WO2012128447A1 - 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템 - Google Patents

잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템 Download PDF

Info

Publication number
WO2012128447A1
WO2012128447A1 PCT/KR2011/009820 KR2011009820W WO2012128447A1 WO 2012128447 A1 WO2012128447 A1 WO 2012128447A1 KR 2011009820 W KR2011009820 W KR 2011009820W WO 2012128447 A1 WO2012128447 A1 WO 2012128447A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
boil
fuel
refrigerant
injection engine
Prior art date
Application number
PCT/KR2011/009820
Other languages
English (en)
French (fr)
Inventor
정승교
정제헌
이정한
이성준
신현준
최동규
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110107235A external-priority patent/KR20120107831A/ko
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to US14/006,656 priority Critical patent/US20140053600A1/en
Priority to JP2014500980A priority patent/JP5806381B2/ja
Priority to EP11861414.8A priority patent/EP2690274A4/en
Priority to CN201180070985.XA priority patent/CN103547787A/zh
Publication of WO2012128447A1 publication Critical patent/WO2012128447A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0605Control of components of the fuel supply system to adjust the fuel pressure or temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0097Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/036Treating the boil-off by recovery with heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/90Mixing of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel supply system for a high pressure natural gas injection engine, and more particularly, the amount of evaporated gas generated and the evaporation when the amount of the evaporated gas is generated more than the amount of boiled gas required as fuel in the high pressure natural gas injection engine
  • Liquefied gas such as LNG (Liquefied Natural Gas) and LPG (Liquefied Petroleum Gas)
  • LNG Liquefied Natural Gas
  • LPG Liquefied Petroleum Gas
  • the liquefied gas is transported in a gas state through a gas pipe on land or sea, or transported to a distant consumer while stored in a liquefied gas carrier in a liquefied state.
  • Liquefied gas such as LNG or LPG is obtained by cooling natural gas or petroleum gas to cryogenic temperature (approximately -163 °C in case of LNG), and its volume is greatly reduced than in gas state, so it is very suitable for long distance transportation by sea. .
  • Liquefied gas carriers are used to load liquefied gas into the sea and unload this liquefied gas to land requirements.
  • a liquefied gas carrier includes a storage tank (commonly referred to as a cargo hold) that can withstand the cryogenic temperature of liquefied gas. do.
  • Examples of offshore structures equipped with storage tanks for storing cryogenic liquefied gas are vessels such as LNG RV (Regasification Vessel), LNG Floating Storage and Regasification Unit (FSRU), LNG FPSO (Floating, Production, Structures such as storage and off-loading).
  • LNG RV Registered Vessel
  • FSRU LNG Floating Storage and Regasification Unit
  • LNG FPSO Floating, Production, Structures such as storage and off-loading
  • LNG RV is the installation of LNG regasification facilities on liquefied gas carriers that can be self-driving and floating.
  • LNG FSRU stores liquefied natural gas, which is unloaded from LNG carriers, in the storage tank after liquefaction as needed.
  • It is an offshore structure that vaporizes natural gas and supplies it to land demand.
  • LNG FPSO is a marine structure that is used to directly purify mined natural gas from the sea and liquefy directly to store it in a storage tank, and to transfer LNG stored in the storage tank to an LNG carrier if necessary.
  • the offshore structure is a concept including not only vessels such as liquefied gas carriers and LNG RVs but also structures such as LNG FPSO and LNG FSRU.
  • the liquefaction temperature of natural gas is about -163 ° C at ambient pressure, so LNG is evaporated even if its temperature is slightly higher than -163 ° C at normal pressure.
  • the LNG storage tank of the LNG carrier is insulated, but since the external heat is continuously transmitted to the LNG, LNG is transported while the LNG carrier is transporting the LNG.
  • Boil-off gas (BOG) is generated in the LNG storage tank by continuously vaporizing it in the LNG storage tank.
  • the generated boil-off gas increases the pressure in the storage tank and accelerates the flow of the liquefied gas in response to the fluctuation of the vessel, it may cause structural problems, so it is necessary to suppress the generation of the boil-off gas.
  • the boil-off gas inside the storage tank is discharged to the outside of the storage tank in order to maintain an appropriate pressure in the storage tank to be re-liquefied through the re-liquefaction device.
  • the evaporated gas is compressed to a low pressure of approximately 4 to 8 bara and fed to the reliquefaction apparatus before it is done.
  • the compressed boil-off gas is liquefied through heat exchange with nitrogen cooled to cryogenic temperatures in a reliquefaction apparatus including a nitrogen refrigeration cycle and then returned to the storage tank.
  • the boil-off gas In order to increase the efficiency of reliquefaction of the boil-off gas, it is preferable to compress the boil-off gas to a high pressure.
  • the LNG stored in the storage tank is maintained at a normal pressure, if the pressure of the re-liquefied liquefied liquefied gas is too high, it may return to the storage tank.
  • flash gas flash gas
  • the re-liquefaction efficiency is low, there is a problem in that the boil-off gas can be compressed at a low pressure of about 4 to 8 bara.
  • the low-pressure BOG is a nitrogen gas refrigerant.
  • Korean Patent Publication No. 10-2006-0123675 describes compression to about 6.8 bara
  • Korean Patent Publication No. 10-2001-0089142 corresponding US Patent US 6,530,241 In the detailed description of compression to 4.5 bara is described).
  • the liquefied boil-off gas that is, LBOG
  • flash gas was generated when it returned to the storage tank, thereby compressing the pressure of the boil-off gas to a low pressure in the boil-off gas compressor.
  • the evaporated gas generated from the storage tank is re-liquefied through the reliquefaction apparatus and then returned to the storage tank.
  • the flash gas is generated as much as possible.
  • the basic concept was to not raise the pressure of the re-liquefied boil-off gas to suppress it.
  • the nitrogen refrigeration cycle has a problem of low liquefaction efficiency using nitrogen gas (N 2 ) as the refrigerant
  • the mixed refrigerant cycle has a problem of low stability because it uses a refrigerant in which nitrogen and a hydrocarbon gas, etc. are mixed as the refrigerant. .
  • a turbo expander-type nitrogen reverse Brayton cycle was implemented to reliquefy the boil-off gas, and a mixed refrigerant in a land LNG liquefaction plant.
  • a Joule-Thompson refrigeration cycle was implemented to liquefy natural gas. Nitrogen reverse Brayton cycles used for marine use are advantageous in ships or offshore structures where space is limited due to their relatively simple configuration, but have low efficiency.
  • the mixed refrigerant Joule-Thomson refrigeration cycles used for land use are relatively Although the efficiency is high, due to the characteristics of the mixed refrigerant, there is a problem in that the device configuration is complicated, such as the use of a separator to separate when a gas-liquid state exists at the same time. However, this reliquefaction method is still widely used.
  • the present invention is to solve the conventional problems as described above, the difference between the amount of boil-off gas and the amount of boil-off gas when the amount of boil-off gas generated than the amount of boil-off gas required as fuel in the high-pressure natural gas injection engine occurs It is to provide a fuel supply system for a high-pressure natural gas injection engine having a surplus boil-off gas consumption means that can consume the excess boil-off gas.
  • the power consumption of the high-pressure pump for compressing the LNG pressurized to a high pressure after the reliquefaction is also reduced, and further pressurized by the high-pressure pump after reliquefaction Therefore, it has been found that there is an advantage such as the need for subcooling (subcooling) as in the prior art.
  • the evaporation gas received from the storage tank is compressed to 12 bar to 45 bar by receiving the evaporated gas generated in the storage tank A compression unit;
  • a reliquefaction apparatus for liquefying the boil-off gas compressed by the boil-off gas compression unit;
  • a high pressure pump for compressing the evaporated gas liquefied in the reliquefaction apparatus;
  • a high pressure vaporizer for vaporizing the boil-off gas compressed by the high pressure pump to supply the high pressure natural gas injection engine;
  • Excess boil-off gas consumption means for consuming excess boil-off gas by an amount corresponding to a difference between the amount of boil-off gas generated in the storage tank and the amount of boil-off gas required as fuel in the high-pressure natural gas injection engine;
  • a fuel supply system for a high pressure natural gas injection engine having a surplus boil-off gas consumption means comprising a.
  • the excess boil-off gas consumption means may be a gas combustion unit that consumes flash gas by receiving the flash gas through a fuel gas supply line and using the flash gas as fuel.
  • the excess boil-off gas consumption means may be a heterogeneous fuel engine that consumes the boil-off gas supplied through a branching line branching in the middle of the boil-off gas compression unit as a fuel.
  • the excess boil-off gas consumption means may be a gas turbine that consumes the boil-off gas supplied through a branching line branching from the rear end of the boil-off gas compression unit as fuel.
  • the fuel supply system includes: an LBOG return line for returning the excess boil-off gas to the storage tank; LBOG gas-liquid separator installed in the LBOG return line to separate the evaporated gas including the flash gas generated during the decompression process into a liquid component and a gas component when the excess evaporated gas is returned to the storage tank to return only the liquid component to the storage tank. It is preferable to include.
  • the fuel supply system according to the present invention preferably includes an LBOG expansion valve installed in the LBOG return line to reduce the excess boil-off gas.
  • the fuel supply system according to the present invention preferably includes a valve installed in the fuel gas supply line to reduce the gas component separated from the LBOG gas-liquid separator.
  • the fuel supply system according to the present invention is branched from a fuel supply line for supplying fuel to the high-pressure natural gas injection engine, and connected to the fuel gas supply line for supplying fuel to the heterogeneous fuel engine to supply fuel to the gas combustion unit. It is preferable to further include a branch line which is installed to supply additional.
  • the energy for liquefying the evaporated gas by recovering and using the liquefied energy of the liquefied evaporation gas by heat-exchanging the evaporated gas before liquefaction and the liquefied evaporation gas before vaporization It is desirable to reduce. Further, before compressing the boil-off gas generated in the storage tank for storing the liquefied gas, the heat-exchanged with the compressed boil-off gas or the nitrogen refrigerant heated in the nitrogen refrigeration cycle of the reliquefaction apparatus preheats the boil-off gas generated in the storage tank. It is preferable.
  • Such cold heat recovery and preheating of the boil-off gas are disclosed in International Patent Publications WO 2007/117148, WO 2009/136793, Korean Patent Publication No. 2006-0123675, and Korean Patent Registration No. 0929250. Can be used.
  • the cooling heat recovery from the liquefied evaporation gas is described, but when the amount of liquefied evaporation gas is less than the fuel required in the high pressure natural gas injection engine, it is necessary to use LNG stored in the LNG storage tank as fuel, in this case
  • the cold heat may be recovered from the LNG supplied from the LNG storage tank.
  • Examples of the offshore structures include vessels such as LNG RVs, structures such as LNG FSRUs, and LNG FPSOs, in addition to liquefied gas carriers.
  • the fuel supply method is characterized in that it includes a time for supplying all the liquefied evaporation gas to the high pressure natural gas injection engine during the fuel supply.
  • the amount of fuel required by the high pressure natural gas injection engine is more than the amount of boil-off gas generated in the LNG storage tank for a considerable period of time.
  • all or a substantial portion of the liquefied evaporation gas may be It is characterized in that the supply to the natural gas injection engine. At this time, the insufficient fuel may use LNG stored in the LNG storage tank as fuel.
  • the excess boil-off gas corresponding to the difference between the boil-off gas amount and the boil-off gas amount can be consumed.
  • a fuel supply system for a high pressure natural gas injection engine with surplus evaporation gas consumption means may be provided.
  • the fuel supply system for the high-pressure natural gas injection engine of the present invention instead of compressing the boil-off gas to a low pressure of about 4 to 8 bara, it can be re-liquefied after compressing to a medium pressure of about 12 to 45 bara, As the pressure of the boil-off gas is increased, the liquefied energy is reduced, thereby reducing the liquefied energy required for reliquefaction.
  • the pressure of the boil-off gas during re-liquefaction is higher than the conventional pressure, the liquefied point of the boil-off gas rises and the thermal stress received from the heat exchanger for re-liquefaction This reduces and reduces the heat duty of the high pressure vaporizer, thereby reducing the size of the equipment.
  • the fuel supply method by the fuel supply system includes a time period during which all of the liquefied evaporation gas is supplied to the high pressure natural gas injection engine during operation of the high pressure natural gas injection engine.
  • the amount of fuel required by the high pressure natural gas injection engine is greater than the amount of boil-off gas generated in the LNG storage tank for a considerable period of time.
  • the evaporation gas is pressurized to 8 bara to liquefy to -159 ° C.
  • the saturation temperature of the boil-off gas is about -149.5 ° C
  • 9-10 ° C is supercooled. This degree of supercooling is required to prevent the generation of flash gas when the liquefied evaporation gas is returned to the LNG storage tank.
  • the liquefied evaporated gas is pressurized by the high pressure pump in the process of supplying the fuel to the high pressure natural gas injection engine, the saturated LBOG may be stably maintained after the supercooled state due to the increased pressure.
  • the liquefied evaporation gas may be liquefied by subcooling only about 0.5 to 3 ° C, preferably about 1 ° C, than the saturation temperature at the pressure, and then supplied as fuel.
  • a heterogeneous fuel engine (DFDE) is mounted to supply the high-pressure natural gas injection engine and the remaining fuel or flash gas generated during decompression of the heterogeneous fuel engine Can be consumed as fuel.
  • the boil-off gas in excess of the fuel required by the high-pressure natural gas injection engine can be used in the DFDE by compressing directly from the LNG storage tank to about 4 ⁇ 8 bara without undergoing the reliquefaction process by the medium pressure according to the present invention.
  • FIG. 1 is a schematic block diagram for explaining a method for treating boil-off gas through re-liquefaction of boil-off gas according to the prior art
  • FIG. 2 is a schematic block diagram for explaining a method for treating boil-off gas through fuel supply according to the present invention
  • 3A is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to the first embodiment of the present invention
  • 3B is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to a modification of the first embodiment of the present invention
  • Figure 4a is a graph showing the freezing point and boiling point of the components contained in the non-explosive mixed refrigerant of the present invention
  • Figure 4b is a graph showing the freezing point and boiling point of the components contained in the hydrocarbon mixed refrigerant
  • Figure 4c is a graph showing the liquefaction temperature according to the pressurized pressure of natural gas
  • 6a to 6c are for comparing the power consumption when using the nitrogen gas refrigeration cycle in the reliquefaction apparatus of the boil-off gas, when using a non-explosive mixed refrigerant refrigeration cycle, and when using a Single Mixed Refrigerant (SMR) refrigeration cycle Graphs,
  • FIG. 7A is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to a second embodiment of the present invention.
  • FIG. 7B is a block diagram showing a fuel supply system for a high pressure natural gas injection engine according to a modification of the second embodiment of the present invention.
  • FIG. 8A is a block diagram showing a fuel supply system for a high pressure natural gas injection engine according to a third embodiment of the present invention.
  • FIG. 8B is a block diagram showing a fuel supply system for a high pressure natural gas injection engine according to a modification of the third embodiment of the present invention.
  • 9A is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to a fourth embodiment of the present invention.
  • 9B is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to a modification of the fourth embodiment of the present invention.
  • FIG. 10A is a block diagram showing a fuel supply system for a high pressure natural gas injection engine according to a fifth embodiment of the present invention.
  • 10B is a block diagram showing a fuel supply system for a high pressure natural gas injection engine according to a modification of the fifth embodiment of the present invention.
  • FIG. 11 is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to a sixth embodiment of the present invention.
  • Such ME-GI engines are marine structures such as LNG carriers for storing and transporting LNG (Liquefied Natural Gas) in cryogenic storage tanks (including marine vessels, LNG carriers, LNG RV, etc.) It can be installed in a marine plant such as LNG FPSO and LNG FSRU.)
  • LNG Liquefied Natural Gas
  • cryogenic storage tanks including marine vessels, LNG carriers, LNG RV, etc.
  • LNG FPSO and LNG FSRU natural gas
  • high pressure about 150 ⁇ 400 bara (absolute pressure) depending on the load. Gas supply pressure is required.
  • Boil Off Gas (BOG) from LNG storage tanks.
  • a reliquefaction device is still needed to treat Boil Off Gas (BOG) from LNG storage tanks.
  • BOG Boil Off Gas
  • the boil-off gas is changed depending on the change in gas and fuel oil prices and the degree of regulation of exhaust gas.
  • HFO heavy fuel oil
  • the boil-off gas generated in the storage tank that is, NBOG is supplied to the boil-off gas compressor and compressed to medium pressure of about 12 to 45 bara, and then the medium pressure BOG is mixed refrigerant, for example, non-explosive mixing. It is supplied to a re-liquefaction apparatus using a refrigerant (Non Flammable Mixed Refrigerant), SMR (Single Mixed Refrigerant), or nitrogen as a refrigerant.
  • a refrigerant Non Flammable Mixed Refrigerant
  • SMR Single Mixed Refrigerant
  • the liquefied boil-off gas, LBOG, in the reliquefaction apparatus is compressed to the pressure required by the ME-GI engine in the fuel supply system (high pressure of about 400 bara, for example) and then supplied as fuel to the ME-GI engine.
  • the LBOG supplied to the fuel supply system in the reliquefaction apparatus does not return to the storage tank, it is possible to prevent a problem of generating flash gas as in the prior art, and thus, the pressure of the boil-off gas in the evaporative gas compressor. Can be compressed to medium pressure.
  • the pressure range of the high pressure means a pressure of about 150 to 400 bara, which is a fuel supply pressure required by the high pressure natural gas injection engine
  • the pressure range of the medium pressure means the evaporation in the evaporation gas compression unit 13.
  • the pressure ranges from about 12 to 45 bara to compress the gas
  • the low pressure means the pressure range from about 4 to 8 bara to compress to supply the boil-off gas to the reliquefaction apparatus in the prior art.
  • the reliquefaction after compression in the medium pressure range is conventional in both the case of using a nitrogen refrigerant as in FIGS. 6A and 6B, the use of a non-explosive mixed refrigerant, and the use of SMR as in FIG. 6C.
  • 6A and 6B show data obtained using a Hysys process model (manufactured by Aspentech).
  • the results show that Hamworthy's Mark III reliquefaction unit (technology described in WO 2007/117148), which uses nitrogen gas as a refrigerant, requires the power required for reliquefaction when the pressure of the boil-off compressor is 8 bara. While the pressure is about 2,776 kPa, the pressure of the boil-off gas compressor rises to 12 bara and rapidly decreases to 2,500 kPa. At pressures above 12 bara, the required power for reliquefaction is gradually reduced.
  • the graph shown in FIG. 6C shows a change in power required when a hydrocarbon-based SMR is used as the refrigerant. Looking at the results, it can be seen that even when using the SMR as the refrigerant, the power required for reliquefaction is rapidly reduced when the pressure of the boil-off gas compressor is 12 bara compared to the pressure of the boil-off gas compressor is 8 bara. At pressures above 12 bara, the required power for reliquefaction is gradually reduced.
  • composition of SMR was adjusted as shown in Table 1 below to optimize efficiency for each liquefaction pressure.
  • the pressure range of the boil-off gas is preferably a medium pressure range, that is, 12 bara to 45 bara. If it is less than 12 bara, the power savings required for reliquefaction are not great, which is not preferable. In addition, when it exceeds 45 bara, compared with the power required for pressurization of the boil-off gas, the energy saving required for reliquefaction is not large, which is not preferable.
  • FIG. 3A is a block diagram showing a fuel supply system of an offshore structure, in particular a liquefied natural gas carrier, having a high pressure natural gas injection engine, such as a ME-GI engine, according to a first embodiment of the present invention.
  • 3A shows an example in which a fuel supply system for a high pressure natural gas injection engine of the present invention is applied to an LNG carrier equipped with a ME-GI engine capable of using natural gas as a fuel, but for the high pressure natural gas injection engine of the present invention
  • the fuel supply system can be applied to all types of offshore structures with liquefied gas storage tanks, namely ships such as LNG carriers, LNG RVs, as well as offshore plants such as LNG FPSOs and LNG FSRUs.
  • the boil-off gas (NBOG) generated and discharged from the liquefied gas storage tank 11 is the boil-off gas compression unit 13.
  • the liquefied liquefied gas (LBOG) which is supplied with liquefied energy, that is, cold heat from the reliquefaction apparatus 20, is compressed to a high pressure of about 150 to 400 bara by a high pressure pump 33, and then, to the high pressure vaporizer 37. Supplied.
  • the boil-off gas vaporized in the high pressure vaporizer 37 is subsequently supplied as fuel to a high pressure natural gas injection engine, such as a ME-GI engine.
  • the liquefied evaporation gas (ie, liquefied natural gas) compressed to a high pressure by the high pressure pump 33 is in a supercritical pressure state, and thus it is virtually indistinguishable from liquid phase and gas phase.
  • it is expressed as vaporizing the heating of the liquefied evaporation gas to the ambient temperature (or the temperature required by the high-pressure natural gas injection engine) in the high pressure state
  • the high-pressure device for heating the liquefied evaporation gas to the ambient temperature in the high pressure state Express it as a carburetor.
  • Storage tanks are equipped with sealed and insulated barriers to store liquefied gases, such as LNG, in cryogenic conditions, but they cannot completely block heat from the outside. Accordingly, the liquefied gas is continuously evaporated in the storage tank 11, and the evaporated gas is discharged through the evaporated gas discharge line L1 to maintain the pressure of the evaporated gas at an appropriate level. Let's do it.
  • the discharged boil-off gas is supplied to the boil-off gas compression unit 13 through the boil-off gas discharge line L1.
  • the boil-off gas compressor 13 includes one or more boil-off gas compressors 14 and one or more intermediate coolers 15 for cooling the boil-off gas whose temperature has risen while being compressed by the boil-off gas compressor 14.
  • FIG. 3A there is illustrated a 5-stage compressed boil-off gas compression unit 13 comprising five boil-off gas compressors 14 and five intermediate coolers 15.
  • the boil-off gas compressed by the boil-off gas compression unit 13 is supplied to the reliquefaction apparatus 20 through the boil-off gas supply line L2.
  • the boil-off gas supplied to the reliquefaction apparatus 20 is cooled by the refrigerant and reliquefied while passing through the cold box 21 of the reliquefaction apparatus 20.
  • any structure can be used as long as it can liquefy evaporated gas generated from liquefied gas such as LNG.
  • the evaporated gas re-liquefied through heat exchange in the cold box 21 is separated into a gas and a liquid state in the buffer tank 31, and only the liquid liquefied evaporation gas in the liquid state is supplied to the high pressure pump 33 through the fuel supply line L3. Is supplied.
  • the high pressure pump 33 may be provided in plural, for example two in parallel.
  • liquefied evaporation gas is pressurized to a fuel supply pressure required by a high pressure natural gas injection engine (for example, a ME-GI engine) and sent out.
  • the liquefied evaporation gas sent from the high pressure pump 33 has a high pressure of about 150 to 400 bara (absolute pressure).
  • the reliquefaction apparatus 20 illustrated in FIG. 3A includes a cold box 21 for reliquefying the boil-off gas by heat exchange between the refrigerant and the boil-off gas, and a refrigerant partially heated and vaporized in the cold box 21.
  • At least one refrigerant gas-liquid separator 22 for separating gaseous and liquid refrigerants
  • at least one refrigerant compressor 23 for compressing the gaseous refrigerant separated from the refrigerant gas-liquid separator 22
  • a refrigerant cooler 24 for cooling the refrigerant compressed by the refrigerant compressor 23, and a refrigerant expansion valve 25 for expanding the refrigerant cooled in the refrigerant cooler 24 after being compressed by the refrigerant compressor 23 to lower the temperature.
  • a refrigerant pump 26 for supplying the refrigerant in the liquid state separated from the refrigerant gas-liquid separator 22 to the refrigerant expansion valve 25.
  • the refrigerant supplied to the refrigerant expansion valve 25 through the refrigerant pump 26 is mixed with the refrigerant supplied to the refrigerant expansion valve 25 after passing through the refrigerant cooler 24 upstream of the refrigerant expansion valve 25. It is preferable.
  • the refrigerant supplied to the refrigerant expansion valve 25 may be configured to exchange heat with the refrigerant in the cryogenic state after expansion while passing through the cold box 21 before expansion.
  • the refrigerant cooled in the refrigerant cooler 24 may be supplied to another refrigerant gas-liquid separator to be processed into a refrigerant in a gas state and a refrigerant in a liquid state.
  • the reliquefaction apparatus 20 of FIG. 3A is illustrated as including two refrigerant gas-liquid separators 22, a refrigerant compressor 23, a refrigerant cooler, and a refrigerant pump 26, but this is intended to explain the present invention. It is not limited and the number of installations can be added or subtracted as needed in the design.
  • 3b shows a fuel supply system according to a variant of the first preferred embodiment of the invention. Since the structure of the boil-off gas compression part 13 and the reliquefaction apparatus 20 differs in part from the 1st embodiment mentioned above in the modified example of this 1st embodiment, only the difference is demonstrated below.
  • the boil-off gas compression section 13 according to the modification of the first embodiment illustrated in FIG. 3B is the same as that shown in FIG. 3A in that it has five boil-off gas compressors 14, but the boil-off gas compression section ( 3A differs from that illustrated in FIG. 3A in that the intermediate cooler 15 is omitted between the first and second boil-off compressors and between the second and third boil-off compressors included in 13). Do. According to the present invention, the intermediate cooler 15 may or may not be disposed between the boil-off compressors 14 as described above.
  • the reliquefaction apparatus 20 which concerns on the modification of this 1st Embodiment illustrated in FIG. 3B is the cold box 21 which heat-exchanges a refrigerant
  • the reliquefaction apparatus 20 includes a cold box 21 for reliquefying the boil-off gas by heat exchange between the refrigerant and the boil-off gas,
  • the first refrigerant gas-liquid separator 22a for separating the partially vaporized refrigerant heated in the cold box 21 into a gaseous refrigerant and a liquid refrigerant, and separated from the first refrigerant gas-liquid separator 22a.
  • a first refrigerant compressor 23a for compressing the gaseous refrigerant
  • a first refrigerant cooler 24a for cooling the refrigerant compressed in the first refrigerant compressor 23a
  • the first refrigerant cooler 24a for refrigerant compressed in the first refrigerant compressor 23a.
  • the second refrigerant gas-liquid separator 22b for secondarily separating the refrigerant cooled in the gaseous state and the liquid state refrigerant, and the gaseous refrigerant separated in the second refrigerant gas-liquid separator 22b are compressed.
  • Second refrigerant compressor (23b) and the second refrigerant compressor (2) The first refrigerant pump for supplying the second refrigerant cooler 24b for cooling the refrigerant compressed by 3b) and the liquid refrigerant separated in the first refrigerant gas-liquid separator 22a to the second refrigerant cooler 24b.
  • the second refrigerant pump 26b for supplying the liquid refrigerant separated in the second refrigerant gas-liquid separator 22b to the second refrigerant cooler 24b and the second refrigerant cooler 24b.
  • the third refrigerant gas-liquid separator 22c for separating the refrigerant into gaseous and liquid refrigerants, and the liquid refrigerant separated by the third refrigerant gas-liquid separator 22c to expand the temperature.
  • a third refrigerant pump 26c for supplying the refrigerant in the liquid state to the refrigerant expansion valve 25 from the third refrigerant gas-liquid separator 22c.
  • the liquid refrigerant supplied to the second refrigerant cooler 24b from the first and second refrigerant gas-liquid separators 22a and 22b is joined and then supplied from the second refrigerant compressor 23b to the second refrigerant cooler 24b.
  • the second refrigerant cooler 24b may be supplied to the second refrigerant cooler 24b in a mixed state with the gaseous refrigerant.
  • the gaseous refrigerant separated from the third gas-liquid separator 22c may be mixed with the liquid refrigerant supplied to the refrigerant expansion valve 25 by the third refrigerant pump 26c.
  • the refrigerant supplied to the refrigerant expansion valve 25 may be configured to exchange heat with the refrigerant in the cryogenic state after expansion while passing through the cold box 21 before expansion.
  • the reliquefaction apparatus 20 of FIG. 3B is merely an example and does not limit the present invention, and the configuration of the reliquefaction apparatus may be changed as necessary in design.
  • a non-explosive mixed refrigerant including R14 may be used unlike the conventional art.
  • the non-explosive mixed refrigerant formed by mixing a plurality of non-explosive refrigerants has a mixed composition ratio such that the non-explosive mixed refrigerant does not condense even at the liquefaction temperature when re-liquefying the compressed boil-off gas at medium pressure.
  • the refrigeration cycle using the phase change of the mixed refrigerant is more efficient than the nitrogen gas refrigeration cycle using only nitrogen as a refrigerant.
  • Conventional mixed refrigerants have a problem in safety due to the mixing of explosive refrigerant, but the non-explosive mixed refrigerant of the present invention is high in safety because it is a mixture of non-explosive refrigerant.
  • the non-explosive mixed refrigerant of the present invention it is possible to apply the mixed refrigerant Joule-Thomson refrigeration cycle to the marine LNG reliquefaction apparatus.
  • this mixed refrigerant is a hydrocarbon (Hydro-Carbon; hereinafter referred to as "HC”) mixed refrigerant and has difficulty in handling.
  • the non-explosive mixed refrigerant of the present invention is composed of argon, hydrofluorocarbon (hereinafter referred to as "HFC”) refrigerant, and fluorocarbon (hereinafter referred to as "FC”) refrigerant, which is explosive There is no
  • HFC / FC refrigerant those shown in Table 2 may be used.
  • Table 2 shows argon together.
  • the freezing point is higher than the general temperature of LNG ( ⁇ 163 ° C.) and thus cannot be used as a refrigerant during LNG reliquefaction.
  • the inventors pay attention to the fact that the liquefaction (or reliquefaction) temperature rises as the pressure of the natural gas (or evaporated gas) increases, as shown in FIG. 4C, and thus a highly efficient and safe HFC / FC mixed refrigerant.
  • a non-explosive mixed refrigerant has been developed to reliquefy the boil-off gas from LNG storage tanks in offshore structures by Joule-Thomson refrigeration cycle.
  • the boil-off gas before the reliquefaction of the boil-off gas by pressurizing to a medium pressure of 12 to 45 bara, the boil-off gas at a temperature higher than the temperature of the boil-off liquid reliquefaction at normal pressure, that is, higher than the freezing point of the non-explosive mixed refrigerant Allow reliquefaction of
  • Non-explosive mixed refrigerant of the present invention the boiling point is evenly distributed between natural gas liquefaction temperature (or evaporation gas reliquefaction temperature) and room temperature is made by mixing the refrigerant of various components to use a wide phase change section. It is preferable to classify the refrigerants having similar boiling points into five series, and to select one or more components from each series to constitute the non-explosive mixed refrigerant of the present invention. That is, the non-explosive mixed refrigerant of the present invention is made by selecting and mixing at least one component from each of five series.
  • Series I includes Ar having the lowest boiling point among refrigerants
  • Series II includes R14
  • Series III includes R23, R116, and R41
  • Series IV includes R32, R410A , R410B, R125, R143a, R507, R407B, R404A, R407A, R407C, R407E, R407D, R161, R218, R134a, R152a, and R227ea
  • Series V include R236fa and R245fa.
  • the non-explosive mixed refrigerant of the present invention in which at least one refrigerant is selected from each of these five series has a component and a composition as shown in the following Table 4 in view of ease of supply of refrigerant, cost, and the like.
  • the composition ratio of the non-explosive mixed refrigerant is a temperature difference between the heat exchanger that exchanges heat with the boil-off gas, that is, the hot fluid (ie, the boil-off gas) in the cold box 21 and the low-temperature fluid (that is, the non-explosive mixed refrigerant). It is desirable in terms of efficiency to be determined to be as constant as possible.
  • Table 4 Ingredient Composition (% mole) Ar 20 to 55 R14 15 to 30 R23 5 to 15 R410a 10 to 15 R245fa 15 to 20
  • power consumption that is, power (kW) can be reduced as compared to when the evaporated gas is reliquefied using nitrogen gas refrigerant as in the prior art, thereby improving reliquefaction efficiency.
  • the present invention compresses and reliquefies the evaporated gas to a medium pressure of about 12 to 45 bara, which is a relatively high pressure, compared to the evaporated gas pressure used in the conventional reliquefaction apparatus, when reliquefying
  • the reliquefaction efficiency in the reliquefaction apparatus is best when the evaporated gas has a pressure of about 12 to 45 bara. I can keep it.
  • the reliquefaction temperature is about -130 ° C
  • the temperature of the non-explosive mixed refrigerant is lowered to about -155 ° C in order to cool the boil-off gas to this temperature. Since the non-explosive mixed refrigerant having the composition may cause freezing at -155 ° C. or lower, a refrigeration cycle using the non-explosive mixed refrigerant is difficult to configure when the pressure of the boil-off gas is lower than 12 bara.
  • the present invention is characterized by a medium pressure, that is, a pressure range of 12 to 45 bara (based on 4.3 ton / h of evaporating gas), so that both nitrogen gas refrigerants and non-explosive mixed refrigerants are effective.
  • a medium pressure that is, a pressure range of 12 to 45 bara (based on 4.3 ton / h of evaporating gas)
  • both nitrogen gas refrigerants and non-explosive mixed refrigerants are effective.
  • the reliquefaction apparatus using the non-explosive mixed refrigerant having the composition as described above of the present invention further reduces power by approximately 10 to 20%.
  • FIG. 6B shows the power requirement in the conditions of the reliquefaction apparatus according to the prior art (i.e., when the refrigerant used in the reliquefaction apparatus is nitrogen gas (N2) and the pressure of the boil-off gas supplied to the reliquefaction apparatus is 8 bara).
  • the conditions of the reliquefaction apparatus using the non-explosive mixed refrigerant (NFMR) according to the present invention ie, the refrigerant used in the reliquefaction apparatus is a non-explosive mixed refrigerant (NFMR) and the pressure of the boil-off gas supplied to the reliquefaction apparatus is A graph comparing the power requirements (in the case of 12 to 45 bara) is shown. Referring to FIG.
  • the reliquefaction apparatus of the present invention can operate with only about 50 to 80% of the power compared to the power consumed in the conventional reliquefaction apparatus (refrigeration cycle) using nitrogen refrigerant.
  • the generator capacity can be reduced and the generator can be miniaturized.
  • the reliquefaction apparatus of the present invention uses a Joule Thomson valve as an expansion means of the refrigerant, so that the entire system is simpler and more economical than the conventional N2 compander using an expander. You can get the advantage.
  • non-explosive mixed refrigerant of the present invention may contain a small amount of non-explosive refrigerant components other than those shown in Table 2.
  • FIG. 7A is a block diagram showing a fuel supply system for an offshore structure having a high pressure natural gas injection engine (eg, a ME-GI engine) according to a second embodiment of the present invention.
  • FIG. 7A The fuel supply system of the second embodiment shown in FIG. 7A has a high pressure pump 33 before compressing the boil-off gas to medium pressure and re-liquefying in the reliquefaction apparatus as compared with the fuel supply system of the first embodiment described above. Since they differ from each other only in that they are pre-cooled by heat exchange with LNG supplied to the high-pressure vaporizer 37, the following description focuses on differences from the first embodiment.
  • the liquefied evaporated gas compressed at high pressure in the high pressure pump 33 is supplied to the reliquefaction apparatus 20 and the heat exchanger 35 to be supplied to the reliquefaction apparatus 20 before being supplied to the high pressure vaporizer 37.
  • the liquefied evaporation gas supplied to the high pressure vaporizer 37 may be heated while passing through the heat exchanger 35 to reduce the vaporization energy of the high pressure vaporizer 37.
  • the boil-off gas compressed by the boil-off gas compression unit 13 is supplied to the reliquefaction apparatus 20 through the boil-off gas supply line L2.
  • a heat exchanger 35 is installed in the middle of the boil-off gas supply line L2. As described above, the relatively low-temperature compressed boil-off gas discharged from the high-pressure pump 33 and the compressed high-temperature pump 33 in the heat exchanger 35 are installed. Liquefied evaporation gases exchange heat with each other.
  • the boil-off gas cooled while passing through the heat exchanger 35 is cooled by the refrigerant and re-liquefied while passing through the cold box 21 of the reliquefaction apparatus 20.
  • FIG. 7B shows a fuel supply system according to a modification of the second preferred embodiment of the present invention.
  • the modification of this 2nd Embodiment is partially different from the 2nd Embodiment mentioned above in the structure of the boil-off gas compression part 13 and the reliquefaction apparatus 20 as demonstrated in the modification of 1st Embodiment. Do.
  • the boil-off gas compression unit 13 according to the modification of the second embodiment illustrated in FIG. 7B has the same as that shown in FIG. 7A in that it has five boil-off gas compressors 14, the boil-off gas compression 7a in that the intermediate cooler 15 is omitted between the first and second boil-off compressors, and between the second and third boil-off compressors included in section 13. Is different from According to the present invention, the intermediate cooler 15 may or may not be disposed between the boil-off compressors 14 as described above.
  • the reliquefaction apparatus 20 which concerns on the modification of this 2nd Embodiment illustrated in FIG. 7B is similar to the reliquefaction apparatus 20 which concerns on the modification of 1st Embodiment illustrated in FIG. Cold box 21 through which heat exchange of the boil-off gas is performed, compression means for compressing at least partially vaporized refrigerant heated in the cold box 21, expansion means for expanding the compressed refrigerant to lower the temperature, and gas And a refrigerant gas-liquid separator for separating the refrigerant in the liquid state and the refrigerant in the liquid state.
  • the reliquefaction apparatus 20 includes a plurality of refrigerant gas-liquid separators 22a, 22b, and 22c, as in FIG. 2B.
  • the refrigerant gas-liquid separator 22c disposed on the downstream side among the refrigerant gas-liquid separators of the refrigerant gas-liquid separator 22c is supplied after mixing the refrigerant in the gas state and the liquid state in the refrigerant gas-liquid separators 22a and 22b disposed upstream. .
  • the gaseous refrigerant separated in the refrigerant gas-liquid separators 22a and 22b disposed on the upstream side is compressed by the refrigerant compressors 23a and 23b before being supplied to the refrigerant gas-liquid separator 22c disposed on the downstream side. And cooled by the refrigerant coolers 24a and 24b.
  • the liquid refrigerant separated in the refrigerant gas-liquid separators 22a and 22b disposed on the upstream side is more specifically, a gas before the gaseous refrigerant is supplied to the refrigerant gas-liquid separator 22c disposed on the downstream side.
  • the refrigerant in the state is mixed with the gaseous refrigerant before being cooled by the refrigerant cooler 24b.
  • FIG. 8A is a block diagram showing a fuel supply system of an offshore structure having a high pressure natural gas injection engine (for example, a ME-GI engine) according to a third embodiment of the present invention.
  • the fuel supply system of the third embodiment shown in FIG. 8A differs from each other only in that it preheats before compressing the boil-off gas as compared with the fuel supply system of the first embodiment described above, and therefore, in the following description, The differences are explained mainly.
  • the boil-off gas (NBOG) generated and discharged from the liquefied gas storage tank 11 is discharged. Is compressed to a medium pressure of about 12 to 45 bara (absolute pressure) in the boil-off gas compression unit 13, and then the boil-off gas installed upstream of the boil-off gas compression unit 13 before being supplied to the reliquefaction apparatus 20. It is supplied to the preheater 41.
  • the boil-off gas compressed to about 12 to 45 bara in the boil-off gas compression unit 13 and cooled to about 40 ° C. through the intermediate cooler 15 is cryogenically discharged from the liquefied gas storage tank 11 in the boil-off gas preheater 41. It is cooled by heat exchange with the boil-off gas and then supplied to the reliquefaction apparatus 20.
  • the temperature of the boil-off gas to be supplied to the reliquefaction apparatus 20 can be lowered through the boil-off gas preheater 41, thereby reducing the heat load in the cold box 21.
  • the cryogenic gas supplied to the boil-off gas compression unit 13 and the boil-off gas having a relatively high temperature compressed by the boil-off gas compression unit 13 are located upstream of the boil-off gas compression unit 13.
  • the boil-off gas which has been compressed by the boil-off gas compression section 13 and passed through the boil-off gas preheater 41, is supplied to the reliquefaction apparatus 20 similarly to the fuel supply system of the first embodiment described above. Subsequently, the liquefied liquefied gas (LBOG) supplied with liquefied energy, that is, cold heat from the reliquefaction apparatus 20 is compressed to a high pressure of about 150 to 400 bara by the high pressure pump 33, and then a high pressure vaporizer ( 37). The boil-off gas vaporized in the high pressure vaporizer 37 is subsequently supplied as fuel to a high pressure natural gas injection engine, such as a ME-GI engine.
  • a high pressure natural gas injection engine such as a ME-GI engine.
  • FIG. 8B shows a fuel supply system according to a modification of the third preferred embodiment of the present invention.
  • the modification of this 3rd Embodiment differs in part from the structure of the reliquefaction apparatus 20 compared with 3rd Embodiment mentioned above.
  • the reliquefaction apparatus 20 which concerns on the modification of this 3rd embodiment illustrated in FIG. 8B is similar to the reliquefaction apparatus 20 which concerns on the modification of the 1st embodiment illustrated in FIG. Cold box 21 through which heat exchange of the boil-off gas is performed, compression means for compressing at least partially vaporized refrigerant heated in the cold box 21, expansion means for expanding the compressed refrigerant to lower the temperature, and gas And a refrigerant gas-liquid separator for separating the refrigerant in the liquid state and the refrigerant in the liquid state.
  • the reliquefaction apparatus 20 includes a plurality of refrigerant gas-liquid separators 22a, 22b, and 22c, as in FIG. 2B.
  • the refrigerant gas-liquid separator 22c disposed on the downstream side among the refrigerant gas-liquid separators of the refrigerant gas-liquid separator 22c is supplied after mixing the refrigerant in the gas state and the liquid state in the refrigerant gas-liquid separators 22a and 22b disposed upstream. .
  • the gaseous refrigerant separated in the refrigerant gas-liquid separators 22a and 22b disposed on the upstream side is compressed by the refrigerant compressors 23a and 23b before being supplied to the refrigerant gas-liquid separator 22c disposed on the downstream side. And cooled by the refrigerant coolers 24a and 24b.
  • the liquid refrigerant separated in the refrigerant gas-liquid separators 22a and 22b disposed on the upstream side is more specifically, a gas before the gaseous refrigerant is supplied to the refrigerant gas-liquid separator 22c disposed on the downstream side.
  • the refrigerant in the state is mixed with the gaseous refrigerant before being cooled by the refrigerant cooler 24b.
  • FIG. 9A is a block diagram showing a fuel supply system of an offshore structure having a high pressure natural gas injection engine (for example, a ME-GI engine) according to a fourth embodiment of the present invention.
  • the fuel supply system of the fourth embodiment shown in FIG. 9A is more stable than the fuel gas supply system of the third embodiment described above, that is, surplus boil-off gas consumption means for treating surplus boil-off gas, that is, a heterogeneous fuel engine (DFDE) or the like. Since the means for supplying fuel, that is, the LNG supply line is different from each other, the following description focuses on differences from the second embodiment.
  • DFDE heterogeneous fuel engine
  • the excess evaporation gas means more evaporation gas than the amount of liquefied evaporation gas required by the high-pressure gas injection engine. If excess evaporated gas is generated, the amount of generated evaporated gas is high even if the high-pressure gas injection engine is in operation, or if the high-pressure gas injection engine operates at low speed or does not operate (for example, when entering a port or opening a canal). May occur).
  • the excess liquefied vaporization gas The LBOG is depressurized through the LBOG expansion valve 51 installed at the LBOG return line L4 branching from the fuel supply line L3 at the rear end of the buffer tank 31, and includes flash gas generated in the depressurization process. After the LBOG is separated into a liquid component (LBOG) and a gas component (flash gas) through a gas-liquid separator, the liquid component is returned to the storage tank 11 through the LBOG return line L4.
  • LBOG liquid component
  • flash gas flash gas
  • the LBOG containing the flash gas reduced in pressure by the LBOG expansion valve 51 is supplied to the LBOG gas-liquid separator 53 and separated into a liquid component and a gas component, and the gas component separated by the LBOG gas-liquid separator 53.
  • a surplus boil-off gas consuming means i.e., a heterogeneous fuel engine DFDE, which can be installed in the offshore structure for power generation or the like through the fuel gas supply line L6.
  • the pressure of the fuel gas supplied to the heterogeneous fuel engine can be adjusted by a pressure regulating valve installed downstream of the LBOG gas-liquid separator 53 in the middle of the fuel gas supply line L6, and also the fuel gas supply line ( In the fuel gas heater 55 installed in the middle of L6), the temperature of the fuel gas may be heated to a temperature required by the heterogeneous fuel engine.
  • the liquid component separated in the LBOG gas-liquid separator 53 is returned to the storage tank through the LBOG return line (L4).
  • the pressure of the liquid component separated in the LBOG gas-liquid separator 53 may still be higher than the normal pressure.
  • the liquid component separated from the LBOG gas-liquid separator 53 i.e., LBOG
  • LBOG liquid component separated from the LBOG gas-liquid separator 53
  • another LBOG gas-liquid separator 54 is further depressurized through another LBOG expansion valve 52, and is then supplied to another LBOG gas-liquid separator 54 to supply the liquid component ( After separating into LBOG) and a gas component (flash gas), the liquid component of normal pressure is returned to the storage tank 11 through the LBOG return line L4.
  • the gas component separated in another LBOG gas-liquid separator 54 may be consumed by being supplied to and combusted by a gas combustion unit (GCU) as another surplus boil-off gas consumption means.
  • GCU gas combustion unit
  • the fuel supplied to the heterogeneous fuel engine is insufficient, the fuel is diverted from the fuel supply line L3 supplying the fuel to the high pressure natural gas injection engine (ie, ME-GI) to supply fuel to the heterogeneous fuel engine (ie, DFDE).
  • Fuel may be additionally supplied to the heterogeneous fuel engine through the branch line L5 connected to the fuel gas supply line L6.
  • the branch line (L5) is provided with a valve for the pressure drop.
  • the boil-off gas reliquefaction apparatus when the boil-off gas reliquefaction apparatus does not operate or the amount of the boil-off gas generated in the storage tank 11 is small, it is stored through the LNG supply pump 57 and the LNG supply line L7 installed in the storage tank 11. Fuel can be supplied by supplying LNG accommodated in the tank 11 to the buffer tank 31.
  • the heterogeneous fuel engine functions as a flash gas treating means capable of treating flash gas generated from the LBOG on the way back to the storage tank 11 due to the pressure difference.
  • the gas component separated in the LBOG gas-liquid separator 53 may be supplied to a consumer such as a gas turbine, a boiler or the like instead of a heterogeneous fuel engine, and may be used as fuel.
  • this gas component can be supplied to and treated by a gas discharge device for releasing natural gas into the atmosphere, or a gas combustion device (for example, a flare tower) for burning in the atmosphere.
  • the heterogeneous fuel engine, gas turbine, boiler, gas discharge device or flare tower is included in the surplus evaporative gas consumption means (flash gas processing means), the gas component supplied to such surplus evaporative gas consumption means is a fuel gas heater ( 55).
  • the evaporated gas supplied to the reliquefaction apparatus is compressed to a medium pressure of about 12 to 45 bara. Can be supplied, thereby reducing the energy consumption of reliquefaction.
  • FIG. 9B shows a fuel supply system according to a modification of the fourth preferred embodiment of the present invention.
  • the modified example of the fourth embodiment is partially different from the above-described fourth embodiment in the configuration of the reliquefaction apparatus 20, and from the evaporative gas compression unit 13 or downstream thereof when excess evaporated gas is generated. It is different from the fourth embodiment in that the excess boil-off gas is treated through a line branching at the side end.
  • the reliquefaction apparatus 20 according to the modification of the fourth embodiment illustrated in FIG. 9B is similar to the reliquefaction apparatus 20 according to the modification of the first embodiment illustrated in FIG. 2B.
  • a cold box 21 in which heat exchange is performed compression means for compressing at least partially vaporized refrigerant heated in the cold box 21, expansion means for expanding the compressed refrigerant to lower the temperature, and a gaseous state.
  • Refrigerant gas-liquid separator for separating the refrigerant and the liquid refrigerant.
  • the reliquefaction apparatus 20 includes a plurality of refrigerant gas-liquid separators 22a, 22b, and 22c as in FIG. 2B.
  • the refrigerant gas-liquid separator 22c disposed on the downstream side among the refrigerant gas-liquid separators of the refrigerant gas-liquid separator 22c is supplied after mixing the refrigerant in the gas state and the liquid state in the refrigerant gas-liquid separators 22a and 22b disposed upstream. .
  • the gaseous refrigerant separated in the refrigerant gas-liquid separators 22a and 22b disposed on the upstream side is compressed by the refrigerant compressors 23a and 23b before being supplied to the refrigerant gas-liquid separator 22c disposed on the downstream side. And cooled by the refrigerant coolers 24a and 24b.
  • the liquid refrigerant separated in the refrigerant gas-liquid separators 22a and 22b disposed on the upstream side is more specifically, a gas before the gaseous refrigerant is supplied to the refrigerant gas-liquid separator 22c disposed on the downstream side.
  • the refrigerant in the state is mixed with the gaseous refrigerant before being cooled by the refrigerant cooler 24b.
  • the fuel supply system according to the modification of the fourth embodiment illustrated in FIG. 9B is surplus through the second branch line L8 branching from the boil-off gas compression unit 13 when more boil-off gas is generated than the required amount. It can be configured to supply and use the boil-off gas to a different fuel engine (DFDE) as a surplus boil-off gas consumption means.
  • DFDE fuel engine
  • the temperature of the boil-off gas in the intermediate cooler 15 included in the boil-off gas compression unit 13 is cooled to about 40 ° C., a separate heater or the like for controlling the temperature of the boil-off gas supplied to the different fuel engine is May be omitted.
  • the surplus evaporated gas may be configured to be supplied to the gas turbine as another surplus evaporated gas consumption means through a third branch line L9 branching from the rear end of the evaporated gas compression unit 13.
  • a separate device for controlling the temperature of the boil-off gas supplied to the gas turbine may be omitted.
  • the fuel supply system according to the modification of the fourth embodiment illustrated in FIG. 9B is composed of one LBOG expansion valve and one LBOG gas-liquid separator disposed in the LBOG return line L4, respectively, as compared with the fourth embodiment described above.
  • another LBOG expansion valve 52 and LBOG gas-liquid separator 54 may be additionally arranged as necessary in the fourth embodiment.
  • FIG. 10A is a block diagram showing a fuel supply system of an offshore structure having a high pressure natural gas injection engine (for example, a ME-GI engine) according to a fifth embodiment of the present invention.
  • the fuel supply system of the fifth embodiment shown in FIG. 10A is more stable than the fuel supply system of the third embodiment described above, ie, a means for consuming excess evaporated gas, that is, a gas combustion unit (GCU) or the like. They differ from each other in that means for fuel supply, ie LNG supply lines, have been added.
  • GCU gas combustion unit
  • the load of the high pressure natural gas injection engine is reduced or the amount of generated evaporated gas is large, so that the excess liquefied vaporization gas (LBOG) ) Is expected to occur, the evaporated gas compressed in the boil-off gas compression section 13 is branched through the branch line and used in the excess boil-off gas consumption means.
  • LBOG liquefied vaporization gas
  • it may be configured to supply and use the surplus evaporated gas to the heterologous fuel engine DFDE as the surplus evaporated gas consumption means through the second branch line L8 branched from the evaporated gas compression unit 13.
  • the temperature of the boil-off gas in the intermediate cooler 15 included in the boil-off gas compression unit 13 is cooled to about 40 ° C., a separate heater or the like for controlling the temperature of the boil-off gas supplied to the different fuel engine is May be omitted.
  • the surplus evaporated gas may be configured to be supplied to the gas turbine as another surplus evaporated gas consumption means through a third branch line L9 branching from the rear end of the evaporated gas compression unit 13.
  • a separate device for controlling the temperature of the boil-off gas supplied to the gas turbine may be omitted.
  • the excess evaporated gas is depressurized through the LBOG expansion valve 51 installed in the LBOG return line L4 branching from the fuel supply line L3 at the rear end of the buffer tank 31, and is generated during the depressurization process.
  • the LBOG containing the flash gas is separated into a liquid component (LBOG) and a gas component (flash gas) through the LBOG gas-liquid separator 53
  • the liquid component is returned to the storage tank 11 through the LBOG return line L4.
  • the gas component (i.e., flash gas) separated in the LBOG gas-liquid separator 53 is supplied as fuel to the gas combustion unit GCU as the surplus boil-off gas consumption means via the fuel gas supply line L6.
  • the excess evaporated gas is branched from the fuel supply line (L3) for supplying fuel to the high-pressure natural gas injection engine (ie, ME-GI) and connected to the fuel gas supply line (L6). It can be supplied in addition to the GCU.
  • the branch line (L5) is provided with a valve for the pressure drop.
  • the LNG supply pump 57 installed in the storage tank 11 and Fuel may be supplied by supplying LNG contained in the storage tank 11 to the buffer tank 31 through the LNG supply line L7.
  • devices such as DFDE (fourth embodiment) and GCU (fifth embodiment) described as means for treating the generated flash gas, and no flash gas are generated.
  • the devices such as the DFDE (fifth embodiment) and the gas turbine (fifth embodiment), which are described as means for pre-consuming excess evaporated gas before reliquefaction, are all capable of suppressing the generation of flash gas. It can be named as gas suppression means.
  • these apparatuses can consume surplus evaporative gas more than the quantity of fuel required by a high pressure gas injection engine, it can also be named as a surplus evaporative gas consumption means.
  • FIG. 10B shows a fuel supply system according to a modification of the fifth preferred embodiment of the present invention.
  • the configuration of the reliquefaction apparatus 20 is partially different from that of the fifth embodiment described above.
  • the reliquefaction apparatus 20 which concerns on the modification of this 5th embodiment illustrated in FIG. 10B is the same as that of the reliquefaction apparatus 20 which concerns on the modification of the 1st embodiment illustrated in FIG. Cold box 21 through which heat exchange of the boil-off gas is performed, compression means for compressing at least partially vaporized refrigerant heated in the cold box 21, expansion means for expanding the compressed refrigerant to lower the temperature, and gas And a refrigerant gas-liquid separator for separating the refrigerant in the liquid state and the refrigerant in the liquid state.
  • the reliquefaction apparatus 20 includes a plurality of refrigerant gas-liquid separators 22a, 22b, and 22c, as in FIG. 2B.
  • the refrigerant gas-liquid separator 22c disposed on the downstream side among the refrigerant gas-liquid separators of the refrigerant gas-liquid separator 22c is supplied after mixing the refrigerant in the gas state and the liquid state in the refrigerant gas-liquid separators 22a and 22b disposed upstream. .
  • the gaseous refrigerant separated in the refrigerant gas-liquid separators 22a and 22b disposed on the upstream side is compressed by the refrigerant compressors 23a and 23b before being supplied to the refrigerant gas-liquid separator 22c disposed on the downstream side. And cooled by the refrigerant coolers 24a and 24b.
  • the liquid refrigerant separated in the refrigerant gas-liquid separators 22a and 22b disposed on the upstream side is more specifically, a gas before the gaseous refrigerant is supplied to the refrigerant gas-liquid separator 22c disposed on the downstream side.
  • the refrigerant in the state is mixed with the gaseous refrigerant before being cooled by the refrigerant cooler 24b.
  • FIG. 11 is a configuration diagram showing a fuel supply system for an offshore structure having a high pressure natural gas injection engine (for example, a ME-GI engine) according to a sixth embodiment of the present invention.
  • the fuel supply system of the sixth embodiment shown in FIG. 11 is different from each other in that a recondenser is used in place of the buffer tank included in the fuel supply systems of the first to fifth embodiments described above.
  • the boil-off gas (NBOG) generated and discharged from the liquefied gas storage tank 110, the boil-off gas compression unit ( In 113) is supplied to the reliquefaction apparatus 120 after being compressed to a medium pressure of approximately 12 to 45 bara (absolute pressure).
  • the liquefied liquefied gas (LBOG) which is supplied with liquefied energy, that is, cold heat from the reliquefaction apparatus 120, is compressed to a high pressure of about 150 to 400 bara by the high pressure pump 133, and then, to the high pressure vaporizer 137. Supplied.
  • the boil-off gas vaporized in the high pressure vaporizer 137 is subsequently supplied as fuel to a high pressure natural gas injection engine, such as a ME-GI engine.
  • Storage tanks are equipped with sealed and insulated barriers to store liquefied gases, such as LNG, in cryogenic conditions, but they cannot completely block heat from the outside. Accordingly, the evaporation of the liquefied gas is continuously performed in the storage tank 110, and in order to maintain the pressure of the evaporated gas at an appropriate level, the evaporated gas is discharged through the evaporated gas discharge line L11 in the storage tank 110. Let's do it.
  • the discharged boil-off gas is supplied to the boil-off gas compression unit 113 through the boil-off gas discharge line L11.
  • the boil-off gas compressor 113 includes one or more boil-off gas compressors 114. Although not shown, the boil-off gas compressor 113 may include one or more intermediate coolers (not shown) for cooling the boil-off gas whose temperature has risen while being compressed by the boil-off gas compressor 114. In FIG. 11, a three-stage compressed boil-off gas compression unit 113 including three boil-off gas compressors 114 is illustrated.
  • the boil-off gas compressed by the boil-off gas compression unit 113 is supplied to the reliquefaction apparatus 120 through the boil-off gas supply line L12.
  • the boil-off gas supplied to the reliquefaction apparatus 120 is cooled by the refrigerant and re-liquefied while passing through a cold box of the reliquefaction apparatus 120, that is, the main cryogenic heat exchanger 121.
  • any structure can be used as long as it can liquefy evaporated gas generated from liquefied gas such as LNG. That is, a reliquefaction system utilizing a non-explosive mixed refrigerant having a configuration as described in the first to fifth embodiments and modifications thereof described above can be used. In addition, a reliquefaction system utilizing a conventionally known nitrogen refrigerant may be used, and for example, those disclosed in WO 2007/117148 and WO 2009/136793 may be used.
  • the boil-off gas liquefied through heat exchange in the cold box 121 is supplied to the recondenser 131 and temporarily stored.
  • the liquefied liquefied gas and the liquefied gas supplied from the liquefied gas storage tank 110 that is, LNG is temporarily stored in the recondenser 131, and reliquefied from the liquefied gas storage tank 110.
  • the recondenser 131 is directly liquefied in the reliquefaction apparatus 120 and then directly supplied to the recondenser 131 to be temporarily stored in the liquefied evaporation gas and the storage tank 110. Cooling heat from at least one of the liquefied gas (ie, LNG) supplied to 131 is used to recondense some or all of the generated boil-off gas.
  • LNG liquefied gas
  • the recondenser 131 may perform a function of separating gas and liquid components, similarly to the buffer tank in the above-described embodiments, the liquefied gas temporarily stored in the recondenser 131 is separated into a gas and a liquid state, Only the liquefied gas in the liquid state is supplied to the high pressure pump 133 through the fuel supply line L13.
  • the high pressure pump 133 may be provided in plural, for example, two in parallel.
  • the liquefied gas is pressurized to a fuel supply pressure required by a high pressure natural gas injection engine (for example, a ME-GI engine) and sent out.
  • the liquefied gas sent from the high pressure pump 133 has a high pressure of about 150 to 400 bara (absolute pressure).
  • a booster pump is provided between the high pressure pump 133 and the recondenser 131 of the fuel supply line L13 to ensure a sufficient net suction head (NPSH) in the high pressure pump 133.
  • NPSH net suction head
  • the liquefied gas compressed at high pressure in the high pressure pump 133 is supplied to the reliquefaction apparatus 120 and the heat exchanger before being supplied to the high pressure vaporizer 137.
  • the system may be configured to exchange heat at 135. Since the liquefied gas supplied to the high pressure vaporizer 137 is relatively low temperature compared to the boiled gas supplied to the reliquefaction apparatus 120, the temperature of the boiled gas supplied to the reliquefaction apparatus 120 while passing through the heat exchanger 135. Reducing the liquefaction energy in the reliquefaction apparatus 120 can be reduced.
  • the liquefied gas supplied to the high pressure vaporizer 137 may be heated while passing through the heat exchanger 135 to reduce the vaporization energy of the high pressure vaporizer 137.
  • the liquefied evaporated gas recondensed and temporarily stored in the recondenser 131 may be returned to the liquefied gas storage tank 110 through the LBOG return line L14, if necessary.
  • the LBOG return line L14 may be provided with expansion valves, gas-liquid separators, and the like as the fourth and fifth embodiments and modified examples thereof described with reference to FIGS. 9A to 10B.
  • the vaporized gas generated in the storage tank is liquefied and all are used as fuel in the high pressure natural gas injection engine. Accordingly, the liquefied gas returned to the storage tank 110 through the LBOG return line (L14) can be eliminated.
  • the LBOG return line (L14) is used when the towing of the offshore structure in the port, when passing through the canal, or when operating at low speed, the fuel consumption of the high pressure natural gas injection engine Only in very exceptional cases, less than the amount, can be used to return the LBOG from the recondenser 131 to the storage tank 110. In addition, it may be used for the purpose of returning the LBOG remaining in the recondenser 131 to the storage tank 110 during the failure or maintenance of the recondenser.
  • the returning LBOG since the LBOG can be used in all engines without returning the LBOG to the storage tank during most of the operation of the offshore structure, the returning LBOG itself can be eliminated during that period, and thus the pressure difference during the return of the LBOG. It is possible to remove the flash gas that may occur due to the source.
  • the expression “remove flash gas” means that the flash gas is not supplied to the inside of the storage tank 110 by consuming the generated flash gas, and the reliquefied evaporated gas is stored in the storage tank 110. It is a concept that includes both preventing the return of the flash gas by preventing the return of the flash gas generated during the return.
  • the fuel consumption of the high pressure natural gas injection engine is more or less than the amount of boil-off gas generated in the storage tank
  • fuel consumption of the high pressure natural gas injection engine is, the high pressure natural gas injection engine
  • the fuel consumption of these engines and the fuel consumption of the high pressure natural gas injection engine should be regarded as added.
  • the only engine using the boil-off gas as a fuel is a high pressure natural gas injection engine, it means only the fuel consumption of the high pressure natural gas injection engine.
  • the LNG contained in the storage tank 110 is directly recondensed through the LNG supply line L17. 131 can be supplied.
  • One point of the LNG supply line L17 that is, the starting point of the LNG supply line L17 located inside the liquefied gas storage tank 110 so that LNG contained in the storage tank 110 can be directly supplied to the recondenser 131.
  • the submersible pump 157 is installed.
  • the internal pressure in the recondenser 131 (or the buffer tank 31 in the first to fifth embodiments and variations thereof) is approximately 12 to 12 in the boil-off gas compression unit 130.
  • the booster pump 158 is installed in the middle of the LNG supply line L17, and the pressure inside the recondenser 131 (or buffer tank) is discharged to the outside of the storage tank by the submersible pump 157. It is desirable to compress the pressure to the same level as.
  • boil-off gas generated in the liquefied gas storage tank 110 is greater than the amount of fuel required by the high-pressure natural gas injection engine, it is expected that an excess of liquefied liquefied gas (LBOG) will occur.
  • the boil-off gas in the middle of being compressed or compressed in stages is branched through the boil-off gas branch line L18 and used in the boil-off gas consumption means.
  • a gas turbine, DFDE, or the like which can use natural gas at a lower pressure than fuel as a ME-GI engine, may be used.
  • the fuel gas supply system to reduce the load of the reliquefaction apparatus 120 or to completely stop the operation of the reliquefaction apparatus to improve the efficiency of the entire system, evaporation,
  • the evaporation gas bypass line (L21) which can be directly supplied to the recondenser 131 by bypassing the reliquefaction apparatus by dividing from the gas supply line (L12) and part or all of the evaporated gas compressed by the evaporation gas compression unit 113 to It may include.
  • the boil-off gas bypass line L21 is preferably branched from the heat exchanger 135 downstream of the boil-off gas supply line L12 and connected to the recondenser 131. If necessary, the pressure control valve 161 may be installed in the boil-off gas bypass line L21 to adjust the pressure of the recondenser 131.
  • LNG in the storage tank 110 is supplied to the recondenser 131 to compensate for the insufficient fuel amount.
  • a part of the boil-off gas supplied to the re-liquefaction apparatus may be supplied to the re-condenser 131 through the boil-off gas bypass line (L21), mixed with LNG, and condensed to reduce the load of the re-liquefaction apparatus.
  • the fuel gas supply system includes the recondenser 131, all of the boil-off gas generated in the storage tank 110 is not supplied to the cold box 121 of the reliquefaction apparatus 120.
  • the load of the energy consuming reliquefaction apparatus can be reduced, or in some cases, the operation of the reliquefaction apparatus can be completely stopped.
  • the boil-off gas discharged from the liquefied gas storage tank 110 is compressed to a medium pressure of about 12 to 45 bara in the boil-off gas compression unit 113 and cooled in the heat exchanger 135, and then the boil-off gas bypass line (L21). Through the total amount is supplied to the recondenser 131.
  • the generated boil-off gas may be supplied to the total amount of the recondenser 131 to be recondensed. That is, during the ballast operation, by recondensing all the boil-off gas generated in the storage tank in the recondenser 131 for most of the period, it is possible to stop the operation of the reliquefaction apparatus.
  • the high pressure natural gas injection engine is operated at a low speed or stops operating, such as during the towing of offshore structures during ballast operation, the fuel consumption of the high pressure natural gas injection engine may be reduced or significantly reduced. Although all of the gas cannot be recondensed and consumed as fuel, and partially reliquefied in the reliquefaction apparatus, this is a very exceptional case during ballast operation.
  • the boil-off gas supplied through the boil-off gas bypass line L21 is mixed with the supercooled LNG in the recondenser 131. In the process of receiving the cold heat from the LNG can be condensed.
  • all of the evaporated gas generated in the ballast can be recondensed in the recondenser 131 to be used as fuel in the high-pressure natural gas injection engine, thereby storing the tank 110 There is no LBOG returning to).
  • the reliquefaction apparatus 120 since the generated evaporated gas can be processed in the total amount of the recondenser 131, the reliquefaction apparatus 120 that consumes a lot of energy and uses a lot of energy may not be operated at all, thus saving a considerable amount of energy. It becomes possible.
  • the re-liquefaction device 120 is operated to re-liquefy the boil-off gas. If necessary, some of the generated boil-off gas may be diverted to the recondenser 131 through the boil-off gas bypass line L21 to reduce energy by reducing the reliquefaction load on the reliquefaction apparatus 120.
  • the evaporated gas is compressed to about 12 to 45 bara, and reliquefaction
  • the reliquefaction temperature in the apparatus is also running the reliquefaction apparatus at a temperature only approximately 1 ° C. below the saturation temperature at that pressure.
  • the reliquefied LBOG since the reliquefied LBOG is not returned to the storage tank, it is not necessary to consider the temperature and pressure of the LNG stored in the storage tank.
  • the length of the pipe to transfer the LBOG to the storage tank is relatively long, in the case of the present invention is a relatively short length of the pipe to be transported while maintaining the supercooled state of the LBOG evaporated gas to a temperature too low than the saturation temperature There is no need to overcool it.
  • the reliquefaction apparatus 120 by operating the reliquefaction apparatus 120 by setting the liquefaction temperature of the boil-off gas to a temperature slightly lower than the saturation temperature (for example, subcooling only 0.5 to 3 ° C, preferably about 1 ° C). Can be.
  • the saturated LBOG due to the pressure increase can then be stably maintained in the supercooled state.
  • the fuel supply system of an offshore structure having a high pressure natural gas injection engine according to the first to sixth embodiments of the present invention and its modifications as described above has the following advantages over the prior art.
  • the liquefied gas is re-liquefied by the reliquefaction apparatus and returned to the storage tank, and since the LNG stored in the storage tank is maintained at atmospheric pressure, the pressure of the reliquefied liquefied liquefied gas is too high to return to the storage tank.
  • the reliquefaction efficiency was low, but the boil-off gas was compressed at a low pressure of about 4 to 8 bara.
  • the boil-off gas discharged from the storage tank is used as a fuel in a high-pressure natural gas injection engine, the boil-off gas is compressed and re-liquefied by compressing the boil-off gas to a higher pressure than in the prior art without having to worry about generating a flash gas.
  • the liquefaction efficiency can be improved.
  • the reliquefied evaporated gas is supplied as a fuel to a high-pressure natural gas injection engine, for example, a ME-GI engine, it is not necessary to return the reliquefied evaporated gas to the storage tank for restoring. It is possible to prevent the generation of flash gas, which can be generated upon return to the furnace, and suppresses the generation of flash gas, thereby compressing the pressure of the boil-off gas to a higher pressure than conventionally, that is, 12 to 45 bara before the reliquefaction. To reliquefy. The reliquefaction efficiency can be improved irrespective of the refrigerant by compressing the evaporated gas to such a medium pressure and reliquefaction.
  • the reliquefaction efficiency of the non-explosive mixed refrigerant can be further increased compared to using a nitrogen gas refrigerant. That is, the reliquefaction apparatus of the present invention using a non-explosive mixed refrigerant compared to the conventional nitrogen gas refrigerant can be used to re-liquefy the boil-off gas using a very small amount of energy to supply the engine as fuel.
  • any structure can be used as long as it can liquefy evaporated gas generated from liquefied gas such as LNG. That is, a reliquefaction system utilizing a non-explosive mixed refrigerant having a configuration as described in the first to sixth embodiments and modifications thereof described above can be used.
  • a reliquefaction system utilizing a conventionally known mixed refrigerant or nitrogen refrigerant may be used, for example, International Patent Publications WO 2007/117148 and WO 2009/136793, Korean Patent Publication No. 2006-0123675 Or those disclosed in Korean Patent Laid-Open No. 2001-0089142 or the like may also be used.
  • the liquefied evaporated gas generated in the storage tank is all used as fuel in the high-pressure natural gas injection engine, according to the LBOG return line (L4, L14).
  • the LBOG return lines (L4, L14) are used to evaporate the fuel consumption of the high-pressure natural gas injection engine from the storage tank, such as when towing offshore structures to dock in ports, when passing through canals, or when operating at low speeds.
  • the LBOG can be used to return the LBOG from the buffer tank 31 or the recondenser 131 to the storage tanks 11 and 110.
  • it may be used to return the LBOG remaining in the buffer tank (or recondenser) to the storage tanks 11 and 110 when the buffer tank (or recondenser) is broken or maintained.
  • the LBOG can be used in the entire engine without returning the LBOG to the storage tank during most of the operation of the offshore structure, it is possible to eliminate the returning LBOG itself during that period, so that the pressure difference during the return of the LBOG It is possible to remove the flash gas that may occur due to the source.
  • the expression "remove flash gas or suppress flash gas generation” in this specification means that the flash gas is not supplied into the storage tank 11 by consuming the generated flash gas, and reliquefied.
  • the concept includes all of preventing the generation of flash gas by preventing the evaporated gas from returning to the storage tank 11 and blocking the flash gas generation during the return.
  • Hamworthy's Mark III reliquefaction apparatus (as described in WO 2007/117148) liquefies at -159 [deg.] C. by pressurizing the boil-off gas to 8 bara. At this time, since the saturation temperature of the boil-off gas is about -149.5 ° C, about 9-10 ° C is supercooled. This degree of supercooling is required to prevent the generation of flash gas when the liquefied evaporation gas is returned to the LNG storage tank. However, in the present invention, since it is pressurized by a high pressure pump in the process of supplying the liquefied high pressure natural gas injection engine as a fuel, the saturated LBOG may be stably maintained afterwards due to the increase in pressure.
  • the liquefied evaporation gas may be cooled by subcooling only 0.5 to 3 ° C, preferably about 1 ° C, than the saturation temperature at the pressure, and then supplied as fuel.
  • the fuel supply system of the present invention since it has a concept of basically supplying the re-liquefied LBOG as a fuel to the high-pressure natural gas injection engine, and compresses the boil-off gas to about 12 to 45 bara,
  • the reliquefaction temperature of is also operating the reliquefaction apparatus at a temperature of 0.5 to 3 ° C, preferably about 1 ° C lower than the saturation temperature at the pressure.
  • the length of the pipe to be transported while maintaining the supercooled state of the LBOG compared to the conventional length of the pipe for transferring the LBOG to the storage tank is relatively long
  • the length of the gap is relatively short, and it is not necessary to subcool the boil-off gas to a temperature that is too lower than the saturation temperature.
  • the amount of fuel required by the high pressure natural gas injection engine is greater than the amount of boil-off gas generated in the LNG storage tank for a considerable period of time.
  • the liquefied gas is supplied to the buffer tank 31. Since it is pressurized by the pump 33, the saturated LBOG due to the pressure increase can then be stably maintained in the supercooled state.
  • the flash gas is generated by depressurizing the re-liquefied LBOG into the storage tank, and the flash gas is sent back to the reliquefaction apparatus to reduce the efficiency of the reliquefaction apparatus.
  • the efficiency of the reliquefaction apparatus can be improved as compared with the conventional art.
  • the reliquefaction apparatus of the present invention can operate with only about 50 to 80% of the power compared to the power consumed in the conventional reliquefaction apparatus (refrigeration cycle). have.
  • the generator capacity can be reduced, so that the generator can be miniaturized and the cost can be reduced.
  • the reliquefaction apparatus is operated for most of the period during the ballast operation. Since it can be stopped, the power consumed by the reliquefaction apparatus can be saved. For example, assuming an annual ballast operation of 150 days and using a diesel generator with a fuel consumption of 183 g / kWh for the operation of the reliquefaction unit, an annual HFO of 660 to 923 tonnes can be saved. As of mid-September 2011, Singapore's HFO price is about $ 671 per ton, which can save 0.4 to 0.6 mil USD annually.
  • the fuel supply system and method of the present invention has been described as an example applied to offshore structures such as LNG carriers, but the fuel supply system and method of the present invention is applied to fuel supply for high pressure natural gas injection engines on land. Of course it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

본 발명은 고압 천연가스 분사 엔진에서 연료로서 필요로 하는 증발가스의 양보다 많은 양의 증발가스가 발생할 경우 증발가스 발생량과 증발가스 필요량 사이의 차에 해당하는 잉여 증발가스를 소비할 수 있는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템에 관한 것이다. 본 발명에 따르면, 고압 천연가스 분사 엔진에 연료를 공급하는 시스템으로서, 저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 공급받아 12바 내지 45바로 압축하는 증발가스 압축부와; 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시키는 재액화 장치와; 상기 재액화 장치에서 액화된 증발가스를 압축시키는 고압 펌프와; 상기 고압 펌프에서 압축된 증발가스를 기화시켜 상기 고압 천연가스 분사 엔진에 공급하기 위한 고압 기화기와; 상기 저장탱크 내에서 발생하는 증발가스의 발생량과 상기 고압 천연가스 분사 엔진에 연료로서 필요로 하는 증발가스의 필요량 사이의 차에 해당하는 양만큼의 잉여 증발가스를 소비하는 잉여 증발가스 소비수단; 을 포함하는 것을 특징으로 하는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템이 제공된다.

Description

잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템
본 발명은 고압 천연가스 분사 엔진을 위한 연료 공급 시스템에 관한 것으로서, 더욱 상세하게는 고압 천연가스 분사 엔진에서 연료로서 필요로 하는 증발가스의 양보다 많은 양의 증발가스가 발생할 경우 증발가스 발생량과 증발가스 필요량 사이의 차에 해당하는 잉여 증발가스를 소비할 수 있는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템에 관한 것이다.
근래, LNG(Liquefied Natural Gas)나 LPG(Liquefied Petroleum Gas) 등의 액화가스의 소비량이 전 세계적으로 급증하고 있는 추세이다. 액화가스는, 육상 또는 해상의 가스배관을 통해 가스 상태로 운반되거나, 또는, 액화된 상태로 액화가스 운반선에 저장된 채 원거리의 소비처로 운반된다. LNG나 LPG 등의 액화가스는 천연가스 혹은 석유가스를 극저온(LNG의 경우 대략 -163℃)으로 냉각하여 얻어지는 것으로 가스 상태일 때보다 그 부피가 대폭적으로 감소되므로 해상을 통한 원거리 운반에 매우 적합하다.
액화가스 운반선은, 액화가스를 싣고 바다를 운항하여 육상 소요처에 이 액화가스를 하역하기 위한 것이며, 이를 위해, 액화가스의 극저온에 견딜 수 있는 저장탱크(흔히, '화물창'이라 함)를 포함한다.
이와 같이 극저온 상태의 액화가스를 저장할 수 있는 저장탱크가 마련된 해상 구조물의 예로서는 액화가스 운반선 이외에도 LNG RV (Regasification Vessel)와 같은 선박이나 LNG FSRU (Floating Storage and Regasification Unit), LNG FPSO (Floating, Production, Storage and Off-loading)와 같은 구조물 등을 들 수 있다.
LNG RV는 자력 항해 및 부유가 가능한 액화가스 운반선에 LNG 재기화 설비를 설치한 것이고, LNG FSRU는 육상으로부터 멀리 떨어진 해상에서 LNG 수송선으로부터 하역되는 액화 천연가스를 저장탱크에 저장한 후 필요에 따라 액화 천연가스를 기화시켜 육상 수요처에 공급하는 해상 구조물이다. 그리고, LNG FPSO는 채굴된 천연가스를 해상에서 정제한 후 직접 액화시켜 저장탱크 내에 저장하고, 필요시 이 저장탱크 내에 저장된 LNG를 LNG 수송선으로 옮겨싣기 위해 사용되는 해상 구조물이다. 본 명세서에서 해상 구조물이란, 액화가스 운반선, LNG RV 등의 선박을 비롯하여, LNG FPSO, LNG FSRU 등의 구조물까지도 모두 포함하는 개념이다.
천연가스의 액화온도는 상압에서 약 -163℃의 극저온이므로, LNG는 그 온도가 상압에서 -163℃ 보다 약간만 높아도 증발된다. 종래의 LNG 운반선의 경우를 예를 들어 설명하면, LNG 운반선의 LNG 저장탱크는 단열처리가 되어 있기는 하지만, 외부의 열이 LNG에 지속적으로 전달되므로, LNG 운반선에 의해 LNG를 수송하는 도중에 LNG가 LNG 저장탱크 내에서 지속적으로 기화되어 LNG 저장 탱크 내에 증발가스(BOG; Boil-Off Gas)가 발생한다.
발생된 증발가스는 저장탱크 내의 압력을 증가시키며 선박의 요동에 따라 액화가스의 유동을 가속시켜 구조적인 문제를 야기시킬 수 있기 때문에, 증발가스의 발생을 억제할 필요가 있다.
종래, 액화가스 운반선의 저장탱크 내에서의 증발가스를 억제하기 위해, 증발가스를 저장탱크의 외부로 배출시켜 소각해 버리는 방법, 증발가스를 저장탱크의 외부로 배출시켜 재액화 장치를 통해 재액화시킨 후 다시 저장탱크로 복귀시키는 방법, 선박의 추진기관에서 사용되는 연료로서 증발가스를 사용하는 방법, 저장탱크의 내부압력을 높게 유지함으로써 증발가스의 발생을 억제하는 방법 등이 단독으로 혹은 복합적으로 사용되고 있었다.
증발가스 재액화 장치가 탑재된 종래의 해상 구조물의 경우, 저장탱크의 적정 압력 유지를 위해 저장탱크 내부의 증발가스를 저장탱크 외부로 배출시켜 재액화 장치를 통해 재액화시키게 되는데, 재액화 작업이 이루어지기 전에 증발가스를 대략 4 내지 8 bara 정도의 저압으로 압축시켜 재액화 장치로 공급한다. 압축된 증발가스는 질소 냉동 사이클을 포함하는 재액화 장치에서 초저온으로 냉각된 질소와의 열교환을 통해 재액화된 후 저장탱크로 복귀된다.
증발가스의 재액화 효율을 높이기 위해서는 증발가스를 높은 압력으로 압축시키는 것이 바람직하지만, 저장탱크에 저장된 LNG는 상압 상태를 유지하고 있기 때문에 재액화된 액화증발가스의 압력이 지나치게 높으면 저장탱크에 복귀할 때 플래시 가스(flash gas)가 발생하게 된다. 따라서, 재액화 효율은 낮지만 상기한 4 내지 8 bara 정도의 저압으로 증발가스를 압축할 수밖에 없다는 문제가 있다.
즉, 도 1에 도시된 바와 같이, 종래에는 저장탱크에서 발생된 증발가스, 즉 NBOG를 증발가스 압축기로 공급하여 대략 4 내지 8 bara 정도의 저압으로 압축시킨 후, 이 저압 BOG를 질소가스를 냉매로 사용하는 재액화 장치로 공급(대한민국 특허공개 제 10-2006-0123675 호의 상세한 설명에는 약 6.8bara로 압축하는 것이 기재되어 있고, 대한민국 특허공개 제 10-2001-0089142 호(대응 미국특허 US 6,530,241)의 상세한 설명에는 4.5bara로 압축하는 것이 기재되어 있음)한다. 재액화 장치에서 액화된 증발가스, 즉 LBOG는 저장탱크로 복귀하면서 플래시 가스가 발생하는 문제가 있었으며, 그로 인해 증발가스 압축기에서 증발가스의 압력을 저압으로 압축시킬 수밖에 없었다.
결국, 종래에는 저장탱크에서 발생되는 증발가스는 재액화 장치를 통해 재액화한 후 저장탱크에 복귀시키는 것이 전형적인 증발가스 처리방법으로 활용되고 있었으며, 재액화 이후 저장탱크 복귀시 플래시 가스 발생을 가능한 한 억제하기 위해 재액화되는 증발가스의 압력을 높이지 않는 것이 기본적인 개념으로 굳어져 있었다.
증발가스를 재액화시키는 재액화 장치로서는 국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보, 한국특허공개 제2006-0123675호 공보, 한국특허공개 제2001-0089142호 공보 등에 개시되어 있는 질소 냉동 사이클이나, 그 이외에 혼합냉매 사이클 등이 이용되고 있었다. 위에서 설명한 바와 같이, 이와 같은 종래의 증발가스 재액화장치는 증발가스를 재액화할 때는 보통 4 ~ 8 bara 내외에서 가압하여 재액화하는 것이 일반적이고, 당업계에서는 그 이상으로 가압하는 것은 기술적으로 타당하지 못하다는 인식이 널리 퍼져 있었다. 그 이유는, 증발가스를 재액화할 때, 증발가스가 높은 압력에서 재액화되면 나중에 탱크로 되돌려 보낼 경우, 상압 근처로 압력이 낮아지므로 플래시 가스(증발가스)가 많이 생기기 때문이다.
한편, 질소 냉동 사이클은 냉매로서 질소가스(N2)를 사용하여 액화 효율이 낮은 문제가 있고, 혼합냉매 사이클은 냉매로서 질소와 탄화수소 가스 등이 혼합된 냉매를 사용하기 때문에 안정성이 떨어지는 문제가 있다.
더욱 상세하게는, 종래의 선박이나 해상 플랜트 등의 해상용 LNG 재액화 장치에서는 터보 팽창기(tubo expander) 방식의 질소 역브레이튼 사이클을 구현하여 증발가스를 재액화하였고, 육상용 LNG 액화 플랜트에서는 혼합냉매를 이용하는 줄-톰슨 냉동 사이클을 구현하여 천연가스를 액화시켰다. 해상용으로 사용하던 질소 역브레이튼 사이클은 상대적으로 장치의 구성이 단순하여 공간이 한정된 선박이나 해상 구조물에서 유리하지만 효율이 낮은 문제가 있고, 육상용으로 사용하던 혼합냉매 줄-톰슨 냉동 사이클은 상대적으로 효율이 높지만 혼합냉매의 특성상 기액상태가 동시에 존재할 때 이를 분리하기 위한 세퍼레이터를 사용해야 하는 등 장치 구성이 복잡해지는 문제가 있다. 하지만 이러한 재액화 방식은 아직 많이 사용되고 있다.
그 밖에도 LNG 등의 액화가스를 저장하는 저장탱크를 구비한 해상 구조물에 대하여, 저장탱크에서 지속적으로 발생하는 증발가스를 효율적으로 처리하되, 플래시 가스의 발생을 억제할 수 있는 방법에 대한 연구 개발이 계속해서 이루어질 필요가 있다.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로서, 고압 천연가스 분사 엔진에서 연료로서 필요로 하는 증발가스의 양보다 많은 양의 증발가스가 발생할 경우 증발가스 발생량과 증발가스 필요량 사이의 차에 해당하는 잉여 증발가스를 소비할 수 있는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템을 제공하고자 하는 것이다.
본 출원인은, 기존에 고압가스 분사 엔진에 연료를 공급하는 방법으로서 MAN B&W사가 제안한 가스의 압축에 의한 연료의 공급 대신에, 액체(LNG)를 고압펌프로 압축(펌핑)한 후에 이를 기화시켜 연료로 공급하는 기술을 개발하여 2007년 5월 8일자로 대한민국에 출원(특허출원 제 10-2007-0044727 호)하였고, 이러한 기술은 선주와 MAN B&W사로부터 큰 호응을 받고 있다.
이어서 Hamworthy사는 본 출원인의 상기 기술을 다소 개량하여 WO 2009/136793으로 출원한 바 있다. 하지만 이와 같은 기술이 개발된 이후에도 여전히, 당업계에서는 재액화후 탱크로 회송시 플래시 가스의 발생을 우려하여 중발가스의 재액화시에 압축범위는 저압 범위(4 ~ 8 bara)로 하고 그 이상의 압력으로 증발가스를 압축하는 것은 전혀 고려되지 않고 있었다.
이와 같은 LNG의 고압 펌핑의 기본기술의 개발 후, 본 출원인은 이 기술을 실제 적용함에 있어서, LNG 저장탱크에서 발생하는 증발가스를 연료로 사용하는 기술을 개발하는 과정 중에서, 증발가스를 4 ~ 8 bara로 압축하여 재액화하는 종래의 재액화와 달리, 종래의 재액화보다 압력이 더 높은 중압범위로 가압(12 내지 45 bara)한 상태에서 재액화하고 이를 고압펌프로 공급하면 재액화에 소요되는 에너지가 상당히 줄어드는 점을 발견하였고, 이와 같은 발견이 기초가 되어 본 발명을 완성하게 되었다.
또, 본 발명에 따르면, 재액화 에너지가 현저하게 감소하는 장점 이외에도, 재액화 후의 중압범위로 가압된 LNG를 고압으로 압축하는 고압펌프의 동력 소비도 줄어드는 점, 또 재액화 후에 고압펌프로 가압을 하므로 종래와 같이 과냉(subcooling)을 할 필요가 없는 점 등의 장점이 있음을 발견하였다.
상기와 같은 발명의 과제와 이의 작용효과는 본 발명에서 처음으로 개시되는 것들이다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 고압 천연가스 분사 엔진에 연료를 공급하는 시스템으로서, 저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 공급받아 12바 내지 45바로 압축하는 증발가스 압축부와; 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시키는 재액화 장치와; 상기 재액화 장치에서 액화된 증발가스를 압축시키는 고압 펌프와; 상기 고압 펌프에서 압축된 증발가스를 기화시켜 상기 고압 천연가스 분사 엔진에 공급하기 위한 고압 기화기와; 상기 저장탱크 내에서 발생하는 증발가스의 발생량과 상기 고압 천연가스 분사 엔진에 연료로서 필요로 하는 증발가스의 필요량 사이의 차에 해당하는 양만큼의 잉여 증발가스를 소비하는 잉여 증발가스 소비수단; 을 포함하는 것을 특징으로 하는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템이 제공된다.
상기 잉여 증발가스 소비수단은, 연료가스 공급라인을 통해 플래시 가스를 공급받아 연료로서 사용함으로써 플래시 가스를 소비하는 가스 연소 유닛일 수 있다.
상기 잉여 증발가스 소비수단은, 증발가스 압축부의 도중에서 분기하는 분기라인을 통해 공급받은 증발가스를 연료로서 소비하는 이종연료엔진일 수 있다.
상기 잉여 증발가스 소비수단은, 증발가스 압축부의 후단에서 분기하는 분기라인을 통해 공급받은 증발가스를 연료로서 소비하는 가스터빈일 수 있다.
본 발명에 따른 연료 공급 시스템은, 상기 잉여 증발가스를 상기 저장탱크에 복귀시키기 위한 LBOG 복귀라인과; 상기 LBOG 복귀라인에 설치되어 잉여 증발가스를 저장탱크에 복귀시킬 때 감압 과정에서 발생하는 플래시 가스를 포함한 증발가스를 액체 성분과 기체 성분으로 분리하여 액체 성분만을 상기 저장탱크에 복귀시키기 위한 LBOG 기액분리기를 포함하는 것이 바람직하다.
본 발명에 따른 연료 공급 시스템은, 상기 LBOG 복귀라인에 설치되어 잉여 증발가스를 감압시키는 LBOG 팽창밸브를 포함하는 것이 바람직하다.
본 발명에 따른 연료 공급 시스템은, 상기 연료가스 공급라인에 설치되어 상기 LBOG 기액분리기에서 분리된 기체 성분을 감압시키는 밸브를 포함하는 것이 바람직하다.
본 발명에 따른 연료 공급 시스템은, 상기 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급라인으로부터 분기되어, 상기 이종연료엔진에 연료를 공급하는 상기 연료가스 공급라인에 연결됨으로써 상기 가스 연소 유닛에 연료를 추가로 공급할 수 있도록 설치되는 분기라인을 더 포함하는 것이 바람직하다.
본 발명에 따른 연료 공급 시스템의 연료 공급 방법은, 액화되기 전의 증발가스와 기화되기 전의 액화증발가스를 열교환함으로써 액화증발가스가 가지는 액화 에너지를 증발가스가 회수하여 사용함으로써 증발가스를 액화하기 위한 에너지를 절감하는 것이 바람직하다. 또한, 상기 액화가스를 저장하는 저장탱크에서 발생한 증발가스를 압축하기 전에 상기 압축된 증발가스나 상기 재액화장치의 질소냉동사이클에서 가온된 질소냉매와 열교환하여 상기 저장탱크에서 발생한 증발가스를 예열하는 것이 바람직하다. 이와 같은 냉열회수나 증발가스의 예열 등은 국제특허공개 WO 2007/117148 호 공보, WO 2009/136793 호 공보, 한국특허공개 제2006-0123675호 공보, 한국특허등록 제0929250호 공보 등에 공개된 기술을 사용할 수 있다. 본 발명에서는 액화증발가스로부터 냉열회수를 기재하고 있으나, 액화증발가스의 양이 고압 천연가스 분사 엔진에서의 연료 필요량보다 적을 경우에, LNG 저장탱크에 저장된 LNG를 연료로 사용할 필요가 있고, 이 경우에는 상기 LNG 저장탱크로부터 공급되는 LNG로부터 냉열을 회수할 수도 있다.
상기 해상 구조물의 예로서는 액화가스 운반선 이외에도 LNG RV와 같은 선박이나 LNG FSRU, LNG FPSO와 같은 구조물 등을 들 수 있다.
상기 연료 공급 방법은, 상기 연료 공급 중에 상기 액화증발가스는 모두 상기 고압 천연가스 분사 엔진에 공급하는 시기를 포함하는 것을 특징으로 한다. 즉, 해상 구조물의 운항 중에는 고압 천연가스 분사 엔진이 필요로 하는 연료의 양은 LNG 저장탱크에서 발생하는 증발가스의 양보다 더 많은 시기가 상당 기간 존재하고 이 시기에는 액화증발가스를 모두 고압 천연가스 분사 엔진에 공급함으로써 액화증발가스를 LNG 저장탱크에 회송함에 따른 플래시 가스의 발생 문제를 해결할 수 있다.
본 발명의 또 다른 측면에서 상기 해양구조물의 운항 중에는 고압 천연가스 분사 엔진이 필요로 하는 연료의 양이 상기 LNG 저장탱크에서 발생하는 증발가스의 양 이상일 때에는 상기 액화증발가스 전부 또는 상당부분을 상기 고압 천연가스 분사 엔진에 공급하는 것을 특징으로 한다. 이때 부족한 연료는 LNG 저장탱크에 저장된 LNG를 연료로 사용할 수도 있다.
본 발명에 따르면, 고압 천연가스 분사 엔진에서 연료로서 필요로 하는 증발가스의 양보다 많은 양의 증발가스가 발생할 경우 증발가스 발생량과 증발가스 필요량 사이의 차에 해당하는 잉여 증발가스를 소비할 수 있는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템이 제공될 수 있다.
본 발명의 고압 천연가스 분사 엔진을 위한 연료 공급 시스템에 의하면, 증발가스를 종래의 4 내지 8 bara 정도의 저압으로 압축시키는 대신에 12 내지 45 bara 정도의 중압으로 압축시킨 후 재액화시킬 수 있으며, 증발가스의 압력이 높아지면 액화 에너지가 감소하므로, 재액화시 소요되는 액화 에너지를 절감할 수 있게 된다.
또한, 본 발명의 고압 천연가스 분사 엔진을 위한 연료 공급 시스템에 의하면, 재액화시 증발가스의 압력이 종래보다 높은 중압 상태이므로, 증발가스의 액화점이 상승하여 재액화를 위한 열교환기에서 받는 열응력이 감소하고 고압 기화기의 히트 듀티(heat duty)가 감소하여 장비의 크기를 줄일 수 있다.
또한, 중압으로 가압된 상태의 액화증발가스를 고압으로 압축하므로 고압펌프의 동력도 절감되는 효과도 있다.
또한, 본 발명의 고압 천연가스 분사 엔진을 위한 연료 공급 시스템에 의하면, 증발가스의 재액화를 위한 재액화 장치의 냉매 중에서도, 비폭발성 혼합냉매를 이용함으로써 종래의 질소 냉동 사이클보다 효율적이고 종래의 혼합냉매 사이클보다 안전한 재액화가 가능하게 된다.
상기 연료 공급 시스템에 의한 연료 공급 방법은, 상기 고압 천연가스 분사 엔진의 운전 중에 상기 액화증발가스는 모두 상기 고압 천연가스 분사 엔진에 공급하는 시기를 포함한다. 즉, 해양구조물의 운항 중에는 고압 천연가스 분사 엔진이 필요로 하는 연료의 양은 LNG 저장탱크에서 발생하는 증발가스의 양보다 더 많은 시기가 상당 기간 존재하는데, 이 시기에는 액화증발가스를 모두 고압 천연가스 분사 엔진에 공급함으로써 액화증발가스를 LNG 저장탱크에 회송함에 따른 플래시 가스의 발생 문제를 해결할 수 있다. 또 종래와 같이 액화증발가스를 LNG 저장탱크로 회송시에 발생하는 플래시 가스를 줄이기 위하여 과냉함에 따른 에너지 소비도 상당량 줄일 수 있다. 종래의 Hamworthy사의 Mark III 재액화 장치(WO 2007/117148 호에 기재된 기술)의 경우, 8 bara로 증발가스를 가압하여 -159℃로 액화한다. 이때의 증발가스의 포화온도는 약 -149.5℃이므로 약 9 ~ 10℃ 정도가 과냉된 상태이다. 이 정도의 과냉이 되어야 LNG 저장탱크로 액화증발가스를 회송할 경우 플래시 가스의 발생이 억제된다. 하지만, 본 발명에서는 액화증발가스가 고압 천연가스 분사 엔진에 연료로서 공급되는 과정에서 고압 펌프에 의해 가압되기 때문에, 압력 증가로 인해 포화상태의 LBOG는 이후 과냉상태가 안정적으로 유지될 수 있다. 따라서, 본 발명에서는 액화증발가스를 해당 압력에서의 포화온도보다 0.5 ~ 3℃, 바람직하게는 1℃ 정도만 과냉시켜 액화시킨 후 연료로 공급해도 되는 이점이 있다.
또한, 본 발명의 고압 천연가스 분사 엔진을 위한 연료 공급 시스템에 의하면, 필요시 이종연료엔진(DFDE)을 장착하여 고압 천연가스 분사 엔진에 공급되고 남은 연료나 감압시 발생하는 플래시 가스를 이종연료엔진의 연료로 사용하여 소모할 수 있다. 즉, 고압 천연가스 분사엔진에서 필요로 하는 연료를 초과하는 증발가스는 본 발명에 따른 중압에 의한 재액화 과정을 거치지 않고 LNG 저장탱크로부터 바로 4 ~ 8 bara 정도로 압축하여 DFDE에서 사용할 수 있다.
도 1은 종래기술에 따른 증발가스 재액화를 통한 증발가스 처리 방법을 설명하기 위한 개략적인 블록선도,
도 2는 본 발명에 따른 연료 공급을 통한 증발가스 처리 방법을 설명하기 위한 개략적인 블록선도,
도 3a는 본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 3b는 본 발명의 제1 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 4a는 본 발명의 비폭발성 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4b는 탄화수소 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4c는 천연가스의 가압 압력에 따른 액화 온도를 나타내는 그래프,
도 5는 비폭발성 혼합냉매를 구성하기 위한 냉매 성분들의 끓는점을 나타내는 그래프,
도 6a 내지 도 6c는 증발가스의 재액화 장치에서 질소가스 냉동 사이클을 사용한 경우, 비폭발성 혼합냉매 냉동사이클을 사용한 경우, 그리고 SMR(Single Mixed Refrigerant) 냉동 사이클을 사용한 경우의 소모동력을 비교하기 위한 그래프들,
도 7a는 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 7b는 본 발명의 제2 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8a는 본 발명의 제3 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8b는 본 발명의 제3 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9a는 본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9b는 본 발명의 제4 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 10a는 본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 10b는 본 발명의 제5 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도, 그리고
도 11은 본 발명의 제6 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도이다.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 또한 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
일반적으로, 선박에서 배출되는 폐기가스 중 국제 해사 기구(International Maritime Organization)의 규제를 받고 있는 것은 질소산화물(NOx)과 황산화물(SOx)이며, 이산화탄소(CO2)의 배출도 규제하려 하고 있다. 특히, 질소산화물(NOx)과 황산화물(SOx)의 경우, 1997년 해상오염 방지협약(MARPOL; The Prevention of Marine Pollution from Ships) 의정서를 통하여 제기되고, 8년이라는 긴 시간이 소요된 후 2005년 5월에 발효요건을 만족하여 현재 강제규정으로 이행되고 있다.
따라서, 이러한 규정을 충족시키기 위하여 질소산화물(NOx) 배출량을 저감하기 위하여 다양한 방법들이 소개되고 있는데, 이러한 방법 중에서 LNG 운반선을 위하여 고압 천연가스 분사 엔진, 예를 들어 ME-GI 엔진이 개발되어 사용되고 있다.
이와 같은 ME-GI 엔진은 LNG(Liquefied Natural Gas)를 극저온에 견디는 저장탱크에 저장하여 운반하도록 하는 LNG 운반선 등과 같은 해상 구조물(본 명세서에서 해상 구조물이란, LNG 운반선, LNG RV 등의 선박을 비롯하여, LNG FPSO, LNG FSRU 등의 해상 플랜트까지도 모두 포함하는 개념이다.)에 설치될 수 있으며, 이 경우 천연가스를 연료로 사용하게 되며, 그 부하에 따라 대략 150 ∼ 400 bara(절대압력) 정도의 고압의 가스 공급 압력이 요구된다.
ME-GI 엔진과 같은 고압 천연가스 분사 엔진을 탑재한 해상 구조물의 경우에도, LNG 저장탱크에서 발생하는 증발가스(Boil Off Gas; BOG)를 처리하기 위해서는 재액화(Reliquefaction) 장치가 여전히 필요하게 된다. ME-GI 엔진과 같은 고압 천연가스 분사 엔진과, 증발가스를 처리하기 위한 재액화 장치를 모두 탑재한 종래의 해상 구조물의 경우, 가스와 연료유 가격의 변화와 배출가스의 규제 정도에 따라 증발가스를 연료로 사용할 것인지, 아니면 증발가스를 재액화하여 저장탱크로 보내고 중유(Heavy Fuel Oil; HFO)를 사용할 것인지 선택할 수 있는 장점이 있으며, 특히, 특정규제를 받는 해역을 통과시 간편하게 LNG를 기화시켜서 연료로 사용할 수 있다는 장점이 있고, 차세대 친환경적인 엔진으로서 효율이 50%에 육박하여 향후에는 LNG 운반선의 메인 엔진으로서 사용될 수 있다.
도 2에는 본 발명에 따른 연료 공급 방법을 설명하기 위한 개략적인 블록선도가 도시되어 있다. 본 발명의 연료 공급 방법에 의하면, 저장탱크에서 발생된 증발가스, 즉 NBOG를 증발가스 압축기로 공급하여 대략 12 내지 45 bara 정도의 중압으로 압축시킨 후, 이 중압 BOG를 혼합냉매, 예컨대 비폭발성 혼합냉매(Non Flammable Mixed Refrigerant)나 SMR(Single Mixed Refrigerant), 또는 질소를 냉매로 사용하는 재액화 장치로 공급한다. 재액화 장치에서 액화된 증발가스, 즉 LBOG는 연료 공급 시스템에서 ME-GI 엔진에서 요구하는 압력(예컨대 400 bara 정도의 고압)으로 압축된 후 ME-GI 엔진에 연료로서 공급된다. 본 발명에 의하면, 재액화 장치에서 연료 공급 시스템에 공급되는 LBOG가 저장탱크로 복귀하지 않으므로 종래기술에서와 같이 플래시 가스가 발생하는 문제를 방지할 수 있으며, 그로 인해 증발가스 압축기에서 증발가스의 압력을 중압으로 압축시킬 수 있다.
본 명세서에 있어서, 고압이 의미하는 압력범위는 고압 천연가스 분사 엔진에서 요구하는 연료 공급 압력인 대략 150 내지 400 bara 정도의 압력이고, 중압이 의미하는 압력범위는 증발가스 압축부(13)에서 증발가스를 압축하는 대략 12 내지 45 bara 정도의 압력이고, 저압이 의미하는 압력범위는 종래 기술에서 증발가스를 재액화 장치로 공급하기 위해 압축하는 대략 4 내지 8 bara 정도의 압력이다.
이와 같은 중압범위의 압축 후 재액화는, 도 6a 및 도 6b에서와 같이 질소 냉매를 사용하는 경우와 비폭발성 혼합냉매를 사용하는 경우, 그리고 도 6c에서와 같이 SMR을 사용하는 경우 모두에 있어서 종래의 저압 재액화와 대비하여 상당한 재액화 에너지 절감의 효과를 나타낸다.
도 6a 및 도 6b에 나타낸 데이터는 Hysys 공정모델(Aspentech사 제품)을 이용하여 나온 결과이다. 이 결과를 살펴보면, 질소 가스를 냉매로 사용하는 Hamworthy사의 Mark III 재액화 장치(WO 2007/117148에 기재된 기술)를 사용한 경우에는 증발가스 압축기의 압력이 8 bara인 경우 재액화에 필요로 하는 소요 동력이 약 2,776㎾임에 반하여 증발가스 압축기의 압력이 12 bara로 상승하면서 2,500㎾로 급격히 줄어듦을 알 수 있다. 증발가스 압축기의 압력이 12 bara 이상에서는 재액화에 필요로 하는 소요동력이 점진적으로 감소하는 것으로 나타난다.
도 6c에 나타낸 그래프는 냉매로서 탄화수소계 SMR을 사용한 경우의 소요동력의 변화를 나타낸다. 이 결과를 살펴보면, 냉매로서 SMR을 사용할 때에도, 재액화에 필요로 하는 소요 동력은 증발가스 압축기의 압력이 8 bara인 경우에 비하여 증발가스 압축기의 압력이 12 bara인 경우 급격히 줄어듦을 알 수 있다. 증발가스 압축기의 압력이 12 bara 이상에서는 재액화에 필요로 하는 소요동력이 점진적으로 감소하는 것으로 나타난다.
SMR의 조성은 각 액화압력 별로 효율 최적화를 위해 다음 표 1과 같이 조절되었다.
표 1
Refrigerant Composition (mol%)
8bara 12bara 30bara 45bara
Nitrogen 11.91 5.55 0.00 0.00
Methane 45.11 48.54 45.81 36.63
Ethane 17.68 18.66 22.84 30.74
Propane 10.57 11.30 13.70 13.05
i-Pentane 14.74 15.95 17.65 19.58
본 발명에 기재된 비폭발성 혼합냉매(NFMR, 하기 표 4의 조성)을 사용한 재액화 장치의 경우에는 상기 질소가스 냉매를 사용하는 경우에 비하여 재액화에 필요로 하는 에너지가 더 감소함을 알 수 있다.
본 발명에서 증발가스의 압력범위는 중압범위, 즉 12 bara 내지 45 bara가 바람직하다. 12 bara 미만에서는 재액화에 필요한 소요동력의 절감 효과가 크지 않아 바람직하지 않다. 또 45 bara를 초과하는 경우에는 증발가스의 가압에 필요한 소요동력에 비하여, 재액화에 필요한 에너지의 절감효과가 크지 않아서 바람직하지 않다.
(제1 실시형태)
도 3a는 본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 갖는 해상 구조물, 특히 액화천연가스 운반선의 연료 공급 시스템을 도시한 구성도이다. 도 3a에는, 천연가스를 연료로 사용할 수 있는 ME-GI 엔진을 설치한 LNG 운반선에 본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템이 적용된 예가 도시되어 있지만, 본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템은 액화가스 저장탱크가 설치된 모든 종류의 해상 구조물, 즉 LNG 운반선, LNG RV와 같은 선박을 비롯하여, LNG FPSO, LNG FSRU와 같은 해상 플랜트에 적용될 수 있다.
본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(20)에 공급된다. 재액화 장치(20)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
고압 펌프(33)에 의해 고압으로 압축된 액화증발가스(즉, 액화천연가스)는 초임계압 상태이므로 사실상 액상과 기상을 구별할 수 없다. 그렇지만 본 명세서에서는 고압 상태에서 액화증발가스를 주위온도(혹은 고압 천연가스 분사 엔진에서 요구하는 온도)까지 가열하는 것을 기화시킨다고 표현하고 있으며, 고압 상태에서 액화증발가스를 주위온도까지 가열하는 장치를 고압 기화기라고 표현한다.
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(11) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 증발가스 배출라인(L1)을 통하여 저장탱크(11) 내부의 증발가스를 배출시킨다.
배출된 증발가스는 증발가스 배출라인(L1)을 통해 증발가스 압축부(13)에 공급된다. 증발가스 압축부(13)는 하나 이상의 증발가스 압축기(14)와, 이 증발가스 압축기(14)에서 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(15)를 포함한다. 도 3a에서는 5개의 증발가스 압축기(14)와 5개의 중간 냉각기(15)를 포함하는 5단 압축의 증발가스 압축부(13)가 예시되어 있다.
증발가스 압축부(13)에서 압축된 증발가스는 증발가스 공급라인(L2)을 통하여 재액화 장치(20)에 공급된다. 재액화 장치(20)에 공급된 증발가스는 재액화 장치(20)의 콜드 박스(21)를 통과하면서 냉매에 의해 냉각되어 재액화된다. 재액화 장치(20)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다.
콜드 박스(21)에서의 열교환을 통해 재액화된 증발가스는 버퍼 탱크(31)에서 기체와 액체 상태로 분리되며, 액체 상태의 액화증발가스만이 연료 공급라인(L3)을 통해 고압 펌프(33)에 공급된다. 고압 펌프(33)는 복수개, 예를 들어 2개가 병렬로 설치될 수 있다.
고압 펌프(33)에서는 액화증발가스를 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)에서 요구하는 연료 공급 압력까지 가압하여 송출한다. 고압 펌프(33)에서 송출되는 액화증발가스는 대략 150 ∼ 400 bara(절대압력) 정도의 고압을 갖는다.
도 3a에 예시된 재액화 장치(20)는, 냉매와 증발가스의 열교환에 의해 증발가스를 재액화시키기 위한 콜드 박스(21)와, 이 콜드 박스(21)에서 가열되어 부분적으로 기화된 냉매를 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 하나 이상의 냉매 기액분리기(22)와, 이 냉매 기액분리기(22)에서 분리된 기체 상태의 냉매를 압축시키기 위한 하나 이상의 냉매 압축기(23)와, 냉매 압축기(23)에서 압축된 냉매를 냉각시키기 위한 냉매 냉각기(24)와, 냉매 압축기(23)에서 압축된 후 냉매 냉각기(24)에서 냉각된 냉매를 팽창시켜 온도를 낮추는 냉매 팽창밸브(25)와, 냉매 기액분리기(22)에서 분리된 액체 상태의 냉매를 냉매 팽창밸브(25)에 공급하기 위한 냉매 펌프(26)를 포함한다.
냉매 펌프(26)를 통하여 냉매 팽창밸브(25)에 공급되는 냉매는 냉매 팽창밸브(25)의 상류측에서 냉매 냉각기(24)를 통과한 후 냉매 팽창밸브(25)에 공급되는 냉매와 혼합되는 것이 바람직하다.
한편, 냉매 팽창밸브(25)에 공급되는 냉매는 팽창 전에 콜드 박스(21)를 통과하면서 팽창 후의 극저온 상태의 냉매와 열교환될 수 있도록 구성되어도 좋다.
또한, 냉매 냉각기(24)에서 냉각된 냉매는 또 다른 냉매 기액분리기에 공급되어 기체 상태의 냉매와 액체 상태의 냉매로 분리되어 처리될 수 있다. 이를 위해 도 3a의 재액화 장치(20)는 각각 2개씩의 냉매 기액분리기(22), 냉매 압축기(23), 냉매 냉각기, 및 냉매 펌프(26)를 포함하는 것으로 예시되어 있지만, 이는 본 발명을 한정하지 않으며 설계시 필요에 따라 설치 개수는 가감될 수 있다.
(제1 실시형태의 변형예)
도 3b에는 본 발명의 바람직한 제1 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제1 실시형태의 변형예는, 증발가스 압축부(13) 및 재액화 장치(20)의 구성이 상술한 제1 실시형태에 비해 부분적으로 상이하므로, 이하에서는 그 차이점만을 설명한다.
도 3b에 예시된 본 제1 실시형태의 변형예에 따른 증발가스 압축부(13)는 5개의 증발가스 압축기(14)를 가진다는 점에서는 도 3a에 예시된 것과 동일하지만, 증발가스 압축부(13)에 포함된 첫 번째 증발가스 압축기와 두 번째 증발가스 압축기 사이, 그리고 두 번째 증발가스 압축기와 세 번째 증발가스 압축기 사이에 중간 냉각기(15)가 생략되어 있다는 점에서 도 3a에 예시된 것과 상이하다. 본 발명에 따르면, 이와 같이 증발가스 압축기(14) 사이마다 중간 냉각기(15)가 배치될 수도 있고, 그렇지 않을 수도 있다.
또한, 도 3b에 예시된 본 제1 실시형태의 변형예에 따른 재액화 장치(20)는, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단을 포함한다.
더욱 상세하게는, 도 3b에 예시된 본 제1 실시형태의 변형예에 따른 재액화 장치(20)는, 냉매와 증발가스의 열교환에 의해 증발가스를 재액화시키기 위한 콜드 박스(21)와, 이 콜드 박스(21)에서 가열되어 부분적으로 기화된 냉매를 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제1 냉매 기액분리기(22a)와, 이 제1 냉매 기액분리기(22a)에서 분리된 기체 상태의 냉매를 압축시키기 위한 제1 냉매 압축기(23a)와, 이 제1 냉매 압축기(23a)에서 압축된 냉매를 냉각시키기 위한 제1 냉매 냉각기(24a)와, 이 제1 냉매 냉각기(24a)에서 냉각된 냉매를 2차적으로 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제2 냉매 기액분리기(22b)와, 이 제2 냉매 기액분리기(22b)에서 분리된 기체 상태의 냉매를 압축시키기 위한 제2 냉매 압축기(23b)와, 이 제2 냉매 압축기(23b)에서 압축된 냉매를 냉각시키기 위한 제2 냉매 냉각기(24b)와, 제1 냉매 기액분리기(22a)에서 분리된 액체 상태의 냉매를 제2 냉매 냉각기(24b)에 공급하기 위한 제1 냉매 펌프(26a)와, 제2 냉매 기액분리기(22b)에서 분리된 액체 상태의 냉매를 제2 냉매 냉각기(24b)에 공급하기 위한 제2 냉매 펌프(26b)와, 제2 냉매 냉각기(24b)에서 냉각된 냉매를 3차적으로 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제3 냉매 기액분리기(22c)와, 이 제3 냉매 기액분리기(22c)에서 분리된 액체 상태의 냉매를 팽창시켜 온도를 떨어뜨리기 위한 냉매 팽창밸브(25)와, 액체 상태의 냉매를 제3 냉매 기액분리기(22c)에서 냉매 팽창밸브(25)에 공급하기 위한 제3 냉매 펌프(26c)를 포함한다.
제1 및 제2 냉매 기액분리기(22a, 22b)에서 제2 냉매 냉각기(24b)에 공급되는 액체 상태의 냉매는 합류된 후, 제2 냉매 압축기(23b)에서 제2 냉매 냉각기(24b)로 공급되는 기체 상태의 냉매와 혼합된 상태로 제2 냉매 냉각기(24b)에 공급될 수 있다. 또한, 제3 기액 분리기(22c)에서 분리된 기체 상태의 냉매는 제3 냉매 펌프(26c)에 의해 냉매 팽창밸브(25)에 공급되는 액체 상태의 냉매와 혼합될 수 있다. 또한, 냉매 팽창밸브(25)에 공급되는 냉매는 팽창 전에 콜드 박스(21)를 통과하면서 팽창 후의 극저온 상태의 냉매와 열교환될 수 있도록 구성되어도 좋다.
도 3b의 재액화 장치(20)는 예시일 뿐이고 본 발명을 한정하지 않으며, 설계시 필요에 따라 재액화 장치의 구성은 변화될 수 있다.
(비폭발성 혼합냉매)
본 발명에 따르면, 재액화 장치(20) 내에서 순환하는 냉매로서는 종래와는 달리 R14를 포함하는 비폭발성 혼합냉매가 사용될 수 있다. 복수의 비폭발성 냉매를 혼합하여 이루어지는 비폭발성 혼합냉매는 중압으로 압축된 증발가스를 재액화할 때의 액화온도에서도 응결되지 않는 특성을 가지도록 하는 혼합 조성비를 갖는다.
혼합냉매의 상변화를 이용한 냉동 사이클은 질소만을 냉매로 하는 질소가스 냉동 사이클보다 효율이 높다. 종래의 혼합냉매는 폭발성 냉매가 혼합되어 안전성에 문제가 있었지만, 본 발명의 비폭발성 혼합냉매는 비폭발성 냉매를 혼합한 냉매이므로 안전성이 높다.
본 발명의 비폭발성 혼합냉매에 의해, 혼합냉매 줄-톰슨 냉동 사이클을 해상용 LNG 재액화 장치에 적용하는 것이 가능해질 수 있다. 한편, 종래 육상용 LNG 액화 플랜트에서 혼합냉매를 사용하는 것이 알려져 있었지만, 이 혼합냉매는 탄화수소(Hydro-Carbon; 이하, "HC" 라 함) 혼합냉매로서 폭발성을 가져 취급에 어려움이 있었다. 본 발명의 비폭발성 혼합냉매는 아르곤, 하이드로플루오르카본(Hydro-Fluoro-Carbon; 이하, "HFC" 라 함) 냉매, 및 플루오르카본(Fluoro-Carbon; 이하, "FC" 라 함) 냉매로 이루어져 폭발성이 없다.
HFC/FC 냉매로서는 다음 표 2와 같은 것이 사용될 수 있다. 표 2에는 아르곤을 함께 표시하였다.
표 2
냉매번호 화학식 Mole. weight 끓는점(NBP)(℃)
Ar Ar 39.95 -185.9
R14 CF4 88 -128.1
R23 CHF3 70.01 -82.1
R116 CF3CF3 138.01 -78.2
R41 CH3F 34.03 -78.1
R32 CH2F2 52.02 -51.7
R125 CHF2CF3 120.02 -48.1
R143a CH3CF3 84.04 -47.2
R161 CH3CHF2 48.06 -37.1
R218 CF3CF2CF3 188.02 -36.6
R134a CH2FCF3 102.03 -26.1
R152a CH3CHF2 66.05 -24
R227ea CF3CHFCF3 170.03 -15.6
R236fa CF3CH2CF3 152.04 -1.4
R245fa CHF2CH2CF3 134.05 15.1
표 2에 나타낸 냉매 이외에도, 이러한 냉매들을 2 이상 혼합하여 별도의 냉매 번호(R400 및 R500 계열)를 붙여 사용하기도 한다. 이러한 HFC/FC 혼합냉매는 표 3에 표시하였다.
표 3
냉매번호 화학식(mass ratio) Mole. weight 끓는점(NBP)(℃)
R410A R32/125(50/50) 72.58 -51.6
R410B R32/125(45/55) 75.57 -51.5
R507 R125/143a(50/50) 98.86 -47.1
R407B R32/125/134a(10/70/20) 102.94 -46.8
R404A R125/143a/134a(44/52/4) 97.6 -46.6
R407A R32/125/134a(20/40/40) 90.11 -45.2
R407C R32/125/134a(23/25/52) 86.2 -43.8
R407E R32/125/134a(25/15/60) 83.78 -42.8
R407D R32/125/134a(15/15/70) 90.96 -39.4
다만, 도 4a 및 도 4b에 도시된 바와 같이, HFC/FC 냉매의 경우 어는점이 LNG의 일반적인 온도(-163℃)보다 높아 LNG의 재액화시 냉매로서 사용할 수 없다. 그러나, 본 발명자들은, 도 4c에 도시된 바와 같이, 천연가스(혹은 증발가스)의 압력이 높아질수록 액화(혹은 재액화) 온도가 상승하는 점에 착안하여, 효율이 높고 안전한 HFC/FC 혼합냉매(즉, 비폭발성 혼합냉매) 줄-톰슨 냉동 사이클에 의해 해상 구조물에서의 LNG 저장탱크로부터 발생하는 증발가스를 재액화할 수 있는 재액화 장치를 개발하였다. 다시 말해서, 본 발명에 따르면, 증발가스를 재액화하기 전에 12 내지 45 bara의 중압으로 가압함으로써, 상압에서의 증발가스 재액화 온도보다 높은 온도, 즉 비폭발성 혼합냉매의 어는점보다 높은 온도에서 증발가스의 재액화가 가능해지도록 한다.
본 발명의 비폭발성 혼합냉매는, 비등점이 천연가스 액화온도(혹은 증발가스 재액화온도)와 상온 사이에 골고루 분포되어 넓은 상변화 구간을 이용할 수 있도록 다양한 성분의 냉매를 혼합하여 만들어진다. 끓는점이 서로 유사한 냉매들을 5개의 계열로 분류하여, 각각의 계열에서 하나 이상의 성분을 선택하여 본 발명의 비폭발성 혼합냉매를 구성하는 것이 바람직하다. 즉, 본 발명의 비폭발성 혼합냉매는 5개의 계열에서 각각 적어도 하나의 성분을 선택하여 혼합함으로써 만들어진다.
도 5에 도시된 바와 같이, 계열 I에는 냉매들 중 끓는점이 가장 낮은 Ar이 포함되고, 계열 II에는 R14가 포함되고, 계열 III에는 R23, R116, 및 R41이 포함되고, 계열 IV에는 R32, R410A, R410B, R125, R143a, R507, R407B, R404A, R407A, R407C, R407E, R407D, R161, R218, R134a, R152a, 및 R227ea가 포함되고, 계열 V에는 R236fa 및 R245fa가 포함된다.
이들 5개의 계열에서 각각 하나 이상의 냉매를 선택하여 이루어지는 본 발명의 비폭발성 혼합냉매는, 냉매 수급의 용이함, 비용 등을 감안하여 볼 때, 다음 표 4와 같은 구성성분과 조성을 가지는 것이 바람직하다. 비폭발성 혼합냉매의 조성 비율은, 증발가스와의 열교환이 이루어지는 열교환기, 즉 콜드박스(21)에서의 고온 유체(즉, 증발가스)와 저온 유체(즉, 비폭발성 혼합냉매) 사이의 온도차가 가능한 한 일정하게 유지되도록 정해지는 것이 효율면에서 바람직하다.
표 4
구성성분 조성(% mole)
Ar 20 내지 55
R14 15 내지 30
R23 5 내지 15
R410a 10 내지 15
R245fa 15 내지 20
비폭발성 혼합냉매를 사용할 경우, 종래기술에서와 같이 질소가스 냉매를 사용하여 증발가스를 재액화할 때에 비하여 소모되는 동력, 즉 전력(kW)을 절감할 수 있어 재액화 효율을 향상시킬 수 있다.
더욱 상세하게는, 본 발명은 종래의 재액화 장치에서 사용되는 재액화시 증발가스 압력에 비해 상대적으로 높은 압력인 12 내지 45 bara 정도의 중압으로 증발가스를 압축시켜 재액화하고 있기 때문에 재액화시 소요되는 동력을 절감할 수 있는 것이다.특히, 상기 조성의 비폭발성 혼합냉매를 사용할 경우, 증발가스가 바람직하게는 12 내지 45 bara 정도의 압력을 가질 때 재액화 장치에서의 재액화 효율을 가장 양호하게 유지할 수 있게 된다.
또한, 증발가스의 압력이 12 bara일 때의 재액화 온도는 약 -130℃이고, 이 온도까지 증발가스를 냉각시키기 위해서 비폭발성 혼합냉매의 온도는 약 -155℃ 로 낮아진다. 상기 조성의 비폭발성 혼합냉매는 -155℃ 이하에서 동결이 발생할 우려가 있으므로, 증발가스의 압력이 12 bara보다 낮은 경우에는 비폭발성 혼합냉매를 사용하는 냉동사이클이 구성되기 어렵다.
또한, 45 bara를 초과하는 경우에는 증발가스의 가압에 필요한 소요동력의 증가에 비하여 감소되는 액화 에너지가 크지 않아서 바람직하지 않다.
도 6a를 참조하면, 본 발명은 중압, 즉 12 내지 45 bara의 압력범위(증발가스 4.3 ton/h 기준)에 특징이 있어 질소가스 냉매와 비폭발성 혼합냉매 모두에서 효과가 있지만, 질소가스 냉매를 사용하는 재액화 장치에 비해 본 발명의 상기한 바와 같은 조성을 갖는 비폭발성 혼합냉매를 사용하는 재액화 장치가 대략 10 내지 20% 정도 동력이 더 절감됨을 알 수 있다.
도 6b에는, 종래기술에 따른 재액화 장치의 조건(즉, 재액화 장치에서 사용되는 냉매는 질소가스(N2)이고 재액화 장치에 공급되는 증발가스의 압력은 8bara인 경우)에서의 동력 필요량과, 본 발명에 따른 비폭발성 혼합냉매(NFMR)를 사용하는 재액화 장치의 조건(즉, 재액화 장치에서 사용되는 냉매는 비폭발성 혼합냉매(NFMR)이고 재액화 장치에 공급되는 증발가스의 압력은 12 내지 45bara인 경우)에서의 동력 필요량을 비교한 그래프가 도시되어 있다. 도 6b를 참조하면, 질소 냉매를 사용하는 종래의 재액화 장치(냉동 사이클)에서 소모되는 동력에 비해 본 발명의 재액화 장치는 대략 50 내지 80% 정도의 동력만으로도 운전이 가능함을 알 수 있다. 이와 같이 본 발명은 종래에 비해 상당히 적은 동력으로 운전이 가능하기 때문에, 발전기 용량을 감소시킬 수 있어 발전기의 소형화가 가능하게 된다.
한편, 본 발명의 재액화 장치는 냉매의 팽창 수단으로서 줄-톰슨 밸브(Joule Thomson valve)를 사용하므로, 팽창기(expander)를 사용하는 종래의 질소 컴팬더(N2 compander)보다 전체 시스템이 단순해져 경제적이라는 장점을 얻을 수 있다.
또한 표 2에는 기재하지 않았지만, 본 발명의 비폭발성 혼합냉매는 표 2에 기재된 성분 이외의 비폭발성 냉매 성분을 미소량 함유할 수 있다.
(제2 실시형태)
도 7a는 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 7a에 도시된 제2 실시형태의 연료 공급 시스템은, 전술한 제1 실시형태의 연료 공급 시스템에 비하여 증발가스를 중압으로 압축시킨 후 재액화 장치에서 재액화시키기 전에, 고압 펌프(33)에서 고압 기화기(37)로 공급되는 LNG와 열교환시켜 예냉한다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제1 실시형태와의 차이점을 위주로 설명한다.
도 7a에 도시된 바와 같이, 고압 펌프(33)에서 고압으로 압축된 액화증발가스는, 고압 기화기(37)에 공급되기 전에, 재액화 장치(20)에 공급되는 증발가스와 열교환기(35)에서 열교환된다. 고압 기화기(37)에 공급되는 액화증발가스는 재액화 장치(20)에 공급되는 증발가스에 비해 상대적으로 저온이므로, 열교환기(35)를 통과하면서 재액화 장치(20)에 공급되는 증발가스의 온도를 낮출 수 있어 재액화 장치(20)에서의 재액화 에너지를 절감할 수 있다. 그와 함께, 고압 기화기(37)에 공급되는 액화증발가스는 열교환기(35)를 통과하면서 가열되어 고압 기화기(37)에서의 기화 에너지를 절감할 수 있다.
증발가스 압축부(13)에서 압축된 증발가스는 증발가스 공급라인(L2)을 통하여 재액화 장치(20)에 공급된다. 증발가스 공급라인(L2)의 도중에는 열교환기(35)가 설치되어 있으며, 전술한 바와 같이 열교환기(35)에서 상대적으로 고온의 압축된 증발가스와 고압 펌프(33)로부터 배출된 상대적으로 저온의 액화증발가스는 서로 열교환한다. 열교환기(35)를 통과하면서 냉각된 증발가스는 재액화 장치(20)의 콜드 박스(21)를 통과하면서 냉매에 의해 냉각되어 재액화된다.
(제2 실시형태의 변형예)
도 7b에는 본 발명의 바람직한 제2 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제2 실시형태의 변형예는, 제1 실시형태의 변형예에서 설명한 바와 같이, 증발가스 압축부(13) 및 재액화 장치(20)의 구성이 상술한 제2 실시형태에 비해 부분적으로 상이하다.
즉, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 증발가스 압축부(13)는 5개의 증발가스 압축기(14)를 가진다는 점에서는 도 7a에 예시된 것과 동일하지만, 증발가스 압축부(13)에 포함된 첫 번째 증발가스 압축기와 두 번째 증발가스 압축기 사이, 그리고 두 번째 증발가스 압축기와 세 번째 증발가스 압축기 사이에 중간 냉각기(15)가 생략되어 있다는 점에서 도 7a에 예시된 것과 상이하다. 본 발명에 따르면, 이와 같이 증발가스 압축기(14) 사이마다 중간 냉각기(15)가 배치될 수도 있고, 그렇지 않을 수도 있다.
또한, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
(제3 실시형태)
도 8a는 본 발명의 제3 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 8a에 도시된 제3 실시형태의 연료 공급 시스템은, 전술한 제1 실시형태의 연료 공급 시스템에 비하여 증발가스를 압축시키기 전에 예열한다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제1 실시형태와의 차이점을 위주로 설명한다.
도 8a에 도시된 바와 같이, 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(20)에 공급되기 전에 증발가스 압축부(13)의 상류측에 설치된 증발가스 예열기(41)에 공급된다. 증발가스 압축부(13)에서 대략 12 내지 45 bara로 압축되고 중간 냉각기(15)를 통해 대략 40℃ 정도로 냉각된 증발가스는 증발가스 예열기(41)에서 액화가스 저장탱크(11)에서 배출된 극저온의 증발가스와 열교환됨으로써 냉각된 후 재액화 장치(20)에 공급된다.
제3 실시형태에 따르면 재액화 장치(20)에 공급될 증발가스의 온도를 증발가스 예열기(41)를 통해 낮출 수 있어 콜드 박스(21)에서의 열부하를 감소시킬 수 있다. 또한, 증발가스 압축부(13)에 공급되는 극저온 상태의 증발가스와, 증발가스 압축부(13)에서 압축된 상대적으로 온도가 높은 증발가스를, 증발가스 압축부(13)의 상류측에 위치한 증발가스 예열기(41)에서 열교환함으로써, 증발가스 압축부에 공급되는 증발가스의 온도를 상승시키고 증발가스 압축부(즉, 증발가스 압축기)의 입구온도를 일정하게 유지할 수 있게 된다.
증발가스 압축부(13)에서 압축된 후 증발가스 예열기(41)를 통과한 증발가스는 전술한 제1 실시형태의 연료 공급 시스템과 마찬가지로 재액화 장치(20)에 공급된다. 계속해서, 재액화 장치(20)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
(제3 실시형태의 변형예)
도 8b에는 본 발명의 바람직한 제3 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제3 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제3 실시형태에 비해 부분적으로 상이하다.
즉, 도 8b에 예시된 본 제3 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 8b에 예시된 본 제3 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
(제4 실시형태)
도 9a는 본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 9a에 도시된 제4 실시형태의 연료 공급 시스템은, 전술한 제3 실시형태의 연료 공급 시스템에 비하여 잉여 증발가스를 처리하기 위한 잉여 증발가스 소비수단, 즉 이종연료엔진(DFDE) 등과, 안정적인 연료 공급을 위한 수단, 즉 LNG 공급라인이 추가되었다는 점에서 서로 상이하므로, 이어지는 설명에서는 제2 실시예와의 차이점을 위주로 설명한다.
여기서 잉여 증발가스라 함은 고압가스분사엔진에서 필요로 하는 액화증발가스 양보다 많은 증발가스를 의미한다. 잉여 증발가스가 발생하는 경우는, 고압가스분사엔진이 운전 중이더라도 발생하는 증발가스의 발생양이 많거나, 고압가스분사엔진이 저속으로 운전하거나 또는 운전을 하지 않는 경우(예컨대 입항을 하거나 운하를 통하는 경우)에 발생할 수 있다.
본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 고압 천연가스 분사 엔진의 부하가 줄어들거나 발생된 증발가스의 양이 많을 경우, 잉여의 액화증발가스(LBOG)는 버퍼 탱크(31)의 후단에서 연료 공급라인(L3)으로부터 분기하는 LBOG 복귀라인(L4)에 설치되는 LBOG 팽창밸브(51)를 통하여 감압되고, 감압 과정에서 발생하는 플래시 가스를 포함한 LBOG는 기액분리기를 통해 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 액체 성분은 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다.
더욱 상세하게는, LBOG 팽창밸브(51)에서 감압되어 플래시 가스를 포함하는 LBOG는 LBOG 기액분리기(53)로 공급되어 액체 성분과 기체 성분으로 분리되며, LBOG 기액분리기(53)에서 분리된 기체 성분(즉, 플래시 가스)은, 연료가스 공급라인(L6)을 통하여, 발전 등을 위해 해상 구조물 내에 설치될 수 있는 잉여 증발가스 소비수단, 즉 이종연료엔진(DFDE)에 연료로서 공급된다. 이종연료엔진에 공급되는 연료가스의 압력은 연료가스 공급라인(L6)의 도중에 있어서의 LBOG 기액분리기(53)의 하류측에 설치되는 압력조절밸브에 의해 조절될 수 있으며, 역시 연료가스 공급라인(L6)의 도중에 설치되는 연료가스 히터(55)에서 연료가스의 온도는 이종연료엔진에서 요구하는 온도까지 가열될 수 있다. 또한, LBOG 기액분리기(53)에서 분리된 액체 성분은 LBOG 복귀라인(L4)을 통해 저장탱크로 복귀된다.
이때, 이종연료엔진에 대한 연료가스 공급압력은 일반적으로 5 내지 8 bara 정도이므로, LBOG 기액분리기(53)에서 분리된 액체 성분의 압력이 여전히 상압보다 높을 수 있다. 이 경우, LBOG 기액분리기(53)에서 분리된 액체 성분(즉, LBOG)은 또 다른 LBOG 팽창밸브(52)를 통하여 추가적으로 감압되고, 계속해서 또 다른 LBOG 기액분리기(54)에 공급되어 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 상압의 액체 성분은 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다. 또 다른 LBOG 기액분리기(54)에서 분리된 기체 성분은 또 다른 잉여 증발가스 소비수단으로서의 가스 연소 유닛(GCU; Gas Combustion Unit)에 공급되어 연소됨으로써 소비될 수 있다.
한편, 이종연료엔진에 공급되는 연료가 부족하면, 고압 천연가스 분사 엔진(즉, ME-GI)에 연료를 공급하는 연료 공급라인(L3)으로부터 분기되어 이종연료엔진(즉, DFDE)에 연료를 공급하는 연료가스 공급라인(L6)에 연결되는 분기라인(L5)을 통하여 이종연료엔진에 연료가 추가로 공급될 수 있다. 분기라인(L5)에는 압력강하를 위해 밸브가 설치된다.
또한, 증발가스 재액화 장치가 작동하지 않거나 저장탱크(11)에서 발생하는 증발가스의 양이 적은 경우, 저장탱크(11) 내에 설치된 LNG 공급펌프(57)와 LNG 공급라인(L7)을 통해 저장탱크(11)에 수용된 LNG를 버퍼 탱크(31)에 공급함으로써 연료를 공급할 수 있다.
이와 같이 이종연료엔진은 압력 차이로 인하여 저장탱크(11)에 복귀되는 도중의 LBOG로부터 발생할 수 있는 플래시 가스를 처리할 수 있는 플래시 가스 처리수단으로서 기능하게 된다.
한편, 도면에는 도시하지 않았지만, LBOG 기액분리기(53)에서 분리된 기체성분은 이종연료엔진 대신에 가스터빈이나, 보일러 등과 같은 소비처로 공급되어 연료로서 사용될 수 있다. 또한, 이 기체성분은, 대기중에 천연가스를 방출하는 가스 방출장치나, 대기중에서 연소시키는 가스 연소장치(예컨대 플레어 타워) 등에 공급되어 처리될 수 있다. 이때 이종연료엔진, 가스터빈, 보일러, 가스 방출장치나 플레어 타워 등은 잉여 증발가스 소비수단(플래시 가스 처리수단)에 포함되며, 이와 같은 잉여 증발가스 소비수단에 공급되는 기체성분은 연료가스 히터(55)에서 가열될 수 있다.
증발가스 압축부(13)에서 12 내지 45 bara 정도의 중압으로 압축된 후 재액화 장치(20)에서 액화된 증발가스를 ME-GI 엔진과 같은 고압 천연가스 분사 엔진에서 모두 소비하지 못하는 경우에는, 중압 상태의 액화된 증발가스를 저장탱크(11)에 복귀시킬 필요가 있다. 예컨대, 본 발명자들은, 저장탱크(11)의 압력은 상압 상태이므로, 액화된 증발가스를 저장탱크에 공급하기 전에 압력을 낮출 필요가 있으나, 압력을 낮추는 과정에서 플래시 가스가 발생한다는 점을 인식하여 플래시 가스를 처리할 수 있는 수단, 즉 잉여 증발가스 소비수단을 갖춘 연료 공급 시스템을 발명하였다. 이와 같이 본 발명에 따르면 상기된 바와 같은 플래시 가스를 처리할 수 있는 수단, 즉 잉여 증발가스 소비수단이 구비되어 있기 때문에, 재액화 장치에 공급되는 증발가스를 12 내지 45 bara 정도의 중압으로 압축하여 공급할 수 있으며, 그에 따라 재액화시의 에너지 소모량을 절감할 수 있게 된다.
(제4 실시형태의 변형예)
도 9b에는 본 발명의 바람직한 제4 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제4 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제4 실시형태에 비해 부분적으로 상이하고, 잉여의 증발가스가 발생할 경우 증발가스 압축부(13)로부터 혹은 그 하류측 끝에서 분기되는 라인을 통해 잉여의 증발가스를 처리한다는 점이 제4 실시형태에 비해 상이하다.
도 9b에 예시된 본 제4 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 9b에 예시된 본 제4 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
또한, 도 9b에 예시된 제4 실시형태의 변형예에 따른 연료 공급 시스템은, 소요량보다 많은 증발가스가 발생할 경우, 증발가스 압축부(13)로부터 분기하는 제2 분기라인(L8)을 통해 잉여 증발가스를 잉여 증발가스 소비수단으로서의 이종연료엔진(DFDE)에 공급하여 사용하도록 구성할 수 있다. 이때 증발가스 압축부(13)에 포함된 중간 냉각기(15)에서 증발가스의 온도를 대략 40℃로 냉각시키기 때문에 이종연료엔진에 공급되는 증발가스의 온도를 조절하기 위한 별도의 히터 등의 장치는 생략될 수 있다.
또는, 잉여 증발가스를 증발가스 압축부(13)의 후단에서 분기하는 제3 분기라인(L9)을 통해 또 다른 잉여 증발가스 소비수단으로서의 가스터빈에 공급하여 사용하도록 구성할 수 있다. 마찬가지로 이때에도 가스터빈에 공급되는 증발가스의 온도를 조절하기 위한 별도의 장치는 생략될 수 있다.
또한, 도 9b에 예시된 제4 실시형태의 변형예에 따른 연료 공급 시스템은, 전술한 제4 실시형태에 비해 LBOG 복귀라인(L4)에 LBOG 팽창밸브 및 LBOG 기액분리기가 각각 하나씩 배치되는 것으로 구성되어 있지만, 필요에 따라 전술한 제4 실시형태와 마찬가지로 또 다른 LBOG 팽창밸브(52) 및 LBOG 기액분리기(54)가 추가로 배치되도록 구성될 수 있다.
(제5 실시형태)
도 10a는 본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 10a에 도시된 제5 실시형태의 연료 공급 시스템은, 전술한 제3 실시형태의 연료 공급 시스템에 비하여 잉여 증발가스를 소비하기 위한 수단, 즉 가스 연소 유닛(GCU; Gas Combustion Unit) 등과, 안정적인 연료 공급을 위한 수단, 즉 LNG 공급라인이 추가되었다는 점에서 서로 상이하다. 또한, 잉여 증발가스가 발생하지 않도록 증발가스 중 일부를 재액화 이전에 분기시켜 소비하기 위한 수단, 즉 이종연료엔진(DFDE) 혹은 가스터빈 등을 가진다는 점에서 서로 상이하다. 이어지는 설명에서는 제3 실시형태와의 차이점을 위주로 설명한다.
본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 고압 천연가스 분사 엔진의 부하가 줄어들거나 발생된 증발가스의 양이 많아 잉여의 액화증발가스(LBOG)가 발생할 것으로 예상될 경우에는, 증발가스 압축부(13)에서 압축된 혹은 압축되고 있는 도중의 증발가스를 분기라인을 통해 분기시켜 잉여 증발가스 소비수단에서 사용한다.
즉, 잉여 증발가스를 증발가스 압축부(13)에서 분기하는 제2 분기라인(L8)을 통해 잉여 증발가스 소비수단으로서의 이종연료엔진(DFDE)에 공급하여 사용하도록 구성할 수 있다. 이때 증발가스 압축부(13)에 포함된 중간 냉각기(15)에서 증발가스의 온도를 대략 40℃로 냉각시키기 때문에 이종연료엔진에 공급되는 증발가스의 온도를 조절하기 위한 별도의 히터 등의 장치는 생략될 수 있다.
또는, 잉여 증발가스를 증발가스 압축부(13)의 후단에서 분기하는 제3 분기라인(L9)을 통해 또 다른 잉여 증발가스 소비수단으로서의 가스터빈에 공급하여 사용하도록 구성할 수 있다. 마찬가지로 이때에도 가스터빈에 공급되는 증발가스의 온도를 조절하기 위한 별도의 장치는 생략될 수 있다.
한편, 상기된 바와 같이 재액화 장치(20)에 공급되는 증발가스의 양을 감소시켰음에도 불구하고 고압 천연가스 분사 엔진에서 요구하는 증발가스의 양보다 공급되는 연료로서의 증발가스의 양이 많은 경우에는, 잉여의 증발가스를, 전술한 제4 실시형태에서와 마찬가지로 처리한다.
즉, 잉여의 증발가스는, 버퍼 탱크(31)의 후단에서 연료 공급라인(L3)으로부터 분기하는 LBOG 복귀라인(L4)에 설치되는 LBOG 팽창밸브(51)를 통하여 감압되고, 감압 과정에서 발생하는 플래시 가스를 포함한 LBOG는 LBOG 기액분리기(53)를 통해 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 액체 성분은 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다. LBOG 기액분리기(53)에서 분리된 기체 성분(즉, 플래시 가스)은, 연료가스 공급라인(L6)을 통하여, 잉여 증발가스 소비수단으로서의 가스 연소 유닛(GCU)에 연료로서 공급된다.
한편, 고압 천연가스 분사 엔진(즉, ME-GI)에 연료를 공급하는 연료 공급라인(L3)으로부터 분기되어 연료가스 공급라인(L6)에 연결되는 분기라인(L5)을 통하여 잉여의 증발가스가 GCU에 추가로 공급될 수 있다. 분기라인(L5)에는 압력강하를 위해 밸브가 설치된다.
또한, 전술한 제4 실시형태와 마찬가지로, 증발가스 재액화 장치가 작동하지 않거나 저장탱크(11)에서 발생하는 증발가스의 양이 적은 경우, 저장탱크(11) 내에 설치된 LNG 공급펌프(57)와 LNG 공급라인(L7)을 통해 저장탱크(11)에 수용된 LNG를 버퍼 탱크(31)에 공급함으로써 연료를 공급할 수 있다.
지금까지 설명한 제4 및 제5 실시형태에 있어서, 발생된 플래시 가스를 처리하기 위한 수단으로 설명된 DFDE(제4 실시형태), GCU(제5 실시형태) 등의 장치와, 플래시 가스가 발생하지 않도록 잉여의 증발가스를 재액화 이전에 미리 소비하는 수단으로 설명된 DFDE(제5 실시형태), 가스터빈(제5 실시형태) 등의 장치는, 모두 플래시 가스의 발생을 억제할 수 있는 것이므로 플래시 가스 억제수단으로 통칭할 수 있다. 아울러, 이들 장치는, 모두 고압가스 분사엔진에서 필요로 하는 연료의 양보다 많은 잉여의 증발가스를 소비할 수 있는 것이므로 잉여 증발가스 소비수단으로 통칭할 수도 있다.
(제5 실시형태의 변형예)
도 10b에는 본 발명의 바람직한 제5 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제5 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제5 실시형태에 비해 부분적으로 상이하다.
즉, 도 10b에 예시된 본 제5 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 10b에 예시된 본 제5 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
(제6 실시형태)
도 11은 본 발명의 제6 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 11에 도시된 제6 실시형태의 연료 공급 시스템은, 전술한 제1 내지 제5 실시형태의 연료 공급 시스템에 포함된 버퍼 탱크를 대신하여 재응축기(Recondenser)를 사용한다는 점에서 서로 상이하다.
본 발명의 제6 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료가스 공급 시스템에 따르면, 액화가스 저장탱크(110)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(113)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(120)에 공급된다. 재액화 장치(120)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(133)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(137)에 공급된다. 고압 기화기(137)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(110) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 증발가스 배출라인(L11)을 통하여 저장탱크(110) 내부의 증발가스를 배출시킨다.
배출된 증발가스는 증발가스 배출라인(L11)을 통해 증발가스 압축부(113)에 공급된다. 증발가스 압축부(113)는 하나 이상의 증발가스 압축기(114)를 포함한다. 도시하지는 않았지만, 증발가스 압축부(113)는 증발가스 압축기(114)에서 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(도시생략)를 포함할 수 있다. 도 11에서는 3개의 증발가스 압축기(114)를 포함하는 3단 압축의 증발가스 압축부(113)가 예시되어 있다.
증발가스 압축부(113)에서 압축된 증발가스는 증발가스 공급라인(L12)을 통하여 재액화 장치(120)에 공급된다. 재액화 장치(120)에 공급된 증발가스는 재액화 장치(120)의 콜드 박스, 즉, 메인 극저온 열교환기(Main Cryogenic Heat Exchanger)(121)를 통과하면서 냉매에 의해 냉각되어 재액화된다.
재액화 장치(120)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다. 즉, 상술한 제1 내지 제5 실시형태 및 그 변형예에서 설명된 바와 같은 구성의 비폭발성 혼합냉매를 활용한 재액화 시스템이 사용될 수 있다. 또한, 종래 공지되어 있는 질소냉매를 활용한 재액화 시스템이 사용될 수도 있으며, 예를 들어 국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 것이 사용될 수도 있다.
콜드 박스(121)에서의 열교환을 통해 재액화된 증발가스는 재응축기(131)에 공급되어 임시 저장된다. 본 실시형태에 따르면, 재액화된 액화증발가스와, 액화가스 저장탱크(110)에서 공급되는 액화가스, 즉 LNG를 재응축기(131)에 임시 저장하고, 액화가스 저장탱크(110)로부터 재액화 장치(120)에 공급되는 증발가스 중 일부 혹은 전체를 재응축기(131)로 우회시켜 응축시킴으로써 재액화 장치(120)로 유입되는 증발가스의 양을 감소시키거나 없앰으로써 전체적인 시스템 효율을 향상시킬 수 있다. 이하 상세하게 설명되는 바와 같이, 재응축기(131)는, 재액화 장치(120)에서 재액화된 후 재응축기(131)에 공급되어 임시 저장되는 액화증발가스 및 저장탱크(110)에서 직접 재응축기(131)에 공급된 액화가스(즉, LNG) 중 적어도 하나로부터의 냉열을 이용하여, 발생된 증발가스 중 일부 혹은 전부를 재응축시킨다.
재응축기(131)는 전술한 실시형태들에서의 버퍼 탱크와 마찬가지로 기체와 액체 성분을 분리하는 기능을 수행할 수도 있으므로, 재응축기(131)에 임시 저장된 액화가스는 기체와 액체 상태로 분리되며, 액체 상태의 액화가스만이 연료 공급라인(L13)을 통해 고압 펌프(133)에 공급된다. 고압 펌프(133)는 복수개, 예를 들어 2개가 병렬로 설치될 수 있다.
고압 펌프(133)에서는 액화가스를 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)에서 요구하는 연료 공급 압력까지 가압하여 송출한다. 고압 펌프(133)에서 송출되는 액화가스는 대략 150 ∼ 400 bara(절대압력) 정도의 고압을 갖는다.
고압 펌프(133)에서의 충분한 유효 흡인 수두(NPSH; Net Positive Suction Head)를 보장할 수 있도록, 필요시, 연료 공급라인(L13)의 재응축기(131)와 고압 펌프(133) 사이에는 부스터 펌프(132)가 설치될 수 있다.
또한, 전술한 제2 실시형태에서와 같이, 고압 펌프(133)에서 고압으로 압축된 액화가스는, 고압 기화기(137)에 공급되기 전에, 재액화 장치(120)에 공급되는 증발가스와 열교환기(135)에서 열교환되도록 시스템을 구성하여도 좋다. 고압 기화기(137)에 공급되는 액화가스는 재액화 장치(120)에 공급되는 증발가스에 비해 상대적으로 저온이므로, 열교환기(135)를 통과하면서 재액화 장치(120)에 공급되는 증발가스의 온도를 낮출 수 있어 재액화 장치(120)에서의 재액화 에너지를 절감할 수 있다. 그와 함께, 고압 기화기(137)에 공급되는 액화가스는 열교환기(135)를 통과하면서 가열되어 고압 기화기(137)에서의 기화 에너지를 절감할 수 있다.
재응축기(131)에 재응축되어 임시 저장된 액화증발가스는, 필요시, LBOG 복귀라인(L14)을 통해 액화가스 저장탱크(110)에 복귀될 수 있다. 도 11에 도시하지는 않았지만, LBOG 복귀라인(L14)에는, 도 9a 내지 도 10b를 참조하여 설명한 제4 및 제5 실시형태 및 그 변형예와 같은 팽창밸브, 기액분리기 등이 설치될 수 있다.
그러나, 본 제6 실시형태에 따른 연료가스 공급 시스템에 의하면, 해상 구조물의 운항 중 대부분의 기간 동안, 저장탱크에서 발생된 증발가스를 액화시켜 모두 고압 천연가스 분사 엔진에서 연료로서 사용하고 있으며, 그에 따라 LBOG 복귀라인(L14)을 통하여 저장탱크(110)에 복귀하는 액화가스를 없앨 수 있다. LBOG 복귀라인(L14)은, 해상 구조물을 항구 내에 접안하기 위해 예인하는 경우, 운하를 통과하는 경우, 혹은 저속 운항중인 경우와 같이 고압 천연가스 분사 엔진의 연료 소모량이 저장탱크에서 발생된 증발가스의 양보다 적은 극히 예외적인 경우에만, LBOG를 재응축기(131)로부터 저장탱크(110)에 복귀시키는 용도로 사용될 수 있다. 또한, 재응축기의 고장이나 유지보수시 재응축기(131) 내에 남아있는 LBOG를 저장탱크(110)에 복귀시키는 용도로 사용될 수 있다.
본 실시형태에 따르면, 해상 구조물의 운항시 대부분의 기간 동안 LBOG를 저장탱크로 복귀시키지 않고 전량 엔진에서 사용할 수 있으므로, 그 기간 동안에는 복귀하는 LBOG 자체를 없앨 수 있고, 그에 따라 LBOG의 복귀 도중에 압력 차이로 인하여 발생할 수 있는 플래시 가스를 원천적으로 제거할 수 있다. 본 명세서에서 "플래시 가스를 제거한다"는 표현은, 발생된 플래시 가스를 소모함으로써 플래시 가스가 저장탱크(110)의 내부에 공급되지 않도록 하는 것과, 재액화된 증발가스가 저장탱크(110)에 되돌아가는 것을 방지하여 복귀 도중의 플래시 가스 발생을 원천적으로 차단함으로써 플래시 가스의 발생 자체를 방지하는 것을 모두 포함하는 개념이다.
또한, 본 명세서에서의 "고압 천연가스 분사 엔진의 연료 소모량이 저장탱크에서 발생된 증발가스의 양보다 많다거나 적다"는 표현 중에서 '고압 천연가스 분사 엔진의 연료 소모량' 은, 고압 천연가스 분사 엔진 이외에도 해상 구조물 내에 증발가스를 연료로서 사용하는 엔진, 예컨대 DFDE, 가스 터빈 등이 존재할 경우, 이들 엔진에서의 연료 소모량과 고압 천연가스 분사 엔진의 연료 소모량이 더해진 것으로 간주되어야 한다. 물론, 증발가스를 연료로서 사용하는 엔진이 고압 천연가스 분사 엔진뿐이라면, 고압 천연가스 분사 엔진의 연료 소모량만을 의미하는 것이다.
액화가스 저장탱크(110)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 적은 경우 등에는, LNG 공급라인(L17)을 통해 저장탱크(110)에 수용된 LNG를 직접 재응축기(131)에 공급할 수 있다. 저장탱크(110)에 수용된 LNG를 직접 재응축기(131)에 공급할 수 있도록, LNG 공급라인(L17)의 일단, 즉 액화가스 저장탱크(110) 내부에 위치하는 LNG 공급라인(L17)의 시작지점에는 잠수식 펌프(157)가 설치된다. 본 실시형태에 따르면, 재응축기(131) (혹은, 제1 내지 제5 실시형태 및 그 변형예에서의 버퍼 탱크(31))에서의 내부압력은, 증발가스 압축부(130)에서 대략 12 내지 45 bara 정도의 중압으로 압축된 증발가스의 압력과 거의 동일한 압력을 가지므로, 잠수식 펌프(157)만으로 저장탱크(110)에 대략 상압 정도의 압력으로 저장되어 있는 액화가스를 중압까지 압축시키는 것은 한계가 있을 수 있다. 따라서, LNG 공급라인(L17)의 도중에 부스터 펌프(158)를 설치하여, 잠수식 펌프(157)에 의해 저장탱크의 외부로 배출된 액화가스를 재응축기(131) (혹은 버퍼 탱크) 내부의 압력과 동일한 수준의 압력까지 압축시키는 것이 바람직하다.
액화가스 저장탱크(110)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 많아 잉여의 액화증발가스(LBOG)가 발생할 것으로 예상되는 경우에는, 증발가스 압축부(113)에서 압축된 혹은 단계적으로 압축되고 있는 도중의 증발가스를, 증발가스 분기라인(L18)을 통하여 분기시켜 증발가스 소비수단에서 사용한다. 증발가스 소비수단으로서는 ME-GI 엔진에 비해 상대적으로 낮은 압력의 천연가스를 연료로서 사용할 수 있는 가스 터빈이나 DFDE 등이 사용될 수 있다.
한편, 전술한 바와 같이, 재액화 장치(120)의 부하를 감소시키거나 재액화 장치의 운전을 완전히 중단시켜 전체 시스템의 효율을 향상시킬 수 있도록, 본 실시형태에 따른 연료가스 공급 시스템은, 증발가스 공급라인(L12)으로부터 분기하여 증발가스 압축부(113)에서 압축된 증발가스 중 일부 혹은 전체를 재액화 장치를 우회하여 직접 재응축기(131)에 공급할 수 있는 증발가스 우회라인(L21)을 포함할 수 있다.
더욱 상세하게는, 증발가스 우회라인(L21)은 증발가스 공급라인(L12)의 열교환기(135) 하류측에서 분기하여 재응축기(131)에 연결되는 것이 바람직하다. 필요시 재응축기(131)의 압력을 조절할 수 있도록 증발가스 우회라인(L21)에는 압력제어밸브(161)가 설치되는 것이 바람직하다.
액화가스 저장탱크(110)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 적은 경우에는 저장탱크(110) 내의 LNG를 재응축기(131)에 공급하여 부족한 연료량을 보충하며, 이때 재액화 장치에 공급되는 증발가스 중 일부를 증발가스 우회라인(L21)을 통해 재응축기(131)에 공급하여 LNG와 혼합시켜 재응축시킴으로써 재액화 장치의 부하를 감소시킬 수 있다.
이하, 상기된 바와 같이 구성된 제6 실시형태의 연료가스 공급 시스템이 예를 들어 LNG 운반선에 설치되었을 때의 재응축기(131)를 활용한 운전방법을, 도 11을 참조하여 설명한다.
제6 실시형태에 따른 연료가스 공급 시스템은, 재응축기(131)를 구비하고 있기 때문에, 저장탱크(110)에서 발생된 증발가스를 모두 재액화 장치(120)의 콜드 박스(121)에 공급하지 않고 적어도 일부의 증발가스를 재응축기(131)로 우회시킴으로써, 에너지 소모가 많은 재액화 장치의 부하를 감소시키거나, 또는 경우에 따라서는 재액화 장치의 작동을 완전히 중지할 수 있다.
저장탱크(110)를 거의 비우고 항해하는 밸러스트(ballast) 항해시에는 증발가스의 발생량이 비교적 적다. 이때에는 저장탱크에서 자연적으로 발생하는 증발가스만으로는 고압 천연가스 분사 엔진에서의 연료 요구량을 만족시킬 수 없으므로, 저장탱크(110)에 저장된 LNG를 LNG 공급라인(L17)을 통해 재응축기(131)로 직접 공급한다.
그와 함께 액화가스 저장탱크(110)로부터 배출된 증발가스는 증발가스 압축부(113)에서 12 내지 45bara 정도의 중압으로 압축되고 열교환기(135)에서 냉각된 후 증발가스 우회라인(L21)을 통해 전량 재응축기(131)로 공급된다.
밸러스트 항해시에는 발생되는 증발가스의 양이 적기 때문에, 발생된 증발가스는 전량 재응축기(131)에 공급되어 재응축될 수 있다. 즉, 밸러스트 운항과정 중에는, 대부분의 기간 동안, 저장탱크에서 발생된 증발가스 전부를 재응축기(131)에서 재응축함으로써, 재액화 장치의 가동을 중단시킬 수 있다. 다만, 밸러스트 운항과정 중 해상 구조물이 예인되는 도중과 같이 고압 천연가스 분사 엔진이 저속으로 운전되거나 작동을 멈춘 경우에는 고압 천연가스 분사 엔진의 연료 소모량이 없거나 현저히 감소하기 때문에, 저장탱크에서 발생된 증발가스 전부를 재응축시켜 연료로서 소모하지 못하고, 부분적으로 재액화 장치에서 재액화시킬 수도 있지만, 이러한 경우는 밸러스트 운항 과정 중 매우 예외적인 경우이다.
LNG 공급라인(L17)을 통해 재응축기(131)에 공급된 LNG는 과냉각된 상태이므로, 증발가스 우회라인(L21)을 통해 공급되어 온 증발가스는 재응축기(131) 내에서 과냉각된 LNG와 혼합되는 과정에서 LNG로부터 냉열을 공급받아 전량 응축될 수 있다.
이와 같이 본 실시형태의 연료가스 공급 시스템에 의하면, 밸러스트시 발생된 증발가스를 모두 재응축기(131) 내에서 재응축하여 고압 천연가스 분사 엔진에서의 연료로서 사용할 수 있으며, 그에 따라 저장탱크(110)로 복귀하는 LBOG는 전혀 존재하지 않는다.
또한, 발생된 증발가스를 전량 재응축기(131) 내에서 처리할 수 있기 때문에, 전력 소모가 많아 에너지를 많이 사용하는 재액화 장치(120)를 전혀 가동하지 않을 수 있어 상당한 양의 에너지를 절약할 수 있게 된다.
한편, 저장탱크(110)를 가득 채우고 항해하는 레이든(laden) 항해시에는 증발가스의 발생량이 상대적으로 많다. 이때에는 저장탱크에서 자연적으로 발생하는 증발가스를 모두 재응축기(131)에서 처리할 수 없으므로 재액화 장치(120)를 가동하여 증발가스를 재액화한다. 필요하다면, 발생된 증발가스 중 일부는 증발가스 우회라인(L21)을 통해 재응축기(131)로 우회시켜 재액화 장치(120)에서의 재액화 부하를 감소시킴으로써 에너지를 절약할 수 있다.
재액화 장치(120)에서 증발가스를 과냉 상태로 냉각하기 위해 증발가스를 포화온도보다 낮은 과냉온도까지 냉각하는 것은 효율적이지 못하다. 하지만, 증발가스를 포화온도까지만 냉각하여 액화시킬 경우에는 포화 상태의 LBOG가 배관을 따라 이동하면서 가열되어 다시 기화될 우려가 있으므로, 재액화 장치(120)에서 증발가스를 액화시킬 때에는 증발가스를 해당 압력에서의 과냉온도까지 냉각시키는 것이 바람직하다.
국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 종래 공지된 재액화 장치의 경우에는, 기본적으로 재액화 장치에 의해 재액화된 LBOG를 LNG 저장탱크로 복귀시키는 개념을 가지고 있었기 때문에, LNG 저장탱크 내부의 온도(대략 -163℃)에 맞춰 4 내지 8bara에서의 포화온도보다 훨씬 낮은 온도로 증발가스를 과냉시키고 있었다.
그러나, 본 발명의 연료 공급 시스템에 따르면, 기본적으로 재액화된 LBOG를 고압 천연가스 분사 엔진에 연료로서 공급하여 사용하는 개념을 가지고 있기 때문에, 증발가스를 대략 12 내지 45bara로 압축하고 있으며, 재액화 장치에서의 재액화 온도 역시 해당 압력에서의 포화 온도보다 대략 1℃ 정도만 낮은 온도로 재액화 장치를 운전하고 있다.
본 발명에 따르면, 재액화 장치에서 재액화된 LBOG를 저장탱크로 복귀시키지 않기 때문에 저장탱크 내부에 저장된 LNG의 온도 및 압력을 고려할 필요가 없다. 또한, 종래 LBOG를 저장탱크까지 이송하는 배관의 길이가 상대적으로 긴 것에 비해, 본 발명의 경우 LBOG의 과냉 상태를 유지하면서 이송해야 하는 배관의 길이가 상대적으로 짧아 포화 온도보다 지나치게 낮은 온도까지 증발가스를 과냉시킬 필요가 없다.
그러므로, 증발가스의 액화온도를 포화온도보다 약간만 낮은 온도로 설정(예컨대 0.5 ~ 3℃, 바람직하게는 1℃ 정도만 과냉)하여 재액화 장치(120)를 가동함으로써 재액화 장치의 동력 소모를 감소시킬 수 있다.
이때, 증발가스 우회라인(L21) 상에 설치된 압력 제어 밸브(161)를 개폐 조절함으로써, 열교환기(135)에서의 열교환을 통해 냉각된 증발가스가 재응축기 내로 유입될 수 있도록 하여 재응축기(131)의 압력을 적절하게 조절할 수 있다.
또, 본 실시형태에 따르면, 증발가스를 해당 압력에서의 포화온도보다 1℃ 정도만 과냉시켜 액화시킨 후 재응축기(131)에 공급하더라도, 고압 천연가스 분사 엔진에 연료로서 공급되는 과정에서 부스터 펌프(132) 및 고압 펌프(133)에 의해 가압되기 때문에, 압력 증가로 인해 포화상태의 LBOG는 이후 과냉상태가 안정적으로 유지될 수 있다.
상기된 바와 같은 본 발명의 제1 내지 제6 실시형태 및 그 변형예들에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템은 종래에 비해 다음과 같은 장점을 갖는다.
일반적으로, 증발가스의 재액화 효율을 높이기 위해서는 증발가스를 높은 압력으로 압축시키는 것이 바람직하다. 그러나 종래에는 증발가스를 재액화 장치에 의해 재액화하여 저장탱크로 복귀시켰으며, 저장탱크에 저장된 LNG는 상압 상태를 유지하고 있기 때문에, 재액화된 액화증발가스의 압력이 지나치게 높아 저장탱크에 복귀할 때 플래시 가스(flash gas)가 발생하지 않도록, 재액화 효율은 낮지만 4 내지 8 bara 정도의 저압으로 증발가스를 압축할 수밖에 없었다.
그에 비해 본 발명에 의하면, 저장탱크로부터 배출된 증발가스를 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 플래시 가스 발생을 우려할 필요 없이 증발가스를 종래에 비해 높은 압력으로 압축시켜 재액화시킴으로써 재액화 효율을 높일 수 있다.
이와 같이 본 발명에 의하면, 재액화된 증발가스를 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급하기 때문에 재액화된 증발가스를 저장탱크로 재저장을 위해 복귀시킬 필요가 없어 저장탱크로의 복귀시 발생될 수 있는 플래시 가스의 발생을 방지할 수 있고, 플래시 가스의 발생이 억제됨으로써 재액화 이전에 증발가스의 압력을 종래에 비해 높은 압력, 즉 12 내지 45 bara 정도의 중압으로 압축시켜 재액화할 수 있다. 이러한 중압으로 증발가스를 압축시켜 재액화함에 따라 냉매에 상관없이 재액화 효율을 향상시킬 수 있는데, 특히 비폭발성 혼합냉매에 의한 재액화 효율은 질소가스 냉매를 사용하는 것에 비해 더 증대시킬 수 있다. 즉, 종래의 질소가스 냉매를 사용하는 것에 비해 비폭발성 혼합냉매를 사용하는 본 발명의 재액화 장치는 상당히 적은 에너지만을 사용하여 증발가스를 재액화해서 엔진에 연료로서 공급하는 것이 가능하게 된다.
재액화 장치(20, 120)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다. 즉, 상술한 제1 내지 제6 실시형태 및 그 변형예에서 설명된 바와 같은 구성의 비폭발성 혼합냉매를 활용한 재액화 시스템이 사용될 수 있다. 또한, 종래 공지되어 있는 혼합냉매 혹은 질소냉매를 활용한 재액화 시스템이 사용될 수도 있으며, 예를 들어 국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보, 한국특허공개 제2006-0123675호, 한국특허공개 제2001-0089142호 등에 개시되어 있는 것이 사용될 수도 있다.
본 발명에 따른 연료가스 공급 시스템에 의하면, 해상 구조물의 운항 중 대부분의 기간 동안, 저장탱크에서 발생된 증발가스를 액화시켜 모두 고압 천연가스 분사 엔진에서 연료로서 사용하고 있으며, 그에 따라 LBOG 복귀라인(L4, L14)을 통하여 저장탱크(11)에 복귀하는 액화가스를 없앨 수 있다. LBOG 복귀라인(L4, L14)은, 해상 구조물을 항구 내에 접안하기 위해 예인하는 경우, 운하를 통과하는 경우, 혹은 저속 운항중인 경우와 같이 고압 천연가스 분사 엔진의 연료 소모량이 저장탱크에서 발생된 증발가스의 양보다 적은 예외적인 경우에, LBOG를 버퍼탱크(31) 혹은 재응축기(131)로부터 저장탱크(11, 110)에 복귀시키는 용도로 사용될 수 있다. 또한, 버퍼탱크(혹은 재응축기)의 고장이나 유지보수시 버퍼탱크(혹은 재응축기) 내에 남아있는 LBOG를 저장탱크(11, 110)에 복귀시키는 용도로 사용될 수 있다.
본 발명에 따르면, 해상 구조물의 운항시 대부분의 기간 동안 LBOG를 저장탱크로 복귀시키지 않고 전량 엔진에서 사용할 수 있으므로, 그 기간 동안에는 복귀하는 LBOG 자체를 없앨 수 있고, 그에 따라 LBOG의 복귀 도중에 압력 차이로 인하여 발생할 수 있는 플래시 가스를 원천적으로 제거할 수 있다. 본 명세서에서 "플래시 가스를 제거한다, 혹은 플래시 가스의 발생을 억제한다"라는 표현은, 발생된 플래시 가스를 소모함으로써 플래시 가스가 저장탱크(11)의 내부에 공급되지 않도록 하는 것과, 재액화된 증발가스가 저장탱크(11)에 되돌아가는 것을 방지하여 복귀 도중의 플래시 가스 발생을 원천적으로 차단함으로써 플래시 가스의 발생 자체를 방지하는 것을 모두 포함하는 개념이다.
국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보, 한국특허공개 제2006-0123675호, 한국특허공개 제2001-0089142호 등에 개시되어 있는 종래 공지된 재액화 장치의 경우에는, 기본적으로 재액화 장치에 의해 재액화된 LBOG를 LNG 저장탱크로 복귀시키는 개념을 가지고 있었기 때문에, LNG 저장탱크 내부의 온도(대략 -163℃)에 맞춰 4 내지 8bara에서의 포화온도보다 훨씬 낮은 온도로 증발가스를 과냉시키고 있었다.
예컨대, 종래의 Hamworthy사의 Mark III 재액화 장치(WO 2007/117148 호에 기재된 기술)의 경우, 8 bara로 증발가스를 가압하여 -159℃로 액화한다. 이때의 증발가스의 포화온도는 약 -149.5℃이므로 9 ~ 10℃ 정도가 과냉된 상태이다. 이 정도의 과냉이 되어야 LNG 저장탱크로 액화증발가스를 회송할 경우 플래시 가스의 발생이 억제된다. 하지만, 본 발명에서는 액화 고압 천연가스 분사 엔진에 연료로서 공급되는 과정에서 고압 펌프에 의해 가압되기 때문에, 압력 증가로 인해 포화상태의 LBOG는 이후 과냉상태가 안정적으로 유지될 수 있다. 본 발명에서는 액화증발가스를 해당 압력에서의 포화온도보다 0.5 ~ 3℃, 바람직하게는 1℃ 정도만 과냉시켜 액화시킨 후 연료로 공급해도 되는 이점이 있다. 재액화 장치에서 과냉을 적게 시킬수록 재액화 에너지의 절감효과가 크다. 예컨대 -150℃의 온도에서 증발가스를 1℃ 과냉시키는데 필요한 에너지는 전체 재액화에 소요되는 동력의 1%가 추가로 소요된다.
본 발명의 연료 공급 시스템에 따르면, 기본적으로 재액화된 LBOG를 고압 천연가스 분사 엔진에 연료로서 공급하여 사용하는 개념을 가지고 있기 때문에, 증발가스를 대략 12 내지 45bara로 압축하고 있으며, 재액화 장치에서의 재액화 온도 역시 해당 압력에서의 포화 온도보다 0.5 ~ 3℃, 바람직하게는 1℃ 정도만 낮은 온도로 재액화 장치를 운전하고 있다.
본 발명에 따르면, 재액화 장치에서 재액화된 LBOG를 저장탱크로 가능하다면 복귀시키지 않기 때문에 저장탱크 내부에 저장된 LNG의 온도 및 압력을 고려할 필요성이 낮다. 또한, 종래 LBOG를 저장탱크까지 이송하는 배관의 길이가 상대적으로 긴 것에 비해, 본 발명의 경우 LBOG의 과냉 상태를 유지하면서 이송해야 하는 배관의 길이(재액화장치(예컨대, 기액분리기)-고압펌프 사이의 길이)가 상대적으로 짧아 포화 온도보다 지나치게 낮은 온도까지 증발가스를 과냉시킬 필요가 없다.
즉, 해양구조물의 운항 중에는 고압 천연가스 분사 엔진이 필요로 하는 연료의 양은 LNG 저장탱크에서 발생하는 증발가스의 양보다 더 많은 시기(경우)가 상당 기간 존재하고 이 시기에는 액화증발가스를 모두 고압 천연가스 분사 엔진에 공급함으로써 액화증발가스를 LNG 저장탱크에 회송함에 따른 플래시 가스의 발생 문제를 해결할 수 있다.
그러므로, 증발가스의 액화온도를 포화온도보다 약간만 낮은 온도로 설정(예컨대 0.5 ~ 3℃ 정도만 과냉)하여 재액화 장치(20)를 가동함으로써 재액화 장치의 동력 소모를 감소시킬 수 있다.
또, 본 실시형태에 따르면, 증발가스를 해당 압력에서의 포화온도보다 0.5 ~ 3℃ 정도만 과냉시켜 액화시킨 후 버퍼탱크(31)에 공급하더라도, 고압 천연가스 분사 엔진에 연료로서 공급되는 과정에서 고압 펌프(33)에 의해 가압되기 때문에, 압력 증가로 인해 포화상태의 LBOG는 이후 과냉상태가 안정적으로 유지될 수 있다.
또한, 고압펌프로 공급되는 LBOG가 중압범위로 가압된 상태이므로 고압펌프로 LBOG를 펌핑할 때의 동력도 줄어드는 이점이 있다.
종래 재액화 장치를 구비한 해상 구조물에서는, 전술한 바와 같이 증발가스를 저장탱크에 복귀시킬 것을 염두에 두고 증발가스를 재액화하였기 때문에, 복귀시 플래시 가스 발생을 억제하고자 증발가스의 압력을 4 내지 8bara 정도의 저압으로 압축시키는 것이 당연하였다. 그러나, 전술한 바와 같은 본 발명의 연료가스 공급 시스템에서는, 증발가스를 재액화한 후 모두 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 증발가스를 12 내지 45bara 정도의 비교적 높은 압력으로 압축하고 있다. 이러한 개념은, 증발가스를 재액화한 후 저장탱크에 복귀시키던 종래에는 전혀 생각하지 못하던 본 발명 특유의 신규하고 진보적인 개념이라 할 수 있다.
또한, 종래에는 재액화된 LBOG를 저장탱크에 다시 주입하는 과정에서 감압을 통해 플래시 가스가 생성되고, 이 플래시 가스를 다시 재액화 장치로 보내 재액화 장치의 효율을 떨어뜨리고 있었으나, 본 발명에서는 재액화된 LBOG를 감압 없이(오히려 가압하여) 고압 천연가스 분사 엔진에서 연료로 전량 사용함으로써 재액화 장치의 효율을 종래에 비해 향상시킬 수 있다.
이와 같이 본 발명의 연료가스 공급 시스템에 따르면, 대부분의 운항 기간 동안에, 증발가스를 재액화한 후 모두 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 증발가스를 12 내지 45bara 정도의 비교적 높은 압력으로 압축하는 것이 가능하다. 그에 따라, 도 6b를 참조하여 전술한 바와 같이, 종래의 재액화 장치(냉동 사이클)에서 소모되는 동력에 비해 본 발명의 재액화 장치는 대략 50 내지 80% 정도의 동력만으로도 운전이 가능함을 알 수 있다. 이와 같이 본 발명은 종래에 비해 상당히 적은 동력으로 운전이 가능하기 때문에, 발전기 용량을 감소시킬 수 있어 발전기의 소형화가 가능하게 되고, 비용을 절감할 수 있게 된다.
더욱이, 종래의 재액화 장치의 경우 대기 상태로 운전하는데 대략 1 내지 1.5 MW의 전력이 소모되었으나, 본 발명의 경우 제6 실시형태에서 설명한 바와 같이 밸러스트 운항 중에는 대부분의 기간동안 재액화 장치의 운전을 중단시킬 수 있기 때문에, 재액화 장치에서 소모하는 전력을 절약할 수 있다. 예를 들어, 연간 밸러스트 운항을 150일로 가정하고, 재액화 장치의 운전을 위해 연료 소비 183g/kWh의 디젤 발전기를 사용한다고 가정하면, 연간 660 내지 923ton의 HFO를 절약할 수 있다. 2011년 9월 중순 현재 싱가포르 HFO 가격이 ton당 671 USD 정도이므로, 연간 0.4 내지 0.6 mil USD를 절감할 수 있다는 현저한 효과가 있다.
이상에서는 본 발명의 연료 공급 시스템 및 방법이 LNG 운반선 등의 해상 구조물에 적용된 것을 예로 들어 설명이 이루어졌지만, 본 발명의 연료 공급 시스템 및 방법은 육상에서의 고압 천연가스 분사 엔진에 대한 연료 공급에 적용될 수 있음은 물론이다.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.

Claims (8)

  1. 고압 천연가스 분사 엔진에 연료를 공급하는 시스템으로서,
    저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 공급받아 12바 내지 45바로 압축하는 증발가스 압축부와;
    상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시키는 재액화 장치와;
    상기 재액화 장치에서 액화된 증발가스를 압축시키는 고압 펌프와;
    상기 고압 펌프에서 압축된 증발가스를 기화시켜 상기 고압 천연가스 분사 엔진에 공급하기 위한 고압 기화기와;
    상기 저장탱크 내에서 발생하는 증발가스의 발생량과 상기 고압 천연가스 분사 엔진에 연료로서 필요로 하는 증발가스의 필요량 사이의 차에 해당하는 양만큼의 잉여 증발가스를 소비하는 잉여 증발가스 소비수단;
    을 포함하는 것을 특징으로 하는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템.
  2. 청구항 1에 있어서,
    상기 잉여 증발가스 소비수단은, 연료가스 공급라인을 통해 플래시 가스를 공급받아 연료로서 사용함으로써 플래시 가스를 소비하는 가스 연소 유닛인 것을 특징으로 하는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템.
  3. 청구항 1에 있어서,
    상기 잉여 증발가스 소비수단은, 증발가스 압축부의 도중에서 분기하는 분기라인을 통해 공급받은 증발가스를 연료로서 소비하는 이종연료엔진인 것을 특징으로 하는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템.
  4. 청구항 1에 있어서,
    상기 잉여 증발가스 소비수단은, 증발가스 압축부의 후단에서 분기하는 분기라인을 통해 공급받은 증발가스를 연료로서 소비하는 가스터빈인 것을 특징으로 하는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템.
  5. 청구항 1에 있어서,
    상기 잉여 증발가스를 상기 저장탱크에 복귀시키기 위한 LBOG 복귀라인과;
    상기 LBOG 복귀라인에 설치되어 잉여 증발가스를 저장탱크에 복귀시킬 때 감압 과정에서 발생하는 플래시 가스를 포함한 증발가스를 액체 성분과 기체 성분으로 분리하여 액체 성분만을 상기 저장탱크에 복귀시키기 위한 LBOG 기액분리기를 포함하는 것을 특징으로 하는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템.
  6. 청구항 5에 있어서,
    상기 LBOG 복귀라인에 설치되어 잉여 증발가스를 감압시키는 LBOG 팽창밸브를 포함하는 것을 특징으로 하는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템.
  7. 청구항 6에 있어서,
    상기 연료가스 공급라인에 설치되어 상기 LBOG 기액분리기에서 분리된 기체 성분을 감압시키는 밸브를 포함하는 것을 특징으로 하는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템.
  8. 청구항 2에 있어서,
    상기 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급라인으로부터 분기되어, 상기 이종연료엔진에 연료를 공급하는 상기 연료가스 공급라인에 연결됨으로써 상기 가스 연소 유닛에 연료를 추가로 공급할 수 있도록 설치되는 분기라인을 더 포함하는 것을 특징으로 하는 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템.
PCT/KR2011/009820 2011-03-22 2011-12-20 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템 WO2012128447A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/006,656 US20140053600A1 (en) 2011-03-22 2011-12-20 System for supplying fuel to high-pressure natural gas injection engine having excess evaporation gas consumption means
JP2014500980A JP5806381B2 (ja) 2011-03-22 2011-12-20 超過ボイルオフガス消費手段を備えた高圧天然ガス噴射エンジン用燃料供給システム
EP11861414.8A EP2690274A4 (en) 2011-03-22 2011-12-20 SYSTEM FOR FUEL SUPPLY OF A HIGH PRESSURE GAS INJECTION MOTOR WITH A DEVICE FOR CONSUMING EXCESSIVE EVAPORATING GAS
CN201180070985.XA CN103547787A (zh) 2011-03-22 2011-12-20 用于向具有过量蒸发气体消耗构件的高压天然气喷射发动机供给燃料的系统

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2011-0025397 2011-03-22
KR20110025397 2011-03-22
KR20110096466 2011-09-23
KR10-2011-0096466 2011-09-23
KR10-2011-0107235 2011-10-19
KR1020110107235A KR20120107831A (ko) 2011-03-22 2011-10-19 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템

Publications (1)

Publication Number Publication Date
WO2012128447A1 true WO2012128447A1 (ko) 2012-09-27

Family

ID=49773111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009820 WO2012128447A1 (ko) 2011-03-22 2011-12-20 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템

Country Status (5)

Country Link
US (1) US20140053600A1 (ko)
EP (1) EP2690274A4 (ko)
JP (1) JP5806381B2 (ko)
CN (1) CN103547787A (ko)
WO (1) WO2012128447A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024619A (zh) * 2012-10-24 2014-09-03 大宇造船海洋株式会社 用于船舶的发动机的混合燃料供应系统和方法
CN104121114A (zh) * 2013-04-24 2014-10-29 现代重工业株式会社 用于供给液化天然气燃料的系统
WO2015053126A1 (ja) * 2013-10-11 2015-04-16 三井造船株式会社 液化ガス運搬船用燃料ガス供給システム
CN104781532A (zh) * 2012-10-24 2015-07-15 大宇造船海洋株式会社 船只上的液化气处理系统
US10518859B2 (en) 2013-06-26 2019-12-31 Daewoo Shipbuilding & Marine Engineering Co., Ltd. System and method for treating boil-off gas in ship

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140182561A1 (en) * 2013-09-25 2014-07-03 Eghosa Gregory Ibizugbe, JR. Onboard CNG/CFG Vehicle Refueling and Storage Systems and Methods
US10267457B2 (en) 2013-09-27 2019-04-23 Excelerate Energy Limited Partnership Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel
JP6285715B2 (ja) * 2013-12-27 2018-02-28 川崎重工業株式会社 船舶の燃料供給システム
KR101726668B1 (ko) * 2014-02-24 2017-04-13 대우조선해양 주식회사 증발가스 처리 시스템 및 방법
JP5959782B2 (ja) * 2014-02-28 2016-08-02 日揮株式会社 液化天然ガスの受入設備
KR20150131860A (ko) * 2014-05-16 2015-11-25 대우조선해양 주식회사 Lpg 운반선의 연료공급 시스템 및 연료공급 방법
KR101521570B1 (ko) * 2014-12-05 2015-05-19 대우조선해양 주식회사 선박용 증발가스 재액화 장치 및 방법
WO2016122026A1 (ko) * 2015-01-30 2016-08-04 대우조선해양 주식회사 선박용 엔진의 연료공급 시스템 및 방법
KR20160095597A (ko) * 2015-02-03 2016-08-11 삼성중공업 주식회사 연료가스 공급시스템
JP6541059B2 (ja) * 2015-04-10 2019-07-10 三井E&S造船株式会社 液化ガス運搬船用燃料ガス供給システム
KR101765385B1 (ko) * 2015-04-27 2017-08-09 현대중공업 주식회사 액화가스 처리 시스템
KR101644386B1 (ko) * 2015-06-10 2016-08-01 삼성중공업 주식회사 연료가스 공급시스템
FR3038964B1 (fr) 2015-07-13 2017-08-18 Technip France Procede de detente et de stockage d'un courant de gaz naturel liquefie issu d'une installation de liquefaction de gaz naturel, et installation associee
KR101763699B1 (ko) * 2015-09-09 2017-08-01 삼성중공업 주식회사 이산화탄소 운용시스템
EP3362353A4 (en) * 2015-10-16 2019-07-31 Cryostar SAS METHOD OF EVAPORATION GAS TREATMENT APPARATUS FOR FEEDING AT LEAST ONE MOTOR
JP6703837B2 (ja) 2016-01-07 2020-06-03 株式会社神戸製鋼所 ボイルオフガス供給装置
JP5959778B2 (ja) * 2016-03-01 2016-08-02 日揮株式会社 液化天然ガスの受入設備
JP6613179B2 (ja) * 2016-03-16 2019-11-27 川崎重工業株式会社 液化ガス運搬船
EP3452315B1 (en) * 2016-05-03 2022-01-12 Carrier Corporation Integrated compressed gas transport refrigeration unit for compressed gas fueled vehicles
KR101876974B1 (ko) * 2016-09-29 2018-07-10 대우조선해양 주식회사 선박용 증발가스 재액화 장치 및 방법
JP6720440B2 (ja) * 2016-10-26 2020-07-08 株式会社三井E&Sマシナリー 燃料ガス供給システム、船舶、及び燃料ガス供給方法
JP6815213B2 (ja) * 2017-01-30 2021-01-20 株式会社神戸製鋼所 ボイルオフガス回収システム
FR3066249B1 (fr) * 2017-05-12 2020-11-13 Gaztransport Et Technigaz Dispositif et procede de refroidissement de gaz liquefie et/ou de gaz d'evaporation naturelle de gaz liquefie
FR3066250B1 (fr) * 2017-05-12 2019-07-05 Gaztransport Et Technigaz Dispositif et procede de refroidissement de gaz liquefie et/ou de gaz d'evaporation naturelle de gaz liquefie
FR3123717B1 (fr) * 2021-06-04 2023-12-08 Gaztransport Et Technigaz Circuit de reliquéfaction d’un fluide et d’alimentation d’un consommateur.
US20230272971A1 (en) * 2022-02-28 2023-08-31 Air Products And Chemicals, Inc, Single mixed refrigerant lng production process
CN114790981B (zh) * 2022-04-20 2024-02-20 潍柴动力股份有限公司 防止hpdi发动机供气系统液压泵出现短行程的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530210A (en) * 1981-12-25 1985-07-23 Honda Giken Kogyo K.K. Apparatus for controlling evaporated fuel in an internal combustion engine having a supercharger
JPH01262357A (ja) * 1988-04-12 1989-10-19 Yamaha Motor Co Ltd ガスエンジンの燃料供給装置
KR20010008914A (ko) 1999-07-06 2001-02-05 곽학순 배수판 및 배수판을 이용한 건물 지하 배수방법
US6530241B2 (en) 2000-01-26 2003-03-11 Cryostar-France Sa Apparatus for reliquefying compressed vapour
KR100535553B1 (ko) * 2002-11-12 2005-12-08 현대자동차주식회사 증발가스를 이용한 연료무화 촉진장치
KR20060123675A (ko) 2006-10-04 2006-12-04 신영중공업주식회사 Lng bog 재액화 장치 및 방법
WO2007117148A1 (en) 2006-04-07 2007-10-18 Hamworthy Gas Systems As Method and apparatus for pre-heating lng boil-off gas to ambient temperature prior to compression in a reliquefaction system
KR100774725B1 (ko) * 2006-11-14 2007-11-08 현대자동차주식회사 가솔린 엔진의 연료 분사 장치 및 그 분사 방법
WO2009136793A1 (en) 2008-05-08 2009-11-12 Hamworthy Gas Systems As Gas supply systems for gas engines
KR100929250B1 (ko) 2007-05-08 2009-12-01 대우조선해양 주식회사 선박의 연료가스 공급 시스템 및 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165554U (ja) * 1983-04-22 1984-11-06 三井造船株式会社 ガス焚きデイ−ゼル機関のガス供給装置
JP3821506B2 (ja) * 1995-12-28 2006-09-13 大陽日酸株式会社 液化天然ガス貯槽の蒸発ガス再液化装置
JPH11325714A (ja) * 1998-05-19 1999-11-26 Ishikawajima Harima Heavy Ind Co Ltd 熱交換式ガス液化装置
WO2008122556A2 (en) * 2007-04-04 2008-10-16 Shell Internationale Research Maatschappij B.V. Method and apparatus for separating one or more c2+ hydrocarbons from a mixed phase hydrocarbon stream
KR20080097141A (ko) * 2007-04-30 2008-11-04 대우조선해양 주식회사 인-탱크 재응축 수단을 갖춘 부유식 해상 구조물 및 상기부유식 해상 구조물에서의 증발가스 처리방법
US20080276627A1 (en) * 2007-05-08 2008-11-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel gas supply system and method of a ship
KR101076266B1 (ko) * 2007-07-19 2011-10-26 대우조선해양 주식회사 Lng 운반선의 연료용 가스 공급 장치
CA2718840A1 (en) * 2008-04-11 2009-10-15 Fluor Technologies Corporation Methods and configuration of boil-off gas handling in lng regasification terminals
KR101187532B1 (ko) * 2009-03-03 2012-10-02 에스티엑스조선해양 주식회사 재액화 기능을 가지는 전기추진 lng 운반선의 증발가스 처리장치
CN101526047B (zh) * 2009-04-24 2012-11-21 山东绿能燃气实业有限责任公司 一种液化天然气汽车发动机燃料供给工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530210A (en) * 1981-12-25 1985-07-23 Honda Giken Kogyo K.K. Apparatus for controlling evaporated fuel in an internal combustion engine having a supercharger
JPH01262357A (ja) * 1988-04-12 1989-10-19 Yamaha Motor Co Ltd ガスエンジンの燃料供給装置
KR20010008914A (ko) 1999-07-06 2001-02-05 곽학순 배수판 및 배수판을 이용한 건물 지하 배수방법
US6530241B2 (en) 2000-01-26 2003-03-11 Cryostar-France Sa Apparatus for reliquefying compressed vapour
KR100535553B1 (ko) * 2002-11-12 2005-12-08 현대자동차주식회사 증발가스를 이용한 연료무화 촉진장치
WO2007117148A1 (en) 2006-04-07 2007-10-18 Hamworthy Gas Systems As Method and apparatus for pre-heating lng boil-off gas to ambient temperature prior to compression in a reliquefaction system
KR20060123675A (ko) 2006-10-04 2006-12-04 신영중공업주식회사 Lng bog 재액화 장치 및 방법
KR100774725B1 (ko) * 2006-11-14 2007-11-08 현대자동차주식회사 가솔린 엔진의 연료 분사 장치 및 그 분사 방법
KR100929250B1 (ko) 2007-05-08 2009-12-01 대우조선해양 주식회사 선박의 연료가스 공급 시스템 및 방법
WO2009136793A1 (en) 2008-05-08 2009-11-12 Hamworthy Gas Systems As Gas supply systems for gas engines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690274A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104781532A (zh) * 2012-10-24 2015-07-15 大宇造船海洋株式会社 船只上的液化气处理系统
JP2015500759A (ja) * 2012-10-24 2015-01-08 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド 船舶用エンジンのハイブリッド燃料供給システム及び方法
CN104024619A (zh) * 2012-10-24 2014-09-03 大宇造船海洋株式会社 用于船舶的发动机的混合燃料供应系统和方法
JP2015532237A (ja) * 2012-10-24 2015-11-09 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド 船舶の液化ガス処理システム
JP2015535777A (ja) * 2012-10-24 2015-12-17 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド 船舶の液化ガス処理方法
US9447751B2 (en) 2012-10-24 2016-09-20 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Hybrid fuel supply system and method for engine of vessel
US9739420B2 (en) 2012-10-24 2017-08-22 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied gas treatment system for vessel
CN104121114A (zh) * 2013-04-24 2014-10-29 现代重工业株式会社 用于供给液化天然气燃料的系统
JP2014215032A (ja) * 2013-04-24 2014-11-17 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Lng燃料供給システム
US20160053728A1 (en) * 2013-04-24 2016-02-25 Hyundai Heavy Industries Co., Ltd. System for supplying liquefied natural gas fuel
US10518859B2 (en) 2013-06-26 2019-12-31 Daewoo Shipbuilding & Marine Engineering Co., Ltd. System and method for treating boil-off gas in ship
WO2015053126A1 (ja) * 2013-10-11 2015-04-16 三井造船株式会社 液化ガス運搬船用燃料ガス供給システム
JP2015074418A (ja) * 2013-10-11 2015-04-20 三井造船株式会社 液化ガス運搬船用燃料ガス供給システム

Also Published As

Publication number Publication date
JP2014515072A (ja) 2014-06-26
JP5806381B2 (ja) 2015-11-10
US20140053600A1 (en) 2014-02-27
EP2690274A1 (en) 2014-01-29
EP2690274A4 (en) 2016-07-13
CN103547787A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2012128448A1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 및 방법
WO2012128447A1 (ko) 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템
WO2012124886A1 (ko) 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템
WO2012124884A1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 방법
WO2014092368A1 (ko) 선박의 액화가스 처리 시스템
WO2017078245A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2014209029A1 (ko) 선박의 증발가스 처리 시스템 및 방법
WO2014065620A1 (ko) 선박의 액화가스 처리 방법
WO2019194670A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
KR101115466B1 (ko) 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템
WO2012128449A1 (ko) 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매
WO2015130122A1 (ko) 증발가스 처리 시스템
WO2018062601A1 (ko) 선박의 증발가스 재액화 장치 및 방법
WO2017171166A1 (ko) 선박용 증발가스 재액화 장치 및 방법
KR20120107831A (ko) 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템
KR20110118604A (ko) 가스 공급 장치
KR20120107832A (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 및 방법
WO2016195232A1 (ko) 선박
KR20120107835A (ko) 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템
WO2016195233A1 (ko) 선박
WO2016200170A1 (ko) 가스 처리 시스템을 포함하는 선박
WO2016195231A1 (ko) 선박
WO2016195229A1 (ko) 선박
WO2021167343A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2016200174A1 (ko) 가스 처리 시스템을 포함하는 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011861414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14006656

Country of ref document: US