WO2016126025A1 - 선박의 연료가스 공급시스템 - Google Patents

선박의 연료가스 공급시스템 Download PDF

Info

Publication number
WO2016126025A1
WO2016126025A1 PCT/KR2016/000576 KR2016000576W WO2016126025A1 WO 2016126025 A1 WO2016126025 A1 WO 2016126025A1 KR 2016000576 W KR2016000576 W KR 2016000576W WO 2016126025 A1 WO2016126025 A1 WO 2016126025A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
boil
calorific value
line
engine
Prior art date
Application number
PCT/KR2016/000576
Other languages
English (en)
French (fr)
Inventor
강호숙
이원두
최재웅
윤호병
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150128238A external-priority patent/KR20160095597A/ko
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to CN201680008497.9A priority Critical patent/CN107407231B/zh
Priority to JP2017558345A priority patent/JP6475871B2/ja
Publication of WO2016126025A1 publication Critical patent/WO2016126025A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel gas supply system of a ship, and more particularly to a fuel gas supply system of a ship that can efficiently process and manage the boil-off gas.
  • Natural gas widely used and regarded as an important resource among fuel gases, is composed of methane as a main component, and the natural gas is usually cooled to about -162 degrees Celsius for easy storage and transportation. It is managed and operated by phase change to liquefied natural gas, a colorless and transparent cryogenic liquid reduced to / 600.
  • the liquefied natural gas is accommodated in a storage tank which is insulated and installed in the hull and stored and transported.
  • a storage tank which is insulated and installed in the hull and stored and transported.
  • the external heat is continuously transferred to the inside of the storage tank so that the evaporated gas generated by the vaporization of the liquefied natural gas is accumulated in the storage tank.
  • This boil-off gas may increase the internal pressure of the storage tank, which may cause deformation and damage of the storage tank, and may cause structural problems of the storage tank and the ship by vibration of the ship in the course of transporting the liquefied natural gas. It is necessary to suppress the generation of boil-off gas or to treat and remove the boil-off gas.
  • An embodiment of the present invention is to provide a fuel gas supply system of a ship that can effectively treat or use the boil-off gas, and at the same time improve the efficiency of re-liquefaction of the boil-off gas.
  • An embodiment of the present invention is to provide a fuel gas supply system of a ship that can achieve an efficient and stable operation as a simple structure.
  • An embodiment of the present invention is to provide a fuel gas supply system of a ship that can improve the energy efficiency.
  • Embodiment of the present invention is to provide a fuel gas supply system of a ship that can improve the composition quality of the boil-off gas or liquefied gas.
  • a storage tank for receiving a fuel gas consisting of liquefied gas and evaporated gas, a compression unit for pressurizing the evaporation gas of the storage tank, the evaporation for supplying the evaporated gas passed through the compression unit to the engine
  • a calorific value control unit for measuring and adjusting the calorific value of the fuel gas supplied to the engine, wherein the calorific value control unit of the calorific value measuring unit for measuring the calorific value of the fuel gas supplied to the engine and the evaporation gas supplied to the reliquefaction line It includes a flow regulating device for adjusting the supply amount, the flow control device may be controlled to operate based on the calorific value information of the fuel gas measured by the calorific value measuring device.
  • a calorific value adjusting unit for measuring and adjusting the calorific value of the fuel gas supplied to the engine
  • the calorific value adjusting unit and a calorific value measuring unit for measuring the calorific value of the fuel gas supplied to the engine, the inlet side is on the reliquefaction line
  • a flow rate control valve connected to the front end of the nitrogen separator and having an outlet side end connected to the rear end of the nitrogen separator on the reliquefaction line and a supply amount of the boil-off gas transported along the calorific value control line.
  • the flow control valve may be controlled to operate based on the calorific value information of the fuel gas measured by the calorific value measurer.
  • a calorific value adjusting unit for measuring and adjusting the calorific value of the fuel gas supplied to the engine, The calorific value adjusting unit and a calorific value measuring unit for measuring the calorific value of the fuel gas supplied to the engine, the portion of the first gas flow
  • a calorific value control line for circulating to the rear end of the nitrogen separator on the reliquefaction line and a flow rate control valve for controlling a supply amount of the first gas flow conveyed along the calorific value control line, wherein the flow rate control valve is measured by the calorific value meter
  • the operation can be controlled based on the calorific value information of the supplied fuel gas.
  • a storage tank containing a fuel gas consisting of liquefied gas and boil-off gas, a compression section for pressurizing the evaporation gas of the storage tank, an evaporation gas supply line for supplying the boil-off gas passing through the compression section to the first engine, and the compression And a reliquefaction line for receiving a portion of the evaporated gas passed through the reliquefaction line, wherein the reliquefaction line includes a pressurizing unit for pressurizing the evaporated gas passed through the compression unit and a cooling unit for cooling the evaporated gas passed through the pressurizing unit.
  • a first expansion valve for firstly reducing the boil-off gas cooled through the cooling unit, and a first gas-liquid separator for separating the boil-off gas in a gas-liquid mixed state into a gas component and a liquid component through the first expansion valve.
  • the boil-off gas circulation line for supplying the gas component separated in the first gas-liquid separator to the second engine, and the liquid separated in the first gas-liquid separator
  • a second expansion valve and an evaporation gas of the gas-liquid mixed state by passing through the second expansion valve for a minute secondary pressure may be provided by a second gas-liquid separator for separating a gas component and a liquid component.
  • a calorific value adjusting unit for measuring and adjusting the calorific value of the fuel gas supplied to the first engine
  • the calorific value control unit is supplied to the calorific value measuring unit for measuring the calorific value of the fuel gas supplied to the first engine and the reliquefaction line It includes a flow rate control valve for adjusting the supply amount of the boil-off gas, the flow rate control valve may be controlled based on the calorific value of the fuel gas measured by the calorific value measuring device.
  • the oil removing unit may be provided at a rear end of the pressurizing unit on the reliquefaction line.
  • the reliquefaction line stores the gas component separated from the second gas-liquid separator and the liquid component separated from the second gas-liquid separator and the boil-off gas recovery line for supplying the storage tank or the compression section of the evaporation gas supply line. It may be provided further comprising a liquefied gas recovery line for supplying to the tank.
  • the pressurizing unit may be provided to pressurize the boil-off gas passing through the compression unit to 50 bar to 150 bar.
  • the nitrogen separator may include at least one of a membrane filter, a cyclone, a gas centrifuge, and a vortex tube.
  • the nitrogen component of the first concentration may contain a nitrogen component of a higher concentration than the nitrogen component of the second concentration.
  • the fuel gas supply system of the ship according to the embodiment of the present invention has the effect of effectively treating or using the boil-off gas, and improve the re-liquefaction efficiency of the boil-off gas.
  • the fuel gas supply system of the ship according to the embodiment of the present invention has the effect of improving the energy efficiency, the efficient and stable operation as a simple structure.
  • Fuel gas supply system of the ship has the effect of preventing the degradation of the composition quality that may occur when handling the boil-off gas or liquefied gas.
  • FIG. 1 is a conceptual diagram showing a fuel gas supply system of a ship according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a fuel gas supply system of a ship according to a second embodiment of the present invention.
  • FIG. 3 is a conceptual diagram illustrating a fuel gas supply system of a ship according to a third embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating a fuel gas supply system of a ship according to a fourth embodiment of the present invention.
  • FIG. 5 is a conceptual diagram illustrating a fuel gas supply system of a ship according to a fifth embodiment of the present invention.
  • FIG. 6 is a conceptual diagram illustrating a fuel gas supply system of a ship according to a sixth embodiment of the present invention.
  • FIG. 7 is a conceptual diagram illustrating a fuel gas supply system of a ship according to a seventh embodiment of the present invention.
  • FIG. 8 is a conceptual diagram illustrating a fuel gas supply system of a ship according to an eighth embodiment of the present invention.
  • the vessel may be understood to include a variety of offshore structures.
  • the vessel includes not only a liquefied gas transporter that transports liquefied gas, but also various marine structures that can be propagated or generated by using liquefied gas as a fuel.
  • the liquefied gas can be used as a fuel, it can be included in the vessel of the present invention regardless of its form.
  • it should be understood as a concept including both an LNG carrier and a vessel such as an LNG RV, and an offshore plant such as an LNG FPSO and an LNG FSRU.
  • the liquefied natural gas and the evaporated gas generated therefrom have been described, but are not limited thereto, and various liquefied gas such as liquefied ethane gas and liquefied hydrocarbon gas, and Even when the boil-off gas generated therefrom is applied, it should be understood as the same technical idea.
  • FIG. 1 is a conceptual diagram illustrating a fuel gas supply system 1100 of a ship according to a first embodiment of the present invention.
  • a fuel gas supply system 1100 of a ship includes a storage tank 1110 and a liquefied gas supply line 1140 for supplying boil-off gas of the storage tank 1110 to an engine.
  • a reliquefaction line 1130 for reliquefying a part of the boil-off gas passing through the boil-off gas supply line 1120 and a liquefied gas supply line 1140 for supplying the liquefied gas of the storage tank 1110 to the engine. have.
  • the storage tank 1110 is provided to receive or store the liquefied natural gas and the boil-off gas.
  • the storage tank 1110 may be provided as a cargo hold of the membrane type insulated to minimize the vaporization of the liquefied natural gas due to external heat intrusion.
  • the storage tank 1110 is supplied with liquefied natural gas from a natural gas production site or the like and stably stores the liquefied natural gas and evaporated gas until unloading to the destination, but as described below, the engine or vessel for propulsion of the vessel It may be provided to be used as fuel gas, such as an engine for power generation.
  • the storage tank 1110 is generally installed with heat insulation, but since it is practically difficult to completely block external heat intrusion, the storage tank 1110 has evaporated gas generated by natural vaporization of liquefied natural gas. do. Since the boil-off gas increases the internal pressure of the storage tank 1110 and potentially risks deformation and explosion of the storage tank 1110, it is necessary to remove or process the boil-off gas from the storage tank 1110. Accordingly, the boil-off gas generated in the storage tank 1110 is used as the fuel gas of the engine by the boil-off gas supply line 1120 or re-liquefied by the re-liquefaction line 1130 as in the first embodiment of the present invention. It may be supplied back to the storage tank 1110. Alternatively, although not shown in the drawing, the gas may be supplied to a vent mast (not shown) or GCU (Gas Combustion Unit, not shown) provided on the upper portion of the storage tank 1110 to further treat or consume the evaporated gas.
  • a vent mast not shown
  • GCU Gas Combustion Unit
  • the engine may be supplied with fuel gas such as liquefied natural gas and evaporated gas contained in the storage tank 1110 to generate propulsion of the ship or generate power for generating power, such as internal equipment of the ship.
  • the engine may be configured of a first engine receiving a relatively high pressure fuel gas to generate an output, and a second engine receiving a relatively low pressure fuel gas to generate an output.
  • the first engine is composed of an X-DF engine (about 16 bar) that can generate power with relatively high pressure fuel gas
  • the second engine is a DFDE that can generate power with relatively low pressure fuel gas.
  • Engine (3 bar to 5 bar) or the like.
  • the present invention is not limited thereto, and it should be understood that the same is true when various engines and engines of various types are used.
  • the boil-off gas supply line 1120 is provided to supply boil-off gas generated in the storage tank 1110 to the engine as fuel gas.
  • One end of the boil-off gas supply line 1120 is connected to the inside of the storage tank 1110 and the other end is connected to the engine by joining the liquefied gas supply line 1140 to be described later.
  • the boil-off gas supply line 1120 may have an inlet end portion disposed above the inside of the storage tank 1110 so that the boil-off gas may be supplied in the storage tank 1110.
  • a compression unit 1121 having a plurality of stages of compressors may be provided to supply according to conditions.
  • the compression unit 1121 may include a compressor 1121a for compressing the boil-off gas and a cooler 1121b for cooling the heated boil-off gas while being compressed.
  • the compression unit 1121 may be provided at the front end of the branch point of the reliquefaction line 1130 to be described later on the boil-off gas supply line 1120 to pressurize the boil-off gas.
  • the boil-off gas supply line is further branched from the intermediate portion of the compression unit 1121 to supply fuel gas to the second engine Can be prepared.
  • the compression unit 1121 is composed of three stages of the compressor 1121a and the cooler 1121b.
  • the compression unit 1121 may include various numbers of compression units 1121 according to a required pressure condition and temperature of the engine. It can consist of a compressor and a cooler.
  • heat exchanger 1132 of the reliquefaction line 1130 may be installed at the front end of the compression unit 1121 on the boil-off gas supply line 1120, which will be described later.
  • the reliquefaction line 1130 is a pressurization unit 1131 for additionally pressurizing the evaporated gas passed through the compression unit 1131, a heat exchanger 1132 for exchanging and cooling the boiled gas passed through the pressurizing unit 1131, a heat exchanger.
  • the reliquefaction line 1130 may be branched from the rear end of the compression unit 1121 on the boil-off gas supply line 1120.
  • a three-way valve (not shown) may be provided at a point where the reliquefaction line 1130 and the boil-off gas supply line 1120 diverge, and the three-way valve may be provided to the first engine or the reliquefaction line 1130. Supply can be adjusted.
  • the three-way valve may be manually opened or closed by the operator to adjust the opening and closing, or the operation may be automatically implemented by a controller (not shown).
  • the pressurizing unit 1131 is provided to further pressurize the boil-off gas that has passed through the compression unit 1121.
  • the pressurizing unit 1131 may include a compressor 1131a for additionally compressing the evaporated gas passing through the compression unit 1121, and a cooler 1131b for cooling the heated evaporated gas while being compressed.
  • the pressurization unit 1131 may be provided to pressurize the boil-off gas supplied to the heat exchanger 1132 and the expansion valve 1133 to be described later in a pressure range of 50 bar to 150 bar.
  • the pressurizing unit 1131 is different from the pressure condition of the boiled gas supplied to the engine Separately, the boil-off gas may be further pressurized according to the pressure conditions to improve the reliquefaction efficiency or the amount of reliquefaction.
  • the pressurizing unit 1131 is shown as one compressor 1113a and a cooler 1131b, respectively, but is not limited thereto, and may pressurize the boil-off gas to a pressure range of 50 bar to 150 bar. If possible, it includes the case of having various numbers of compressors and coolers.
  • the heat exchanger 1132 is provided to heat exchange the boil-off gas pressurized through the pressurizing unit 1131 and the boil-off gas in front of the compression unit 1121 passing through the boil-off gas supply line 1120. Since the boil-off gas passing through the pressure unit 1131 is pressurized by the compressor 1131a and the temperature is raised, the heat-exchanged with the low-temperature boil-off gas before passing through the compression unit 1121 of the boil-off gas supply line 1120. The pressurized boil-off gas passing through the reliquefaction line 1130 may be cooled.
  • the boil-off gas pressurized through the pressurizing unit 1131 can be cooled by heat-exchanging with the boil-off gas passing through the boil-off gas supply line 1120, it is possible to prevent unnecessary waste of power and to operate equipment. Can improve efficiency.
  • the expansion valve 1133 may be provided at the rear end of the heat exchanger 1132.
  • the expansion valve 1133 may re-liquefy the boil-off gas by additionally cooling and expanding the boil-off gas pressurized and cooled through the pressure unit 1131 and the heat exchange device 1132 by reducing the boil-off gas.
  • the expansion valve 1133 may be formed of, for example, a Joule-Thomson valve.
  • the gas-liquid separator 1134 receives the reliquefied evaporated gas while passing through the expansion valve 1133 to separate the liquid component and the gas component of the reliquefied evaporated gas.
  • the pressurized boil-off gas passes through the expansion valve 1133, most of the boil-off gas is reliquefied, but a gaseous component of the re-liquefied boil-off gas may be generated by generating a flash gas.
  • the liquid component of the reliquefied boil-off gas separated by the gas-liquid separator 1134 is supplied to the storage tank 1110 by a recovery line 1135 described later, and the gas component of the separated re-liquefied boil-off gas is It may be provided to re-supply to the storage tank 1110 or the boil-off gas supply line 1120 by the recirculation line 1136 to be described later.
  • the recovery line 1135 may be provided to connect the gas-liquid separator 1134 and the storage tank 1110 to resupply the liquid component of the boil-off gas separated by the gas-liquid separator 1134 to the storage tank 1110.
  • the recovery line 1135 may have an inlet side end connected to the lower side of the gas-liquid separator 1134, and an outlet side end thereof may be connected to the storage tank 1110.
  • the recovery line 1135 may be provided with an on-off valve (not shown) for adjusting the supply amount of the reliquefied boil-off gas recovered to the storage tank 1110.
  • the recirculation line 1136 is provided with a gas-liquid separator 1134 and a storage tank to supply gas components of the reliquefied boil-off gas separated by the gas-liquid separator 1134 to the storage tank 1110 or the boil-off gas supply line 1120.
  • 1110 or the gas-liquid separator 1134 and the boil-off gas supply line 1120 may be provided.
  • the recirculation line 1136 is shown to supply the evaporated gas of the gas component inside the gas-liquid separator 1134 to the front end of the compression unit 1121 on the boil-off gas supply line 1120. Re-supplied from 1134 to the storage tank 1110, or the re-supply to the boil-off gas supply line 1120 and the storage tank 1110 together.
  • the liquefied gas supply line 1140 is provided to supply liquefied natural gas contained or stored in the storage tank 1110 to the engine as fuel gas.
  • One end of the liquefied gas supply line 1140 may be connected to the inside of the storage tank 1110, and the other end may be connected to the engine by joining the boil-off gas supply line 1120 to be described later.
  • An inlet side end of the liquefied gas supply line 1140 may be disposed below the storage tank 1110, and a delivery pump 1141 may be provided to supply liquefied natural gas to the engine side.
  • the liquefied gas supply line 1140 when the engine includes a first engine receiving relatively high pressure fuel gas to generate an output and a second engine receiving relatively low pressure fuel gas to generate an output.
  • the liquefied natural gas may be provided including a first liquefied gas supply line 1140a and a second liquefied gas supply line 1140b to process liquefied natural gas in accordance with fuel gas requirements of each engine.
  • the first liquefied gas supply line 1140a may supply the liquefied natural gas sent by the delivery pump 1141 to a second engine that receives a relatively low pressure fuel gas and generates an output. Since the liquefied natural gas is compressed to low pressure (about 3 bar to 5 bar) while the delivery pump 1141 sends the liquefied natural gas, when the second engine is made of a DFDE engine, without a separate pressurized pump, the vaporizer 1144 ) Can forcibly vaporize the liquefied natural gas sent by the delivery pump 1141 to supply fuel gas in accordance with the fuel conditions required by the second engine.
  • a gas-liquid separator 1145 may be provided after the vaporizer 1144.
  • fuel gas must be supplied in a gaseous state to generate a normal output and to prevent engine failure. Therefore, the liquefied natural gas passing through the vaporizer 1144 is supplied to the gas-liquid separator 1145, and only the gaseous fuel gas is supplied to the second engine by the gas-liquid separator 1145, thereby providing the fuel gas supply system 1100 of the ship. Reliability can be improved.
  • the second liquefied gas supply line 1140b may supply the liquefied natural gas sent by the delivery pump 1141 to a first engine receiving a relatively high pressure fuel gas to generate an output.
  • a pressure pump 1142 for compressing liquefied natural gas may be provided in the second liquefied gas supply line 1140b.
  • the pressure pump 1142 may compress the liquefied natural gas according to the pressure condition of the fuel gas required by the first engine. For example, when the first engine is an X-DF engine, the pressure pump 1142 is liquefied natural.
  • the gas can be supplied compressed to a pressure of about 16 bar.
  • the liquefied natural gas compressed by the pressure pump 1142 may be forced through the vaporizer 1431 and vaporized, and then joined with the boil-off gas supply line 1120 to be supplied as fuel gas to the first engine.
  • a bypass line 1140c may be provided in the second liquefied gas supply line 1140b.
  • the inlet end of the bypass line 1140c is connected to the front end of the pressurized pump 1142 on the second liquefied gas supply line 1140b, and the outlet end thereof is the pressurized pump 1142 on the second liquefied gas supply line 1140b.
  • the pressure pump 1142 may be provided to be connected in parallel.
  • pressurized pumps 1142 Since a plurality of pressurized pumps 1142 are provided in parallel on the second liquefied gas supply line 1140b by the bypass line 1140c having a separate pressurized pump 1142, the pressurized pumps 1142 also in the above-described situation. ) And other components can be prevented from occurring or safety accidents, and the engine can be operated for a long time.
  • FIG. 2 is a conceptual diagram illustrating a fuel gas supply system 2100 of a ship according to a second embodiment of the present invention.
  • the fuel gas supply system 2100 of the ship according to the second embodiment of the present invention is a storage tank 2110, liquefied gas supply line for supplying the boil-off gas of the storage tank 2110 to the engine 2140 ), A reliquefaction line 2130 for reliquefying a part of the boil-off gas passing through the boil-off gas supply line 2120, a liquefied gas supply line 2140 for supplying the liquefied gas of the storage tank 2110 to the engine, a reliquefaction line Nitrogen separator 2150 for separating the boil-off gas supplied to 2130 into a first gas stream containing a nitrogen component of a first concentration and a second gas stream containing a nitrogen component of a second concentration, the fuel supplied to the engine It may be provided including a calorific value control unit for measuring and adjusting the calorific value of the gas.
  • the storage tank 2110 is provided to receive or store the liquefied natural gas and the boil-off gas.
  • the storage tank 2110 may be provided as a cargo hold of a membrane type insulated so as to minimize vaporization of the liquefied natural gas due to external heat intrusion.
  • the storage tank 2110 receives liquefied natural gas from a place where natural gas is produced, and stores or stores liquefied natural gas and evaporated gas stably until unloading to a destination, but the engine or ship for propulsion as described below. It may be provided to be used as fuel gas, such as an engine for power generation.
  • Storage tank 2110 is generally installed insulated, but since it is practically difficult to completely block the external heat invasion, the storage tank 2110 inside the storage tank 2110 so that the evaporation gas generated by natural vaporization is present do. Since the boil-off gas increases the internal pressure of the storage tank 2110 to potentially risk deformation and explosion of the storage tank 2110, it is necessary to remove or process the boil-off gas from the storage tank 2110. Accordingly, the boil-off gas generated inside the storage tank 2110 is used as the fuel gas of the engine by the boil-off gas supply line 2120 or re-liquefied by the re-liquefaction line 2130 as in the embodiment of the present invention. And may be resupplied to 2110. Alternatively, although not shown in the drawing, the gas may be supplied to a vent mast (not shown) or GCU (Gas Combustion Unit, not shown) provided on the upper portion of the storage tank 2110 to further treat or consume the evaporated gas.
  • a vent mast not shown
  • GCU Gas Combustion Unit
  • the engine may be supplied with fuel gas such as liquefied natural gas and evaporated gas contained in the storage tank 2110 to generate propulsion of the ship or generate power for generating power, such as internal equipment of the ship.
  • the engine may be configured of a first engine receiving a relatively high pressure fuel gas to generate an output, and a second engine receiving a relatively low pressure fuel gas to generate an output.
  • the first engine is composed of an X-DF engine (about 16 bar to 18 bar) capable of generating output with relatively high pressure fuel gas
  • the second engine is capable of generating output with relatively low pressure fuel gas.
  • DFDE engine about 5 bar to 8 bar
  • the boil-off gas supply line 2120 is provided to supply boil-off gas generated in the storage tank 2110 to the engine as fuel gas.
  • One end of the boil-off gas supply line 2120 is connected to the inside of the storage tank 2110, and the other end is connected to the engine by joining the liquefied gas supply line 2140 to be described later.
  • the boil-off gas supply line 2120 may have an inlet side end disposed above the inside of the storage tank 2110 so as to receive the boil-off gas inside the storage tank 2110.
  • a compression unit 2121 having a plurality of stages of compressors may be provided to supply according to conditions.
  • the compression unit 2121 may include a compressor 2121a for compressing the boil-off gas and a cooler 2121b for cooling the heated boil-off gas while being compressed.
  • the compression unit 2121 may be provided at the front end of the branch point of the reliquefaction line 2130, which will be described later, on the boil-off gas supply line 2120 to pressurize the boil-off gas.
  • the boil-off gas supply line is further branched from the intermediate portion of the compression unit 2121 to supply fuel gas to the second engine Can be prepared.
  • the compression unit 2121 is illustrated as being composed of a three stage compressor 2121a and a cooler 2121b.
  • the compression unit 2121 may include various numbers of compression units 2121 according to a required pressure condition and temperature of the engine. It can consist of a compressor and a cooler.
  • the heat exchanger 2132 of the reliquefaction line 2130 may be installed at the front end of the compression unit 2121 on the boil-off gas supply line 2120, which will be described later.
  • the reliquefaction line 2130 includes a pressurizing unit 2131 for additionally pressurizing the boiled gas passed through the compression unit 2131, a heat exchanger 2132 for exchanging and cooling the boiled gas passed through the pressurizing unit 2131, and a heat exchanger.
  • An expansion valve 2133 for reducing the evaporated gas passed through the gas a gas-liquid separator 2134 for receiving the re-liquefied evaporated gas through the expansion valve 2133, and a vaporized gas of the liquid component separated from the gas-liquid separator 2134.
  • the reliquefaction line 2130 may be branched from the rear end of the compression unit 2121 on the boil-off gas supply line 2120. At the point where the reliquefaction line 2130 is branched from the boil-off gas supply line 2120, a flow rate adjusting device 2301 to be described later may be provided. A detailed description thereof will be provided later.
  • the pressurizing unit 2131 is provided to further pressurize the boil-off gas passed through the compression unit 2121.
  • the pressurizing unit 2131 may include a compressor 2131a for additionally compressing the evaporated gas passing through the compression unit 2121 and a cooler 2131b for cooling the heated evaporated gas while being compressed.
  • the pressurizing unit 2131 may be provided to pressurize the boil-off gas supplied to the heat exchanger 2132 and the expansion valve 2133 which will be described later in a pressure range of 50 bar to 150 bar.
  • the evaporated gas is pressurized in the range of 50 bar to 150 bar and then cooled and depressurized, the reliquefaction of the boiled gas can be performed very smoothly, so that the pressurizing unit 2131 is different from the pressure condition of the boiled gas supplied to the engine.
  • the boil-off gas may be further pressurized according to the pressure conditions to improve the reliquefaction efficiency or the amount of reliquefaction.
  • the pressurizing unit 2131 is illustrated as a case in which one compressor 2131a and a cooler 2131b are respectively provided, but is not limited thereto. If possible, it includes the case of having various numbers of compressors and coolers.
  • the heat exchanger 2132 is provided to heat exchange the boil-off gas pressurized through the pressurizing unit 2131 and the boil-off gas in front of the compression unit 2121 passing through the boil-off gas supply line 2120. Since the boil-off gas passing through the pressurizing unit 2131 is pressurized by the compressor 2131a and the temperature is increased, the boil-off gas exchanges with the low-temperature boil-off gas before passing through the compression unit 2121 of the boil-off gas supply line 2120. The pressurized boil-off gas passing through the reliquefaction line 2130 may be cooled.
  • the boil-off gas pressurized through the pressurizing unit 2131 can be cooled by heat-exchanging with the boil-off gas passing through the boil-off gas supply line 2120 as described above, unnecessary waste of power is prevented and equipment is operated. Can improve efficiency.
  • the expansion valve 2133 may be provided at the rear end of the heat exchanger 2132.
  • the expansion valve 2133 may pass through the pressurizing unit 2131 and the heat exchanger 2132 to further cool and expand the boiled and pressurized evaporated gas by reducing the evaporated gas to reliquefy the boiled gas.
  • the expansion valve 2133 may be formed of, for example, a Joule-Thomson Valve.
  • the gas-liquid separator 2134 receives the reliquefied evaporated gas while passing through the expansion valve 2133 to separate the liquid component and the gas component of the reliquefied evaporated gas.
  • the pressurized boil-off gas passes through the expansion valve 2133, most of the boil-off gas is reliquefied, but a gaseous component of the re-liquefied boil-off gas may be generated by generating a flash gas.
  • the liquid component of the reliquefied evaporated gas separated by the gas-liquid separator 2134 is supplied back to the storage tank 2110 by a recovery line 2135 which will be described later, and the gas component of the separated reliquefied boiled gas is It may be provided to re-supply to the storage tank 2110 or the boil-off gas supply line 2120 by the recirculation line 2136 to be described later.
  • the recovery line 2135 may be provided to connect the gas-liquid separator 2134 and the storage tank 2110 to resupply the liquid component of the boil-off gas separated by the gas-liquid separator 2134 to the storage tank 2110.
  • the recovery line 2135 may have an inlet side end connected to the lower side of the gas-liquid separator 2134, and an outlet side end thereof may be connected to the storage tank 2110.
  • the recovery line 2135 may be provided with an on-off valve (not shown) for adjusting the supply amount of the reliquefied boil-off gas recovered to the storage tank 2110.
  • Recirculation line (2136) is the gas-liquid separator (2134) and the storage tank (2134) to supply the gaseous components of the reliquefied boiled gas separated by the gas-liquid separator (2134) to the storage tank (2110) or the boil-off gas supply line (2120). 2110 or the gas-liquid separator 2134 and the boil-off gas supply line 2120 may be provided.
  • the recirculation line 2136 shows that the vaporized gas of the gas component inside the gas-liquid separator 2134 is supplied to the front end of the compression unit 2121 on the boil-off gas supply line 2120.
  • the gas-liquid separator It may include re-supply to the storage tank 2110 from the 2134, or to the evaporation gas supply line 2120 and the storage tank 2110 together.
  • a nitrogen separator 2150 may be provided at the front end of the pressurizing unit 2131 on the reliquefaction line 2130 to separate nitrogen components of the boil-off gas supplied to the reliquefaction line 2130. Detailed description thereof will be described later.
  • the liquefied gas supply line 2140 is provided to supply liquefied natural gas contained or stored in the storage tank 2110 to the engine as fuel gas.
  • One end of the liquefied gas supply line 2140 may be connected to the inside of the storage tank 2110, and the other end may be connected to the engine by joining the boil-off gas supply line 2120 to be described later.
  • the inlet side end of the liquefied gas supply line 2140 may be disposed below the inside of the storage tank 2110, and a delivery pump 2141 may be provided to supply liquefied natural gas to the engine side.
  • the liquefied gas supply line 2140 when the engine is composed of a first engine supplied with a relatively high pressure fuel gas to generate an output and a second engine supplied with a relatively low pressure fuel gas to generate an output.
  • the liquefied natural gas may be provided including a first liquefied gas supply line 2140a and a second liquefied gas supply line 2140b to process liquefied natural gas in accordance with fuel gas requirements of each engine.
  • the first liquefied gas supply line 2140a may supply the liquefied natural gas sent by the delivery pump 2141 to a second engine that receives a relatively low pressure fuel gas and generates an output. Since the liquefied natural gas is compressed to low pressure (about 5 bar to 8 bar) while the delivery pump 2141 sends the liquefied natural gas, when the second engine is made of a DFDE engine, without a separate pressurized pump, the vaporizer 2144 ) Can forcibly vaporize the liquefied natural gas sent by the delivery pump 2141 to supply fuel gas in accordance with the fuel conditions required by the second engine.
  • a gas-liquid separator 2145 may be provided at the rear end of the vaporizer 2144.
  • fuel gas must be supplied in a gaseous state to generate a normal output and to prevent engine failure. Therefore, the liquefied natural gas passing through the vaporizer 2144 is supplied to the gas-liquid separator 2145, and only the gaseous fuel gas is supplied to the second engine from the gas-liquid separator 2145, thereby providing the fuel gas supply system 2100 of the ship. Reliability can be improved.
  • the second liquefied gas supply line 2140b may supply the liquefied natural gas sent by the delivery pump 2141 to a first engine that receives a relatively high pressure fuel gas and generates an output.
  • a pressure pump 2142 for compressing liquefied natural gas may be provided in the second liquefied gas supply line 2140b.
  • the pressure pump 2142 may compress the liquefied natural gas according to the pressure condition of the fuel gas required by the first engine. For example, when the first engine is an X-DF engine, the pressure pump 2142 is liquefied natural.
  • the gas can be supplied compressed to a pressure of about 16 bar to 18 bar.
  • the liquefied natural gas compressed by the pressure pump 2142 may be forced through the vaporizer 2143 and vaporized, and then joined with the boil-off gas supply line 2120 to be supplied as fuel gas to the first engine.
  • a bypass line 2140c may be provided in the second liquefied gas supply line 2140b.
  • the inlet end of the bypass line 2140c is connected to the front end of the pressurized pump 2142 on the second liquefied gas supply line 2140b, and the outlet end thereof is the pressurized pump 2142 on the second liquefied gas supply line 2140b. It is connected to the rear end, and additionally provided with a separate pressure pump 2142, the pressure pump 2142 may be provided to be connected in parallel.
  • the nitrogen separator 2150 is provided to separate nitrogen components contained in the boil-off gas supplied to the reliquefaction line 2130.
  • the nitrogen separator 2150 may be provided at the front end of the pressurizing unit 2131 on the reliquefaction line 2130.
  • the nitrogen separator 2150 classifies the boil-off gas flowing into or supplied to the reliquefaction line 2130 into a first gas stream containing a nitrogen component of a first concentration and a second gas stream containing a nitrogen component of a second concentration.
  • the first gas flow is re-joined to the boil-off gas supply line 2120 or supplied to the engine so that the fuel gas is used, and the second gas flow is supplied to the pressurizing unit 2131 as it is.
  • the nitrogen component of the first concentration and the nitrogen component of the second concentration described in this embodiment mean a high concentration nitrogen component and a low concentration nitrogen component, respectively, and the nitrogen concentration of the first concentration is compared with the nitrogen component of the second concentration. Therefore, the nitrogen component has a relatively high concentration, and the nitrogen component of the second concentration has a relatively low concentration of the nitrogen component compared to the nitrogen component of the first concentration.
  • the first concentration and the second concentration are not limited to a specific value and should be understood as a relative meaning according to the difference in concentration between the first concentration and the second concentration.
  • Natural gas is a mixture containing ethane (ethane), propane (butane), butane (butane), nitrogen (Nitrogen) in addition to the main component methane (Methane).
  • the boiling point of nitrogen is about -195.8 degrees Celsius, which is much lower than other components such as methane (boiling point -161.5 degrees Celsius) and ethane (boiling point -89 degrees Celsius). Accordingly, the natural evaporation gas generated by evaporating naturally in the storage tank 2110 contains a large amount of nitrogen by evaporating a relatively low nitrogen content.
  • the nitrogen component In the case of reliquefaction of such boil-off gas, the nitrogen component has a low boiling point, which makes it very difficult to re-liquefy. As the concentration of the nitrogen-containing component of the boil-off gas increases, the re-liquefaction efficiency decreases.
  • the nitrogen separator 2150 separates nitrogen components contained in the boil-off gas introduced or supplied to the reliquefaction line 2130 through the boil-off gas supply line 2120 and contains a relatively high concentration of nitrogen at a first concentration.
  • the first gas flow is to re-join to the boil-off gas supply line 2120 through the boil-off gas resupply line (2151) or to supply the fuel gas of the engine to consume nitrogen components, but at a relatively low second concentration of nitrogen
  • the component is subjected to the reliquefaction process through the reliquefaction line 2130 as it is, the reliquefaction performance and efficiency of the reliquefaction line 2130 can be improved.
  • the nitrogen separator 2150 may include at least one of a membrane filter, a cyclone, a gas centrifuge, or a vortex tube.
  • the membrane filter is provided with a substance having a high affinity for nitrogen, and the pressurized evaporation gas passes through the membrane filter by the pressure, so that the first gas flow containing a high concentration of nitrogen is filtered out by the membrane filter to evaporate the gas.
  • Pressurization unit of the reliquefaction line 2130 is supplied to the boil-off gas supply line 2120 or the first engine through the resupply line (2151), the second gas flow containing a high concentration of components other than nitrogen, such as methane as it passes 2131.
  • Cyclone forms the evaporating gas supplied to the nitrogen separator 2150 as a swirling flow, exerts centrifugal force on the evaporating gas, and separates nitrogen components from components other than nitrogen such as methane, ethane, and the like. It can be separated into a first gas flow containing a nitrogen component of and a second gas flow containing a nitrogen component of a relatively low concentration of the second concentration.
  • a gas centrifuge is provided to separate a part of pressurized boil-off gas in a mixed gas state by centrifugation.
  • the gas centrifuge may separate the boil-off gas supplied to the nitrogen separator 2150 into components other than nitrogen and non-nitrogen using centrifugal force to separate the boil-off gas into the first gas flow and the second gas flow.
  • Vortex tube (Vortex tube) is provided with a narrow tube, a device for separating the hot and cold air by supplying a high-pressure gas in a tangential form inside the narrow tube.
  • the nitrogen separator 2150 is made of a vortex tube
  • the evaporation gas is supplied into the vortex tube to separate low temperature nitrogen components having a relatively low boiling point and components other than nitrogen such as methane and ethane having a relatively high boiling point
  • the boil-off gas can be separated into a first gas stream and a second gas stream.
  • the nitrogen separator 2150 is provided to include at least one of a membrane filter, a cyclone, a gas centrifuge, or a vortex tube, thereby supplying the evaporated gas supplied to the reliquefaction line 2130 according to the concentration of nitrogen.
  • the second gas stream is separated into a stream and a second gas stream, and a second gas stream containing a low concentration of nitrogen is passed through the reliquefaction line 2130 to perform a reliquefaction process, thereby reprocessing the reliquefaction line 2130.
  • the liquefaction efficiency can be improved.
  • the first gas stream containing a high concentration of nitrogen is re-combined to the boil-off gas supply line 2120 through the boil-off gas resupply line 2151, or directly supplied to the engine and consumed as fuel gas.
  • the total nitrogen content in the gas system 2100 may be gradually lowered to promote efficiency of plant operation.
  • the outlet side end of the boil-off gas resupply line 2151 is shown to rejoin the boil-off gas supply line 2120, but the position of the outlet side end, such as when directly supplied to the engine, may be variously changed. have.
  • the calorific value control unit is provided to measure and regulate the calorific value of the fuel gas supplied to the engine, particularly the first engine.
  • Heating value refers to the amount of heat released when a unit mass of fuel gas is completely burned.
  • Methane, butane, and propane in natural gas have a relatively high calorific value, thereby increasing the calorific value of fuel gas (methane calorific value: about 12,000 kcal / kg, butane calorific value: about 11,863 kcal / kg, propane calorific value: about 2,000 kcal / kg), the calorific value of nitrogen is very low (caloric value of nitrogen: about 60 kcal / kg), and the higher the absolute content or concentration of nitrogen, the lower the total calorific value of fuel gas.
  • the total calorific value of the fuel gas supplied to the engine is too low to meet the minimum condition calorific value required by the engine, it affects the output of the engine and causes unnecessary load on the engine.
  • the nitrogen separator 2150 contains a second concentration of nitrogen at a low concentration among the evaporated gases introduced or supplied to the reliquefaction line 2130. 2 gas flow is passed to the reliquefaction line 2130, the first gas flow containing a high concentration of nitrogen components of the first concentration is filtered and supplied to the boil-off gas supply line 2120 or the engine, the first gas flow There is a fear that the heat generation amount of the fuel gas supplied to the first engine is lower than the condition heat generation amount required by the first engine due to the high concentration of nitrogen contained in the fuel cell.
  • the calorific value control unit of the fuel gas supply system 2100 of the ship according to a second embodiment of the present invention and the calorific value measuring unit 2160 for measuring or calculating the calorific value of the fuel gas supplied to the first engine and It may be provided including a flow rate adjusting device (2161) for adjusting the supply amount of the boil-off gas supplied to the liquefaction line (2130).
  • the calorific value measuring unit 2160 may measure the calorific value of the fuel gas including the boil-off gas and the first gas flow supplied to the first engine through the boil-off gas supply line 2120 and the boil-off gas resupply line 2151 in real time. .
  • the calorific value measuring unit 2160 transmits the calorific value of the fuel gas measured by the display unit (not shown) including a display to inform the occupant of the ship or transmits the calorific value of the measured fuel gas to the controller (not shown).
  • the controller may control the opening and closing degree of the flow regulating device 2161 to be described later by comparing and analyzing the input calorific value of the first engine and the calorific value of the fuel gas transmitted from the calorific value measurer 2160.
  • the flow regulating device 2161 may be provided at a point where the reliquefaction line 2130 branches from the boil-off gas supply line 2120.
  • the flow rate controller 2161 may be configured as a three-way valve to adjust the amount of boil-off gas supplied to the reliquefaction line 2130, but is not limited thereto.
  • the flow rate adjusting device 2161 may automatically adjust the opening and closing degree by a manual or a control unit by an operator based on the calorific value information of the fuel gas and the condition calorific value information of the first engine measured by the calorific value measurer 2160. .
  • the flow rate controller 2161 may reduce the amount of the boil-off gas supplied to the reliquefaction line 2130,
  • the supply amount of the boil-off gas directly supplied to the first engine along the boil-off gas supply line 2120 may be opened and closed to increase the supply amount.
  • the flow rate adjusting device 2161 supplies the amount of boil-off gas supplied to the reliquefaction line 2130. And it can be opened and closed to reduce the supply amount of the boil-off gas supplied to the first engine along the boil-off gas supply line 2120. As a result, the flow rate of the first gas flow flowing into the reliquefaction line 2130 and supplied to the boil-off gas resupply line 2215 through the nitrogen separator 2150 is increased to adjust the calorific value of the fuel gas to an appropriate level.
  • the amount of reliquefaction of the boil-off gas may be increased by increasing the flow rate of the second gas stream containing the low concentration nitrogen component supplied to the pressurizing unit 2131 of the reliquefaction line 2130.
  • the calorific value control unit of the fuel gas supply system 2200 of the ship according to the third embodiment of the present invention, the calorific value measuring unit 2260 for measuring or calculating the calorific value of the fuel gas supplied to the first engine, and the reliquefaction line 2130 And a flow rate control valve 2262 provided in the calorific value control line 2221 and the calorific value control line 2221 for circulating the boil-off gas in front of the nitrogen separator 2150 on the rear end of the nitrogen separator 2150.
  • the calorific value measurer 2260 may measure, in real time, the calorific value of the fuel gas including the boil-off gas and the first gas flow supplied to the first engine through the boil-off gas supply line 2120 and the boil-off gas resupply line 2151. .
  • the calorific value measuring unit 2260 transmits the calorific value of the fuel gas measured by the display unit (not shown) including a display to inform the occupant of the ship or transmits the calorific value information of the measured fuel gas to the controller (not shown).
  • the control unit compares and analyzes the calorific value information of the fuel gas transmitted from the calorific value measuring unit 2260 and the condition heat input value of the first engine, and the degree of opening / closing of the flow control valve 2226 provided in the calorific value control line 2226 to be described later. Can be controlled.
  • the calorific value control line 2221 is provided to directly supply the boil-off gas in front of the nitrogen separator 2150 of the boil-off gas introduced into or supplied to the reliquefaction line 2130 to the rear of the nitrogen separator 2150. To this end, the calorific value control line 2221 is provided such that the inlet side end is connected to the front end of the nitrogen separator 2150 on the reliquefaction line 2130 and the outlet side end is connected to the rear end of the nitrogen separator 2150 on the reliquefaction line 2130. do.
  • the calorific value control line 2221 is provided to supply a portion of the boil-off gas introduced or supplied to the reliquefaction line 2130 directly to the pressurizing unit 2131 of the reliquefaction line 2130 without passing through the nitrogen separator 2150, and thus, nitrogen.
  • the calorific value of the fuel gas supplied to the first engine may be increased. Detailed description thereof will be described later.
  • the flow rate control valve 2226 is provided in the calorific value control line 2221 to adjust the amount of supply of the boil-off gas transferred along the calorific value control line 2221.
  • the flow rate control valve 2226 is automatically opened or closed by a worker or by a control unit (not shown) based on the calorific value information of the fuel gas measured by the calorific value measurer 2260 and the condition calorific value information of the first engine. Can be adjusted.
  • the flow rate control valve 2226 may increase the supply amount of the boil-off gas transferred along the calorific value control line 2221. Can be opened.
  • the flow rate of the boil-off gas supplied to the nitrogen separator 2150 on the reliquefaction line 2130 is relatively reduced, and thus the nitrogen separator ( The supply amount of the first gas flow containing a high concentration of nitrogen components separated from 2150 and transferred along the boil-off gas resupply line 2151 is also reduced.
  • the calorific value of the fuel gas supplied to the first engine can be increased.
  • the flow rate control valve 2262 is configured to control the amount of boil-off gas transferred along the calorific value control line 2221. It can be closed to reduce the amount of feed.
  • the first gas flow containing a high concentration of nitrogen is made by passing the boil-off gas introduced into the reliquefaction line 2130 through the nitrogen separator 2150. By increasing the flow rate of the nitrogen component can be effectively consumed and processed.
  • the calorific value control unit of the fuel gas supply system 2300 of the ship according to the fourth embodiment of the present invention is provided to the calorific value measurer 2360 and the nitrogen separator 2150 that measure or calculate the calorific value of the fuel gas supplied to the first engine. It may be provided to include a flow rate control line (2362) provided in the calorific value control line (2361) and the calorific value control line (2361) for circulating a portion of the first gas flow separated by the nitrogen separator (2150).
  • the calorific value measuring unit 2360 may measure the calorific value of the fuel gas including the boil-off gas and the first gas flow supplied to the first engine through the boil-off gas supply line 2120 and the boil-off gas resupply line 2151 in real time. .
  • the calorific value measuring unit 2260 transmits the calorific value of the fuel gas measured by the display unit (not shown) including a display to inform the occupant of the ship or transmits the calorific value information of the measured fuel gas to the controller (not shown).
  • the controller compares the calorific value information of the fuel gas transmitted from the calorific value measurer 2360 with the pre-input condition heat output value of the first engine to open and close the flow control valve 2362 provided in the calorific value control line 2361 to be described later. Can be controlled.
  • the calorific value control line 2361 is provided to circulate a portion of the first gas stream containing the high concentration of nitrogen components separated by the nitrogen separator 2150 to the rear end of the nitrogen separator 2150 on the reliquefaction line 2130. To this end, the calorific value control line 2361 is connected to the boil-off gas resupply line 2151 through which the first gas flow is transferred, and the outlet side is connected to the rear end of the nitrogen separator 2150 on the reliquefaction line 2130. It is arranged to be connected.
  • the calorific value control line 2361 is provided to circulate a portion of the first gas flow containing a high concentration of nitrogen, which is transferred along the boil-off gas resupply line 2151, to the reliquefaction line 2130, and is supplied to the first engine.
  • the amount of heat generated by the fuel gas supplied to the first engine may be increased by reducing the flow rate of the first gas flow. Detailed description thereof will be described later.
  • the flow rate control valve 2362 is provided in the calorific value control line 2361 to adjust the supply amount of the first gas flow that is transferred along the calorific value control line 2361.
  • the flow rate control valve 2322 is automatically opened or closed by a worker or by a control unit (not shown) based on the calorific value information of the fuel gas measured by the calorific value measurer 2360 and the condition calorific value information of the first engine. Can be adjusted.
  • the flow rate control valve 2362 may supply the first gas flow supplied along the calorific value control line 2361. Can be opened to increase. Since the supply amount of the first gas flow conveyed along the calorific value control line 2361 is increased, the supply amount of the first gas flow conveyed along the boil-off gas resupply line 2151 is relatively reduced, and thus, the first engine. It is possible to increase the calorific value of the fuel gas supplied to the.
  • the flow rate control valve 2362 may transfer the first gas transferred along the calorific value control line 2361. It can be closed to reduce the supply of flow.
  • the first gas flow containing the high concentration of nitrogen components separated by the nitrogen separator 2150 is transferred to the boil-off gas resupply line 2151.
  • the nitrogen component can be effectively consumed and processed by being consumed as the fuel gas of the first engine.
  • FIG. 5 is a conceptual diagram illustrating a fuel gas supply system 3100 of a ship according to a fifth embodiment of the present invention.
  • a fuel gas supply system 3100 of a ship includes a storage tank 3110 and a liquefied gas supply line 3140 for supplying boil-off gas to the engine.
  • the storage tank 3110 is provided to receive or store the liquefied natural gas and the boil-off gas.
  • the storage tank 3110 may be provided with a membrane-type cargo hold insulated to minimize vaporization of the liquefied natural gas due to external heat intrusion.
  • the storage tank 3110 receives liquefied natural gas from a place where natural gas is produced, and stores or stores liquefied natural gas and evaporated gas stably until the cargo is unloaded to a destination. It may be provided to be used as fuel gas, such as an engine for power generation.
  • the storage tank 3110 is generally installed with heat insulation, but since it is practically difficult to completely block external heat intrusion, the storage tank 3110 has evaporated gas generated by natural vaporization of liquefied natural gas. do. Since the boil-off gas increases the internal pressure of the storage tank 3110, potentially deforming or exploding the storage tank 3110, there is a need to remove or process the boil-off gas from the storage tank 3110. Accordingly, the boil-off gas generated in the storage tank 3110 is used as the fuel gas of the engine by the boil-off gas supply line 3120 or re-liquefied by the re-liquefaction line 3130 as in the fifth embodiment of the present invention. It may be supplied back to the storage tank 3110. Alternatively, although not shown in the drawing, the gas may be supplied to a vent mast (not shown) or GCU (Gas Combustion Unit, not shown) provided on the upper portion of the storage tank 3110 to further treat or consume the evaporated gas.
  • a vent mast not shown
  • GCU Gas Combustion Unit
  • the engine may be supplied with fuel gas such as liquefied natural gas and evaporated gas contained in the storage tank 3110 to generate propulsion of the ship or generate power for generating power, such as internal equipment of the ship.
  • the engine may be configured of a first engine receiving a relatively high pressure fuel gas to generate an output, and a second engine receiving a relatively low pressure fuel gas to generate an output.
  • the first engine is composed of an X-DF engine (about 16 bar to 18 bar) capable of generating output with relatively high pressure fuel gas
  • the second engine is capable of generating output with relatively low pressure fuel gas.
  • DFDE engine about 5 bar to 8 bar
  • the boil-off gas supply line 3120 is provided to supply boil-off gas generated in the storage tank 3110 to the engine as fuel gas.
  • One end of the boil-off gas supply line 3120 is connected to the inside of the storage tank 3110 and the other end is connected to the engine by joining the liquefied gas supply line 3140 to be described later.
  • the boil-off gas supply line 3120 may have an inlet side end disposed above the inside of the storage tank 3110 so that the boil-off gas may be supplied in the storage tank 3110.
  • a compression unit 3121 having a plurality of stages of compressors may be provided to supply according to conditions.
  • the compression unit 3121 may include a compressor 3121a for compressing the boil-off gas and a cooler 3121b for cooling the heated boil-off gas while being compressed.
  • the compression unit 3121 may be provided at the front end of the branch point of the reliquefaction line 3130, which will be described later, on the boil-off gas supply line 3120 to pressurize the boil-off gas.
  • the boil-off gas supply line is further branched from the intermediate portion of the compression unit 3121 to supply fuel gas to the second engine Can be prepared.
  • the compression unit 3121 is illustrated as being composed of three stages of the compressor 3121a and the cooler 3121b.
  • the compression unit 3121 may include various numbers of compression units 3121 according to a required pressure condition and temperature of the engine. It can consist of a compressor and a cooler.
  • heat exchanger 3132 of the reliquefaction line 3130 may be installed at the front end of the compression unit 3121 on the boil-off gas supply line 3120, which will be described later.
  • the reliquefaction line 3130 includes a pressurizing unit 3131 for additionally pressurizing the boiled gas passed through the compression unit 3131, a heat exchanger 3132 for heat-exchanging and cooling the boiled gas passed through the pressurizing unit 3131, and a heat exchanger.
  • Expansion valve (3133) for reducing the evaporation gas passed through the gas
  • the gas-liquid separator (3134) for receiving the evaporated gas through the expansion valve (3133), the vaporized gas of the liquid component separated from the gas-liquid separator (3134)
  • a recovery line 3135 for resupplying the storage tank 3110 and a recirculation line 3136 for supplying the evaporated gas of the gas component separated from the gas-liquid separator 3134 to the storage tank 3110 or the evaporation gas supply line 3120. It may be provided.
  • the reliquefaction line 3130 may be branched from the rear end of the compression unit 3121 on the boil-off gas supply line 3120.
  • a three-way valve (not shown) may be provided at a point where the reliquefaction line 3130 and the evaporation gas supply line 3120 diverge, and the three-way valve may be configured to provide the first engine or the reliquefaction line 3130 with the evaporation gas. Supply can be adjusted.
  • the three-way valve may be manually opened or closed by the operator to adjust the opening and closing, or the operation may be automatically implemented by a controller (not shown).
  • the pressurizing unit 3131 is provided to further pressurize the boil-off gas passing through the compression unit 3121.
  • the pressurizing unit 3131 may include a compressor 3131a for additionally compressing the evaporated gas passing through the compression unit 3121 and a cooler 3131b for cooling the heated evaporated gas while being compressed.
  • the pressurizing unit 3131 may be provided to pressurize the boil-off gas supplied to the heat exchanger 3132 and the expansion valve 3133 which will be described later in a pressure range of 50 bar to 150 bar.
  • the boil-off gas When the boil-off gas is pressurized in the range of 50 bar to 150 bar and then cooled and depressurized, the re-liquefaction of the boil-off gas can be performed very smoothly.
  • the boil-off gas may be further pressurized according to the pressure conditions to improve the reliquefaction efficiency or the amount of reliquefaction.
  • the pressurizing unit 3131 is shown as one compressor 3131a and a cooler 3131b, respectively, but is not limited thereto, and may pressurize the boil-off gas to a pressure range of 50 bar to 150 bar. If possible, it includes the case of having various numbers of compressors and coolers.
  • the heat exchange device 3132 is provided to heat exchange the boil-off gas pressurized through the pressurizing unit 3131 and the boil-off gas in front of the compression unit 3121 passing through the boil-off gas supply line 3120. Since the boil-off gas passing through the pressurizing unit 3131 is pressurized by the compressor 3131a and the temperature is raised, it exchanges heat with the low-temperature boil-off gas before passing through the compression unit 3121 of the boil-off gas supply line 3120. The pressurized boil-off gas passing through the reliquefaction line 3130 may be cooled.
  • the boil-off gas pressurized through the pressurizing unit 3131 can be cooled by heat-exchanging with the boil-off gas passing through the boil-off gas supply line 3120 as described above, unnecessary waste of power is prevented and equipment is operated. Can improve efficiency.
  • the expansion valve 3133 may be provided at the rear end of the heat exchange device 3132.
  • the expansion valve 3133 passes through the pressure unit 3131 and the heat exchanger 3132 to further reduce the pressure of the evaporated gas and to further cool and expand the boiled gas to reliquefy the boiled gas.
  • the expansion valve 3133 may be formed of, for example, a Joule-Thomson Valve.
  • the gas-liquid separator 3134 receives the reliquefied evaporated gas while passing through the expansion valve 3133 to separate the liquid component and the gas component of the reliquefied evaporated gas.
  • the pressurized boil-off gas passes through the expansion valve 3133, most of the boil-off gas is reliquefied, but a gaseous component of the re-liquefied boil-off gas may be generated by generating flash gas.
  • the liquid component of the reliquefied boil-off gas separated by the gas-liquid separator 3134 is supplied to the storage tank 3110 by a recovery line 3135 which will be described later, and the gas component of the separated reliquefied boil-off gas is It may be provided to re-supply to the storage tank 3110 or the boil-off gas supply line 3120 by the recirculation line 3136 to be described later.
  • the recovery line 3135 may be provided to connect the gas-liquid separator 3134 and the storage tank 3110 to resupply the liquid component of the boil-off gas separated by the gas-liquid separator 3134 to the storage tank 3110.
  • the recovery line 3135 may have an inlet side end connected to the lower side of the gas-liquid separator 3134, and an outlet side end thereof may be connected to the storage tank 3110.
  • the recovery line 3135 may be provided with an on-off valve (not shown) for adjusting the supply amount of the reliquefied boil-off gas recovered to the storage tank 3110.
  • Recirculation line (3136) is the gas-liquid separator (3134) and the storage tank (3134) to supply the gaseous components of the reliquefied evaporated gas separated by the gas-liquid separator (3134) to the storage tank (3110) or the boil-off gas supply line (3120). 3110 or the gas-liquid separator 3134 and the boil-off gas supply line 3120 may be provided.
  • the recirculation line 3136 shows that the vaporized gas of the gas component inside the gas-liquid separator 3134 is resupply to the front end of the compression unit 3121 on the boil-off gas supply line 3120.
  • the gas-liquid separator Re-supply to the storage tank 3110 from 3134, or the re-supply to the boil-off gas supply line 3120 and the storage tank 3110 together.
  • the liquefied gas supply line 3140 is provided to supply liquefied natural gas contained or stored in the storage tank 3110 to the engine as fuel gas.
  • One end of the liquefied gas supply line 3140 is provided to be connected to the inside of the storage tank 3110, and the other end may be connected to the engine by joining the boil-off gas supply line 3120 to be described later.
  • the inlet side end portion of the liquefied gas supply line 3140 may be disposed below the storage tank 3110, and a delivery pump 3141 may be provided to supply liquefied natural gas to the engine side.
  • the liquefied gas supply line 3140 when the engine includes a first engine receiving relatively high pressure fuel gas to generate an output and a second engine receiving relatively low pressure fuel gas to generate an output.
  • the first liquefied gas supply line 3140a may supply the liquefied natural gas sent by the delivery pump 3141 to a second engine that receives a relatively low pressure fuel gas and generates an output. Since the liquefied natural gas is compressed to low pressure (about 5 bar to 8 bar) in the process of sending the liquefied natural gas to the delivery pump 3141, when the second engine is made of the DFDE engine, without a separate pressurized pump, the vaporizer 3144 ) Can forcibly vaporize the liquefied natural gas sent by the delivery pump 3141 to supply the fuel gas in accordance with the fuel conditions required by the second engine.
  • a gas-liquid separator 3145 may be provided after the vaporizer 3144.
  • the second engine is composed of a DFDE engine
  • fuel gas must be supplied in a gaseous state to generate a normal output and to prevent engine failure. Therefore, the liquefied natural gas passing through the vaporizer 3144 is supplied to the gas-liquid separator 3145, and only the gaseous fuel gas is supplied to the second engine by the gas-liquid separator 3145, thereby providing the fuel gas supply system 3100 of the ship. Reliability can be improved.
  • the second liquefied gas supply line 3140b may supply the liquefied natural gas sent by the delivery pump 3141 to a first engine that receives a relatively high pressure fuel gas and generates an output.
  • a pressurized pump 3314 for compressing liquefied natural gas may be provided in the second liquefied gas supply line 3140b.
  • the pressure pump 3314 may compress the liquefied natural gas according to the pressure condition of the fuel gas required by the first engine. For example, when the first engine is an X-DF engine, the pressure pump 3314 may be liquefied natural gas.
  • the gas can be supplied compressed to a pressure of about 16 bar to 18 bar.
  • the liquefied natural gas compressed by the pressure pump 3314 may be forced through the vaporizer 3143 and vaporized, and then joined with the boil-off gas supply line 3120 to be supplied as fuel gas to the first engine.
  • a bypass line 3140c may be provided in the second liquefied gas supply line 3140b.
  • the inlet side end of the bypass line 3140c is connected to the front end of the pressurized pump 3322 on the second liquefied gas supply line 3140b, and the outlet side end thereof is the pressurized pump 3314 on the second liquefied gas supply line 3140b.
  • the pressure pump (3142) may be provided to be connected in parallel.
  • pressurizing pumps 3314 are also provided in the above-described situation. ) And other components can be prevented from occurring or safety accidents, and the engine can be operated for a long time.
  • the oil removal unit 3150 is provided to remove oil contained in the boil-off gas introduced into or supplied to the reliquefaction line 3130.
  • Compressors 3121a and 131a provided in the compression unit 3121 of the boil-off gas supply line 3120 and the pressurizing unit 3131 of the reliquefaction line 3130 use oil such as lubrication oil during operation. These oils help the compressor to operate smoothly and effectively pressurize, but they mix with the boil-off gas during pressurization of the boil-off gas and accumulate in pipes such as reliquefaction lines or in facilities such as expansion valves to prevent the smooth transfer of boil-off gas. In addition, there is a risk of causing a malfunction of the equipment, in particular, there is a problem in reducing the composition quality of the re-liquefied boil-off gas.
  • the oil removal unit 3150 is provided at the rear end of the pressurizing unit 3131 on the reliquefaction line 3130, and passes through the compressor 3121 and the compressors 3121a and 131a of the pressurizing unit 3131. Oil, such as lubricating oil, can be removed. As a result, smooth operation of the fuel gas supply system 3100 of the ship and stability of facility operation can be achieved, and the composition quality of the boil-off gas and liquefied natural gas can be improved.
  • the oil removing unit 3150 may include a filter or a filter membrane, but is not limited thereto.
  • the oil removing unit 3150 may be formed of various types or types of devices.
  • FIG. 6 is a conceptual diagram illustrating a fuel gas supply system 4100 of a ship according to a sixth embodiment of the present invention.
  • a fuel gas supply system 4100 of a ship may include a storage tank 4110 and a liquefied gas supply line 4140 for supplying boil-off gas from the storage tank 4110 to an engine. ), A reliquefaction line 4130 for reliquefying a portion of the boil-off gas passing through the boil-off gas supply line 4120 and a liquefied gas supply line 4140 for supplying the liquefied gas of the storage tank 4110 to the engine. have.
  • the storage tank 4110 is provided to receive or store the liquefied natural gas and the boil-off gas.
  • the storage tank 4110 may be provided as a cargo hold of a membrane type insulated so as to minimize vaporization of the liquefied natural gas due to external heat intrusion.
  • the storage tank 4110 receives liquefied natural gas from a place where natural gas is produced, and stores or stores liquefied natural gas and evaporated gas stably until unloading to a destination, but the engine or vessel for propulsion of the vessel as described below. It may be provided to be used as fuel gas, such as an engine for power generation.
  • the storage tank 4110 is generally installed with heat insulation, but since it is practically difficult to completely block external heat intrusion, the storage tank 4110 has evaporated gas generated by natural vaporization of liquefied natural gas. do. Since the boil-off gas increases the internal pressure of the storage tank 4110 to potentially deform or explode the storage tank 4110, there is a need to remove or process the boil-off gas from the storage tank 4110. Accordingly, the boil-off gas generated in the storage tank 4110 is used as fuel gas of the engine by the boil-off gas supply line 4120 or re-liquefied by the re-liquefaction line 4130 as in the embodiment of the present invention. And may be resupplied to 4110. Unlike this, although not shown in the drawing, it may be supplied to a vent mast (not shown) or GCU (Gas Combustion Unit (not shown)) provided above the storage tank 4110 to further treat or consume the evaporated gas.
  • a vent mast not shown
  • GCU Gas Combustion Unit
  • the engine may be supplied with fuel gas such as liquefied natural gas and evaporated gas contained in the storage tank 4110 to generate propulsion of the ship or generate power for generating power, such as internal equipment of the ship.
  • the engine may be configured of a first engine receiving a relatively high pressure fuel gas to generate an output, and a second engine receiving a relatively low pressure fuel gas to generate an output.
  • the first engine is composed of an X-DF engine (about 16 bar to 18 bar) capable of generating output with relatively high pressure fuel gas
  • the second engine is capable of generating output with relatively low pressure fuel gas.
  • DFDE engine about 5 bar to 8 bar
  • the present invention is not limited thereto, and it should be understood that the same is true when various engines and engines of various types are used.
  • the boil-off gas supply line 4120 is provided to supply boil-off gas generated in the storage tank 4110 to the first engine as fuel gas.
  • One end of the boil-off gas supply line 4120 is connected to the inside of the storage tank 4110, and the other end is connected to the first engine by joining the liquefied gas supply line 4140 to be described later.
  • the boil-off gas supply line 4120 may have an inlet end portion disposed above the inside of the storage tank 4110 so that the boil-off gas may be supplied in the storage tank 4110.
  • a compression unit 4121 having a plurality of stage compressors may be provided so as to be supplied according to a condition.
  • the compression unit 4121 may include a compressor 4121a for compressing the boil-off gas and a cooler 4121b for cooling the heated boil-off gas while being compressed.
  • the compression unit 4121 may be provided at the front end of the branch point of the reliquefaction line 4130, which will be described later, on the boil-off gas supply line 4120 to pressurize the boil-off gas.
  • the boil-off gas supply line is further branched from the intermediate portion of the compression unit 4121 to supply the fuel gas to the second engine Can be prepared.
  • the compression unit 4121 is illustrated as being composed of a three-stage compressor 4121a and a cooler 4121b.
  • the compression unit 4121 may include various numbers of compression units 4121 according to a required pressure condition and temperature of the engine. It can consist of a compressor and a cooler.
  • cooling unit 4132 of the reliquefaction line 4130 which will be described later, may be installed at the front end of the compression unit 4121 on the boil-off gas supply line 4120, which will be described later.
  • the reliquefaction line 4130 includes a pressurizing unit 4131 for additionally pressurizing the evaporated gas passed through the compression unit 4131, a cooling unit 4132 for cooling the boiled gas passed through the pressurizing unit 4131, and a cooling unit 4132.
  • First expansion valve (4133) for firstly reducing the evaporation gas passed through the), the first gas-liquid separator (4134), the first gas liquid passing through the first expansion valve (4133) to accommodate the evaporated gas in the gas-liquid mixed state
  • An evaporative gas circulation line 4135 for supplying the gas component separated from the separator 4134 to the second engine, a second expansion valve 4136 for secondary pressure reduction of the liquid component separated from the first gas liquid separator 4134,
  • the boil-off gas recovery line 4138 and the second gas-liquid separator 4137 supplied to the boil-off gas supply line 4120.
  • a stand for the separated liquid component storage tank 4110 refeed liquefied gas return line (4139) which may be provided, including.
  • the reliquefaction line 4130 may be branched from the rear end of the compression unit 4121 on the boil-off gas supply line 4120. At the point where the reliquefaction line 4130 is branched from the boil-off gas supply line 4120, a flow rate control valve 4141 to be described later may be provided. A detailed description thereof will be provided later.
  • the pressurizing unit 4131 is provided to further pressurize the boil-off gas supplied to the reliquefaction line 4130 through the compression unit 4121.
  • the pressurizing unit 4131 may include a compressor 4131a for additionally compressing the evaporated gas passing through the compression unit 4121, and a cooler 4131b for cooling the heated evaporated gas while being compressed.
  • the pressurizing unit 4131 may be provided to pressurize the boil-off gas supplied to the reliquefaction line 4130 in a pressure range of 50 bar to 150 bar.
  • the pressurizing unit 4131 can improve the reliquefaction efficiency or reliquefaction amount. It is possible to further pressurize the boil-off gas according to the pressure condition.
  • the pressurizing unit 4131 is shown as one compressor 4131a and a cooler 4131b, respectively, but is not limited thereto, and pressurized gas may be pressurized to a pressure range of 50 bar to 150 bar. If possible, it includes the case of having various numbers of compressors and coolers.
  • the cooling unit 4132 is provided to cool the additionally pressurized boil-off gas through the pressurizing unit 4131.
  • the cooling unit 4132 transfers the boil-off gas passing through the pressurizing unit 4131 along the boil-off gas in front of the compression unit 4121 transferred along the boil-off gas supply line 4120 and the boil-off gas circulation line 4135 described later.
  • the first gas-liquid separator 4134 may be configured as a heat exchanger that exchanges heat with the gas component separated.
  • the boil-off gas passing through the pressure unit 4131 is pressurized by the compression unit 4121 and the pressure unit 4131, so that the temperature and the pressure are increased, so that the boil-off gas passes through the compression unit 4121 of the boil-off gas supply line 4120.
  • the high temperature pressurized evaporated gas conveyed along the reliquefaction line 4130 may be cooled.
  • the cooling unit 4132 as a heat exchanger as described above, it is possible to cool the pressurized evaporated gas without a separate cooling device, thereby preventing unnecessary waste of power and simplifying the facility, thereby improving the efficiency of facility operation.
  • the first expansion valve 4133 may be provided at the rear end of the cooling unit 4132.
  • the first expansion valve 4133 may primarily repressurize the pressurized boil-off gas passing through the cooling unit 4132, thereby cooling and expanding the re-liquefaction.
  • the first expansion valve 4133 may be a Joule-Thomson valve.
  • the first expansion valve 4133 may reduce the evaporated gas cooled through the cooling unit 4132 to a pressure level corresponding to the fuel gas pressure condition required by the second engine. Detailed description thereof will be described later.
  • the first gas-liquid separator 4134 is primarily cooled and decompressed through the first expansion valve 4133 to separate the evaporated gas in the gas-liquid mixed state into a gas component and a liquid component.
  • the first gas-liquid separator 4134 receives the boil-off gas passed through the first expansion valve 4133 and becomes a gas-liquid mixed state and separates it into a gas component and a liquid component to achieve reliability of the reliquefaction process.
  • the components can be handled separately.
  • natural gas is a mixture containing ethane (Ethane), propane (butane), butane (Butane), nitrogen (Nitrogen) in addition to the main component methane (Methane).
  • the boiling point of nitrogen is about -195.8 degrees Celsius, which is much lower than other components such as methane (boiling point -161.5 degrees Celsius) and ethane (boiling point -89 degrees Celsius).
  • the nitrogen content has a very low boiling point, the evaporation gas generated by evaporation naturally in the storage tank 4110 contains a large amount of nitrogen by evaporating the nitrogen content relatively first, and furthermore, the nitrogen content of the evaporation gas. As the concentration of is increased, the reliquefaction efficiency of the boil-off gas decreases.
  • pressurization by the first expansion valve 4133 pressurization by the first expansion valve 4133.
  • a low boiling point nitrogen component is contained in a gaseous component such as a flash gas which is separated from the first gas-liquid separator 4134 when the evaporated gas is decompressed.
  • the gas component containing a high concentration of nitrogen is circulated again in the fuel gas system 4100, not only the reliquefaction efficiency of the boil-off gas is lowered, but also the compressor 4121a of the compression unit 4121 due to the circulated gas component. It causes a load on the back or the installation of a high specification compressor (4121a) is required, there is a problem that causes the inefficiency of the equipment operation.
  • the boil-off gas circulation line 4135 is separated from the first gas-liquid separator 4134 and provided to supply a gas component containing a high concentration of nitrogen to the second engine as fuel gas.
  • the nitrogen component having a relatively high concentration is contained in the gas component generated in the process of depressurizing the boil-off gas cooled and pressurized through the first expansion valve 4133.
  • the boil-off gas circulation line 4135 receives gas components having low reliquefaction efficiency among them and supplies and uses them as fuel gas to the second engine, thereby facilitating efficient use of fuel gas, and at the same time, the first gas-liquid separator 4134. It is possible to increase the reliquefaction efficiency of the liquid component which is separated by and which contains a relatively low concentration of nitrogen component.
  • the first expansion valve 4133 is provided to depressurize the pressurized boil-off gas passing through the cooling unit 4132 to a level corresponding to the pressure condition required by the second engine, and the boil-off gas circulation line 4135 has a separate compression device.
  • the gas component separated by the first gas-liquid separator 4134 can be directly supplied to the second engine as fuel gas without the need.
  • the boil-off gas circulation line 4135 is provided to pass through the cooling unit 4132 formed of a heat exchanger. Cooling of the high-temperature pressurized boil-off gas flowing along the reliquefaction line 4130 by using the cold heat of the gas component containing the high concentration nitrogen component flowing along the boil-off gas circulation line 4135, and at the same time, the reliquefaction line ( The high temperature heat of the pressurized boil-off gas flowing along 4130 may be supplied to raise the temperature of the gas component flowing along the boil-off gas circulation line 4135 to a level corresponding to the temperature condition of the fuel gas required by the second engine. have.
  • the boil-off gas circulation line 4135 may be connected to join the boil-off gas supply line 4120 as shown in FIG. 6, but is not limited thereto.
  • the boil-off gas circulation line 4135 may be directly connected to a second engine to fuel gas components. It includes the case provided to supply gas.
  • the liquid component containing the low concentration of nitrogen separated by the first gas-liquid separator 4134 may be secondarily decompressed and reliquefied by the second expansion valve 4136.
  • the second expansion valve 4136 Even if decompression is performed, the generation of gaseous components such as flash gas can be reduced, and re-liquefaction efficiency can be improved.
  • the second expansion valve 4136 may be a Joule-Thomson valve, and the second expansion valve 4136 may reduce the pressure to a pressure level corresponding to the internal pressure of the storage tank 4110. have.
  • the second gas-liquid separator 4137 is secondly cooled and depressurized through the second expansion valve 4136 to separate the evaporated gas in the gas-liquid mixed state into a gas component and a liquid component.
  • the liquid component of the first gas-liquid separator 4134 which is further depressurized by the second expansion valve 4136, contains nitrogen at low concentration, most of the liquid component is reliquefied, but a small amount of nitrogen component is present, as well as complete reliquefaction is achieved. It is practically impossible to achieve.
  • the gaseous and liquid components are separated from the second gas-liquid separator 4137 by the second gas-liquid separator 4137 through the second expansion valve 4136 to achieve the reliability of the reliquefaction process, and to handle each component separately. can do.
  • the boil-off gas recovery line 4138 may include the second gas-liquid separator 4137 and the storage tank to supply the gas component separated by the second gas-liquid separator 4137 to the storage tank 4110 or the boil-off gas supply line 4120. 4110 or between the second gas-liquid separator 4137 and the evaporated fuel gas supply line 4120.
  • the boil-off gas recovery line 4138 re-supplies the gas component of the second gas-liquid separator 4137 to the front end of the compression unit 4121 on the boil-off gas supply line 4120. It includes both the case of re-supply from the separator 4137 to the storage tank 4110, or the re-supply to the boil-off gas supply line 4120 and the storage tank 4110 together.
  • the liquefied gas recovery line 4139 may be provided between the second gas-liquid separator 4137 and the storage tank 4110 to supply the liquid component separated by the second gas-liquid separator 4137 to the storage tank 4110. .
  • the liquefied gas recovery line 4139 may be provided with its inlet side communicating with the lower side of the second gas-liquid separator 4137 and having its outlet side communicating with the interior of the storage tank 4110.
  • the liquefied gas recovery line 4139 may be provided with an opening / closing valve (not shown) for controlling a supply amount of the liquefied liquefied natural gas recovered to the storage tank 4110.
  • the liquefied gas supply line 4140 is provided to supply liquefied natural gas contained or stored in the storage tank 4110 to the engine as fuel gas.
  • One end of the liquefied gas supply line 4140 is provided connected to the inside of the storage tank 4110, and the other end is connected to the first engine and the second engine by joining the boil-off gas supply line 4120 to be described later. Can be.
  • the inlet side end of the liquefied gas supply line 4140 may be disposed below the inside of the storage tank 4110, and a delivery pump 4141 may be provided to supply liquefied natural gas to the engine side.
  • the liquefied gas supply line 4140 is provided when the engine includes a first engine supplied with relatively high pressure fuel gas to generate an output, and a second engine supplied with a relatively low pressure fuel gas to generate an output.
  • the liquefied natural gas may be provided including a first liquefied gas supply line 4140a and a second liquefied gas supply line 4140b to process liquefied natural gas in accordance with fuel gas requirements of each engine.
  • the first liquefied gas supply line 4140a may supply the liquefied natural gas sent by the delivery pump 4141 to a second engine that receives a relatively low pressure fuel gas and generates an output. Since the liquefied natural gas is compressed to low pressure (about 5 bar to 8 bar) in the process of sending the liquefied natural gas to the delivery pump 4141, when the second engine is made of the DFDE engine, without a separate pressurized pump, the vaporizer 4144 ) Can forcibly vaporize the liquefied natural gas sent by the delivery pump 4141 to supply fuel gas in accordance with the fuel conditions required by the second engine.
  • a gas-liquid separator 4145 may be provided at the rear end of the vaporizer 4144.
  • fuel gas must be supplied in a gaseous state to generate a normal output and to prevent engine failure. Accordingly, the liquefied natural gas passing through the vaporizer 4144 is supplied to the gas-liquid separator 4145, and only the gaseous fuel gas is supplied to the second engine by the gas-liquid separator 4145, thereby providing the fuel gas supply system 4100 of the ship. Reliability can be improved.
  • the second liquefied gas supply line 4140b may supply the liquefied natural gas sent by the delivery pump 4141 to a first engine that receives a relatively high pressure fuel gas and generates an output.
  • the pressurized pump 4414 for compressing the liquefied natural gas may be provided in the second liquefied gas supply line 4140b.
  • the pressure pump 4422 may compress the liquefied natural gas according to the pressure condition of the fuel gas required by the first engine.
  • the first engine is an X-DF engine
  • the pressure pump 4414 may be liquefied natural.
  • the gas can be supplied compressed to a pressure of about 16 bar to 18 bar.
  • the liquefied natural gas compressed by the pressure pump 4414 may be forcibly vaporized through the vaporizer 4143 and then joined with the boil-off gas supply line 4120 to be supplied as fuel gas to the first engine.
  • a bypass line 4140c may be provided in the second liquefied gas supply line 4140b.
  • the inlet side end of the bypass line 4140c is connected to the front end of the pressurized pump 4142 on the second liquefied gas supply line 4140b, and the outlet side end thereof is the pressurized pump 4414 on the second liquefied gas supply line 4140b.
  • the pressure pump (4142) may be provided to be connected in parallel.
  • a fuel gas supply system 4200 of a ship according to a seventh embodiment of the present invention may include a storage tank 4110 and a liquefied gas supply line 4140 for supplying boil-off gas from the storage tank 4110 to an engine.
  • the nitrogen separator 4250 is provided to separate nitrogen components contained in the boil-off gas supplied to the reliquefaction line 4130.
  • the nitrogen separator 4250 may be provided at the front end of the pressurizing unit 4131 on the reliquefaction line 4130.
  • the nitrogen separator 4250 classifies the evaporated gas introduced into or supplied to the reliquefaction line 4130 into a first gas stream containing a nitrogen component of a first concentration and a second gas stream containing a nitrogen component of a second concentration.
  • the first gas flow is rejoined to the boil-off gas supply line 4120 or supplied to the first engine to be used as fuel gas, and the second gas flow is provided to be supplied to the pressurizing unit 4131 as it is.
  • the nitrogen component of the first concentration and the nitrogen component of the second concentration described in this embodiment mean a high concentration nitrogen component and a low concentration nitrogen component, respectively, and the nitrogen concentration of the first concentration is compared with the nitrogen component of the second concentration. Therefore, the nitrogen component has a relatively high concentration, and the nitrogen component of the second concentration has a relatively low concentration of the nitrogen component compared to the nitrogen component of the first concentration.
  • the first concentration and the second concentration are not limited to a specific value and should be understood as a relative meaning according to the difference in concentration between the first concentration and the second concentration.
  • natural gas is a mixture containing ethane, propane, butane, nitrogen, etc. in addition to the main component methane, the boiling point of nitrogen is about Celsius It is -195.8 degrees, which is very low compared to other components such as methane (boiling point -161.5 degrees Celsius) and ethane (boiling point -89 degrees Celsius). Accordingly, the higher the concentration of nitrogen containing a lower boiling point, the lower the efficiency of reliquefaction of the boil-off gas.
  • the nitrogen separator 4250 separates nitrogen components contained in the boil-off gas introduced into or supplied to the reliquefaction line 4130 through the boil-off gas supply line 4120 and contains a relatively high concentration of the first nitrogen component.
  • the first gas flow is recombined to the boil-off gas supply line 4120 through the boil-off gas resupply line 4251 or supplied as a fuel gas of the first engine to consume nitrogen, and thus, a relatively low concentration of the second gas flow.
  • Nitrogen separator 4250 may include at least one of a membrane filter, a cyclone, a gas centrifuge, or a vortex tube.
  • the membrane filter is provided with a substance having a high affinity for nitrogen, and the pressurized evaporation gas passes through the membrane filter by the pressure, so that the first gas flow containing a high concentration of nitrogen is filtered out by the membrane filter to evaporate the gas.
  • Pressurization unit of the reliquefaction line 4130 is supplied to the boil-off gas supply line 4120 or the first engine through the resupply line 4251, and the second gas flow containing a high concentration of components other than nitrogen such as methane is passed through as it is. 4131.
  • Cyclone forms the evaporating gas supplied to the nitrogen separator 4250 as a swirling flow, and applies a centrifugal force to the evaporating gas to separate nitrogen components and other components such as methane and ethane to separate the first concentration having a relatively high concentration. It can be separated into a first gas flow containing a nitrogen component of and a second gas flow containing a nitrogen component of a relatively low concentration of the second concentration.
  • a gas centrifuge is provided to separate a part of pressurized boil-off gas in a mixed gas state by centrifugation.
  • the gas centrifuge may separate the evaporated gas supplied to the nitrogen separator 4250 into a component other than nitrogen and components other than nitrogen by using a centrifugal force, and may separate the evaporated gas into a first gas flow and a second gas flow.
  • Vortex tube (Vortex tube) is provided with a narrow tube, a device for separating the hot and cold air by supplying a high-pressure gas in a tangential form inside the narrow tube.
  • the nitrogen separator 4250 is made of a vortex tube, by supplying boil-off gas to the inside of the vortex tube to separate low-temperature nitrogen components having a relatively low boiling point and components other than nitrogen such as methane and ethane having a relatively high boiling point, The boil-off gas can be separated into a first gas stream and a second gas stream.
  • the nitrogen separator 4250 is provided to include at least one of a membrane filter, a cyclone, a gas centrifuge, or a vortex tube, so that the evaporated gas supplied to the reliquefaction line 4130 is supplied to the first gas according to the concentration of the nitrogen component.
  • the second gas stream is separated into a stream and a second gas stream, and a second gas stream containing a low concentration of nitrogen is passed through the reliquefaction line 4130 to prepare a reliquefaction process, thereby reprocessing the reliquefaction line 4130.
  • the liquefaction efficiency can be improved.
  • the first gas stream containing a high concentration of nitrogen is re-combined to the boil-off gas supply line 4120 through the boil-off gas resupply line 4251 or directly supplied to the engine and consumed as fuel gas.
  • the total nitrogen content in the gas system 4200 may be gradually lowered to facilitate the efficiency of plant operation.
  • the calorific value control unit is provided to measure and regulate the calorific value of the fuel gas supplied to the engine, particularly the first engine.
  • Heating value refers to the amount of heat released when a unit mass of fuel gas is completely burned.
  • Methane, butane, and propane in natural gas have a relatively high calorific value, thereby increasing the calorific value of fuel gas (methane calorific value: about 12,000 kcal / kg, butane calorific value: about 11,863 kcal / kg, propane calorific value: about 2,000 kcal / kg), the calorific value of nitrogen is very low (caloric value of nitrogen: about 60 kcal / kg), and the higher the absolute content or concentration of nitrogen, the lower the total calorific value of fuel gas.
  • the total calorific value of the fuel gas supplied to the engine is too low to meet the minimum condition calorific value required by the engine, it affects the output of the engine and causes unnecessary load on the engine.
  • the nitrogen separator 4250 contains a second concentration of nitrogen at a low concentration among the boil-off gases introduced or supplied to the reliquefaction line 4130. 2 gas flow is passed to the reliquefaction line 4130, the first gas flow containing a high concentration of the first nitrogen content is filtered and supplied to the boil-off gas supply line 4120 or the engine, the first gas flow There is a fear that the heat generation amount of the fuel gas supplied to the first engine is lower than the condition heat generation amount required by the first engine due to the high concentration of nitrogen contained in the fuel cell.
  • the calorific value adjusting unit of the fuel gas supply system 4200 of the ship measures the calorific value of the fuel gas supplied to the first engine, or calculates the calorific value 4260. It may be provided including a flow rate control valve (4261) for adjusting the supply amount of the boil-off gas supplied to the liquefaction line (4130).
  • the calorific value measuring unit 4260 may measure, in real time, the calorific value of the fuel gas including the boil-off gas and the first gas flow supplied to the first engine through the boil-off gas supply line 4120 and the boil-off gas resupply line 4251. .
  • the calorific value measuring unit 4260 transmits the calorific value of the fuel gas measured by the display unit (not shown) including a display and informs the occupant of the ship, or transmits the calorific value information of the measured fuel gas to the controller (not shown).
  • the controller may control the opening and closing degree of the flow regulating valve 4421 to be described later by comparing and analyzing the condition calorific value of the first engine and the calorific value information of the fuel gas transmitted from the calorific value measurer 4260.
  • the flow rate control valve 4421 may be provided at a point where the reliquefaction line 4130 branches from the boil-off gas supply line 4120.
  • the flow rate control valve 4421 may be configured as a three-way valve to adjust the amount of boil-off gas supplied to the reliquefaction line 4130, and the flow rate control valve 4451 may be measured by the calorific value measurer 4260.
  • the degree of opening and closing of the fuel gas may be automatically adjusted by a manual or a controller by an operator based on the calorific value information of the fuel gas and the condition calorific value information of the first engine.
  • the flow rate control valve 4421 reduces the supply amount of the boil-off gas supplied to the reliquefaction line 4130,
  • the amount of supply of the boil-off gas directly supplied to the first engine along the boil-off gas supply line 4120 may be opened and closed.
  • the calorific value of the fuel gas supplied to the first engine is reduced. Can be increased.
  • the flow rate regulating valve 4421 is supplied to the reliquefaction line 4130.
  • the flow rate of the first gas flow flowing into the reliquefaction line 4130 and supplied to the boil-off gas resupply line 4251 through the nitrogen separator 4250 is increased to adjust the calorific value of the fuel gas to an appropriate level.
  • the amount of reliquefaction of the boil-off gas may be increased by increasing the flow rate of the second gas flow supplied to the pressurizing unit 4131 of the reliquefaction line 4130.
  • a fuel gas supply system 4200 of a ship according to an eighth embodiment of the present invention may include a storage tank 4110 and a liquefied gas supply line 4140 for supplying boil-off gas from the storage tank 4110 to an engine.
  • a reliquefaction line 4130 for reliquefying a part of the boil-off gas passing through the boil-off gas supply line 4120, a liquefied gas supply line 4140 for supplying the liquefied gas of the storage tank 4110 to the engine, and a reliquefaction line It may be provided including an oil removal unit 4350 to remove the oil contained in the boil-off gas supplied to the (4130).
  • the oil removal unit 4350 is provided to remove oil contained in the boil-off gas introduced into or supplied to the reliquefaction line 4130.
  • Compressors 4121a and 131a provided in the compression unit 4121 of the boil-off gas supply line 4120 and the pressurizing unit 4131 of the reliquefaction line 4130 use oil such as lubrication oil during operation. These oils help the compressor to operate smoothly and effectively pressurize, but they mix with the boil-off gas during pressurization of the boil-off gas and accumulate in pipes such as reliquefaction lines or in facilities such as expansion valves to prevent the smooth transfer of boil-off gas. In addition, there is a risk of causing a malfunction of the equipment, in particular, there is a problem in reducing the composition quality of the re-liquefied boil-off gas.
  • the oil removing unit 4350 is provided at the rear end of the pressurizing unit 4131 on the reliquefaction line 4130, and is contained in the evaporated gas while passing through the compressor 4121 and the compressors 4121a and 131a of the pressurizing unit 4131. Oil, such as lubricating oil, can be removed. As a result, smooth operation of the fuel gas supply system 4100 of the ship and stability of facility operation can be achieved, and the composition quality of the boil-off gas and liquefied natural gas can be improved.
  • the oil removing unit 4350 may include a filter or a filtering membrane, but is not limited thereto.
  • the oil removing unit 4350 may be formed of various types or types of devices.

Abstract

선박의 연료가스 공급시스템이 개시된다. 본 발명의 일 실시 예에 의한 선박의 연료가스 공급시스템은 액화가스 및 증발가스로 이루어지는 연료가스를 수용하는 저장탱크, 저장탱크의 증발가스를 가압하는 압축부를 구비하고, 압축부를 통과한 증발가스를 엔진으로 공급하는 증발가스 공급라인 및 압축부를 통과한 증발가스의 일부를 열교환하여 재액화시키는 재액화라인을 포함하고, 재액화라인은 압축부를 통과한 증발가스를 추가적으로 가압하는 가압유닛과, 가압유닛을 통과한 증발가스와 압축부 전단의 증발가스를 서로 열교환하는 열교환장치와, 열교환장치를 통과한 증발가스를 감압시키는 팽창밸브 및 팽창밸브를 통과하여 재액화된 증발가스를 기체성분과 액체성분으로 분리하는 기액분리기를 포함하여 제공될 수 있다.

Description

선박의 연료가스 공급시스템
본 발명은 선박의 연료가스 공급시스템에 관한 것으로서, 더욱 상세하게는 증발가스를 효율적으로 처리 및 관리할 수 있는 선박의 연료가스 공급시스템에 관한 것이다.
온실가스 및 각종 대기오염 물질의 배출에 대한 국제해사기구(IMO)의 규제가 강화됨에 따라 조선 및 해운업계에서는 기존 연료인 중유, 디젤유의 이용을 대신하여, 청정 에너지원인 천연가스를 선박의 연료가스로 이용하는 경우가 많아지고 있다.
연료가스 중에서 널리 이용되고 중요한 자원으로 여겨지는 천연가스(Natural Gas)는 메탄(methane)을 주성분으로 하며, 통상적으로 저장 및 수송의 용이성을 위해 천연가스를 약 섭씨 -162도로 냉각해 그 부피를 1/600로 줄인 무색 투명한 초저온 액체인 액화천연가스(Liquefied Natural Gas)로 상변화하여 관리 및 운용을 수행하고 있다.
이러한 액화천연가스는 선체에 단열 처리되어 설치되는 저장탱크에 수용되어 저장 및 수송된다. 그러나 액화천연가스를 완전히 단열시켜 수용하는 것은 실질적으로 불가능하므로, 외부의 열이 저장탱크의 내부로 지속적으로 전달되어 액화천연가스가 기화하여 발생되는 증발가스가 저장탱크의 내부에 축적되게 된다.
이러한 증발가스는 저장탱크의 내부압력을 상승시켜 저장탱크의 변형 및 훼손을 유발할 수 있으며, 액화천연가스를 수송하는 과정에서 선박의 진동에 의해 저장탱크 및 선박의 구조적인 문제를 야기할 수 있으므로, 증발가스의 발생을 억제하거나 증발가스를 처리 및 제거할 필요가 있다.
이에 종래에는 저장탱크의 상측에 마련되는 벤트마스트(Vent mast)로 증발가스를 흘려 보내거나, GCU(Gas Combustion Unit)을 이용하여 증발가스를 태워버리는 방안 등이 이용되었다. 그러나 이는 에너지 효율 면에서 바람직하지 못하며, 증발가스를 태우는 과정에서 화재 및 폭발의 위험이 존재하는 문제점이 있었다. 따라서 증발가스를 효율적으로 이용 및 처리하며, 증발가스를 선박의 연료가스로 용이하게 공급할 수 있는 방안이 요구된다.
본 발명의 실시 예는 증발가스를 효과적으로 처리 또는 이용함과 동시에, 증발가스의 재액화 효율을 향상시킬 수 있는 선박의 연료가스 공급시스템을 제공하고자 한다.
본 발명의 실시 예는 단순한 구조로서 효율적이고 안정적인 운용을 도모할 수 있는 선박의 연료가스 공급시스템을 제공하고자 한다.
본 발명의 실시 예는 에너지 효율을 향상시킬 수 있는 선박의 연료가스 공급시스템을 제공하고자 한다.
본 발명의 실시 예는 증발가스 또는 액화가스의 조성 품질을 향상시킬 수 있는 선박의 연료가스 공급시스템을 제공하고자 한다.
본 발명의 일 측면에 따르면, 액화가스 및 증발가스로 이루어지는 연료가스를 수용하는 저장탱크, 상기 저장탱크의 증발가스를 가압하는 압축부를 구비하고, 상기 압축부를 통과한 증발가스를 엔진으로 공급하는 증발가스 공급라인 및 상기 압축부를 통과한 증발가스의 일부를 열교환하여 재액화시키는 재액화라인을 포함하고, 상기 재액화라인은 상기 압축부를 통과한 증발가스를 추가적으로 가압하는 가압유닛과, 상기 가압유닛을 통과한 증발가스와 상기 압축부 전단의 증발가스를 서로 열교환하는 열교환장치와, 상기 열교환장치를 통과한 증발가스를 감압시키는 팽창밸브 및 상기 팽창밸브를 통과하여 재액화된 증발가스를 기체성분과 액체성분으로 분리하는 기액분리기를 포함하여 제공될 수 있다.
상기 재액화라인으로 공급되는 증발가스를 제1농도의 질소성분을 함유하는 제1가스흐름과 제2농도의 질소성분을 함유하는 제2가스흐름으로 분리하도록 상기 재액화라인 상의 상기 가압유닛의 전단에 마련되는 질소분리기를 더 포함하고, 상기 제1가스흐름은 상기 증발가스 공급라인 또는 상기 엔진으로 공급하고, 상기 제2가스흐름은 상기 가압유닛으로 공급하도록 마련될 수 있다.
상기 엔진으로 공급되는 연료가스의 발열량을 측정 및 조절하는 발열량 조절부를 더 포함하고, 상기 발열량 조절부는 상기 엔진으로 공급되는 연료가스의 발열량을 측정하는 발열량 측정기 및 상기 재액화라인으로 공급되는 증발가스의 공급량을 조절하는 유량조절장치를 포함하되, 상기 유량조절장치는 상기 발열량 측정기에 의해 측정된 연료가스의 발열량 정보에 근거하여 그 작동이 제어될 수 있다.
상기 엔진으로 공급되는 연료가스의 발열량을 측정 및 조절하는 발열량 조절부를 더 포함하고, 상기 발열량 조절부는 상기 엔진으로 공급되는 연료가스의 발열량을 측정하는 발열량 측정기와, 입구 측 단부가 상기 재액화라인 상의 상기 질소분리기 전단에 연결되고 출구 측 단부가 상기 재액화라인 상의 상기 질소분리기 후단에 연결되는 발열량 조절라인 및 상기 발열량 조절라인을 따라 이송되는 증발가스의 공급량을 조절하는 유량조절밸브를 포함하되, 상기 유량조절밸브는 상기 발열량 측정기에 의해 측정된 연료가스의 발열량 정보에 근거하여 그 작동이 제어될 수 있다.
상기 엔진으로 공급되는 연료가스의 발열량을 측정 및 조절하는 발열량 조절부를 더 포함하고, 상기 발열량 조절부는 상기 엔진으로 공급되는 연료가스의 발열량을 측정하는 발열량 측정기와, 상기 제1가스흐름의 일부를 상기 재액화라인 상의 상기 질소분리기 후단으로 순환시키는 발열량 조절라인 및 상기 발열량 조절라인을 따라 이송되는 제1가스흐름의 공급량을 조절하는 유량조절밸브를 포함하되, 상기 유량조절밸브는 상기 발열량 측정기에 의해 측정된 연료가스의 발열량 정보에 근거하여 그 작동이 제어될 수 있다.
액화가스 및 증발가스로 이루어지는 연료가스를 수용하는 저장탱크, 상기 저장탱크의 증발가스를 가압하는 압축부를 구비하고, 상기 압축부를 통과한 증발가스를 엔진으로 공급하는 증발가스 공급라인 및 상기 증발가스 공급라인에서 분기되어, 상기 압축부를 통과한 압축된 증발가스를 공급받아 가압하는 가압유닛, 상기 가압유닛을 통과한 가압된 증발가스에 함유된 오일을 제거하는 오일제거부, 상기 오일제거부를 통과한 증발가스와 상기 압축부 전단의 증발가스를 열교환하는 열교환장치, 상기 열교환장치를 통과한 증발가스를 감압시키는 팽창밸브 및 상기 팽창밸브를 통과하여 감압된 증발가스를 기체성분과 액체성분으로 분리하는 기액분리기를 포함하는 재액화라인을 포함하여 제공될 수 있다.
액화가스 및 증발가스로 이루어지는 연료가스를 수용하는 저장탱크, 상기 저장탱크의 증발가스를 가압하는 압축부를 구비하고, 상기 압축부를 통과한 증발가스를 제1엔진으로 공급하는 증발가스 공급라인 및 상기 압축부를 통과한 증발가스의 일부를 공급받아 재액화시키는 재액화라인을 포함하고, 상기 재액화라인은 상기 압축부를 통과한 증발가스를 가압하는 가압유닛과, 상기 가압유닛을 통과한 증발가스를 냉각시키는 냉각부와, 상기 냉각부를 통과하여 냉각된 증발가스를 1차 감압시키는 제1팽창밸브와, 상기 제1팽창밸브를 통과하여 기액 혼합상태의 증발가스를 기체성분과 액체성분으로 분리하는 제1기액분리기와, 상기 제1기액분리기에서 분리된 기체성분을 제2엔진으로 공급하는 증발가스 순환라인과, 상기 제1기액분리기에서 분리된 액체성분을 2차 감압시키는 제2팽창밸브 및 상기 제2팽창밸브를 통과하여 기액 혼합상태의 증발가스를 기체성분과 액체성분으로 분리하는 제2기액분리기를 포함하여 제공될 수 있다.
상기 재액화라인으로 공급되는 증발가스를 제1농도의 질소성분을 함유하는 제1가스흐름과 제2농도의 질소성분을 함유하는 제2가스흐름으로 분리하도록 상기 재액화라인 상의 상기 가압유닛의 전단에 마련되는 질소분리기를 더 포함하여 제공될 수 있다.
상기 재액화라인으로 공급되는 증발가스에 함유된 오일을 제거하는 오일제거부를 더 포함하여 제공될 수 있다.
상기 제1엔진으로 공급되는 연료가스의 발열량을 측정하고 조절하는 발열량 조절부를 더 포함하고, 상기 발열량 조절부는 상기 제1엔진으로 공급되는 연료가스의 발열량을 측정하는 발열량 측정기 및 상기 재액화라인으로 공급되는 증발가스의 공급량을 조절하는 유량조절밸브를 포함하되, 상기 유량조절밸브는 상기 발열량 측정기에 의해 측정된 연료가스의 발열량에 기초하여 제어될 수 있다.
상기 오일제거부는 상기 재액화라인 상의 가압유닛의 후단에 마련되어 제공될 수 있다.
상기 재액화라인은 상기 제2기액분리기에서 분리된 기체성분을 상기 저장탱크 또는 상기 증발가스 공급라인의 압축부 전단으로 공급하는 증발가스 회수라인 및 상기 제2기액분리기에서 분리된 액체성분을 상기 저장탱크로 공급하는 액화가스 회수라인을 더 포함하여 제공될 수 있다.
상기 가압유닛은 상기 압축부를 통과한 증발가스를 50 bar 내지 150 bar로 가압하도록 마련될 수 있다.
상기 질소분리기는 멤브레인 필터, 사이클론(Cyclone), 가스 원심분리기(Gas centrifuge) 및 보텍스 튜브(Vortex tube) 중 적어도 하나를 포함하여 제공될 수 있다.
상기 제1농도의 질소성분은 상기 제2농도의 질소성분보다 고농도의 질소성분을 함유할 수 있다.
본 발명의 실시 예에 의한 선박의 연료가스 공급시스템은 증발가스를 효과적으로 처리 또는 이용하고, 증발가스의 재액화 효율을 향상시킬 수 있는 효과를 가진다.
본 발명의 실시 예에 의한 선박의 연료가스 공급시스템은 에너지 효율을 향상시키고, 단순한 구조로서 효율적이고 안정적인 운용을 도모할 수 있는 효과를 가진다.
본 발명의 실시 예에 의한 선박의 연료가스 공급시스템은 증발가스 또는 액화가스의 취급 시 발생할 수 있는 조성 품질의 저하를 방지할 수 있는 효과를 가진다.
도 1은 본 발명의 제1 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
도 2는 본 발명의 제2 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
도 3은 본 발명의 제3 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
도 4은 본 발명의 제4 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
도 5은 본 발명의 제5 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
도 6은 본 발명의 제6 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
도 7은 본 발명의 제7 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
도 8은 본 발명의 제8 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.
본 발명의 실시 예에 의한 선박의 연료가스 공급시스템에 대한 설명 중 선박은 다양한 해양구조물을 포함하는 의미로 이해될 수 있다. 선박은 액화가스를 수송하는 액화가스 수송선뿐만 아니라, 액화가스를 연료로 사용하여 추진 또는 발전할 수 있는 다양한 구조의 해양구조물을 포함한다. 또한 액화가스를 연료로 사용할 수 있는 것이라면 그 형태를 불문하고 본 발명의 선박에 포함될 수 있다. 일 예로, LNG 운반선, LNG RV와 같은 선박을 비롯하여, LNG FPSO, LNG FSRU와 같은 해양 플랜트 등을 모두 포함하는 개념으로 이해되어야 할 것이다.
또한 본 실시 예에서는 본 발명에 대한 이해를 돕기 위한 일 예로서, 액화천연가스 및 이로부터 발생하는 증발가스를 적용하여 설명하였으나, 이에 한정되는 것은 아니며 액화에탄가스, 액화탄화수소가스 등 다양한 액화가스 및 이로부터 발생하는 증발가스가 적용되는 경우에도 동일한 기술적 사상으로 동일하게 이해되어야 한다.
도 1은 본 발명의 제1 실시 예에 의한 선박의 연료가스 공급시스템(1100)을 나타내는 개념도이다.
도 1을 참조하면, 본 발명의 제1 실시 예에 의한 선박의 연료가스 공급시스템(1100)은 저장탱크(1110), 저장탱크(1110)의 증발가스를 엔진으로 공급하는 액화가스 공급라인(1140), 증발가스 공급라인(1120)을 통과하는 증발가스의 일부를 재액화시키는 재액화라인(1130) 및 저장탱크(1110)의 액화가스를 엔진으로 공급하는 액화가스 공급라인(1140)을 포함할 수 있다.
저장탱크(1110)는 액화천연가스 및 증발가스를 수용 또는 저장하도록 마련된다. 저장탱크(1110)는 외부의 열 침입에 의한 액화천연가스의 기화를 최소화할 수 있도록 단열 처리된 멤브레인 타입의 화물창으로 마련될 수 있다. 저장탱크(1110)는 천연가스의 생산지 등으로부터 액화천연가스를 공급받아 수용 또는 저장하여 목적지에 이르러 하역하기까지 액화천연가스 및 증발가스를 안정적으로 보관하되 후술하는 바와 같이 선박의 추진용 엔진 또는 선박의 발전용 엔진 등의 연료가스로 이용되도록 마련될 수 있다.
저장탱크(1110)는 일반적으로 단열 처리되어 설치되나, 외부의 열 침입을 완전히 차단하는 것은 실질적으로 어려우므로, 저장탱크(1110) 내부에는 액화천연가스가 자연적으로 기화하여 발생하는 증발가스가 존재하게 된다. 이러한 증발가스는 저장탱크(1110)의 내부압력을 상승시켜 저장탱크(1110)의 변형 및 폭발 등의 위험을 잠재하고 있으므로 증발가스를 저장탱크(1110)로부터 제거 또는 처리할 필요성이 있다. 이에 따라 저장탱크(1110) 내부에 발생된 증발가스는 본 발명의 제1 실시 예와 같이 증발가스 공급라인(1120)에 의해 엔진의 연료가스로 이용되거나 재액화라인(1130)에 의해 재액화되어 저장탱크(1110)로 재공급될 수 있다. 이와는 달리, 도면에는 도시하지 않았으나 저장탱크(1110)의 상부에 마련되는 벤트마스트(미도시) 또는 GCU(Gas Combustion Unit, 미도시)로 공급하여 증발가스를 추가적으로 처리 또는 소모시킬 수도 있다.
엔진은 저장탱크(1110)에 수용된 액화천연가스 및 증발가스 등의 연료가스를 공급받아 선박의 추진력을 발생시키거나 선박의 내부 설비 등의 발전용 전원을 발생시킬 수 있다. 엔진은 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진과, 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 이루어질 수 있다. 일 예로 제1엔진은 상대적으로 고압의 연료가스로 출력을 발생시킬 수 있는 X-DF 엔진(약 16 bar)으로 이루어지고, 제2엔진은 상대적으로 저압의 연료가스로 출력을 발생시킬 수 있는 DFDE 엔진(3 bar 내지 5 bar) 등으로 이루어질 수 있다. 그러나 이에 한정되는 것은 아니며, 다양한 수의 엔진 및 다양한 종류의 엔진이 이용되는 경우에도 동일하게 이해되어야 할 것이다.
증발가스 공급라인(1120)은 저장탱크(1110)에 발생된 증발가스를 엔진에 연료가스로서 공급하도록 마련된다. 증발가스 공급라인(1120)은 그 일단이 저장탱크(1110)의 내부에 연결되어 마련되고, 타단은 후술하는 액화가스 공급라인(1140)과 합류하여 엔진에 연결되어 마련된다. 증발가스 공급라인(1120)은 저장탱크(1110) 내부의 증발가스를 공급받을 수 있도록 입구 측 단부가 저장탱크(1110) 내부의 상측에 배치될 수 있으며, 증발가스를 엔진이 요구하는 압력 및 온도조건에 맞추어 공급할 수 있도록 복수 단의 컴프레서를 구비하는 압축부(1121)가 마련될 수 있다.
압축부(1121)는 증발가스를 압축하는 컴프레서(1121a)와 압축되면서 가열된 증발가스를 냉각시키는 쿨러(1121b)를 포함할 수 있다. 압축부(1121)는 증발가스 공급라인(1120) 상에서 후술하는 재액화라인(1130)이 분기되는 지점의 전단에 마련되어 증발가스를 가압시켜줄 수 있다. 또한 엔진이 서로 다른 압력조건을 갖는 복수개의 엔진으로 이루어지는 경우에는 도 1에 도시된 바와 같이, 압축부(1121)의 중간부위로부터 증발가스 공급라인이 추가적으로 분기되어 제2엔진으로 연료가스를 공급하도록 마련될 수 있다.
도 1에서는 압축부(1121)가 3단의 컴프레서(1121a) 및 쿨러(1121b)로 이루어진 것으로 도시되어 있으나, 이는 일 예로서 엔진의 요구 압력조건 및 온도에 따라 압축부(1121)는 다양한 수의 컴프레서 및 쿨러로 이루어질 수 있다.
또한 증발가스 공급라인(1120) 상의 압축부(1121) 전단에는 후술하는 재액화라인(1130)의 열교환장치(1132)가 설치될 수 있으며, 이에 대한 상세한 설명은 후술하도록 한다.
재액화라인(1130)은 압축부(1131)를 통과한 증발가스를 추가적으로 가압하는 가압유닛(1131), 가압유닛(1131)을 통과한 증발가스를 열교환 및 냉각시키는 열교환장치(1132), 열교환장치를 통과한 증발가스를 감압시키는 팽창밸브(1133), 팽창밸브(1133)를 통과하여 재액화된 증발가스를 수용하는 기액분리기(1134), 기액분리기(1134)에서 분리된 액체성분의 증발가스를 저장탱크(1110)로 재공급하는 회수라인(1135) 및 기액분리기(1134)에서 분리된 기체성분의 증발가스를 저장탱크(1110) 또는 증발가스 공급라인(1120)으로 공급하는 재순환라인(1136)을 구비할 수 있다.
재액화라인(1130)은 증발가스 공급라인(1120) 상의 압축부(1121) 후단으로부터 분기되어 마련될 수 있다. 재액화라인(1130)과 증발가스 공급라인(1120)이 분기되는 지점에는 삼방밸브(미도시)가 마련될 수 있으며, 삼방밸브는 제1엔진 또는 재액화라인(1130)으로 공급되는 증발가스의 공급량을 조절할 수 있다. 삼방밸브는 작업자가 수동으로 개폐여부 및 개폐정도를 조절하거나, 제어부(미도시)에 의해 그 작동이 자동적으로 구현될 수도 있다.
가압유닛(1131)은 압축부(1121)를 통과한 증발가스를 추가적으로 가압하도록 마련된다. 가압유닛(1131)은 압축부(1121)를 통과한 증발가스를 추가적으로 압축하는 컴프레서(1131a) 및 압축되면서 가열된 증발가스를 냉각시켜주는 쿨러(1131b)를 구비할 수 있다.
가압유닛(1131)은 후술하는 열교환장치(1132) 및 팽창밸브(1133)로 공급되는 증발가스를 50 bar 내지 150 bar의 압력범위로 가압하도록 마련될 수 있다. 증발가스를 50 bar 내지 150 bar의 범위로 가압한 후 냉각 및 감압시킬 경우, 증발가스의 재액화가 매우 원활하게 수행될 수 있으므로, 가압유닛(1131)은 엔진으로 공급되는 증발가스의 압력조건과는 별도로 재액화효율 또는 재액화량을 향상시킬 수 있는 압력조건에 맞추어 증발가스를 추가적으로 가압할 수 있다.
도 1에서는 가압유닛(1131)이 각각 한 개의 컴프레서(1131a) 및 쿨러(1131b)로 이루어진 경우로 도시되어 있으나 그 수에 한정되는 것은 아니며, 증발가스를 50 bar 내지 150 bar의 압력범위로 가압할 수 있다면 다양한 수의 컴프레서 및 쿨러를 구비하는 경우를 포함한다.
열교환장치(1132)는 가압유닛(1131)을 통과하여 가압된 증발가스와 증발가스 공급라인(1120)을 통과하는 압축부(1121) 전단의 증발가스를 서로 열교환하도록 마련된다. 가압유닛(1131)을 통과한 증발가스는 컴프레서(1131a)에 의해 가압되어 온도가 상승한 상태이므로, 증발가스 공급라인(1120)의 압축부(1121)를 통과하기 전의 저온의 증발가스와 서로 열교환함으로써 재액화라인(1130)을 통과하는 가압된 증발가스를 냉각시킬 수 있다. 이와 같이 별도의 냉각장치 없이, 가압유닛(1131)을 통과하여 가압된 증발가스를 증발가스 공급라인(1120)을 통과하는 증발가스와 열교환하여 냉각시킬 수 있으므로, 불필요한 전원의 낭비를 방지하고 설비 운용의 효율성을 도모할 수 있다.
팽창밸브(1133)는 열교환장치(1132)의 후단에 마련될 수 있다. 팽창밸브(1133)는 가압유닛(1131) 및 열교환장치(1132)를 통과하여 가압 및 냉각된 증발가스를 증발가스를 감압하여 추가적으로 냉각 및 팽창시켜 증발가스를 재액화시킬 수 있다. 팽창밸브(1133)는 일 예로 줄-톰슨 밸브(Joule-Thomson Valve)로 이루어질 수 있다.
기액분리기(1134)는 팽창밸브(1133)를 통과하면서 재액화된 증발가스를 수용하여 재액화된 증발가스의 액체성분과 기체성분을 분리한다. 가압된 증발가스가 팽창밸브(1133)를 통과 시 대부분의 증발가스는 재액화가 이루어지나, 플래쉬 가스가 발생함으로써 재액화된 증발가스의 기체성분이 발생할 수 있다. 이에 따라 기액분리기(1134)에 의해 분리된 재액화된 증발가스의 액체성분은 후술하는 회수라인(1135)에 의해 저장탱크(1110)로 재공급하고, 분리된 재액화된 증발가스의 기체성분은 후술하는 재순환라인(1136)에 의해 저장탱크(1110) 또는 증발가스 공급라인(1120)으로 재공급하도록 마련될 수 있다.
회수라인(1135)은 기액분리기(1134)에 의해 분리된 증발가스의 액체성분을 저장탱크(1110)로 재공급하도록 기액분리기(1134)와 저장탱크(1110)를 연결하도록 마련될 수 있다. 회수라인(1135)은 그 입구 측 단부가 기액분리기(1134)의 하측에 연결되어 마련되고, 출구 측 단부가 저장탱크(1110) 내부에 연결되어 마련될 수 있다. 회수라인(1135)에는 저장탱크(1110)로 회수되는 재액화된 증발가스의 공급량을 조절하는 개폐밸브(미도시)가 마련될 수 있다.
재순환라인(1136)은 기액분리기(1134)에 의해 분리된 재액화된 증발가스의 기체성분을 저장탱크(1110) 또는 증발가스 공급라인(1120)으로 재공급하도록 기액분리기(1134)와 저장탱크(1110) 또는 기액분리기(1134)와 증발가스 공급라인(1120)을 연결하도록 마련될 수 있다. 도 1에서는 재순환라인(1136)이 기액분리기(1134) 내부의 기체성분의 증발가스가 증발가스 공급라인(1120) 상의 압축부(1121) 전단으로 재공급하는 것으로 도시되어 있으나, 이 외에도 기액분리기(1134)로부터 저장탱크(1110)로 재공급하거나, 증발가스 공급라인(1120) 및 저장탱크(1110)로 함께 재공급하는 경우를 포함한다.
액화가스 공급라인(1140)은 저장탱크(1110)에 수용 또는 저장된 액화천연가스를 엔진에 연료가스로서 공급하도록 마련된다. 액화가스 공급라인(1140)은 그 일단이 저장탱크(1110)의 내부에 연결되어 마련되고, 타단은 후술하는 증발가스 공급라인(1120)과 합류하여 엔진에 연결되어 마련될 수 있다. 액화가스 공급라인(1140)의 입구 측 단부는 저장탱크(1110) 내부의 하측에 배치될 수 있으며, 액화천연가스를 엔진 측으로 공급하기 위한 송출펌프(1141)가 마련될 수 있다.
전술한 바와 같이 엔진이 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진 및 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 이루어지는 경우에는 액화가스 공급라인(1140)은 각 엔진의 연료가스 요구조건에 맞추어 액화천연가스를 처리할 수 있도록 제1액화가스 공급라인(1140a) 및 제2액화가스 공급라인(1140b)을 포함하여 마련될 수 있다.
제1액화가스 공급라인(1140a)은 송출펌프(1141)에 의해 송출된 액화천연가스를 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 공급할 수 있다. 송출펌프(1141)가 액화천연가스를 송출하는 과정에서 액화천연가스는 저압(약 3 bar 내지 5 bar)으로 압축되므로, 제2엔진이 DFDE 엔진으로 이루어지는 경우에는 별도의 가압펌프 없이, 기화기(1144)가 송출펌프(1141)에 의해 송출된 액화천연가스를 강제 기화시켜 제2엔진이 요구하는 연료조건에 맞추어 연료가스를 공급할 수 있다.
기화기(1144) 후단에는 기액분리기(1145)가 마련될 수 있다. 제2엔진이 DFDE 엔진으로 이루어지는 경우에는 연료가스가 기체상태로 공급되어야 정상적인 출력을 발생시킬 수 있으며 엔진의 고장을 방지할 수 있다. 따라서 기화기(1144)를 통과한 액화천연가스를 기액분리기(1145)로 공급하고, 기액분리기(1145)에서 기체상태의 연료가스만을 제2엔진으로 공급함으로써, 선박의 연료가스 공급시스템(1100)의 신뢰성을 향상시킬 수 있다.
제2액화가스 공급라인(1140b)은 송출펌프(1141)에 의해 송출된 액화천연가스를 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진으로 공급할 수 있다. 이를 위해 제2액화가스 공급라인(1140b)에는 액화천연가스를 압축하는 가압펌프(1142)가 마련될 수 있다. 가압펌프(1142)는 제1엔진이 요구하는 연료가스의 압력조건에 맞추어 액화천연가스를 압축할 수 있으며, 일 예로 제1엔진이 X-DF 엔진으로 이루어지는 경우에는 가압펌프(1142)는 액화천연가스를 약 16 bar의 압력조건으로 압축시켜 공급할 수 있다. 가압펌프(1142)에 의해 압축된 액화천연가스는 기화기(1143)를 통과하며 강제 기화된 후, 증발가스 공급라인(1120)과 합류하여 제1엔진에 연료가스로서 공급될 수 있다.
한편 가압펌프(1142)의 유지 보수가 요구되거나 가압펌프(1142)에 부하가 가중되어 전원을 차단해야 하는 경우에, 가압펌프(1142)의 전원을 일시에 차단하게 되면 압축된 액화천연가스가 가압펌프(1142) 또는 기타 구성에 영향을 미쳐 가압펌프(1142)의 고장 또는 안전사고 등이 발생할 우려가 있다. 또한 가압펌프(1142)의 유지 보수가 요구되거나 가압펌프(1142)가 부하가 가중되어 전원을 차단해야 하나, 엔진의 지속적인 작동이 요구되는 경우가 있을 수 있다.
이를 위해 제2액화가스 공급라인(1140b)에는 바이패스라인(1140c)이 마련될 수 있다. 바이패스라인(1140c)의 입구 측 단부는 제2액화가스 공급라인(1140b) 상의 가압펌프(1142) 전단에 연결되고, 출구 측 단부는 제2액화가스 공급라인(1140b) 상의 가압펌프(1142) 후단에 연결되되, 별도의 가압펌프(1142)를 추가적으로 구비하여, 가압펌프(1142)가 병렬로 연결되도록 마련될 수 있다.
별도의 가압펌프(1142)을 구비하는 바이패스라인(1140c)에 의해 복수개의 가압펌프(1142)가 제2액화가스 공급라인(1140b) 상에 병렬로 마련되므로, 전술한 상황에서도 가압펌프(1142) 및 기타 구성의 고장이나 안전사고의 발생을 방지할 수 있으며, 엔진의 장시간 지속적인 운행을 구현할 수 있다.
이하에서는 본 발명의 제2 실시 예에 의한 선박의 연료가스 공급시스템(2100)에 대해 설명한다.
도 2은 본 발명의 제2 실시 예에 의한 선박의 연료가스 공급시스템(2100)을 나타내는 개념도이다.
도 2을 참조하면, 본 발명의 제2 실시 예에 의한 선박의 연료가스 공급시스템(2100)은 저장탱크(2110), 저장탱크(2110)의 증발가스를 엔진으로 공급하는 액화가스 공급라인(2140), 증발가스 공급라인(2120)을 통과하는 증발가스의 일부를 재액화시키는 재액화라인(2130), 저장탱크(2110)의 액화가스를 엔진으로 공급하는 액화가스 공급라인(2140), 재액화라인(2130)으로 공급되는 증발가스를 제1농도의 질소성분을 함유하는 제1가스흐름과 제2농도의 질소성분을 함유하는 제2가스흐름으로 분리하는 질소분리기(2150), 엔진으로 공급되는 연료가스의 발열량을 측정 및 조절하는 발열량 조절부를 포함하여 마련될 수 있다.
저장탱크(2110)는 액화천연가스 및 증발가스를 수용 또는 저장하도록 마련된다. 저장탱크(2110)는 외부의 열 침입에 의한 액화천연가스의 기화를 최소화할 수 있도록 단열 처리된 멤브레인 타입의 화물창으로 마련될 수 있다. 저장탱크(2110)는 천연가스의 생산지 등으로부터 액화천연가스를 공급받아 수용 또는 저장하여 목적지에 이르러 하역하기까지 액화천연가스 및 증발가스를 안정적으로 보관하되 후술하는 바와 같이 선박의 추진용 엔진 또는 선박의 발전용 엔진 등의 연료가스로 이용되도록 마련될 수 있다.
저장탱크(2110)는 일반적으로 단열 처리되어 설치되나, 외부의 열 침입을 완전히 차단하는 것은 실질적으로 어려우므로, 저장탱크(2110) 내부에는 액화천연가스가 자연적으로 기화하여 발생하는 증발가스가 존재하게 된다. 이러한 증발가스는 저장탱크(2110)의 내부압력을 상승시켜 저장탱크(2110)의 변형 및 폭발 등의 위험을 잠재하고 있으므로 증발가스를 저장탱크(2110)로부터 제거 또는 처리할 필요성이 있다. 이에 따라 저장탱크(2110) 내부에 발생된 증발가스는 본 발명의 실시 예와 같이 증발가스 공급라인(2120)에 의해 엔진의 연료가스로 이용되거나 재액화라인(2130)에 의해 재액화되어 저장탱크(2110)로 재공급될 수 있다. 이와는 달리, 도면에는 도시하지 않았으나 저장탱크(2110)의 상부에 마련되는 벤트마스트(미도시) 또는 GCU(Gas Combustion Unit, 미도시)로 공급하여 증발가스를 추가적으로 처리 또는 소모시킬 수도 있다.
엔진은 저장탱크(2110)에 수용된 액화천연가스 및 증발가스 등의 연료가스를 공급받아 선박의 추진력을 발생시키거나 선박의 내부 설비 등의 발전용 전원을 발생시킬 수 있다. 엔진은 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진과, 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 이루어질 수 있다. 일 예로 제1엔진은 상대적으로 고압의 연료가스로 출력을 발생시킬 수 있는 X-DF 엔진(약 16 bar 내지 18 bar)으로 이루어지고, 제2엔진은 상대적으로 저압의 연료가스로 출력을 발생시킬 수 있는 DFDE 엔진(약 5 bar 내지 8 bar) 등으로 이루어질 수 있다. 그러나 이에 한정되는 것은 아니며, 다양한 수의 엔진 및 다양한 종류의 엔진이 이용되는 경우에도 동일하게 이해되어야 할 것이다.
증발가스 공급라인(2120)은 저장탱크(2110)에 발생된 증발가스를 엔진에 연료가스로서 공급하도록 마련된다. 증발가스 공급라인(2120)은 그 일단이 저장탱크(2110)의 내부에 연결되어 마련되고, 타단은 후술하는 액화가스 공급라인(2140)과 합류하여 엔진에 연결되어 마련된다. 증발가스 공급라인(2120)은 저장탱크(2110) 내부의 증발가스를 공급받을 수 있도록 입구 측 단부가 저장탱크(2110) 내부의 상측에 배치될 수 있으며, 증발가스를 엔진이 요구하는 압력 및 온도조건에 맞추어 공급할 수 있도록 복수 단의 컴프레서를 구비하는 압축부(2121)가 마련될 수 있다.
압축부(2121)는 증발가스를 압축하는 컴프레서(2121a)와 압축되면서 가열된 증발가스를 냉각시키는 쿨러(2121b)를 포함할 수 있다. 압축부(2121)는 증발가스 공급라인(2120) 상에서 후술하는 재액화라인(2130)이 분기되는 지점의 전단에 마련되어 증발가스를 가압시켜줄 수 있다. 또한 엔진이 서로 다른 압력조건을 갖는 복수개의 엔진으로 이루어지는 경우에는 도 2에 도시된 바와 같이, 압축부(2121)의 중간부위로부터 증발가스 공급라인이 추가적으로 분기되어 제2엔진으로 연료가스를 공급하도록 마련될 수 있다.
도 2에서는 압축부(2121)가 3단의 컴프레서(2121a) 및 쿨러(2121b)로 이루어진 것으로 도시되어 있으나, 이는 일 예로서 엔진의 요구 압력조건 및 온도에 따라 압축부(2121)는 다양한 수의 컴프레서 및 쿨러로 이루어질 수 있다.
또한 증발가스 공급라인(2120) 상의 압축부(2121) 전단에는 후술하는 재액화라인(2130)의 열교환장치(2132)가 설치될 수 있으며, 이에 대한 상세한 설명은 후술하도록 한다.
재액화라인(2130)은 압축부(2131)를 통과한 증발가스를 추가적으로 가압하는 가압유닛(2131), 가압유닛(2131)을 통과한 증발가스를 열교환 및 냉각시키는 열교환장치(2132), 열교환장치를 통과한 증발가스를 감압시키는 팽창밸브(2133), 팽창밸브(2133)를 통과하여 재액화된 증발가스를 수용하는 기액분리기(2134), 기액분리기(2134)에서 분리된 액체성분의 증발가스를 저장탱크(2110)로 재공급하는 회수라인(2135) 및 기액분리기(2134)에서 분리된 기체성분의 증발가스를 저장탱크(2110) 또는 증발가스 공급라인(2120)으로 공급하는 재순환라인(2136)을 구비할 수 있다.
재액화라인(2130)은 증발가스 공급라인(2120) 상의 압축부(2121) 후단으로부터 분기되어 마련될 수 있다. 재액화라인(2130)이 증발가스 공급라인(2120)으로부터 분기되는 지점에는 후술하는 발열량 조절부의 유량조절장치(2161)가 마련될 수 있으며, 이에 대한 상세한 설명은 후술하도록 한다.
가압유닛(2131)은 압축부(2121)를 통과한 증발가스를 추가적으로 가압하도록 마련된다. 가압유닛(2131)은 압축부(2121)를 통과한 증발가스를 추가적으로 압축하는 컴프레서(2131a) 및 압축되면서 가열된 증발가스를 냉각시켜주는 쿨러(2131b)를 구비할 수 있다.
가압유닛(2131)은 후술하는 열교환장치(2132) 및 팽창밸브(2133)로 공급되는 증발가스를 50 bar 내지 150 bar의 압력범위로 가압하도록 마련될 수 있다. 증발가스를 50 bar 내지 150 bar의 범위로 가압한 후 냉각 및 감압시킬 경우, 증발가스의 재액화가 매우 원활하게 수행될 수 있으므로, 가압유닛(2131)은 엔진으로 공급되는 증발가스의 압력조건과는 별도로 재액화효율 또는 재액화량을 향상시킬 수 있는 압력조건에 맞추어 증발가스를 추가적으로 가압할 수 있다.
도 2에서는 가압유닛(2131)이 각각 한 개의 컴프레서(2131a) 및 쿨러(2131b)로 이루어진 경우로 도시되어 있으나 그 수에 한정되는 것은 아니며, 증발가스를 50 bar 내지 150 bar의 압력범위로 가압할 수 있다면 다양한 수의 컴프레서 및 쿨러를 구비하는 경우를 포함한다.
열교환장치(2132)는 가압유닛(2131)을 통과하여 가압된 증발가스와 증발가스 공급라인(2120)을 통과하는 압축부(2121) 전단의 증발가스를 서로 열교환하도록 마련된다. 가압유닛(2131)을 통과한 증발가스는 컴프레서(2131a)에 의해 가압되어 온도가 상승한 상태이므로, 증발가스 공급라인(2120)의 압축부(2121)를 통과하기 전의 저온의 증발가스와 서로 열교환함으로써 재액화라인(2130)을 통과하는 가압된 증발가스를 냉각시킬 수 있다. 이와 같이 별도의 냉각장치 없이, 가압유닛(2131)을 통과하여 가압된 증발가스를 증발가스 공급라인(2120)을 통과하는 증발가스와 열교환하여 냉각시킬 수 있으므로, 불필요한 전원의 낭비를 방지하고 설비 운용의 효율성을 도모할 수 있다.
팽창밸브(2133)는 열교환장치(2132)의 후단에 마련될 수 있다. 팽창밸브(2133)는 가압유닛(2131) 및 열교환장치(2132)를 통과하여 가압 및 냉각된 증발가스를 증발가스를 감압하여 추가적으로 냉각 및 팽창시켜 증발가스를 재액화시킬 수 있다. 팽창밸브(2133)는 일 예로 줄-톰슨 밸브(Joule-Thomson Valve)로 이루어질 수 있다.
기액분리기(2134)는 팽창밸브(2133)를 통과하면서 재액화된 증발가스를 수용하여 재액화된 증발가스의 액체성분과 기체성분을 분리한다. 가압된 증발가스가 팽창밸브(2133)를 통과 시 대부분의 증발가스는 재액화가 이루어지나, 플래쉬 가스가 발생함으로써 재액화된 증발가스의 기체성분이 발생할 수 있다. 이에 따라 기액분리기(2134)에 의해 분리된 재액화된 증발가스의 액체성분은 후술하는 회수라인(2135)에 의해 저장탱크(2110)로 재공급하고, 분리된 재액화된 증발가스의 기체성분은 후술하는 재순환라인(2136)에 의해 저장탱크(2110) 또는 증발가스 공급라인(2120)으로 재공급하도록 마련될 수 있다.
회수라인(2135)은 기액분리기(2134)에 의해 분리된 증발가스의 액체성분을 저장탱크(2110)로 재공급하도록 기액분리기(2134)와 저장탱크(2110)를 연결하도록 마련될 수 있다. 회수라인(2135)은 그 입구 측 단부가 기액분리기(2134)의 하측에 연결되어 마련되고, 출구 측 단부가 저장탱크(2110) 내부에 연결되어 마련될 수 있다. 회수라인(2135)에는 저장탱크(2110)로 회수되는 재액화된 증발가스의 공급량을 조절하는 개폐밸브(미도시)가 마련될 수 있다.
재순환라인(2136)은 기액분리기(2134)에 의해 분리된 재액화된 증발가스의 기체성분을 저장탱크(2110) 또는 증발가스 공급라인(2120)으로 재공급하도록 기액분리기(2134)와 저장탱크(2110) 또는 기액분리기(2134)와 증발가스 공급라인(2120)을 연결하도록 마련될 수 있다. 도 2에서는 재순환라인(2136)이 기액분리기(2134) 내부의 기체성분의 증발가스가 증발가스 공급라인(2120) 상의 압축부(2121) 전단으로 재공급하는 것으로 도시되어 있으나, 이 외에도 기액분리기(2134)로부터 저장탱크(2110)로 재공급하거나, 증발가스 공급라인(2120) 및 저장탱크(2110)로 함께 재공급하는 경우를 포함한다.
재액화라인(2130) 상의 가압유닛(2131) 전단에는 재액화라인(2130)으로 공급되는 증발가스의 질소성분을 분리하는 질소분리기(2150)가 마련될 수 있다. 이에 대한 상세한 설명은 후술하도록 한다.
액화가스 공급라인(2140)은 저장탱크(2110)에 수용 또는 저장된 액화천연가스를 엔진에 연료가스로서 공급하도록 마련된다. 액화가스 공급라인(2140)은 그 일단이 저장탱크(2110)의 내부에 연결되어 마련되고, 타단은 후술하는 증발가스 공급라인(2120)과 합류하여 엔진에 연결되어 마련될 수 있다. 액화가스 공급라인(2140)의 입구 측 단부는 저장탱크(2110) 내부의 하측에 배치될 수 있으며, 액화천연가스를 엔진 측으로 공급하기 위한 송출펌프(2141)가 마련될 수 있다.
전술한 바와 같이 엔진이 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진 및 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 이루어지는 경우에는 액화가스 공급라인(2140)은 각 엔진의 연료가스 요구조건에 맞추어 액화천연가스를 처리할 수 있도록 제1액화가스 공급라인(2140a) 및 제2액화가스 공급라인(2140b)을 포함하여 마련될 수 있다.
제1액화가스 공급라인(2140a)은 송출펌프(2141)에 의해 송출된 액화천연가스를 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 공급할 수 있다. 송출펌프(2141)가 액화천연가스를 송출하는 과정에서 액화천연가스는 저압(약 5 bar 내지 8 bar)으로 압축되므로, 제2엔진이 DFDE 엔진으로 이루어지는 경우에는 별도의 가압펌프 없이, 기화기(2144)가 송출펌프(2141)에 의해 송출된 액화천연가스를 강제 기화시켜 제2엔진이 요구하는 연료조건에 맞추어 연료가스를 공급할 수 있다.
기화기(2144) 후단에는 기액분리기(2145)가 마련될 수 있다. 제2엔진이 DFDE 엔진으로 이루어지는 경우에는 연료가스가 기체상태로 공급되어야 정상적인 출력을 발생시킬 수 있으며 엔진의 고장을 방지할 수 있다. 따라서 기화기(2144)를 통과한 액화천연가스를 기액분리기(2145)로 공급하고, 기액분리기(2145)에서 기체상태의 연료가스만을 제2엔진으로 공급함으로써, 선박의 연료가스 공급시스템(2100)의 신뢰성을 향상시킬 수 있다.
제2액화가스 공급라인(2140b)은 송출펌프(2141)에 의해 송출된 액화천연가스를 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진으로 공급할 수 있다. 이를 위해 제2액화가스 공급라인(2140b)에는 액화천연가스를 압축하는 가압펌프(2142)가 마련될 수 있다. 가압펌프(2142)는 제1엔진이 요구하는 연료가스의 압력조건에 맞추어 액화천연가스를 압축할 수 있으며, 일 예로 제1엔진이 X-DF 엔진으로 이루어지는 경우에는 가압펌프(2142)는 액화천연가스를 약 16 bar 내지 18 bar의 압력조건으로 압축시켜 공급할 수 있다. 가압펌프(2142)에 의해 압축된 액화천연가스는 기화기(2143)를 통과하며 강제 기화된 후, 증발가스 공급라인(2120)과 합류하여 제1엔진에 연료가스로서 공급될 수 있다.
한편 가압펌프(2142)의 유지 보수가 요구되거나 가압펌프(2142)에 부하가 가중되어 전원을 차단해야 하는 경우에, 가압펌프(2142)의 전원을 일시에 차단하게 되면 압축된 액화천연가스가 가압펌프(2142) 또는 기타 구성에 영향을 미쳐 가압펌프(2142)의 고장 또는 안전사고 등이 발생할 우려가 있다. 또한 가압펌프(2142)의 유지 보수가 요구되거나 가압펌프(2142)가 부하가 가중되어 전원을 차단해야 하나, 엔진의 지속적인 작동이 요구되는 경우가 있을 수 있다.
이를 위해 제2액화가스 공급라인(2140b)에는 바이패스라인(2140c)이 마련될 수 있다. 바이패스라인(2140c)의 입구 측 단부는 제2액화가스 공급라인(2140b) 상의 가압펌프(2142) 전단에 연결되고, 출구 측 단부는 제2액화가스 공급라인(2140b) 상의 가압펌프(2142) 후단에 연결되되, 별도의 가압펌프(2142)를 추가적으로 구비하여, 가압펌프(2142)가 병렬로 연결되도록 마련될 수 있다.
별도의 가압펌프(2142)을 구비하는 바이패스라인(2140c)에 의해 복수개의 가압펌프(2142)가 제2액화가스 공급라인(2140b) 상에 병렬로 마련되므로, 전술한 상황에서도 가압펌프(2142) 및 기타 구성의 고장이나 안전사고의 발생을 방지할 수 있으며, 엔진의 장시간 지속적인 운행을 구현할 수 있다.
질소분리기(2150)는 재액화라인(2130)으로 공급되는 증발가스에 함유된 질소성분을 분리하도록 마련된다.
질소분리기(2150)는 재액화라인(2130) 상의 가압유닛(2131) 전단에 마련될 수 있다. 질소분리기(2150)는 재액화라인(2130)으로 유입 또는 공급되는 증발가스를 제1농도의 질소성분을 함유하는 제1가스흐름 및 제2농도의 질소성분을 함유하는 제2가스흐름으로 분류하여, 제1가스흐름을 증발가스 공급라인(2120)으로 재합류시키거나, 엔진으로 공급하여 연료가스 이용되도록 하고, 제2가스흐름은 그대로 가압유닛(2131)으로 공급하도록 마련된다.
본 실시 예에서 설명하는 제1농도의 질소성분 및 제2농도의 질소성분은 각각 고농도의 질소성분 및 저농도의 질소성분을 의미하는 것으로서, 제1농도의 질소성분은 제2농도의 질소성분과 비교하여 상대적으로 고농도의 질소성분을 가지며, 제2농도의 질소성분은 제1농도의 질소성분과 비교하여 상대적으로 저농도의 질소성분을 갖는다. 제1농도 및 제2농도는 특정 수치에 한정되는 것은 아니며 제1농도와 제2농도 간의 농도 차이에 따른 상대적인 의미로 이해되어야 할 것이다.
천연가스는 주성분인 메탄(Methane) 외에도 에탄(Ethane), 프로판(Propane), 부탄(Butane), 질소(Nitrogen) 등을 포함하는 혼합물이다. 이 중 질소의 끓는 점은 섭씨 약 -195.8도로서, 그 외의 성분인 메탄(끓는 점 섭씨 -161.5도), 에탄(끓는 점 섭씨 -89도) 등에 비해 매우 낮다. 이에 따라 저장탱크(2110) 내부에서 자연적으로 기화하여 발생하는 자연증발가스는 끓는 점이 낮은 질소성분이 상대적으로 많이 기화되어 질소성분을 많이 함유하게 된다. 이러한 증발가스를 재액화하고자 하는 경우 질소성분은 끓는 점이 낮아 재액화가 매우 어려우므로, 증발가스의 질소성분의 농도가 증가할수록 재액화 효율이 떨어지게 된다.
이에 질소분리기(2150)가 증발가스 공급라인(2120)을 거쳐 재액화라인(2130)으로 유입 또는 공급되는 증발가스에 함유된 질소성분을 분리하여, 상대적으로 고농도인 제1농도의 질소성분을 함유하는 제1가스흐름은 증발가스 재공급라인(2151)을 통해 증발가스 공급라인(2120)으로 재합류시키거나 엔진의 연료가스로 공급하여 질소성분을 소모시키되, 상대적으로 저농도인 제2농도의 질소성분은 그대로 재액화라인(2130)을 거쳐 재액화공정을 거치도록 함으로써, 재액화라인(2130)의 재액화 성능 및 효율을 향상시킬 수 있다.
질소분리기(2150)는 멤브레인 필터, 사이클론, 가스 원심분리기 또는 보텍스 튜브 중 적어도 어느 하나를 포함하여 마련될 수 있다.
멤브레인 필터는 질소성분과의 친화도가 높은 물질을 구비하고, 가압된 증발가스가 그 압력에 의해 멤브레인 필터를 통과함으로써, 질소성분을 고농도로 함유하는 제1가스흐름이 멤브레인 필터에 의해 걸러져 증발가스 재공급라인(2151)을 통해 증발가스 공급라인(2120) 또는 제1엔진으로 공급되고, 메탄 등 질소 외의 성분을 고농도로 함유하는 제2가스흐름은 그대로 통과하여 재액화라인(2130)의 가압유닛(2131)으로 공급될 수 있다.
사이클론(Cyclone)은 질소분리기(2150)로 공급되는 증발가스를 선회 흐름으로 형성하여, 증발가스에 원심력을 작용시켜 질소성분과 메탄, 에탄 등의 질소 외의 성분을 분리하여 상대적으로 고농도인 제1농도의 질소성분을 함유하는 제1가스흐름 및 상대적으로 저농도인 제2농도의 질소성분을 함유하는 제2가스흐름으로 분리할 수 있다.
가스 원심분리기(Gas centrifuge)는 혼합기체 상태인 가압된 증발가스의 일부를 원심분리법에 의해 그 성분을 분리토록 마련된다. 가스 원심분리기는 질소분리기(2150)로 공급되는 증발가스를 원심력을 이용하여 질소성분과 질소 외의 성분으로 분리하여, 증발가스를 제1가스흐름 및 제2가스흐름으로 분리할 수 있다.
보텍스 튜브(Vortex tube)는 좁은 관을 구비하고, 좁은 관 내부의 접선형으로 고압의 기체를 공급하여 고온기류와 저온기류를 분리하는 장치이다. 질소분리기(2150)가 보텍스 튜브로 이루어지는 경우에는 증발가스를 보텍스 튜브의 내부로 공급하여 상대적으로 끓는 점이 낮은 저온의 질소성분과, 상대적으로 끓는 점이 높은 메탄, 에탄 등의 질소 외의 성분을 분리함으로써, 증발가스를 제1가스흐름 및 제2가스흐름으로 분리할 수 있다.
이와 같이 질소분리기(2150)가 멤브레인 필터, 사이클론, 가스 원심분리기 또는 보텍스 튜브 중 적어도 어느 하나를 포함하여 마련됨으로써, 재액화라인(2130)으로 공급되는 증발가스를 질소성분의 농도에 따라 제1가스흐름 및 제2가스흐름으로 분리하고, 이 중 저농도의 질소성분을 함유하는 제2가스흐름을 재액화라인(2130)으로 통과시켜 재액화공정을 수행토록 마련함으로써, 재액화라인(2130)의 재액화 효율을 향상시킬 수 있다. 이와 동시에, 고농도의 질소성분을 함유하는 제1가스흐름은 증발가스 재공급라인(2151)을 통해 증발가스 공급라인(2120)으로 재합류시키거나, 엔진으로 직접 공급하여 연료가스로 소비함으로써, 연료가스 시스템(2100) 내의 총 질소 함량을 점진적으로 낮추어 설비 운용의 효율성을 도모할 수 있다.
도 2에서는 증발가스 재공급라인(2151)의 출구 측 단부가 증발가스 공급라인(2120)으로 재합류하는 것으로 도시되어 있으나, 엔진으로 직접 공급되는 경우 등 출구 측 단부의 위치는 다양하게 변경될 수 있다.
발열량 조절부는 엔진, 특히 제1엔진으로 공급되는 연료가스의 발열량을 측정 및 조절하도록 마련된다.
발열량(Heating Value)이란 단위질량의 연료가스가 완전 연소 했을 때 방출하는 열량을 의미한다. 천연가스는 중의 메탄, 부탄 및 프로판은 상대적으로 발열량이 높아 연료가스의 발열량을 상승시키는 성분(메탄의 발열량: 약 12,000kcal/kg, 부탄의 발열량: 약 11,863 kcal/kg, 프로판의 발열량: 약 2,000kcal/kg)인 반면, 질소의 발열량은 매우 낮아(질소의 발열량: 약 60kcal/kg), 질소성분의 절대적인 함량 또는 농도가 높을수록 연료가스의 총 발열량은 낮아지게 된다. 이 때 엔진으로 공급되는 연료가스의 총 발열량이 과도하게 낮아 엔진이 요구하는 최소 조건 발열량을 충족시키지 못하는 경우에는 엔진의 출력에 영향을 미치고, 엔진에 불필요한 부하를 발생시키는 원인이 된다.
전술한 바와 같이, 재액화라인(2130)의 재액화 효율 상승을 위해 질소분리기(2150)가 재액화라인(2130)으로 유입 또는 공급된 증발가스 중 저농도인 제2농도의 질소성분을 함유하는 제2가스흐름은 재액화라인(2130)으로 통과시키고, 고농도인 제1농도의 질소성분을 함유하는 제1가스흐름은 걸러내어 증발가스 공급라인(2120) 또는 엔진으로 공급하는 바, 제1가스흐름에 포함되는 고농도의 질소성분에 의해 제1엔진으로 공급되는 연료가스의 발열량이 제1엔진이 요구하는 조건 발열량보다 낮아질 우려가 있다.
도 2을 참조하면, 본 발명의 제2 실시 예에 의한 선박의 연료가스 공급시스템(2100)의 발열량 조절부는 제1엔진으로 공급되는 연료가스의 발열량을 측정 또는 산출하는 발열량 측정기(2160) 및 재액화라인(2130)으로 공급되는 증발가스의 공급량을 조절하는 유량조절장치(2161)를 포함하여 마련될 수 있다.
발열량 측정기(2160)는 증발가스 공급라인(2120) 및 증발가스 재공급라인(2151)을 통해 제1엔진으로 공급되는 증발가스 및 제1가스흐름을 포함한 연료가스의 발열량을 실시간으로 측정할 수 있다. 발열량 측정기(2160)는 디스플레이 등으로 이루어지는 표시부(미도시)로 측정된 연료가스의 발열량 정보를 전송하여 선박의 탑승자에게 이를 알리거나, 측정된 연료가스의 발열량 정보를 제어부(미도시)로 전송하고, 제어부는 기 입력된 제1엔진의 조건 발열량과 발열량 측정기(2160)로부터 전송된 연료가스의 발열량 정보를 비교 분석하여 후술하는 유량조절장치(2161)의 개폐 정도를 제어할 수 있다.
유량조절장치(2161)는 증발가스 공급라인(2120)으로부터 재액화라인(2130)이 분기되는 지점에 마련될 수 있다. 유량조절장치(2161)는 일 예로 삼방밸브(3 Way valve)로 이루어져 재액화라인(2130)으로 공급되는 증발가스의 공급량을 조절할 수 있으나, 이에 한정되는 것은 아니다. 유량조절장치(2161)는 발열량 측정기(2160)에 의해 측정된 연료가스의 발열량 정보 및 제1엔진의 조건 발열량 정보에 근거하여 작업자에 의한 수동 또는 제어부에 의해 자동적으로 그 개폐정도가 조절될 수 있다.
일 예로, 발열량 측정기(2160)가 측정한 연료가스의 발열량이 제1엔진의 조건 발열량 보다 작은 경우, 유량조절장치(2161)가 재액화라인(2130)으로 공급되는 증발가스의 공급량을 감소시키고, 증발가스 공급라인(2120)을 따라 제1엔진으로 곧바로 공급되는 증발가스의 공급량은 증가시키도록 개폐작동 될 수 있다. 이로써, 재액화라인(2130)에 설치되는 질소분리기(2150)를 거쳐 증발가스 재공급라인(2151)으로 공급되는 제1가스흐름의 유량이 감소됨에 따라 제1엔진에 공급되는 연료가스의 발열량을 증가시킬 수 있다.
이와는 반대로, 발열량 측정기(2160)가 측정한 연료가스의 발열량이 제1엔진의 조건 발열량을 상회하거나 충분히 만족시키는 경우에는 유량조절장치(2161)가 재액화라인(2130)으로 공급되는 증발가스의 공급량을 증가시키고, 증발가스 공급라인(2120)을 따라 제1엔진으로 공급되는 증발가스의 공급량은 감소시키도록 개폐작동 될 수 있다. 이로써 재액화라인(2130)으로 유입되어 질소분리기(2150)를 거쳐 증발가스 재공급라인(2151)으로 공급되는 제1가스흐름의 유량이 증가하여 연료가스의 발열량을 적정 수준으로 조절함과 동시에, 재액화라인(2130)의 가압유닛(2131)으로 공급되는 저농도의 질소성분을 함유하는 제2가스흐름의 유량을 증가하여 증발가스의 재액화량을 증가시킬 수 있다.
이하에서는 본 발명의 제3 실시 예에 의한 선박의 연료가스 공급시스템(2200)에 대해 설명한다.
이하에서 설명하는 본 발명의 제3 실시 예에 의한 선박의 연료가스 공급시스템(2200)에 대한 설명 중, 별도의 도면부호를 들어 추가적으로 설명하는 경우 외에는 전술한 본 발명의 제2 실시 예에 의한 선박의 연료가스 공급시스템(2100)에 대한 설명과 동일한 것으로서, 내용의 중복을 방지하기 위해 설명을 생략한다.
본 발명의 제3 실시 예에 의한 선박의 연료가스 공급시스템(2200)의 발열량 조절부는 제1엔진으로 공급되는 연료가스의 발열량을 측정 또는 산출하는 발열량 측정기(2260)와, 재액화라인(2130) 상의 질소분리기(2150) 전단의 증발가스를 질소분리기(2150) 후단으로 순환시키는 발열량 조절라인(2261) 및 발열량 조절라인(2261)에 마련되는 유량조절밸브(2262)를 포함하여 마련될 수 있다.
발열량 측정기(2260)는 증발가스 공급라인(2120) 및 증발가스 재공급라인(2151)을 통해 제1엔진으로 공급되는 증발가스 및 제1가스흐름을 포함한 연료가스의 발열량을 실시간으로 측정할 수 있다. 발열량 측정기(2260)는 디스플레이 등으로 이루어지는 표시부(미도시)로 측정된 연료가스의 발열량 정보를 전송하여 선박의 탑승자에게 이를 알리거나, 측정된 연료가스의 발열량 정보를 제어부(미도시)로 전송하고, 제어부는 기 입력된 제1엔진의 조건 발열량과 발열량 측정기(2260)로부터 전송된 연료가스의 발열량 정보를 비교 분석하여 후술하는 발열량 조절라인(2261)에 마련되는 유량조절밸브(2262)의 개폐 정도를 제어할 수 있다.
발열량 조절라인(2261)은 재액화라인(2130)으로 유입 또는 공급된 증발가스 중 질소분리기(2150) 전단의 증발가스를 질소분리기(2150) 후단으로 곧바로 공급하도록 마련된다. 이를 위해 발열량 조절라인(2261)은 입구 측 단부가 재액화라인(2130) 상의 질소분리기(2150) 전단에 연결되고 출구 측 단부가 재액화라인(2130) 상의 질소분리기(2150) 후단에 연결되도록 마련된다. 발열량 조절라인(2261)은 재액화라인(2130)으로 유입 또는 공급된 증발가스 중 일부를 질소분리기(2150)를 거치지 않고 직접 재액화라인(2130)의 가압유닛(2131)으로 공급하도록 마련되어, 질소분리기(2150)에서 분리되는 제1가스흐름의 유량을 감소시켜 제1엔진으로 공급되는 연료가스의 발열량을 상승시킬 수 있다. 이에 대한 상세한 설명은 후술하도록 한다.
유량조절밸브(2262)는 발열량 조절라인(2261)에 마련되어 발열량 조절라인(2261)을 따라 이송되는 증발가스의 공급량을 조절하도록 마련된다. 유량조절밸브(2262)는 발열량 측정기(2260)에 의해 측정된 연료가스의 발열량 정보 및 제1엔진의 조건 발열량 정보에 근거하여 작업자에 의한 수동 또는 제어부(미도시)에 의해 자동적으로 그 개폐정도가 조절될 수 있다.
일 예로, 발열량 측정기(2260)가 측정한 연료가스의 발열량이 제1엔진의 조건 발열량 보다 작은 경우, 유량조절밸브(2262)는 발열량 조절라인(2261)을 따라 이송되는 증발가스의 공급량을 증가시키도록 개방될 수 있다. 발열량 조절라인(2261)을 따라 이송되는 증발가스의 공급량이 증가됨과 동시에, 재액화라인(2130) 상의 질소분리기(2150)로 공급되는 증발가스의 유량은 상대적으로 감소하게 되고, 이에 따라 질소분리기(2150)에서 분리되어 증발가스 재공급라인(2151)을 따라 이송되는 고농도의 질소성분을 함유하는 제1가스흐름의 공급량 역시 감소하게 된다. 이로써 제1엔진으로 공급되는 연료가스의 발열량을 증가시킬 수 있다.
이와는 반대로, 발열량 측정기(2260)가 측정한 연료가스의 발열량이 제1엔진의 조건 발열량을 상회하거나 충분히 만족시키는 경우에는 유량조절밸브(2262)는 발열량 조절라인(2261)을 따라 이송되는 증발가스의 공급량을 감소시키도록 폐쇄될 수 있다. 연료가스의 발열량이 제1엔진의 조건 발열량을 충분히 만족시키는 경우에는 재액화라인(2130)으로 유입된 증발가스를 질소분리기(2150)를 거치도록 하여, 고농도의 질소성분을 함유하는 제1가스흐름의 유량을 증가시켜 질소성분을 효과적으로 소모 및 처리할 수 있다.
이하에서는 본 발명의 제4 실시 예에 의한 선박의 연료가스 공급시스템(2300)에 대해 설명한다.
이하에서 설명하는 본 발명의 제4 실시 예에 의한 선박의 연료가스 공급시스템(2300)에 대한 설명 중, 별도의 도면부호를 들어 추가적으로 설명하는 경우 외에는 전술한 본 발명의 제2 실시 예에 의한 선박의 연료가스 공급시스템(2100)에 대한 설명과 동일한 것으로서, 내용의 중복을 방지하기 위해 설명을 생략한다.
본 발명의 제4 실시 예에 의한 선박의 연료가스 공급시스템(2300)의 발열량 조절부는 제1엔진으로 공급되는 연료가스의 발열량을 측정 또는 산출하는 발열량 측정기(2360)와, 질소분리기(2150)에 의해 분리된 제1가스흐름의 일부를 질소분리기(2150) 후단으로 순환시키는 발열량 조절라인(2361) 및 발열량 조절라인(2361)에 마련되는 유량조절밸브(2362)를 포함하여 마련될 수 있다.
발열량 측정기(2360)는 증발가스 공급라인(2120) 및 증발가스 재공급라인(2151)을 통해 제1엔진으로 공급되는 증발가스 및 제1가스흐름을 포함한 연료가스의 발열량을 실시간으로 측정할 수 있다. 발열량 측정기(2260)는 디스플레이 등으로 이루어지는 표시부(미도시)로 측정된 연료가스의 발열량 정보를 전송하여 선박의 탑승자에게 이를 알리거나, 측정된 연료가스의 발열량 정보를 제어부(미도시)로 전송하고, 제어부는 기 입력된 제1엔진의 조건 발열량과 발열량 측정기(2360)로부터 전송된 연료가스의 발열량 정보를 비교 분석하여 후술하는 발열량 조절라인(2361)에 마련되는 유량조절밸브(2362)의 개폐 정도를 제어할 수 있다.
발열량 조절라인(2361)은 질소분리기(2150)에 의해 분리된 고농도의 질소성분을 함유하는 제1가스흐름의 일부를 재액화라인(2130) 상의 질소분리기(2150) 후단으로 순환시키도록 마련된다. 이를 위해 발열량 조절라인(2361)은 입구 측 단부가 제1가스흐름이 이송되는 증발가스 재공급라인(2151)에 연결되고, 출구 측 단부가 재액화라인(2130) 상의 질소분리기(2150) 후단에 연결되도록 마련된다. 발열량 조절라인(2361)은 증발가스 재공급라인(2151)을 따라 이송되는 고농도의 질소성분을 함유하는 제1가스흐름의 일부를 재액화라인(2130) 측으로 순환시키도록 마련되어, 제1엔진으로 공급되는 제1가스흐름의 유량을 감소시켜 제1엔진으로 공급되는 연료가스의 발열량을 상승시킬 수 있다. 이에 대한 상세한 설명은 후술하도록 한다.
유량조절밸브(2362)는 발열량 조절라인(2361)에 마련되어 발열량 조절라인(2361)을 따라 이송되는 제1가스흐름의 공급량을 조절하도록 마련된다. 유량조절밸브(2362)는 발열량 측정기(2360)에 의해 측정된 연료가스의 발열량 정보 및 제1엔진의 조건 발열량 정보에 근거하여 작업자에 의한 수동 또는 제어부(미도시)에 의해 자동적으로 그 개폐정도가 조절될 수 있다.
일 예로, 발열량 측정기(2360)가 측정한 연료가스의 발열량이 제1엔진의 조건 발열량 보다 작은 경우, 유량조절밸브(2362)는 발열량 조절라인(2361)을 따라 이송되는 제1가스흐름의 공급량을 증가시키도록 개방될 수 있다. 발열량 조절라인(2361)을 따라 이송되는 제1가스흐름의 공급량이 증가됨과 동시에, 증발가스 재공급라인(2151)을 따라 이송되는 제1가스흐름의 공급량은 상대적으로 감소하게 되므로, 이로써 제1엔진으로 공급되는 연료가스의 발열량을 증가시킬 수 있다.
이와는 반대로, 발열량 측정기(2360)가 측정한 연료가스의 발열량이 제1엔진의 조건 발열량을 상회하거나 충분히 만족시키는 경우에는 유량조절밸브(2362)는 발열량 조절라인(2361)을 따라 이송되는 제1가스흐름의 공급량을 감소시키도록 폐쇄될 수 있다. 연료가스의 발열량이 제1엔진의 조건 발열량을 충분히 만족시키는 경우에는 질소분리기(2150)에 의해 분리된 고농도의 질소성분을 함유하는 제1가스흐름을 증발가스 재공급라인(2151)으로 많이 이송되도록 하여, 제1엔진의 연료가스로 소모되도록 함으로써 질소성분을 효과적으로 소모 및 처리할 수 있다.
이하에서는 본 발명의 제5 실시 예에 의한 선박의 연료가스 공급시스템(3100)에 대해 설명한다.
도 5은 본 발명의 제5 실시 예에 의한 선박의 연료가스 공급시스템(3100)을 나타내는 개념도이다.
도 5을 참조하면, 본 발명의 제5 실시 예에 의한 선박의 연료가스 공급시스템(3100)은 저장탱크(3110), 저장탱크(3110)의 증발가스를 엔진으로 공급하는 액화가스 공급라인(3140), 증발가스 공급라인(3120)을 통과하는 증발가스의 일부를 재액화시키는 재액화라인(3130), 저장탱크(3110)의 액화가스를 엔진으로 공급하는 액화가스 공급라인(3140) 및 재액화라인(3130)으로 공급되는 증발가스에 함유된 오일을 제거하는 오일제거부(3150)를 포함할 수 있다.
저장탱크(3110)는 액화천연가스 및 증발가스를 수용 또는 저장하도록 마련된다. 저장탱크(3110)는 외부의 열 침입에 의한 액화천연가스의 기화를 최소화할 수 있도록 단열 처리된 멤브레인 타입의 화물창으로 마련될 수 있다. 저장탱크(3110)는 천연가스의 생산지 등으로부터 액화천연가스를 공급받아 수용 또는 저장하여 목적지에 이르러 하역하기까지 액화천연가스 및 증발가스를 안정적으로 보관하되 후술하는 바와 같이 선박의 추진용 엔진 또는 선박의 발전용 엔진 등의 연료가스로 이용되도록 마련될 수 있다.
저장탱크(3110)는 일반적으로 단열 처리되어 설치되나, 외부의 열 침입을 완전히 차단하는 것은 실질적으로 어려우므로, 저장탱크(3110) 내부에는 액화천연가스가 자연적으로 기화하여 발생하는 증발가스가 존재하게 된다. 이러한 증발가스는 저장탱크(3110)의 내부압력을 상승시켜 저장탱크(3110)의 변형 및 폭발 등의 위험을 잠재하고 있으므로 증발가스를 저장탱크(3110)로부터 제거 또는 처리할 필요성이 있다. 이에 따라 저장탱크(3110) 내부에 발생된 증발가스는 본 발명의 제5 실시 예와 같이 증발가스 공급라인(3120)에 의해 엔진의 연료가스로 이용되거나 재액화라인(3130)에 의해 재액화되어 저장탱크(3110)로 재공급될 수 있다. 이와는 달리, 도면에는 도시하지 않았으나 저장탱크(3110)의 상부에 마련되는 벤트마스트(미도시) 또는 GCU(Gas Combustion Unit, 미도시)로 공급하여 증발가스를 추가적으로 처리 또는 소모시킬 수도 있다.
엔진은 저장탱크(3110)에 수용된 액화천연가스 및 증발가스 등의 연료가스를 공급받아 선박의 추진력을 발생시키거나 선박의 내부 설비 등의 발전용 전원을 발생시킬 수 있다. 엔진은 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진과, 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 이루어질 수 있다. 일 예로 제1엔진은 상대적으로 고압의 연료가스로 출력을 발생시킬 수 있는 X-DF 엔진(약 16 bar 내지 18 bar)으로 이루어지고, 제2엔진은 상대적으로 저압의 연료가스로 출력을 발생시킬 수 있는 DFDE 엔진(약 5 bar 내지 8 bar) 등으로 이루어질 수 있다. 그러나 이에 한정되는 것은 아니며, 다양한 수의 엔진 및 다양한 종류의 엔진이 이용되는 경우에도 동일하게 이해되어야 할 것이다.
증발가스 공급라인(3120)은 저장탱크(3110)에 발생된 증발가스를 엔진에 연료가스로서 공급하도록 마련된다. 증발가스 공급라인(3120)은 그 일단이 저장탱크(3110)의 내부에 연결되어 마련되고, 타단은 후술하는 액화가스 공급라인(3140)과 합류하여 엔진에 연결되어 마련된다. 증발가스 공급라인(3120)은 저장탱크(3110) 내부의 증발가스를 공급받을 수 있도록 입구 측 단부가 저장탱크(3110) 내부의 상측에 배치될 수 있으며, 증발가스를 엔진이 요구하는 압력 및 온도조건에 맞추어 공급할 수 있도록 복수 단의 컴프레서를 구비하는 압축부(3121)가 마련될 수 있다.
압축부(3121)는 증발가스를 압축하는 컴프레서(3121a)와 압축되면서 가열된 증발가스를 냉각시키는 쿨러(3121b)를 포함할 수 있다. 압축부(3121)는 증발가스 공급라인(3120) 상에서 후술하는 재액화라인(3130)이 분기되는 지점의 전단에 마련되어 증발가스를 가압시켜줄 수 있다. 또한 엔진이 서로 다른 압력조건을 갖는 복수개의 엔진으로 이루어지는 경우에는 도 5에 도시된 바와 같이, 압축부(3121)의 중간부위로부터 증발가스 공급라인이 추가적으로 분기되어 제2엔진으로 연료가스를 공급하도록 마련될 수 있다.
도 5에서는 압축부(3121)가 3단의 컴프레서(3121a) 및 쿨러(3121b)로 이루어진 것으로 도시되어 있으나, 이는 일 예로서 엔진의 요구 압력조건 및 온도에 따라 압축부(3121)는 다양한 수의 컴프레서 및 쿨러로 이루어질 수 있다.
또한 증발가스 공급라인(3120) 상의 압축부(3121) 전단에는 후술하는 재액화라인(3130)의 열교환장치(3132)가 설치될 수 있으며, 이에 대한 상세한 설명은 후술하도록 한다.
재액화라인(3130)은 압축부(3131)를 통과한 증발가스를 추가적으로 가압하는 가압유닛(3131), 가압유닛(3131)을 통과한 증발가스를 열교환 및 냉각시키는 열교환장치(3132), 열교환장치를 통과한 증발가스를 감압시키는 팽창밸브(3133), 팽창밸브(3133)를 통과하여 재액화된 증발가스를 수용하는 기액분리기(3134), 기액분리기(3134)에서 분리된 액체성분의 증발가스를 저장탱크(3110)로 재공급하는 회수라인(3135) 및 기액분리기(3134)에서 분리된 기체성분의 증발가스를 저장탱크(3110) 또는 증발가스 공급라인(3120)으로 공급하는 재순환라인(3136)을 구비할 수 있다.
재액화라인(3130)은 증발가스 공급라인(3120) 상의 압축부(3121) 후단으로부터 분기되어 마련될 수 있다. 재액화라인(3130)과 증발가스 공급라인(3120)이 분기되는 지점에는 삼방밸브(미도시)가 마련될 수 있으며, 삼방밸브는 제1엔진 또는 재액화라인(3130)으로 공급되는 증발가스의 공급량을 조절할 수 있다. 삼방밸브는 작업자가 수동으로 개폐여부 및 개폐정도를 조절하거나, 제어부(미도시)에 의해 그 작동이 자동적으로 구현될 수도 있다.
가압유닛(3131)은 압축부(3121)를 통과한 증발가스를 추가적으로 가압하도록 마련된다. 가압유닛(3131)은 압축부(3121)를 통과한 증발가스를 추가적으로 압축하는 컴프레서(3131a) 및 압축되면서 가열된 증발가스를 냉각시켜주는 쿨러(3131b)를 구비할 수 있다.
가압유닛(3131)은 후술하는 열교환장치(3132) 및 팽창밸브(3133)로 공급되는 증발가스를 50 bar 내지 150 bar의 압력범위로 가압하도록 마련될 수 있다. 증발가스를 50 bar 내지 150 bar의 범위로 가압한 후 냉각 및 감압시킬 경우, 증발가스의 재액화가 매우 원활하게 수행될 수 있으므로, 가압유닛(3131)은 엔진으로 공급되는 증발가스의 압력조건과는 별도로 재액화효율 또는 재액화량을 향상시킬 수 있는 압력조건에 맞추어 증발가스를 추가적으로 가압할 수 있다.
도 5에서는 가압유닛(3131)이 각각 한 개의 컴프레서(3131a) 및 쿨러(3131b)로 이루어진 경우로 도시되어 있으나 그 수에 한정되는 것은 아니며, 증발가스를 50 bar 내지 150 bar의 압력범위로 가압할 수 있다면 다양한 수의 컴프레서 및 쿨러를 구비하는 경우를 포함한다.
열교환장치(3132)는 가압유닛(3131)을 통과하여 가압된 증발가스와 증발가스 공급라인(3120)을 통과하는 압축부(3121) 전단의 증발가스를 서로 열교환하도록 마련된다. 가압유닛(3131)을 통과한 증발가스는 컴프레서(3131a)에 의해 가압되어 온도가 상승한 상태이므로, 증발가스 공급라인(3120)의 압축부(3121)를 통과하기 전의 저온의 증발가스와 서로 열교환함으로써 재액화라인(3130)을 통과하는 가압된 증발가스를 냉각시킬 수 있다. 이와 같이 별도의 냉각장치 없이, 가압유닛(3131)을 통과하여 가압된 증발가스를 증발가스 공급라인(3120)을 통과하는 증발가스와 열교환하여 냉각시킬 수 있으므로, 불필요한 전원의 낭비를 방지하고 설비 운용의 효율성을 도모할 수 있다.
팽창밸브(3133)는 열교환장치(3132)의 후단에 마련될 수 있다. 팽창밸브(3133)는 가압유닛(3131) 및 열교환장치(3132)를 통과하여 가압 및 냉각된 증발가스를 증발가스를 감압하여 추가적으로 냉각 및 팽창시켜 증발가스를 재액화시킬 수 있다. 팽창밸브(3133)는 일 예로 줄-톰슨 밸브(Joule-Thomson Valve)로 이루어질 수 있다.
기액분리기(3134)는 팽창밸브(3133)를 통과하면서 재액화된 증발가스를 수용하여 재액화된 증발가스의 액체성분과 기체성분을 분리한다. 가압된 증발가스가 팽창밸브(3133)를 통과 시 대부분의 증발가스는 재액화가 이루어지나, 플래쉬 가스가 발생함으로써 재액화된 증발가스의 기체성분이 발생할 수 있다. 이에 따라 기액분리기(3134)에 의해 분리된 재액화된 증발가스의 액체성분은 후술하는 회수라인(3135)에 의해 저장탱크(3110)로 재공급하고, 분리된 재액화된 증발가스의 기체성분은 후술하는 재순환라인(3136)에 의해 저장탱크(3110) 또는 증발가스 공급라인(3120)으로 재공급하도록 마련될 수 있다.
회수라인(3135)은 기액분리기(3134)에 의해 분리된 증발가스의 액체성분을 저장탱크(3110)로 재공급하도록 기액분리기(3134)와 저장탱크(3110)를 연결하도록 마련될 수 있다. 회수라인(3135)은 그 입구 측 단부가 기액분리기(3134)의 하측에 연결되어 마련되고, 출구 측 단부가 저장탱크(3110) 내부에 연결되어 마련될 수 있다. 회수라인(3135)에는 저장탱크(3110)로 회수되는 재액화된 증발가스의 공급량을 조절하는 개폐밸브(미도시)가 마련될 수 있다.
재순환라인(3136)은 기액분리기(3134)에 의해 분리된 재액화된 증발가스의 기체성분을 저장탱크(3110) 또는 증발가스 공급라인(3120)으로 재공급하도록 기액분리기(3134)와 저장탱크(3110) 또는 기액분리기(3134)와 증발가스 공급라인(3120)을 연결하도록 마련될 수 있다. 도 5에서는 재순환라인(3136)이 기액분리기(3134) 내부의 기체성분의 증발가스가 증발가스 공급라인(3120) 상의 압축부(3121) 전단으로 재공급하는 것으로 도시되어 있으나, 이 외에도 기액분리기(3134)로부터 저장탱크(3110)로 재공급하거나, 증발가스 공급라인(3120) 및 저장탱크(3110)로 함께 재공급하는 경우를 포함한다.
액화가스 공급라인(3140)은 저장탱크(3110)에 수용 또는 저장된 액화천연가스를 엔진에 연료가스로서 공급하도록 마련된다. 액화가스 공급라인(3140)은 그 일단이 저장탱크(3110)의 내부에 연결되어 마련되고, 타단은 후술하는 증발가스 공급라인(3120)과 합류하여 엔진에 연결되어 마련될 수 있다. 액화가스 공급라인(3140)의 입구 측 단부는 저장탱크(3110) 내부의 하측에 배치될 수 있으며, 액화천연가스를 엔진 측으로 공급하기 위한 송출펌프(3141)가 마련될 수 있다.
전술한 바와 같이 엔진이 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진 및 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 이루어지는 경우에는 액화가스 공급라인(3140)은 각 엔진의 연료가스 요구조건에 맞추어 액화천연가스를 처리할 수 있도록 제1액화가스 공급라인(3140a) 및 제2액화가스 공급라인(3140b)을 포함하여 마련될 수 있다.
제1액화가스 공급라인(3140a)은 송출펌프(3141)에 의해 송출된 액화천연가스를 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 공급할 수 있다. 송출펌프(3141)가 액화천연가스를 송출하는 과정에서 액화천연가스는 저압(약 5 bar 내지 8 bar)으로 압축되므로, 제2엔진이 DFDE 엔진으로 이루어지는 경우에는 별도의 가압펌프 없이, 기화기(3144)가 송출펌프(3141)에 의해 송출된 액화천연가스를 강제 기화시켜 제2엔진이 요구하는 연료조건에 맞추어 연료가스를 공급할 수 있다.
기화기(3144) 후단에는 기액분리기(3145)가 마련될 수 있다. 제2엔진이 DFDE 엔진으로 이루어지는 경우에는 연료가스가 기체상태로 공급되어야 정상적인 출력을 발생시킬 수 있으며 엔진의 고장을 방지할 수 있다. 따라서 기화기(3144)를 통과한 액화천연가스를 기액분리기(3145)로 공급하고, 기액분리기(3145)에서 기체상태의 연료가스만을 제2엔진으로 공급함으로써, 선박의 연료가스 공급시스템(3100)의 신뢰성을 향상시킬 수 있다.
제2액화가스 공급라인(3140b)은 송출펌프(3141)에 의해 송출된 액화천연가스를 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진으로 공급할 수 있다. 이를 위해 제2액화가스 공급라인(3140b)에는 액화천연가스를 압축하는 가압펌프(3142)가 마련될 수 있다. 가압펌프(3142)는 제1엔진이 요구하는 연료가스의 압력조건에 맞추어 액화천연가스를 압축할 수 있으며, 일 예로 제1엔진이 X-DF 엔진으로 이루어지는 경우에는 가압펌프(3142)는 액화천연가스를 약 16 bar 내지 18 bar의 압력조건으로 압축시켜 공급할 수 있다. 가압펌프(3142)에 의해 압축된 액화천연가스는 기화기(3143)를 통과하며 강제 기화된 후, 증발가스 공급라인(3120)과 합류하여 제1엔진에 연료가스로서 공급될 수 있다.
한편 가압펌프(3142)의 유지 보수가 요구되거나 가압펌프(3142)에 부하가 가중되어 전원을 차단해야 하는 경우에, 가압펌프(3142)의 전원을 일시에 차단하게 되면 압축된 액화천연가스가 가압펌프(3142) 또는 기타 구성에 영향을 미쳐 가압펌프(3142)의 고장 또는 안전사고 등이 발생할 우려가 있다. 또한 가압펌프(3142)의 유지 보수가 요구되거나 가압펌프(3142)가 부하가 가중되어 전원을 차단해야 하나, 엔진의 지속적인 작동이 요구되는 경우가 있을 수 있다.
이를 위해 제2액화가스 공급라인(3140b)에는 바이패스라인(3140c)이 마련될 수 있다. 바이패스라인(3140c)의 입구 측 단부는 제2액화가스 공급라인(3140b) 상의 가압펌프(3142) 전단에 연결되고, 출구 측 단부는 제2액화가스 공급라인(3140b) 상의 가압펌프(3142) 후단에 연결되되, 별도의 가압펌프(3142)를 추가적으로 구비하여, 가압펌프(3142)가 병렬로 연결되도록 마련될 수 있다.
별도의 가압펌프(3142)을 구비하는 바이패스라인(3140c)에 의해 복수개의 가압펌프(3142)가 제2액화가스 공급라인(3140b) 상에 병렬로 마련되므로, 전술한 상황에서도 가압펌프(3142) 및 기타 구성의 고장이나 안전사고의 발생을 방지할 수 있으며, 엔진의 장시간 지속적인 운행을 구현할 수 있다.
오일제거부(3150)는 재액화라인(3130)으로 유입 또는 공급되는 증발가스에 함유된 오일을 제거하도록 마련된다.
증발가스 공급라인(3120)의 압축부(3121) 및 재액화라인(3130)의 가압유닛(3131)에 구비되는 컴프레서(3121a, 131a)는 운용 시 윤활유(Lubrication Oil) 등의 오일이 이용된다. 이러한 오일은 컴프레서의 원활한 작동 및 효과적인 가압공정에 도움을 주나, 증발가스의 가압공정 시 증발가스에 혼합되어 재액화라인 등의 관 내 또는 팽창밸브 등의 설비 내에 축적되어 증발가스의 원활한 이송을 방해하거나 설비 고장의 원인이 될 우려가 있으며, 특히 재액화된 증발가스의 조성 품질을 저하시키는 문제점이 있다.
이에 오일제거부(3150)가 재액화라인(3130) 상의 가압유닛(3131) 후단에 마련되어, 압축부(3121) 및 가압유닛(3131)의 컴프레서(3121a, 131a)를 거치면서 증발가스에 함유된 윤활유 등의 오일을 제거할 수 있다. 이로써 선박의 연료가스 공급시스템(3100)의 원활한 작동 및 설비 운용의 안정성을 도모함과 동시에, 증발가스 및 액화천연가스의 조성 품질을 향상시킬 수 있다. 오일제거부(3150)는 필터 또는 거름막 등을 포함할 수 있으나 이에 한정되는 것은 아니며, 다양한 방식 또는 형식의 장치로 이루어질 수 있다.
도 6은 본 발명의 제6 실시 예에 의한 선박의 연료가스 공급시스템(4100)을 나타내는 개념도이다.
도 6을 참조하면, 본 발명의 제6 실시 예에 의한 선박의 연료가스 공급시스템(4100)은 저장탱크(4110), 저장탱크(4110)의 증발가스를 엔진으로 공급하는 액화가스 공급라인(4140), 증발가스 공급라인(4120)을 통과하는 증발가스의 일부를 재액화시키는 재액화라인(4130) 및 저장탱크(4110)의 액화가스를 엔진으로 공급하는 액화가스 공급라인(4140)을 포함할 수 있다.
저장탱크(4110)는 액화천연가스 및 증발가스를 수용 또는 저장하도록 마련된다. 저장탱크(4110)는 외부의 열 침입에 의한 액화천연가스의 기화를 최소화할 수 있도록 단열 처리된 멤브레인 타입의 화물창으로 마련될 수 있다. 저장탱크(4110)는 천연가스의 생산지 등으로부터 액화천연가스를 공급받아 수용 또는 저장하여 목적지에 이르러 하역하기까지 액화천연가스 및 증발가스를 안정적으로 보관하되 후술하는 바와 같이 선박의 추진용 엔진 또는 선박의 발전용 엔진 등의 연료가스로 이용되도록 마련될 수 있다.
저장탱크(4110)는 일반적으로 단열 처리되어 설치되나, 외부의 열 침입을 완전히 차단하는 것은 실질적으로 어려우므로, 저장탱크(4110) 내부에는 액화천연가스가 자연적으로 기화하여 발생하는 증발가스가 존재하게 된다. 이러한 증발가스는 저장탱크(4110)의 내부압력을 상승시켜 저장탱크(4110)의 변형 및 폭발 등의 위험을 잠재하고 있으므로 증발가스를 저장탱크(4110)로부터 제거 또는 처리할 필요성이 있다. 이에 따라 저장탱크(4110) 내부에 발생된 증발가스는 본 발명의 실시 예와 같이 증발가스 공급라인(4120)에 의해 엔진의 연료가스로 이용되거나 재액화라인(4130)에 의해 재액화되어 저장탱크(4110)로 재공급될 수 있다. 이와는 달리, 도면에는 도시하지 않았으나 저장탱크(4110)의 상부에 마련되는 벤트마스트(미도시) 또는 GCU(Gas Combustion Unit, 미도시)로 공급하여 증발가스를 추가적으로 처리 또는 소모시킬 수도 있다.
엔진은 저장탱크(4110)에 수용된 액화천연가스 및 증발가스 등의 연료가스를 공급받아 선박의 추진력을 발생시키거나 선박의 내부 설비 등의 발전용 전원을 발생시킬 수 있다. 엔진은 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진과, 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 이루어질 수 있다. 일 예로 제1엔진은 상대적으로 고압의 연료가스로 출력을 발생시킬 수 있는 X-DF 엔진(약 16 bar 내지 18 bar)으로 이루어지고, 제2엔진은 상대적으로 저압의 연료가스로 출력을 발생시킬 수 있는 DFDE 엔진(약 5 bar 내지 8 bar) 등으로 이루어질 수 있다. 그러나 이에 한정되는 것은 아니며, 다양한 수의 엔진 및 다양한 종류의 엔진이 이용되는 경우에도 동일하게 이해되어야 할 것이다.
증발가스 공급라인(4120)은 저장탱크(4110)에 발생된 증발가스를 제1엔진에 연료가스로서 공급하도록 마련된다. 증발가스 공급라인(4120)은 그 일단이 저장탱크(4110)의 내부에 연결되어 마련되고, 타단은 후술하는 액화가스 공급라인(4140)과 합류하여 제1엔진에 연결되어 마련된다. 증발가스 공급라인(4120)은 저장탱크(4110) 내부의 증발가스를 공급받을 수 있도록 입구 측 단부가 저장탱크(4110) 내부의 상측에 배치될 수 있으며, 증발가스를 엔진이 요구하는 압력 및 온도조건에 맞추어 공급할 수 있도록 복수 단의 컴프레서를 구비하는 압축부(4121)가 마련될 수 있다.
압축부(4121)는 증발가스를 압축하는 컴프레서(4121a)와 압축되면서 가열된 증발가스를 냉각시키는 쿨러(4121b)를 포함할 수 있다. 압축부(4121)는 증발가스 공급라인(4120) 상에서 후술하는 재액화라인(4130)이 분기되는 지점의 전단에 마련되어 증발가스를 가압시켜줄 수 있다. 또한 엔진이 서로 다른 압력조건을 갖는 복수개의 엔진으로 이루어지는 경우에는 도 6에 도시된 바와 같이, 압축부(4121)의 중간부위로부터 증발가스 공급라인이 추가적으로 분기되어 제2엔진으로 연료가스를 공급하도록 마련될 수 있다.
도 6에서는 압축부(4121)가 3단의 컴프레서(4121a) 및 쿨러(4121b)로 이루어진 것으로 도시되어 있으나, 이는 일 예로서 엔진의 요구 압력조건 및 온도에 따라 압축부(4121)는 다양한 수의 컴프레서 및 쿨러로 이루어질 수 있다.
또한 증발가스 공급라인(4120) 상의 압축부(4121) 전단에는 후술하는 재액화라인(4130)의 냉각부(4132)가 설치될 수 있으며, 이에 대한 상세한 설명은 후술하도록 한다.
재액화라인(4130)은 압축부(4131)를 통과한 증발가스를 추가적으로 가압하는 가압유닛(4131), 가압유닛(4131)을 통과한 증발가스를 냉각시키는 냉각부(4132), 냉각부(4132)를 통과한 증발가스를 1차적으로 감압시키는 제1팽창밸브(4133), 제1팽창밸브(4133)를 통과하여 기액 혼합상태의 증발가스를 수용하는 제1기액분리기(4134), 제1기액분리기(4134)에서 분리된 기체성분을 제2엔진으로 공급하는 증발가스 순환라인(4135), 제1기액분리기(4134)에서 분리된 액체성분을 2차적으로 감압시키는 제2팽창밸브(4136), 제2팽창밸브(4136)를 통과하여 기액 혼합상태의 증발가스를 기체성분과 액체성분으로 분리하는 제2기액분리기(4137), 제2기액분리기(4137)에서 분리된 기체성분을 저장탱크(4110) 또는 증발가스 공급라인(4120)으로 공급하는 증발가스 회수라인(4138) 및 제2기액분리기(4137)에서 분리된 액체성분을 저장탱크(4110)로 재공급하는 액화가스 회수라인(4139)을 포함하여 마련될 수 있다.
재액화라인(4130)은 증발가스 공급라인(4120) 상의 압축부(4121) 후단으로부터 분기되어 마련될 수 있다. 재액화라인(4130)이 증발가스 공급라인(4120)으로부터 분기되는 지점에는 후술하는 발열량 조절부의 유량조절밸브(4161)가 마련될 수 있으며, 이에 대한 상세한 설명은 후술하도록 한다.
가압유닛(4131)은 압축부(4121)를 통과하여 재액화라인(4130)으로 공급되는 증발가스를 추가적으로 가압하도록 마련된다. 가압유닛(4131)은 압축부(4121)를 통과한 증발가스를 추가적으로 압축하는 컴프레서(4131a) 및 압축되면서 가열된 증발가스를 냉각시켜주는 쿨러(4131b)를 구비할 수 있다.
가압유닛(4131)은 재액화라인(4130)으로 공급되는 증발가스를 50 bar 내지 150 bar의 압력범위로 가압하도록 마련될 수 있다. 증발가스를 50 bar 내지 150 bar의 범위로 가압한 후 냉각 및 감압시킬 경우, 증발가스의 재액화가 매우 원활하게 수행될 수 있으므로, 가압유닛(4131)은 재액화효율 또는 재액화량을 향상시킬 수 있는 압력조건에 맞추어 증발가스를 추가적으로 가압할 수 있다.
도 6에서는 가압유닛(4131)이 각각 한 개의 컴프레서(4131a) 및 쿨러(4131b)로 이루어진 경우로 도시되어 있으나 그 수에 한정되는 것은 아니며, 증발가스를 50 bar 내지 150 bar의 압력범위로 가압할 수 있다면 다양한 수의 컴프레서 및 쿨러를 구비하는 경우를 포함한다.
냉각부(4132)는 가압유닛(4131)을 통과하여 추가적으로 가압된 증발가스를 냉각시키도록 마련된다. 냉각부(4132)는 가압유닛(4131)을 통과한 증발가스를 증발가스 공급라인(4120)을 따라 이송되는 압축부(4121) 전단의 증발가스 및 후술하는 증발가스 순환라인(4135)을 따라 이송되는 제1기액분리기(4134)에서 분리된 기체성분과 열교환하는 열교환장치로 이루어질 수 있다. 가압유닛(4131)을 통과한 증발가스는 압축부(4121) 및 가압유닛(4131)에 의해 가압되어 온도 및 압력이 상승한 상태이므로, 증발가스 공급라인(4120)의 압축부(4121)를 통과하기 전의 저온의 증발가스 및 증발가스 순환라인(4135)을 따라 이송되는 저온의 기체성분과 열교환함으로써, 재액화라인(4130)을 따라 이송되는 고온의 가압된 증발가스를 냉각시킬 수 있다. 이와 같이 냉각부(4132)를 열교환기로 마련함으로써, 별도의 냉각장치 없이도 가압된 증발가스를 냉각시킬 수 있으므로, 불필요한 전원의 낭비를 방지하고 설비가 단순화되어, 설비 운용의 효율성을 도모할 수 있다.
제1팽창밸브(4133)는 냉각부(4132)의 후단에 마련될 수 있다. 제1팽창밸브(4133)는 냉각부(4132)를 통과한 가압된 증발가스를 1차적으로 감압함으로써, 냉각 및 팽창시켜 재액화를 구현할 수 있다. 제1팽창밸브(4133)는 일 예로 줄-톰슨 밸브(Joule-Thomson Valve)로 이루어질 수 있다. 제1팽창밸브(4133)는 냉각부(4132)를 통과하여 냉각된 증발가스를 제2엔진이 요구하는 연료가스 압력조건에 상응하는 압력수준으로 감압시킬 수 있다. 이에 대한 자세한 설명은 후술하도록 한다.
제1기액분리기(4134)는 제1팽창밸브(4133)를 통과하여 1차적으로 냉각 및 감압되어 기액 혼합상태의 증발가스를 기체성분과 액체성분으로 분리하도록 마련된다. 냉각된 증발가스가 제1팽창밸브(4133)를 통과 시 추가 냉각 및 감압되어 재액화가 이루어지기는 하나, 감압하는 과정에서 플래쉬 가스(Flash Gas)가 발생할 수 있다. 이에 따라 제1팽창밸브(4133)를 통과하여 기액 혼합상태가 된 증발가스를 제1기액분리기(4134)가 수용함과 동시에 기체성분 및 액체성분으로 분리하여 재액화 공정의 신뢰성을 도모하고, 각 성분을 별도로 취급할 수 있다.
한편, 천연가스는 주성분인 메탄(Methane) 외에도 에탄(Ethane), 프로판(Propane), 부탄(Butane), 질소(Nitrogen) 등을 포함하는 혼합물이다. 이 중 질소의 끓는 점은 섭씨 약 -195.8도로서, 그 외의 성분인 메탄(끓는 점 섭씨 -161.5도), 에탄(끓는 점 섭씨 -89도) 등에 비해 매우 낮다. 질소성분이 매우 낮은 끓는 점을 가짐에 따라, 저장탱크(4110) 내부에 자연적으로 기화하여 발생하는 증발가스는 질소성분이 상대적으로 먼저 기화되어 질소성분을 많이 함유하게 되고, 나아가 증발가스의 질소성분의 농도가 증가할수록 증발가스의 재액화 효율은 감소하는 문제점이 존재한다.
특히 증발가스의 재액화를 위해 압축부(4121) 및 가압유닛(4131)에 의한 증발가스 가압과 냉각부(4132)에 의한 가압된 증발가스의 냉각 이후, 제1팽창밸브(4133)에 의해 가압된 증발가스의 감압 시 제1기액분리기(4134)에서 분리되는 플래쉬 가스 등의 기체성분에 끓는 점이 낮은 질소성분이 고농도로 함유된다. 고농도의 질소성분을 함유하는 기체성분을 다시 연료가스 시스템(4100) 내에서 순환시킬 경우, 증발가스의 재액화 효율이 떨어질 뿐만 아니라, 순환되는 기체성분에 의해 압축부(4121)의 컴프레서(4121a) 등에 부하를 일으키거나 고사양의 컴프레서(4121a) 설치가 요구되어 설비 운용의 비효율을 초래하는 문제점이 있다.
증발가스 순환라인(4135)은 제1기액분리기(4134)에서 분리되어 고농도의 질소성분을 함유하는 기체성분을 제2엔진에 연료가스로 공급하도록 마련된다. 전술한 바와 같이, 제1팽창밸브(4133)를 거쳐 냉각 및 가압된 증발가스가 감압하는 과정에서 발생하는 기체성분에 상대적으로 고농도의 질소성분이 함유된다. 이에 증발가스 순환라인(4135)은 이 중 재액화 효율이 떨어지는 기체성분을 공급받아 제2엔진에 연료가스로서 공급 및 이용함으로써, 연료가스의 효율적인 이용을 도모함과 동시에, 제1기액분리기(4134)에 의해 분리되어 상대적으로 저농도의 질소성분을 함유하는 액체성분의 재액화 효율을 증대시킬 수 있다.
제1팽창밸브(4133)는 냉각부(4132)를 통과한 가압된 증발가스를 제2엔진이 요구하는 압력조건에 상응하는 수준으로 감압하도록 마련되어, 증발가스 순환라인(4135)은 별도의 압축장치 없이도 제1기액분리기(4134)에서 분리된 기체성분을 곧바로 제2엔진에 연료가스로 공급할 수 있다.
증발가스 순환라인(4135)은 열교환장치로 이루어지는 냉각부(4132)를 통과하도록 마련된다. 증발가스 순환라인(4135)을 따라 흐르는 고농도의 질소성분을 함유하는 기체성분의 냉열을 이용하여 재액화라인(4130)을 따라 흐르는 고온의 가압된 증발가스의 냉각을 수행함과 동시에, 재액화라인(4130)을 따라 흐르는 가압된 증발가스의 고온의 열을 공급받아 제2엔진이 요구하는 연료가스의 온도조건에 상응하는 수준으로 증발가스 순환라인(4135)을 따라 흐르는 기체성분의 온도를 승온시킬 수 있다.
증발가스 순환라인(4135)은 도 6에 도시된 바와 같이 증발가스 공급라인(4120)이 분기되는 지점으로 합류하도록 연결될 수도 있으나, 이에 한정되는 것은 아니며, 제2엔진으로 직접 연결되어 기체성분을 연료가스 공급하도록 마련되는 경우를 포함한다.
제1기액분리기(4134)에 의해 분리된 저농도의 질소성분을 함유하는 액체성분은 제2팽창밸브(4136)에 의해 2차적으로 감압 및 재액화될 수 있다. 전술한 바와 같이, 저농도의 질소성분을 함유할수록 증발가스의 재액화 효율이 향상되는 바, 제1기액분리기(4134)에 의해 분리된 액체성분은 저농도의 질소성분을 함유하므로 제2팽창밸브(4136)에 의해 감압을 수행하더라도 플래쉬 가스 등의 기체성분의 발생이 저감되고, 재액화 효율이 향상될 수 있다. 제2팽창밸브(4136)는 일 예로 줄-톰슨 밸브(Joule-Thomson Valve)로 이루어질 수 있으며, 제2팽창밸브(4136)는 저장탱크(4110)의 내부 압력에 상응하는 압력수준으로 감압시킬 수 있다.
제2기액분리기(4137)는 제2팽창밸브(4136)를 통과하여 2차적으로 냉각 및 감압되어 기액 혼합상태의 증발가스를 기체성분과 액체성분으로 분리하도록 마련된다. 제2팽창밸브(4136)에 의해 추가적으로 감압되는 제1기액분리기(4134)의 액체성분은 질소성분을 저농도로 함유하여 대부분 재액화가 이루어지기는 하나, 소량의 질소성분이 존재할 뿐만 아니라, 완전한 재액화가 이루어지는 것은 실질적으로 불가능하다. 이에 따라 제2팽창밸브(4136)를 통과하여 기액 혼합상태가 된 증발가스를 제2기액분리기(4137)에서 기체성분 및 액체성분으로 분리하여 재액화 공정의 신뢰성을 도모하고, 각 성분을 별도로 취급할 수 있다.
증발가스 회수라인(4138)은 제2기액분리기(4137)에 의해 분리된 기체성분을 저장탱크(4110) 또는 증발가스 공급라인(4120)으로 재공급하도록 제2기액분리기(4137)와 저장탱크(4110) 또는 제2기액분리기(4137)와 증발연료가스 공급라인(4120) 사이에 마련될 수 있다. 도 6에서는 증발가스 회수라인(4138)이 제2기액분리기(4137)의 기체성분을 증발가스 공급라인(4120) 상의 압축부(4121) 전단으로 재공급하는 것으로 도시되어 있으나, 이 외에도 제2기액분리기(4137)로부터 저장탱크(4110)로 재공급하거나, 증발가스 공급라인(4120) 및 저장탱크(4110)로 함께 재공급하는 경우를 모두 포함한다.
액화가스 회수라인(4139)은 제2기액분리기(4137)에 의해 분리된 액체성분을 저장탱크(4110)로 재공급하도록 제2기액분리기(4137)와 저장탱크(4110) 사이에 마련될 수 있다. 액화가스 회수라인(4139)은 그 입구 측 단부가 제2기액분리기(4137)의 하측에 연통되어 마련되고, 출구 측 단부가 저장탱크(4110)의 내부에 연통되어 마련될 수 있다. 액화가스 회수라인(4139)에는 저장탱크(4110)로 회수되는 재액화된 액화천연가스의 공급량을 조절하는 개폐밸브(미도시)가 마련될 수 있다.
액화가스 공급라인(4140)은 저장탱크(4110)에 수용 또는 저장된 액화천연가스를 엔진에 연료가스로서 공급하도록 마련된다. 액화가스 공급라인(4140)은 그 일단이 저장탱크(4110)의 내부에 연결되어 마련되고, 타단은 후술하는 증발가스 공급라인(4120)과 합류하여 제1엔진 및 제2엔진에 각각 연결되어 마련될 수 있다. 액화가스 공급라인(4140)의 입구 측 단부는 저장탱크(4110) 내부의 하측에 배치될 수 있으며, 액화천연가스를 엔진 측으로 공급하기 위한 송출펌프(4141)가 마련될 수 있다.
전술한 바와 같이 엔진이 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진 및 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 이루어지는 경우에는 액화가스 공급라인(4140)은 각 엔진의 연료가스 요구조건에 맞추어 액화천연가스를 처리할 수 있도록 제1액화가스 공급라인(4140a) 및 제2액화가스 공급라인(4140b)을 포함하여 마련될 수 있다.
제1액화가스 공급라인(4140a)은 송출펌프(4141)에 의해 송출된 액화천연가스를 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진으로 공급할 수 있다. 송출펌프(4141)가 액화천연가스를 송출하는 과정에서 액화천연가스는 저압(약 5 bar 내지 8 bar)으로 압축되므로, 제2엔진이 DFDE 엔진으로 이루어지는 경우에는 별도의 가압펌프 없이, 기화기(4144)가 송출펌프(4141)에 의해 송출된 액화천연가스를 강제 기화시켜 제2엔진이 요구하는 연료조건에 맞추어 연료가스를 공급할 수 있다.
기화기(4144) 후단에는 기액분리기(4145)가 마련될 수 있다. 제2엔진이 DFDE 엔진으로 이루어지는 경우에는 연료가스가 기체상태로 공급되어야 정상적인 출력을 발생시킬 수 있으며 엔진의 고장을 방지할 수 있다. 따라서 기화기(4144)를 통과한 액화천연가스를 기액분리기(4145)로 공급하고, 기액분리기(4145)에서 기체상태의 연료가스만을 제2엔진으로 공급함으로써, 선박의 연료가스 공급시스템(4100)의 신뢰성을 향상시킬 수 있다.
제2액화가스 공급라인(4140b)은 송출펌프(4141)에 의해 송출된 액화천연가스를 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진으로 공급할 수 있다. 이를 위해 제2액화가스 공급라인(4140b)에는 액화천연가스를 압축하는 가압펌프(4142)가 마련될 수 있다. 가압펌프(4142)는 제1엔진이 요구하는 연료가스의 압력조건에 맞추어 액화천연가스를 압축할 수 있으며, 일 예로 제1엔진이 X-DF 엔진으로 이루어지는 경우에는 가압펌프(4142)는 액화천연가스를 약 16 bar 내지 18 bar의 압력조건으로 압축시켜 공급할 수 있다. 가압펌프(4142)에 의해 압축된 액화천연가스는 기화기(4143)를 통과하며 강제 기화된 후, 증발가스 공급라인(4120)과 합류하여 제1엔진에 연료가스로서 공급될 수 있다.
한편 가압펌프(4142)의 유지 보수가 요구되거나 가압펌프(4142)에 부하가 가중되어 전원을 차단해야 하는 경우에, 가압펌프(4142)의 전원을 일시에 차단하게 되면 압축된 액화천연가스가 가압펌프(4142) 또는 기타 구성에 영향을 미쳐 가압펌프(4142)의 고장 또는 안전사고 등이 발생할 우려가 있다. 또한 가압펌프(4142)의 유지 보수가 요구되거나 가압펌프(4142)가 부하가 가중되어 전원을 차단해야 하나, 엔진의 지속적인 작동이 요구되는 경우가 있을 수 있다.
이를 위해 제2액화가스 공급라인(4140b)에는 바이패스라인(4140c)이 마련될 수 있다. 바이패스라인(4140c)의 입구 측 단부는 제2액화가스 공급라인(4140b) 상의 가압펌프(4142) 전단에 연결되고, 출구 측 단부는 제2액화가스 공급라인(4140b) 상의 가압펌프(4142) 후단에 연결되되, 별도의 가압펌프(4142)를 추가적으로 구비하여, 가압펌프(4142)가 병렬로 연결되도록 마련될 수 있다.
별도의 가압펌프(4142)을 구비하는 바이패스라인(4140c)에 의해 복수개의 가압펌프(4142)가 제2액화가스 공급라인(4140b) 상에 병렬로 마련되므로, 전술한 상황에서도 가압펌프(4142) 및 기타 구성의 고장이나 안전사고의 발생을 방지할 수 있으며, 엔진의 장시간 지속적인 운행을 구현할 수 있다.
이하에서는 본 발명의 제7 실시 예에 의한 선박의 연료가스 공급시스템(4200)에 대해 설명한다.
이하에서 설명하는 본 발명의 제7 실시 예에 의한 선박의 연료가스 공급시스템(4200)에 대한 설명 중, 별도의 도면부호를 들어 추가적으로 설명하는 경우 외에는 전술한 본 발명의 제6 실시 예에 의한 선박의 연료가스 공급시스템(4100)과 동일한 것으로서, 내용의 중복을 방지하기 위해 설명을 생략한다.
도 7은 본 발명의 제7 실시 예에 의한 선박의 연료가스 공급시스템(4200)을 나타내는 개념도이다. 도 7을 참조하면, 본 발명의 제7 실시 예에 의한 선박의 연료가스 공급시스템(4200)은 저장탱크(4110), 저장탱크(4110)의 증발가스를 엔진으로 공급하는 액화가스 공급라인(4140), 증발가스 공급라인(4120)을 통과하는 증발가스의 일부를 재액화시키는 재액화라인(4130), 저장탱크(4110)의 액화가스를 엔진으로 공급하는 액화가스 공급라인(4140), 재액화라인(4130)으로 공급되는 증발가스를 제1농도의 질소성분을 함유하는 제1가스흐름과 제2농도의 질소성분을 함유하는 제2가스흐름으로 분리하는 질소분리기(4250), 엔진으로 공급되는 연료가스의 발열량을 측정 및 조절하는 발열량 조절부를 포함하여 마련될 수 있다.
질소분리기(4250)는 재액화라인(4130)으로 공급되는 증발가스에 함유된 질소성분을 분리하도록 마련된다.
질소분리기(4250)는 재액화라인(4130) 상의 가압유닛(4131) 전단에 마련될 수 있다. 질소분리기(4250)는 재액화라인(4130)으로 유입 또는 공급되는 증발가스를 제1농도의 질소성분을 함유하는 제1가스흐름 및 제2농도의 질소성분을 함유하는 제2가스흐름으로 분류하여, 제1가스흐름을 증발가스 공급라인(4120)으로 재합류시키거나, 제1엔진으로 공급하여 연료가스 이용되도록 하고, 제2가스흐름은 그대로 가압유닛(4131)으로 공급하도록 마련된다.
본 실시 예에서 설명하는 제1농도의 질소성분 및 제2농도의 질소성분은 각각 고농도의 질소성분 및 저농도의 질소성분을 의미하는 것으로서, 제1농도의 질소성분은 제2농도의 질소성분과 비교하여 상대적으로 고농도의 질소성분을 가지며, 제2농도의 질소성분은 제1농도의 질소성분과 비교하여 상대적으로 저농도의 질소성분을 갖는다. 제1농도 및 제2농도는 특정 수치에 한정되는 것은 아니며 제1농도와 제2농도 간의 농도 차이에 따른 상대적인 의미로 이해되어야 할 것이다.
전술한 바와 같이, 천연가스는 주성분인 메탄(Methane) 외에도 에탄(Ethane), 프로판(Propane), 부탄(Butane), 질소(Nitrogen) 등을 포함하는 혼합물로서, 이 중 질소의 끓는 점은 섭씨 약 -195.8도로서, 그 외의 성분인 메탄(끓는 점 섭씨 -161.5도), 에탄(끓는 점 섭씨 -89도) 등에 비해 매우 낮다. 이에 따라 끓는 점이 낮은 질소성분을 고농도로 함유할수록 증발가스의 재액화 효율이 떨어지게 된다.
이에 질소분리기(4250)가 증발가스 공급라인(4120)을 거쳐 재액화라인(4130)으로 유입 또는 공급되는 증발가스에 함유된 질소성분을 분리하여, 상대적으로 고농도인 제1농도의 질소성분을 함유하는 제1가스흐름은 증발가스 재공급라인(4251)을 통해 증발가스 공급라인(4120)으로 재합류시키거나, 제1엔진의 연료가스로 공급하여 질소성분을 소모시키되, 상대적으로 저농도인 제2농도의 질소성분은 그대로 재액화라인(4130)을 거쳐 재액화공정을 거치도록 함으로써, 재액화라인(4130)의 재액화 성능 및 효율을 향상시킬 수 있다.
질소분리기(4250)는 멤브레인 필터, 사이클론, 가스 원심분리기 또는 보텍스 튜브 중 적어도 어느 하나를 포함하여 마련될 수 있다.
멤브레인 필터는 질소성분과의 친화도가 높은 물질을 구비하고, 가압된 증발가스가 그 압력에 의해 멤브레인 필터를 통과함으로써, 질소성분을 고농도로 함유하는 제1가스흐름이 멤브레인 필터에 의해 걸러져 증발가스 재공급라인(4251)을 통해 증발가스 공급라인(4120) 또는 제1엔진으로 공급되고, 메탄 등 질소 외의 성분을 고농도로 함유하는 제2가스흐름은 그대로 통과하여 재액화라인(4130)의 가압유닛(4131)으로 공급될 수 있다.
사이클론(Cyclone)은 질소분리기(4250)로 공급되는 증발가스를 선회 흐름으로 형성하여, 증발가스에 원심력을 작용시켜 질소성분과 메탄, 에탄 등의 질소 외의 성분을 분리하여 상대적으로 고농도인 제1농도의 질소성분을 함유하는 제1가스흐름 및 상대적으로 저농도인 제2농도의 질소성분을 함유하는 제2가스흐름으로 분리할 수 있다.
가스 원심분리기(Gas centrifuge)는 혼합기체 상태인 가압된 증발가스의 일부를 원심분리법에 의해 그 성분을 분리토록 마련된다. 가스 원심분리기는 질소분리기(4250)로 공급되는 증발가스를 원심력을 이용하여 질소성분과 질소 외의 성분으로 분리하여, 증발가스를 제1가스흐름 및 제2가스흐름으로 분리할 수 있다.
보텍스 튜브(Vortex tube)는 좁은 관을 구비하고, 좁은 관 내부의 접선형으로 고압의 기체를 공급하여 고온기류와 저온기류를 분리하는 장치이다. 질소분리기(4250)가 보텍스 튜브로 이루어지는 경우에는 증발가스를 보텍스 튜브의 내부로 공급하여 상대적으로 끓는 점이 낮은 저온의 질소성분과, 상대적으로 끓는 점이 높은 메탄, 에탄 등의 질소 외의 성분을 분리함으로써, 증발가스를 제1가스흐름 및 제2가스흐름으로 분리할 수 있다.
이와 같이 질소분리기(4250)가 멤브레인 필터, 사이클론, 가스 원심분리기 또는 보텍스 튜브 중 적어도 어느 하나를 포함하여 마련됨으로써, 재액화라인(4130)으로 공급되는 증발가스를 질소성분의 농도에 따라 제1가스흐름 및 제2가스흐름으로 분리하고, 이 중 저농도의 질소성분을 함유하는 제2가스흐름을 재액화라인(4130)으로 통과시켜 재액화공정을 수행토록 마련함으로써, 재액화라인(4130)의 재액화 효율을 향상시킬 수 있다. 이와 동시에, 고농도의 질소성분을 함유하는 제1가스흐름은 증발가스 재공급라인(4251)을 통해 증발가스 공급라인(4120)으로 재합류시키거나, 엔진으로 직접 공급하여 연료가스로 소비함으로써, 연료가스 시스템(4200) 내의 총 질소 함량을 점진적으로 낮추어 설비 운용의 효율성을 도모할 수 있다.
도 7에서는 증발가스 재공급라인(4251)의 출구 측 단부가 증발가스 공급라인(4120)으로 재합류하는 것으로 도시되어 있으나, 엔진으로 직접 공급되는 경우 등 출구 측 단부의 위치는 다양하게 변경될 수 있다.
발열량 조절부는 엔진, 특히 제1엔진으로 공급되는 연료가스의 발열량을 측정 및 조절하도록 마련된다.
발열량(Heating Value)이란 단위질량의 연료가스가 완전 연소 했을 때 방출하는 열량을 의미한다. 천연가스는 중의 메탄, 부탄 및 프로판은 상대적으로 발열량이 높아 연료가스의 발열량을 상승시키는 성분(메탄의 발열량: 약 12,000kcal/kg, 부탄의 발열량: 약 11,863 kcal/kg, 프로판의 발열량: 약 2,000kcal/kg)인 반면, 질소의 발열량은 매우 낮아(질소의 발열량: 약 60kcal/kg), 질소성분의 절대적인 함량 또는 농도가 높을수록 연료가스의 총 발열량은 낮아지게 된다. 이 때 엔진으로 공급되는 연료가스의 총 발열량이 과도하게 낮아 엔진이 요구하는 최소 조건 발열량을 충족시키지 못하는 경우에는 엔진의 출력에 영향을 미치고, 엔진에 불필요한 부하를 발생시키는 원인이 된다.
전술한 바와 같이, 재액화라인(4130)의 재액화 효율 상승을 위해 질소분리기(4250)가 재액화라인(4130)으로 유입 또는 공급된 증발가스 중 저농도인 제2농도의 질소성분을 함유하는 제2가스흐름은 재액화라인(4130)으로 통과시키고, 고농도인 제1농도의 질소성분을 함유하는 제1가스흐름은 걸러내어 증발가스 공급라인(4120) 또는 엔진으로 공급하는 바, 제1가스흐름에 포함되는 고농도의 질소성분에 의해 제1엔진으로 공급되는 연료가스의 발열량이 제1엔진이 요구하는 조건 발열량보다 낮아질 우려가 있다.
도 7을 참조하면, 본 발명의 제7 실시 예에 의한 선박의 연료가스 공급시스템(4200)의 발열량 조절부는 제1엔진으로 공급되는 연료가스의 발열량을 측정 또는 산출하는 발열량 측정기(4260) 및 재액화라인(4130)으로 공급되는 증발가스의 공급량을 조절하는 유량조절밸브(4261)를 포함하여 마련될 수 있다.
발열량 측정기(4260)는 증발가스 공급라인(4120) 및 증발가스 재공급라인(4251)을 통해 제1엔진으로 공급되는 증발가스 및 제1가스흐름을 포함한 연료가스의 발열량을 실시간으로 측정할 수 있다. 발열량 측정기(4260)는 디스플레이 등으로 이루어지는 표시부(미도시)로 측정된 연료가스의 발열량 정보를 전송하여 선박의 탑승자에게 이를 알리거나, 측정된 연료가스의 발열량 정보를 제어부(미도시)로 전송하고, 제어부는 기 입력된 제1엔진의 조건 발열량과 발열량 측정기(4260)로부터 전송된 연료가스의 발열량 정보를 비교 분석하여 후술하는 유량조절밸브(4261)의 개폐 정도를 제어할 수 있다.
유량조절밸브(4261)는 증발가스 공급라인(4120)으로부터 재액화라인(4130)이 분기되는 지점에 마련될 수 있다. 유량조절밸브(4261)는 삼방밸브(3 Way valve)로 이루어져, 재액화라인(4130)으로 공급되는 증발가스의 공급량을 조절할 수 있으며, 유량조절밸브(4261)는 발열량 측정기(4260)에 의해 측정된 연료가스의 발열량 정보 및 제1엔진의 조건 발열량 정보에 근거하여 작업자에 의한 수동 또는 제어부에 의해 자동적으로 그 개폐정도가 조절될 수 있다.
일 예로, 발열량 측정기(4260)가 측정한 연료가스의 발열량이 제1엔진의 조건 발열량 보다 작은 경우, 유량조절밸브(4261)가 재액화라인(4130)으로 공급되는 증발가스의 공급량을 감소시키고, 증발가스 공급라인(4120)을 따라 제1엔진으로 곧바로 공급되는 증발가스의 공급량은 증가시키도록 개폐작동 될 수 있다. 이로써, 재액화라인(4130)에 설치되는 질소분리기(4250)를 거쳐 증발가스 재공급라인(4251)으로 공급되는 제1가스흐름의 유량이 감소됨에 따라 제1엔진에 공급되는 연료가스의 발열량을 증가시킬 수 있다.
이와는 반대로, 발열량 측정기(4260)가 측정한 연료가스의 발열량이 제1엔진의 조건 발열량을 상회하거나 충분히 만족시키는 경우에는 유량조절밸브(4261)가 재액화라인(4130)으로 공급되는 증발가스의 공급량을 증가시키고, 증발가스 공급라인(4120)을 따라 제1엔진으로 공급되는 증발가스의 공급량은 감소시키도록 개폐작동 될 수 있다. 이로써 재액화라인(4130)으로 유입되어 질소분리기(4250)를 거쳐 증발가스 재공급라인(4251)으로 공급되는 제1가스흐름의 유량이 증가하여 연료가스의 발열량을 적정 수준으로 조절함과 동시에, 재액화라인(4130)의 가압유닛(4131)으로 공급되는 제2가스흐름의 유량을 증가하여 증발가스의 재액화량을 증가시킬 수 있다.
이하에서는 본 발명의 제8 실시 예에 의한 선박의 연료가스 공급시스템(4300)에 대해 설명한다.
이하에서 설명하는 본 발명의 제8 실시 예에 의한 선박의 연료가스 공급시스템(4300)에 대한 설명 중, 별도의 도면부호를 들어 추가적으로 설명하는 경우 외에는 전술한 본 발명의 제6 실시 예에 의한 선박의 연료가스 공급시스템(4100)과 동일한 것으로서, 내용의 중복을 방지하기 위해 설명을 생략한다.
도 8은 본 발명의 제8 실시 예에 의한 선박의 연료가스 공급시스템(4300)을 나타내는 개념도이다. 도 8을 참조하면, 본 발명의 제8 실시 예에 의한 선박의 연료가스 공급시스템(4200)은 저장탱크(4110), 저장탱크(4110)의 증발가스를 엔진으로 공급하는 액화가스 공급라인(4140), 증발가스 공급라인(4120)을 통과하는 증발가스의 일부를 재액화시키는 재액화라인(4130), 저장탱크(4110)의 액화가스를 엔진으로 공급하는 액화가스 공급라인(4140) 및 재액화라인(4130)으로 공급되는 증발가스에 함유된 오일을 제거하는 오일제거부(4350)를 포함하여 마련될 수 있다.
오일제거부(4350)는 재액화라인(4130)으로 유입 또는 공급되는 증발가스에 함유된 오일을 제거하도록 마련된다.
증발가스 공급라인(4120)의 압축부(4121) 및 재액화라인(4130)의 가압유닛(4131)에 구비되는 컴프레서(4121a, 131a)는 운용 시 윤활유(Lubrication Oil) 등의 오일이 이용된다. 이러한 오일은 컴프레서의 원활한 작동 및 효과적인 가압공정에 도움을 주나, 증발가스의 가압공정 시 증발가스에 혼합되어 재액화라인 등의 관 내 또는 팽창밸브 등의 설비 내에 축적되어 증발가스의 원활한 이송을 방해하거나 설비 고장의 원인이 될 우려가 있으며, 특히 재액화된 증발가스의 조성 품질을 저하시키는 문제점이 있다.
이에 오일제거부(4350)가 재액화라인(4130) 상의 가압유닛(4131) 후단에 마련되어, 압축부(4121) 및 가압유닛(4131)의 컴프레서(4121a, 131a)를 거치면서 증발가스에 함유된 윤활유 등의 오일을 제거할 수 있다. 이로써 선박의 연료가스 공급시스템(4100)의 원활한 작동 및 설비 운용의 안정성을 도모함과 동시에, 증발가스 및 액화천연가스의 조성 품질을 향상시킬 수 있다. 오일제거부(4350)는 필터 또는 거름막 등을 포함할 수 있으나 이에 한정되는 것은 아니며, 다양한 방식 또는 형식의 장치로 이루어질 수 있다.
본 발명은 첨부된 도면에 도시된 일 실시 예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.

Claims (15)

  1. 액화가스 및 증발가스로 이루어지는 연료가스를 수용하는 저장탱크;
    상기 저장탱크의 증발가스를 가압하는 압축부를 구비하고, 상기 압축부를 통과한 증발가스를 엔진으로 공급하는 증발가스 공급라인; 및
    상기 압축부를 통과한 증발가스의 일부를 열교환하여 재액화시키는 재액화라인을 포함하고,
    상기 재액화라인은
    상기 압축부를 통과한 증발가스를 추가적으로 가압하는 가압유닛과, 상기 가압유닛을 통과한 증발가스와 상기 압축부 전단의 증발가스를 서로 열교환하는 열교환장치와, 상기 열교환장치를 통과한 증발가스를 감압시키는 팽창밸브 및 상기 팽창밸브를 통과하여 재액화된 증발가스를 기체성분과 액체성분으로 분리하는 기액분리기를 포함하는 선박의 연료가스 공급시스템.
  2. 제1항에 있어서,
    상기 재액화라인으로 공급되는 증발가스를 제1농도의 질소성분을 함유하는 제1가스흐름과 제2농도의 질소성분을 함유하는 제2가스흐름으로 분리하도록 상기 재액화라인 상의 상기 가압유닛의 전단에 마련되는 질소분리기를 더 포함하고,
    상기 제1가스흐름은 상기 증발가스 공급라인 또는 상기 엔진으로 공급하고,
    상기 제2가스흐름은 상기 가압유닛으로 공급하는 선박의 연료가스 공급시스템.
  3. 제2항에 있어서,
    상기 엔진으로 공급되는 연료가스의 발열량을 측정 및 조절하는 발열량 조절부를 더 포함하고,
    상기 발열량 조절부는
    상기 엔진으로 공급되는 연료가스의 발열량을 측정하는 발열량 측정기 및 상기 재액화라인으로 공급되는 증발가스의 공급량을 조절하는 유량조절장치를 포함하되,
    상기 유량조절장치는 상기 발열량 측정기에 의해 측정된 연료가스의 발열량 정보에 근거하여 그 작동이 제어되는 선박의 연료가스 공급시스템.
  4. 제2항에 있어서,
    상기 엔진으로 공급되는 연료가스의 발열량을 측정 및 조절하는 발열량 조절부를 더 포함하고,
    상기 발열량 조절부는
    상기 엔진으로 공급되는 연료가스의 발열량을 측정하는 발열량 측정기와, 입구 측 단부가 상기 재액화라인 상의 상기 질소분리기 전단에 연결되고 출구 측 단부가 상기 재액화라인 상의 상기 질소분리기 후단에 연결되는 발열량 조절라인 및 상기 발열량 조절라인을 따라 이송되는 증발가스의 공급량을 조절하는 유량조절밸브를 포함하되,
    상기 유량조절밸브는 상기 발열량 측정기에 의해 측정된 연료가스의 발열량 정보에 근거하여 그 작동이 제어되는 선박의 연료가스 공급시스템.
  5. 제2항에 있어서,
    상기 엔진으로 공급되는 연료가스의 발열량을 측정 및 조절하는 발열량 조절부를 더 포함하고,
    상기 발열량 조절부는
    상기 엔진으로 공급되는 연료가스의 발열량을 측정하는 발열량 측정기와, 상기 제1가스흐름의 일부를 상기 재액화라인 상의 상기 질소분리기 후단으로 순환시키는 발열량 조절라인 및 상기 발열량 조절라인을 따라 이송되는 제1가스흐름의 공급량을 조절하는 유량조절밸브를 포함하되,
    상기 유량조절밸브는 상기 발열량 측정기에 의해 측정된 연료가스의 발열량 정보에 근거하여 그 작동이 제어되는 선박의 연료가스 공급시스템.
  6. 액화가스 및 증발가스로 이루어지는 연료가스를 수용하는 저장탱크;
    상기 저장탱크의 증발가스를 가압하는 압축부를 구비하고, 상기 압축부를 통과한 증발가스를 엔진으로 공급하는 증발가스 공급라인; 및
    상기 증발가스 공급라인에서 분기되어, 상기 압축부를 통과한 압축된 증발가스를 공급받아 가압하는 가압유닛, 상기 가압유닛을 통과한 가압된 증발가스에 함유된 오일을 제거하는 오일제거부, 상기 오일제거부를 통과한 증발가스와 상기 압축부 전단의 증발가스를 열교환하는 열교환장치, 상기 열교환장치를 통과한 증발가스를 감압시키는 팽창밸브 및 상기 팽창밸브를 통과하여 감압된 증발가스를 기체성분과 액체성분으로 분리하는 기액분리기를 포함하는 재액화라인을 포함하는 선박의 연료가스 공급시스템.
  7. 액화가스 및 증발가스로 이루어지는 연료가스를 수용하는 저장탱크;
    상기 저장탱크의 증발가스를 가압하는 압축부를 구비하고, 상기 압축부를 통과한 증발가스를 제1엔진으로 공급하는 증발가스 공급라인; 및
    상기 압축부를 통과한 증발가스의 일부를 공급받아 재액화시키는 재액화라인을 포함하고,
    상기 재액화라인은
    상기 압축부를 통과한 증발가스를 가압하는 가압유닛과, 상기 가압유닛을 통과한 증발가스를 냉각시키는 냉각부와, 상기 냉각부를 통과하여 냉각된 증발가스를 1차 감압시키는 제1팽창밸브와, 상기 제1팽창밸브를 통과하여 기액 혼합상태의 증발가스를 기체성분과 액체성분으로 분리하는 제1기액분리기와, 상기 제1기액분리기에서 분리된 기체성분을 제2엔진으로 공급하는 증발가스 순환라인과, 상기 제1기액분리기에서 분리된 액체성분을 2차 감압시키는 제2팽창밸브 및 상기 제2팽창밸브를 통과하여 기액 혼합상태의 증발가스를 기체성분과 액체성분으로 분리하는 제2기액분리기를 포함하는 선박의 연료가스 공급시스템.
  8. 제7항에 있어서,
    상기 재액화라인으로 공급되는 증발가스를 제1농도의 질소성분을 함유하는 제1가스흐름과 제2농도의 질소성분을 함유하는 제2가스흐름으로 분리하도록 상기 재액화라인 상의 상기 가압유닛의 전단에 마련되는 질소분리기를 더 포함하는 선박의 연료가스 공급시스템.
  9. 제7항에 있어서,
    상기 재액화라인으로 공급되는 증발가스에 함유된 오일을 제거하는 오일제거부를 더 포함하는 선박의 연료가스 공급시스템.
  10. 제8항에 있어서,
    상기 제1엔진으로 공급되는 연료가스의 발열량을 측정하고 조절하는 발열량 조절부를 더 포함하고,
    상기 발열량 조절부는
    상기 제1엔진으로 공급되는 연료가스의 발열량을 측정하는 발열량 측정기 및 상기 재액화라인으로 공급되는 증발가스의 공급량을 조절하는 유량조절밸브를 포함하되,
    상기 유량조절밸브는 상기 발열량 측정기에 의해 측정된 연료가스의 발열량에 기초하여 제어되는 선박의 연료가스 공급시스템.
  11. 제9항에 있어서,
    상기 오일제거부는
    상기 재액화라인 상의 가압유닛의 후단에 마련되는 선박의 연료가스 공급시스템.
  12. 제7항에 있어서,
    상기 재액화라인은
    상기 제2기액분리기에서 분리된 기체성분을 상기 저장탱크 또는 상기 증발가스 공급라인의 압축부 전단으로 공급하는 증발가스 회수라인 및 상기 제2기액분리기에서 분리된 액체성분을 상기 저장탱크로 공급하는 액화가스 회수라인을 더 포함하는 선박의 연료가스 공급시스템.
  13. 제1항에 있어서,
    상기 가압유닛은
    상기 압축부를 통과한 증발가스를 50 bar 내지 150 bar로 가압하도록 마련되는 선박의 연료가스 공급시스템.
  14. 제2항에 있어서,
    상기 질소분리기는
    멤브레인 필터, 사이클론(Cyclone), 가스 원심분리기(Gas centrifuge) 및 보텍스 튜브(Vortex tube) 중 적어도 하나를 포함하는 선박의 연료가스 공급시스템.
  15. 제2항에 있어서,
    상기 제1농도의 질소성분은
    상기 제2농도의 질소성분보다 고농도의 질소성분을 함유하는 선박의 연료가스 공급시스템.
PCT/KR2016/000576 2015-02-03 2016-01-20 선박의 연료가스 공급시스템 WO2016126025A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680008497.9A CN107407231B (zh) 2015-02-03 2016-01-20 船舶的燃气供给系统
JP2017558345A JP6475871B2 (ja) 2015-02-03 2016-01-20 船舶の燃料ガス供給システム

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20150016595 2015-02-03
KR10-2015-0016595 2015-02-03
KR1020150128238A KR20160095597A (ko) 2015-02-03 2015-09-10 연료가스 공급시스템
KR10-2015-0128238 2015-09-10
KR10-2015-0128975 2015-09-11
KR1020150128975A KR101741741B1 (ko) 2015-02-03 2015-09-11 연료가스 공급시스템
KR10-2015-0133613 2015-09-22
KR1020150133613A KR101763697B1 (ko) 2015-02-03 2015-09-22 연료가스 공급시스템

Publications (1)

Publication Number Publication Date
WO2016126025A1 true WO2016126025A1 (ko) 2016-08-11

Family

ID=56564312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000576 WO2016126025A1 (ko) 2015-02-03 2016-01-20 선박의 연료가스 공급시스템

Country Status (1)

Country Link
WO (1) WO2016126025A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082107A (ko) * 2017-01-10 2018-07-18 현대중공업 주식회사 가스 처리 시스템 및 선박
JP2018128039A (ja) * 2017-02-06 2018-08-16 株式会社神戸製鋼所 ボイルオフガス回収システム
US10364013B2 (en) * 2015-06-02 2019-07-30 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship
CN110090514A (zh) * 2018-01-29 2019-08-06 株式会社田村制作所 气体净化装置、气体净化方法以及输送加热装置
US10399655B2 (en) 2015-06-02 2019-09-03 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship
IT202000003377A1 (it) * 2020-02-19 2021-08-19 Graf Ind S P A Sistema di alimentazione per veicoli a gas naturale liquefatto

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060123675A (ko) * 2006-10-04 2006-12-04 신영중공업주식회사 Lng bog 재액화 장치 및 방법
WO2009136793A1 (en) * 2008-05-08 2009-11-12 Hamworthy Gas Systems As Gas supply systems for gas engines
KR20120107851A (ko) * 2011-03-22 2012-10-04 대우조선해양 주식회사 고압 천연가스 분사 엔진을 위한 연료 공급 방법
KR20140003260A (ko) * 2012-06-29 2014-01-09 한국에너지기술연구원 천연가스 액화시스템 및 액화 방법
KR20150001597A (ko) * 2013-06-26 2015-01-06 대우조선해양 주식회사 증발가스 처리 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060123675A (ko) * 2006-10-04 2006-12-04 신영중공업주식회사 Lng bog 재액화 장치 및 방법
WO2009136793A1 (en) * 2008-05-08 2009-11-12 Hamworthy Gas Systems As Gas supply systems for gas engines
KR20120107851A (ko) * 2011-03-22 2012-10-04 대우조선해양 주식회사 고압 천연가스 분사 엔진을 위한 연료 공급 방법
KR20140003260A (ko) * 2012-06-29 2014-01-09 한국에너지기술연구원 천연가스 액화시스템 및 액화 방법
KR20150001597A (ko) * 2013-06-26 2015-01-06 대우조선해양 주식회사 증발가스 처리 시스템

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10364013B2 (en) * 2015-06-02 2019-07-30 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship
US10399655B2 (en) 2015-06-02 2019-09-03 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship
US10654553B2 (en) 2015-06-02 2020-05-19 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship with boil-off gas liquefaction system
US10661873B2 (en) 2015-06-02 2020-05-26 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship
US10661874B2 (en) 2015-06-02 2020-05-26 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship
KR20180082107A (ko) * 2017-01-10 2018-07-18 현대중공업 주식회사 가스 처리 시스템 및 선박
KR102189278B1 (ko) * 2017-01-10 2020-12-11 한국조선해양 주식회사 가스 처리 시스템 및 선박
JP2018128039A (ja) * 2017-02-06 2018-08-16 株式会社神戸製鋼所 ボイルオフガス回収システム
CN110090514A (zh) * 2018-01-29 2019-08-06 株式会社田村制作所 气体净化装置、气体净化方法以及输送加热装置
IT202000003377A1 (it) * 2020-02-19 2021-08-19 Graf Ind S P A Sistema di alimentazione per veicoli a gas naturale liquefatto
WO2021165880A1 (en) * 2020-02-19 2021-08-26 Graf S.P.A. Fuelling system for liquefied natural gas vehicles

Similar Documents

Publication Publication Date Title
WO2016126025A1 (ko) 선박의 연료가스 공급시스템
WO2014209029A1 (ko) 선박의 증발가스 처리 시스템 및 방법
WO2014092369A1 (ko) 선박의 액화가스 처리 시스템
WO2014065618A1 (ko) 선박의 액화가스 처리 시스템
WO2017078245A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2015130122A1 (ko) 증발가스 처리 시스템
WO2012128447A1 (ko) 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템
WO2012128448A1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 및 방법
WO2012124884A1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 방법
WO2012124886A1 (ko) 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템
WO2009102136A2 (ko) 탄화수소 액화가스를 처리하기 위한 처리장치 및 방법
WO2018062601A1 (ko) 선박의 증발가스 재액화 장치 및 방법
WO2016200089A1 (ko) 연료가스 공급시스템
WO2016126037A1 (ko) 선박의 증발가스 처리장치 및 처리방법
WO2017171166A1 (ko) 선박용 증발가스 재액화 장치 및 방법
WO2019194670A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
JP2018508706A (ja) 船舶の燃料ガス供給システム
WO2016195232A1 (ko) 선박
WO2017030221A1 (ko) 열전발전모듈, 이를 포함하는 열전발전장치와 결빙방지 기화장치 및 기화연료가스 액화공정 장치
WO2018230950A1 (ko) 증발가스 재액화 시스템 및 선박
WO2016195233A1 (ko) 선박
WO2018124815A1 (ko) 연료가스 공급 시스템
WO2016200170A1 (ko) 가스 처리 시스템을 포함하는 선박
WO2021132955A1 (ko) 선박의 액화가스 공급 시스템 및 방법 그리고 선박의 액화가스 연료 공급 시스템
WO2017209492A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558345

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746766

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: "NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - 15.02.2018 (EPO FORM 1205A)"