부에는 타르가 걸러진 메쉬부재(21a)가 순환되는 과정에서 온수에 잠기도록 온수챔버(21b)가 마련된다. 이 메쉬컨베이어(21)를 거친 반탄화 가스는 타르가 걸러진 상태로서 일부는 버너(40)의 연소가스로 이용되며, 나머지는 반탄화반응기(15)의 무산소 상태 조성을 위한 불활성가스로 이용된다. 이를 위해, 메쉬컨베이어(21)를 지난 위치에서 가스의 이동을 위한 배관은 버너(40)와 반탄화반응기(15)의 불활성가스유입구(15g)로 연장된다.
온수분사기(23)는 온수를 저장하는 수조(23a)와, 수조(23a)에 저장된 온수를 온수챔버(21b) 내에 위치하는 메쉬컨베이어(21)에 분사하는 분사펌프(23b)를 구비할 수 있다. 수조(23a)는 전술한 냉각기(17)에서 발생한 온수를 전달받아 저장하는데, 이 수조(23a)에 저장된 온수의 온도저하를 고려하여 가열기(23c)를 추가로 구비할 수 있다. 또한, 이 수조(23a)에는 수조(23a) 청소 등을 고려하여 드레인(23d) 구조가 마련될 수 있다.
타르필터(25)는 메쉬컨베이어(21)로 분사된 온수에 의해 메쉬컨베이어(21)에서 걸러진 타르가 온수와 함께 온수챔버(21b)에 수령된 다음 배출되면, 타르에 포함된 온수를 필터링한다. 타르필터(25)에서 필터링된 온수는 온수분사기(23)의 수조(23a)로 재순환되며, 필터링된 타르는 성형부(7)의 펠릿성형기(7b)로 전달되어 바이오매스 고형체인 펠릿을 성형하는 결합제(binder)로 이용된다.
타르는 바이오매스의 성분으로서 셀룰로오스, 헤미셀룰로오스 및 리그닌이 반탄화 과정에서 열분해되어 발생되는 점도가 높은 물질로서 접착력을 가지며, 이러한 타르의 접착력은 바이오매스를 고형체인 펠릿으로 성형하는 결합제로 이용되는 것이다.
한편, 열교환기(30)는 버너(40)에서 전달되는 연소가스 중 일부를 열교환하여 열매체유를 생성하고 이 열매체유를 반탄화반응기(15)로 공급한다. 이를 위해 열교환기(30)로부터 반탄화반응기(15)의 열매체유공급구(15h)를 향해 연결배관이 구비된다. 반탄화반응기(15)에서 회수되는 회수 열매체유는 다시 열교환기(30)로 전달되어 순환된다.
그리고, 버너(40)에서 열교환기(30)로 전달된 나머지 연소가스는 공급부(3)의 건조기(3a)로 공급되어 바이오매스 재료의 건조를 위해 사용된다.
버너(40)는 펠릿을 연소시키면서 발생되는 연소가스를 열교환기(30)로 전달하여 열교환기(30)에서 열매체유가 생성되도록 한다.
한편, 성형부(7)는 반탄화장치(10)로부터 전달되는 반탄화된 바이오매스를 고르게 분쇄하는 분쇄기(7a)와, 분쇄기(7a)에서 분쇄된 바이오매스를 고형체인 펠릿으로 성형하는 펠릿성형기(7b)를 구비할 수 있다. 이때, 펠릿성형기(7b)에서는 타르제거장치(20)로부터 전달되는 타르를 결합제로 하여 바이오매스 고형체의 강도와 발열량을 보다 향상시킬 수 있다.
이러한 구성을 갖는 본 발명에 따른 바이오매스 고형체 제조시스템(1)을 이용한 바이오매스 고형체의 제조방법은 도 1 및 도 5에 도시된 바와 같이, 바이오매스 재료를 공급하는 공급단계(S10)와, 공급된 바이오매스 원재료를 반탄화 및 타르 제거하는 처리단계(S20)와, 반탄화 및 타르 제거가 완료된 바이오매스를 고형체로 형성하는 성형단계(S30)를 갖는다.
공급단계(S10)는 바이오매스 재료를 건조하는 건조단계(S11)와, 건조된 바이오매스를 집진하는 집진단계(S12)로 구성될 수 있다. 집진된 바이오매스를 소정의 저장탱크(3c)에 저장될 수 있다. 이때, 건조단계(S11)에서 바이오매스가 건조되어 집진단계(S12)로 이동하는 과정에서 건조열에 의한 연소가스가 발생될 수 있는데, 이 연소가스는 외부로 배출되거나 후술할 버너(40)의 연소가스로 공급될 수 있다.
한편, 처리단계(S20)는 공급단계(S10)에서 전달되는 건조된 바이오매스 재료를 반탄화 처리하는 반탄화단계(S21)와, 반탄화단계(S21)에서 바이오매스를 반탄화하는 과정에서 열분해 작용에 의해 발생하는 반탄화가스에 포함된 타르를 제거하는 타르제거단계(S22)로 이루어진다.
반탄화단계(S21)에서는 바이오매스 재료를 다시 건조하는 반탄화건조단계(S21a)와, 반탄화건조단계(S21a)에서 건조된 바이오매스 재료를 예열하는 예열단계(S21b)와, 예열된 바이오매스를 반탄화시키는 반탄화반응단계(S21c)와, 반탄화반응단계(S21c)에서 반탄화된 바이오매스를 냉각시키는 냉각단계(S21d)로 세분화될 수 있다.
반탄화건조단계(S21a)는 공급단계(S10)에서 전달된 바이오매스에 포함되어 있을 수 있는 수분을 제거하기 단계로서, 건조효율을 높이기 위해 예비건조단계와, 주건조단계로 보다 세분화될 수 있다.
그리고, 예열단계(S21b)는 반탄화건조단계(S21a)에서 수분이 완벽하게 제거된 바이오매스 재료가 반탄화반응단계(S21c)로 공급되기 전 반탄화 처리온도에 근접한 고온으로 예열하기 위한 과정으로서, 반탄화반응단계(S21c)에서의 반탄화 효율을 증대시킬 수 있다.
이 예열단계(S21b)에서 이용되는 예열수단은 전술한 열교환기(30)에서 전달되는 열매체유일 수 있다.
반탄화반응단계(S21c)는 260℃ ~ 300℃의 고온과 무산소 상태에서 예열단계(S21b)에서 전달된 바이오매스를 최장 30분간 열처리하는 단계로서, 제1반응단계와 제2반응단계로 이루어질 수 있다. 이때, 반탄화를 위한 열매체유는 전술한 열교환기(30)에서 전달된다.
이 반탄화반응단계(S21c)에서 발생하는 반탄화 가스는 후술할 타르제거단계(S22)에서 타르가 제거되어 일부 버너(40)로 공급되고, 나머지는 반탄화를 위한 불활성가스로 반탄화반응단계(S21c)로 다시 공급된다.
냉각단계(S21d)는 반탄화반응단계(S21c)에서 반탄화 처리된 바이오매스를 전달받아 냉각시키는 단계로서 냉각과정에서 열교환작용에 의한 온수가 발생하게 되는데, 이 온수는 반탄화반응단계(S21c)에서 배츨되는 반탄화가스에 포함된 타르를 제거하기 위한 용도로 이용된다.
한편, 타르제거단계(S22)는 반탄화반응단계(S21c)에서 전달되는 반탄화가스에 포함된 타르를 걸러내는 타르분리단계(S22a)와, 분리된 타르를 필터링하는 타르필터링단계(S22b)로 구성된다.
타르분리단계(S22a)에서는 전술한 바와 같이, 메쉬컨베이어(21)를 이용하여 반탄화가스에서 타르를 분리한다. 타르가 분리된 반탄화 가스의 일부는 버너(40)의 연소가스로 이용되며, 나머지는 반탄화반응단계(S21c)에서 무산소 상태 조성을 위한 불활성가스로 이용된다.
타르필터링단계(S22b)는 타르분리단계(S22a)에서 분리된 타르에서 온수와 타르를 필터링하여 이 중 타르를 성형단계(S30)로 공급하여 바이오매스 고형체인 펠릿을 성형하는 결합제(binder)로 이용되도록 한다. 또한, 온수는 타르분리단계(S22a)로 공급하여 반탄화가스에 포함된 타르를 분리하기 위한 용도로 이용된다.
성형단계(S30)는 반탄화단계(S21)로부터 전달되는 반탄화된 바이오매스를 고르게 분쇄하는 분쇄단계(S31)와, 분쇄된 바이오매스를 고형체인 펠릿으로 성형하는 펠릿성형단계(S32)로 구성된다. 펠릿성형단계(S32)에서는 타르제거단계(S22)로부터 전달되는 타르를 결합제로 하여 성형되는 바이오매스 고형체의 강도와 발열량을 보다 향상시킬 수 있다.
이와 같이, 본 발명에 따른 바이오매스 재료의 반탄화 과정에서 발생하는 반탄화가스에서 타르를 제거하여 반탄화 과정의 무산소 상태 조성을 위한 불활성 가스로 재사용함으로써, 종래 질소나 과열 증기 등을 사용하는 반탄화 처리에 비해서 설비 투자비용 및 관리비용이 현격하게 절감된다.
또한, 반탄화 과정에서 타르를 효율적으로 제거하여 바이오매스 고형체의 결합제로 재활용할 수 있다.
또한, 바이오매스의 반탄화 과정에서 발생하는 열분해가스 및 타르를 재활용함으로써, 바이오매스 고형체의 강도나 발열량 향상에 따른 품질 향상을 도모함과 동시에 친환경적인 바이오매스 고형체 제조시스템 및 제조방법을 제공할 수 있다.
바이오매스의 반탄화 처리를 위한 설비 투자비용과 관리비용이 절감되며, 친환경적인 바이오매스 고형체 제조시스템 및 제조방법을 제공한다.

Claims (25)

  1. 바이오매스 고형체 제조시스템에 있어서,
    바이오매스 재료를 공급하는 공급부;
    상기 공급부로부터 공급되는 바이오매스를 반탄화 처리하는 반탄화장치와, 상기 반탄화장치에서 발생하는 반탄화가스에서 타르를 제거하고 타르가 제거된 불활성가스를 상기 반탄화장치로 전달하는 타르제거장치를 갖는 처리부;
    상기 처리부의 반탄화장치에서 전달되는 반탄화된 바이오매스를 상기 타르제거장치에서 제거된 타르를 이용하여 고형체로 성형하는 성형부를 포함하는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  2. 제1항에 있어서,
    공급부는
    바이오매스 재료를 건조시키는 건조기와,
    상기 건조기에서 건조된 바이오매스를 집진하는 집진기와,
    상기 집진기에 집진된 바이오매스를 저장하여 반탄화장치로 전달하는 저장탱크를 갖는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  3. 제1항 또는 제2항에 있어서,
    처리부는
    열매체유를 생성하고 상기 열매체유를 반탄화장치로 공급하는 열교환기와,
    상기 열교환기로 연소가스를 공급하는 버너를 더 포함하는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  4. 제3항에 있어서,
    반탄화장치는
    공급부로부터 공급되는 바이오매스 재료를 건조하는 반탄화건조기와,
    상기 반탄화건조기에서 건조된 바이오매스 재료를 예열하는 예열기와,
    상기 예열기에서 예열된 바이오매스를 전달받아 반탄화시키는 반탄화반응기와,
    상기 반탄화반응기에서 반탄화된 바이오매스를 냉각시키는 냉각기를 갖는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  5. 제4항에 있어서,
    반탄화반응기는
    이중재킷 형태의 통 형상을 갖는 반탄화챔버와,
    상기 반탄화챔버 내부에 공급된 바이오매스 재료를 교반하는 반탄화교반수단과,
    상기 반탄화챔버 내부를 가열하는 반탄화가열수단을 갖는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  6. 제5항에 있어서,
    반탄화챔버는
    반탄화 가스를 타르제거장치로 배출하는 반탄화가스배출구와,
    상기 타르제거장치에서 전달되는 불활성가스가 유입되는 불활성가스유입구와,
    열교환기에서 전달되는 열매체유가 유입되는 열매체유공급구를 갖는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  7. 제5항에 있어서,
    반탄화반응기는 복수로 마련되는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  8. 제4항에 있어서,
    냉각기는
    반탄화반응기로부터 전달되는 바이오매스가 체류하는 냉각챔버와,
    상기 냉각챔버를 냉각시키기는 워터재킷을 갖는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  9. 제8항에 있어서,
    냉각챔버에서는 바이오매스를 냉각하는 과정에서 열교환작용에 의한 온수가 발생하며, 상기 온수는 타르제거장치로 공급되는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  10. 제3항에 있어서,
    타르제거장치는
    반탄화장치에서 전달되는 반탄화가스에 포함된 타르를 걸러내는 메쉬컨베이어와,
    상기 메쉬컨베이어에 온수를 분사하여 타르를 분리하는 온수분사기와,
    상기 메쉬컨베이어에서 분리된 타르에서 온수와 타르를 필터링하는 타르필터를 갖는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  11. 제10항에 있어서,
    메쉬컨베이어는 반탄화장치에서 버너를 향하는 반탄화가스의 이동 경로 상을 순환하는 메쉬부재와, 메쉬부재가 잠기는 온수챔버를 가지며;
    온수분사기는 온수를 저장하는 수조와, 상기 수조에 저장된 온수를 상기 온수챔버 내에 위치하는 메쉬컨베이어에 분사하는 분사펌프를 갖는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  12. 제10항에 있어서,
    메쉬컨베이어를 거친 반탄화 가스의 일부는 버너로 전달되고, 나머지는 반탄화장치로 전달되는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  13. 제11항에 있어서,
    타르필터에서 필터링된 온수는 수조로 재순환되며, 필터링된 타르는 성형부로 전달되어 바이오매스 고형체를 성형하는 결합제로 이용되는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  14. 제1항 또는 13항에 있어서,
    성형부는
    반탄화장치로부터 전달되는 반탄화된 바이오매스를 고르게 분쇄하는 분쇄기와,
    상기 분쇄기에서 분쇄된 바이오매스를 고형체인 펠릿으로 성형하는 펠릿성형기를 갖는 것을 특징으로 하는 바이오매스 고형체 제조시스템.
  15. 바이오매스 고형체 제조방법에 있어서,
    바이오매스 재료를 공급하는 공급단계;,
    상기 공급단계부로부터 공급되는 바이오매스를 반탄화 처리하는 반탄화단계와, 상기 반탄화단계에서 발생하는 반탄화가스에서 타르를 제거하고 타르가 제거된 불활성가스를 상기 반탄화단계로 전달하는 타르제거단계를 갖는 처리단계:
    상기 반탄화단계에서 전달되는 반탄화된 바이오매스를 상기 타르제거단계에서 제거된 타르를 이용하여 고형체로 성형하는 성형단계를 포함하는 것을 특징으로 하는 바이오매스 고형체 제조방법.
  16. 제15항에 있어서,
    공급단계는
    바이오매스 재료를 건조하는 건조단계와,
    건조된 바이오매스를 집진하는 집진단계를 포함하는 것을 특징으로 하는 바이오매스 고형체 제조방법.
  17. 제15항에 있어서,
    반탄화단계는
    바이오매스 재료를 다시 건조하는 반탄화건조단계와,
    상기 반탄화건조단계에서 건조된 바이오매스 재료를 예열하는 예열단계와,
    예열된 바이오매스를 반탄화시키는 반탄화반응단계와,
    반탄화반응단계에서 반탄화된 바이오매스를 냉각시키는 냉각단계를 갖는 것을 특징으로 하는 바이오매스 고형체 제조방법.
  18. 제17항에 있어서,
    반탄화반응단계는
    260℃ ~ 300℃의 무산소 상태에서 예열단계로부터 전달된 바이오매스를 최장 30분간 열처리하는 단계인 것을 특징으로 하는 바이오매스 고형체 제조방법.
  19. 제18항에 있어서,
    반탄화반응단계의 온도는 열매체유의 전달에 의해 이루어지는 것을 특징으로 하는 바이오매스 고형체 제조방법.
  20. 제17항 내지 제19항 중 어느 한 항에 있어서,
    반탄화반응단계에서 발생하는 반탄화 가스는 타르제거단계에서 타르가 제거된 다음 적어도 일부가 반탄화반응단계로 다시 공급되는 것을 특징으로 하는 바이오매스 고형체 제조방법.
  21. 제17항에 있어서,
    냉각단계에서는 열교환작용에 의한 온수가 발생하며, 상기 온수는 타르제거단계로 전달되는 것을 특징으로 하는 바이오매스 고형체 제조방법.
  22. 제15항 또는 제21항에 있어서,
    타르제거단계는
    반탄화단계에서 전달되는 반탄화가스에 포함된 타르를 걸러내는 타르분리단계와,
    분리된 타르를 필터링하는 타르필터링단계를 갖는 것을 특징으로 하는 바이오매스 고형체 제조방법.
  23. 제22항에 있어서,
    타르분리단계에서 타르가 분리된 반탄화 가스의 일부는 반탄화단계에서 무산소 상태 조성을 위한 불활성가스로 이용되는 것을 특징으로 하는 바이오매스 고형체 제조방법.
  24. 제22항에 있어서,
    타르필터링단계에서 필터링된 온수는 타르분리단계로 공급되고, 타르는 성형단계로 전달되어 바이오매스 고형체를 성형하는 결합제로 이용되는 것을 특징으로 하는 바이오매스 고형체 제조방법.
  25. 제15항에 있어서,
    성형단계는
    반탄화단계로부터 전달되는 반탄화된 바이오매스를 고르게 분쇄하는 분쇄단계와,
    분쇄된 바이오매스를 고형체인 펠릿으로 성형하는 펠릿성형단계를 갖는 것을 특징으로 하는 바이오매스 고형체 제조방법.
PCT/KR2011/007139 2011-04-20 2011-09-28 바이오매스 고형체 제조시스템 및 제조방법 WO2012144700A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0036950 2011-04-20
KR1020110036950A KR101189588B1 (ko) 2011-04-20 2011-04-20 바이오매스 고형체 제조시스템 및 제조방법

Publications (1)

Publication Number Publication Date
WO2012144700A1 true WO2012144700A1 (ko) 2012-10-26

Family

ID=47041773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007139 WO2012144700A1 (ko) 2011-04-20 2011-09-28 바이오매스 고형체 제조시스템 및 제조방법

Country Status (2)

Country Link
KR (1) KR101189588B1 (ko)
WO (1) WO2012144700A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106047382A (zh) * 2016-06-29 2016-10-26 北京神雾环境能源科技集团股份有限公司 一种自除尘型垃圾热解和裂解系统
CN106833699A (zh) * 2017-04-06 2017-06-13 四川大宇中和农业科技发展有限公司 隔氧除尘的秸秆炭化装置
KR102205450B1 (ko) * 2020-12-11 2021-01-25 주식회사 원천환경기술 축분을 주원료로 한 고체연료화 시스템 및 그 방법
CN113862014A (zh) * 2021-11-03 2021-12-31 武汉蓝颖新能源有限公司 一种生物质热解供热装置及其使用方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8991513B2 (en) 2012-11-20 2015-03-31 Elwha Llc Biomass storage system
KR101837696B1 (ko) * 2015-10-30 2018-03-14 한국생산기술연구원 바이오매스 유동층 반탄화 시스템 및 방법
KR101842132B1 (ko) * 2016-11-04 2018-05-15 한국생산기술연구원 다단 바이오매스 반탄화 장치
KR102063708B1 (ko) * 2017-11-29 2020-01-09 한국생산기술연구원 타르 회수를 통한 바이오촤 펠릿 생산 시스템
KR102107641B1 (ko) * 2018-08-31 2020-05-07 한국에너지기술연구원 다단 건조 및 반탄화 반응기
KR102213062B1 (ko) * 2019-04-12 2021-02-08 한국생산기술연구원 타르 재흡착을 통한 고품위 반탄화 바이오매스 생산장치
KR102289529B1 (ko) * 2019-09-24 2021-08-12 현대제철 주식회사 탄재내장펠렛용 조성물 및 이를 이용한 탄재내장펠렛 제조방법
KR102495636B1 (ko) * 2020-12-10 2023-02-06 김명숙 연속식 바이오매스 탄화장치
KR102316543B1 (ko) * 2021-06-01 2021-10-25 고등기술연구원연구조합 바이오 드라잉과 반탄화를 이용한 에너지화 시스템
KR102563241B1 (ko) * 2022-12-15 2023-08-03 (주) 오카도라코리아 유기물을 이용한 에너지 절감형 바이오차 생산 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020028359A (ko) * 2000-10-09 2002-04-17 이구택 중질타르 처리방법 및 장치
KR100926918B1 (ko) * 2005-01-24 2009-11-17 재단법인 오사카산업진흥기구 바이오매스 고형물 및 그 제조 방법
JP2010242035A (ja) * 2009-04-10 2010-10-28 Jfe Steel Corp バイオマス炭の製造方法
JP2010248061A (ja) * 2009-03-24 2010-11-04 Jfe Steel Corp バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020028359A (ko) * 2000-10-09 2002-04-17 이구택 중질타르 처리방법 및 장치
KR100926918B1 (ko) * 2005-01-24 2009-11-17 재단법인 오사카산업진흥기구 바이오매스 고형물 및 그 제조 방법
JP2010248061A (ja) * 2009-03-24 2010-11-04 Jfe Steel Corp バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置
JP2010242035A (ja) * 2009-04-10 2010-10-28 Jfe Steel Corp バイオマス炭の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106047382A (zh) * 2016-06-29 2016-10-26 北京神雾环境能源科技集团股份有限公司 一种自除尘型垃圾热解和裂解系统
CN106833699A (zh) * 2017-04-06 2017-06-13 四川大宇中和农业科技发展有限公司 隔氧除尘的秸秆炭化装置
KR102205450B1 (ko) * 2020-12-11 2021-01-25 주식회사 원천환경기술 축분을 주원료로 한 고체연료화 시스템 및 그 방법
CN113862014A (zh) * 2021-11-03 2021-12-31 武汉蓝颖新能源有限公司 一种生物质热解供热装置及其使用方法

Also Published As

Publication number Publication date
KR101189588B1 (ko) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2012144700A1 (ko) 바이오매스 고형체 제조시스템 및 제조방법
WO2013094879A1 (ko) 액체금속을 이용한 열분해 장치
WO2020222423A2 (ko) 폐기물로부터 열분해 오일 생산 시스템
WO2015122688A1 (ko) 바이오 촤 생산 시스템 및 바이오 촤 생산 방법
US3971704A (en) Method and apparatus for pollution free, destructively processing waste
CN104152164B (zh) 煤气循环煤炭全粒径分级热解工艺及系统
WO2017116025A1 (ko) 혼합 바이오매스를 이용한 반탄화물 제조장치
WO2017078225A1 (ko) 플라즈마 열풍을 이용한 바이오오일 회수장치
CN206289157U (zh) 一种含油污泥碳化处理装置
WO2011132828A1 (ko) 바인더 물질과 탄소원이 혼합된 고체 연료를 제조하는 방법 및 그 방법에 의해 제조된 고체 연료
CN106746462A (zh) 一种含油污泥碳化处理装置
CN106587552A (zh) 一种含油污泥碳化处理方法
KR101219776B1 (ko) 바이오매스 연료 토리팩션 장치 및 전처리 방법
WO2013018959A1 (ko) 청정연료의 제조방법, 이를 위한 유기성분 추출 분리 반응기
WO2015093845A1 (ko) 석탄의 고품위 처리 시스템 및 석탄의 고품위 처리 방법
KR20200092064A (ko) 열분해유 폐합성수지 효율적인 재생장치
CN216863955U (zh) 一种含油污泥热解处理系统
CN113048482B (zh) 一种自带干燥功能的垃圾热解气化系统装置及垃圾热解气化方法
CN103173238A (zh) 一种费托合成反应蜡渣的热裂解方法
KR100609292B1 (ko) 폐타이어 열분해 오일화 장치
CN102408904A (zh) 一种利用干馏技术处理皮革厂dmf蒸馏残渣的工艺
KR20110004601A (ko) 하수 슬러지 건조 및 탄화 장치
KR101064052B1 (ko) 폐주물사 재생장치
TWM566805U (zh) Carbonization furnace construction
CN113976091A (zh) 一种废颗粒活性炭再生余热利用的装置及其工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864125

Country of ref document: EP

Kind code of ref document: A1