WO2012074283A2 - 저온 액화물 가압 송출 장치 - Google Patents

저온 액화물 가압 송출 장치 Download PDF

Info

Publication number
WO2012074283A2
WO2012074283A2 PCT/KR2011/009184 KR2011009184W WO2012074283A2 WO 2012074283 A2 WO2012074283 A2 WO 2012074283A2 KR 2011009184 W KR2011009184 W KR 2011009184W WO 2012074283 A2 WO2012074283 A2 WO 2012074283A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied
pressure
low temperature
sending device
heat
Prior art date
Application number
PCT/KR2011/009184
Other languages
English (en)
French (fr)
Other versions
WO2012074283A3 (ko
Inventor
장대준
서수원
김준영
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100120930A external-priority patent/KR101191135B1/ko
Priority claimed from KR1020110019161A external-priority patent/KR101193613B1/ko
Priority claimed from KR1020110052476A external-priority patent/KR101254103B1/ko
Priority claimed from KR1020110075840A external-priority patent/KR101341794B1/ko
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to CN201180065253.1A priority Critical patent/CN103328877B/zh
Priority to US13/990,613 priority patent/US9683702B2/en
Priority to SG2013041389A priority patent/SG190435A1/en
Publication of WO2012074283A2 publication Critical patent/WO2012074283A2/ko
Publication of WO2012074283A3 publication Critical patent/WO2012074283A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/035Orientation with substantially horizontal main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0374Localisation of heat exchange in or on a vessel in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/01Intermediate tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/056Improving fluid characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • F17C2265/015Purifying the fluid by separating
    • F17C2265/017Purifying the fluid by separating different phases of a same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6416With heating or cooling of the system

Definitions

  • the present invention relates to a low temperature liquid liquefied pressure sending device, and more particularly, the present invention can convert the low temperature liquid liquefied to a high pressure gas and can be easily discharged, and in this process it is possible to prevent a composition change phenomenon and a flashing phenomenon. It is related with the low temperature liquefaction pressurized sending apparatus which can be used.
  • a low temperature liquid liquefied pressurized discharge is required to pressurize or heat the liquid to a higher pressure and temperature liquid or gas.
  • the liquid liquefied in the low temperature liquefied pressurized delivery 100 shown in Figure 1 is the pressure is increased by the pump 120, the temperature is increased through the evaporator heater 130 is supplied to the fuel consumption source 140. .
  • the low temperature liquid liquefied pressure sending device 100 due to the low temperature liquid liquefied heat penetration may occur in the pipe 150 between the low pressure liquefied tank 110 and the pump 120, such a thermal penetration
  • a part of the low temperature liquefaction is evaporated in the pipe 150 to generate bubbles in the liquefaction, and thus mechanical breakage of the pump 120 may occur.
  • the low temperature liquefied pressure sending device 100 shown in FIG. 2 is an example designed to improve the problem of FIG. 1.
  • an intermediate tank 160 is further installed between the low pressure liquefied tank 110 and the pump 120 to remove bubbles in the liquefied liquid, which was a problem in FIG. 1. .
  • the low temperature liquid liquefied pressure sending device 100 can be removed most of the bubbles by the intermediate tank 160 to reduce the risk of damage to the pump 120, but the disadvantage of having to install the intermediate tank 160 additionally have.
  • the low temperature liquefied pressure sending device 100 shown in FIG. 3 is an example designed to improve the problem of FIG. 2.
  • 3 is a low pressure liquefied tank 110 so that it is not necessary to additionally install the intermediate tank 160 that was a problem with the low temperature liquefied pressure sending device 100 shown in FIG. ) Heat itself.
  • the low temperature liquefied pressure sending device 100 increases the pressure of the low pressure liquefied tank 110 by steam generated by heating the low pressure liquefied tank 110.
  • This method has the advantage that the installation of the intermediate tank 160 and the pump 120, compared to the low temperature liquefied pressurized delivery 100 shown in Figures 1 and 2, while the large low pressure liquefied storage tank 110 Since the pressure in the) increases, the manufacturing cost of the low-pressure liquefied storage tank 110 is increased, there is a disadvantage that the risk of leakage increases.
  • the low-temperature liquefied pressure sending device as described above may change the composition ratio of the gas supplied to the consumption source by repeating the process of sending the high pressure gas by heating to the consumption source, the composition of high boiling point composition There is a problem that gas may accumulate inside the pressurized delivery.
  • the change in the composition ratio changes the methane number of the high pressure gas, and may cause knocking on the consumption source, which may impair the durability of the high pressure gas user.
  • an object of the present invention is to distribute the heating capacity by using the pressurizing unit and the heat control unit, to convert the low temperature liquefied to high-pressure gas, the supply valve and It is to provide a low-temperature liquid liquefied pressure sending device that can easily send low-temperature liquefied by adjusting the control valve.
  • an object of the present invention is to form a plurality of connecting pipes are divided into N, N is formed so that the pressurizing portion, supply valves, control valves corresponding to each connecting pipe can increase the delivery efficiency of high-pressure gas, fuel consumption It is to provide a low temperature liquid liquefied pressurized sending device that is easy to control the amount of the high pressure gas in consideration of the consumption of the source.
  • the low temperature liquid liquefied pressure sending device 1000 of the present invention is a low temperature liquid liquefied pressure sending device 1000 for converting the low temperature liquid liquefied into gas form and supplying it to the fuel consumption source 2000, where the low temperature liquefied liquid is stored.
  • a pressurizing part 200 including a heating means 200 ′ to pressurize the liquefied liquid having a low temperature and a low pressure supplied from the liquefied tank 100;
  • a heat control unit 300 for adjusting the high temperature and high pressure liquefied liquid that has passed through the pressurizing unit 200 to the required temperature and pressure of the fuel consumption source 2000;
  • a connecting pipe 410 for connecting the liquefied tank 100, the pressurizing part 200, the heat adjusting part 300, and the fuel consumption source 2000;
  • a supply valve 420 formed in a connection pipe 410 connecting between the liquefied tank 100 and the pressurizing part 200;
  • a control valve 430 formed in a connection pipe 410 connecting between the pressurizing part 200 and the heat adjusting part 300;
  • a parallel pipe connecting the liquefied tank 100 and the pressurizing part 200, and a pressure balance valve 520 provided on the balance pipe 510 to adjust pressure to balance pressure with each other.
  • Pressure regulator 500 Characterized in that it comprises a.
  • the low temperature liquefied pressure sending device 1000 has a connection pipe 410 for connecting the liquefied tank 100 and the heat control unit 300 includes first to N-th connection pipe (411 ⁇ 41N).
  • the pressurization part 200 includes first to Nth pressure parts 201 to 20N that are respectively installed in the first to Nth connection pipes 411 to 41N, and the supply valve 420 is And first to Nth supply valves 421 to 42N respectively installed on the first to Nth pressurizing parts 201 to 20N on the first to Nth connection pipes 411 to 41N.
  • 430 includes first to Nth control valves 431 to 43N respectively installed at the rear sides of the first to Nth pressurizing parts 201 to 20N on the first to Nth connection pipes 411 to 41N.
  • the pressure control unit 500 is characterized in that for adjusting the pressure so that the pressure balance between the liquefied tank 100 and the first to N-th pressure unit 201 ⁇ 20N. (N is an integer of 2 or more)
  • the low temperature liquid liquefied pressure sending device 1000 is branched to the first to Nth connection pipes (411 to 41N) for supplying liquefaction to the first to N-th pressure unit 201 ⁇ 20N First to N-th circulation lines 61N which circulate and rejoin the other of the first to N-th pressure parts 201 to 20N; And first through N-th circulation valves 62N provided on the first through N-th circulation lines 61N to control the circulating flow of the liquefied liquid. It is characterized in that the further provided.
  • the low temperature liquid liquefied pressure sending device 1000 is characterized in that the high pressure pump 700 for pressurizing the liquefied in the front side of the heat control unit 300 of the connection pipe 410.
  • the low temperature liquid liquefied pressure sending device 1000 is provided between the liquid liquefied tank 100 and the heat control unit 300 in parallel with the pressurizing unit 200 is branched by the connection pipe 410.
  • a high pressure gas supply unit for supplying a high pressure inert gas is further formed, and an auxiliary pressure unit 800 for pressurizing the low and low pressure liquefied liquid supplied from the liquefaction tank 100 is further provided.
  • the supply valve 420 is provided. And the low and low pressure liquefied conveyed from the liquefied tank 100 by the control of the auxiliary supply valve 801 which controls the flow of the liquefied liquid supplied to the auxiliary pressurizing part 800. And it is selectively supplied to one of the auxiliary pressing unit (800).
  • auxiliary pressing unit 800 is spaced in the height direction therein, a plurality of first baffles 810 extending alternately on both left and right sides are provided, respectively, the liquefaction introduced into the flow in a zigzag form It is characterized by.
  • the low temperature liquid liquefied pressure sending device 1000 is the subcooling for subcooling the liquefied liquid passed through the pressurizing unit 200 or the auxiliary pressure unit 800 in the front side of the high pressure pump 700 of the connection pipe 410.
  • the unit 910 is further characterized in that it is provided.
  • the subcooling unit 910 is connected to the inside of the liquefaction tank 100 by the first transport pipe 911, the liquefied supplied through the connection pipe 410 is the first transport pipe (911) It is characterized in that the supercooled by heat exchange with the low temperature liquefied supplied through.
  • the low temperature liquid liquefied pressure sending device 1000 is a second transfer pipe 921 branched from the connecting pipe 410 connecting the high pressure pump 700 and the heat control unit 300, and the second transfer The second transfer valve 922 is provided on the pipe 921 is characterized in that it is provided.
  • the low temperature liquid liquefied pressure sending device 1000 is a third transfer pipe 931 branched from the connecting pipe 410 connecting the heat control unit 300 and the fuel consumption source 2000, and the third A third transfer valve 932 provided on the transfer pipe 931 is provided.
  • the pressurizing unit 200 is connected to the connection pipe 410 and the pressure vessel 210 is formed with a liquefied injection nozzle 211 and the discharge unit 212 for injecting the supplied liquef to the inside, one side
  • an inner container 220 accommodated in the pressure vessel 210 to receive a liquefaction therein, and to block heat transfer from the pressure vessel 210 to the inner container 220. It characterized in that it comprises a heat insulating support 221 for supporting the inner container 220 spaced apart from the pressure vessel (210).
  • the pressing unit 200 is characterized in that the inner container 220 is formed of a material having a lower specific heat than the pressure vessel (210).
  • the pressing unit 200 is characterized in that it further comprises a sensing means 230 for measuring the state of the liquefaction accommodated in the inner container 220.
  • the sensing means 230 is characterized in that it comprises a thermocouple 231 which is provided outside the inner container 220 to measure the temperature of the liquefaction accommodated in the inner container 220.
  • the sensing means 230 is characterized in that it comprises an LC (232) (level control) for measuring the level of liquefaction accommodated in the inner container (220).
  • the heating means 200 ′ is provided in the inner container 220, and is a heat exchanger 210 in which a heating medium source having a relatively higher temperature than the liquid liquefied therein is circulated. Heat the liquefaction by heat exchange the source.
  • the heating medium source is characterized in that using steam or brine (Brine).
  • the heating means 200 ′ is a heating wire 221 in which the internal heat source is generated by the power source 222, and the heating wire 221 is attached to the outside of the inner container 220. .
  • the heating means 200 ′ has an inlet and an outlet communicating with the inner container 220 through the pressure vessel 210 so that the liquefied liquid in the inner container 220 is circulatedly heated to heat the whole. And a circulation path 255 through which the liquefied liquid is circulated in the inner container 220 by connecting the inlet and the outlet, and an external heat source 255 formed on the circulation path 255.
  • the external heat source 255 is in the form of a heat exchanger 210 in which a relatively hot heating medium source heats the liquefied liquid to heat the liquefied liquid rather than the liquefied liquid passing through the circulation path 255.
  • the liquid medium is heated by heat-exchanging the heating medium source.
  • the external heat source 255 is characterized in that the electric heater 220 in the form of power.
  • the pressing unit 200 is characterized in that it further comprises an external heat insulating material 240 which is provided outside the pressure vessel 210 to insulate.
  • the low temperature liquid liquefied pressure sending device of the present invention can distribute the heating capacity by using the pressurizing unit and the heat control unit, and convert the low temperature liquid liquefied into a high pressure gas, and by adjusting the supply valve and the control valve, the low temperature liquid There is an advantage that can be easily sent out.
  • the low temperature liquefied pressure sending device of the present invention does not need to pressurize the liquefied tank itself, there is an advantage that can prevent the change of the composition of the liquefied during the pressurization and delivery process.
  • the low temperature liquid liquefied pressure sending device of the present invention is provided with a pressure control unit has an advantage that can prevent the back flow of liquefied or gas by adjusting the pressure balance between the liquefied tank and the pressure unit.
  • the low temperature liquid liquefied pressure sending device of the present invention is formed by the branched pipe is divided into a plurality of N, the pressurizing portion, the supply valve, the control valve is formed so as to correspond to each of the connecting pipe to increase the efficiency of the high-pressure gas delivery In consideration of the consumption form of the fuel consumption source, it is easy to control the amount of high-pressure gas discharge.
  • FIG. 1 is a schematic diagram showing a conventional low temperature liquefaction pressurized delivery.
  • Figure 2 is a schematic view showing another conventional low temperature liquefied pressurized delivery.
  • FIG. 3 is a schematic view showing another conventional low temperature liquefied pressurized delivery.
  • 15 to 17 is a view showing an embodiment of the heating means of the pressing portion of the low temperature liquefied pressure sending device according to the present invention.
  • thermocouple 232 LC (level control)
  • connection pipe (411: first connection pipe, 41N: N connection pipe)
  • control valve (431: first control valve, 43N: N control valve)
  • auxiliary pressure unit 801 auxiliary supply valve
  • first baffle 820 on-off valve (inert gas)
  • Low temperature liquefied pressure sending device 1000 of the present invention is a liquefied tank 100, the pressurizing unit 200, the heat control unit 300, the connection pipe 410, supply valve 420, control valve 430 And a pressure regulator 500.
  • the liquefaction tank 100 is a tank for storing a low-temperature low-pressure liquefaction
  • the liquefaction stored in the liquefaction tank 100 is the connection pipe 410 is sequentially passed through the pressurizing unit 200
  • the heat control unit 300 is transferred to the fuel consumption source (2000).
  • the pressurizing part 200 is configured to include a heating means 250, the low-temperature low-pressure liquefied from the liquefaction tank 100 is heated by the heating means 250 to a high-temperature high-pressure liquefaction It is a configuration that changes state.
  • the pressurizing unit 200 has a predetermined space in which the liquefaction is stored, and the low temperature low pressure liquefaction is heated and pressurized by the heating means 250 to convert the high temperature high pressure liquefaction.
  • the pressurizing unit 200 shows an example in which the heat medium source is supplied from the outside to heat the liquefaction.
  • the pressing unit 200 may be formed in various forms, a description thereof will be described again below.
  • the heat control unit 300 is a configuration for adjusting the high temperature and high pressure liquefied through the pressurizing unit 200 to the required temperature and pressure of the fuel consumption source 2000, generally the fuel consumption source 2000 As the silver gas state is required, the heat control unit 300 may convert the high temperature and high pressure liquefied state into a high pressure gas state by using various methods.
  • the high temperature and high pressure liquefaction is transferred to the inside of the heat control unit 300, and the temperature is higher than the high temperature high pressure liquefaction from the outside.
  • the vapor having the gas may be moved to heat the liquefied liquid at high temperature and high pressure.
  • the heat control unit 300 may be a means for heating by using power.
  • the supply valve 420 is formed in the connection pipe 410 connecting between the liquefied tank 100 and the pressurizing unit 200, the liquefied tank (by opening and closing the supply valve 420) The flow of the liquefied liquid supplied from the 100 to the pressing unit 200 is adjusted.
  • the control valve 430 is formed in the connection pipe 410 connecting between the pressurizing unit 200 and the heat control unit 300, the pressurizing unit 200 by opening and closing the control valve 430. The flow of the liquefied liquid supplied to the heat regulating unit 300 is adjusted.
  • connection pipe 410 may be connected to various locations, in Figure 4 has shown an example formed so that the upper side and the heat control unit 300 of the pressing unit 200 is connected.
  • the pressure regulating unit 500 is a configuration for adjusting the pressure balance between the liquefied tank 100 and the pressurizing unit 200, and includes a balance pipe 510 and a pressure balance valve 520.
  • the balance pipe 510 is configured to connect between the liquefied tank 100 and the pressurizing unit 200 separately from the connection pipe 410, and the pressure balance valve 520 is the balance pipe 510. It is provided on the phase to adjust the pressure so that the pressure balance to each other.
  • the pressure balance valve 520 controls the pressure in the liquefied tank 100 and the pressurization part 200 by an opening and closing operation.
  • the pressure regulator 500 prevents backflow due to internal pressure change, so that the liquefied liquid stored in the liquefaction tank 100 may be connected to the pressurizer 200, the heat regulator 300, and the fuel consumption source 2000. Maintaining the flow of feed can be maintained.
  • the low temperature liquid liquefied pressure sending device 1000 of the present invention is capable of adjusting the internal pressure by the pressure adjusting unit 500, the liquid liquefied by the control of the supply valve 420 and the control valve 430 There is an advantage that can be easily transferred.
  • the low temperature liquid liquefied pressure sending device 1000 of the present invention sequentially passes through the pressurizing unit 200 and the heat control unit 300 to convert the low temperature low pressure liquefied to high pressure gas fuel consumption source 2000 Available as
  • the low temperature liquefied pressure sending device 1000 of the present invention does not directly press the liquefied tank 100, and thus does not require the internal pressure design of the liquefied tank 100, and easily low temperature low pressure
  • Figure 5 is a view showing a second embodiment according to the present invention, the second embodiment is the same as the configuration of the first embodiment, the pressing unit 200 is the first pressing unit 201 and the second pressing unit An example having 202 is shown.
  • the second embodiment includes a first and second connection pipe 412 branched by a connection pipe 410 for connecting the liquefied tank 100 and the heat control unit 300, the pressurization
  • the unit 200 includes first and second pressurizing units 202 installed in the first and second connection pipes 412, respectively, and the supply valve 420 is connected to the first and second connection pipes ( And a first and second supply valves 422 respectively installed on the front sides of the first and second pressurizing parts 202 on the first and second pressurizing parts 202, and the control valve 430 is connected to the first and second connection pipes 412.
  • first and second control valves 432 installed at the rear of the first and second pressurizing parts 202 on the upper side, respectively, and the pressure adjusting part 500 includes the liquefied tank 100 and the first and second An example in which the pressure is adjusted to achieve a pressure balance of the second pressing unit 202 is illustrated.
  • the second pressing unit 202 is ready for operation to operate the first pressing unit 201 and the second pressing unit 202.
  • the amount supplied to the fuel consumption source 2000 can be increased, and continuous high pressure gas can be supplied.
  • the low temperature liquefied pressure sending device 1000 of the present invention is not limited to the example in which two pressurizing parts 200 are formed, and a connection pipe connecting the liquefied tank 100 and the heat control unit 300 ( 410 includes the first to N-th connection pipes (411 ⁇ 41N), the first to N-th pressurizing unit 200 is installed in the pressurizing portion 200 to the first to N-th connection pipe (411 ⁇ 41N), respectively 20 to 20N, wherein the supply valves 420 are respectively provided on the front sides of the first to Nth pressurizing parts 201 to 20N on the first to Nth connection pipes 411 to 41N.
  • N-th supply valves 421 to 42N, and the control valves 430 are respectively installed at the rear sides of the first to N-th pressure parts 201 to 20N on the first to Nth connection pipes 411 to 41N.
  • FIG. 6 is a view showing a third embodiment according to the present invention, which is the same as that of the first embodiment, wherein the pressing unit 200 has a first pressing unit 201 to a third pressing unit 203. An example is shown.
  • the third embodiment is a configuration in which the pressing unit 200 is formed three, the connecting pipe 410 includes the first to third connecting pipe 413, the pressing unit 200 1 to 3 pressing parts 200, the supply valve 420 includes a first to third supply valve 420, the control valve 430 is the first to third control valve ( 430), and the pressure adjusting part 500 shows an example in which the pressure is adjusted so that the pressure balance between the liquefied tank 100 and the first to third pressing parts 203 is achieved.
  • the first to third pressurizing pipes 413 branching to supply the liquefied liquid to the first and third pressurizing parts 201 to 203 are branched to each other.
  • the first pressurizing unit 201 is again provided. It is formed to be joined, and a first circulation valve 621 is provided on the first circulation line 611.
  • the second circulation line 612 is formed on the second connection pipe 412 provided with the second pressure unit 202 to pass through the first pressure unit 201, and then to be joined again.
  • a second circulation valve 622 is provided on the second circulation line 612.
  • the third circulation line 613 is formed on the third connection pipe 413 having the third pressurizing part 203 through the second pressurizing part 202 and then joined again.
  • a third circulation valve 623 is provided on the third circulation line 613.
  • the third embodiment is an example in which the pressurizing part 200 includes the first pressurizing part 201 to the third pressurizing part 203, and the first connecting pipe 411 to the third connecting pipe 413 in which they are provided.
  • the first circulation line 611 to the third circulation line 613 and the first circulation valve 621 to the third circulation valve 623 is shown on the).
  • the low temperature liquefied pressure sending device 1000 of the present invention is not limited thereto, and the first circulation line 611 to the third circulation line 613 may be formed in various ways.
  • the pressurizing part 200 includes the first to Nth pressing parts 201 to 20N
  • the first to supply liquefied liquid to the first to Nth pressing parts 201 to 20N First to N-th circulation line (61N) is branched to the N-th connection pipe (411 ⁇ 41N) is circulated to the other one of the first to N-th pressure unit (201 ⁇ 20N) and joined again; And first through N-th circulation valves 62N provided on the first through N-th circulation lines 61N to control the circulating flow of the liquefied liquid. May be further provided. (N is an integer of 2 or more.)
  • the liquefied tank 100 When the pressure balance valve 520 is opened, the liquefied tank 100 has an increased pressure inside the pressurized part 200 to affect the liquefied tank 100 and the pressurized part 200 If the rising pressure inside is relatively small, it may be ignored, but if the rising pressure inside the pressurizing unit 200 is very high, the pressure of the liquefied tank 100 may be continuously increased.
  • the pressure of the liquefied tank 100 may be increased by the continuous operation, and thus the supply of the liquefied liquid may not be smooth, and thus, the first to Nth circulation lines 61N and the first to Nth
  • the circulation valve 62N is a structure for preventing this.
  • the low temperature liquefaction before supplying to the pressurizing unit 200 located adjacent to the liquefaction tank 100 and the liquefaction inside the pressurizing unit 200 are indirectly indirect. After exchanging heat, the pressure of the pressurizing unit 200 may be lowered by supplying the pressurizing unit 200.
  • the first to N-th circulation line 61N and the first to N-th circulation valve 62N change the flow of the liquefied liquid prior to the opening of the pressure balance valve 520, thereby allowing the liquefied tank 100 to change.
  • the liquid can be easily transported without increasing the pressure.
  • FIG. 7 is a view showing a fourth embodiment according to the present invention, the same as the configuration of the first embodiment, the heating means 250 of the pressing unit 200 is located outside, the liquefaction is heated and circulated An example is shown.
  • the shape of the pressing unit 200 may be a long form in the up and down direction, as shown in Figs. 4 to 5, the long form in the left, right direction may be used as shown in FIG. have.
  • the high-pressure pump 700 is further provided on the front side of the heat control unit 300 of the connection pipe 410.
  • the high pressure pump 700 is a means for secondary pressurization before the liquefied liquid passing through the pressurizing part 200 is supplied to the heat regulating part 300.
  • the low temperature liquefied pressure sending device 1000 is the low temperature by the first pressurized the liquefied through the pressurizing unit 200, the second pressurized through the high pressure pump 700
  • the liquefaction can be converted into a high pressure gas and can be easily sent out, and in this process, there is an advantage of preventing composition change and flashing.
  • the flashing phenomenon means that steam is generated while the pressure of the saturated liquefied liquid is injected below the saturation pressure in the pump, and the steam may cause mechanical damage to the high pressure pump 700 which operates at a high speed.
  • FIG. 8 is a view showing a fifth embodiment according to the present invention, which is the same as the configuration of the fourth embodiment, but shows an example in which two pressing parts 200 are formed.
  • the fifth embodiment includes a first and second connection pipe 412 branched by a connection pipe 410 for connecting the liquefied tank 100 and the heat control unit 300
  • the pressurizing part 200 includes first and second pressurizing parts 202 installed in the first and second connecting pipes 412, respectively, and the supply valve 420 is connected to the first and second connecting pipes.
  • a first and second supply valves 422 installed on the front sides of the first and second pressurizing parts 202 on the head 412
  • the control valve 430 includes the first and second connection pipes 412.
  • first and second control valves 432 respectively installed on the rear side of the first and second pressurizing parts 202 on the pressure gauge
  • the pressure adjusting part 500 includes the liquefied tank 100 and the first. And an example in which the pressure is adjusted so that the pressure balance of the second pressing unit 202 is achieved.
  • FIG. 9 is a view showing a sixth embodiment according to the present invention, which is the same as the configuration of the fifth embodiment, but shows an example in which the auxiliary pressing unit 800 is further provided.
  • the auxiliary pressure unit 800 is branched to the connection pipe 410 is provided in parallel with the pressing unit 200 is supplied with a low-temperature and low-pressure liquefied selectively.
  • the auxiliary pressure unit 800 is provided between the liquefied tank 100 and the high pressure pump 700, the high pressure gas supply unit for supplying a high-pressure inert gas is formed is a low temperature received from the liquefied tank 100 Pressurize the low pressure liquid.
  • the inert gas may be nitrogen gas
  • the high pressure gas supply unit may include an opening / closing valve 820 for controlling a flow of the high pressure gas supplied thereto.
  • the auxiliary pressure unit 800 is provided in parallel with the connection pipe 410 is branched to the pressing unit 200.
  • a first baffle 810 may be provided in the auxiliary pressurizing part 800, and the first baffle 810 may prevent mixing of high pressure nitrogen gas and liquefied liquid, and the high pressure nitrogen.
  • the liquefied gas is pressurized by the gas so that the liquid can be sequentially transferred.
  • the low temperature liquid liquefied pressure sending device 1000 of the present invention is provided with a plurality of first baffles 810 spaced apart from each other in the height direction in the auxiliary pressurizing part 800 and alternately extending from both left and right sides thereof.
  • the liquefied liquid introduced through the connection pipe 410 flows in a zigzag form.
  • the first baffles 810 are formed in left and right directions on both inner wall surfaces of the auxiliary pressurizing unit 800, and are provided in a plurality of spaced apart in the height direction. It extends alternately on both sides.
  • the first baffle 810 may be formed in a planar shape to divide the inside of the pressing portion 200 in the height direction, and may be formed in a plurality of divided surfaces.
  • the low temperature liquid liquefied pressure sending apparatus 1000 of the present invention may be provided with a plurality (N) of the pressurizing portion 200, the auxiliary pressure unit 800 is further formed to continuously transmit the low temperature liquid liquefied.
  • the auxiliary pressurizing unit 800 may pressurize and transport low-temperature and low-pressure liquefied liquids, and the reverse operation is possible, and thus the continuous delivery is possible. There is this.
  • FIG. 10 is a view showing a seventh embodiment according to the present invention, which is the same as the configuration of the fifth embodiment, but shows an example in which a subcooling part 910 is further provided.
  • the subcooling unit 910 is configured to supercool the liquefied liquid passing through the pressurizing unit 200 or the auxiliary pressurizing unit 800 on the front side of the high pressure pump 700 of the connection pipe 410.
  • the subcooling unit 910 is a configuration for supercooling the liquefied liquid before being supplied to the high pressure pump 700 by a cooling source, and mechanical damage of the high pressure pump 700 due to bubble generation and flashing phenomenon due to thermal penetration. It can be prevented, there is an advantage that can improve the overall durability more.
  • a low temperature low pressure liquefied liquid stored in the liquefied tank 100 may be used as a cooling source of the subcooler.
  • the subcooling unit 910 is connected to the inside of the liquefaction tank 100 by the first transport pipe 911, the liquefied supplied through the connection pipe 410 is the first transport pipe ( Heat exchange with the low temperature low pressure liquefied supplied through 911 may be supercooled.
  • the low-temperature liquefied pressure sending device 1000 of the present invention uses the subcooled part 910 as a cooling source for supercooling the liquefied liquid by circulating low-temperature low-pressure liquid stored in the liquefied tank 100.
  • the subcooled part 910 as a cooling source for supercooling the liquefied liquid by circulating low-temperature low-pressure liquid stored in the liquefied tank 100.
  • FIG. 11 is a view showing an eighth embodiment according to the present invention, which is the same as that of the seventh embodiment, but is branched from a connection pipe 410 connecting the high pressure pump 700 and the heat control unit 300.
  • a second transfer pipe 921 and a second transfer valve 922 provided on the second transfer pipe 921 are further illustrated.
  • the eighth embodiment of the present invention is used as a piston gas by being supplied to the pressurizing unit 200 through the second conveying pipe 921 is the high-temperature high-pressure liquefied through the high-pressure pump 700 do.
  • a liquid or gas of high temperature and high pressure may be used as a pressurizing source of the pressurizing unit 200, except that it serves as an initial pressurizing source for heating the pressurizing unit 200. It can reduce the operating cost of, and can further prevent the gas composition ratio from changing.
  • FIG. 12 is a view showing a ninth embodiment according to the present invention, which is the same as the configuration of the eighth embodiment, branching from a connection pipe 410 connecting the heat regulation unit 300 and the fuel consumption source 2000.
  • the third transfer pipe 931 and the third transfer pipe (931) which is provided on the third transfer valve 932 is shown an example that is further provided.
  • the high temperature and high pressure gas that has passed through the heat regulating part 300 is supplied to the pressurizing part 200 through the third transfer pipe 931, thereby providing an additional piston. It is used as a gas.
  • FIG. 13 is a view illustrating a tenth embodiment according to the present invention, in which the second baffle 260 is further formed in the pressurizing unit 200 in the same configuration as in the ninth embodiment.
  • the second baffle 260 is formed similarly to the shape of the first baffle 810 of the auxiliary pressing unit 800, and more specifically, spaced apart in the height direction in the pressing unit 200, respectively, It is alternately formed on both sides.
  • the pressurization unit 200 may further pressurize the liquefied liquid by further forming the baffle 260, and the second transfer pipe 921 and the second transfer valve 922 are formed, or the first In the configuration in which the third feed pipe 931 and the third feed pipe 931 are further formed, the effect of the piston gas for pushing the liquefied liquid can be further maximized.
  • the low temperature liquid liquefied pressure sending apparatus 1000 of the present invention can easily convert the low temperature low pressure liquid to high pressure gas and easily discharge it. In this process, durability is prevented by changing composition and flashing. It can be improved, there is an advantage that can improve the efficiency by reducing the driving energy.
  • the low temperature liquid liquefied pressure sending device 1000 of the present invention may be made of the pressurization portion 200 includes a pressure vessel 210, the inner vessel 220 and the heat insulating support 221. (See Fig. 14 )
  • the pressure vessel 210 is a basic body for forming the pressurizing portion 200, the liquefied injection nozzle 211 and the discharge portion 212 is connected to the connection pipe 410 to inject the liquefied liquid supplied therein Is formed.
  • the inner container 220 is a container in which one side is opened, and is accommodated in the pressure container 210 to receive a liquefied liquid therein.
  • the inner container 220 is a space in which the liquefaction is accommodated
  • the pressing portion 200 is further formed with a second baffle 260, as shown in Figure 13, the second baffle ( 260 may be spaced apart from each other in the height direction of the inner container 220 and alternately formed at both left and right sides of the pier to the left and right sides.
  • the insulating support 221 supports the inner container 220 spaced apart from the pressure vessel to block heat transfer from the pressure vessel 210 to the inner container 220.
  • the pressurizing part 200 When the pressurizing part 200 receives the liquefaction directly in the pressure vessel 210, the heat amount is directly transferred to the pressure vessel 210 while the liquefaction is heated, the pressure vessel 210 accumulates the heat amount In addition, heat may be transferred to the liquefaction tank 100 to increase the pressure.
  • the pressurization portion 200 is provided with a separate inner container 220 inside the pressure vessel 210, the pressure vessel 210 and the inner container 220 is insulated
  • the spaced apart by the support 221 has the advantage that the heat capacity stored in the pressure vessel 210 can be minimized.
  • the low temperature liquid liquefied pressure sending device 1000 of the present invention may prevent the heat from being transferred to the pressure vessel 210 as much as possible.
  • the pressurizing unit 200 may minimize the amount of heat accumulated in the pressure vessel 210, thereby minimizing the amount of heat transferred to the liquefaction tank 100, and thus maintain the state in the liquefaction tank 100. Is much easier than before, and ultimately, a more stable system can be operated.
  • the inner vessel 220 is preferably formed of a material having a lower specific heat than the pressure vessel 210.
  • the pressure vessel 210 may be formed of stainless steel, and the inner vessel 220 may be formed of copper.
  • the thermal insulation support 221 may minimize the direct heat transfer by conduction by separating the inner container 220 from the pressure vessel 210.
  • the heat conduction may occur through the heat insulating support 221, in order to prevent this problem, the heat insulating support 221 is a stable spaced apart between the pressure vessel 210 and the inner container 220. It is desirable to be made of a material having a degree of stiffness that can be supported by a material and at the same time a specific heat that is much lower than that of containers.
  • the heat insulating support 221 may be formed of plywood.
  • the pressing unit 200 is provided outside the pressure vessel 210, the outer heat insulating material 240 to insulate; It may be made to include more.
  • the external insulation 240 may be formed of a material such as polyurethane, for example.
  • the pressurization part 200 Since the pressurization part 200 has a space between the pressure vessel 210 and the inner vessel 220 by the heat insulating support 221, it is easy to further include other devices.
  • the pressing unit 200 may further include a sensing means 230 for measuring the state of the liquefaction accommodated in the inner container 220.
  • the sensing means 230 may include a thermocouple 231 provided outside the inner container 220 to measure the temperature of the liquefied liquid contained in the inner container 220.
  • the thermocouple 231 is preferably provided on the outer side of the inner container 220 as shown in Figure 14 in order to prevent damage problems, etc. that can occur by directly contacting the liquefied. .
  • the sensing means 230 may include an LC (232) (level control) for measuring the level of liquefaction contained in the inner container (220).
  • LC level control
  • the low temperature liquid liquefied pressure sending device 1000 of the present invention uses the sensing unit 230 such as the thermocouple 231, the LC 232, and the like, in which the pressurizing unit 200 receives the temperature and water level of the liquefied liquid contained therein. Etc. can be measured easily. As a result, it is possible to accurately understand the state of the liquefaction and to operate the system more efficiently.
  • the low temperature liquefied pressure sending apparatus 1000 of the present invention may be used a variety of forms of heating means 250, which is shown in Figures 15 to 17.
  • the heating means 250 shown in FIG. 15 shows a heat exchanger 210 in which a heating medium source flowing at a relatively higher temperature than a liquefied liquid provided in the inner container 220 flows.
  • the heating means 250 in the form of the heat exchanger 210 heats the liquefied liquid by heat-exchanging the liquefied material and the heating medium source.
  • the heating medium source may be steam or brine.
  • FIG 16 shows another heating means 250 of the pressurizing part 200 according to the low temperature liquefied pressure sending device 1000 of the present invention.
  • the heating means 250 is in the form of an electric heater 220 provided in the heater, and includes a heating wire 221 and a power source 222.
  • the heating wire 221 is preferably attached to the outside of the inner container 220 as shown in FIG.
  • the heating means 250 may be formed in the form of the electric heater 220, thereby simplifying the system even more. In addition, there is no need to use a pump to circulate the heating medium source, and there is also an advantage in that the cost used to heat the liquefied gas can be reduced.
  • an example is as follows.
  • the heating wire 221 is preferably provided in the outer bottom of the inner container 220 in the outer region of the inner container 220.
  • the heating wire 221 is provided to surround the entire inner container 220, when the water level inside the inner container 220 is lowered, a portion where unnecessary heating is performed may occur, and thus, the heating wire 221 ) Is preferably provided on the outer side of the inner container 220, especially in the lower region.
  • FIG 17 shows an example of another heating means 250 of the pressurizing part 200 according to the low temperature liquefied pressure sending device 1000 of the present invention.
  • the heating means 250 is provided outside the pressurizing part 200.
  • the heating means 250 includes a liquid liquefied in the inner container 220.
  • An inlet and an outlet communicating with the inner container 220 through the pressure vessel 210 to be heated, and a circulation path 256 connecting the inlet and the outlet to circulate liquefied liquid in the inner container 220; It is formed including an external heat source 255 formed on the circulation path (256).
  • the external heat source 255 is in the form of a heat exchanger 210 in which a relatively hot heating medium source heats the liquefied liquid to heat the liquefied liquid rather than the liquefied liquid passing through the circulation path 256. Heating the liquefaction by heat exchange may be used.
  • the heat exchanger 210 may be formed in the form of a general heat exchanger 210 in which a liquefied liquid is distributed therein and a heating medium source is distributed to the outside, or a heterogeneous fluid is formed therein. It may be formed in the form of a heterogeneous heat exchanger 210 that is formed to exchange with each other while being distributed to, and may be made in any form without departing from the spirit of the present invention.
  • the external heat source 255 may be in the form of an electric heater 220 using electric power, and may be formed to directly heat the liquefaction passing through the circulation path 256.
  • the shape of the external heat source 255 is not limited to the above-described example, and may be formed in any form as long as the external heat source 255 is provided on the circulation path 256 to heat the liquefied liquid.
  • the designer may deform the heating means 250 as desired, and the heating method may be any type.
  • the benefit is that you don't have to worry about leaks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Reciprocating Pumps (AREA)

Abstract

본 발명은 저온 액화물 가압 송출 장치에 관한 것으로서, 더욱 상세하게 본 발명은 저온 액화물을 고압 가스로 변환하고 용이하게 송출할 수 있으며, 이 과정에서 조성 변화 현상 및 플래싱(Flashing) 현상을 방지할 수 있는 저온 액화물 가압 송출 장치에 관한 것이다.

Description

저온 액화물 가압 송출 장치
본 발명은 저온 액화물 가압 송출 장치에 관한 것으로서, 더욱 상세하게 본 발명은 저온 액화물을 고압 가스로 변환하고 용이하게 송출할 수 있으며, 이 과정에서 조성 변화 현상 및 플래싱(Flashing) 현상을 방지할 수 있는 저온 액화물 가압 송출 장치에 관한 것이다.
일반적으로 LNG 및 LPG와 같이 저온의 액화물을 고압 가스 사용처에 공급하기 위해서는 가압 또는 가열하여 더 높은 압력과 온도의 액체로 만들거나 기체로 만들기 위한 저온 액화물 가압 송출이 필요하다.
하지만 종래의 저온 액화물 가압 송출에서는 몇 가지 문제점이 있다.
먼저, 도 1에서 도시된 저온 액화물 가압 송출(100)에서 액화물은 펌프(120)에 의해 압력이 상승되며, 증발가열기(130)를 거쳐 온도가 상승되어 연료소모원(140)으로 공급된다.
이 때, 상기 저온 액화물 가압 송출 장치(100)에서는 저온의 액화물로 인해 저압 액화물 탱크(110)와 펌프(120) 사이의 배관(150)에서 열침투가 발생될 수 있는데, 이러한 열침투에 의해 저온 액화물의 일부가 배관(150) 내에서 증발되어 액화물 속에 기포가 생성되며, 이에 따른 펌프(120)의 기계적인 파손이 발생될 수 있다.
두 번째로, 도 2에 도시된 저온 액화물 가압 송출 장치(100)는 도 1의 문제점을 개선하기 위해 고안된 예이다.
도 2의 저온 액화물 가압 송출 장치(100)는 도 1에서 문제가 되었던 액화물 속의 기포를 제거하기 위해 저압 액화물 탱크(110)와 펌프(120) 사이에 중간탱크(160)가 더 설치된다. 상기 저온 액화물 가압 송출 장치(100)는 상기 중간 탱크(160)에 의해 대부분의 기포가 제거될 수 있어 펌프(120)의 파손 위험은 줄어들지만 중간탱크(160)를 추가로 설치해야 하는 단점이 있다.
세 번째로, 도 3에 도시된 저온 액화물 가압 송출 장치(100)는 도 2의 문제점을 개선하기 위해 고안된 예이다.
도 3의 저온 액화물 가압 송출 장치(100)는 도 2에 도시한 저온 액화물 가압 송출 장치(100)로 문제가 되었던 중간탱크(160)를 추가로 설치될 필요가 없도록 저압 액화물 탱크(110) 자체를 가열한다.
상기 저온 액화물 가압 송출 장치(100)는 상기 저압 액화물 탱크(110)를 가열함으로써 발생된 증기로 상기 저압 액화물 탱크(110) 자체의 압력을 높이게 된다. 이 방법은 도 1 및 도 2에 도시된 저온 액화물 가압 송출(100)에 비해 중간탱크(160)와 펌프(120)의 설치가 필요 없는 장점이 있는 반면, 대형인 저압 액화물 저장 탱크(110) 내의 압력이 높아지기 때문에 저압 액화물 저장 탱크(110)의 제작비용이 증가되며, 누출 위험이 커진다는 단점이 있다.
이에 따라, 상술한 바와 같은 문제점을 해결할 수 있으면서, 저온의 액화물을 고압 가스 사용처에 공급하기 위해 가압 또는 가열하여 더 높은 압력과 온도의 액체로 만들거나 기체로 만들기 위한 저온 액화물 가압 송출의 개발이 필요한 실정이다.
또한, 상술한 바와 같은 저온 액화물 가압 송출 장치는 가열에 의한 고압 가스를 소모원으로 송출하는 과정을 반복함에 따라 상기 소모원으로 공급되는 가스의 조성 비율이 변화될 수 있으며, 끓는점이 높은 조성의 가스가 가압 송출 내부에 쌓일 수 있는 문제점이 있다.
특히, LNG 중 비교적 끓는점이 낮은 메탄 가스는 고압 가스 소모원으로 용이하게 공급되는데 반해, 끓는점이 비교적 높은 부탄은 이송이 어려워져 잔류하게 된다.
또한, 이러한 조성 비율의 변화는 고압 가스의 메탄 수(Methane Number)를 변화시키며, 소모원에 노킹(Knocking) 현상을 유발 할 수 있어, 고압가스 사용처의 내구성을 저해할 수 있는 원인이 된다.
한편, 액화물을 가열 또는 압력을 조절하는데 이용되는 종래의 가열기의 경우, 가열하는데 사용한 열량이 모두 가열기 용기에 그대로 흡수되게 된다. 이렇게 흡수된 열량은 저압 저온 액화물 탱크로부터 새로운 액화물을 공급받을 때 저압 저온 액화물 탱크로 방출되게 된다. 그런데 연료 가스 공급 시스템에서 저압 저온 액화물 탱크의 압력 변화가 안전상의 이유로 매우 중요하므로, 이와 같이 가열기로부터 열량이 유입되는 것은 안전성을 떨어뜨리는 원인이 된다.
따라서 가열기로부터 저압 저온 액화물 탱크에 유입되는 열량을 줄일 수 있도록, 종래보다 열용량이 작은 가열기의 설계가 필요하다.
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 가압부 및 열조절부를 이용함으로써 가열 용량을 분배하고, 저온 액화물을 고압 가스로 변환할 수 있으며, 공급밸브 및 조절밸브의 조절에 의해 저온 액화물을 용이하게 송출할 수 있는 저온 액화물 가압 송출 장치를 제공하는 것이다.
특히, 본 발명의 목적은 액화물 탱크 자체를 가압할 필요가 없으며, 가압ㆍ송출 과정에서 액화물의 조성 변화 현상을 방지할 수 있는 저온 액화물 가압 송출 장치를 제공하는 것이다.
또한, 본 발명의 목적은 압력조절부가 구비되어 액화물 탱크와 가압부 사이의 압력평형을 조절함으로써 액화물 또는 가스가 역류하는 것을 방지할 수 있는 저온 액화물 가압 송출 장치를 제공하는 것이다.
또, 본 발명의 목적은 연결배관이 복수개로 분기되어 N개 형성되며, 가압부, 공급밸브, 조절밸브가 각 연결배관에 대응되도록 N개 형성됨으로써 고압 가스의 송출 효율을 높일 수 있으며, 연료소모원의 소모 형태를 고려하여 고압 가스의 송출량 조절이 용이한 저온 액화물 가압 송출 장치를 제공하는 것이다.
본 발명의 저온 액화물 가압 송출 장치(1000)는 저온 액화물을 가스 형태로 변환하여 연료소모원(2000)으로 공급하는 저온 액화물 가압 송출 장치(1000)에 있어서, 저온 저압의 액화물이 저장되는 액화물 탱크(100); 가열수단(200')을 포함하여 상기 액화물 탱크(100)로부터 공급받은 저온 및 저압의 액화물을 가압하는 가압부(200); 상기 가압부(200)를 통과한 고온 고압의 액화물을 상기 연료소모원(2000)의 필요 온도 및 압력으로 조절하는 열조절부(300); 상기 액화물 탱크(100), 가압부(200), 열조절부(300) 및 연료소모원(2000)을 연결하는 연결배관(410); 상기 액화물 탱크(100)와 가압부(200) 사이를 연결하는 연결배관(410)에 형성되는 공급밸브(420); 상기 가압부(200)와 열조절부(300) 사이를 연결하는 연결배관(410)에 형성되는 조절밸브(430); 상기 액화물 탱크(100)와 가압부(200) 사이를 연결하는 평행배관과, 상기 평형배관(510) 상에 구비되어 서로 압력평형이 이루어지도록 압력을 조절하는 압력평형밸브(520)를 포함하는 압력조절부(500); 를 포함하는 것을 특징으로 한다.
또한, 상기 저온 액화물 가압 송출 장치(1000)는 상기 액화물 탱크(100)와 열조절부(300)를 연결하는 연결배관(410)이 제1 내지 제N연결배관(411~41N)을 포함하고, 상기 가압부(200)가 상기 제1 내지 제N연결배관(411~41N)에 각각 설치되는 제1 내지 제N가압부(201~20N)를 포함하며, 상기 공급밸브(420)가 상기 제1 내지 제N연결배관(411~41N) 상의 제1 내지 제N가압부(201~20N) 전측에 각각 설치되는 제1 내지 제N공급밸브(421~42N)를 포함하고, 상기 조절밸브(430)가 상기 제1 내지 제N연결배관(411~41N) 상의 제1 내지 제N가압부(201~20N) 후측에 각각 설치되는 제1 내지 제N조절밸브(431~43N)를 포함하며, 상기 압력조절부(500)가 상기 액화물 탱크(100)와 상기 제1 내지 제N가압부(201~20N)의 압력평형이 이루어지도록 압력을 조절하는 것을 특징으로 한다. (N은 2 이상의 정수)
이 때, 상기 저온 액화물 가압 송출 장치(1000)는 상기 제1 내지 제N가압부(201~20N)로 액화물을 공급하는 상기 제1 내지 제N연결배관(411~41N)이 분기되어 상기 제1 내지 제N가압부(201~20N) 중 나머지 하나를 순환하고 다시 합류되는 제1 내지 제N순환라인(61N); 및 상기 제1 내지 제N순환라인(61N) 상에 구비되어 액화물의 순환 흐름을 조절하는 제1 내지 제N순환밸브(62N); 가 더 구비되는 것을 특징으로 한다.
또, 상기 저온 액화물 가압 송출 장치(1000)는 상기 연결배관(410)의 상기 열조절부(300) 전측에 액화물을 가압하는 고압펌프(700)가 더 구비되는 것을 특징으로 한다.
또한, 상기 저온 액화물 가압 송출 장치(1000)는 상기 연결배관(410)이 분기되어 상기 가압부(200)와 병렬형태로 상기 액화물 탱크(100)와 열조절부(300) 사이에 구비되며, 고압의 비활성 기체를 공급하는 고압기체 공급부가 형성되어 상기 액화물 탱크(100)로부터 공급받은 저온 및 저압의 액화물을 가압하는 보조가압부(800)가 더 구비되며, 상기 공급밸브(420) 및 상기 보조가압부(800)로 공급되는 액화물의 흐름을 조절하는 보조공급밸브(801)의 조절에 의해 상기 액화물 탱크(100)로부터 이송된 저온 및 저압의 액화물은 상기 가압부(200) 및 보조가압부(800) 중 하나에 선택적으로 공급되는 것을 특징으로 한다.
또, 상기 보조가압부(800)는 내부에 높이방향으로 이격되되, 각각 좌ㆍ우 양측면에서 교번되어 연장되는 복수개의 제1배플(810)이 구비되어 내부로 유입된 액화물이 지그재그 형태로 유동되는 것을 특징으로 한다.
아울러, 상기 저온 액화물 가압 송출 장치(1000)는 상기 연결배관(410)의 상기 고압펌프(700) 전측에 상기 가압부(200) 또는 보조가압부(800)를 통과한 액화물을 과냉각하는 과냉각부(910)가 더 구비되는 것을 특징으로 한다.
또한, 상기 과냉각부(910)는 상기 액화물 탱크(100) 내부와 제1이송배관(911)에 의해 연결되며, 상기 연결배관(410)을 통해 공급되는 액화물이 상기 제1이송배관(911)을 통해 공급되는 저온의 액화물과 열교환되어 과냉각되는 것을 특징으로 한다.
아울러, 상기 저온 액화물 가압 송출 장치(1000)는 상기 고압펌프(700)와 열조절부(300)를 연결하는 연결배관(410)으로부터 분기되는 제2이송배관(921)과, 상기 제2이송배관(921) 상에 구비되는 제2이송밸브(922)가 구비되는 것을 특징으로 한다.
또, 상기 저온 액화물 가압 송출 장치(1000)는 상기 열조절부(300)와 연료소모원(2000)을 연결하는 연결배관(410)으로부터 분기되는 제3이송배관(931)과, 상기 제3이송배관(931) 상에 구비되는 제3이송밸브(932)가 구비되는 것을 특징으로 한다.
또한, 상기 가압부(200)는 상기 연결배관(410)과 연결되어 공급된 액화물을 내부로 분사하는 액화물 주입 노즐(211) 및 배출부(212)가 형성된 압력 용기(210)와, 일측이 개방된 용기 형태로서, 상기 압력 용기(210) 내부에 수용되어 그 내부에 액화물을 수용하는 내부 용기(220)와, 상기 압력 용기(210)로부터 상기 내부 용기(220)로의 열전달을 차단하도록 상기 내부 용기(220)를 상기 압력 용기(210)로부터 이격시켜 지지하는 단열 지지체(221)를 포함하는 것을 특징으로 한다.
또, 상기 가압부(200)는 상기 내부 용기(220)가 상기 압력 용기(210)보다 낮은 비열을 가지는 재질로 형성되는 것을 특징으로 한다.
아울러, 상기 가압부(200)는 상기 내부 용기(220)에 수용되는 액화물의 상태를 측정하는 감지수단(230)을 더 포함하는 것을 특징으로 한다.
또한, 상기 감지수단(230)은 상기 내부 용기(220) 외측에 구비되어 상기 내부 용기(220)에 수용된 액화물의 온도를 측정하는 열전대(231)를 포함하는 것을 특징으로 한다.
또, 상기 감지수단(230)은 상기 내부 용기(220)에 수용되는 액화물 수위를 측정하는 LC(232)(level control)를 포함하는 것을 특징으로 한다.
아울러, 상기 가열수단(200')은 상기 내부 용기(220) 내에 구비되며, 내부에 구비된 액화물보다 상대적으로 고온인 가열매체원이 유통되는 열교환기(210) 형태로서, 액화물과 가열매체원을 열교환시켜 액화물을 가열하는 것을 특징으로 한다.
또한, 상기 가열매체원은 스팀 또는 브라인(Brine)을 사용하는 것을 특징으로 한다.
또, 상기 가열수단(200')은 상기 내부 열원이 전원(222)에 의해 발열되는 가열선(221)이며, 상기 가열선(221)이 상기 내부 용기(220) 외측에 부착되는 것을 특징으로 한다.
아울러, 상기 가열수단(200')은 상기 내부 용기(220) 내부의 액화물이 순환 가열되어 전체를 가열하도록 상기 압력 용기(210)를 관통하여 상기 내부 용기(220)와 연통되는 입구 및 출구와, 상기 입구 및 출구를 연결하여 상기 내부 용기(220) 내의 액화물이 순환되는 순환로(255)와, 상기 순환로(255) 상에 형성되는 외부 열원(255)을 포함하는 것을 특징으로 한다.
이 때, 상기 외부 열원(255)은 상기 순환로(255)를 통과하는 액화물보다 상대적으로 고온의 가열매체원이 액화물과 열교환하여 액화물을 가열하는 열교환기(210) 형태로서, 액화물과 가열매체원을 열교환시켜 액화물을 가열하는 것을 특징으로 한다.
또, 상기 외부 열원(255)은 전력을 이용하는 전기 히터(220) 형태인 것을 특징으로 한다.
아울러, 상기 가압부(200)는 상기 압력 용기(210) 외부에 구비되어 단열하는 외부 단열재(240)를 더 포함하는 것을 특징으로 한다.
이에 따라, 본 발명의 저온 액화물 가압 송출 장치는 가압부 및 열조절부를 이용함으로써 가열 용량을 분배하고, 저온 액화물을 고압 가스로 변환할 수 있으며, 공급밸브 및 조절밸브의 조절에 의해 저온 액화물을 용이하게 송출할 수 있는 장점이 있다.
특히, 본 발명의 저온 액화물 가압 송출 장치는 액화물 탱크 자체를 가압할 필요가 없으며, 가압ㆍ송출 과정에서 액화물의 조성 변화 현상을 방지할 수 있는 장점이 있다.
또한, 본 발명의 저온 액화물 가압 송출 장치는 압력조절부가 구비되어 액화물 탱크와 가압부 사이의 압력평형을 조절함으로써 액화물 또는 가스가 역류하는 것을 방지할 수 있는 장점이 있다.
또, 본 발명의 저온 액화물 가압 송출 장치는 연결배관이 복수개로 분기되어 N개 형성되며, 가압부, 공급밸브, 조절밸브가 각 연결배관에 대응되도록 N개 형성됨으로써 고압 가스의 송출 효율을 높일 수 있으며, 연료소모원의 소모 형태를 고려하여 고압 가스의 송출량 조절이 용이한 장점이 있다.
도 1은 종래의 저온 액화물 가압 송출을 나타낸 개략도.
도 2는 종래의 또 다른 저온 액화물 가압 송출을 나타낸 개략도.
도 3은 종래의 또 다른 저온 액화물 가압 송출을 나타낸 개략도.
도 4 내지 도 13은 각각 본 발명의 저온 액화물 가압 송출 장치에 따른 제1실시예 내지 제10실시예를 나타낸 도면.
도 14는 본 발명에 따른 저온 액화물 가압 송출 장치의 가압부를 나타낸 도면.
도 15 내지 도 17은 본 발명에 따른 저온 액화물 가압 송출 장치의 가압부의 가열수단 실시예를 나타낸 도면.
* 부호의 설명
1000 : 저온 액화물 가압 송출 장치
100 : 액화물 탱크
200 : 가압부(201 : 제1가압부, 20N : 제N가압부)
210 : 압력 용기 211 : 주입 노즐
212 : 배출부
220 : 내부 용기
221 : 단열 지지체 230 : 감지수단
231 : 열전대 232 : LC(level control)
240 : 외부 단열재
250 : 가열수단
251 : 열교환기 252 : 전기 히터
253 : 가열선 254 : 전원
255 : 외부 열원 256 : 순환로
260 : 제2배플
300 : 열조절부
410 : 연결배관(411 : 제1연결배관, 41N : 제N연결배관)
420 : 공급밸브(421 : 제1공급밸브, 42N : 제N공급밸브)
430 : 조절밸브(431 : 제1조절밸브, 43N : 제N조절밸브)
500 : 압력조절부
510 : 평형배관 520 : 압력평형밸브
611 : 제1순환라인, 61N : 제N순환라인
621 : 제1순환밸브, 62N : 제N순환밸브
700 : 고압펌프
800 : 보조가압부 801 : 보조공급밸브
810 : 제1배플 820 : 개폐밸브(비활성기체)
910 : 과냉각부 911 : 제1이송배관
921 : 제2이송배관 922 : 제2이송밸브
931 : 제3이송배관 932 : 제3이송밸브
2000 : 연료소모원
이하, 상술한 바와 같은 특징을 가지는 본 발명의 저온 액화물 가압 송출 장치(1000)를 첨부된 도면을 참조로 상세히 설명한다.
본 발명의 저온 액화물 가압 송출 장치(1000)는 액화물 탱크(100), 가압부(200), 열조절부(300), 연결배관(410), 공급밸브(420), 조절밸브(430) 및 압력조절부(500)를 포함하여 형성된다.
제1실시예
도 4는 본 발명에 따른 제1실시예를 나타낸 도면으로서, 상기 액화물 탱크(100)는 저온 저압의 액화물이 저장되는 탱크로, 액화물 탱크(100) 내부에 저장된 액화물은 상기 연결배관(410)을 통해 순차적으로 가압부(200), 열조절부(300)를 통과하여 연료소모원(2000)으로 이송된다.
상기 가압부(200)는 가열수단(250)을 포함하는 구성으로, 상기 액화물 탱크(100)로부터 공급받은 저온 저압의 액화물이 상기 가열수단(250)에 의해 가열되어 고온 고압의 액화물로 상태변화되는 구성이다.
상기 가압부(200)는 액화물이 저장되는 일정 공간이 형성되며, 상기 가열수단(250)에 의해 상기 저온 저압의 액화물이 가열 및 가압되어 고온 고압의 액화물로 변환한다.
제1실시예(도 4)에서, 상기 가압부(200)는 외부로부터 열매체원이 내부로 공급되어 액화물을 가열하는 예를 나타내었다.
(상기 가압부(200)는 다양한 형태로 형성될 수 있으며, 이에 대한 설명은 아래에서 다시 설명한다.)
상기 열조절부(300)는 상기 가압부(200)를 통과한 고온 고압의 액화물을 상기 연료소모원(2000)의 필요 온도 및 압력으로 조절하는 구성으로서, 일반적으로 상기 연료소모원(2000)은 가스 상태를 필요로 함에 따라, 상기 열조절부(300)는 다양한 방법을 이용하여 고온 고압의 액화물을 고압 가스 상태로 상태변환할 수 있다.
도 4에서 상기 열조절부(300)의 상세 구성은 표현하지 않았으나, 일 예로서, 열조절부(300) 내부에 고온 고압의 액화물이 이송되며, 외부에서 상기 고온 고압의 액화물보다 높은 온도를 갖는 증기가 이동되어 고온 고압의 액화물을 가열할 수 있다.
또한, 상기 열조절부(300)는 전력을 이용하여 가열하는 수단이 이용될 수 있다.
상기 공급밸브(420)는 상기 액화물 탱크(100)와 가압부(200) 사이를 연결하는 연결배관(410)에 형성되는 구성으로서, 상기 공급밸브(420)의 개폐에 의해 상기 액화물 탱크(100)로부터 상기 가압부(200)로 공급되는 액화물의 흐름이 조절된다.
상기 조절밸브(430)는 상기 가압부(200)와 열조절부(300) 사이를 연결하는 연결배관(410)에 형성되는 구성으로서, 상기 조절밸브(430)의 개폐에 의해 상기 가압부(200)로부터 상기 열조절부(300)로 공급되는 액화물의 흐름이 조절된다.
상기 연결배관(410)은 다양한 위치에 연결될 수 있는데, 도 4에서 상기 가압부(200)의 상측과 열조절부(300)가 연결되도록 형성된 예를 나타내었다.
상기 압력조절부(500)는 액화물 탱크(100)와 가압부(200) 사이의 압력평형을 조절하는 구성으로서, 평형배관(510)과, 압력평형밸브(520)를 포함한다.
상기 평형배관(510)은 상기 연결배관(410)과는 별도로 상기 액화물 탱크(100)와 가압부(200) 사이를 연결하는 구성이며, 상기 압력평형밸브(520)는 상기 평형배관(510) 상에 구비되어 서로 압력평형이 이루어지도록 압력을 조절한다.
상기 압력평형밸브(520)는 개폐조작에 의해 상기 액화물 탱크(100)와 가압부(200) 내부의 압력을 조절한다.
상기 압력평형밸브(520)의 조작에 의해 상기 액화물 탱크(100)와 가압부(200)의 압력평형 조절 시, 상기 액화물 탱크(100) 및 가압부(200)와 연결되는 연결배관(410)에 형성된 공급밸브(420) 및 조절밸브(430)는 폐쇄된 상태를 유지하여야 한다.
상기 압력조절부(500)는 내부 압력 변화에 의해 역류를 방지하여 상기 액화물 탱크(100)에 저장된 액화물이 상기 가압부(200), 열조절부(300) 및 연료소모원(2000)을 향하는 공급 흐름을 유지할 수 있다.
즉, 본 발명의 저온 액화물 가압 송출 장치(1000)는 상기 압력조절부(500)에 의해 내부 압력을 조절가능하고, 상기 공급밸브(420) 및 조절밸브(430)의 조절에 의해 액화물이 용이하게 이송가능한 장점이 있다.
또한, 본 발명의 저온 액화물 가압 송출 장치(1000)는 순차적으로 상기 가압부(200) 및 열조절부(300)를 통과하여 저온 저압의 액화물을 고압 가스로 변환하여 연료소모원(2000)으로 공급가능하다.
즉, 본 발명의 저온 액화물 가압 송출 장치(1000)는 상기 액화물 탱크(100)를 직접 가압하는 것이 아니며, 이에 따라, 상기 액화물 탱크(100)의 내압 설계가 필요치 않으며, 용이하게 저온 저압의 액화물을 고압 가스로 변환하여 연료소모원(2000)으로 공급할 수 있는 장점이 있다.
제2실시예
도 5는 본 발명에 따른 제2실시예를 나타낸 도면으로서, 제2실시예는 상기 제1실시예의 구성과 동일하되, 상기 가압부(200)가 제1가압부(201) 및 제2가압부(202)를 갖는 예를 나타내었다.
더욱 상세하게, 제2실시예는 상기 액화물 탱크(100)와 열조절부(300)를 연결하는 연결배관(410)이 분기되어 제1 및 제2연결배관(412)을 포함하고, 상기 가압부(200)가 상기 제1 및 제2연결배관(412)에 각각 설치되는 제1 및 제2가압부(202)를 포함하며, 상기 공급밸브(420)가 상기 제1 및 제2연결배관(412) 상의 제1 및 제2가압부(202) 전측에 각각 설치되는 제1 및 제2공급밸브(422)를 포함하고, 상기 조절밸브(430)가 상기 제1 및 제2연결배관(412) 상의 제1 및 제2가압부(202) 후측에 각각 설치되는 제1 및 제2조절밸브(432)를 포함하며, 상기 압력조절부(500)가 상기 액화물 탱크(100)와 상기 제1 및 제2가압부(202)의 압력평형이 이루어지도록 압력을 조절하는 예를 나타내었다.
상기 제2실시예는 상기 제1가압부(201)가 작동되는 동안, 상기 제2가압부(202)는 작동을 준비하여 상기 제1가압부(201) 및 제2가압부(202)의 작동이 교번되어 이루어짐으로써 상기 연료소모원(2000)으로 공급되는 양을 증대할 수 있으며, 연속 고압 가스의 공급이 가능하다.
본 발명의 저온 액화물 가압 송출 장치(1000)는 상기 가압부(200)가 2개 형성되는 예에 한정되지 않으며, 상기 액화물 탱크(100)와 열조절부(300)를 연결하는 연결배관(410)이 제1 내지 제N연결배관(411~41N)을 포함하, 상기 가압부(200)가 상기 제1 내지 제N연결배관(411~41N)에 각각 설치되는 제1 내지 제N가압부(201~20N)를 포함하며, 상기 공급밸브(420)가 상기 제1 내지 제N연결배관(411~41N) 상의 제1 내지 제N가압부(201~20N) 전측에 각각 설치되는 제1 내지 제N공급밸브(421~42N)를 포함하고, 상기 조절밸브(430)가 상기 제1 내지 제N연결배관(411~41N) 상의 제1 내지 제N가압부(201~20N) 후측에 각각 설치되는 제1 내지 제N조절밸브(431~43N)를 포함하며, 상기 압력조절부(500)가 상기 액화물 탱크(100)와 상기 제1 내지 제N가압부(201~20N)의 압력평형이 이루어지도록 압력을 조절하도록 구성될 수 있다.(N은 2 이상의 정수)
제3실시예
도 6은 본 발명에 따른 제3실시예를 나타낸 도면으로서, 상기 제1실시예의 구성과 동일하되, 상기 가압부(200)가 제1가압부(201) 내지 제3가압부(203)를 갖는 예를 나타내었다.
즉, 제3실시예는 상기 가압부(200)가 3개 형성되는 구성으로서, 상기 연결배관(410)이 제1 내지 제3연결배관(413)을 포함하고, 상기 가압부(200)가 제1 내지 데3가압부(200)를 포함하며, 상기 공급밸브(420)가 제1 내지 제3공급밸브(420)를 포함하고, 상기 조절밸브(430)가 상기 제1 내지 제3조절밸브(430)를 포함하며, 상기 압력조절부(500)가 상기 액화물 탱크(100)와 상기 제1 내지 제3가압부(203)의 압력평형이 이루어지도록 압력을 조절하는 예를 나타내었다.
또한, 제3실시예는 상기 제1가압부(201) 내지 제3가압부(203)로 액화물을 통급하는 상기 제1 내지 제3연결배관(413)이 분기되어 상기 제1 내지 제3가압부(203) 중 나머지 하나를 순환하고 다시 합류되는 제1 내지 제3순환라인(613); 및 상기 제1 내지 제3순환라인(613) 상에 구비되어 액화물의 순환 흐름을 조절하는 제1 내지 제3순환밸브(623); 가 더 구비된다.
더욱 상세하게, 도 6에서, 상기 제1가압부(201)가 구비되는 제1연결배관(411) 상에 제1순환라인(611)이 상기 제3가압부(203)를 통과한 후, 다시 합류되도록 형성되고, 상기 제1순환라인(611) 상에 제1순환밸브(621)가 구비된다.
또한, 상기 제2가압부(202)가 구비되는 제2연결배관(412) 상에 상기 제2순환라인(612)이 상기 제1가압부(201)를 통과한 후, 다시 합류되도록 형성되고, 상기 제2순환라인(612) 상에 제2순환밸브(622)가 구비된다.
또, 상기 제3가압부(203)가 구비되는 제3연결배관(413) 상에 상기 제3순환라인(613)이 상기 제2가압부(202)를 통과한 후, 다시 합류되도록 형성되고, 상기 제3순환라인(613) 상에 제3순환밸브(623)가 구비된다.
제3실시예는 상기 가압부(200)가 제1가압부(201) 내지 제3가압부(203)를 포함하는 예로서, 이들이 구비되는 제1연결배관(411) 내지 제3연결배관(413) 상에 제1순환라인(611) 내지 제3순환라인(613) 및 제1순환밸브(621) 내지 제3순환밸브(623)가 구비된 예를 나타내었다.
본 발명의 저온 액화물 가압 송출 장치(1000)는 이에 한정되지 않으며, 상기 제1순환라인(611) 내지 제3순환라인(613)은 더욱 다양하게 형성될 수 있다.
또한, 상기 가압부(200)가 상기 제1 내지 제N가압부(201~20N)를 포함하는 경우에, 상기 제1 내지 제N가압부(201~20N)로 액화물을 공급하는 상기 제1 내지 제N연결배관(411~41N)이 분기되어 상기 제1 내지 제N가압부(201~20N) 중 나머지 하나를 순환하고 다시 합류되는 제1 내지 제N순환라인(61N); 및 상기 제1 내지 제N순환라인(61N) 상에 구비되어 액화물의 순환 흐름을 조절하는 제1 내지 제N순환밸브(62N); 가 더 구비될 수 있다.(N은 2 이상의 정수)
상기 액화물 탱크(100)는 상기 압력평형밸브(520)가 개방된 때, 상기 가압부(200) 내부에서 상승한 압력은 상기 액화물 탱크(100)에 영향을 미치게 되며, 상기 가압부(200) 내부의 상승 압력이 비교적 작은 경우에는 무시될 수 있지만, 상기 가압부(200) 내부의 상승 압력이 매우 높으면 상기 액화물 탱크(100)의 압력이 지속적으로 상승될 수 있다.
즉, 연속 작동에 의해 상기 액화물 탱크(100)의 압력이 상승될 수 있으며, 이에 따라 액화물의 공급이 원활하지 않을 수 있으므로, 상기 제1 내지 제N순환라인(61N) 및 제1 내지 제N순환밸브(62N)는 이를 방지하기 위한 구성이다.
더욱 상세하게, 액화물 탱크(100)로부터 인접하여 위치된 가압부(200)로 공급되기 전의 저온 액화물과 가압부(200) 내부의 액화물(상기 저온 액화물에 비해 고온 고압임)을 간접적으로 열교환한 후, 가압부(200)로 공급되도록 함으로써 가압부(200)의 압력을 낮출 수 있다.
즉, 상기 제1 내지 제N순환라인(61N) 및 제1 내지 제N순환밸브(62N)는 압력평형밸브(520)의 개방 이전에, 상기 액화물의 흐름을 변화함으로써 상기 액화물 탱크(100)의 압력 상승 없이 액화물이 용이하게 이송될 수 있는 장점이 있다.
제4실시예
도 7은 본 발명에 따른 제4실시예를 나타낸 도면으로서, 상기 제1실시예의 구성과 동일하되, 상기 가압부(200)의 가열수단(250)이 외부에 위치되며, 액화물이 가열 순환되어 구성되는 예를 나타내었다.
상기 가압부(200)의 형태는 도 4 내지 도 5에 도시한 것과 같이 상ㆍ하방향으로 긴 형태가 이용될 수도 있고, 도 7에 도시한 바와 같이 좌ㆍ우 방향으로 긴 형태가 이용될 수도 있다.
아울러, 상기 연결배관(410) 중 상기 열조절부(300) 전측에 고압펌프(700)가 더 구비되는 예를 나타내었다.
상기 고압펌프(700)는 상기 가압부(200)를 통과한 액화물이 상기 열조절부(300)로 공급되기 이전에 2차 가압하는 수단이다.
즉, 본 발명의 제4실시예에 따른 저온 액화물 가압 송출 장치(1000)는 상기 액화물을 상기 가압부(200)를 통해 1차 가압, 상기 고압펌프(700)를 통해 2차 가압함으로써 저온 액화물을 고압 가스로 변환하고 용이하게 송출할 수 있으며, 이 과정에서 조성 변화 현상 및 플래싱(Flashing) 현상을 방지할 수 있는 장점이 있다.
상기 플래싱 현상이란, 펌프 내에서 포화 액화물의 압력이 포화압력보다 낮은 곳으로 분사되면서 증기를 발생하는 것을 의미하는 것으로서, 상기 증기는 고속으로 운행되는 고압펌프(700)에 기계적 손상을 유발할 수 있다.
제5실시예
도 8은 본 발명에 따른 제5실시예를 나타낸 도면으로서, 상기 제4실시예의 구성과 동일하되, 상기 가압부(200)가 2개 형성되는 예를 나타내었다.
더욱 상세하게, 상기 제5실시예는 상기 액화물 탱크(100)와 열조절부(300)를 연결하는 연결배관(410)이 분기되어 제1 및 제2연결배관(412)을 포함하고, 상기 가압부(200)가 상기 제1 및 제2연결배관(412)에 각각 설치되는 제1 및 제2가압부(202)를 포함하며, 상기 공급밸브(420)가 상기 제1 및 제2연결배관(412) 상의 제1 및 제2가압부(202) 전측에 각각 설치되는 제1 및 제2공급밸브(422)를 포함하고, 상기 조절밸브(430)가 상기 제1 및 제2연결배관(412) 상의 제1 및 제2가압부(202) 후측에 각각 설치되는 제1 및 제2조절밸브(432)를 포함하며, 상기 압력조절부(500)가 상기 액화물 탱크(100)와 상기 제1 및 제2가압부(202)의 압력평형이 이루어지도록 압력을 조절하는 예를 나타내었다.
제6실시예
도 9는 본 발명에 따른 제6실시예를 나타낸 도면으로서, 상기 제5실시예의 구성과 동일하되, 보조가압부(800)가 더 구비되는 예를 나타내었다.
상기 보조가압부(800)는 상기 연결배관(410)이 분기되어 상기 가압부(200)와 병렬형태로 구비되어 선택적으로 저온 및 저압의 액화물이 공급된다.
상기 보조가압부(800)는 상기 액화물 탱크(100)와 고압펌프(700) 사이에 구비되며, 고압의 비활성 기체를 공급하는 고압기체 공급부가 형성되어 상기 액화물 탱크(100)로부터 공급받은 저온 저압의 액화물을 가압한다.
상기 비활성 기체는 질소 가스일 수 있으며, 상기 고압기체 공급부는 공급되는 고압기체의 흐름을 조절하기 위한 개폐밸브(820)를 포함할 수 있다.
상기 보조가압부(800)는 상기 연결배관(410)이 분기되어 상기 가압부(200)와 병렬형태로 구비된다.
이 때, 상기 보조가압부(800) 내부에는 제1배플(810)이 구비될 수 있으며, 상기 제1배플(810)은 고압의 질소가스와 액화물이 혼합되는 것을 방지하고, 상기 고압의 질소 가스에 의해 액화물이 가압되어 순차적으로 이송되도록 한다.
본 발명의 저온 액화물 가압 송출 장치(1000)는 상기 보조가압부(800) 내부에 높이방향으로 이격되되, 각각 좌ㆍ우 양측면에서 교번되어 연장되는 복수개의 제1배플(810)이 구비되어 상기 연결배관(410)을 통해 유입된 액화물이 지그재그 형태로 유동된다.
상기 제1배플(810)은 도 9에 도시한 바와 같이, 상기 보조가압부(800)의 양측 내벽면에 좌ㆍ우 방향으로 형성되되, 높이방향으로 이격되어 복수개 구비되는 구성으로서, 좌ㆍ우 양측 면에서 교번되어 연장된다.
아울러, 상기 제1배플(810)은 상기 가압부(200) 내부를 높이방향으로 분할하도록 평면 형태로 형성될 수 있으며, 면이 복수개 분할된 형태로 형성될 수도 있다.
본 발명의 저온 액화물 가압 송출 장치(1000)는 상기 가압부(200)가 복수개(N개) 구비될 수 있으며, 상기 보조가압부(800)가 더 형성됨으로써 저온 액화물을 연속 송출할 수 있으며, 특히, 상기 가압부(200)의 송출 준비 시, 상기 보조가압부(800)를 통해 저온 및 저압의 액화물을 가압하여 이송할 수 있으며, 그 반대로의 구동이 가능함에 따라 연속 송출이 가능한 장점이 있다.
제7실시예
도 10은 본 발명에 따른 제7실시예를 나타낸 도면으로서, 상기 제5실시예의 구성과 동일하되, 과냉각부(910)가 더 구비되는 예를 나타내었다.
상기 과냉각부(910)는 상기 연결배관(410)의 고압펌프(700) 전측에 상기 가압부(200) 또는 보조가압부(800)를 통과한 액화물을 과냉각하는 구성이다.
상기 과냉각부(910)는 냉각원에 의해 상기 고압펌프(700)로 공급되기 이전의 액화물을 과냉각하는 구성으로서, 열침투에 의한 기포 발생 및 플래싱 현상으로 인한 고압펌프(700)의 기계적인 손상을 방지할 수 있으며, 전체 내구성을 보다 향상할 수 있는 장점이 있다.
특히, 본 발명의 제7실시예에 따른 저온 액화물 가압 송출 장치(1000)는 상기 과냉각기의 냉각원이 상기 액화물 탱크(100) 내부에 저장된 저온 저압의 액화물이 이용될 수 있다.
이를 위하여, 상기 과냉각부(910)는 상기 액화물 탱크(100) 내부와 제1이송배관(911)에 의해 연결되며, 상기 연결배관(410)을 통해 공급되는 액화물이 상기 제1이송배관(911)을 통해 공급되는 저온 저압의 액화물과 열교환되어 과냉각될 수 있다.
다시 말해, 본 발명의 저온 액화물 가압 송출 장치(1000)는 상기 과냉각부(910)가 액화물 탱크(100)에 저장된 저온 저압의 액화물이 유통되어 액화물을 과냉각하는 냉각원으로 이용됨으로써 에너지 낭비없이 간단한 구성을 갖는 장점이 있다.
제8실시예
도 11은 본 발명에 따른 제8실시예를 나타낸 도면으로서, 상기 제7실시예의 구성과 동일하되, 상기 고압펌프(700)와 열조절부(300)를 연결하는 연결배관(410)으로부터 분기되는 제2이송배관(921)과, 상기 제2이송배관(921) 상에 구비되는 제2이송밸브(922)가 더 구비된 예를 나타내었다.
더욱 상세하게, 본 발명의 제8실시예는 상기 고압펌프(700)를 통과한 고온 고압의 액화물이 상기 제2이송배관(921)을 통해 상기 가압부(200)로 공급됨으로써 피스톤가스로 이용된다.
본 발명의 제8실시예는 상기 가압부(200)를 가열하는 최초 가압원으로서의 역할을 제외하고, 고온 고압의 액화물 또는 가스가 상기 가압부(200)의 가압원으로 이용될 수 있어, 장치의 작동 비용을 줄일 수 있으며, 가스 조성 비율이 변화되는 것을 더욱 방지할 수 있다.
제9실시예
도 12는 본 발명에 따른 제9실시예를 나타낸 도면으로서, 상기 제8실시예의 구성과 동일하되, 상기 열조절부(300)와 연료소모원(2000)을 연결하는 연결배관(410)으로부터 분기되는 제3이송배관(931)과, 상기 제3이송배관(931) 상에 구비되는 제3이송밸브(932)가 더 구비되는 예를 나타내었다.
도 12에 도시한 바와 같은 본 발명의 제9실시예는 열조절부(300)를 통과한 고온 고압의 가스가 상기 제3이송배관(931)을 통해 상기 가압부(200)로 공급됨으로써 추가적인 피스톤 가스로 이용된다.
제10실시예
도 13은 본 발명에 따른 제10실시예를 나타낸 도면으로서, 상기 제9실시예의 구성과 동일하되, 상기 가압부(200) 내부에 제2배플(260)이 더 형성되는 예를 나타내었다.
상기 제2배플(260)은 상기 보조가압부(800)의 제1배플(810) 형태와 유사하게 형성되며, 더욱 상세하게, 상기 가압부(200) 내부에 높이방향으로 이격되되, 각각 좌ㆍ우 양측면에서 교번되어 연장형성된다.
즉, 상기 가압부(200)는 배플(260)이 더 형성됨으로써 더욱 용이하게 액화물을 가압할 수 있으며, 상기 제2이송배관(921), 제2이송밸브(922)가 형성되거나, 상기 제3이송배관(931), 상기 제3이송배관(931)가 더 형성되는 구성에서, 액화물을 밀어내는 피스톤 가스로의 효과를 더욱 극대화할 수 있다.
이에 따라, 본 발명의 저온 액화물 가압 송출 장치(1000)는 저온 저압의 액화물을 고압 가스로 변환하고 용이하게 송출할 수 있으며, 이 과정에서 조성 변화 현상 및 플래싱(Flashing) 현상 방지를 통해 내구성을 향상할 수 있고, 구동 에너지를 저감하여 효율을 향상할 수 있는 장점이 있다.
한편, 본 발명의 저온 액화물 가압 송출 장치(1000)는 상기 가압부(200)가 압력 용기(210), 내부 용기(220) 및 단열 지지체(221)를 포함하여 이루어질 수 있다.(도 14참조)
상기 압력 용기(210)는 가압부(200)를 형성하는 기본 몸체로서, 상기 연결배관(410)과 연결되어 공급된 액화물을 내부로 분사하는 액화물 주입 노즐(211) 및 배출부(212)가 형성된다.
상기 내부 용기(220)는 일측이 개방된 용기 형태로서, 상기 압력 용기(210) 내부에 수용되어 그 내부에 액화물을 수용한다.
한편, 상기 내부 용기(220)는 액화물이 수용되는 공간으로서, 상기 가압부(200)가 제2배플(260)이 더 형성되는 경우에, 도 13에 도시한 바와 같이, 상기 제2배플(260)은 상기 내부 용기(220)의 높이방향으로 이격되어 좌우측으로 교각각 좌ㆍ우 양측면에서 교번되어 연장형성될 수 있다.
또한, 상기 단열 지지체(221)는 상기 압력 용기(210)로부터 상기 내부 용기(220)로의 열전달을 차단하도록 상기 내부 용기(220)를 상기 압력용기로부터 이격시켜 지지한다.
상기 가압부(200)가 압력 용기(210) 내에 직접 액화물을 수용하는 경우에는, 액화물이 가열되면서 상기 압력 용기(210)로 열량이 직접 전달되어, 압력 용기(210)가 열량을 축적하고 있다가, 상기 액화물 탱크(100)로 열이 전달되어 압력을 상승시키는 원인이 될 수 있다.
본 발명은 이러한 문제점을 해결할 수 있는 것으로서, 상기 가압부(200)가 압력 용기(210) 내부에 별도의 내부 용기(220)가 구비되며, 상기 압력 용기(210)와 내부 용기(220)가 단열 지지체(221)에 의해 이격 배치됨으로써 압력 용기(210)에 저장되는 열용량을 최소화할 수 있는 장점이 있다.
즉, 본 발명의 저온 액화물 가압 송출 장치(1000)는 가압부(200) 내부에서 액화물이 가열된다 하더라도 그 열량이 상기 압력 용기(210)로 전달되는 것을 최대한 방지할 수 있게 되는 것이다.
이에 따라, 상기 가압부(200)는 압력 용기(210)로 축적되는 열량이 최소화되어, 액화물 탱크(100)로 전달되는 열량을 최소화할 수 있으며, 따라서 액화물 탱크(100)에서의 상태 유지가 종래보다 훨씬 용이해지고 궁극적으로는 종래보다 훨씬 안정적인 시스템의 운용이 가능해지게 된다.
이러한 효과를 더욱 높이기 위하여(상기 압력 용기(210)로 축적되는 열량을 최소화하기 위하여) 상기 내부 용기(220)가 상기 압력 용기(210)보다 낮은 비열을 갖는 재질로 형성되는 것이 바람직하다.
이의 구체적인 예로서, 상기 압력 용기(210)가 스테인레스 스틸로 형성되고, 상기 내부 용기(220)가 구리로 형성될 수 있다.
상기 단열 지지체(221)는 상기 내부 용기(220)를 상기 압력 용기(210)로부터 이격시킴으로써 전도에 의한 직접적인 열전달을 최소화할 수 있다.
이 때, 상기 단열 지지체(221)를 통해 열전도가 일어날 수도 있는 바, 이러한 문제를 막기 위하여, 상기 단열 지지체(221)는 상기 압력 용기(210) 및 상기 내부 용기(220) 간의 이격된 간격을 안정적으로 지지할 수 있는 정도의 강성을 가지면서도 동시에 용기들에 비해서 비열이 훨씬 낮은 재질로 이루어지는 것이 바람직하다.
상기 단열 지지체(221)로 이용될 수 있는 구체적인 예로서, 합판으로 형성되도록 할 수 있다.
아울러, 상기 가압부(200)는 상기 압력 용기(210) 외부에 구비되어 단열하는 외부 단열재(240); 를 더 포함하여 이루어질 수 있다. 이 때 상기 외부 단열재(240)는 예를 들어 폴리우레탄과 같은 재질로 형성될 수 있다.
상기 가압부(200)는 상기 단열 지지체(221)에 의해 압력 용기(210)와 내부 용기(220) 사이에 공간이 존재하게 되므로, 여기에 다른 장치들을 더 구비시키는 것이 용이하다.
이에 따라, 상기 가압부(200)는 상기 내부 용기(220)에 수용되는 액화물의 상태를 측정하는 감지수단(230)을 더 포함할 수 있다.
이 때, 상기 감지수단(230)은 상기 내부 용기(220) 외측에 구비되어 상기 내부 용기(220)에 수용된 액화물의 온도를 측정하는 열전대(231)를 포함할 수 있다. 이 때, 상기 열전대(231)는 직접적으로 액화물에 접촉함으로써 발생될 수 있는 손상 문제 등을 방지하기 위하여 도 14에 도시되어 있는 바와 같이 상기 내부 용기(220)의 외측에 구비되도록 하는 것이 바람직하다.
또한, 상기 감지수단(230)은 상기 내부 용기(220)에 수용되는 액화물 수위를 측정하는 LC(232)(level control)를 포함할 수 있다.
이와 같이 본 발명의 저온 액화물 가압 송출 장치(1000)는 상기 가압부(200)가 열전대(231), LC(232) 등과 같은 감지수단(230)을 이용하여 그 내부에 수용된 액화물의 온도, 수위 등을 용이하게 측정할 수 있다. 이에 따라 액화물의 상태를 정확하게 파악하여 보다 효율적인 시스템의 운용이 가능하다.
아울러, 본 발명의 저온 액화물 가압 송출 장치(1000)는 다양한 형태의 가열수단(250)이 이용될 수 있으며, 이를 도 15 내지 도 17에 나타내었다.
도 15에 도시한 가열수단(250)은 내부 용기(220) 내부에 구비된 액화물보다 상대적으로 고온인 가열매체원이 유동되는 열교환기(210) 형태를 나타내었다.
이 때, 상기 열교환기(210) 형태의 가열수단(250)은 액화물과 가열매체원이 열교환됨으로써 액화물을 가열하게 된다. 상기 가열매체원은 스팀 또는 브라인(Brine)을 사용할 수 있다.
도 16은 본 발명의 저온 액화물 가압 송출 장치(1000)에 따른 가압부(200)의 다른 가열수단(250) 형태를 나타낸 것이다.
도 16에 도시한 예에서, 상기 가열수단(250)은 상기 가열기 내부에 구비되는 전기 히터(220) 형태로서, 이 때, 가열선(221) 및 전원(222)을 포함하여 이루어진다.
상기 가열선(221)은 상기 도 16에 도시한 바와 같이 상기 내부 용기(220) 외측에 부착되어 구비되는 것이 바람직하다.
위 예는 상기 가열수단(250)이 전기 히터(220) 형태로 형성됨으로써 시스템을 훨씬 단순화할 수 있다. 또한 가열매체원을 순환시키기 위한 펌프를 사용할 필요가 없으며, 더불어 액화물을 가열하는 데 사용되는 비용 또한 절감할 수 있는 장점 또한 있다. 구체적으로 예를 들어 설명하자면 다음과 같다.
LNG1 --> Heater --> LNG2
(1bar, -161.5℃, H:-5929) (△H=5329-4804=525KJ/Kg) (6bar, -120℃, H:-4804)
저온 액화물이 LNG인 경우, 저압 저온 액화물 탱크(100) 내의 액화물(LNG1)을 가열하여 고압가스(LNG2)를 만드는데 약 525kJ/kg이 필요하다. 또한, LNG의 공급 유량이 2.1t/h라고 가정한다면 총 291.66kW 만큼의 전기 에너지가 소모된다. 이를 전기 에너지 1kWh 당 70원으로 계산해 보면 LNG를 액화하는데 시간당 약 2만원이 사용된다는 것을 알 수 있다. 즉, 전기를 사용하여 직접 가열할 경우 가열매체원의 순환을 위한 펌프 작동에 소요되는 에너지와 비교하였을 때 훨씬 경제적이라는 것을 확인할 수 있다.
아울러, 상기 가열선(221)은 상기 내부 용기(220) 외측 영역 중에서도 상기 내부 용기(220) 외측 하부에 구비되는 것이 바람직하다.
상기 가열선(221)이 상기 내부 용기(220) 전체를 둘러싸게 구비될 경우에, 상기 내부 용기(220) 내부의 수위가 낮아지면 불필요한 가열이 이루어지는 부분이 발생될 수 있으므로, 상기 가열선(221)은 상기 내부 용기(220)의 외측, 그 중에서도 하부 영역에 구비되는 것이 바람직하다.
도 17은 본 발명의 저온 액화물 가압 송출 장치(1000)에 따른 가압부(200)의 다른 가열수단(250)예를 나타내었다.
상기 도 17에 나타낸 예는 상기 가열수단(250)이 가압부(200)의 외부에 구비되는 형태로서, 상기 가열수단(250)은 상기 내부 용기(220) 내부의 액화물이 순환 가열되어 전체를 가열하도록 상기 압력 용기(210)를 관통하여 상기 내부 용기(220)와 연통되는 입구 및 출구와, 상기 입구 및 출구를 연결하여 상기 내부 용기(220) 내의 액화물이 순환되는 순환로(256)와, 상기 순환로(256) 상에 형성되는 외부 열원(255)을 포함하여 형성된다.
상기 외부 열원(255)은 상기 순환로(256)를 통과하는 액화물보다 상대적으로 고온의 가열매체원이 액화물과 열교환하여 액화물을 가열하는 열교환기(210) 형태로서, 액화물과 가열매체원을 열교환시켜 액화물을 가열하는 형태가 이용될 수 있다.
이 때의 열교환기(210)의 형태는, 그 내부에 액화물이 유통되고 외부에 가열매체원이 유통되는 형태의 일반적인 열교환기(210) 형태로 형성될 수도 있고, 또는 이종의 유체가 그 내부에 유통되면서 서로 열교환하도록 형성되는 이종 열교환기(210) 형태로 형성될 수도 있는 등, 본 발명의 기술사상을 벗어나지 않는 범위에서 어떤 형태로 이루어져도 무방하다.
또한, 상기 외부 열원(255)은 전력을 이용하는 전기 히터(220) 형태로, 순환로(256)를 통과하는 액화물을 직접 가열하도록 형성될 수 있다.
물론 상술한 예시로 상기 외부 열원(255)의 형태가 한정되는 것은 아니며, 상기 외부 열원(255)이 상기 순환로(256) 상에 구비되어 액화물을 가열할 수만 있다면 어떠한 형태로 형성되어도 무방하다.
상기 도 17에 도시한 바와 같이, 상기 가열수단(250)이 상기 열원을 갖는 형태로 이루어지면, 설계자가 원하는 대로 가열수단(250)을 변형 실시할 수 있는 장점이 있으며, 또한 가열 방식을 어떤 것으로 하든 누출 문제를 염려할 필요가 없다는 장점이 있다.
본 발명은 상기한 실시 예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.

Claims (23)

  1. 저온 액화물을 가스 형태로 변환하여 연료소모원(2000)으로 공급하는 저온 액화물 가압 송출 장치(1000)에 있어서,
    저온 저압의 액화물이 저장되는 액화물 탱크(100);
    가열수단(250)을 포함하여 상기 액화물 탱크(100)로부터 공급받은 저온 및 저압의 액화물을 가압하는 가압부(200);
    상기 가압부(200)를 통과한 고온 고압의 액화물을 상기 연료소모원(2000)의 필요 온도 및 압력으로 조절하는 열조절부(300);
    상기 액화물 탱크(100), 가압부(200), 열조절부(300) 및 연료소모원(2000)을 연결하는 연결배관(410);
    상기 액화물 탱크(100)와 가압부(200) 사이를 연결하는 연결배관(410)에 형성되는 공급밸브(420);
    상기 가압부(200)와 열조절부(300) 사이를 연결하는 연결배관(410)에 형성되는 조절밸브(430);
    상기 액화물 탱크(100)와 가압부(200) 사이를 연결하는 평행배관과, 상기 평형배관(510) 상에 구비되어 서로 압력평형이 이루어지도록 압력을 조절하는 압력평형밸브(520)를 포함하는 압력조절부(500); 를 포함하는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  2. 제1항에 있어서,
    상기 저온 액화물 가압 송출 장치(1000)는
    상기 액화물 탱크(100)와 열조절부(300)를 연결하는 연결배관(410)이 제1 내지 제N연결배관(411~41N)을 포함하고,
    상기 가압부(200)가 상기 제1 내지 제N연결배관(411~41N)에 각각 설치되는 제1 내지 제N가압부(201~20N)를 포함하며,
    상기 공급밸브(420)가 상기 제1 내지 제N연결배관(411~41N) 상의 제1 내지 제N가압부(201~20N) 전측에 각각 설치되는 제1 내지 제N공급밸브(421~42N)를 포함하고,
    상기 조절밸브(430)가 상기 제1 내지 제N연결배관(411~41N) 상의 제1 내지 제N가압부(201~20N) 후측에 각각 설치되는 제1 내지 제N조절밸브(431~43N)를 포함하며,
    상기 압력조절부(500)가 상기 액화물 탱크(100)와 상기 제1 내지 제N가압부(201~20N)의 압력평형이 이루어지도록 압력을 조절하는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
    (N은 2 이상의 정수)
  3. 제2항에 있어서,
    상기 저온 액화물 가압 송출 장치(1000)는
    상기 제1 내지 제N가압부(201~20N)로 액화물을 공급하는 상기 제1 내지 제N연결배관(411~41N)이 분기되어 상기 제1 내지 제N가압부(201~20N) 중 나머지 하나를 순환하고 다시 합류되는 제1 내지 제N순환라인(61N); 및 상기 제1 내지 제N순환라인(61N) 상에 구비되어 액화물의 순환 흐름을 조절하는 제1 내지 제N순환밸브(62N); 가 더 구비되는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  4. 제1항에 있어서,
    상기 저온 액화물 가압 송출 장치(1000)는
    상기 연결배관(410)의 상기 열조절부(300) 전측에 액화물을 가압하는 고압펌프(700)가 더 구비되는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  5. 제4항에 있어서,
    상기 저온 액화물 가압 송출 장치(1000)는
    상기 연결배관(410)이 분기되어 상기 가압부(200)와 병렬형태로 상기 액화물 탱크(100)와 열조절부(300) 사이에 구비되며, 고압의 비활성 기체를 공급하는 고압기체 공급부가 형성되어 상기 액화물 탱크(100)로부터 공급받은 저온 및 저압의 액화물을 가압하는 보조가압부(800)가 더 구비되며,
    상기 공급밸브(420) 및 상기 보조가압부(800)로 공급되는 액화물의 흐름을 조절하는 보조공급밸브(801)의 조절에 의해 상기 액화물 탱크(100)로부터 이송된 저온 및 저압의 액화물은 상기 가압부(200) 및 보조가압부(800) 중 하나에 선택적으로 공급되는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  6. 제5항에 있어서,
    상기 보조가압부(800)는 내부에 높이방향으로 이격되되, 각각 좌ㆍ우 양측면에서 교번되어 연장되는 복수개의 제1배플(810)이 구비되어 내부로 유입된 액화물이 지그재그 형태로 유동되는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  7. 제4항에 있어서,
    상기 저온 액화물 가압 송출 장치(1000)는
    상기 연결배관(410)의 상기 고압펌프(700) 전측에 상기 가압부(200) 또는 보조가압부(800)를 통과한 액화물을 과냉각하는 과냉각부(910)가 더 구비되는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  8. 제7항에 있어서,
    상기 과냉각부(910)는 상기 액화물 탱크(100) 내부와 제1이송배관(911)에 의해 연결되며, 상기 연결배관(410)을 통해 공급되는 액화물이 상기 제1이송배관(911)을 통해 공급되는 저온의 액화물과 열교환되어 과냉각되는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  9. 제5항에 있어서,
    상기 저온 액화물 가압 송출 장치(1000)는 상기 고압펌프(700)와 열조절부(300)를 연결하는 연결배관(410)으로부터 분기되는 제2이송배관(921)과, 상기 제2이송배관(921) 상에 구비되는 제2이송밸브(922)가 구비되는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  10. 제9항에 있어서,
    상기 저온 액화물 가압 송출 장치(1000)는 상기 열조절부(300)와 연료소모원(2000)을 연결하는 연결배관(410)으로부터 분기되는 제3이송배관(931)과, 상기 제3이송배관(931) 상에 구비되는 제3이송밸브(932)가 구비되는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  11. 제10항에 있어서,
    상기 저온 액화물 가압 송출 장치(1000)는
    상기 가압부(200) 내부에 높이방향으로 이격되되, 각각 좌ㆍ우 양측면에서 교번되어 연장되는 복수개의 제2배플(260)이 더 구비되는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  12. 제1항 내지 제11항 중 선택되는 어느 한 항에 있어서,
    상기 가압부(200)는
    상기 연결배관(410)과 연결되어 공급된 액화물을 내부로 분사하는 액화물 주입 노즐(211) 및 배출부(212)가 형성된 압력 용기(210)와,
    일측이 개방된 용기 형태로서, 상기 압력 용기(210) 내부에 수용되어 그 내부에 액화물을 수용하는 내부 용기(220)와,
    상기 압력 용기(210)로부터 상기 내부 용기(220)로의 열전달을 차단하도록 상기 내부 용기(220)를 상기 압력 용기(210)로부터 이격시켜 지지하는 단열 지지체(221)를 포함하는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  13. 제12항에 있어서,
    상기 가압부(200)는
    상기 내부 용기(220)가 상기 압력 용기(210)보다 낮은 비열을 가지는 재질로 형성되는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  14. 제12항에 있어서,
    상기 가압부(200)는
    상기 내부 용기(220)에 수용되는 액화물의 상태를 측정하는 감지수단(230)을 더 포함하는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  15. 제14항에 있어서,
    상기 감지수단(230)은 상기 내부 용기(220) 외측에 구비되어 상기 내부 용기(220)에 수용된 액화물의 온도를 측정하는 열전대(231)를 포함하는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  16. 제14항에 있어서,
    상기 감지수단(230)은 상기 내부 용기(220)에 수용되는 액화물 수위를 측정하는 LC(232)(level control)를 포함하는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  17. 제14항에 있어서,
    상기 가열수단(250)은 상기 내부 용기(220) 내에 구비되며,
    내부에 구비된 액화물보다 상대적으로 고온인 가열매체원이 유통되는 열교환기(210) 형태로서, 액화물과 가열매체원을 열교환시켜 액화물을 가열하는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  18. 제17항에 있어서,
    상기 가열매체원은 스팀 또는 브라인(Brine)을 사용하는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  19. 제14항에 있어서,
    상기 가열수단(250)은 상기 내부 열원이 전원(222)에 의해 발열되는 가열선(221)이며, 상기 가열선(221)이 상기 내부 용기(220) 외측에 부착되는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  20. 제14항에 있어서,
    상기 가열수단(250)은
    상기 내부 용기(220) 내부의 액화물이 순환 가열되어 전체를 가열하도록 상기 압력 용기(210)를 관통하여 상기 내부 용기(220)와 연통되는 입구 및 출구와, 상기 입구 및 출구를 연결하여 상기 내부 용기(220) 내의 액화물이 순환되는 순환로(256)와, 상기 순환로(256) 상에 형성되는 외부 열원(255)을 포함하는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  21. 제20항에 있어서,
    상기 외부 열원(255)은
    상기 순환로(256)를 통과하는 액화물보다 상대적으로 고온의 가열매체원이 액화물과 열교환하여 액화물을 가열하는 열교환기(251) 형태로서, 액화물과 가열매체원을 열교환시켜 액화물을 가열하는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  22. 제20항에 있어서,
    상기 외부 열원(255)은 전력을 이용하는 전기 히터(252) 형태인 것을 특징으로 하는 저온 액화물 가압 송출 장치.
  23. 제12항에 있어서,
    상기 가압부(200)는
    상기 압력 용기(210) 외부에 구비되어 단열하는 외부 단열재(240)를 더 포함하는 것을 특징으로 하는 저온 액화물 가압 송출 장치.
PCT/KR2011/009184 2010-11-30 2011-11-30 저온 액화물 가압 송출 장치 WO2012074283A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180065253.1A CN103328877B (zh) 2010-11-30 2011-11-30 用于加压输送低温液化物料的设备
US13/990,613 US9683702B2 (en) 2010-11-30 2011-11-30 Apparatus for pressurizing delivery of low-temperature liquefied material
SG2013041389A SG190435A1 (en) 2010-11-30 2011-11-30 Apparatus for pressurizing delivery of low-temperature liquefied material

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2010-0120930 2010-11-30
KR1020100120930A KR101191135B1 (ko) 2010-11-30 2010-11-30 저온 액화물 연속 가압 장치 및 작동방법
KR10-2011-0019161 2011-03-03
KR1020110019161A KR101193613B1 (ko) 2011-03-03 2011-03-03 연료 가스 공급 시스템에 구비되는 다수의 가열기를 이용한 저온 액화물 연속 가압 장치에서의 저열용량 가열기
KR10-2011-0052476 2011-05-31
KR1020110052476A KR101254103B1 (ko) 2011-05-31 2011-05-31 저온 액화물 가압 송출 장치 및 작동 방법
KR1020110075840A KR101341794B1 (ko) 2011-07-29 2011-07-29 저온 액화물 가압 송출 장치
KR10-2011-0075840 2011-07-29

Publications (2)

Publication Number Publication Date
WO2012074283A2 true WO2012074283A2 (ko) 2012-06-07
WO2012074283A3 WO2012074283A3 (ko) 2012-10-04

Family

ID=46172393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009184 WO2012074283A2 (ko) 2010-11-30 2011-11-30 저온 액화물 가압 송출 장치

Country Status (4)

Country Link
US (1) US9683702B2 (ko)
CN (1) CN103328877B (ko)
SG (1) SG190435A1 (ko)
WO (1) WO2012074283A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180245740A1 (en) * 2017-02-24 2018-08-30 Robert D. Kaminsky Method of Purging a Dual Purpose LNG/LIN Storage Tank
CN113474247A (zh) * 2019-02-15 2021-10-01 石油资源开发株式会社 浮式低温液化气填充装置及使用该装置输送低温液化气的方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759383B2 (en) * 2011-07-08 2017-09-12 Capat Llc Multi-stage compression and storage system for use with municipal gaseous supply
KR101732293B1 (ko) * 2012-12-14 2017-05-02 바르실라 핀랜드 오이 액화 가스로 연료 탱크를 충전하는 방법 및 액화 가스 연료 시스템
WO2015017890A1 (en) * 2013-08-09 2015-02-12 Mosaic Technology Development Pty Ltd System and method for balanced refuelling of a plurality of compressed gas pressure vessels
CN103613060B (zh) * 2013-12-16 2016-08-17 羊宸机械(上海)有限公司 真空绝热式超低温介质船用输送装置
NO336502B1 (no) * 2013-12-23 2015-09-14 Yara Int Asa Fyllestasjon for fylling av et kryogent kjølemiddel
NO336503B1 (no) * 2013-12-23 2015-09-14 Yara Int Asa Fyllestasjon for flytende kryogent kjølemiddel
US11874055B2 (en) * 2014-03-04 2024-01-16 Conocophillips Company Refrigerant supply to a cooling facility
CN104006295B (zh) * 2014-04-28 2018-01-05 张夏炎 一种低温液化气体的置换式压力输送方法的设备
CN104406038B (zh) * 2014-10-22 2016-07-06 中国石油天然气股份有限公司 低压气体复压装置及方法
FR3028305A1 (fr) * 2014-11-10 2016-05-13 Gaztransport Et Technigaz Dispositif et procede de refroidissement d'un gaz liquefie
PL413001A1 (pl) * 2015-07-06 2017-01-16 Tadeusz Bąk Sposób regazyfikacji skroplonego gazu ziemnego oraz system regazyfikacji skroplonego gazu ziemnego
DE102015214191B3 (de) * 2015-07-27 2016-12-08 Mtu Friedrichshafen Gmbh Brenngasversorgungseinrichtung zur Bereitstellung eines Brenngases und Brennkraftmaschine
FR3043165B1 (fr) * 2015-10-29 2018-04-13 CRYODIRECT Limited Dispositif de transport d'un gaz liquefie et procede de transfert de ce gaz a partir de ce dispositif
DE102017008210B4 (de) * 2017-08-31 2020-01-16 Messer France S.A.S. Vorrichtung und Verfahren zum Befüllen eines mobilen Kältemitteltanks mit einem kryogenen Kältemittel
US20210041067A1 (en) * 2018-01-31 2021-02-11 Ihi Corporation Liquefied fluid supply system and liquefied fluid-spraying apparatus
FR3089600B1 (fr) * 2018-12-06 2021-03-19 Air Liquide Réservoir de stockage de fluide cryogénique
FR3106649B1 (fr) * 2020-01-24 2022-04-29 Air Liquide Réservoir cryogénique mobile et procédé d’approvisionnement
US20230417368A1 (en) * 2020-11-19 2023-12-28 Linde Gmbh Method and conveying device
FR3133657A1 (fr) * 2022-03-16 2023-09-22 Fives Cryomec Ag Dispositif de degazage d’hydrogene liquide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160901A (ja) * 2000-11-22 2002-06-04 Toyota Central Res & Dev Lab Inc 水素吸蔵合金活性化装置
JP2004332757A (ja) * 2003-04-30 2004-11-25 Honda Motor Co Ltd 圧力水素タンクへの水素充填方法および水素充填装置
JP2005063703A (ja) * 2003-08-20 2005-03-10 Japan Steel Works Ltd:The 水素吸蔵合金を用いた燃料電池用水素供給方法及び装置
KR20060124759A (ko) * 2004-03-17 2006-12-05 바르실라 핀랜드 오이 해상선박의 가스공급 구조 및 해상선박내로의 가스공급방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2489514A (en) * 1946-02-11 1949-11-29 Phillips Petroleum Co Method of storing and vaporizing liquefied gases
US2682154A (en) * 1949-06-21 1954-06-29 Air Reduction Storage of liquefied gases
US2632302A (en) * 1949-06-29 1953-03-24 Air Prod Inc Volatile liquid pumping
US2922289A (en) * 1956-08-27 1960-01-26 Mitchell Co John E Liquid petroleum gas vaporizer system
US6023933A (en) * 1997-11-04 2000-02-15 Air Products And Chemicals, Inc. Ultra high pressure gases
US5937655A (en) * 1997-12-04 1999-08-17 Mve, Inc. Pressure building device for a cryogenic tank
US7135048B1 (en) * 1999-08-12 2006-11-14 Idatech, Llc Volatile feedstock delivery system and fuel processing system incorporating the same
US6631615B2 (en) * 2000-10-13 2003-10-14 Chart Inc. Storage pressure and heat management system for bulk transfers of cryogenic liquids
US6945049B2 (en) * 2002-10-04 2005-09-20 Hamworthy Kse A.S. Regasification system and method
GB0320474D0 (en) * 2003-09-01 2003-10-01 Cryostar France Sa Controlled storage of liquefied gases
EP1690052A4 (en) * 2003-11-03 2012-08-08 Fluor Tech Corp LNG STEAM LINE CONFIGURATIONS AND METHODS
MX2008012954A (es) * 2006-04-13 2008-10-15 Fluor Tech Corp Configuraciones y metodos de manipulacion de vapor de gas natural licuado.
US8028724B2 (en) * 2007-02-12 2011-10-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and unloading of LNG from the tank
CN101220905B (zh) * 2008-01-23 2010-06-02 袁祖强 低温液体转化为压力气体的汽化装置
US20100122542A1 (en) * 2008-11-17 2010-05-20 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and apparatus for adjusting heating value of natural gas
US7721557B1 (en) * 2009-09-18 2010-05-25 John Stearns Method and system for propane extraction and reclamation
US9163785B2 (en) * 2012-04-04 2015-10-20 Gp Strategies Corporation Pumpless fluid dispenser
KR101290430B1 (ko) * 2013-04-24 2013-07-26 현대중공업 주식회사 Lng 연료 공급 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160901A (ja) * 2000-11-22 2002-06-04 Toyota Central Res & Dev Lab Inc 水素吸蔵合金活性化装置
JP2004332757A (ja) * 2003-04-30 2004-11-25 Honda Motor Co Ltd 圧力水素タンクへの水素充填方法および水素充填装置
JP2005063703A (ja) * 2003-08-20 2005-03-10 Japan Steel Works Ltd:The 水素吸蔵合金を用いた燃料電池用水素供給方法及び装置
KR20060124759A (ko) * 2004-03-17 2006-12-05 바르실라 핀랜드 오이 해상선박의 가스공급 구조 및 해상선박내로의 가스공급방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180245740A1 (en) * 2017-02-24 2018-08-30 Robert D. Kaminsky Method of Purging a Dual Purpose LNG/LIN Storage Tank
US10663115B2 (en) * 2017-02-24 2020-05-26 Exxonmobil Upstream Research Company Method of purging a dual purpose LNG/LIN storage tank
CN113474247A (zh) * 2019-02-15 2021-10-01 石油资源开发株式会社 浮式低温液化气填充装置及使用该装置输送低温液化气的方法
CN113474247B (zh) * 2019-02-15 2023-06-09 石油资源开发株式会社 浮式低温液化气填充装置及使用该装置输送低温液化气的方法

Also Published As

Publication number Publication date
CN103328877B (zh) 2015-06-24
US9683702B2 (en) 2017-06-20
US20130327421A1 (en) 2013-12-12
SG190435A1 (en) 2013-07-31
CN103328877A (zh) 2013-09-25
WO2012074283A3 (ko) 2012-10-04

Similar Documents

Publication Publication Date Title
WO2012074283A2 (ko) 저온 액화물 가압 송출 장치
WO2013172644A1 (ko) 액화가스 처리 시스템 및 방법
WO2018093064A1 (ko) 선박용 연료유 전환 시스템 및 방법
WO2014209029A1 (ko) 선박의 증발가스 처리 시스템 및 방법
WO2014092368A1 (ko) 선박의 액화가스 처리 시스템
WO2017030221A1 (ko) 열전발전모듈, 이를 포함하는 열전발전장치와 결빙방지 기화장치 및 기화연료가스 액화공정 장치
WO2014065619A1 (ko) 선박의 액화가스 처리 시스템
WO2018066845A1 (ko) 하이브리드형 발전 시스템
WO2014038734A1 (ko) 하이드레이트 펠릿의 저장, 운송, 해리 용기 및 이를 이용한 하이드레이트 펠릿의 저장, 운송, 해리 방법
WO2009102136A2 (ko) 탄화수소 액화가스를 처리하기 위한 처리장치 및 방법
WO2017171164A1 (ko) 선박용 증발가스 재액화 장치 및 방법
WO2010021503A2 (ko) 액화가스 저장탱크 및 상기 저장탱크를 갖춘 해양 구조물
WO2016013874A1 (ko) 피동잔열제거계통 및 이를 구비하는 원전
WO2016126025A1 (ko) 선박의 연료가스 공급시스템
WO2016126037A1 (ko) 선박의 증발가스 처리장치 및 처리방법
WO2018124815A1 (ko) 연료가스 공급 시스템
WO2021157855A1 (ko) 선박의 액화가스 재기화 시스템 및 방법
WO2015012577A1 (ko) 부유식 해상구조물 및 부유식 해상구조물의 온도 제어 방법
WO2018139848A1 (ko) Lng 선의 증발가스 재액화 방법 및 시스템
WO2013172641A1 (ko) 액화가스 처리 시스템 및 방법
WO2018066860A1 (ko) 선박용 연료 가스 공급 시스템 및 방법
WO2016195233A1 (ko) 선박
WO2017209492A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2017135804A1 (ko) 가스 재기화 시스템을 구비하는 선박
WO2022107947A1 (ko) 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844432

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13990613

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11844432

Country of ref document: EP

Kind code of ref document: A2