WO2018066860A1 - 선박용 연료 가스 공급 시스템 및 방법 - Google Patents

선박용 연료 가스 공급 시스템 및 방법 Download PDF

Info

Publication number
WO2018066860A1
WO2018066860A1 PCT/KR2017/010597 KR2017010597W WO2018066860A1 WO 2018066860 A1 WO2018066860 A1 WO 2018066860A1 KR 2017010597 W KR2017010597 W KR 2017010597W WO 2018066860 A1 WO2018066860 A1 WO 2018066860A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
heater
water
coolant
cooling water
Prior art date
Application number
PCT/KR2017/010597
Other languages
English (en)
French (fr)
Inventor
김종현
박영규
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160128368A external-priority patent/KR101876973B1/ko
Priority claimed from KR1020160128367A external-priority patent/KR101876972B1/ko
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to CN201780061379.9A priority Critical patent/CN109863081B/zh
Priority to SG11201902807UA priority patent/SG11201902807UA/en
Priority to JP2019517430A priority patent/JP7048589B2/ja
Publication of WO2018066860A1 publication Critical patent/WO2018066860A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/06Apparatus for de-liquefying, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a system and a method for supplying fuel gas to a marine engine by utilizing the heat amount of engine coolant.
  • Liquefied natural gas is a colorless and transparent liquid obtained by liquefying natural gas containing methane as a main component at about -163 °C and having a volume of about 1/600 compared to natural gas. Therefore, when liquefied and transported natural gas can be transported very efficiently.
  • natural gas is liquefied and stored in a storage tank in the form of liquefied natural gas, and then the liquefied natural gas is transported by a vessel.
  • gas fuel engines such as DFDE, ME-GI engine, and X-DF engine, which can use natural gas as fuel.
  • DFDE is used for power generation and consists of four strokes.
  • Otto Cycle which injects natural gas with a relatively low pressure of 6.5 bar into the combustion air inlet and compresses the piston as it rises.
  • the ME-GI engine is used for propulsion and consists of two strokes.
  • the diesel cycle is used to inject high pressure natural gas around 300 bar directly into the combustion chamber near the top dead center of the piston.
  • the X-DF engine is used for propulsion and consists of two strokes. It uses about 16 bar of medium pressure natural gas as fuel and adopts auto cycle.
  • liquefied natural gas stored in a storage tank may be vaporized and then supplied to the engine.
  • a heat source is required to vaporize liquefied natural gas.
  • Techniques for using engine coolant as a heat source for vaporizing liquefied natural gas have been developed.
  • the cooling water after cooling the engine is controlled to be a constant temperature, for example, the cooling water after cooling the ME-GI engine may be controlled to be approximately 85 °C.
  • the present invention seeks to propose a method of properly distributing a heat source of cooling water that varies with an engine load, and an efficient equipment arrangement for appropriately distributing a heat source of cooling water.
  • a vaporizer for vaporizing the liquefied natural gas to supply to the engine;
  • a first heater configured to heat the fluid used as a fruit in the vaporizer by heat-exchanging the coolant discharged after cooling the engine and the fluid used in the vaporizer;
  • a water cooler for heating the seawater to obtain fresh water by using a part or all of the heat source having the cooling water discharged from the engine and having passed through the first heater.
  • a fuel gas supply system for ships is provided which vaporizes liquefied natural gas by heat-exchanging the heated fruit and the liquefied natural gas.
  • the marine fuel gas supply system may include an expansion tank that absorbs a volume change generated when the cooling water expands or contracts.
  • the engine may be disposed in an engine room, and the expansion tank may be disposed 20m to 25m above the engine room.
  • the first heater may be disposed at a position higher than the expansion tank.
  • the marine fuel gas supply system may further include a second heater configured to heat the cooling water discharged from the water tank and supplied to the engine.
  • Cooling water discharged from the engine diverges into two streams, some of which may be sent to the first heater, others of which may bypass the first heater, and the marine fuel gas supply system bypasses the first heater.
  • the apparatus may further include a first three-way valve installed at a point where the coolant and the coolant passing through the first heater are joined.
  • the first three-way valve may be installed at a position lower than the expansion tank.
  • the marine fuel gas supply system may further include a cooler configured to lower the temperature of the coolant passing through the first heater and the water heater after being discharged from the engine.
  • the fuel gas supply system for ships may further include a third temperature control sensor installed on a line to which the coolant discharged from the cooler is supplied to the engine to adjust the temperature of the coolant, The set value may be lowered as the load of the engine increases.
  • the heat source obtained while cooling water cools the engine is used first in the first heater, the rest is used in the water heater, and the remaining heat source even when used in the water heater can be cooled by the cooler.
  • the marine fuel gas supply system may further include a storage tank for storing the remaining coolant not sent to the first heater among the coolant used to cool the engine.
  • the ship fuel gas supply system may further include a first compressor installed on a line for supplying cooling water discharged from the storage tank to the expansion tank, wherein the first compressor has a constant water level in the storage tank. It may be operated when the height is above or the level of the expansion tank is below a certain height.
  • the marine fuel gas supply system may further include a second compressor configured to compress and supply the cooling water discharged from the water dispenser to the engine.
  • the marine fuel gas supply system may further include a first valve that prevents the cooling water supplied from the engine to the first heater when the second compressor is stopped.
  • the vaporizer, the first heater, the water heater, and the second compressor may be connected in series, and cooling water may be circulated by only the second compressor.
  • the marine fuel gas supply system may further include a third compressor installed on a line to which the coolant discharged from the engine is supplied to the first heater.
  • the load of the water dispenser is the load of the engine engine A, the maximum amount of heat transferred to the fluid used as a fruit in the carburetor x, the load of the water dispenser B, the maximum amount of heat obtained by cooling water while cooling the engine y
  • the marine fuel gas supply system may include: a first temperature control sensor installed on a line through which coolant is supplied from the engine to the first heater; And a second temperature control sensor installed on a line to which the coolant discharged from the water dispenser is supplied to the engine, and controlling the temperature of the coolant.
  • the second temperature control sensor may further include one or more set values of the second temperature control sensor. The lower the load of the engine may be.
  • the marine fuel gas supply system may further include an air separator installed on a line to which the coolant passing through the first heater after being discharged from the engine is sent to the water dispenser to remove the air contained in the coolant. have.
  • the marine fuel gas supply system may further include an air discharge tank for discharging air contained in the cooling water sent from the water tanker to the engine.
  • Some or all of the piping through which the coolant flows may be insulated.
  • the ship fuel gas supply method may further include the step of heating the cooling water used in the water tank in step 5).
  • step 5 when the engine is not operated, the coolant may be heated to a temperature that is higher than a temperature at which low temperature corrosion of the engine may be prevented.
  • step 5 if the cooler is operated at 100% in step 4), when the temperature of the coolant drops below a temperature at which the engine can prevent low temperature corrosion of the engine, the cooler is operated at 100% and then Cooling water can be heated above a temperature to prevent low temperature corrosion.
  • the fuel gas supply method for ships may further include the step of compressing the cooling water discharged from the water dispenser by a second compressor and supplying it to the engine.
  • the coolant discharged from the engine diverges into two streams, some of which may be sent to the first heater, and others may bypass the first heater, and the coolant and the first heater bypassing the first heater.
  • the first three-way valve may be installed at the point where the passing coolant is joined.
  • valve in the direction of the first heater of the first three-way valve can be closed, and the remaining valves can be kept open.
  • the algorithm can be configured to automatically close the valve in the first heater direction of the first three-way valve by the control panel.
  • the engine is disposed in the engine room, and an expansion tank for absorbing the volume change caused by the expansion or contraction of the cooling water 20 to 25m above the engine room and And a first heater for heating the fruit for vaporizing the liquefied natural gas at a position higher than the expansion tank, and installed at a point where the cooling water bypassing the first heater and the cooling water passing through the first heater are joined.
  • a three way valve is provided in which a three way valve is installed at a position lower than the expansion tank.
  • the load of the engine A the maximum amount of heat transferred to the fluid used as a fruit in the carburetor x
  • the load of the water tank B the cooling water while cooling the engine
  • the present invention according to the equation representing the relationship between the load of the engine and the load of the water tank, by adjusting the load of the water tank, it is possible to appropriately distribute the amount of heat obtained by cooling the engine and cooling water to the carburetor and water have.
  • a first heater and a vaporizer can be included, thereby reducing the capacity of the cooler and saving energy for driving the cooler.
  • the excess cooling water is stored in the storage tank and used again, it is possible to minimize the consumption of the cooling water to be chemically treated.
  • the devices installed on the line through which the coolant is circulated can be connected in series to circulate the coolant only by the pressure of the second compressor without installing an additional compressor.
  • the cooler is heated by the second heater after the water heater is operated at 100%, so that the system can be operated more flexibly.
  • FIG. 1 is a schematic diagram of a marine fuel gas supply system according to a first preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a marine fuel gas supply system according to a second preferred embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a marine fuel gas supply system according to a first preferred embodiment of the present invention.
  • the ship fuel gas supply system includes a first heater 110, a vaporizer 180, and a water heater 120.
  • the engine E supplied with fuel by the ship fuel gas supply system of this embodiment may be a ME-GI engine, an X-DF engine, a DF engine, etc. using natural gas as a fuel, and the ship fuel gas supply of this embodiment
  • the system can also be applied to other combustion devices that use natural gas as fuel, such as gas turbines.
  • the ship fuel gas supply system of this embodiment is applied to the ME-GI engine used as a main propulsion engine.
  • the engine E of this embodiment is arranged in the engine room.
  • the first heater 110 of the present embodiment heat-exchanges the coolant (L10 line) discharged after cooling the engine E and the fluid (L3 line) used as a fruit in the vaporizer 180. That is, the first heater 110 supplies a part of the heat source obtained by the cooling water while cooling the engine E to a fluid (line L3) used as a fruit in the vaporizer 180, and then passes the fruit in the vaporizer 180 to the fruit. Heat the fluid (L3 line) used.
  • a first temperature control sensor controlling the temperature of the coolant discharged from the engine E and supplied to the first heater 110 may be installed.
  • the first temperature control sensor 210 of the present embodiment may adjust the temperature of the cooling water discharged from the engine E to approximately 85 ° C.
  • the temperature of the cooling water discharged from the engine E is constantly adjusted to approximately 85 ° C., and as the load of the engine E increases, the heat generated by the engine E also increases, so that the engine E The temperature of the coolant supplied to the engine E varies according to the load. The lower the load of the engine E, the higher the temperature of the cooling water supplied to the engine E in order to prevent low temperature corrosion of the engine E.
  • the vaporizer 180 of the present embodiment heat-exchanges the fruit (L4 line) and the liquefied natural gas heated by the first heater 110 to vaporize the liquefied natural gas. That is, the vaporizer
  • the natural gas vaporized by the vaporizer 180 (L1 line) is supplied to the engine E and used as fuel.
  • the fluid used as a fruit in the vaporizer 180 may be glycol water (Glycol Water).
  • the water heater 120 of the present embodiment heats the seawater using some or all of the heat source of the coolant (L20 line) passed through the first heater 110 after being discharged from the engine E to obtain fresh water.
  • the amount of heat that the coolant can obtain while cooling the engine E is proportional to the load of the engine E, and as the load of the engine E increases, the amount of fuel required increases, so that the vaporizer 180 liquefies.
  • the amount of natural gas transferred increases as the load of the engine E increases, and thus, the amount of heat to be transmitted to the fluid used as a fruit in the vaporizer 180 by the first heater 110 is also proportional to the load of the engine E. do.
  • the maximum amount of coolant obtained by cooling the engine E is the maximum amount of heat transferred to the fluid A used as the fruit in the vaporizer 180, the load of the engine E x, and the load of the water dispenser 120 B. If the calorie value is y and the calorie demanded when the load of the water conditioner 120 is 100% is z, the following equation holds.
  • the heat source obtained by cooling the engine E is used first in the first heater 110, and the rest is used in the water heater 120.
  • the coolant (L10 line) discharged from the engine (E) diverges into two flows, part (L10 line) is sent to the first heater (110), and the remaining (L12 line) bypasses the first heater (110). can do.
  • the coolant (L12 line) bypassing the first heater 110 and the coolant (L20 line) passing through the first heater 110 may be combined and sent to the water heater 120, and bypass the first heater 110.
  • the first three-way valve 810 may be installed at a point where the coolant (L12 line) and the coolant (L20 line) passing through the first heater 110 are joined. According to this embodiment, by adjusting the opening degree of the first three-way valve 810, it is possible to adjust the amount of cooling water sent to the first heater 110, and eventually the amount of heat transferred from the cooling water to the first heater 110 I can regulate it.
  • a temperature sensor (not shown) may be installed, and according to the temperature value detected by the temperature sensor installed on the L4 line, the first three directions The opening degree of the valve 810 can be adjusted. Since the temperature of the fruit supplied along the L4 line increases as the amount of liquefied natural gas to be vaporized in the vaporizer 180 increases, by controlling the temperature of the fruit supplied along the L4 line, the amount of liquefied natural gas vaporized can be controlled. And, by adjusting the amount of cooling water sent to the first heater 110 by the first three-way valve 810, it is possible to adjust the temperature of the fruit supplied along the L4 line.
  • the ship fuel gas supply system of the present embodiment may be operated so that the temperature of the fruit flowing through the L4 line is kept constant. Since the fluid (L3 line) discharged after being used as a fruit for vaporizing the liquefied natural gas in the vaporizer 180 has a low temperature, the fluid supplied to the first heater 110 along the L3 line is heated to a predetermined temperature. The opening degree of the first three-way valve 810 is adjusted.
  • a second valve 720 for controlling the flow rate and opening and closing of the fluid may be installed.
  • the air separator 330 is installed on the line (L20) for the cooling water discharged from the engine (E) after passing through the first heater 110 is sent to the water heater 120. It may further include.
  • the air separator 330 of the present embodiment removes air contained in the cooling water supplied to the water heater 120 from the first heater 110, thereby causing failure of various devices included in the marine fuel gas supply system of the present embodiment. To prevent.
  • the coolant (L20 line) passing through the first heater 110 after being discharged from the engine E branches into two streams, and a part (L20 line) is sent to the water tank 120 and the rest (L22). Line) may bypass the assistant 120.
  • the coolant (L22 line) bypassing the water dispenser 120 and the coolant (L30 line) passing through the water cooler 120 may be joined and sent back to the engine E, and the coolant may bypass the water cooler 120 (
  • the second three-way valve 820 may be installed at the point where the coolant (L30 line), which has passed through the L22 line) and the water dispenser 120, joins. According to this embodiment, by adjusting the opening degree of the second three-way valve 820, it is possible to adjust the amount of cooling water sent to the water tank 120, and eventually to adjust the amount of heat transferred from the cooling water to the water tank 120. have.
  • a second temperature control sensor 220 for adjusting the temperature of the coolant may be installed on the line L30 through which the coolant discharged from the water dispenser 120 is supplied to the engine E.
  • the set value of the second temperature control sensor 220 of the present embodiment is lower as the load of the engine E is higher.
  • the ship fuel gas supply system may further include a cooler 130 for lowering the temperature of the coolant passing through the first heater 110 and the water heater 120 after being discharged from the engine E.
  • a cooler 130 for lowering the temperature of the coolant passing through the first heater 110 and the water heater 120 after being discharged from the engine E.
  • the coolant (L30 line) discharged from the water cooler 120 is divided into two streams, a part (L30 line) is sent to the cooler 130, the rest (L32) Line) may bypass the cooler 130.
  • the coolant (L32 line) bypassing the cooler 130 and the coolant (L40 line) passing through the cooler 130 may be combined and sent to the engine (E), and the coolant (L32 line) bypassing the cooler 130.
  • a third three-way valve 830 may be installed at the point where the coolant (L40 line) passing through the cooler 130 joins. According to this embodiment, by adjusting the opening degree of the third three-way valve 830, it is possible to adjust the amount of cooling water sent to the cooler 130, it is possible to adjust the degree to which the coolant is cooled by the cooler 130 in the end. .
  • the heat source of the cooling water is not used to heat the liquefied natural gas, but the cooling water is cooled in the cooler 130 and then supplied to the engine E.
  • the first heater ( 110) and the vaporizer 180 the heat source of the coolant is used to heat the liquefied natural gas and then cooled by the cooler 130 only when necessary, thereby reducing the capacity of the cooler 130 and driving the cooler 130. It can save energy.
  • the heat source obtained while the coolant cools the engine E is used first in the first heater 110, the rest is used in the water heater 120, the water heater ( The remaining heat source used in the 120 is cooled by the cooler 130.
  • a third temperature control sensor 230 for adjusting the temperature of the coolant is installed Can be.
  • the set value of the third temperature control sensor 230 of the present embodiment is lower as the load of the engine E is higher.
  • the ship fuel gas supply system of the present embodiment may further include one or more of the storage tank 160, the expansion tank 170, and the air discharge tank 140.
  • the storage tank 160 of the present embodiment stores the remaining coolant not sent to the first heater 110 among the coolant used to cool the engine E, and part of the coolant stored in the storage tank 160 is expanded. May be sent to tank 170 (L50 line). According to this embodiment, since the excess cooling water is stored in the storage tank 160 and used again, it is possible to minimize the consumption of the cooling water to be chemically treated.
  • the expansion tank 170 of the present embodiment absorbs the volume change generated when the cooling water expands or contracts to increase the stability of the system, and serves to apply pressure to circulate the cooling water.
  • the expansion tank 170 of the present embodiment receives the cooling water from the storage tank 160 and the air discharged from the air discharge tank 140. When the pressure inside the expansion tank 170 becomes too high, the gas inside the expansion tank 170 may be discharged along the gas discharge line L2.
  • the expansion tank 170 of the present embodiment may be disposed approximately 20m to 25m above the engine room in which the engine E is disposed.
  • the pressure of the cooling water supplied to the engine E may exceed the required pressure, and the expansion tank 170 according to the temperature of the cooling water required by the engine E.
  • Height can vary.
  • the pressure of the cooling water is lowered, bubbles may be generated, and since the pressure at which bubbles are generated varies depending on the temperature of the cooling water, the expansion tank so that the pressure does not generate bubbles in the cooling water according to the temperature required by the engine (E). It is to set the height of (170).
  • the air discharge tank 140 of the present embodiment discharges the air contained in the cooling water sent from the water tank 120 to the engine E to the expansion tank 170, and the fluid rapidly changes according to the temperature change of the fluid. It acts to mitigate the effects of volume changes. Cooling water sent from the water tank 120 of the present embodiment to the engine (E) may be temporarily stored in the air discharge tank 140 and sent to the engine (E).
  • the ship fuel gas supply system of the present embodiment may further include a first compressor 410 installed on a line L50 for supplying the cooling water discharged from the storage tank 160 to the expansion tank 170.
  • the first compressor 410 of the present embodiment is linked with the first water level control device 310 for adjusting the water level of the storage tank 160 and the second water level control device 320 for adjusting the water level of the expansion tank 170. Can be operated. That is, the first compressor 410 of the present embodiment is operated when the water level of the storage tank 160 becomes higher than the predetermined height or the water level of the expansion tank 170 becomes lower than the predetermined height, thereby cooling water inside the storage tank 160. Can be sent to the expansion tank (170).
  • the ship fuel gas supply system includes a second compressor 420 which compresses the cooling water discharged from the water tank 120 and supplies the compressed water to the engine E; And a first valve 710 installed on the line L10 through which the coolant is supplied from the engine E to the first heater 110 to prevent the backflow of the coolant. It may further comprise one or more of.
  • a plurality of second compressor 420 of the present embodiment may be connected in parallel, it is possible to compress the cooling water to approximately 3bar.
  • the second compressor 420 of the present embodiment may compress the cooling water so as to satisfy both the pressure for circulating the cooling water and the pressure required by the engine E.
  • the coolant discharged from the engine E is again so that the coolant is circulated only by the pressure of the second compressor 420 without installing an additional compressor.
  • Devices installed on a line circulating to be supplied to the engine E are preferably connected in series.
  • the first valve 710 of the present embodiment prevents the pressure of the cooling water supplied from the engine E to the first heater 110 to be reversed.
  • the ship fuel gas supply system of the present embodiment may further include a second heater 150 that heats the cooling water discharged from the water tank 120 and supplied to the engine E.
  • the second heater 150 of the present embodiment heats the cooling water by heat-exchanging the steam and the cooling water.
  • the third valve 730 may be installed on the line for supplying steam, and the amount of steam may be adjusted by adjusting the opening degree of the third valve 730, and thus, the degree of heating the cooling water may be adjusted.
  • the coolant when the vessel is anchored and the engine E is not operated, the coolant is heated to the engine E by heating the cooling water at a predetermined temperature or more in order to prevent low-temperature corrosion of the engine E. It serves to supply.
  • the cooler 130 In the case of operating the second heater 150 of the present embodiment, the cooler 130 is generally not operated.
  • the ship fuel gas supply system of the present embodiment includes the second heater 150
  • the water tank 120 can be operated at 100%.
  • the load of the engine E is low
  • the water heater 120 is operated 100%
  • the temperature of the coolant supplied to the engine E becomes too low to prevent low temperature corrosion of the engine E.
  • the water heater 120 could not be operated 100%.
  • the coolant can be prevented from low temperature corrosion of the engine E by the second heater 150. By heating to a certain temperature, the system can be operated more flexibly.
  • the cooling water discharged from the water heater 120 diverges into two flows, a part (L60 line) is sent to the second heater 150, the rest (L62) Line) may bypass the second heater 150.
  • the coolant (L62 line) bypassing the second heater 150 and the coolant (L60 line) passing through the second heater 150 may be combined and sent to the engine E, bypassing the second heater 150.
  • the fourth valve 740 may be installed on the line L62 through which the coolant flows. According to this embodiment, by adjusting the opening degree of the fourth valve 740, it is possible to adjust the amount of cooling water sent to the second heater 150, and eventually the degree to which the cooling water is heated by the second heater 150 I can regulate it.
  • the ship fuel gas supply system of the present embodiment includes all of the cooler 130, the air discharge tank 140, the second compressor 420, and the second heater 150
  • the cooler 130 is installed, the air discharge tank 140 is installed at the rear end of the cooler 130, the second compressor 420 is installed at the rear end of the air discharge tank 140, the second compressor at the rear end of the second compressor 420
  • the heater 150 is installed and the engine E is installed at the rear end of the second heater 150.
  • the ship fuel gas supply system of the present embodiment includes a first three-way valve 810, a second three-way valve 820, a third three-way valve 830, a third valve 730, a first temperature control sensor 210, When further comprising at least one of the second temperature control sensor 220 and the third temperature control sensor 230, the first three-way valve 810, the second three-way valve 820, the third three-way valve 830 The third valve 730, the first temperature control sensor 210, the second temperature control sensor 220, and the third temperature control sensor 230 may be controlled by the control panel C, respectively. .
  • the control panel C of the present exemplary embodiment comprehensively analyzes the operating status of the system based on the information collected by each device connected to the device and the state of each device, and controls each device.
  • the piping (indicated by the double line in FIG. 1) through which a coolant flows can be insulated.
  • FIG. 2 is a schematic diagram of a marine fuel gas supply system according to a second preferred embodiment of the present invention.
  • the first heater 110 is disposed at a position higher than the expansion tank 170 in comparison with the marine fuel gas supply system of the first embodiment shown in FIG. 1.
  • the first heater 110 further includes a third compressor 190, and the following description will focus on the difference. Detailed descriptions of the same members as those of the ship fuel gas supply system of the first embodiment are omitted.
  • the ship fuel gas supply system includes a first heater 110, a vaporizer 180, and a water heater 120, similarly to the first embodiment.
  • the engine E supplied with fuel by the ship fuel gas supply system of the present embodiment may be a ME-GI engine, an X-DF engine, a DF engine, etc. using natural gas as fuel, as in the first embodiment
  • the marine fuel gas supply system of this embodiment can be applied to other combustion apparatuses that use natural gas as a fuel, such as a gas turbine, as in the first embodiment.
  • the ship fuel gas supply system of the present embodiment is preferably applied to the ME-GI engine used as the main propulsion engine as in the first embodiment, and the engine E of the present embodiment is similar to the first embodiment, It is placed in the engine room.
  • the first heater 110 of the present embodiment like the first embodiment, coolant (L10 line) discharged after cooling the engine (E) and fluid (L3 line) used as a fruit in the vaporizer 180 Heat exchange. That is, like the first embodiment, the first heater 110 supplies a part of the heat source obtained by the cooling water while cooling the engine E to the fluid (line L3) used as a fruit in the vaporizer 180, In the vaporizer 180, the fluid (L3 line) used as a fruit is heated.
  • the first temperature control sensor 210 may be installed. Like the first embodiment, the first temperature control sensor 210 of the present embodiment can adjust the temperature of the cooling water discharged from the engine E to approximately 85 ° C.
  • the temperature of the cooling water discharged from the engine E is constantly adjusted to approximately 85 ° C., and the cooling water supplied to the engine E according to the load of the engine E is controlled.
  • the temperature is different. That is, the lower the load of the engine E, the higher the temperature of the coolant supplied to the engine E in order to prevent low temperature corrosion of the engine E.
  • the vaporizer 180 of the present embodiment heats the liquefied natural gas by heat-exchanging the fruit (L4 line) and the liquefied natural gas heated by the first heater 110, as in the first embodiment. That is, the vaporizer
  • the fluid used as the fruit in the vaporizer 180 may be glycol water, as in the first embodiment.
  • the water heater 120 of the present embodiment similarly to the first embodiment, uses a part or all of the heat source of the coolant (L20 line) that passed through the first heater 110 after being discharged from the engine E, Seawater is heated to obtain fresh water.
  • the maximum amount of heat obtained by cooling the engine E while cooling the engine E and the maximum amount of heat delivered to the fluid used as a fruit at the engine E, the vaporizer 180 is x. If y is the amount of heat required when the load of the water conditioner 120 is 100%, the following equation holds as in the first embodiment.
  • the heat source obtained by cooling the engine E while cooling the engine E is used first in the first heater 110, and the rest is used in the water heater 120.
  • the coolant (L12 line) bypassing the first heater 110 and the coolant (L20 line) passing through the first heater 110 may be joined and sent to the water heater 120, At the point where the coolant (L12 line) bypassing the first heater 110 and the coolant (L20 line) passing through the first heater 110 are joined, the first three-way valve 810 is provided in the same manner as in the first embodiment. Can be installed. According to the present embodiment, similarly to the first embodiment, by adjusting the opening degree of the first three-way valve 810, it is possible to adjust the amount of cooling water sent to the first heater 110, and eventually the first heater ( The amount of heat delivered to 110 may be adjusted.
  • a temperature sensor (not shown) may be installed, as in the first embodiment, and the temperature sensor installed on the L4 line is sensed.
  • the opening degree of the first three-way valve 810 may be adjusted according to one temperature value.
  • the ship fuel gas supply system of this embodiment may be operated so that the temperature of the fruit which flows through the L4 line is kept constant like 1st embodiment.
  • a second valve 720 for controlling the flow rate and opening / closing of the fluid may be installed, as in the first embodiment.
  • the marine fuel gas supply system of the present embodiment is on the line L20 where the cooling water discharged from the engine E and passed through the first heater 110 is sent to the water tank 120. It may further include an air separator 330 is installed. Air separator 330 of the present embodiment, similar to the first embodiment, removes the air contained in the cooling water supplied to the water tank 120 from the first heater 110, the marine fuel gas supply system of the present embodiment Prevents malfunction of various devices included in
  • the coolant (L20 line) passing through the first heater 110 after being discharged from the engine E branches in two streams, similarly to the first embodiment, and part of the cooler 120 is partially connected to the water heater 120. And the remainder (line L22) may bypass the assistant 120.
  • the coolant (L22 line) bypassing the water dispenser 120 and the coolant (L30 line) passing through the water dispenser 120 can be joined and sent back to the engine E as in the first embodiment.
  • a second three-way valve 820 may be installed, as in the first embodiment. .
  • the opening degree of the second three-way valve 820 it is possible to adjust the amount of cooling water sent to the water tank 120, and eventually the water tank 120 from the cooling water The amount of heat delivered to the can be controlled.
  • a second temperature control sensor 220 for adjusting the temperature of the coolant may be installed, as in the first embodiment.
  • the set value of the second temperature control sensor 220 of the present embodiment is lower as the load of the engine E is higher.
  • the marine fuel gas supply system uses a cooler 130 that lowers the temperature of the cooling water discharged from the engine E and then passed through the first heater 110 and the water heater 120. It may further include.
  • the cooler 130 according to the present embodiment is sufficiently cool after the coolant obtained by heating the engine E while supplying a part of the heat amount to the first heater 110 and the water heater 120. If the temperature is not lowered, the temperature of the coolant is lowered so that the coolant can cool the engine E to the required temperature.
  • the coolant (L30 line) discharged from the water cooler 120 branches in two streams, similarly to the first embodiment, and part (L30 line) is the cooler 130. And the rest (L32 line) can bypass the cooler 130.
  • the coolant (L32 line) bypassing the cooler 130 and the coolant (L40 line) passing through the cooler 130 may be joined and sent to the engine E, as in the first embodiment, and the cooler 130 may be sent.
  • a third three-way valve 830 may be installed, as in the first embodiment. According to this embodiment, as in the first embodiment, by adjusting the opening degree of the third three-way valve 830, it is possible to adjust the amount of cooling water sent to the cooler 130, and finally the coolant 130 by the cooler 130 The degree of cooling can be adjusted.
  • the ship fuel gas supply system of the present embodiment as in the first embodiment, it is possible to reduce the capacity of the cooler 130 and to save energy for driving the cooler 130.
  • the heat source obtained while the coolant cools the engine E is used first in the first heater 110, and the rest is the water heater 120 ) And the remaining heat source used in the water heater 120 is cooled by the cooler (130).
  • a third temperature for adjusting the temperature of the coolant may be installed on the line L40 to which the coolant discharged from the cooler 130 is supplied to the engine E.
  • the set value of the third temperature control sensor 230 of the present embodiment is lower as the load of the engine E is higher.
  • the ship fuel gas supply system of the present embodiment may further include one or more of the storage tank 160, expansion tank 170, and the air discharge tank 140.
  • the storage tank 160 of the present embodiment stores the remaining coolant not sent to the first heater 110 among the coolant used to cool the engine E, and the storage tank 160 A portion of the coolant stored in the tank may be sent to the expansion tank 170 as in the first embodiment (L50 line). According to this embodiment, as in the first embodiment, it is possible to minimize the consumption of cooling water to be subjected to chemical treatment.
  • the expansion tank 170 of the present embodiment absorbs the volume change generated when the cooling water expands or contracts to increase the stability of the system and to apply pressure for circulating the cooling water.
  • the expansion tank 170 of the present embodiment receives the cooling water from the storage tank 160 and receives the air discharged from the air discharge tank 140.
  • the gas inside the expansion tank 170 can be discharged along the gas discharge line (L2) as in the first embodiment.
  • the expansion tank 170 of the present embodiment may be disposed approximately 20m to 25m above the engine room in which the engine E is disposed, and according to the temperature of the cooling water required by the engine E.
  • the height of the expansion tank 170 may vary.
  • the marine fuel gas supply system of the present embodiment further includes a third compressor 190 installed on a line where the coolant discharged from the engine E is supplied to the first heater 110. can do.
  • the third compressor 190 of the present embodiment is installed when the first heater 110 is inevitably high and difficult to supply the coolant to the first heater 110 smoothly. Even if the compressor 420 is included, it is installed when the pressure is insufficient to supply the cooling water to the first heater 110.
  • Air discharge tank 140 of the present embodiment discharges the air contained in the cooling water sent to the engine (E) from the water tank 120 to the expansion tank 170, the temperature change of the fluid This serves to mitigate the effect of the volume change of the rapidly changing fluid. Cooling water sent from the water tank 120 of the present embodiment to the engine E may be temporarily stored in the air discharge tank 140 and then sent to the engine E as in the first embodiment.
  • the ship fuel gas supply system like the first embodiment, uses a first compressor 410 provided on a line L50 for supplying cooling water discharged from the storage tank 160 to the expansion tank 170. It may further include.
  • the first compressor 410 of the present embodiment like the first embodiment, the first water level control device 310 for adjusting the water level of the storage tank 160 and the second water level for adjusting the water level of the expansion tank 170. It may be operated in conjunction with the control device (320). That is, like the first embodiment, the first compressor 410 of the present embodiment is operated when the level of the storage tank 160 becomes higher than or equal to a certain height or when the level of the expansion tank 170 becomes lower than or equal to the predetermined height. Cooling water in the tank 160 may be sent to the expansion tank (170).
  • the ship fuel gas supply system includes, as in the first embodiment, a second compressor 420 which compresses and supplies the cooling water discharged from the water tank 120 to the engine E; And a first valve 710 installed on the line L10 through which the coolant is supplied from the engine E to the first heater 110 to prevent the backflow of the coolant. It may further comprise one or more of.
  • the second compressor 420 of the present embodiment like the first embodiment, a plurality of compressors may be connected in parallel, and may compress the coolant to about 3 bar. Like the first embodiment, the second compressor 420 of the present embodiment can compress the cooling water so as to satisfy both the pressure for circulating the cooling water and the pressure required by the engine E.
  • the marine fuel gas supply system of the present embodiment includes the second compressor 420, the engine E such that the coolant is circulated only by the pressure of the second compressor 420 without installing an additional compressor, as in the first embodiment. It is preferable that the devices installed on the line circulating so that the coolant discharged from the back) are supplied to the engine E are connected in series.
  • the first valve 710 of the present embodiment when the second compressor 420 is stopped, the pressure of the cooling water supplied from the engine E to the first heater 110 is lowered To prevent backflow.
  • the ship fuel gas supply system may further include a second heater 150 that heats the cooling water discharged from the water tank 120 and supplied to the engine E, as in the first embodiment.
  • the second heater 150 of the present embodiment heats the cooling water by heat-exchanging steam and the cooling water, similarly to the first embodiment.
  • a third valve 730 may be installed, and the degree of controlling the amount of steam by adjusting the opening degree of the third valve 730 and eventually heating the cooling water. Can be adjusted.
  • the second heater 150 of the present embodiment uses the cooling water at a predetermined temperature or more to prevent low-temperature corrosion of the engine E when the vessel is anchored and the engine E is not operated. It serves to supply heat to the engine (E). In the case of operating the second heater 150 of the present embodiment, the cooler 130 is generally not operated.
  • the marine fuel gas supply system of this embodiment includes the second heater 150
  • the heat source of the coolant that can be used because the load of the engine E is low is Even when small, the water tank 120 can be operated at 100%.
  • the second heater 150 can prevent the coolant from the low-temperature corrosion of the engine (E) Since it is only necessary to heat to a temperature, the system can be operated more flexibly as in the first embodiment.
  • the coolant discharged from the water heater 120 branches in two streams, similarly to the first embodiment, and part (L60 line) of the second heater 150 is part of the second heater 150. And the remainder (line L62) may bypass the second heater 150.
  • the coolant (L62 line) bypassing the second heater 150 and the coolant (L60 line) passing through the second heater 150 can be joined and sent to the engine E, as in the first embodiment,
  • a fourth valve 740 may be installed, as in the first embodiment.
  • the opening degree of the fourth valve 740 by adjusting the opening degree of the fourth valve 740, the amount of cooling water sent to the second heater 150 can be adjusted, and eventually to the second heater 150. The degree to which the cooling water is heated can be adjusted.
  • the first heater 110 is installed at a position higher than the expansion tank 170. do.
  • the first heater 110 is often difficult to install in the engine room, and when the components included in the ship fuel gas supply system of the present embodiment are actually disposed on the ship, the first heater 110 necessarily expands the expansion tank 170. It is often arranged in a position higher than).
  • the ship fuel gas supply system of the present embodiment includes both the expansion tank 170 and the first three-way valve 810, the first three-way valve 810 is installed at a position lower than the expansion tank 170. desirable.
  • the valve (upper valve in FIG. 2) of the first three-way valve 810 in the direction of the first heater 110 is closed, and the L12 line and the water pump ( The valve in the 120 direction (left and lower valves in FIG. 2) may be kept open.
  • the expansion tank is stopped even if the pressure for circulating the coolant drops by stopping the second compressor 420. Loss of pressure and loss of cooling water in the pipe (L20 line) between the first three-way valve 810 and the first heater 110 installed at a position lower than 170 may be prevented.
  • the second compressor 420 is stopped and the engine E to the first heater 110 are stopped. Even if the supplied coolant flows back, the flow of the coolant back to the engine E may be blocked by the first valve 710 (when the present embodiment includes the third compressor 190, the third compressor 190). And backflow is also blocked.), The coolant flowing back from the first heater 110 is sent to the water tank 120 via the L12 line and the first three-way valve 810.
  • the valve in the direction of the first heater 110 of the first three-way valve 810 when the second compressor 420 fails FOG.
  • the pressure decreases near the vapor pressure, a vacuum may be generated in the pipe, and bubbles may occur in the cooling water, which adversely affects the rigidity of the pipe.
  • the pressure or flow rate of the cooling water may decrease rapidly, and water hammering may occur.
  • the first heater 110 can be disposed below the expansion tank 170, even if the second compressor 420 fails, the pipe between the first heater 110 and the three-way valve 810 (L20 line) ), There is no fear of vacuum, but if the first heater is inevitably disposed above the expansion tank, the first three-way valve 810 is installed below the expansion tank, so that the second compressor 420 In case of a failure, the vacuum is not generated in the pipe (L20 line) between the first heater 110 and the third way valve 810.
  • the ship fuel gas supply system of this embodiment includes all of the cooler 130, the air discharge tank 140, the second compressor 420, the second heater 150, as in the first embodiment,
  • the cooler 130 is installed at the rear end
  • the air discharge tank 140 is installed at the rear end of the cooler 130
  • the second compressor 420 is installed at the rear end of the air discharge tank 140
  • the second compressor is provided.
  • the second heater 150 is installed at the rear end and the engine E is installed at the rear end of the second heater 150.
  • the ship fuel gas supply system of the present embodiment includes a first three-way valve 810, a second three-way valve 820, a third three-way valve 830, a third valve 730, a first temperature control sensor 210, In the case of further including at least one of the second temperature control sensor 220 and the third temperature control sensor 230, as in the first embodiment, the first three-way valve 810, the second three-way valve 820, The third three-way valve 830, the third valve 730, the first temperature control sensor 210, the second temperature control sensor 220, and the third temperature control sensor 230, respectively, to the control panel (C)
  • the operation can be controlled by
  • control panel C of the present embodiment controls each device by comprehensively analyzing the operating status of the system based on the information collected by the devices connected to the device and the state of each device.
  • the algorithm when the second compressor 420 is stopped, the algorithm is configured to close the valve (upper valve in FIG. 2) of the first three-way valve 810 in the direction of the first heater 110.
  • the case where the second compressor 420 stops due to a failure may be automatically prepared by the control panel C.
  • a pipe (shown with a double line in FIG. 1) through which the coolant flows is used. It can be adiabatic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

선박용 연료 가스 공급 시스템이 개시된다. 상기 선박용 연료 가스 공급 시스템은, 액화천연가스를 기화시켜 엔진에 공급하는 기화기; 상기 엔진을 냉각시키고 난 후 배출된 냉각수와 상기 기화기에서 열매로 사용되는 유체를 열교환시켜, 상기 기화기에서 열매로 사용되는 유체를 가열하는 제1 가열기; 및 상기 엔진에서 배출된 후 상기 제1 가열기를 통과한 냉각수가 가진 열원의 일부 또는 전부를 이용하여, 해수를 가열하여 청수를 얻어내는 조수기;를 포함하고, 상기 기화기는, 상기 제1 가열기에 의해 가열된 열매와 액화천연가스를 열교환시켜 액화천연가스를 기화시킨다.

Description

선박용 연료 가스 공급 시스템 및 방법
본 발명은, 엔진 냉각수가 가진 열량을 활용하여 선박용 엔진에 연료 가스를 공급하는 시스템 및 방법에 관한 것이다.
액화천연가스는 메탄(methane)을 주성분으로 하는 천연가스를 약 -163℃로 냉각해서 액화시킴으로써 얻을 수 있는 무색투명한 액체로서, 천연가스와 비교해 약 1/600 정도의 부피를 가진다. 따라서, 천연가스를 액화시켜 이송할 경우 매우 효율적으로 이송할 수 있게 된다. 일반적으로 천연가스를 액화시켜 액화천연가스의 형태로 저장탱크에 저장한 후, 선박에 의해 액화천연가스를 운반한다.
한편, 선박에 사용되는 엔진 중 천연가스를 연료로 사용할 수 있는 엔진으로 DFDE, ME-GI 엔진, X-DF 엔진 등의 가스연료엔진이 있다. DFDE은, 발전용으로 사용되며, 4행정으로 구성된다. 비교적 저압인 6.5 bar 정도의 압력을 가지는 천연가스를 연소공기 입구에 주입하여, 피스톤이 올라가면서 압축을 시키는 오토 사이클(Otto Cycle)을 채택하고 있다. ME-GI 엔진은, 추진용으로 사용되며, 2행정으로 구성된다. 300 bar 부근의 고압 천연가스를 피스톤의 상사점 부근에서 연소실에 직접 분사하는 디젤 사이클(Diesel Cycle)을 채택하고 있다. X-DF 엔진은, 추진용으로 사용되며, 2행정으로 구성된다. 16 bar 정도의 중압 천연가스를 연료로 사용하며, 오토 사이클을 채택하고 있다.
천연가스를 연료로 사용하는 엔진에 연료를 공급하기 위해, 저장탱크에 저장된 액화천연가스를 기화시킨 후 엔진에 공급하기도 하는데, 액화천연가스를 기화시키기 위해서는 열원이 필요하다. 액화천연가스를 기화시키기 위한 열원으로 엔진 냉각수를 사용하는 기술이 개발되어 있다.
일반적으로 엔진을 냉각시키고 난 후의 냉각수는 일정 온도가 되도록 제어되는데, 일례로 ME-GI 엔진을 냉각시키고 난 후의 냉각수는 대략 85℃가 되도록 제어될 수 있다.
그런데, 엔진의 부하가 높으면 엔진에서 발생하는 열량도 많아 냉각수가 더 많은 양의 열을 식혀야 하고, 엔진의 부하가 낮으면 엔진에서 발생하는 열량도 적어져 냉각수가 더 적은 양의 열만 식히면 된다. 또한, 엔진의 저온 부식의 우려 때문에 엔진을 일정 온도 이하까지 냉각시키지 않으므로, 엔진 부하가 적어질수록 냉각수에서 얻을 수 있는 열량이 적어진다.
본 발명은, 엔진 부하에 따라 변동되는 냉각수의 열원을 적절하게 분배하는 방법과, 냉각수의 열원을 적절하게 분배하기 위한 효율적인 장비 배치를 제시하고자 한다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 액화천연가스를 기화시켜 엔진에 공급하는 기화기; 상기 엔진을 냉각시키고 난 후 배출된 냉각수와 상기 기화기에서 열매로 사용되는 유체를 열교환시켜, 상기 기화기에서 열매로 사용되는 유체를 가열하는 제1 가열기; 및 상기 엔진에서 배출된 후 상기 제1 가열기를 통과한 냉각수가 가진 열원의 일부 또는 전부를 이용하여, 해수를 가열하여 청수를 얻어내는 조수기;를 포함하고, 상기 기화기는, 상기 제1 가열기에 의해 가열된 열매와 액화천연가스를 열교환시켜 액화천연가스를 기화시키는, 선박용 연료 가스 공급 시스템이 제공된다.
상기 선박용 연료 가스 공급 시스템은, 냉각수가 팽창 또는 수축하면서 발생하는 체적 변화를 흡수하는 팽창탱크를 포함할 수 있다.
상기 엔진은 엔진룸에 배치될 수 있고, 상기 팽창탱크는, 상기 엔진룸보다 20m 내지 25m 상부에 배치될 수 있다.
상기 제1 가열기는 상기 팽창탱크보다 높은 위치에 배치될 수 있다.
상기 선박용 연료 가스 공급 시스템은, 상기 조수기로부터 배출되어 상기 엔진으로 공급되는 냉각수를 가열시키는 제2 가열기를 더 포함할 수 있다.
상기 엔진에서 배출된 냉각수는, 두 흐름으로 분기하여, 일부는 상기 제1 가열기로 보내지고, 나머지는 상기 제1 가열기를 우회할 수 있으며, 상기 선박용 연료 가스 공급 시스템은, 상기 제1 가열기를 우회한 냉각수와 상기 제1 가열기를 통과한 냉각수가 합류되는 지점에 설치되는 제1 삼방밸브를 더 포함할 수 있다.
상기 제1 삼방밸브는 상기 팽창탱크보다 낮은 위치에 설치될 수 있다.
상기 선박용 연료 가스 공급 시스템은, 상기 엔진에서 배출된 후 상기 제1 가열기 및 상기 조수기를 통과한 냉각수의 온도를 낮추는 냉각기를 더 포함할 수 있다.
상기 선박용 연료 가스 공급 시스템은, 상기 냉각기로부터 배출된 냉각수가 상기 엔진으로 공급되는 라인 상에 설치되어 냉각수의 온도를 조절하는 제3 온도조절센서를 더 포함할 수 있고, 상기 제3 온도조절센서의 설정값은 상기 엔진의 부하가 높을수록 낮아질 수 있다.
냉각수가 상기 엔진을 냉각시키며 얻은 열원은 상기 제1 가열기에서 최우선적으로 사용되고, 나머지는 상기 조수기에서 사용되고, 상기 조수기에서 사용되고도 남은 열원은 상기 냉각기에 의해 냉각될 수 있다.
상기 선박용 연료 가스 공급 시스템은, 상기 엔진을 냉각시키는데 사용된 냉각수 중, 상기 제1 가열기로 보내지지 않은 나머지 냉각수를 저장하는 저장탱크를 더 포함할 수 있다.
상기 선박용 연료 가스 공급 시스템은, 상기 저장탱크로부터 배출된 냉각수를 상기 팽창탱크에 공급하는 라인 상에 설치되는 제1 압축기를 더 포함할 수 있고, 상기 제1 압축기는, 상기 저장탱크의 수위가 일정 높이 이상이 되거나 상기 팽창탱크의 수위가 일정 높이 이하가 되면 작동될 수 있다.
상기 선박용 연료 가스 공급 시스템은, 상기 조수기로부터 배출된 냉각수를 압축시켜 상기 엔진으로 공급하는 제2 압축기를 더 포함할 수 있다.
상기 선박용 연료 가스 공급 시스템은, 상기 제2 압축기가 정지하는 경우, 상기 엔진으로부터 상기 제1 가열기로 공급되는 냉각수가 역류하는 것을 방지하는 제1 밸브를 더 포함할 수 있다.
상기 기화기, 상기 제1 가열기, 상기 조수기, 및 상기 제2 압축기는 직렬로 연결되어, 상기 제2 압축기만에 의해 냉각수가 순환될 수 있다.
상기 선박용 연료 가스 공급 시스템은, 상기 엔진으로부터 배출된 냉각수가 상기 제1 가열기로 공급되는 라인 상에 설치되는 제3 압축기를 더 포함할 수 있다.
상기 조수기의 부하는, 기 엔진의 부하를 A, 상기 기화기에서 열매로 사용되는 유체에 전달되는 최대 열량을 x, 상기 조수기의 부하를 B, 상기 엔진을 냉각시키면서 냉각수가 얻는 최대 열량을 y, 상기 조수기의 부하가 100%일 때 요구하는 열량을 z라고 하였을 때, B = (y-x)A / z로 나타내어 질 수 있다.
상기 선박용 연료 가스 공급 시스템은, 상기 엔진으로부터 상기 제1 가열기로 냉각수가 공급되는 라인 상에 설치되어 냉각수의 온도를 일정하게 조절하는 제1 온도조절센서; 및 상기 조수기로부터 배출된 냉각수가 상기 엔진으로 공급되는 라인 상에 설치되어 냉각수의 온도를 조절하는 제2 온도조절센서;중 하나 이상을 더 포함할 수 있고, 상기 제2 온도조절센서의 설정값은 상기 엔진의 부하가 높을수록 낮아질 수 있다.
상기 선박용 연료 가스 공급 시스템은, 상기 엔진에서 배출된 후 상기 제1 가열기를 통과한 냉각수가 상기 조수기로 보내지는 라인 상에 설치되어, 냉각수에 포함되어 있는 공기를 제거하는 공기분리기를 더 포함할 수 있다.
상기 선박용 연료 가스 공급 시스템은, 상기 조수기로부터 상기 엔진으로 보내지는 냉각수에 포함된 공기를 배출시키는 공기배출탱크를 더 포함할 수 있다.
냉각수가 흐르는 배관의 일부 또는 전부는 단열 처리될 수 있다.
상기 목적을 달성하기 위한 본 발명의 다른 측면에 따르면, 1) 엔진을 냉각시키고 난 후 배출된 냉각수와 열매를 열교환시켜 열매를 제1 가열기에 의해 가열하는 단계; 2) 상기 1)단계에서 열교환되어 가열된 열매와 액화천연가스를 열교환시켜 액화천연가스를 기화시키는 단계; 3) 상기 2)단계에서 기화시킨 천연가스를 상기 엔진에 공급하는 단계; 및 4) 상기 1)단계에서 열매를 열교환시키는데 사용된 냉각수 가진 열원의 일부 또는 전부를 이용하여, 조수기에 의해 해수를 가열하여 청수를 얻어내는 단계;를 포함하는, 선박용 연료 가스 공급 방법이 제공된다.
상기 선박용 연료 가스 공급 방법은, 5) 상기 4)단계에서 상기 조수기에서 사용된 냉각수를 가열시키는 단계를 더 포함할 수 있다.
상기 5)단계는, 상기 엔진이 운전되지 않는 경우, 상기 엔진의 저온 부식을 방지할 수 있는 온도 이상으로 냉각수를 가열할 수 있다.
상기 5)단계는, 상기 4)단계에서 상기 조수기를 100% 가동시키면 냉각수의 온도가 상기 엔진의 저온 부식을 방지할 수 있는 온도 이하로 내려가는 경우, 상기 조수기를 100%로 가동시킨 후 상기 엔진의 저온 부식을 방지할 수 있는 온도 이상으로 냉각수를 가열할 수 있다.
상기 선박용 연료 가스 공급 방법은, 5) 상기 조수기로부터 배출된 냉각수를 제2 압축기에 의해 압축시켜 상기 엔진으로 공급하는 단계를 더 포함할 수 있다.
상기 엔진에서 배출된 냉각수는, 두 흐름으로 분기하여, 일부는 상기 제1 가열기로 보내지고, 나머지는 상기 제1 가열기를 우회할 수 있으며, 상기 제1 가열기를 우회한 냉각수와 상기 제1 가열기를 통과한 냉각수가 합류되는 지점에 제1 삼방밸브를 설치할 수 있다.
상기 제2 압축기가 정지하는 경우, 상기 제1 삼방밸브 중 상기 제1 가열기 방향의 밸브는 닫고, 나머지 밸브는 연 상태로 유지할 수 있다.
상기 제2 압축기가 정지하는 경우, 제어반에 의해 자동적으로, 상기 제1 삼방밸브 중 상기 제1 가열기 방향의 밸브를 닫도록 알고리즘을 구성할 수 있다.
상기 목적을 달성하기 위한 본 발명의 또 다른 측면에 따르면, 엔진은 엔진룸에 배치하고, 냉각수가 팽창 또는 수축하면서 발생하는 체적 변화를 흡수하는 팽창탱크를 상기 엔진룸보다 20m 내지 25m 상부에 배치하고, 액화천연가스를 기화시키는 열매를 가열하는 제1 가열기를 상기 팽창탱크보다 높은 위치에 배치하고, 상기 제1 가열기를 우회한 냉각수와 상기 제1 가열기를 통과한 냉각수가 합류되는 지점에 설치되는 제1 삼방밸브를 상기 팽창탱크보다 낮은 위치에 설치하는, 배치 방법이 제공된다.
상기 목적을 달성하기 위한 본 발명의 또 다른 측면에 따르면, 엔진의 부하를 A, 기화기에서 열매로 사용되는 유체에 전달되는 최대 열량을 x, 조수기의 부하를 B, 상기 엔진을 냉각시키면서 냉각수가 얻는 최대 열량을 y, 상기 조수기의 부하가 100%일 때 요구하는 열량을 z라고 하였을 때, Ax + Bz = Ay의 식에 의해, 상기 엔진을 냉각시키며 냉각수가 얻은 열량을 상기 기화기와 상기 조수기에 분배하는, 방법이 제공된다.
본 발명에 의하면, 엔진의 부하와 조수기의 부하의 상관관계를 나타내는 수학식에 따라, 조수기의 부하를 조절하여, 엔진을 냉각시키며 냉각수가 얻은 열량을 기화기와 조수기에 적절하게 분배할 수 있다.
본 발명에 의하면, 제1 가열기 및 기화기를 포함하여, 냉각기의 용량을 감소시키고 냉각기를 구동시키는데 들어가는 에너지를 절감할 수 있다.
본 발명에 의하면, 잉여 냉각수를 저장탱크에 저장하였다가 다시 사용하므로, 화학 처리를 해야하는 냉각수의 소모를 최소한으로 할 수 있다.
본 발명에 의하면, 냉각수가 순환하는 라인 상에 설치되는 장치들은 직렬로 연결하여, 추가적인 압축기를 설치하지 않고도 제2 압축기의 압력만으로 냉각수를 순환시킬 수 있다.
본 발명에 의하면, 엔진의 부하가 낮은 경우에도 조수기를 100%로 가동시킨 후, 제2 가열기에 의해 냉각수를 가열시키면 되므로, 시스템을 더욱 유연하게 운용할 수 있다.
본 발명의 일 실시예에 의하면, 제1 가열기가 팽창탱크보다 위쪽에 설치되는 경우를 대비할 수 있으며, 특히, 제2 압축기가 정지하는 경우를 대비할 수 있다.
또한, 본 발명의 일 실시예에 의하면, 제어반에 의해 각 장치를 효율적으로 제어할 수 있으며, 특히, 제2 압축기가 고장나는 경우를 자동적으로 대비하도록 할 수 있다.
도 1은 본 발명의 바람직한 제1 실시예에 따른 선박용 연료 가스 공급 시스템의 개략도이다.
도 2는 본 발명의 바람직한 제2 실시예에 따른 선박용 연료 가스 공급 시스템의 개략도이다.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
도 1은 본 발명의 바람직한 제1 실시예에 따른 선박용 연료 가스 공급 시스템의 개략도이다.
도 1을 참조하면, 본 실시예의 선박용 연료 가스 공급 시스템은, 제1 가열기(110), 기화기(180), 및 조수기(120)를 포함한다.
본 실시예의 선박용 연료 가스 공급 시스템에 의해 연료를 공급받는 엔진(E)은, 천연가스를 연료로 사용하는 ME-GI 엔진, X-DF 엔진, DF 엔진 등일 수 있으며, 본 실시예의 선박용 연료 가스 공급 시스템은, 가스 터빈 등 천연가스를 연료로 사용하는 다른 연소 장치에도 응용될 수 있다. 단, 본 실시예의 선박용 연료 가스 공급 시스템은, 주 추진 엔진으로 사용되는 ME-GI 엔진에 적용되는 것이 바람직하다. 본 실시예의 엔진(E)은 엔진룸에 배치된다.
본 실시예의 제1 가열기(110)는, 엔진(E)을 냉각시키고 난 후 배출된 냉각수(L10 라인)와 기화기(180)에서 열매로 사용되는 유체(L3 라인)를 열교환시킨다. 즉, 제1 가열기(110)는, 엔진(E)을 냉각시키면서 냉각수가 얻은 열원의 일부를, 기화기(180)에서 열매로 사용되는 유체(L3 라인)에 공급하여, 기화기(180)에서 열매로 사용되는 유체(L3 라인)를 가열한다.
엔진(E)으로부터 제1 가열기(110)로 냉각수가 공급되는 라인(L10) 상에는, 엔진(E)으로부터 배출되어 제1 가열기(110)로 공급되는 냉각수의 온도를 조절하는 제1 온도조절센서(210)가 설치될 수 있다. 본 실시예의 제1 온도조절센서(210)는, 엔진(E)에서 배출된 냉각수의 온도를 대략 85℃로 조절할 수 있다.
본 실시예에 의하면 엔진(E)에서 배출된 냉각수의 온도를 대략 85℃로 일정하게 조절하고, 엔진(E)의 부하가 높아질수록 엔진(E)에서 발생되는 열도 많아지므로, 엔진(E)의 부하에 따라 엔진(E)에 공급되는 냉각수의 온도가 달라진다. 엔진(E)의 부하가 낮아질수록 엔진(E)의 저온 부식을 방지하기 위하여 엔진(E)에 공급되는 냉각수의 온도는 높아진다.
본 실시예의 기화기(180)는, 제1 가열기(110)에 의해 가열된 열매(L4 라인)와 액화천연가스를 열교환시켜, 액화천연가스를 기화시킨다. 즉, 기화기(180)는, 엔진(E)을 냉각시키면서 냉각수가 얻은 열원의 일부를, 열매를 매개로 하여, 액화천연가스를 기화시키는데 사용한다. 기화기(180)에 의해 기화된 천연가스(L1 라인)는 엔진(E)에 공급되어 연료로 사용된다. 기화기(180)에서 열매로 사용되는 유체는, 글리콜 워터(Glycol Water)일 수 있다.
본 실시예의 조수기(120)는, 엔진(E)에서 배출된 후 제1 가열기(110)를 통과한 냉각수(L20 라인)가 가진 열원의 일부 또는 전부를 이용하여, 해수를 가열하여 청수를 얻어낸다.
엔진(E)을 냉각시키면서 냉각수가 얻을 수 있는 열량은 엔진(E)의 부하에 비례하고, 엔진(E)의 부하가 높을수록 요구되는 연료의 양도 증가되므로, 기화기(180)가 기화시켜야 할 액화천연가스의 양도 엔진(E)의 부하가 높을수록 증가되며, 결국 제1 가열기(110)에 의해 기화기(180)에서 열매로 사용되는 유체에 전달되어야 할 열량도 엔진(E)의 부하에 비례하게 된다.
따라서, 엔진(E)의 부하를 A, 기화기(180)에서 열매로 사용되는 유체에 전달되는 최대 열량을 x, 조수기(120)의 부하를 B, 엔진(E)을 냉각시키면서 냉각수가 얻는 최대 열량을 y, 조수기(120)의 부하가 100%일 때 요구하는 열량을 z라고 하면, 다음과 같은 등식이 성립한다.
Ax + Bz = Ay
따라서, 조수기의 부하는, B = (y-x)A / z 로 나타내어 지며, 상기 식에 따라 조수기(120)의 부하를 조절하여, 엔진(E)을 냉각시키며 냉각수가 얻은 열량을 기화기(180)와 조수기(120)에 적절하게 분배할 수 있다.
본 실시예에 의하면, 냉각수가 엔진(E)을 냉각시키며 얻은 열원은 제1 가열기(110)에서 최우선적으로 사용되며, 나머지는 조수기(120)에서 사용된다.
엔진(E)에서 배출된 냉각수(L10 라인)는, 두 흐름으로 분기하여, 일부(L10 라인)는 제1 가열기(110)로 보내지고, 나머지(L12 라인)는 제1 가열기(110)를 우회할 수 있다. 제1 가열기(110)를 우회한 냉각수(L12 라인)와 제1 가열기(110)를 통과한 냉각수(L20 라인)는 합류되어 조수기(120)로 보내질 수 있으며, 제1 가열기(110)를 우회한 냉각수(L12 라인)와 제1 가열기(110)를 통과한 냉각수(L20 라인)가 합류되는 지점에는 제1 삼방밸브(810)가 설치될 수 있다. 본 실시예에 의하면, 제1 삼방밸브(810)의 개도를 조절하여, 제1 가열기(110)로 보내지는 냉각수의 양을 조절할 수 있으며, 결국 냉각수로부터 제1 가열기(110)에 전달되는 열량을 조절할 수 있다.
제1 가열기(110)로부터 기화기(180)로 열매가 보내지는 라인(L4) 상에는 온도센서(미도시)가 설치될 수 있고, L4 라인 상에 설치된 온도센서가 감지한 온도 값에 따라 제1 삼방밸브(810)의 개도를 조절할 수 있다. L4 라인을 따라 공급되는 열매의 온도는 기화기(180)에서 기화시켜야 할 액화천연가스의 양이 많을수록 높아지므로, L4 라인을 따라 공급되는 열매의 온도를 조절하면 기화되는 액화천연가스의 양을 조절할 수 있고, 제1 삼방밸브(810)에 의해 제1 가열기(110)로 보내지는 냉각수의 양을 조절하여, L4 라인을 따라 공급되는 열매의 온도를 조절할 수 있다.
또한, 본 실시예의 선박용 연료 가스 공급 시스템은, L4 라인을 흐르는 열매의 온도가 일정하게 유지되도록 운용될 수도 있다. 기화기(180)에서 액화천연가스를 기화시키기 위한 열매로 사용된 후 배출된 유체(L3 라인)는 온도가 낮아지므로, L3 라인을 따라 제1 가열기(110)로 공급된 유체를 설정된 온도로 가열시키도록 제1 삼방밸브(810)의 개도를 조절한다.
제1 가열기(110)로부터 기화기(180)로 열매가 보내지는 라인(L4) 상에는 유체의 유량 및 개폐를 조절하는 제2 밸브(720)가 설치될 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템은, 엔진(E)에서 배출된 후 제1 가열기(110)를 통과한 냉각수가 조수기(120)로 보내지는 라인(L20) 상에 설치되는 공기분리기(330)를 더 포함할 수 있다. 본 실시예의 공기분리기(330)는, 제1 가열기(110)로부터 조수기(120)로 공급되는 냉각수에 포함되어 있는 공기를 제거하여, 본 실시예의 선박용 연료 가스 공급 시스템에 포함된 각종 장치의 고장을 방지한다.
한편, 엔진(E)에서 배출된 후 제1 가열기(110)를 통과한 냉각수(L20 라인)는, 두 흐름으로 분기하여, 일부(L20 라인)는 조수기(120)로 보내지고, 나머지(L22 라인)는 조수기(120)를 우회할 수 있다. 조수기(120)를 우회한 냉각수(L22 라인)와 조수기(120)를 통과한 냉각수(L30 라인)는 합류되어 다시 엔진(E)으로 보내질 수 있으며, 조수기(120)를 우회한 냉각수(L22 라인)와 조수기(120)를 통과한 냉각수(L30 라인)가 합류되는 지점에는 제2 삼방밸브(820)가 설치될 수 있다. 본 실시예에 의하면, 제2 삼방밸브(820)의 개도를 조절하여, 조수기(120)로 보내지는 냉각수의 양을 조절할 수 있으며, 결국 냉각수로부터 조수기(120)에 전달되는 열량을 조절할 수 있다.
조수기(120)로부터 배출된 냉각수가 엔진(E)으로 공급되는 라인(L30) 상에는, 냉각수의 온도를 조절하는 제2 온도조절센서(220)가 설치될 수 있다. 본 실시예의 제2 온도조절센서(220)의 설정값은 엔진(E)의 부하가 높을수록 낮아진다.
본 실시예의 선박용 연료 가스 공급 시스템은, 엔진(E)에서 배출된 후 제1 가열기(110) 및 조수기(120)를 통과한 냉각수의 온도를 낮추는 냉각기(130)를 더 포함할 수 있다. 본 실시예의 냉각기(130)는, 엔진(E)을 냉각시키며 열량을 얻은 냉각수가, 제1 가열기(110) 및 조수기(120)에 열량의 일부를 공급한 후에도 충분히 온도가 낮아지지 않은 경우, 냉각수가 엔진(E)을 요구되는 온도로 냉각시킬 수 있도록, 냉각수의 온도를 낮춘다.
본 실시예가 냉각기(130)를 포함하는 경우, 조수기(120)에서 배출된 냉각수(L30 라인)는, 두 흐름으로 분기하여, 일부(L30 라인)는 냉각기(130)로 보내지고, 나머지(L32 라인)는 냉각기(130)를 우회할 수 있다. 냉각기(130)를 우회한 냉각수(L32 라인)와 냉각기(130)를 통과한 냉각수(L40 라인)는 합류되어 엔진(E)으로 보내질 수 있으며, 냉각기(130)를 우회한 냉각수(L32 라인)와 냉각기(130)를 통과한 냉각수(L40 라인)가 합류되는 지점에는 제3 삼방밸브(830)가 설치될 수 있다. 본 실시예에 의하면, 제3 삼방밸브(830)의 개도를 조절하여, 냉각기(130)로 보내지는 냉각수의 양을 조절할 수 있으며, 결국 냉각기(130)에 의해 냉각수가 냉각되는 정도를 조절할 수 있다.
종래에는, 냉각수의 열원을 액화천연가스를 가열시키는데 사용하지 않고, 냉각수를 냉각기(130)에 냉각시킨 후 엔진(E)에 공급했는데, 본 실시예의 선박용 연료 가스 공급 시스템에 의하면, 제1 가열기(110) 및 기화기(180)를 포함하여, 냉각수의 열원을 액화천연가스를 가열시키는데 사용한 후 필요한 경우에만 냉각기(130)에 의해 냉각시키므로, 냉각기(130)의 용량을 감소시키고 냉각기(130)를 구동시키는데 들어가는 에너지를 절감할 수 있다.
본 실시예가 냉각기(130)를 포함하는 경우, 냉각수가 엔진(E)을 냉각시키며 얻은 열원은 제1 가열기(110)에서 최우선적으로 사용되며, 나머지는 조수기(120)에서 사용되고, 조수기(120)에서 사용되고도 남은 열원은 냉각기(130)에 의해 냉각된다.
본 실시예가 냉각기(130)를 포함하는 경우, 냉각기(130)로부터 배출된 냉각수가 엔진(E)으로 공급되는 라인(L40) 상에는, 냉각수의 온도를 조절하는 제3 온도조절센서(230)가 설치될 수 있다. 본 실시예의 제3 온도조절센서(230)의 설정값은 엔진(E)의 부하가 높을수록 낮아진다.
본 실시예의 선박용 연료 가스 공급 시스템은, 저장탱크(160), 팽창탱크(170), 및 공기배출탱크(140) 중 하나 이상을 더 포함할 수 있다.
본 실시예의 저장탱크(160)는, 엔진(E)을 냉각시키는데 사용된 냉각수 중, 제1 가열기(110)로 보내지지 않은 나머지 냉각수를 저장하며, 저장탱크(160)에 저장된 냉각수의 일부는 팽창탱크(170)로 보내질 수 있다(L50 라인). 본 실시예에 의하면, 잉여 냉각수를 저장탱크(160)에 저장하였다가 다시 사용하므로, 화학 처리를 해야하는 냉각수의 소모를 최소한으로 할 수 있다.
본 실시예의 팽창탱크(170)는, 냉각수가 팽창 또는 수축하면서 발생하는 체적 변화를 흡수하여 시스템의 안정성을 높이고, 냉각수가 순환할 수 있는 압력을 가하는 역할을 한다. 본 실시예의 팽창탱크(170)는 저장탱크(160)로부터 냉각수를 공급받으며, 공기배출탱크(140)로부터 배출되는 공기를 공급받는다. 팽창탱크(170) 내부 압력이 너무 높아지는 경우에는 가스배출라인(L2)을 따라 팽창탱크(170) 내부의 가스가 배출될 수 있다.
본 실시예의 팽창탱크(170)는, 엔진(E)이 배치된 엔진룸보다 대략 20m 내지 25m 상부에 배치될 수 있다. 팽창탱크(170)의 높이가 25미터를 초과하는 경우, 엔진(E)으로 공급되는 냉각수의 압력이 요구 압력을 초과할 수 있으며, 엔진(E)에서 요구하는 냉각수의 온도에 따라 팽창탱크(170)의 높이는 달라질 수 있다. 냉각수의 압력이 낮아지면 기포가 발생할 수 있는데, 냉각수의 온도에 따라 기포가 발생되는 압력이 달라지므로, 엔진(E)에서 요구하는 온도에 따라 냉각수에서 기포가 발생되지 않을 정도의 압력이 되도록 팽창탱크(170)의 높이를 정하는 것이다.
본 실시예의 공기배출탱크(140)는, 조수기(120)로부터 엔진(E)으로 보내지는 냉각수에 포함된 공기를 팽창탱크(170)로 배출시키며, 유체의 온도 변화에 따라 급격하게 변화하는 유체의 부피 변화에 따른 영향을 완화시키는 역할을 한다. 본 실시예의 조수기(120)로부터 엔진(E)으로 보내지는 냉각수는, 공기배출탱크(140)에 일시 저장되었다가 엔진(E)으로 보내질 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템은, 저장탱크(160)로부터 배출된 냉각수를 팽창탱크(170)에 공급하는 라인(L50) 상에 설치되는 제1 압축기(410)를 더 포함할 수 있다.
본 실시예의 제1 압축기(410)는, 저장탱크(160)의 수위를 조절하는 제1 수위조절장치(310) 및 팽창탱크(170)의 수위를 조절하는 제2 수위조절장치(320)와 연계되어 작동될 수 있다. 즉, 본 실시예의 제1 압축기(410)는, 저장탱크(160)의 수위가 일정 높이 이상이 되거나 팽창탱크(170)의 수위가 일정 높이 이하가 되면 작동되어, 저장탱크(160) 내부의 냉각수를 팽창탱크(170)로 보낼 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템은, 조수기(120)로부터 배출된 냉각수를 압축시켜 엔진(E)으로 공급하는 제2 압축기(420); 및 엔진(E)으로부터 제1 가열기(110)로 냉각수가 공급되는 라인(L10) 상에 설치되어 냉각수의 역류를 방지하는 제1 밸브(710); 중 하나 이상을 더 포함할 수 있다.
본 실시예의 제2 압축기(420)는 다수개가 병렬로 연결될 수 있으며, 냉각수를 대략 3bar로 압축시킬 수 있다. 본 실시예의 제2 압축기(420)는, 냉각수를 순환시키기 위한 압력과 엔진(E)이 요구하는 압력을 모두 만족시키도록, 냉각수를 압축시킬 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템이 제2 압축기(420)를 포함하는 경우, 추가적인 압축기를 설치하지 않고도 제2 압축기(420)의 압력만으로 냉각수가 순환되도록, 엔진(E)에서 배출된 냉각수가 다시 엔진(E)으로 공급되도록 순환하는 라인 상에 설치되는 장치들은 직렬로 연결되는 것이 바람직하다.
한편, 본 실시예의 제1 밸브(710)는, 제2 압축기(420)가 정지하는 경우, 엔진(E)으로부터 제1 가열기(110)로 공급되는 냉각수의 압력이 낮아져 역류하는 것을 방지한다.
본 실시예의 선박용 연료 가스 공급 시스템은, 조수기(120)에서 배출되어 엔진(E)으로 공급되는 냉각수를 가열시키는 제2 가열기(150)를 더 포함할 수 있다. 본 실시예의 제2 가열기(150)는, 스팀과 냉각수를 열교환시켜 냉각수를 가열한다. 스팀을 공급하는 라인 상에는 제3 밸브(730)가 설치될 수 있으며, 제3 밸브(730)의 개도를 조절하여 스팀의 양을 조절하고, 결국 냉각수를 가열시키는 정도를 조절할 수 있다.
본 실시예의 제2 가열기(150)는, 선박이 정박하여 엔진(E)이 운전되지 않고 있을 때, 엔진(E)의 저온 부식을 방지하기 위해, 냉각수를 일정 온도 이상 가열하여 엔진(E)으로 공급하는 역할을 한다. 본 실시예의 제2 가열기(150)를 가동시키는 경우에는, 일반적으로 냉각기(130)는 가동시키지 않는다.
또한, 본 실시예의 선박용 연료 가스 공급 시스템이 제2 가열기(150)를 포함하는 경우, 본 실시예에 의하면, 엔진(E)의 부하가 낮아 사용할 수 있는 냉각수의 열원이 적을 때에도 조수기(120)를 100%로 가동시킬 수 있다. 종래에는, 엔진(E)의 부하가 낮은 경우에는, 조수기(120)를 100% 가동시키면 엔진(E)에 공급되는 냉각수의 온도가 너무 낮아져 엔진(E)의 저온 부식을 방지할 수 없게 되므로, 조수기(120)를 100% 가동시킬 수가 없었다. 그러나 본 발명에 의하면, 엔진(E)의 부하가 낮은 경우에도 조수기(120)를 100%로 가동시킨 후, 제2 가열기(150)에 의해 냉각수를 엔진(E)의 저온 부식을 방지할 수 있는 온도로 가열시키면 되므로, 시스템을 더욱 유연하게 운용할 수 있다.
본 실시예가 제2 가열기(150)를 포함하는 경우, 조수기(120)에서 배출된 냉각수는, 두 흐름으로 분기하여, 일부(L60 라인)는 제2 가열기(150)로 보내지고, 나머지(L62 라인)는 제2 가열기(150)를 우회할 수 있다. 제2 가열기(150)를 우회한 냉각수(L62 라인)와 제2 가열기(150)를 통과한 냉각수(L60 라인)는 합류되어 엔진(E)으로 보내질 수 있으며, 제2 가열기(150)를 우회한 냉각수가 흐르는 라인(L62) 상에는 제4 밸브(740)가 설치될 수 있다. 본 실시예에 의하면, 제4 밸브(740)의 개도를 조절하여, 제2 가열기(150)로 보내지는 냉각수의 양을 조절할 수 있으며, 결국 제2 가열기(150)에 의해 냉각수가 가열되는 정도를 조절할 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템이, 냉각기(130), 공기배출탱크(140), 제2 압축기(420), 제2 가열기(150)를 모두 포함하는 경우, 조수기(120) 후단에 냉각기(130)가 설치되고, 냉각기(130) 후단에 공기배출탱크(140)가 설치되고, 공기배출탱크(140) 후단에 제2 압축기(420)가 설치되고, 제2 압축기(420) 후단에 제2 가열기(150)가 설치되고, 제2 가열기(150) 후단에 엔진(E)이 설치되는 것이 바람직하다.
본 실시예의 선박용 연료 가스 공급 시스템이, 제1 삼방밸브(810), 제2 삼방밸브(820), 제3 삼방밸브(830), 제3 밸브(730), 제1 온도조절센서(210), 제2 온도조절센서(220), 및 제3 온도조절센서(230) 중 하나 이상을 더 포함하는 경우, 제1 삼방밸브(810), 제2 삼방밸브(820), 제3 삼방밸브(830), 제3 밸브(730), 제1 온도조절센서(210), 제2 온도조절센서(220), 및 제3 온도조절센서(230)는 각각, 제어반(C)에 의해 동작이 제어될 수 있다.
본 실시예의 제어반(C)은, 자신과 연결된 각 장치들이 수집한 정보와 각 장치들의 상태를 토대로 시스템의 운용 상황을 종합적으로 분석하여, 각 장치들을 제어한다.
본 실시예의 선박용 연료 가스 공급 시스템에 의하면, 엔진(E)에서 배출된 냉각수가 가진 열원을 최대한 손실 없이 활용하기 위해, 냉각수가 흐르는 배관(도 1에서 이중선으로 표시)을 단열 처리할 수 있다.
도 2는 본 발명의 바람직한 제2 실시예에 따른 선박용 연료 가스 공급 시스템의 개략도이다.
도 2에 도시된 제2 실시예의 선박용 연료 가스 공급 시스템은, 도 1에 도시된 제1 실시예의 선박용 연료 가스 공급 시스템에 비해, 제1 가열기(110)가 팽창탱크(170)보다 높은 위치에 배치된다는 점과, 제3 압축기(190)를 더 포함한다는 점에서 차이점이 존재하며, 이하에서는 차이점을 위주로 설명한다. 전술한 제1 실시예의 선박용 연료 가스 공급 시스템과 동일한 부재에 대하여는 자세한 설명은 생략한다.
도 2를 참조하면, 본 실시예의 선박용 연료 가스 공급 시스템은, 제1 실시예와 마찬가지로, 제1 가열기(110), 기화기(180), 및 조수기(120)를 포함한다.
본 실시예의 선박용 연료 가스 공급 시스템에 의해 연료를 공급받는 엔진(E)은, 제1 실시예와 마찬가지로, 천연가스를 연료로 사용하는 ME-GI 엔진, X-DF 엔진, DF 엔진 등일 수 있으며, 본 실시예의 선박용 연료 가스 공급 시스템은, 제1 실시예와 마찬가지로, 가스 터빈 등 천연가스를 연료로 사용하는 다른 연소 장치에도 응용될 수 있다. 본 실시예의 선박용 연료 가스 공급 시스템은, 제1 실시예와 마찬가지로, 주 추진 엔진으로 사용되는 ME-GI 엔진에 적용되는 것이 바람직하며, 본 실시예의 엔진(E)은, 제1 실시예와 마찬가지로, 엔진룸에 배치된다.
본 실시예의 제1 가열기(110)는, 제1 실시예와 마찬가지로, 엔진(E)을 냉각시키고 난 후 배출된 냉각수(L10 라인)와 기화기(180)에서 열매로 사용되는 유체(L3 라인)를 열교환시킨다. 즉, 제1 가열기(110)는, 제1 실시예와 마찬가지로, 엔진(E)을 냉각시키면서 냉각수가 얻은 열원의 일부를, 기화기(180)에서 열매로 사용되는 유체(L3 라인)에 공급하여, 기화기(180)에서 열매로 사용되는 유체(L3 라인)를 가열한다.
엔진(E)으로부터 제1 가열기(110)로 냉각수가 공급되는 라인(L10) 상에는, 제1 실시예와 마찬가지로, 엔진(E)으로부터 배출되어 제1 가열기(110)로 공급되는 냉각수의 온도를 조절하는 제1 온도조절센서(210)가 설치될 수 있다. 본 실시예의 제1 온도조절센서(210)는, 제1 실시예와 마찬가지로, 엔진(E)에서 배출된 냉각수의 온도를 대략 85℃로 조절할 수 있다.
본 실시예에 의하면, 제1 실시예와 마찬가지로, 엔진(E)에서 배출된 냉각수의 온도를 대략 85℃로 일정하게 조절하며, 엔진(E)의 부하에 따라 엔진(E)에 공급되는 냉각수의 온도가 달라진다. 즉, 엔진(E)의 부하가 낮아질수록 엔진(E)의 저온 부식을 방지하기 위하여 엔진(E)에 공급되는 냉각수의 온도는 높아진다.
본 실시예의 기화기(180)는, 제1 실시예와 마찬가지로, 제1 가열기(110)에 의해 가열된 열매(L4 라인)와 액화천연가스를 열교환시켜, 액화천연가스를 기화시킨다. 즉, 기화기(180)는, 제1 실시예와 마찬가지로, 엔진(E)을 냉각시키면서 냉각수가 얻은 열원의 일부를, 열매를 매개로 하여, 액화천연가스를 기화시키는데 사용한다. 기화기(180)에 의해 기화된 천연가스(L1 라인)는, 제1 실시예와 마찬가지로, 엔진(E)에 공급되어 연료로 사용된다. 기화기(180)에서 열매로 사용되는 유체는, 제1 실시예와 마찬가지로, 글리콜 워터(Glycol Water)일 수 있다.
본 실시예의 조수기(120)는, 제1 실시예와 마찬가지로, 엔진(E)에서 배출된 후 제1 가열기(110)를 통과한 냉각수(L20 라인)가 가진 열원의 일부 또는 전부를 이용하여, 해수를 가열하여 청수를 얻어낸다.
엔진(E)의 부하를 A, 기화기(180)에서 열매로 사용되는 유체에 전달되는 최대 열량을 x, 조수기(120)의 부하를 B, 엔진(E)을 냉각시키면서 냉각수가 얻는 최대 열량을 y, 조수기(120)의 부하가 100%일 때 요구하는 열량을 z라고 하면, 제1 실시예와 마찬가지로, 다음과 같은 등식이 성립한다.
Ax + Bz = Ay
따라서, 조수기의 부하는, B = (y-x)A / z 로 나타내어 지며, 상기 식에 따라 조수기(120)의 부하를 조절하여, 엔진(E)을 냉각시키며 냉각수가 얻은 열량을 기화기(180)와 조수기(120)에 적절하게 분배할 수 있다.
본 실시예에 의하면, 제1 실시예와 마찬가지로, 냉각수가 엔진(E)을 냉각시키며 얻은 열원은 제1 가열기(110)에서 최우선적으로 사용되며, 나머지는 조수기(120)에서 사용된다.
엔진(E)에서 배출된 냉각수(L10 라인)는, 제1 실시예와 마찬가지로, 두 흐름으로 분기하여, 일부(L10 라인)는 제1 가열기(110)로 보내지고, 나머지(L12 라인)는 제1 가열기(110)를 우회할 수 있다. 제1 가열기(110)를 우회한 냉각수(L12 라인)와 제1 가열기(110)를 통과한 냉각수(L20 라인)는, 제1 실시예와 마찬가지로, 합류되어 조수기(120)로 보내질 수 있으며, 제1 가열기(110)를 우회한 냉각수(L12 라인)와 제1 가열기(110)를 통과한 냉각수(L20 라인)가 합류되는 지점에는, 제1 실시예와 마찬가지로, 제1 삼방밸브(810)가 설치될 수 있다. 본 실시예에 의하면, 제1 실시예와 마찬가지로, 제1 삼방밸브(810)의 개도를 조절하여, 제1 가열기(110)로 보내지는 냉각수의 양을 조절할 수 있으며, 결국 냉각수로부터 제1 가열기(110)에 전달되는 열량을 조절할 수 있다.
제1 가열기(110)로부터 기화기(180)로 열매가 보내지는 라인(L4) 상에는, 제1 실시예와 마찬가지로, 온도센서(미도시)가 설치될 수 있고, L4 라인 상에 설치된 온도센서가 감지한 온도 값에 따라 제1 삼방밸브(810)의 개도를 조절할 수 있다.
또한, 본 실시예의 선박용 연료 가스 공급 시스템은, 제1 실시예와 마찬가지로, L4 라인을 흐르는 열매의 온도가 일정하게 유지되도록 운용될 수도 있다.
제1 가열기(110)로부터 기화기(180)로 열매가 보내지는 라인(L4) 상에는, 제1 실시예와 마찬가지로, 유체의 유량 및 개폐를 조절하는 제2 밸브(720)가 설치될 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템은, 제1 실시예와 마찬가지로, 엔진(E)에서 배출된 후 제1 가열기(110)를 통과한 냉각수가 조수기(120)로 보내지는 라인(L20) 상에 설치되는 공기분리기(330)를 더 포함할 수 있다. 본 실시예의 공기분리기(330)는, 제1 실시예와 마찬가지로, 제1 가열기(110)로부터 조수기(120)로 공급되는 냉각수에 포함되어 있는 공기를 제거하여, 본 실시예의 선박용 연료 가스 공급 시스템에 포함된 각종 장치의 고장을 방지한다.
한편, 엔진(E)에서 배출된 후 제1 가열기(110)를 통과한 냉각수(L20 라인)는, 제1 실시예와 마찬가지로, 두 흐름으로 분기하여, 일부(L20 라인)는 조수기(120)로 보내지고, 나머지(L22 라인)는 조수기(120)를 우회할 수 있다. 조수기(120)를 우회한 냉각수(L22 라인)와 조수기(120)를 통과한 냉각수(L30 라인)는, 제1 실시예와 마찬가지로, 합류되어 다시 엔진(E)으로 보내질 수 있으며, 조수기(120)를 우회한 냉각수(L22 라인)와 조수기(120)를 통과한 냉각수(L30 라인)가 합류되는 지점에는, 제1 실시예와 마찬가지로, 제2 삼방밸브(820)가 설치될 수 있다. 본 실시예에 의하면, 제1 실시예와 마찬가지로, 제2 삼방밸브(820)의 개도를 조절하여, 조수기(120)로 보내지는 냉각수의 양을 조절할 수 있으며, 결국 냉각수로부터 조수기(120)에 전달되는 열량을 조절할 수 있다.
조수기(120)로부터 배출된 냉각수가 엔진(E)으로 공급되는 라인(L30) 상에는, 제1 실시예와 마찬가지로, 냉각수의 온도를 조절하는 제2 온도조절센서(220)가 설치될 수 있다. 본 실시예의 제2 온도조절센서(220)의 설정값은, 제1 실시예와 마찬가지로, 엔진(E)의 부하가 높을수록 낮아진다.
본 실시예의 선박용 연료 가스 공급 시스템은, 제1 실시예와 마찬가지로, 엔진(E)에서 배출된 후 제1 가열기(110) 및 조수기(120)를 통과한 냉각수의 온도를 낮추는 냉각기(130)를 더 포함할 수 있다. 본 실시예의 냉각기(130)는, 제1 실시예와 마찬가지로, 엔진(E)을 냉각시키며 열량을 얻은 냉각수가, 제1 가열기(110) 및 조수기(120)에 열량의 일부를 공급한 후에도 충분히 온도가 낮아지지 않은 경우, 냉각수가 엔진(E)을 요구되는 온도로 냉각시킬 수 있도록, 냉각수의 온도를 낮춘다.
본 실시예가 냉각기(130)를 포함하는 경우, 조수기(120)에서 배출된 냉각수(L30 라인)는, 제1 실시예와 마찬가지로, 두 흐름으로 분기하여, 일부(L30 라인)는 냉각기(130)로 보내지고, 나머지(L32 라인)는 냉각기(130)를 우회할 수 있다. 냉각기(130)를 우회한 냉각수(L32 라인)와 냉각기(130)를 통과한 냉각수(L40 라인)는, 제1 실시예와 마찬가지로, 합류되어 엔진(E)으로 보내질 수 있으며, 냉각기(130)를 우회한 냉각수(L32 라인)와 냉각기(130)를 통과한 냉각수(L40 라인)가 합류되는 지점에는, 제1 실시예와 마찬가지로, 제3 삼방밸브(830)가 설치될 수 있다. 본 실시예에 의하면, 제1 실시예와 마찬가지로, 제3 삼방밸브(830)의 개도를 조절하여, 냉각기(130)로 보내지는 냉각수의 양을 조절할 수 있으며, 결국 냉각기(130)에 의해 냉각수가 냉각되는 정도를 조절할 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템에 의하면, 제1 실시예와 마찬가지로, 냉각기(130)의 용량을 감소시키고 냉각기(130)를 구동시키는데 들어가는 에너지를 절감할 수 있다.
본 실시예가 냉각기(130)를 포함하는 경우, 제1 실시예와 마찬가지로, 냉각수가 엔진(E)을 냉각시키며 얻은 열원은 제1 가열기(110)에서 최우선적으로 사용되며, 나머지는 조수기(120)에서 사용되고, 조수기(120)에서 사용되고도 남은 열원은 냉각기(130)에 의해 냉각된다.
본 실시예가 냉각기(130)를 포함하는 경우, 제1 실시예와 마찬가지로, 냉각기(130)로부터 배출된 냉각수가 엔진(E)으로 공급되는 라인(L40) 상에는, 냉각수의 온도를 조절하는 제3 온도조절센서(230)가 설치될 수 있다. 본 실시예의 제3 온도조절센서(230)의 설정값은, 제1 실시예와 마찬가지로, 엔진(E)의 부하가 높을수록 낮아진다.
본 실시예의 선박용 연료 가스 공급 시스템은, 제1 실시예와 마찬가지로, 저장탱크(160), 팽창탱크(170), 및 공기배출탱크(140) 중 하나 이상을 더 포함할 수 있다.
본 실시예의 저장탱크(160)는, 제1 실시예와 마찬가지로, 엔진(E)을 냉각시키는데 사용된 냉각수 중, 제1 가열기(110)로 보내지지 않은 나머지 냉각수를 저장하며, 저장탱크(160)에 저장된 냉각수의 일부는, 제1 실시예와 마찬가지로, 팽창탱크(170)로 보내질 수 있다(L50 라인). 본 실시예에 의하면, 제1 실시예와 마찬가지로, 화학 처리를 해야하는 냉각수의 소모를 최소한으로 할 수 있다.
본 실시예의 팽창탱크(170)는, 제1 실시예와 마찬가지로, 냉각수가 팽창 또는 수축하면서 발생하는 체적 변화를 흡수하여 시스템의 안정성을 높이고, 냉각수가 순환할 수 있는 압력을 가하는 역할을 한다. 본 실시예의 팽창탱크(170)는, 제1 실시예와 마찬가지로, 저장탱크(160)로부터 냉각수를 공급받으며, 공기배출탱크(140)로부터 배출되는 공기를 공급받는다. 또한, 팽창탱크(170) 내부 압력이 너무 높아지는 경우에는, 제1 실시예와 마찬가지로, 가스배출라인(L2)을 따라 팽창탱크(170) 내부의 가스가 배출될 수 있다.
본 실시예의 팽창탱크(170)는, 제1 실시예와 마찬가지로, 엔진(E)이 배치된 엔진룸보다 대략 20m 내지 25m 상부에 배치될 수 있으며, 엔진(E)에서 요구하는 냉각수의 온도에 따라 팽창탱크(170)의 높이는 달라질 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템은, 제1 실시예와는 달리, 엔진(E)으로부터 배출된 냉각수가 제1 가열기(110)로 공급되는 라인 상에 설치되는 제3 압축기(190)를 더 포함할 수 있다. 본 실시예의 제3 압축기(190)는, 제1 가열기(110)가 불가피하게 높은 곳에 배치되어 냉각수가 제1 가열기(110)에 원활하게 공급되기 어려운 경우에 설치되며, 특히, 본 실시예가 제2 압축기(420)를 포함하더라도 제1 가열기(110)에 냉각수를 공급하기에 압력이 부족한 경우에 설치된다.
본 실시예의 공기배출탱크(140)는, 제1 실시예와 마찬가지로, 조수기(120)로부터 엔진(E)으로 보내지는 냉각수에 포함된 공기를 팽창탱크(170)로 배출시키며, 유체의 온도 변화에 따라 급격하게 변화하는 유체의 부피 변화에 따른 영향을 완화시키는 역할을 한다. 본 실시예의 조수기(120)로부터 엔진(E)으로 보내지는 냉각수는, 제1 실시예와 마찬가지로, 공기배출탱크(140)에 일시 저장되었다가 엔진(E)으로 보내질 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템은, 제1 실시예와 마찬가지로, 저장탱크(160)로부터 배출된 냉각수를 팽창탱크(170)에 공급하는 라인(L50) 상에 설치되는 제1 압축기(410)를 더 포함할 수 있다.
본 실시예의 제1 압축기(410)는, 제1 실시예와 마찬가지로, 저장탱크(160)의 수위를 조절하는 제1 수위조절장치(310) 및 팽창탱크(170)의 수위를 조절하는 제2 수위조절장치(320)와 연계되어 작동될 수 있다. 즉, 본 실시예의 제1 압축기(410)는, 제1 실시예와 마찬가지로, 저장탱크(160)의 수위가 일정 높이 이상이 되거나 팽창탱크(170)의 수위가 일정 높이 이하가 되면 작동되어, 저장탱크(160) 내부의 냉각수를 팽창탱크(170)로 보낼 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템은, 제1 실시예와 마찬가지로, 조수기(120)로부터 배출된 냉각수를 압축시켜 엔진(E)으로 공급하는 제2 압축기(420); 및 엔진(E)으로부터 제1 가열기(110)로 냉각수가 공급되는 라인(L10) 상에 설치되어 냉각수의 역류를 방지하는 제1 밸브(710); 중 하나 이상을 더 포함할 수 있다.
본 실시예의 제2 압축기(420)는, 제1 실시예와 마찬가지로, 다수개가 병렬로 연결될 수 있으며, 냉각수를 대략 3bar로 압축시킬 수 있다. 본 실시예의 제2 압축기(420)는, 제1 실시예와 마찬가지로, 냉각수를 순환시키기 위한 압력과 엔진(E)이 요구하는 압력을 모두 만족시키도록, 냉각수를 압축시킬 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템이 제2 압축기(420)를 포함하는 경우, 제1 실시예와 마찬가지로, 추가적인 압축기를 설치하지 않고도 제2 압축기(420)의 압력만으로 냉각수가 순환되도록, 엔진(E)에서 배출된 냉각수가 다시 엔진(E)으로 공급되도록 순환하는 라인 상에 설치되는 장치들은 직렬로 연결되는 것이 바람직하다.
한편, 본 실시예의 제1 밸브(710)는, 제1 실시예와 마찬가지로, 제2 압축기(420)가 정지하는 경우, 엔진(E)으로부터 제1 가열기(110)로 공급되는 냉각수의 압력이 낮아져 역류하는 것을 방지한다.
본 실시예의 선박용 연료 가스 공급 시스템은, 제1 실시예와 마찬가지로, 조수기(120)에서 배출되어 엔진(E)으로 공급되는 냉각수를 가열시키는 제2 가열기(150)를 더 포함할 수 있다. 본 실시예의 제2 가열기(150)는, 제1 실시예와 마찬가지로, 스팀과 냉각수를 열교환시켜 냉각수를 가열한다. 스팀을 공급하는 라인 상에는, 제1 실시예와 마찬가지로, 제3 밸브(730)가 설치될 수 있으며, 제3 밸브(730)의 개도를 조절하여 스팀의 양을 조절하고, 결국 냉각수를 가열시키는 정도를 조절할 수 있다.
본 실시예의 제2 가열기(150)는, 제1 실시예와 마찬가지로, 선박이 정박하여 엔진(E)이 운전되지 않고 있을 때, 엔진(E)의 저온 부식을 방지하기 위해, 냉각수를 일정 온도 이상 가열하여 엔진(E)으로 공급하는 역할을 한다. 본 실시예의 제2 가열기(150)를 가동시키는 경우에는, 일반적으로 냉각기(130)는 가동시키지 않는다.
또한, 본 실시예의 선박용 연료 가스 공급 시스템이 제2 가열기(150)를 포함하는 경우, 본 실시예에 의하면, 제1 실시예와 마찬가지로, 엔진(E)의 부하가 낮아 사용할 수 있는 냉각수의 열원이 적을 때에도 조수기(120)를 100%로 가동시킬 수 있다. 본 발명에 의하면, 엔진(E)의 부하가 낮은 경우에도 조수기(120)를 100%로 가동시킨 후, 제2 가열기(150)에 의해 냉각수를 엔진(E)의 저온 부식을 방지할 수 있는 온도로 가열시키면 되므로, 제1 실시예와 마찬가지로, 시스템을 더욱 유연하게 운용할 수 있다.
본 실시예가 제2 가열기(150)를 포함하는 경우, 조수기(120)에서 배출된 냉각수는, 제1 실시예와 마찬가지로, 두 흐름으로 분기하여, 일부(L60 라인)는 제2 가열기(150)로 보내지고, 나머지(L62 라인)는 제2 가열기(150)를 우회할 수 있다. 제2 가열기(150)를 우회한 냉각수(L62 라인)와 제2 가열기(150)를 통과한 냉각수(L60 라인)는, 제1 실시예와 마찬가지로, 합류되어 엔진(E)으로 보내질 수 있으며, 제2 가열기(150)를 우회한 냉각수가 흐르는 라인(L62) 상에는, 제1 실시예와 마찬가지로, 제4 밸브(740)가 설치될 수 있다. 본 실시예에 의하면, 제1 실시예와 마찬가지로, 제4 밸브(740)의 개도를 조절하여, 제2 가열기(150)로 보내지는 냉각수의 양을 조절할 수 있으며, 결국 제2 가열기(150)에 의해 냉각수가 가열되는 정도를 조절할 수 있다.
한편, 본 실시예의 선박용 연료 가스 공급 시스템이 팽창탱크(170)를 포함하는 경우, 본 실시예의 제1 가열기(110)는, 제1 실시예와는 달리, 팽창탱크(170)보다 높은 위치에 설치된다. 제1 가열기(110)는 엔진룸에 설치하기 곤란한 경우가 많고, 본 실시예의 선박용 연료 가스 공급 시스템에 포함된 구성들을 선박에 실제로 배치하다보면, 필연적으로 제1 가열기(110)가 팽창탱크(170)보다 높은 위치에 배치되는 경우가 많다.
또한, 본 실시예의 선박용 연료 가스 공급 시스템이 팽창탱크(170) 및 제1 삼방밸브(810)를 모두 포함하는 경우, 제1 삼방밸브(810)는 팽창탱크(170)보다 낮은 위치에 설치되는 것이 바람직하다.
본 실시예에 의하면, 제2 압축기(420)가 정지하는 경우, 제1 삼방밸브(810) 중 제1 가열기(110) 방향의 밸브(도 2에서 위쪽 밸브)는 닫고, L12 라인 및 조수기(120) 방향의 밸브(도 2에서 왼쪽 및 아래쪽 밸브)는 연 상태로 유지할 수 있다.
본 실시예의 제1 삼방밸브(810) 중 제1 가열기(110) 방향의 밸브(도 2에서 위쪽 밸브)를 닫으면, 제2 압축기(420)가 정지하여 냉각수를 순환시키는 압력이 떨어지더라도, 팽창탱크(170)보다 낮은 위치에 설치된 제1 삼방밸브(810)와 제1 가열기(110) 사이 배관(L20 라인) 내부의 냉각수의 손실과 압력 유실을 방지할 수 있다.
또한, L12 라인 및 조수기(120) 방향의 밸브(도 2에서 왼쪽 및 아래쪽 밸브)는 연 상태로 유지하면, 제2 압축기(420)가 정지하여 엔진(E)으로부터 제1 가열기(110)로 공급되던 냉각수가 역류되더라도, 제1 밸브(710)에 의해 냉각수가 엔진(E)으로 역류되는 것이 차단될 수 있고(본 실시예가 제3 압축기(190)를 포함하는 경우에는 제3 압축기(190)로 역류되는 것 또한 차단된다.), 제1 가열기(110)로부터 역류되는 냉각수는 L12 라인 및 제1 삼방밸브(810)를 거쳐 조수기(120)로 보내진다.
만약, 제1 삼방밸브(810)가 팽창탱크(170)보다 높은 위치에 위치한다면, 제2 압축기(420)의 고장시 제1 삼방밸브(810) 중 제1 가열기(110) 방향의 밸브(도 2의 위쪽 밸브)를 닫더라도, 증기압 근처로 압력이 하강하게 되고, 배관 내에 진공이 발생하여 냉각수 내에 기포가 발생할 수 있으며, 배관의 강성에 악영향을 끼친다. 또한, 냉각수의 압력이나 유속이 급속도로 감소할 수도 있으며, 수격 작용(Water Hammering)이 발생할 수도 있다.
만약, 제1 가열기(110)를 팽창탱크(170)보다 하부에 배치할 수 있다면, 제2 압축기(420)가 고장나더라도 제1 가열기(110)와 제 삼방밸브(810) 사이 배관(L20 라인)에 진공이 발생할 염려가 없으나, 선박 배치 상 불가피하게 제1 가열기를 팽창탱크 상부에 배치하게 되는 경우에는, 제1 삼방밸브(810)를 팽창탱크 하부에 설치하여, 제2 압축기(420)가 고장나는 경우, 제1 가열기(110)와 제 삼방밸브(810) 사이 배관(L20 라인)에 진공이 발생하지 않도록 하는 것이다.
따라서, 본 실시예에 의하면 수격 작용(Water Hammering)을 방지하고, 냉각수 역류로 인한 장비 고장을 방지할 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템이, 냉각기(130), 공기배출탱크(140), 제2 압축기(420), 제2 가열기(150)를 모두 포함하는 경우, 제1 실시예와 마찬가지로, 조수기(120) 후단에 냉각기(130)가 설치되고, 냉각기(130) 후단에 공기배출탱크(140)가 설치되고, 공기배출탱크(140) 후단에 제2 압축기(420)가 설치되고, 제2 압축기(420) 후단에 제2 가열기(150)가 설치되고, 제2 가열기(150) 후단에 엔진(E)이 설치되는 것이 바람직하다.
본 실시예의 선박용 연료 가스 공급 시스템이, 제1 삼방밸브(810), 제2 삼방밸브(820), 제3 삼방밸브(830), 제3 밸브(730), 제1 온도조절센서(210), 제2 온도조절센서(220), 및 제3 온도조절센서(230) 중 하나 이상을 더 포함하는 경우, 제1 실시예와 마찬가지로, 제1 삼방밸브(810), 제2 삼방밸브(820), 제3 삼방밸브(830), 제3 밸브(730), 제1 온도조절센서(210), 제2 온도조절센서(220), 및 제3 온도조절센서(230)는 각각, 제어반(C)에 의해 동작이 제어될 수 있다.
본 실시예의 제어반(C)은, 제1 실시예와 마찬가지로, 자신과 연결된 각 장치들이 수집한 정보와 각 장치들의 상태를 토대로 시스템의 운용 상황을 종합적으로 분석하여, 각 장치들을 제어한다.
특히, 본 실시예에 의하면, 제2 압축기(420)가 정지하는 경우에 제1 삼방밸브(810) 중 제1 가열기(110) 방향의 밸브(도 2에서 위쪽 밸브)를 닫도록 알고리즘을 구성하여, 제2 압축기(420)가 고장 등으로 정지하는 경우를 제어반(C)에 의해 자동적으로 대비하도록 할 수 있다.
본 실시예의 선박용 연료 가스 공급 시스템에 의하면, 제1 실시예와 마찬가지로, 엔진(E)에서 배출된 냉각수가 가진 열원을 최대한 손실 없이 활용하기 위해, 냉각수가 흐르는 배관(도 1에서 이중선으로 표시)을 단열 처리할 수 있다.
본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.

Claims (31)

  1. 액화천연가스를 기화시켜 엔진에 공급하는 기화기;
    상기 엔진을 냉각시키고 난 후 배출된 냉각수와 상기 기화기에서 열매로 사용되는 유체를 열교환시켜, 상기 기화기에서 열매로 사용되는 유체를 가열하는 제1 가열기; 및
    상기 엔진에서 배출된 후 상기 제1 가열기를 통과한 냉각수가 가진 열원의 일부 또는 전부를 이용하여, 해수를 가열하여 청수를 얻어내는 조수기;를 포함하고,
    상기 기화기는, 상기 제1 가열기에 의해 가열된 열매와 액화천연가스를 열교환시켜 액화천연가스를 기화시키는, 선박용 연료 가스 공급 시스템.
  2. 청구항 1에 있어서,
    냉각수가 팽창 또는 수축하면서 발생하는 체적 변화를 흡수하는 팽창탱크를 포함하는, 선박용 연료 가스 공급 시스템.
  3. 청구항 2에 있어서,
    상기 엔진은 엔진룸에 배치되고,
    상기 팽창탱크는, 상기 엔진룸보다 20m 내지 25m 상부에 배치되는, 선박용 연료 가스 공급 시스템.
  4. 청구항 2에 있어서,
    상기 제1 가열기는 상기 팽창탱크보다 높은 위치에 배치되는, 선박용 연료 가스 공급 시스템.
  5. 청구항 1에 있어서,
    상기 조수기로부터 배출되어 상기 엔진으로 공급되는 냉각수를 가열시키는 제2 가열기를 더 포함하는, 선박용 연료 가스 공급 시스템.
  6. 청구항 2에 있어서,
    상기 엔진에서 배출된 냉각수는, 두 흐름으로 분기하여, 일부는 상기 제1 가열기로 보내지고, 나머지는 상기 제1 가열기를 우회하며,
    상기 제1 가열기를 우회한 냉각수와 상기 제1 가열기를 통과한 냉각수가 합류되는 지점에 설치되는 제1 삼방밸브를 더 포함하는, 선박용 연료 가스 공급 시스템.
  7. 청구항 6에 있어서,
    상기 제1 삼방밸브는 상기 팽창탱크보다 낮은 위치에 설치되는, 선박용 연료 가스 공급 시스템.
  8. 청구항 1에 있어서,
    상기 엔진에서 배출된 후 상기 제1 가열기 및 상기 조수기를 통과한 냉각수의 온도를 낮추는 냉각기를 더 포함하는, 선박용 연료 가스 공급 시스템.
  9. 청구항 8에 있어서,
    상기 냉각기로부터 배출된 냉각수가 상기 엔진으로 공급되는 라인 상에 설치되어 냉각수의 온도를 조절하는 제3 온도조절센서를 더 포함하고,
    상기 제3 온도조절센서의 설정값은 상기 엔진의 부하가 높을수록 낮아지는, 선박용 연료 가스 공급 시스템.
  10. 청구항 8에 있어서,
    냉각수가 상기 엔진을 냉각시키며 얻은 열원은 상기 제1 가열기에서 최우선적으로 사용되고, 나머지는 상기 조수기에서 사용되고, 상기 조수기에서 사용되고도 남은 열원은 상기 냉각기에 의해 냉각되는, 선박용 연료 가스 공급 시스템.
  11. 청구항 2에 있어서,
    상기 엔진을 냉각시키는데 사용된 냉각수 중, 상기 제1 가열기로 보내지지 않은 나머지 냉각수를 저장하는 저장탱크를 더 포함하는, 선박용 연료 가스 공급 시스템.
  12. 청구항 11에 있어서,
    상기 저장탱크로부터 배출된 냉각수를 상기 팽창탱크에 공급하는 라인 상에 설치되는 제1 압축기를 더 포함하고,
    상기 제1 압축기는, 상기 저장탱크의 수위가 일정 높이 이상이 되거나 상기 팽창탱크의 수위가 일정 높이 이하가 되면 작동되는, 선박용 연료 가스 공급 시스템.
  13. 청구항 1에 있어서,
    상기 조수기로부터 배출된 냉각수를 압축시켜 상기 엔진으로 공급하는 제2 압축기를 더 포함하는, 선박용 연료 가스 공급 시스템.
  14. 청구항 13에 있어서,
    상기 제2 압축기가 정지하는 경우, 상기 엔진으로부터 상기 제1 가열기로 공급되는 냉각수가 역류하는 것을 방지하는 제1 밸브를 더 포함하는, 선박용 연료 가스 공급 시스템.
  15. 청구항 13에 있어서,
    상기 기화기, 상기 제1 가열기, 상기 조수기, 및 상기 제2 압축기는 직렬로 연결되어, 상기 제2 압축기만에 의해 냉각수가 순환되는, 선박용 연료 가스 공급 시스템.
  16. 청구항 1 내지 청구항 15 중 어느 한 항에 있어서,
    상기 엔진으로부터 배출된 냉각수가 상기 제1 가열기로 공급되는 라인 상에 설치되는 제3 압축기를 더 포함하는, 선박용 연료 가스 공급 시스템.
  17. 청구항 1 내지 청구항 15 중 어느 한 항에 있어서,
    상기 조수기의 부하는,
    상기 엔진의 부하를 A, 상기 기화기에서 열매로 사용되는 유체에 전달되는 최대 열량을 x, 상기 조수기의 부하를 B, 상기 엔진을 냉각시키면서 냉각수가 얻는 최대 열량을 y, 상기 조수기의 부하가 100%일 때 요구하는 열량을 z라고 하였을 때, B = (y-x)A / z로 나타내어 지는, 선박용 연료 가스 공급 시스템.
  18. 청구항 1 내지 청구항 15 중 어느 한 항에 있어서,
    상기 엔진으로부터 상기 제1 가열기로 냉각수가 공급되는 라인 상에 설치되어 냉각수의 온도를 일정하게 조절하는 제1 온도조절센서; 및
    상기 조수기로부터 배출된 냉각수가 상기 엔진으로 공급되는 라인 상에 설치되어 냉각수의 온도를 조절하는 제2 온도조절센서;중 하나 이상을 더 포함하고,
    상기 제2 온도조절센서의 설정값은 상기 엔진의 부하가 높을수록 낮아지는, 선박용 연료 가스 공급 시스템.
  19. 청구항 1 내지 청구항 15 중 어느 한 항에 있어서,
    상기 엔진에서 배출된 후 상기 제1 가열기를 통과한 냉각수가 상기 조수기로 보내지는 라인 상에 설치되어, 냉각수에 포함되어 있는 공기를 제거하는 공기분리기를 더 포함하는, 선박용 연료 가스 공급 시스템.
  20. 청구항 1 내지 청구항 15 중 어느 한 항에 있어서,
    상기 조수기로부터 상기 엔진으로 보내지는 냉각수에 포함된 공기를 배출시키는 공기배출탱크를 더 포함하는, 선박용 연료 가스 공급 시스템.
  21. 청구항 1 내지 청구항 15 중 어느 한 항에 있어서,
    냉각수가 흐르는 배관의 일부 또는 전부는 단열 처리된, 선박용 연료 가스 공급 시스템.
  22. 1) 엔진을 냉각시키고 난 후 배출된 냉각수와 열매를 열교환시켜 열매를 제1 가열기에 의해 가열하는 단계;
    2) 상기 1)단계에서 열교환되어 가열된 열매와 액화천연가스를 열교환시켜 액화천연가스를 기화시키는 단계;
    3) 상기 2)단계에서 기화시킨 천연가스를 상기 엔진에 공급하는 단계; 및
    4) 상기 1)단계에서 열매를 열교환시키는데 사용된 냉각수 가진 열원의 일부 또는 전부를 이용하여, 조수기에 의해 해수를 가열하여 청수를 얻어내는 단계;
    를 포함하는, 선박용 연료 가스 공급 방법.
  23. 청구항 22에 있어서,
    5) 상기 4)단계에서 상기 조수기에서 사용된 냉각수를 가열시키는 단계를 더 포함하는, 선박용 연료 가스 공급 방법.
  24. 청구항 23에 있어서,
    상기 5)단계는,
    상기 엔진이 운전되지 않는 경우, 상기 엔진의 저온 부식을 방지할 수 있는 온도 이상으로 냉각수를 가열하는, 선박용 연료 가스 공급 방법.
  25. 청구항 23에 있어서,
    상기 5)단계는,
    상기 4)단계에서 상기 조수기를 100% 가동시키면 냉각수의 온도가 상기 엔진의 저온 부식을 방지할 수 있는 온도 이하로 내려가는 경우, 상기 조수기를 100%로 가동시킨 후 상기 엔진의 저온 부식을 방지할 수 있는 온도 이상으로 냉각수를 가열하는, 선박용 연료 가스 공급 방법.
  26. 청구항 22에 있어서,
    5) 상기 조수기로부터 배출된 냉각수를 제2 압축기에 의해 압축시켜 상기 엔진으로 공급하는 단계를 더 포함하는, 선박용 연료 가스 공급 방법.
  27. 청구항 26에 있어서,
    상기 엔진에서 배출된 냉각수는, 두 흐름으로 분기하여, 일부는 상기 제1 가열기로 보내지고, 나머지는 상기 제1 가열기를 우회하며,
    상기 제1 가열기를 우회한 냉각수와 상기 제1 가열기를 통과한 냉각수가 합류되는 지점에 제1 삼방밸브를 설치하는, 선박용 연료 가스 공급 방법.
  28. 청구항 27에 있어서,
    상기 제2 압축기가 정지하는 경우, 상기 제1 삼방밸브 중 상기 제1 가열기 방향의 밸브는 닫고, 나머지 밸브는 연 상태로 유지하는, 선박용 연료 가스 공급 방법.
  29. 청구항 28에 있어서,
    상기 제2 압축기가 정지하는 경우, 제어반에 의해 자동적으로, 상기 제1 삼방밸브 중 상기 제1 가열기 방향의 밸브를 닫도록 알고리즘을 구성하는, 선박용 연료 가스 공급 방법.
  30. 엔진은 엔진룸에 배치하고,
    냉각수가 팽창 또는 수축하면서 발생하는 체적 변화를 흡수하는 팽창탱크를 상기 엔진룸보다 20m 내지 25m 상부에 배치하고,
    액화천연가스를 기화시키는 열매를 가열하는 제1 가열기를 상기 팽창탱크보다 높은 위치에 배치하고,
    상기 제1 가열기를 우회한 냉각수와 상기 제1 가열기를 통과한 냉각수가 합류되는 지점에 설치되는 제1 삼방밸브를 상기 팽창탱크보다 낮은 위치에 설치하는, 배치 방법.
  31. 엔진의 부하를 A, 기화기에서 열매로 사용되는 유체에 전달되는 최대 열량을 x, 조수기의 부하를 B, 상기 엔진을 냉각시키면서 냉각수가 얻는 최대 열량을 y, 상기 조수기의 부하가 100%일 때 요구하는 열량을 z라고 하였을 때, Ax + Bz = Ay의 식에 의해, 상기 엔진을 냉각시키며 냉각수가 얻은 열량을 상기 기화기와 상기 조수기에 분배하는, 방법.
PCT/KR2017/010597 2016-10-05 2017-09-26 선박용 연료 가스 공급 시스템 및 방법 WO2018066860A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780061379.9A CN109863081B (zh) 2016-10-05 2017-09-26 为船舶供应燃料气体的系统及方法
SG11201902807UA SG11201902807UA (en) 2016-10-05 2017-09-26 System and method for supplying fuel gas for ship
JP2019517430A JP7048589B2 (ja) 2016-10-05 2017-09-26 船舶用燃料ガス供給システム及び船舶用燃料ガス供給方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0128368 2016-10-05
KR1020160128368A KR101876973B1 (ko) 2016-10-05 2016-10-05 선박용 연료 가스 공급 시스템 및 방법
KR10-2016-0128367 2016-10-05
KR1020160128367A KR101876972B1 (ko) 2016-10-05 2016-10-05 선박용 연료 가스 공급 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2018066860A1 true WO2018066860A1 (ko) 2018-04-12

Family

ID=61832184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010597 WO2018066860A1 (ko) 2016-10-05 2017-09-26 선박용 연료 가스 공급 시스템 및 방법

Country Status (4)

Country Link
JP (1) JP7048589B2 (ko)
CN (1) CN109863081B (ko)
SG (1) SG11201902807UA (ko)
WO (1) WO2018066860A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748439A (zh) * 2019-10-16 2020-02-04 大连船舶重工集团有限公司 一种lng燃料冷能高效利用的低压供气系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288842B2 (ja) * 2019-11-26 2023-06-08 三菱重工マリンマシナリ株式会社 冷熱回収システム、冷熱回収システムを備える船舶、および冷熱回収方法
JP2023015869A (ja) 2021-07-20 2023-02-01 三菱造船株式会社 アンモニア燃料供給設備、及びアンモニア燃料供給方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082866A (ja) * 2002-08-27 2004-03-18 Mitsubishi Heavy Ind Ltd 冷却水循環装置
JP2013180625A (ja) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd 排熱回収型船舶推進装置およびその運用方法
KR20130123967A (ko) * 2012-05-04 2013-11-13 대우조선해양 주식회사 선박용 발전기 엔진의 예열시스템
KR20150005344A (ko) * 2013-07-05 2015-01-14 현대중공업 주식회사 엔진의 쿨링워터 시스템
KR20150115232A (ko) * 2014-04-03 2015-10-14 대우조선해양 주식회사 선박의 엔진 냉각수의 폐열을 이용한 연료가스 공급시스템 및 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297264B2 (ja) * 1995-09-08 2002-07-02 日立造船株式会社 船舶における冷却設備
US6733352B1 (en) * 2003-05-09 2004-05-11 Brunswick Corporation Electronically controlled cooling system for a marine propulsion engine
FI125981B (fi) * 2007-11-30 2016-05-13 Waertsilae Finland Oy Kelluva nestekaasun varastointi- ja jälleenkaasutusyksikkö sekä menetelmä nestekaasun jälleenkaasuttamiseksi mainitussa yksikössä
CN103511127B (zh) * 2012-06-25 2016-01-13 U&S株式会社 船舶发动机用液化天然气燃料供给系统
JP6544929B2 (ja) 2015-01-09 2019-07-17 大阪瓦斯株式会社 Lng燃料船

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082866A (ja) * 2002-08-27 2004-03-18 Mitsubishi Heavy Ind Ltd 冷却水循環装置
JP2013180625A (ja) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd 排熱回収型船舶推進装置およびその運用方法
KR20130123967A (ko) * 2012-05-04 2013-11-13 대우조선해양 주식회사 선박용 발전기 엔진의 예열시스템
KR20150005344A (ko) * 2013-07-05 2015-01-14 현대중공업 주식회사 엔진의 쿨링워터 시스템
KR20150115232A (ko) * 2014-04-03 2015-10-14 대우조선해양 주식회사 선박의 엔진 냉각수의 폐열을 이용한 연료가스 공급시스템 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748439A (zh) * 2019-10-16 2020-02-04 大连船舶重工集团有限公司 一种lng燃料冷能高效利用的低压供气系统

Also Published As

Publication number Publication date
SG11201902807UA (en) 2019-05-30
CN109863081A (zh) 2019-06-07
JP2019531966A (ja) 2019-11-07
JP7048589B2 (ja) 2022-04-05
CN109863081B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2018066860A1 (ko) 선박용 연료 가스 공급 시스템 및 방법
US5471832A (en) Combined cycle power plant
US7481060B2 (en) Method for operating a power plant
WO2012165865A2 (ko) Lng 연료를 이용한 냉열 회수장치 및 이를 가지는 액화가스 운반선
KR960705134A (ko) 가스-증기 터빈 장치의 가스 터빈의 냉각제를 냉각시키기 위한 장치(device for cooling the gas-turbine coolant in a combined gas and steam turbine installation)
WO2021162390A1 (ko) 터빈의 흡입공기 온도제어를 통한 발전효율 향상 시스템
WO2018225922A1 (ko) 복합 발전장치
US20160272331A1 (en) Air conditioning method and system for aircraft
JPS6040707A (ja) 低沸点媒体サイクル発電装置
WO2018066845A1 (ko) 하이브리드형 발전 시스템
KR20190036090A (ko) 선박용 연료가스 공급 시스템 및 방법
WO2021157855A1 (ko) 선박의 액화가스 재기화 시스템 및 방법
JP2007002761A (ja) コージェネレーションシステムおよび発電装置
WO2012081854A2 (ko) 선박용 폐열회수장치
KR101876973B1 (ko) 선박용 연료 가스 공급 시스템 및 방법
WO2018124815A1 (ko) 연료가스 공급 시스템
WO2019013420A1 (ko) 스팀의 생성과 발전이 연계된 엔진 시스템
JP2001241304A (ja) ガス圧力エネルギを利用した複合発電システム
WO2013172641A1 (ko) 액화가스 처리 시스템 및 방법
WO2022075810A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
JP2505694B2 (ja) Lng焚きコンバインドサイクル発電設備
WO2020213773A1 (ko) 발전 효율이 향상된 유기랭킨 사이클을 이용한 선박의 발전 시스템
WO2014158000A1 (ko) Lng 재기화 및 발전 병합장치
JP2017078441A (ja) Lngサテライト設備
KR101876972B1 (ko) 선박용 연료 가스 공급 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858655

Country of ref document: EP

Kind code of ref document: A1