WO2017078245A1 - 가스 처리 시스템 및 이를 포함하는 선박 - Google Patents

가스 처리 시스템 및 이를 포함하는 선박 Download PDF

Info

Publication number
WO2017078245A1
WO2017078245A1 PCT/KR2016/007405 KR2016007405W WO2017078245A1 WO 2017078245 A1 WO2017078245 A1 WO 2017078245A1 KR 2016007405 W KR2016007405 W KR 2016007405W WO 2017078245 A1 WO2017078245 A1 WO 2017078245A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
boil
liquefied gas
line
storage tank
Prior art date
Application number
PCT/KR2016/007405
Other languages
English (en)
French (fr)
Inventor
이상봉
이동진
장광필
박재훈
이진광
임원섭
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160039634A external-priority patent/KR101816387B1/ko
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to JP2018520516A priority Critical patent/JP6800967B2/ja
Priority to EP16862264.5A priority patent/EP3372485A4/en
Priority to CN201680060727.6A priority patent/CN108137133B/zh
Priority to US15/772,720 priority patent/US10683831B2/en
Publication of WO2017078245A1 publication Critical patent/WO2017078245A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0209Hydrocarbon fuels, e.g. methane or acetylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/06Apparatus for de-liquefying, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass
    • B63J2099/001Burning of transported goods, e.g. fuel, boil-off or refuse
    • B63J2099/003Burning of transported goods, e.g. fuel, boil-off or refuse of cargo oil or fuel, or of boil-off gases, e.g. for propulsive purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/64Propane or propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Definitions

  • the present invention relates to a gas treatment system and a vessel comprising the same.
  • liquefied gas such as liquefied natural gas and liquefied petroleum gas has been widely used in place of gasoline or diesel according to technology development.
  • Liquefied natural gas is liquefied by cooling methane obtained by refining natural gas collected from a gas field. It is a colorless and transparent liquid.
  • Liquefied petroleum gas is a liquid fuel made by compressing a gas mainly composed of propane (C3H8) and butane (C4H10), which come with oil from an oil field, at room temperature.
  • Liquefied petroleum gas like liquefied natural gas, is colorless and odorless and is widely used as a fuel for household, business, industrial, and automobile use.
  • Such liquefied gas is stored in a liquefied gas storage tank installed on the ground or in a liquefied gas storage tank provided in a ship which is a means of transporting the ocean, and liquefied natural gas is liquefied to a volume of 1/600.
  • the liquefied petroleum gas is reduced by the liquefied propane is 1/260, butane is reduced to a volume of 1/230 has the advantage of high storage efficiency.
  • the temperature, pressure, and the like required for driving the engine using such a liquefied gas as fuel may be different from the state of the liquefied gas stored in the tank.
  • boil off gas (BOG)
  • LNG when LNG is stored in the liquid phase, heat permeation occurs in the tank, so that some LNG is vaporized to generate boil off gas (BOG), which may cause problems in the liquefied gas treatment system.
  • BOG boil off gas
  • a low-speed two-stroke low pressure injection engine (2sDF or XDF) has been developed by researching an engine that can replace the MEGI engine, and there is a need to develop a fuel supply system using a low-speed two-stroke low pressure injection engine.
  • the present invention has been made to improve the prior art, and an object of the present invention is to provide a gas treatment system for effectively supplying liquefied gas and / or boil-off gas to a consumer in a liquefied gas storage tank and a vessel comprising the same. .
  • the first supply line connecting the liquefied gas storage tank and the demand destination;
  • An evaporating gas compressor provided on the first supply line, the evaporating gas compressor having a maximum processing capacity capable of processing all of the naturally occurring evaporating gas generated in a full state in the liquefied gas storage tank;
  • a second supply line connected downstream of the liquefied gas storage tank and the boil-off gas compressor on the first supply line;
  • a forced vaporizer provided on the second supply line and forcibly vaporizing the liquefied gas stored in the liquefied gas storage tank to generate a forced generated evaporative gas;
  • a heater provided on the second supply line and configured to heat up the liquefied gas forcibly vaporized by the forced vaporizer before joining the vaporized gas compressed by the vaporizing gas compressor.
  • the heater when the temperature of the boil-off gas compressed by the boil-off gas compressor is greater than or equal to a preset temperature, the heater does not heat up the liquefied gas that is forcibly vaporized by the forced vaporizer, but the temperature of the boil-off gas compressed by the boil-off gas compressor.
  • the temperature is less than the preset temperature, the forced vaporized liquefied gas may be raised in the forced vaporizer.
  • the heater may be used in a collinear state.
  • the demand destination may be a low speed 2-stroke low pressure gas injection engine.
  • the method may further include a liquefied gas pump that operates in response to the discharge pressure of the boil-off gas compressor.
  • the vessel according to the invention may comprise the gas treatment system.
  • the gas treatment system and the ship including the same according to the present invention can effectively supply liquefied gas and / or boil-off gas to a demand destination in a liquefied gas storage tank to increase system stability and reliability.
  • FIG. 1 is a conceptual diagram of a liquefied gas treatment system according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a liquefied gas treatment system according to a second embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of a liquefied gas treatment system according to a third embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of a liquefied gas treatment system according to a fourth embodiment of the present invention.
  • FIG. 5 is a conceptual diagram of a liquefied gas treatment system according to a fifth embodiment of the present invention.
  • FIG. 6 is a conceptual diagram of a liquefied gas treatment system according to a sixth embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of a liquefied gas treatment system according to a seventh embodiment of the present invention.
  • FIG. 8 is a conceptual diagram of a liquefied gas treatment system according to an eighth embodiment of the present invention.
  • the liquefied gas may be LPG, LNG, ethane, etc.
  • LNG Liquefied Natural Gas
  • BOG Air Off Gas
  • Liquefied gas may be referred to regardless of the change of state, such as liquid state, gas state, liquid and gas mixed state, subcooled state, supercritical state, etc., it is also known that evaporated gas is the same.
  • the present invention is not limited to the liquefied gas to be treated, it may be a liquefied gas treatment system and / or boil-off gas treatment system, it is apparent that the system of each of the drawings to be described below can be applied to each other.
  • FIG. 1 is a conceptual diagram of a liquefied gas treatment system according to a first embodiment of the present invention
  • FIG. 2 is a conceptual diagram of a liquefied gas treatment system according to a second embodiment of the present invention
  • FIG. 3 is a third embodiment according to the third embodiment of the present invention.
  • 4 is a conceptual diagram of a liquefied gas treatment system according to a fourth embodiment of the present invention
  • FIG. 5 is a conceptual diagram of a liquefied gas treatment system according to a fifth embodiment of the present invention
  • the gas treatment system 1 includes a liquefied gas storage tank 10, a gas-liquid separator 11, a propulsion engine 21, a power generation engine 22, Gas combustion device 23, boosting pump 30, forced vaporizer 41, gas-liquid separator 42, the first heater 43, boil-off gas compressor 50, H / D compressor 51 and LNG vaporizer ( 60).
  • the liquefied gas storage tank 10 is connected to the propulsion engine 21 through the first line L1, and the liquefied gas to be supplied to the propulsion engine 21, the power generation engine 22, and the gas combustion device 23. Store evaporated gas.
  • the liquefied gas storage tank 10 should store the liquefied gas in a liquid state. At this time, the liquefied gas storage tank 10 may have a form of a pressure tank. Here, the liquefied gas storage tank 10 does not limit its kind to various forms.
  • the gas-liquid separator 11 is provided on the first line L1 and may separate a phase of the boil-off gas supplied from the liquefied gas storage tank 10.
  • the gas-liquid separator 11 is provided between the boil-off gas compressor 50 and the liquefied gas storage tank 10 on the first line L1 and receives the phase of the boil-off gas supplied from the liquefied gas storage tank 10. Can be separated into liquid and gas phase. The gas phase separated by the gas-liquid separator 11 is supplied to the boil-off gas compressor 50, and the liquid phase may be returned to the liquefied gas storage tank 10.
  • the boil-off gas supplied from the liquefied-gas storage tank 10 to the boil-off gas compressor 50 has a temperature of about -150 degrees and a pressure of about 1 bar to 2 bar (preferably 1.03 bar). It may not be a wholly vaporized phase. Accordingly, the gas-liquid separator 11 supplies only the gaseous vaporized gas to the vaporized gas compressor 50 to improve the driving efficiency of the vaporized gas compressor 50 and converts the liquid vaporized gas into the liquefied gas storage tank 10 instead of the gaseous phase. ), It is possible to prevent waste of the boil-off gas.
  • the demand destinations 21, 22, and 23 may consume the liquefied gas supplied from the liquefied gas storage tank 10, but the present invention is not limited thereto, and an evaporated gas (for example, flash gas or Forced evaporation gas) or liquefied gas storage tank 10 may also consume naturally occurring evaporation gas (eg, naturally occurring evaporation gas).
  • an evaporated gas for example, flash gas or Forced evaporation gas
  • liquefied gas storage tank 10 may also consume naturally occurring evaporation gas (eg, naturally occurring evaporation gas).
  • the demand destinations 21, 22, and 23 may include a propulsion engine 21, a power generation engine 22, and a gas combustion device 23.
  • a propulsion engine 21 a power generation engine 22
  • a gas combustion device 23 a gas combustion device 23
  • the propulsion engine 21 supplies thrust to a vessel (not shown) using liquefied gas or evaporated gas stored in the liquefied gas storage tank 10 as a fuel.
  • the propulsion engine 21 reciprocates the piston (not shown) inside the cylinder (not shown) by combustion of liquefied gas, evaporated gas or oil, the crank shaft (not shown) connected to the piston is moved.
  • a shaft (not shown) that is rotated and connected to the crankshaft can be rotated. Accordingly, the propulsion engine 21 may move forward or backward as the marine floating structure rotates as the propeller (not shown) connected to the shaft during driving rotates.
  • the propulsion engine 21 in the embodiment of the present invention may be a low speed two-stroke low pressure gas injection engine, may be a 2s DF engine (XDF engine) developed by Warsila Co., Ltd. Otto cycle).
  • XDF engine 2s DF engine developed by Warsila Co., Ltd. Otto cycle
  • the propulsion engine 21 first compresses the air-fuel mixture supplied to the cylinder to the top dead center, and at the instant of ignition by the ignition fuel from the outside at the compression top dead center, all the air-fuel mixtures Allow complete combustion to generate explosive power.
  • the air-fuel mixture mass ratio may be less than 14.7: 1, and may be in the form of a lean burn engine.
  • the ignition fuel uses HFO (Heavy Fuel Oil) or MDO (Marine Diesel Oil), and the ratio of the ignition fuel and the high pressure gas is about 1:99.
  • the propulsion engine 21 may generate power by receiving liquefied gas of 8 bar to 20 bar (preferably 10 bar), and the state of the supplied liquefied gas may vary depending on the state required by the propulsion engine 21. .
  • MEGI engines require a high pressure with a supply fuel pressure of about 200 bar to 300 bar required to drive, which requires a considerable amount of power for driving of about 210 KW to 220 KW (about 215 KW).
  • the low-speed two-stroke low pressure gas injection engine has a low pressure of 8 bar to 20 bar (preferably 10 bar to 17 bar), and the power consumption for driving is about 13 to 17 KW (about 15 KW). As compared to the MEGI engine, much power can be reduced.
  • the MEGI engine has a problem that the driving pressure is so high that a gas supply system (not shown) accompanying it is very complicated and occupies a lot of space in order to generate the pressure required by the MEGI engine.
  • the low-speed two-stroke low pressure gas injection engine has an advantage that the fuel supply system is very simple and requires less space because the driving pressure is low.
  • the power generation engine 22 may be an engine for generating power generation or other power.
  • the power generation engine 22 may be, for example, DFDE as a heterogeneous fuel engine, and liquefied gas or fuel oil (oil) may be selectively supplied without being supplied with a mixture of liquefied gas and fuel oil. This is to prevent two materials having different combustion temperatures from being mixed and supplied, thereby preventing the engine from falling in efficiency.
  • the gas combustion unit 23 refers to a device that burns boil-off gas to consume excess boil-off gas.
  • the gas combustion device 23 may process the boil-off gas generated in the liquefied gas storage tank 10 or, if there is too much boil-off gas supplied to the propulsion engine 21 or the power generation engine 22, further process it. Can be.
  • the boosting pump 30 is provided on the second line L2 and installed inside or outside the liquefied gas storage tank 10 to store the liquefied gas stored in the liquefied gas storage tank 10 to the forced vaporizer 41. Can supply In this case, the boosting pump 30 may have a latent shape when disposed therein.
  • the boosting pump 30 may extract the liquefied gas stored in the liquefied gas storage tank 10 and pressurize it within a few to several tens of bar, and preferably pressurize the liquefied gas to a pressure required by the propulsion engine 21. .
  • the boosting pump 30 may pressurize the liquefied gas stored in the liquefied gas storage tank 10 to approximately 8 to 25 bar (preferably 10 bar to 17 bar), which is a propulsion engine 21 at a low speed two stroke.
  • the low pressure gas injection engine eg X-DF engine
  • the boosting pump 30 may pressurize to a pressure of approximately 8 to 25 bar at a time.
  • the boosting pump 30 may be operated in response to the discharge pressure of the boil-off gas compressor 50. Since the boosting pump 30 supplies the liquefied gas stored in the liquefied gas storage tank 10 to be joined downstream of the boil-off gas compressor 50, the boosting pump 30 may pressurize the liquefied gas in response to the pressure discharged from the boil-off gas compressor 50. have.
  • the boosting pump 30 may pressurize the liquefied gas discharged from the liquefied gas storage tank 10 to slightly increase the pressure and temperature.
  • the liquefied gas pressurized by the pump 30 may still be liquid.
  • the forced vaporizer 41 receives the pressurized liquefied gas from the boosting pump 30 to forcibly vaporize it.
  • the forced vaporizer 41 may be provided on the second line L2 to receive the pressurized liquefied gas from the boosting pump 30 to vaporize it forcibly and then supply it to the gas-liquid separator 42.
  • the forced vaporizer 41 can vaporize the liquefied gas, and can supply the liquefied gas vaporized to the gas-liquid separator 42 while maintaining the pressure pressurized by the boosting pump 30.
  • the gas-liquid separator 42 is provided on the second line L2 and may separate a phase of the liquefied gas supplied from the forced vaporizer 41.
  • the gas-liquid separator 42 is provided between the forced vaporizer 41 and the first heater 43 on the second line L2 to separate the phase of the liquefied gas supplied from the forced vaporizer 41, Only the vaporized gas in the gas phase can be supplied to the propulsion engine 21.
  • the gas-liquid separator 42 may supply only the vaporized gaseous gas to the first heater 43 through the second line L2, and return the vaporized liquid gas, not the gaseous phase, to the liquefied gas storage tank 10. .
  • the first heater 43 is provided between the propulsion engine 21 and the gas-liquid separator 42 on the second line L2, and may heat the forced vaporized liquefied gas supplied from the gas-liquid separator 42. .
  • the first heater 43 may heat the forced vaporized liquefied gas supplied from the gas-liquid separator 42 to a temperature required by the propulsion engine 21, and may heat the temperature to approximately 40 to 50 degrees.
  • the first heater 43 may be a low duty (L / D, low capacity) heater.
  • the boil-off gas compressor 50 is provided on the first line L1 and compresses the boil-off gas generated in the liquefied gas storage tank 10 and supplies it to the propulsion engine 21. At this time, the boil-off gas compressor 50 may compress the boil-off gas to 8 bar to 20 bar (preferably 10 bar to 17 bar).
  • the boil-off gas supplied to the boil-off gas compressor 50 changes from a temperature of about -150 degrees to a pressure of 1.03 bar to a state of about 45 degrees of pressure of 8 bar to 20 bar (preferably 10 bar to 17 bar) to the propulsion engine 21. Can be supplied.
  • the boil-off gas compressor 50 may be configured in five to seven stages, and preferably in six stages. Specifically, the boil-off gas compressor 50 may be configured by a centrifugal type and may include first to sixth stages, and an boil-off gas cooler (not shown) may be additionally provided at the rear of each compressor.
  • the boil-off gas compressor 50 becomes narrow in the pressure range of the inflowing gas, which is inefficient for driving the propulsion engine 21, and when the seven stages are exceeded, unnecessary compression is performed. It becomes oversizing.
  • the number of stages of the compressor constituting the boil-off gas compressor 50 is limited to 5 stages to 7 stages, thereby achieving the optimum stage of compression necessary for driving the propulsion engine 21.
  • the boil-off gas compressor 50 is designed to have a capacity capable of processing all of the naturally-occurring boil-off gas generated in the open state in the liquefied gas storage tank 10 with a maximum treatment capacity.
  • the open state means a state at the time of laden voyage in which the liquefied gas storage tank 10 provided in the ship is filled with liquefied gas.
  • the boil-off gas compressor 50 is designed to have a maximum amount of capacity smaller than that of the conventional boil-off gas compressor, so that a compressor having a smaller size than the conventional one can be used, and thus the system construction cost is increased. It is reduced and has the effect of maximizing the space in the ship.
  • the high duty (H / D) compressor 51 loads the liquefied gas into the liquefied gas storage tank 10 or unloads the liquefied gas stored in the liquefied gas storage tank 10 to the outside. It can be used for compressing the boil-off gas to discharge or incinerate the boil-off gas generated in (10) to the outside, and the type of the compressor is not limited.
  • H / D compressor 51 for pressurizing the boil-off gas generated in the liquefied gas storage tank 10 during loading or unloading
  • the second heater 511 for heating the boil-off gas compressed by the liquefied gas to be supplied to the liquefied gas storage tank 10 during the bunkering (Shore (not shown)) may be included.
  • the method of replacing the liquefied gas storage tank 10 removes moisture by supplying dry gas to the liquefied gas storage tank 10, and removes inert gas from the liquefied gas storage tank 10 to eliminate the possibility of fire or explosion. Supply oxygen to remove oxygen. Subsequently, the hydrocarbon gas produced by vaporizing the liquefied gas using the LNG vaporizer 60 to be described later is supplied to the inside of the liquefied gas storage tank 10 to undergo a gassing-up step of removing the inert gas, and liquefied. A cool-down process of cooling the liquefied gas storage tank 10 using gas is performed. When the gassing up and cooling down process is completed, the replacement method is completed. After that, the liquefied gas such as LNG is supplied into the liquefied gas storage tank 10 to perform the loading operation.
  • the liquefied gas such as LNG is supplied into the liquefied gas storage tank 10 to perform the loading operation.
  • the liquefied gas stored in the liquefied gas storage tank 10 is discharged to all of the land demand (Shore). At this time, the remaining liquefied gas is present, and undergoes a warm-up step to remove all of the remaining liquefied gas.
  • the boil-off gas generated in the liquefied gas storage tank 10 is compressed by the H / D compressor 51 and then heated by the second heater 511 to increase the internal temperature of the liquefied gas storage tank 10 to liquefy remaining. Allow all gases to vaporize.
  • an inert gas is supplied to remove all the boil-off gas remaining in the liquefied gas storage tank 10, and then oxygen is supplied to supply air therein.
  • the H / D compressor 51 is used in the process of compressing the boil-off gas in order to increase the internal temperature of the liquefied gas storage tank 10 in the warm-up step.
  • the H / D compressor 51 may implement both the compression process used during the liquefied gas loading process and the compression process used during the liquefied gas unloading process as described above.
  • the H / D compressor 51 pressurizes the boil-off gas generated during bunkering to supply it to the shore demand, or evaporates remaining in the liquefied gas storage tank 10 during the warm-up step when the liquefied gas is unloaded.
  • the gas may be pressurized and returned to the liquefied gas storage tank 10 so that the boil-off gas may be circulated to the liquefied gas storage tank 10.
  • the H / D compressor 51 may receive the boil-off gas generated from the liquefied gas storage tank 10 through the fourth line L4, compress the compressed gas, and supply the compressed gas to the shore demand site Shore.
  • the evaporated gas remaining in the liquefied gas storage tank 10 is compressed and heated by the second heater 511 and then returned to the liquefied gas storage tank 10 so that the liquefied gas storage tank ( 10), the H / D compressor 51, the second heater 511, the liquefied gas storage tank 10 may be circulated in order.
  • all the liquefied gas stored in the liquefied gas storage tank 10 may be vaporized, and all of the liquefied gas may be discharged to the outside of the liquefied gas storage tank 10.
  • LNG vaporizer 60 when loading the liquefied gas for the first time from the external land demand (Shore) to the liquefied gas storage tank 10, that is, during the bunkering gassing-up step Can be used in
  • the LNG vaporizer 60 is supplied with liquefied gas from the shore demand (shore) to heat the liquefied gas to vaporize, by supplying the liquefied gas to the liquefied gas storage tank 10, the liquefied gas storage
  • the inert gas filled in the tank 10 can be replaced by the vaporized liquefied gas.
  • Gas treatment system 1 according to an embodiment of the present invention with reference to Figure 1, the evaporation gas compressor 50, the liquefied gas storage tank 10 for compressing the boil-off gas generated in the liquefied gas storage tank 10
  • the boosting pump 30 to pressurize the liquefied gas stored in the), the forced vaporizer 41, the liquefied gas storage tank 10 and the propulsion engine 21 for forced vaporization by receiving the pressurized liquefied gas from the boosting pump 30
  • a first line (L1) having a boil-off gas compressor (50), a liquefied gas storage tank (10) and downstream of the boil-off gas compressor (50) on the first line (L1), and a boosting pump (30).
  • a second line L2 having a forced vaporizer 41 as a main configuration.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the first line L1 and on the first line L1.
  • Evaporative gas compressor 50 is provided.
  • the gas treatment system 1 according to the embodiment of the present invention connects the liquefied gas storage tank 10 and the boil-off gas compressor 50 downstream on the first line L1 through the second line L2.
  • a boosting pump 30, a forced vaporizer 41, and a first heater 43 are provided on the second line L2 to supplement the fuel supplied to the propulsion engine 21 through the first line L1. Can be.
  • the boil-off gas compressor 50 may be designed to have a capacity capable of processing all of the naturally occurring boil-off gas generated in a liquefied gas storage tank 10 at a maximum treatment capacity.
  • the boil-off gas compressor that processes the boil-off gas generated from the liquefied gas storage tank and supplies it to the propulsion engine has a capacity capable of handling all the boil-off gas required by the propulsion engine when the vessel has the maximum ship speed. It is designed to be.
  • the boil-off gas compressor should be able to supply and process not only boil-off gas naturally generated in the liquefied gas storage tank but also forced-generating boil-off gas forcibly vaporizing the liquefied gas stored in the liquefied gas storage tank.
  • the evaporative gas compressor has a problem that the maximum processing capacity is set very large and the evaporative gas compressor construction cost is too high.
  • the evaporative gas compressor having a large maximum processing capacity has a very large size and requires a lot of construction space, so that the usable space of the vessel is narrowed, which has a disadvantage in terms of securing space.
  • the boil-off gas compressor 50 has a capacity to process all of the naturally-occurring boil-off gas generated in a full state in the liquefied gas storage tank 10 as described above. It is designed to have.
  • the disconnected state refers to a state at the time of laden voyage in which the liquefied gas storage tank 10 provided in the ship is almost filled with liquefied gas.
  • the boil-off gas compressor 50 may use an boil-off gas compressor designed to have a maximum amount of processing capacity less than that of the conventional boil-off gas compressor, thereby reducing the system construction cost and in-vessel. There is an effect that can maximize the space.
  • the boil-off gas compressor 50 is designed to have a maximum treatment capacity for the capacity to process all of the naturally-occurring boil-off gas generated in a liquefied gas storage tank 10 in a full state, In order to produce a ship speed, only the boil-off gas discharged from the boil-off gas compressor 50 is insufficient.
  • the maximum capacity of the boil-off gas compressor 50 can be substantially implemented.
  • the vessel provided with the gas treatment system 1 according to the embodiment of the present invention described above is reduced the energy used in the boil-off gas compressor 50, the energy consumption in the ballast Voyage reduced the vessel There is an effect that can afford to use more energy in the driving force of the.
  • a reliquefaction apparatus 530 for reliquefaction of the boil-off gas compressed by the boil-off gas compressor (50). Reliquefaction equipment using a separate refrigerant.
  • the propulsion engine 21 since the propulsion engine 21 requires 15 to 20 bar as the pressure of the fuel, the liquefaction cannot be compressed to 100 to 150 bar or 200 to 400 bar, which is a high reliquefaction efficiency pressure in the evaporative gas compressor 50. Even if it exchanges heat with at least some of the boil-off gas generated in the gas storage tank 10 and the boil-off gas compressed in the boil-off gas compressor 50, it cannot be effectively reliquefied.
  • a reliquefaction apparatus 530 having a separate refrigerant may be provided to efficiently process the boil-off gas.
  • the boil-off gas liquefied by the reliquefaction apparatus 530 may be supplied to the gas-liquid separator 531 to be separated into a gaseous phase and a liquid phase.
  • the gas phase is again supplied upstream of the boil-off gas compressor 50 on the first line L1 to join the boil-off gas generated in the liquefied gas storage tank 10 and the liquid phase may be returned to the liquefied gas storage tank 10 again. have.
  • the reliquefaction apparatus 530 is branched downstream of the boil-off gas compressor 50 on the first line L1 and connected to the boil-off gas compressor 50 upstream on the first line L1 on the seventeenth line L17.
  • the gas-liquid separator 531 may also be provided on the seventeenth line L17 to supply the gas phase upstream of the boil-off gas compressor 50 on the first line L1 through the seventeenth line L17.
  • nitrogen (N 2), a mixed refrigerant, or the like may be used as the refrigerant used in the reliquefaction apparatus 530.
  • the gas treatment system 1 includes a technology capable of reducing the load of the first heater 43 by providing the first heater 43 on the second line L2. can do.
  • Gas treatment system 1 according to an embodiment of the present invention with reference to Figure 1, the evaporation gas compressor 50, the liquefied gas storage tank 10 for compressing the boil-off gas generated in the liquefied gas storage tank 10
  • the boosting pump 30 for pressurizing the liquefied gas stored in the gas
  • the forced vaporizer 41 for forced vaporization by receiving the pressurized liquefied gas from the boosting pump 30, the second line (L2) is provided on the boil-off gas compressor (50)
  • the first heater 43, the liquefied gas storage tank 10 and the propulsion engine 21 for raising the temperature of the forced vaporized liquefied gas in the forced vaporizer 41 before joining the compressed boil-off gas in the
  • a first line L1 having a compressor 50, a liquefied gas storage tank 10, and downstream of the boil-off gas compressor 50 on the first line L1 are connected to a boosting pump 30 and a forced vaporizer 41.
  • a second line L2 having a first heater 43 as a main configuration.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the first line L1 and on the first line L1.
  • Evaporative gas compressor 50 is provided.
  • the gas treatment system 1 according to the embodiment of the present invention connects downstream of the boil-off gas compressor 50 on the first line L1 of the liquefied gas storage tank 10 through the second line L2.
  • a boosting pump 30, a forced vaporizer 41, and a first heater 43 are provided on the second line L2 to supplement the fuel supplied to the propulsion engine 21 through the first line L1. have.
  • the boil-off gas compressor 50 may be designed to have a capacity capable of processing all of the naturally occurring boil-off gas generated in a liquefied gas storage tank 10 at a maximum treatment capacity.
  • the first heater 43 may be provided downstream of the forced vaporizer 41 on the second line L2.
  • the first heater 43 When the temperature of the boil-off gas compressed by the boil-off gas compressor 50 is equal to or higher than the preset temperature, the first heater 43 does not heat up the liquefied gas forcibly vaporized by the forced-vaporizer 41, but in the boil-off gas compressor 50.
  • the preset temperature is a temperature required by the propulsion engine 21, for example, may be 40 to 50 degrees, preferably about 45 degrees.
  • control of the first heater 43 may be implemented through a separate control unit (not shown) and a control device (not shown), and as an example of the control device, there may be a temperature sensor and electronic devices linked thereto. have.
  • the first heater 43 may be used only in the collinear state.
  • the temperature of the boil-off gas discharged from the boil-off gas compressor 50 may be low.
  • the temperature of the forced vaporized liquefied gas supplied through the second line L2 may be relatively increased to improve the final temperature of the fuel supplied to the propulsion engine 21.
  • the collinear state refers to a state in which the liquefied gas is emptied into the liquefied gas storage tank 10 provided in the ship and is sailed in a ballast voyage.
  • the gas treatment system 1 is forced by effectively adjusting the flow rates of the liquefied gas and / or the boil-off gas supplied to the forced vaporizer 41, the first heater 43, and the LNG vaporizer 60.
  • the vaporizer 41, the first heater 43, the LNG vaporizer 60 may include a technology to reduce the load and enable efficient temperature control.
  • the gas treatment system 1 includes a forced vaporizer 41 and a forced vaporizer 41 for forcibly vaporizing a pressurized liquefied gas from the boosting pump 30.
  • First vaporizer 43 for receiving and heating the supplied forced vaporized liquefied gas
  • LNG vaporizer 60 for liquefied gas supplied from the external storage (Shore) to return to the liquefied gas storage tank 10, liquefied gas
  • a third line L3 connecting the external reservoir and the liquefied gas storage tank 10 and having the LNG vaporizer 60 may be included as a main configuration.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the second line L2 and on the second line L2.
  • a boosting pump 30, a forced vaporizer 41, and a first heater 43 are provided.
  • the external storage and the liquefied gas storage tank 10 may be connected through the third line L3 and the LNG vaporizer 60 may be provided.
  • the liquefied gas and / or evaporation flowing into the forced vaporizer 41 on the second line (L2) or the LNG vaporizer (60) on the first heater 43 and the third line (L3) may further include a flow rate control device for adjusting the flow rate of the gas.
  • the flow control device may be provided in the same or similar to each of the forced vaporizer 41, the first heater 43 or the LNG vaporizer 60, the following is for the flow regulator provided in the forced vaporizer 41, for example Explain.
  • this flow control apparatus is not limited only to the forced vaporizer 41, the 1st heater 43, or the LNG vaporizer 60 mentioned above.
  • the flow rate adjusting device is connected by bypassing the forced vaporizer 41, and has a flow rate provided on the flow rate control pipes CL1 to CL6, the flow rate control pipes CL1 to CL5, and the second line L2. It may include a control valve (411 ⁇ 417).
  • the flow rate control pipe (CL1 ⁇ CL6) may be composed of first to sixth flow rate control line (CL1 ⁇ CL6).
  • the first flow rate control line CL1 is connected to bypass the forced vaporizer 41 on the second line L2 and may include a third control valve 413. Through this, the first flow rate control line CL1 may control the flow rate of the liquefied gas and / or the evaporated gas flowing into the forced vaporizer 41, and the liquefied gas and / or evaporated by being vaporized and discharged from the forced vaporizer 41. The temperature of the gas can be controlled.
  • the flow rate may be bypassed to the first flow control line (CL1), which is vaporized and discharged from the forced vaporizer (41)
  • the liquefied gas and / or the evaporated gas may be bypassed to the first flow control line CL1 to lower the temperature.
  • the third control valve 413 adjusts the flow rate and / or pressure of the liquefied gas and the evaporated gas flowing on the first flow rate control line CL1.
  • first flow control line CL1 connected to the downstream of the forced vaporizer 41 may be branched in parallel and connected to the second line L2. This has the effect of enabling further fine control of the temperature of the liquefied gas and / or the evaporated gas vaporized and discharged from the forced vaporizer (41).
  • the second flow control line CL2 is connected to the third flow control line CL1 by bypassing the third control valve 413 and may include a fourth control valve 414.
  • the fourth control valve 414 may be connected to the third control valve 413 in parallel, and the crossover driving may be configured such that the capacities for processing liquefied gas and / or boil off gas have the same capacities. , You can back up each other.
  • the second flow control line CL2 and the fourth control valve 414 have an effect of improving stability by providing a backup system of a valve for adjusting the pressure and the flow rate of the forced vaporizer 41.
  • the fourth control valve 414 is connected to the third control valve 413 in parallel, and is configured to be smaller than or equal to the flow rate control unit of the third control valve 413 to integrally control the flow rate. Can be done.
  • the range in which the valve performs flow rate adjustment is about 10 to 15% up and down of the flow rate treatment capacity of the valve, so that the smaller the flow rate treatment capacity of the valve, the finer the flow rate control may be possible.
  • the third control valve 413 may process the flow rate of 5 or more and 95 or less.
  • the fourth control valve 414 may be capable of treating a flow rate of 2.5 or more and 47.5 or less. That is, the micro flow rate control that the third control valve 413 cannot process can be solved by the addition of the fourth control valve 414.
  • the third flow control line CL3 is connected to bypass the first control valve 411 on the second line L2 and may include a second control valve 412.
  • the second control valve 412 is connected in parallel to the first control valve 411, the capacity to process the liquefied gas and / or boil off gas is configured to have the same capacity to each other back to each other by cross-drive It may be configured, or may be configured to be smaller than or equal to the flow rate control unit of the first control valve 411, it is possible to perform fine control of the flow rate by the integrated drive.
  • the fourth flow control line CL4 is connected by bypassing the first flow control line CL1 on the second line L2 and may include a fifth control valve 415 and a seventh control valve 417. have.
  • the seventh control valve 417 may be a block valve.
  • the seventh control valve 417 may control to pass only the setting flow rate value when the setting flow rate value is arbitrarily set.
  • the fifth flow control line CL5 may be connected to the fifth flow control line CL4 by bypassing the fifth control valve 415 and may include a sixth control valve 416.
  • the sixth control valve 416 is connected in parallel to the fifth control valve 415, the capacity to process the liquefied gas and / or boil off gas is configured to have the same capacity to each other to back up each other by cross-drive It may be configured to be smaller than or equal to the flow rate control unit of the fifth control valve 415, it is possible to perform fine control of the flow rate by the integrated drive.
  • the sixth flow rate control line CL6 may be branched between the fifth and seventh control valves 415 and 417 on the fourth flow rate control line CL4 and connected to the second line L2.
  • the sixth flow rate control line CL6 may be provided without a control valve, and the remaining flow rate may be supplied to the second line L2 according to the set flow rate value of the seventh control valve 417.
  • the sixth flow rate control line CL6 may be connected to the downstream end portion of the sixth flow rate control line CL6 than the portion to which the fourth flow rate control line CL4 on the second line L2 is connected.
  • the gas treatment system 1 is a forced vaporizer 41 on the second line L2 or an LNG vaporizer 60 on the first heater 43 and the third line L3.
  • a flow rate adjusting device for adjusting the flow rate of the liquefied gas and / or the evaporated gas flowing in, it effectively regulates the flow rate of the liquefied gas and / or boiled gas, the forced vaporizer 41, the first heater 43, the LNG vaporizer It can reduce the load of (60), and enable efficient temperature control.
  • it is possible to back up the existing valve through this has the effect of improving the reliability of the flow control.
  • the fourth line L4 including the H / D compressor 51 is not only a liquefied gas storage tank 10 but also a gas combustion device 23 and other demand destinations. By connecting to (not shown), it may include a technology that can effectively treat the boil-off gas generated in the liquefied gas storage tank 10 even in an emergency.
  • the boil-off gas compressor 50 for compressing the boil-off gas generated in the liquefied gas storage tank 10, liquefied gas during loading or unloading H / D compressor 51 for compressing the boil-off gas generated in the storage tank 10, the second heater 511 for heating the boil-off gas compressed in the H / D compressor 51, liquefied gas storage tank 10 And the propulsion engine 21, and the first line L1 including the boil-off gas compressor 50 and the boil-off gas generated in the liquefied gas storage tank 10 are re-introduced into the liquefied gas storage tank 10.
  • the fourth line L4 having the H / D compressor 51 and the fifth line branched from the rear end of the second heater 511 on the fourth line L4 and connected to the gas combustion device 23 ( L5) may be included as a major configuration.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the first line L1 and on the first line L1.
  • Evaporative gas compressor 50 is provided.
  • the boil-off gas generated in the liquefied gas storage tank 10 through the fourth line (L4) is connected back to the liquefied gas storage tank 10, and connected to the fourth line (L4) ) May be provided with an H / D compressor 51.
  • the exemplary embodiment of the present invention may further include a fifth line L5 branched from the rear end of the second heater 511 on the fourth line L4 and connected to the gas combustion device 23.
  • the liquefied gas storage tank when the propulsion engine 21 or the power generation engine 22 cannot consume the boil-off gas, or when the boil-off gas compressor 50 cannot process the boil-off gas (eg malfunction or stop).
  • the boil-off gas compressor 50 cannot process the boil-off gas (eg malfunction or stop).
  • the above-described problem is solved by designing the H / D compressor 51 provided at all times to back up or assist the boil-off gas compressor 50.
  • the H / D compressor 51 provided is branched from the rear end of the second heater 511 on the fourth line L4 so as to substantially back up or assist the boil-off gas compressor 50.
  • the H / D compressor ( 51 may be operated to supply the boil-off gas generated from the liquefied gas storage tank 10 to the gas combustion device 23, or the H / D compressor 51 when the boil-off gas compressor 50 needs to be backed up or assisted. It can be operated to supply the boil-off gas generated in the liquefied gas storage tank 10 to the propulsion engine 21, the power generation engine 22 or the gas combustion device (23).
  • the gas treatment system 1 has the effect of being able to cope quickly even in an emergency situation, and has the effect of improving the safety and reliability of the system.
  • the capacity of the boil-off gas compressor (50) in the liquefied gas storage tank 10 to process all of the naturally occurring boil-off gas generated in the state of full-up treatment capacity It is designed so as to control the operation of the boil-off gas compressor 50 and the system lines L1 and L2, thereby liquefied gas and / or boil-off gas from the liquefied gas storage tank 10 to the propulsion engine 21. It can include techniques to improve system stability and reliability by supplying efficiently and effectively.
  • Gas treatment system 1 according to an embodiment of the present invention with reference to Figure 1, the evaporation gas compressor 50, the liquefied gas storage tank 10 for compressing the boil-off gas generated in the liquefied gas storage tank 10
  • the boosting pump 30 to pressurize the liquefied gas stored in the), the forced vaporizer 41, the liquefied gas storage tank 10 and the propulsion engine 21 for forced vaporization by receiving the pressurized liquefied gas from the boosting pump 30
  • a first line (L1) having a boil-off gas compressor (50), a liquefied gas storage tank (10) and downstream of the boil-off gas compressor (50) on the first line (L1), and a boosting pump (30).
  • a control unit 71 for controlling the liquefied gas and / or the boil-off gas flowing on the second line L2, the first line L1, and the second line L2 including the forced vaporizer 41. It may include.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the first line L1 and on the first line L1.
  • Evaporative gas compressor 50 is provided.
  • the boil-off gas compressor 50 may be designed to have a capacity capable of processing all of the naturally occurring boil-off gas generated in a liquefied gas storage tank 10 at a maximum treatment capacity.
  • the gas treatment system 1 according to the embodiment of the present invention connects downstream of the boil-off gas compressor 50 on the first line L1 of the liquefied gas storage tank 10 through the second line L2.
  • a boosting pump 30, a forced vaporizer 41, and a first heater 43 are provided on the second line L2 to supplement the fuel supplied to the propulsion engine 21 through the first line L1. have.
  • control unit 71 for controlling the liquefied gas and / or evaporated gas flowing on the first line (L1) and the second line (L2).
  • the controller 71 may control the flow of the boil-off gas and / or the liquefied gas on the first line L1 and the second line L2 by comparing the speed of the ship with the preset speed.
  • the preset speed refers to the speed at which the ship is propelled when the propulsion engine 21 consumes all of the natural evaporation gas generated in the liquefied gas storage tank 10 in an open state, for example, 15 to 19 knots. (Preferably 17 knots)
  • control unit 71 controls to supply the boil-off gas in the liquefied gas storage tank 10 to the propulsion engine 21 only through the first line L1 when the speed of the ship is within the preset speed.
  • the speed of the gas exceeds the preset speed, the liquefied gas and / or the boil-off gas in the liquefied gas storage tank 10 is supplied to the propulsion engine 21 through the first line L1 and the second line L2. can do.
  • control unit 71 compares the amount of spontaneous evaporated gas generated in the liquefied gas storage tank 10 with the amount of fuel required by the propulsion engine 21 to determine the first line L1 or the second line ( It is possible to control the flow of the evaporated gas and / or liquefied gas on L2).
  • the control unit 71 when the amount of fuel required by the propulsion engine 21 is greater than the amount of naturally occurring evaporated gas, the liquefied gas storage tank 10 through the first line (L1) and the second line (L2).
  • the liquefied gas and / or the boil-off gas are controlled to be supplied to the propulsion engine 21, and the amount of fuel required by the propulsion engine 21 is less than the amount of the naturally occurring boil-off gas, the liquefied gas only through the first line L1.
  • the boil-off gas in the storage tank 10 may be controlled to be supplied to the propulsion engine 21, the power generation engine 22, or the gas combustion device 23.
  • control unit 71 may include various control devices (not shown) for realizing the above-described control, and as an example of such a control device, a valve (not shown) and an electronic device interlocked with the control device (not shown) may be provided. May not).
  • control unit 71 Through the control of the control unit 71 as described above, it is possible to economically control and optimize the driving of the boil-off gas compressor 50.
  • a reliquefaction apparatus 530 may be installed. (See FIG. 3)
  • the reliquefaction apparatus 530 liquefies the boil-off gas by using a separate refrigerant (nitrogen or mixed refrigerant). It is possible to effectively reliquefy the boiled gas compressed at low pressure.
  • the reliquefaction apparatus 530 may be reliquefied by receiving the boil-off gas pressurized by 15 to 20 bar by the boil-off gas compressor 50 and supplied to the gas-liquid separator 531.
  • the reliquefied boil-off gas is separated into the liquid phase and the gas phase in the gas-liquid separator 531, and the liquid phase is returned to the liquefied gas storage tank 10, and the gas phase is again combined with the boil-off gas discharged from the liquefied gas storage tank 10 to evaporate. It may be supplied to the gas compressor 50.
  • the reliquefaction apparatus 530 having a separate refrigerant enables efficient treatment of the evaporated gas. There is a repelling effect.
  • the sixth line (L6) for supplying the boil-off gas generated in the liquefied gas storage tank 10 to the gas combustion device 23 without a separate pressurizing means may include a technology that can reduce the system construction cost and effectively manage the internal pressure of the liquefied gas storage tank (10).
  • Gas treatment system 1 according to an embodiment of the present invention with reference to Figure 1, the evaporation gas compressor 50, the liquefied gas storage tank 10 for compressing the boil-off gas generated in the liquefied gas storage tank 10
  • the first line (L1) which is connected to the gas combustion device 23, the liquefied gas storage tank 10 and the propulsion engine 21 to incinerate the boil-off gas generated in the), and the boil-off gas compressor 50, liquefied
  • the gas storage tank 10 and the gas combustion device 23 are connected to each other, and may include a sixth line L6 having no separate pressurization means as a main configuration.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the first line L1 and on the first line L1.
  • Evaporative gas compressor 50 is provided.
  • the sixth line L6 connects the liquefied gas storage tank 10 and the gas combustion device 23 without providing a separate pressurizing means, and the liquefied gas storage tank 10 at the internal pressure of the liquefied gas storage tank 10.
  • the boil-off gas generated in may be supplied to the gas combustion device 23.
  • a compressor should always be provided in a line for connecting the gas combustion device 23 and the liquefied gas storage tank 10 to supply the boil-off gas generated in the liquefied gas storage tank 10 to the gas combustion device 23.
  • the gas combustion device 23 can burn the boil-off gas only when it has a constant pressure (for example, 3 to 5 bar), and thus pressurizing means for pressurizing the boil-off gas generated in the liquefied gas storage tank 10 is required. . Installation of such a pressurization means has caused problems of increase in construction cost and lack of space in the ship.
  • the sixth line L6 has no pressurizing means and has the same diameter as that of the conventional line, the amount of the boil-off gas supplied to the gas combustion device 23 is reduced, thereby efficiently reducing the boil-off gas in the liquefied gas storage tank 10. There is a problem that can not be handled.
  • the sixth line L6 may have a diameter larger than that of the conventional line instead of having a separate pressurizing means, and the boil-off gas generated in the liquefied gas storage tank 10 It may have a diameter so as not to delay the supply to the gas combustion device (23).
  • the first line L1 is different from the line for supplying the boil-off gas to the gas combustion device 23 when the internal pressure of the conventional liquefied gas storage tank 10 rises, but the diameter may be similar.
  • the sixth line L6 may have a diameter larger than the diameter of the first line L1.
  • the gas combustion device 23 includes a first burner part (not shown) consuming a boil-off gas having a first pressure, and a second burner part consuming a boil-off gas having a second pressure (not shown).
  • the first a line L1a branched from the first line L1 downstream of the boil-off gas compressor 50 may be connected to the first burner part and the sixth line L6 may be connected to the second burner part.
  • the first pressure may be 3 to 5 bar
  • the second pressure may be 1 to 2 bar.
  • the first burner part consumes excess boil-off gas content when the compressed boil-off gas supplied to the propulsion engine 21 through the boil-off gas compressor 50 is excessively large, and the second burner part has a liquefied gas storage tank 10 When the amount of boil-off gas is rapidly increased and the internal pressure of the liquefied gas storage tank 10 rises, the excess generated boil-off gas powder may be consumed to prevent breakage of the liquefied gas storage tank 10.
  • the gas treatment system 1 is forcibly vaporized by the second heater 511 and the forced vaporizer 41 used for the conventional warm-up when heating the boil-off gas during the warm-up.
  • the first heater 43 By using the first heater 43 to increase the temperature of the liquefied gas, but by reducing the temperature treatment capacity of the second heater 511 used for the existing warm-up, it is possible to reduce the heater construction cost and optimize the use of the heater Technology may be included.
  • the gas treatment system 1 includes a forced vaporizer 41 and a forced vaporizer 41 for forcibly vaporizing a pressurized liquefied gas from the boosting pump 30.
  • the first heater 43 for receiving and heating the supplied forced vaporized liquefied gas
  • the H / D compressor 51 for compressing the boil-off gas generated in the liquefied gas storage tank 10 during loading or unloading, H / D
  • the booster pump 30, the forced vaporizer 41, and the first heater connect the second heater 511, the liquefied gas storage tank 10, and the propulsion engine 21 to heat the boil-off gas compressed by the compressor 51.
  • the second line (L2) having a 43, the boil-off gas generated in the liquefied gas storage tank 10 is connected to be re-introduced back into the liquefied gas storage tank 10 and provided with a H / D compressor (51) Seventh line L7 connecting the second line L2 and the fourth line L4 upstream of the fourth line L4, the first heater 43, and the second heater 511. A) and a seventh line L7b connecting the second line L2 and the fourth line L4 downstream of the first heater 43 and the second heater 511 may be included as main components.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the second line L2 and on the second line L2.
  • a boosting pump 30, a forced vaporizer 41, and a first heater 43 are provided.
  • the gas treatment system 1 according to the exemplary embodiment of the present invention may allow the boil-off gas generated in the liquefied gas storage tank 10 to be re-introduced back into the liquefied gas storage tank 10 through the fourth line L4.
  • the seventh line L7a and the first connecting the second line L2 and the fourth line L4 upstream of the first heater 43 and the second heater 511 are provided.
  • the seventh line L7b connecting the second line L2 and the fourth line L4 may be further included downstream of the heater 43 and the second heater 511.
  • the second line L2 and the fourth line L4 are connected upstream or downstream of the first heater 43 and the second heater 511 through the seventh a line L7a and the seventh b line L7b. At least one may be connected to each other, and the first heater 43 and the second heater 511 may be provided in parallel with each other.
  • the first heater 43 and the second heater 511 the sum of the heat treatment capacity may be designed to a capacity that can heat up all the boil-off gas generated during liquefied gas loading or unloading,
  • the second heater 511 may assist the first heater 43.
  • the first heater 43 is designed to have a capacity to increase the temperature of all the liquefied gas forcibly vaporized by the forced vaporizer 41
  • the second heater 511 is loaded or unloaded liquefied gas It may be designed to have a capacity of the capacity of the temperature of the boil-off gas generated at the time of subtracting the capacity of the first heater 43.
  • a capacity capable of heating up all the boil-off gas generated during liquefied gas loading or unloading is 100, and a capacity capable of heating up all liquefied gas forced by vaporization of the forced vaporizer 41 is 40.
  • the temperature raising capacity of the first heater 43 may be set to 40, and the temperature raising capacity of the second heater 511 may be set to 60.
  • the gas treatment system 1 designes the first and second heaters 43 and 511 as described above, and the seventh line L7a and the seventh line L7b.
  • control of the first heater 43, the second heater 511, the seventh line (L7a) and the seventh line (L7b) through a separate control unit (not shown) and control device (not shown) It may be implemented, and as an example of the control device may be a control valve and an electronic device interlocked with the control valve.
  • Gas processing system 1 by using a six-stage compressor as the boil-off gas compressor 50, it may include a technique to enable the separate heater can be omitted.
  • Gas treatment system 1 from the boil-off gas compressor 50, the boosting pump 30 for compressing the boil-off gas generated in the liquefied gas storage tank 10
  • a second line L2 connecting downstream of the gas storage tank 10 and the boil-off gas compressor 50 on the first line L1 and including a boosting pump 30, a forced vaporizer 41 and a first heater 43.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the first line L1 and on the first line L1.
  • Evaporative gas compressor 50 is provided.
  • the gas treatment system 1 according to the embodiment of the present invention connects downstream of the boil-off gas compressor 50 on the first line L1 of the liquefied gas storage tank 10 through the second line L2.
  • a boosting pump 30, a forced vaporizer 41, and a first heater 43 are provided on the second line L2 to supplement the fuel supplied to the propulsion engine 21 through the first line L1. have.
  • the boil-off gas compressor 50 may compress the boil-off gas to 15 to 20 bar so as to discharge the boil-off gas at a temperature required by the propulsion engine 21.
  • the boil-off gas compressor 50 is formed of a six-stage centrifugal type or a two-stage screw type, so that the boil-off gas is discharged by compressing the boil-off gas to 15 to 20 bar by the boil-off gas compressor 50.
  • the temperature required by (21) can be achieved.
  • the gas treatment system 1 according to the exemplary embodiment of the present invention may not include a separate heater on the first line L1.
  • the heater may be omitted at the rear end of the boil-off gas compressor 50, thereby reducing the system construction cost and maximizing the space utilization of the ship.
  • the boosting pump 30 pressurizes the liquefied gas to 15 to 20 bar and then supplies it to the gas-liquid separator 42 so that the gas-liquid separator 42 without a separate cooling device. ) May include techniques that allow methane number to be controlled.
  • the methane value control is a process of removing heavy carbon (propane, butane, etc.) among the components in the vaporized liquefied gas, and the methane value of the vaporized liquefied gas supplied to the power generation engine 22 is higher than that required by the power generation engine 22. To control the work. This is to prevent knocking from occurring in the power generation engine 22.
  • the methane is higher than the methane required by the power generation engine 22, so no special care is required, but the forced gas is not only methane but also heavy hydrocarbons such as ethane, propane and butane. (HHC; heavy carbon) components are included, so be careful because the methane value may be lower than the methane value required by the power generation engine (22).
  • HHC heavy hydrocarbon
  • the forced gaseous gas was kept at a low temperature through separate cooling so that the heavy carbon components remained in the liquid phase and used to be filtered out of the gas-liquid separator.
  • the heavy carbon has a boiling point of approximately -80 degrees at 5 bar and a boiling point of -70 degrees at 17 bar.
  • Gas treatment system 1 according to an embodiment of the present invention with reference to Figure 1, the boosting pump 30 for pressurizing the liquefied gas stored in the liquefied gas storage tank 10, pressurized from the boosting pump 30 Forced vaporizer 41 for receiving the liquefied gas forcibly vaporized, gas-liquid separator 42 for controlling the methane value by receiving the forced vaporized liquefied gas from the forced vaporizer 41, liquefied gas storage tank 10 and the propulsion engine (21) ) And a second line L2 including a boosting pump 30, a forced vaporizer 41, and a gas-liquid separator 42 as a main configuration.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the second line L2 and on the second line L2.
  • the boosting pump 30, the forced vaporizer 41, and the gas-liquid separator 42 may be supplied to the propulsion engine 21 to control the methane value of the methane value in the gas-liquid separator 42 of the second line L2.
  • the boosting pump 30 compresses the liquefied gas stored in the liquefied gas storage tank 10 to 15 to 20 bar and then supplies it to the forced vaporizer 41 and liquefied in the forced vaporizer 41.
  • the gas is forcibly vaporized and then supplied to the gas-liquid separator 42, and the gas-liquid separator 42 may perform gas-liquid separation of the forced vaporized liquefied gas from the forced vaporizer 41 without a separate cooling device.
  • the boosting pump pressurizes the liquefied gas stored in the liquefied gas storage tank to 5 to 7 bar and supplies it to the forced vaporizer.
  • the forced vaporizer supplies the liquefied gas to the gas-liquid separator by forcibly vaporizing the liquefied gas. It is supplied with the forced vaporized liquefied gas in a state.
  • the methane value is controlled by changing the liquefied gas from the liquefied gas to the evaporated gas, so it is not necessary to control the methane value.
  • the methane To fuel the engine, the methane must be adjusted and then supplied.
  • the liquefied gas pressurized to 5 bar by the boosting pump was heated to about -65 to -75 degrees from -163 degrees to -80 degrees in a forced vaporizer, and then cooled to -80 degrees or less and supplied to the gas-liquid separator.
  • the heavy carbon in the forced vaporized liquefied gas of 5bar -80 degrees falls below the boiling point and remains in the liquid phase, and the other carbon is supplied to the propulsion engine in a gaseous state.
  • methane number control is a process to lower methane number.
  • the driving of the boosting pump is controlled to 5 bar to 7 bar, so that the gas-liquid separator requires a separate cooling to control the methane number.
  • the cooling operation may be made of liquefied gas stored in the liquefied gas storage tank, there is a problem that disadvantages occur in terms of preservation of the transport.
  • the boosting pump 30 controls the pressurized liquefied gas to 15 to 20 bar when fuel is supplied to the liquefied gas forced to the propulsion engine 21,
  • the methane value is controlled in the gas-liquid separator 42 without the cooling device.
  • the liquefied gas When the liquefied gas is pressurized to 15 to 20 bar, even if it is heated from -163 to -65 to -75 degrees in the forced vaporizer, it does not exceed the boiling point of the heavy carbon (boiling point rises to -70 at 17 bar). Done. For this reason, in the gas-liquid separator 42, the methane value can be adjusted even without a separate cooling device.
  • the boosting pump 30 controls the pressurized liquefied gas to 15 to 20 bar when the liquefied gas forcibly vaporized in the propulsion engine 21 is supplied to the gas, without providing a separate cooling device.
  • the methane number adjustment can be made in the separator 42, reducing system construction costs and protecting the shipment as much as possible.
  • the boosting pump 30 pressurizes the liquefied gas stored in the liquefied gas storage tank 10 to 5 to 10 bar to generate power fuel. It can be controlled to supply to the furnace power generation engine 22.
  • the forced vaporizer 41 by heating the liquefied gas pressurized to 5 to 10bar only to a temperature of -90 to -130 degrees forcibly vaporized, it can be supplied to the gas-liquid separator 42.
  • the heavy carbon of the forced vaporized liquefied gas because it does not exceed the boiling point (boiling point is -80 at 5 bar) can remain in the liquid phase and methane number can be controlled.
  • Gas treatment system 1 such that the pressure discharged from the boil-off gas compressor 50 according to the operating conditions of the propulsion engine 21 is discharged in accordance with the pressure required by the power generation engine 22 Technology may be included.
  • the gas treatment system 1 includes an evaporation gas compressor 50 and a propulsion engine 21 for compressing the boil-off gas generated in the liquefied gas storage tank 10.
  • the first line is connected to the control unit 72, the liquefied gas storage tank 10 and the propulsion engine 21 for controlling the fuel inlet pressure of the power generation engine 22 to determine the operation of the power generation engine 22, the evaporation gas compressor 50 (L1), a seventh line (L7) branched downstream of the boil-off gas compressor 50 on the first line (L1) and connected to the power generation engine 22 may be included as a main configuration.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the first line L1, and is on the first line L1.
  • Evaporation gas compressor 50 is provided in the evaporation gas compressor 50, the evaporation gas compressed by the propulsion engine 21 can be supplied.
  • the gas treatment system 1 according to the embodiment of the present invention may allow the pressure discharged by the boil-off gas compressor 50 to be discharged in accordance with the pressure required by the power generation engine 22.
  • the boil-off gas compressor 50 to control the fuel inlet pressure of the power generation engine 22 by determining whether the propulsion engine 21 is operated or the boil-off gas
  • Flow control device 501 for controlling the flow rate of the boil-off gas flowing into the compressor 50, the boil-off gas compressor on the eighth line (L8) and the first line (L1) returned downstream from the boil-off gas compressor (50) 50 may further include a valve 502 disposed downstream.
  • the control unit 72 has three embodiments for controlling the fuel inlet pressure of the power generation engine 22 by determining whether the propulsion engine 21 is operated and will be described below.
  • the control unit 72 determines whether to supply the boil-off gas compressed by the boil-off gas compressor 50 to the propulsion engine 21 or the power generation engine 22, and the boil-off gas compressor 50.
  • Variable-frequency drive Variable-Frequency Drive
  • the evaporation gas compressor 50 discharges the compressed gas to the pressure required by the propulsion engine 21 or discharges the compressed gas to the pressure required by the power generation engine 22.
  • the pressure required by the propulsion engine 21 may be 15 to 20bar
  • the pressure required by the power generation engine 22 may be 5 to 10bar.
  • the controller 72 may stop the driving of the propulsion engine 21 and operate the power generation engine 22.
  • the control unit 72 controls the evaporation gas compressor 50 in a variable frequency drive so that the evaporation gas compressor 50 compresses and discharges the evaporated gas to a pressure required by the power generation engine 22.
  • the evaporated gas discharged from 50 may be supplied to the power generation engine 22 instead of the propulsion engine 21.
  • the gas treatment system 1 may further include a second line L2 including the boosting pump 30 and the forced vaporizer 41.
  • control unit 72 the variable frequency drive control of the boosting pump 30 as well as the boil-off gas compressor 50, the boosting pump 30 when the supply to the propulsion engine 21, the propulsion engine ( 21 may be pressurized to the required pressure, and the boosting pump 30 may pressurize the liquefied gas to the pressure required by the power generation engine 22 when supplied to the power generation engine 22.
  • variable frequency drive control of the boil-off gas compressor 50 through the control unit 72, the boil-off gas at the pressure required by the power generation engine 22 according to the state of the propulsion engine 21 Since the supply to the power generation engine 22 can be controlled by adjusting the pressure, the construction cost is reduced and the elastic fuel can be supplied.
  • control unit 72 determines whether to supply the boil-off gas compressed by the boil-off gas compressor 50 to the propulsion engine 21 or the power generation engine 22, and thus, the first line L1.
  • the flow of the liquefied gas and / or the boil-off gas flowing on the eighth line L8 may be controlled.
  • the controller 72 controls evaporation by controlling at least a portion of the boil-off gas discharged from the boil-off gas compressor 50 to flow on the eighth line L8.
  • the pressure of the boil-off gas discharged from the gas compressor 50 may be the pressure required by the power generation engine 22.
  • the boil-off gas flowing on the eighth line L8 may be supplied upstream of the boil-off gas compressor 50, and the valve 502 may be a three-way valve.
  • control unit 72 controls the evaporative gas compressor to flow on the seventh line L7 by discharging the remaining part of the evaporated gas discharged from the evaporative gas compressor 50 to become the pressure required by the power generation engine 22.
  • the boil-off gas compressed at 50 may be controlled to be supplied to the power generation engine 22 instead of the propulsion engine 21.
  • control unit 72 controls the return of at least a portion of the boil-off gas discharged from the boil-off gas compressor 50 to the boil-off gas compressor 50 upstream.
  • the pressure of the boil-off gas may be adjusted to the pressure required by the power generation engine 22 according to the state, and may be supplied to the power generation engine 22.
  • the controller 72 determines whether to supply the boil-off gas compressed by the boil-off gas compressor 50 to the propulsion engine 21 or the power generation engine 22, and then the boil-off gas compressor 50.
  • the flow rate controller 501 may be controlled to compress the boil-off gas to a pressure required by the temporary propulsion engine 21 or a pressure required by the power generation engine 22.
  • the flow rate control device 501 may be an inlet guide vane (IGV), and controls the flow rate of the boil-off gas flowing into the boil-off gas compressor 50 to discharge the boil-off gas from the boil-off gas compressor 50. Can be adjusted passively.
  • the controller 72 operates the flow control device 501 so that the flow rate of the boil-off gas flowing into the boil-off gas compressor 50 is reduced.
  • the boil-off gas compressor 50 may compress the boil-off gas to the pressure required by the power generation engine 22.
  • control unit 72 may implement the third embodiment by operating the flow control device 501 and the valve 502 provided downstream of the boil-off gas compressor 50 together.
  • the control unit 72 increases the opening degree of the valve 502 and operates the flow rate control device 501 to receive the reduced amount of boil-off gas.
  • the power generation engine 22 causes the power generation engine 22 to receive the compressed boil-off gas discharged by the power supply, and when the propulsion engine 21 operates normally, the opening degree of the valve 502 is reduced and the flow rate control device 501 is stopped.
  • the propulsion engine 21 may be supplied with the compressed boil-off gas discharged from the compressor 50.
  • the flow rate control device 501 by controlling the flow rate control device 501 through the control unit 72, by controlling the flow rate of the boil-off gas flowing into the boil-off gas compressor 50 is discharged from the boil-off gas compressor 50
  • the pressure may be changed passively, and accordingly, the pressure of the boil-off gas may be adjusted to the pressure required by the power generation engine 22 according to the state of the propulsion engine 21 to supply the power to the power generation engine 22.
  • Gas processing system 1 is configured to assist the carburetor 41 to the LNG carburetor 60 performed at the gas-up (Gassing-up) to supply fuel through the forced carburetor 41 It may include a technique to improve the safety of.
  • Gas treatment system 1 according to an embodiment of the present invention with reference to Figure 7, the boosting pump 30 for pressurizing the liquefied gas stored in the liquefied gas storage tank 10, pressurized from the boosting pump 30 Forced vaporizer 41 for receiving liquefied gas forcibly vaporized, liquefied gas from the external storage (Shore) or liquefied gas from the liquefied gas storage tank 10 to vaporize and return to the liquefied gas storage tank 10 LNG vaporizer 60, the liquefied gas storage tank 10 and the propulsion engine 21 to connect the second line (L2) having a boosting pump 30, the forced vaporizer 41, the external storage and liquefied gas storage A third line L3 and a second line L2 and a third connecting the tank 10 or connecting the liquefied gas storage tank 10 to the liquefied gas storage tank 10 and including the LNG vaporizer 60.
  • a ninth line L9 connecting the line L3 may be included as a main configuration.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the second line L2 and on the second line L2.
  • the boosting pump 30 and the forced vaporizer 41 With the boosting pump 30 and the forced vaporizer 41, the liquefied gas forcibly vaporized by the forced vaporizer 41 can be supplied to the propulsion engine 21.
  • the external storage and the liquefied gas storage tank 10 is connected through the third line (L3) or the liquefied gas storage tank 10 and the liquefied gas storage tank 10 (at this time, the second line (L2) It may be formed on the branch to connect the LNG vaporizer 60 and then connected to another liquefied gas storage tank 10 again.) With the LNG vaporizer 60, liquefied gas by gasification during gassing up The gas storage tank 10 may be supplied.
  • the reason why the third line L3 connects the liquefied gas storage tank 10 and the liquefied gas storage tank 10 to each other is that a plurality of liquefied gas storage tanks 10 are installed on the ship (for example, the first The liquefied gas storage tank 10 and the second liquefied gas storage tank 10 are provided)
  • the liquefied gas is transferred from the second liquefied gas storage tank 10 to the empty first liquefied gas storage tank 10 in an emergency or in other cases. If you need to supply it, you have to use it.
  • the second line L2 may further include a ninth line L9 connecting the third line L3.
  • the ninth line L9 may be branched downstream of the LNG vaporizer 60 of the third line L3 and connected downstream of the forced vaporizer 41 of the second line L2.
  • the LNG vaporizer 60 the pressure that can be accommodated during the liquefied gas vaporization may be the same as the acceptable pressure of the forced vaporizer 41, may be approximately 15 to 20bar.
  • the LNG vaporizer 60 may be used to supply the forced gas liquefied gas to the propulsion engine 21.
  • the LNG vaporizer through the third line (L3) by pressurizing the liquefied gas stored in the liquefied gas storage tank 10 to 15 to 20bar Liquefied gas, which has been sent to (60), and forcibly vaporized in the LNG vaporizer (60), is supplied downstream of the forced vaporizer of the second line (L2) through the ninth line (L9), and then the propulsion engine through the second line (L2). 21 may be supplied.
  • the gas treatment system 1 is configured to assist the forced vaporizer 41 with the LNG vaporizer 60, which is performed during gassing-up, through the forced vaporizer 41.
  • the safety of the fuel supply can be improved and the reliability can be increased.
  • Gas treatment system 1 when the liquefied gas leaks into the heat insulating portion 101 of the liquefied gas storage tank 10 includes a technique for configuring the suction gas to the boil-off gas compressor (50) Can be.
  • Gas treatment system 1 according to an embodiment of the present invention with reference to Figure 4, the liquefied gas storage tank 10, the liquefied gas storage tank 10 having a heat insulating portion 101, the evaporated gas generated A forced vaporizer 41 for forcibly receiving the pressurized liquefied gas from the boosting pump 30 for pressurizing the liquefied gas stored in the compressed boil-off gas compressor 50, the liquefied gas storage tank 10, and the boosting pump 30.
  • the liquefied gas leaks into the heat insulating part 101 of the liquefied gas storage tank 10
  • the liquefied gas leaked into the heat insulating part 101 is controlled by the evaporative gas compressor 50 so as to be sucked into the evaporative gas compressor 50.
  • the first line L1 having the compressor 50, the liquefied gas storage tank 10, and the downstream of the boil-off gas compressor 50 on the first line L1 are connected to the boosting pump 30 and the forced vaporizer 41.
  • the 11a line L11a and the 11b line L11b connecting the L2 and the first line L1 may be included as main components.
  • the heat insulating part 101 may be an IB (InterBarrier Space) provided in the liquefied gas storage tank 10.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the first line L1, and is on the first line L1.
  • Evaporation gas compressor 50 is provided in the can be supplied to the propulsion engine 21, the boil-off gas compressed by the boil-off gas compressor (50).
  • the liquefied gas storage tank 10 connects downstream of the boil-off gas compressor 50 on the first line L1 through the second line L2, and the boosting pump 30 and the forced vaporizer on the second line L2. It is provided with a 41 and the first heater 43, it is possible to replenish the fuel supplied to the propulsion engine 21 through the first line (L1).
  • the heat insulating part 101 of the liquefied gas storage tank 10 the tenth line (L10) connecting the second line (L2), the liquefied gas storage tank 10
  • the control unit 73 When the liquefied gas leaks into the heat insulating part 101, the control unit 73 forcibly vaporizes the liquefied gas leaked into the heat insulating part 101 by the forced vaporizer 41, and then converts the forced vaporized liquefied gas into an evaporative gas compressor. 50 can be controlled to inhale.
  • the control unit 73 may receive the liquefied gas leak from the detection sensor 81 to the heat insulation unit 101 by wire or wirelessly.
  • control unit 73 receives the information that the liquefied gas leaked into the heat insulating portion 101 by wire or wirelessly from the sensor 81, leaked to the heat insulating portion 101 through the tenth line (L10).
  • the supplied liquefied gas is supplied to the forced vaporizer 41, the liquefied gas leaked into the heat insulating part 101 is forced into the forced vaporizer 41, and then the forced vaporized liquefied gas is evaporated through the eleventh line L11a.
  • the gas compressor 50 can be controlled to suck.
  • control unit 73 operates the boil-off gas compressor 50 to apply a negative pressure to the heat-insulating unit 101 so that the boil-off gas compressor 50 can suck the liquefied gas leaked into the heat-insulating unit 101. Can be controlled.
  • the branch branching downstream of the gas-liquid separator 42 of the second line L2 connects the vaporization gas compressor 50 upstream of the first line L1. It may further include an 11b line L11b.
  • the present invention is not limited thereto, and both the eleventa line L11a and the eleventh line L11b may be provided. Hereinafter, only the eleventh line L11b will be described.
  • the control unit 73 When the liquefied gas leaks into the heat insulating part 101, the control unit 73 forcibly vaporizes the liquefied gas leaked into the heat insulating part 101 by the forced vaporizer 41 and then separates the gas phase separated from the gas-liquid separator 42.
  • the boil-off gas compressor 50 may be controlled to suck. Through this, there is a fear that the liquid phase may be included in the liquefied gas forcibly vaporized by the forced vaporizer 41, so that the driving efficiency of the boil-off gas compressor 50 may be reduced as the gas-liquid separator 42.
  • control unit 73 receives the information that the liquefied gas leaked into the heat insulating portion 101 by wire or wirelessly from the sensor 81, leaked to the heat insulating portion 101 through the tenth line (L10). Supplied liquefied gas to the forced vaporizer 41, forcibly vaporized liquefied gas leaked into the heat insulating portion 101 to the forced vaporizer 41, and supplying the forced liquefied gas to the gas-liquid separator 42 to the gas-liquid separator At 42 it can be controlled to separate into gaseous and liquid phases.
  • control unit 73 controls the vaporized gas compressor 50 to suck the gaseous phase separated from the gas-liquid separator 42 through the eleventh line L11b, and stores the liquid phase separated from the gas-liquid separator 42 to store the liquefied gas. It may be controlled to return to the tank (10). At this time, the control unit 73 operates the boil-off gas compressor 50 to apply a negative pressure to the heat-insulating unit 101 so that the boil-off gas compressor 50 can suck the liquefied gas leaked into the heat-insulating unit 101. Can be controlled.
  • the liquefied gas when the liquefied gas leaks into the insulator 101 of the liquefied gas storage tank 10, the liquefied gas is controlled to be sucked into the evaporative gas compressor 50 to improve the safety of the liquefied gas storage tank 10. There is an effect that can improve and reduce the system construction cost.
  • Gas treatment system 1 by using the boil-off gas heat exchanger 521 and the additional boil-off gas compressor 52 to effectively re-liquefy the boil-off gas generated in the liquefied gas storage tank 10 And at the same time may include techniques to efficiently perform the use of boil-off gas.
  • Gas treatment system 1 according to an embodiment of the present invention described with reference to Figure 2, an evaporation gas compressor 50, a boil-off gas compressor 50 for compressing the boil-off gas generated in the liquefied gas storage tank 10
  • the further boil-off gas compressor 52 for further compressing the boil-off gas compressed in the boil-off gas, the boil-off gas generated in the liquefied gas storage tank 10, the boil-off gas or gas-liquid separator 522 further compressed by the boil-off gas compressor 52.
  • An evaporative gas heat exchanger 521 for exchanging at least one of the vaporized gaseous gases separated from the gaseous phase with each other, a gas-liquid separator 522 for separating the evaporated gas exchanged from the evaporative gas heat exchanger 521 into a gaseous phase and a liquid phase, and an evaporated gas.
  • a thirteenth line L13 connecting the separator 522 and the boil-off gas heat exchanger 521 may be included as a main configuration.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the first line L1, and is on the first line L1.
  • Evaporation gas compressor 50 is provided in the can be supplied to the propulsion engine 21, the boil-off gas compressed by the boil-off gas compressor (50).
  • the boil-off gas compressor 50 may be designed to have a capacity capable of processing all of the naturally occurring boil-off gas generated in a liquefied gas storage tank 10 at a maximum treatment capacity.
  • the gas-liquid separator 522 is connected downstream of the boil-off gas compressor 50 on the first line L1 via the twelfth line L12, and is further added on the twelfth line L12.
  • the evaporation gas compressor 52, the evaporation gas heat exchanger 521, and the expansion valve 523 are provided to compress at least a portion of the evaporation gas compressed by the evaporation gas compressor 50 into the additional evaporation gas compressor 52 and then evaporate. It may be supplied to the gas heat exchanger 521 to be liquefied again.
  • the propulsion engine 21 is a low speed 2-stroke low pressure gas injection engine requiring a pressure of 15 to 20 bar.
  • the boil-off gas compressor 50 also compresses only 15 to 20 bar.
  • the boil-off gas heat exchanger 521 is a boil-off gas generated in the liquefied gas storage tank 10 without further compression of the boil-off gas not supplied to the propulsion engine 21 among the boil-off gas compressed by the boil-off gas compressor 50.
  • the heat exchange with and the pressure of the compressed boil-off gas is only 15 to 20bar, there is a problem that the re-liquefaction of the boil-off gas is not made.
  • the boil-off gas heat exchanger 521 is supplied to the boil-off gas heat exchanger 521 and reliquefied so that the boil-off gas There is an effect that the re-liquefaction of is realized.
  • the additional boil-off gas compressor 52 may be composed of, for example, two to three stages, and may further compress the boil-off gas compressed to 15 to 20 bar in the boil-off gas compressor 50 to 100 to 150 or 200 to 400 bar. .
  • the boil-off gas heat exchanger 521 receives the boil-off gas generated in the liquefied gas storage tank 10 through the first line L1 and receives the boil-off gas further compressed by the additional boil-off gas compressor 52.
  • the gaseous phase separated from the gas-liquid separator 522 may be supplied through the twelfth line L12, and may be supplied through the thirteenth line L13.
  • the boil-off gas heat exchanger 521 may include at least two of the boil-off gas supplied from the liquefied gas storage tank 10, the boil-off gas further compressed by the additional boil-off gas compressor 52, or the gas phase separated from the gas-liquid separator 522. More than one can be heat exchanged with each other.
  • the boil-off gas heat exchanger 521 performs a first heat exchange with the boil-off gas further compressed by the additional boil-off gas compressor 52 with the boil-off gas supplied from the liquefied gas storage tank 10, and then, in the gas-liquid separator 522. Secondary heat exchange with separated gas phase This has the effect of extremely improving the reliquefaction rate of the additional compressed boil-off gas.
  • the boil-off gas that has been heat-exchanged in the boil-off gas heat exchanger 521 is supplied to the gas-liquid separator 522 at a reduced pressure of 1 to 7 bar by the expansion valve 523, and the gas-liquid separator 522 It can be separated into a liquid phase.
  • the gaseous phase may be supplied to the boil-off gas heat exchanger 521 to increase the re-liquefaction efficiency by additionally supplying cold heat to the boil-off gas further compressed, and the liquid phase may be returned to the liquefied gas storage tank 10.
  • the gas treatment system 1 additionally has six embodiments through the arrangement change of the above-described main components in order to effectively reliquefy the boil-off gas and more efficiently use the boil-off gas. This will be described below.
  • the gas treatment system 1 evaporates the gaseous phase separated from the gas-liquid separator 522 on the first line L1 via the evaporative gas heat exchanger 521. It may be supplied downstream of the gas heat exchanger 521.
  • the gas treatment system 1 connects the gas-liquid separator 522 and the boil-off gas heat exchanger 521 and the boil-off gas compressor 50 on the first line L1 and supplies the boil-off gas.
  • the fourteenth line L14 passing through the heat exchanger 521 may be provided.
  • the gaseous phase separated from the gas-liquid separator 522 is mixed with the boil-off gas supplied from the liquefied gas storage tank 10 to the boil-off gas compressor 50, thereby making the internal pressure of the liquefied gas storage tank 10 due to the boil-off gas. It is possible to minimize the rise or external emission of the boil-off gas.
  • the gas treatment system 1 includes a boosting pump 30 and a boosting pump 30 for pressurizing the liquefied gas stored in the liquefied gas storage tank 10 in addition to the first embodiment.
  • a forced vaporizer 41 for receiving the pressurized liquefied gas from the gas and forcibly vaporizing the liquefied gas storage tank 10 and a downstream of the boil-off gas compressor 50 on the first line L1 and boosting pump 30,
  • a second line L2 including the forced vaporizer 41 and the gas-liquid separator 42 may be further included.
  • the second line L2 including the boosting pump 30, the forced vaporizer 41, and the gas-liquid separator 42 is connected downstream of the boil-off gas compressor 50 by adding the first embodiment. , The load of the boil-off gas compressor 50 is reduced.
  • the gas treatment system 1 includes a boosting pump 30 and a boosting pump for pressurizing the liquefied gas stored in the liquefied gas storage tank 10 in addition to the first embodiment.
  • Boosting pump 30 is connected to the upstream of the forced vaporizer 41, the liquefied gas storage tank 10 and the liquefied gas storage tank 10 and the boil-off gas compressor 50 on the first line (L1) to receive the pressurized liquefied gas from 30
  • the apparatus may further include a sixteenth line L16 including the forced vaporizer 41 and the gas-liquid separator 42.
  • the boil-off gas compressor 50 has a maximum capacity to process all the boil-off gas required by the propulsion engine 21 when the vessel has the maximum ship speed, unlike the boil-off gas compressor 50 described above. It can be designed to have a processing capacity.
  • the sixteenth line L16 including the boosting pump 30, the forced vaporizer 41, and the gas-liquid separator 42 is connected upstream of the boil-off gas compressor 50.
  • the evaporative gas can be additionally supplied to the forced vaporizer 41 so that it can flexibly respond to the required pressure of the propulsion engine 21 efficiently. There is a controllable effect.
  • the gas treatment system 1 is configured to transfer the gaseous phase separated from the gas-liquid separator 522 via the boil-off gas heat exchanger 521 to the additional boil-off gas on the twelfth line L12. It can be supplied upstream of the compressor 52.
  • the gas treatment system 1 connects the gas-liquid separator 522 and the upstream of the additional boil-off gas compressor 52 on the twelfth line L12 and connects the boil-off gas heat exchanger 521.
  • the fifteenth line L15 may be provided.
  • the gaseous phase separated from the gas-liquid separator 522 is mixed with the compressed boil-off gas supplied upstream of the further boil-off gas compressor 52, thereby reducing the load of the boil-off gas compressor 50 and minimizing its size. Can be.
  • the gas treatment system 1 includes a boosting pump 30 and a boosting pump 30 that pressurize the liquefied gas stored in the liquefied gas storage tank 10 in addition to the fourth embodiment.
  • a forced vaporizer 41 for receiving the pressurized liquefied gas from the gas and forcibly vaporizing the liquefied gas storage tank 10 and a downstream of the boil-off gas compressor 50 on the first line L1 and boosting pump 30,
  • a second line L2 including the forced vaporizer 41 and the gas-liquid separator 42 may be further included.
  • the second line L2 including the boosting pump 30, the forced vaporizer 41, and the gas-liquid separator 42 is connected downstream of the boil-off gas compressor 50. , The load of the boil-off gas compressor 50 is reduced.
  • the gas treatment system 1 includes a boosting pump 30 and a boosting pump for pressurizing the liquefied gas stored in the liquefied gas storage tank 10 in addition to the fourth embodiment.
  • Boosting pump 30 is connected to the upstream of the forced vaporizer 41, the liquefied gas storage tank 10 and the liquefied gas storage tank 10 and the boil-off gas compressor 50 on the first line (L1) to receive the pressurized liquefied gas from 30
  • the apparatus may further include a sixteenth line L16 including the forced vaporizer 41 and the gas-liquid separator 42.
  • the boil-off gas compressor 50 has a maximum capacity to process all the boil-off gas required by the propulsion engine 21 when the vessel has a maximum ship speed. It can be designed to have a processing capacity.
  • the sixteenth line L16 including the boosting pump 30, the forced vaporizer 41, and the gas-liquid separator 42 is connected upstream of the boil-off gas compressor 50.
  • the evaporative gas can be additionally supplied to the forced vaporizer 41 so that it can flexibly respond to the required pressure of the propulsion engine 21 efficiently. There is a controllable effect.
  • Gas processing system 1 by providing a boil-off gas compressor for compressing the boil-off gas to be supplied to the propulsion engine 21 as a plurality of boil-off gas compressor driven by a separate drive source to back up the boil-off gas compressor It may include techniques to simplify the configuration for.
  • the gas treatment system 1 includes a first boil-off gas compressor 54 and a second boil-off gas for compressing boil-off gas generated in the liquefied gas storage tank 10.
  • Compressor 55, the buffer tank 90, the liquefied gas storage tank 10 and the propulsion engine 21 is provided between the first boil-off gas compressor 54 and the second boil-off gas compressor 55, the first And a first line L1 having a second boil-off gas compressor 54 and 55 and a buffer tank 90, a first boil-off gas compressor 54 and a second boil-off gas compressor 55 on the first line L1.
  • Branches may be connected between the power generation engine 22 and the eighteenth line L18 including the buffer tank 90 as a main configuration.
  • Gas processing system 1 connecting the liquefied gas storage tank 10 and the propulsion engine 21 through the first line (L1), the first on the first line (L1) And second boil-off gas compressors 54 and 55 to supply the boil-off gas compressed by the first and second boil-off gas compressors 54 and 55 to the propulsion engine 21.
  • the first and second boil-off gas compressors 54 and 55 are respectively driven through different driving sources so as to back up each other. That is, the driving source of the 1st boil-off gas compressor 54 and the 2nd boil-off gas compressor 55 is mutually different.
  • the first boil-off gas compressor 54 may be compressed to about 5 to 10 bar by a centrifugal compressor, and may be disposed upstream of the buffer tank 90 provided on the first line L1.
  • the first boil-off gas compressor 54 may be a cryogenic compressor.
  • the buffer tank 90 may be a separate storage medium, but a separate space may be provided on the first line L1 because an arbitrary portion of the first line L1 is enlarged in diameter.
  • the first boil-off gas compressor 54 may include a first boil-off gas compressor 541 and a first boil-off gas compressor 542 formed in parallel.
  • the first a boil-off gas compressor 541 and the first b-boil gas compressor 542 may also be driven by different driving sources and back up each other.
  • the 1a boil-off gas compressor 541 may be the main compressor and the 1-b boil-off gas compressor 542 may be an auxiliary compressor.
  • the gas compressor 542 may operate to back up the first a boil-off gas compressor 541, and when the first a boil-off gas compressor 541 cannot compress all of the specified amount of boil-off gas, the first a boil-off gas compressor ( The first b boil-off gas compressor 542 may assist the first a boil-off gas compressor 541 while the 541 and the first b boil-off gas compressor 542 are driven together.
  • the second boil-off gas compressor 55 may further compress the boil-off gas compressed by the first boil-off gas compressor 54 at about 15 to 20 bar as a reciprocating compressor, and a buffer provided on the first line L1. May be disposed downstream of the tank 90.
  • the second boil-off compressor 55 does not separately form an auxiliary compressor.
  • the second boil-off gas compressor 55 may be a compressor for room temperature.
  • the controller 74 detects the driving states of the first a, first b, and the second boil-off gas compressors 541, 542, 55 to control the driving of the first a, first b, and the second boil-off gas compressors 541, 542, 55. It is possible to control the flow of the liquefied gas and / or the boil-off gas flowing on the 18 line (L18). In this case, the flow control of the liquefied gas and / or the boil-off gas flowing on the eighteenth line L18 may be controlled by a valve (not shown) provided separately.
  • control unit 74 may operate the first b boil-off gas compressor 542 when the first boil-off gas compressor 541 needs to be assisted or backed up, and the second boil-off compressor 55 may be auxiliary or backed up.
  • the first a boil-off gas compressor 541 may be operated to supply the boil-off gas to the power generation engine 22 through the eighteenth line L18.
  • the control unit 74 temporarily stores the boil-off gas compressed by the first boil-off gas compressor 54 in the buffer tank 90 when the auxiliary boil-off gas compressor 55 needs to be supplemented or backed up to the 18th line L18. By supplying the boil-off gas may be supplied to the power generation engine 22.
  • the first and second additional boil-off gas compressors 56 and 57 which further compress the boil-off gas compressed by the first and / or second boil-off gas compressors 54 and 55, liquefy At least one of the boil-off gas generated in the gas storage tank 10, the boil-off gas further compressed by the first and second additional boil-off gas compressors 56 and 57 or the gas-phase boil-off separated from the gas-liquid separator 522.
  • the evaporative gas heat exchanger 521 for exchanging heat exchanger with each other, the gas-liquid separator 522 for separating the evaporated gas heat exchanged in the evaporative gas heat exchanger 521 into the gas phase and the liquid phase, and the evaporated gas heat exchanged in the evaporative gas heat exchanger 522.
  • Expansion valve 523 for depressurizing or expanding, branching downstream of the second boil-off gas compressor 55 on the first line L1 and connected to the gas-liquid separator 522, and the first and second additional boil-off gas compressors 56,57.
  • the second additional boil-off gas compressor 57 may further include a twentieth line L20.
  • the boil-off gas heat exchanger 521 may heat-exchange only the boil-off gas generated in the liquefied gas storage tank 10 and the boil-off gas further compressed by the first and second additional boil-off gas compressors 56 and 57. And of course it is not limited thereto.
  • the controller 74 determines the driving states of the first and second boil-off gas compressors 54 and 55 to control the driving of the first and second additional boil-off gas compressors 56 and 57, and the 20th line
  • the flow control of the liquefied gas and / or the boil-off gas flowing on the twentieth line L20 may be controlled by a valve (not shown) provided separately.
  • control unit 74 bypasses through the twentieth line L20 without operating the second additional boil-off gas compressor 57 during the normal operation of the first or second boil-off gas compressors 54 and 55.
  • the first additional boil-off gas compressor 56 may be controlled to be directly supplied, and the second additional boil-off gas compressor 57 may be operated when auxiliary or backup of the first or second boil-off gas compressors 54 and 55 is required.
  • the second additional boil-off gas compressor 57 is designed to have the same capacity as that of the first or the second boil-off gas compressor 54, 55 so as to compress the first or second boil-off gas compressor 54, 55.
  • the first or second boil-off gas compressor by supplying the boil-off gas to the first additional boil-off gas compressor 56 by compressing the boil-off gas as much as the first or the second boil-off gas compressor 54, 55 compresses during the malfunction or stoppage. Even if a malfunction or stoppage of the 54 or 55 occurs, the reliquefaction of the boil-off gas in the boil-off gas heat exchanger 521 may be continuously implemented.
  • the control unit 74 when the second additional boil-off gas compressor 57 is designed to have the same capacity as the second boil-off gas compressor 55 can compress, the normal operation of the second boil-off gas compressor 55
  • the boil-off gas compressed by the second boil-off gas compressor 55 is supplied to the first additional boil-off gas compressor 56 by bypassing the second additional boil-off gas compressor 57 through the twentieth line L20.
  • the boil-off gas may be compressed and supplied to the first additional boil-off gas compressor 56 as much as the second boil-off gas compressor 55 compresses.
  • the first pressure sensor 82 and the first line L1 for measuring the pressure of the boil-off gas flowing downstream of the first additional boil-off gas compressor 56 on the nineteenth line L19. It may further include a second pressure sensor 83 for measuring the pressure of the boil-off gas flowing upstream of the propulsion engine 21 of the bed. At this time, the pressure of the boil-off gas flowing upstream of the propulsion engine 21 on the first line L1 is equal to the pressure upstream of the second further boil-off gas compressor 57 on the 19th line L19.
  • the control unit 74 from the pressure information of the boil-off gas flowing downstream of the first additional boil-off gas compressor 56 on the 19th line L19 from the first pressure sensor 82 or from the second pressure sensor 83.
  • Pressure information of the boil-off gas flowing downstream of the first additional boil-off gas compressor 56 on the 19th line (L19) by receiving the pressure information of the boil-off gas flowing upstream of the propulsion engine 21 on the first line (L1) or Control the driving of the second boil-off gas compressor 55 and the first and second additional boil-off gas compressors 56 and 57 according to the pressure state of the boil-off gas flowing upstream of the propulsion engine 21 on the first line L1.
  • the controller 74 receives the pressure information of the boil-off gas flowing downstream of the first additional boil-off gas compressor 56 on the nineteenth line L19 from the first pressure sensor 82 in a wired or wireless form.
  • the first or second additional boil-off gas compressors 56, 57 when the pressure of the boil-off gas flowing downstream of the first additional boil-off gas compressor 56 on the nineteenth line L19 is higher than the preset pressure.
  • any one of the boil-off gas compressor is controlled to uncompress the boil-off gas and the pressure of the boil-off gas flowing downstream of the first further boil-off gas compressor 56 on the nineteenth line L19 is lower than the preset pressure
  • Both the first and second further boil-off compressors 56, 57 control to boil off the boil-off gas.
  • the controller 74 receives the pressure information of the boil-off gas flowing upstream of the propulsion engine 21 on the first line L1 from the second pressure sensor 83 in a wired or wireless manner, and receives the first line.
  • the boil-off gas compressor of any one of the first or second boil-off gas compressors 54 and 55 may be used. If the pressure of the boil-off gas flowing upstream of the propulsion engine 21 on the first line L1 decreases below the preset pressure, the first or second boil-off gas compressors 54 and 55 Control to compress the boil-off gas.
  • the controller 74 may control the driving of the first and second additional boil-off gas compressors 56 and 57 according to whether the boil-off gas heat exchanger 521 is operated.
  • the controller 74 controls both the first or second boil-off gas compressors 54 and 55 to compress the boil-off gas, and the boil-off gas heat exchanger 521 ) Is stopped, the boil-off gas compressor of either the first or second boil-off gas compressors 54 and 55 may be controlled to uncompress the boil-off gas.
  • the non-compression control refers to a control in which the boil-off gas compressor is driven by a piston (not shown), but the intake valve (not shown) and the exhaust valve (not shown) are opened to substantially prevent compression.
  • a control valve (not shown) is provided on each of the first and second bypass lines BL1 and BL2 to control the flow rate of the first and second bypass lines BL1 and BL2.
  • the method may further include a third bypass line BL3 connected in parallel to the second bypass line BL2.
  • a block valve (not shown) may be provided on the third bypass line BL3.
  • the control unit 74 from the pressure information of the boil-off gas flowing downstream of the first additional boil-off gas compressor 56 on the 19th line L19 from the first pressure sensor 82 or from the second pressure sensor 83.
  • Pressure information of the boil-off gas flowing downstream of the first additional boil-off gas compressor 56 on the 19th line (L19) by receiving the pressure information of the boil-off gas flowing upstream of the propulsion engine 21 on the first line (L1) or
  • the propulsion engine is controlled by controlling the flow of the boil-off gas flowing on the first and second bypass lines BL1 and BL2 according to the pressure state of the boil-off gas flowing upstream of the propulsion engine 21 on the first line L1. Resilient response to the state of (21) is possible, and the liquefaction of the boil-off gas through the boil-off gas heat exchanger 521 can be reliably implemented.
  • the controller 74 receives the pressure information of the boil-off gas flowing downstream of the first additional boil-off gas compressor 56 on the nineteenth line L19 from the first pressure sensor 82 in a wired or wireless form. And when the pressure of the boil-off gas flowing downstream of the first further boil-off gas compressor 56 on the nineteenth line L19 is higher than the preset pressure, the additional boil-off gas is compressed by the first boil-off gas compressor 56. The gas is controlled to be bypassed from the rear end of the first additional boil-off gas compressor 56 to the front end via the second bypass line BL2, and downstream of the first further boil-off gas compressor 56 on the 19th line L19. When the pressure of the flowing boil-off gas is lower than the preset pressure, the first boil-off gas compressor 56 may control the boil-off gas further compressed to the boil-off gas heat exchanger 521.
  • the controller 74 receives the pressure information of the boil-off gas flowing upstream of the propulsion engine 21 on the first line L1 from the second pressure sensor 83 in a wired or wireless manner, and receives the first line.
  • the boil-off gas compressed by the second boil-off gas compressor 55 causes the first bypass line BL1 to pass through.
  • the boil-off gas compressed by the second boil-off gas compressor 55 may be controlled to be supplied to the propulsion engine 21 or the first additional boil-off gas compressor 56.
  • the controller 74 may control the flow of the boil-off gas flowing on the first and second bypass lines BL1 and BL2 depending on whether the boil-off gas heat exchanger 521 is operated. Can be.
  • control unit 74 when the boil-off gas heat exchanger 521 is operated, controls the boil-off gas further compressed by the first boil-off gas compressor 56 to be supplied to the boil-off gas heat exchanger 521
  • the boil-off gas heat exchanger 521 is stopped, the boil-off gas further compressed by the first boil-off gas compressor 56 passes through the second bypass line BL2 to the first boil-off gas compressor 56. It can be controlled to bypass from the rear end to the front end.
  • the gas treatment system 1 minimizes the operation of the boil-off gas heat exchanger 521 through the control of the controller 74 and the propulsion engine 21 and the boil-off gas heat exchanger 521.
  • Can control the driving of the individually can have the effect of treating the highly efficient boil-off gas.
  • At least part of the compression stage of the boil-off gas compressor 50 is controlled to uncompress the boil-off gas depending on whether the power generation engine 22 is operated. It may include a technology for supplying the boil-off gas to the power generation engine 22 without the decompression means.
  • the gas treatment system 1 includes an evaporation gas compressor 50 and a power generation engine 22 that compress the boil-off gas generated in the liquefied gas storage tank 10.
  • a first control unit 75 for controlling a plurality of compression stages of the boil-off gas compressor 50, a liquefied gas storage tank 10, and a propulsion engine 21 according to whether the boil-off gas compressor 50 is provided and the boil-off gas compressor 50 is provided.
  • a main configuration may include a line L1 and a seventh line L7 branched downstream of the boil-off gas compressor 50 on the first line L1 and connected to the power generation engine 22.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the first line L1, and is on the first line L1.
  • Evaporation gas compressor 50 is provided in the can be supplied to the propulsion engine 21, the boil-off gas compressed by the boil-off gas compressor (50).
  • the gas treatment system 1 may supply the boil-off gas compressed by the boil-off gas compressor 50 to the power generation engine 22 through a seventh line L7 without a separate decompression means. have.
  • control unit 75 for controlling the fuel inlet pressure of the power generation engine 22 by controlling the plurality of compression stages of the boil-off gas compressor 50 by determining the operation of the power generation engine 22. ) May be further included.
  • the controller 75 may control at least some of the compression stages of the boil-off gas compressor 50 to uncompress the boil-off gas according to whether the power generation engine 22 is operated.
  • the control unit 75 operates only the power generation engine 22 but does not operate the propulsion engine 21, the plurality of compression stages of the boil-off gas compressor 50 in accordance with the fuel demand pressure of the power generation engine 22. Only some of the compression stages are controlled to decompress the boil-off gas so that the boil-off gas is supplied to the power generation engine 22 through the seventh line L7 without a separate decompression means, and the power generation engine 22 does not operate and is propelled.
  • the plurality of compression stages of the boil-off gas compressor 50 are controlled to compress the boil-off gas in accordance with the fuel demand pressure of the propulsion engine 21 so that the boil-off gas is supplied to the propulsion engine 21. Can be controlled.
  • the liquefied gas storage tank 10 when loading or unloading the twenty-first line (L21), which is an overpressure prevention line for preventing overpressure of the rear end of the boil-off gas compressor (50) It may include a technology that can be configured to stably build the overpressure prevention line by sharing at least a part on the fourth line (L4) for processing the boil-off gas generated in the).
  • the boil-off gas compressor 50 for compressing the boil-off gas generated in the liquefied gas storage tank 10, liquefied gas during loading or unloading H / D compressor 51 for compressing the boil-off gas generated in the storage tank 10, the second heater 511 for heating the boil-off gas compressed in the H / D compressor 51, liquefied gas storage tank 10 And the propulsion engine 21, and the first line L1 including the boil-off gas compressor 50 and the boil-off gas generated in the liquefied gas storage tank 10 are re-introduced into the liquefied gas storage tank 10.
  • the twenty-first line L21 connected to the rear end may be included as a main configuration.
  • the gas treatment system 1 connects the liquefied gas storage tank 10 and the propulsion engine 21 through the first line L1 and on the first line L1.
  • Evaporative gas compressor 50 is provided.
  • the boil-off gas generated in the liquefied gas storage tank 10 through the fourth line (L4) is connected back to the liquefied gas storage tank 10, and connected to the fourth line (L4) ) May be provided with an H / D compressor 51.
  • the twenty-first line (L21) is branched downstream of the boil-off gas compressor (50) on the first line (L1) and connected to the rear end of the second heater (511) on the fourth line (L4). It may further include. That is, the twenty-first line L21 may be formed to share at least a portion of the fourth line L4 for treating the boil-off gas generated in the liquefied gas storage tank 10 during loading or unloading.
  • an overpressure prevention line for preventing overpressure is separately provided and connected to the liquefied gas storage tank.
  • the boil-off gas compressed by the boil-off gas compressor is much larger than the internal pressure of the liquefied gas storage tank, so when the liquefied gas storage tank returns to the liquefied gas storage tank, the liquefied gas storage tank may be broken due to overpressure. It was designed to reduce the pressure on the prevention line. For this reason, there has been a problem that the construction cost of the overpressure prevention line is very high.
  • the overpressure prevention line to share at least a part on the fourth line (L4) that is not used during loading or unloading, such as the 21st line (L21), to reduce the system construction cost Improving system safety.
  • the boil-off gas compressed by the boil-off gas compressor 50 is It can be controlled to be supplied to the liquefied gas storage tank 10 through the twenty-first line (L21), this control is a separate control unit (not shown) and a valve (not shown) driven by the control unit and linked thereto It may be made by other devices (not shown).
  • the boil-off gas compressed at high pressure by the boil-off gas compressor 50 is directly supplied to the boil-off gas heat exchanger 521 and the propulsion engine 21 and the power generation engine ( 22)
  • the boil-off gas to be supplied may include a technique provided by branching at an intermediate stage of the boil-off gas compressor 50.
  • Gas treatment system 1 according to an embodiment of the present invention with reference to Figure 5, the evaporation gas compressor 50, the liquefied gas storage tank 10 for compressing the boil-off gas generated in the liquefied gas storage tank 10 Evaporation gas heat exchanger 521, the evaporation gas heat exchanger for exchanging at least one of the evaporation gas generated in the evaporation gas, the evaporation gas compressed by the evaporation gas compressor 50 or the gaseous evaporation gas separated by the gas-liquid separator 522 Gas-liquid separator 522 for separating the evaporated gas heat exchanged in the gas phase 521 into a gas phase and a liquid phase, an expansion valve 523 for decompressing or expanding the evaporated gas heat exchanged in the evaporated gas heat exchanger 522, and a liquefied gas storage tank ( A twenty-second line (L22) connected to the liquefied gas storage tank 10 again and having an evaporative gas compressor 50, an evaporative gas heat exchanger 521, a gas-
  • Line L25 may be included as a main configuration.
  • the boil-off gas heat exchanger 521 may heat-exchange only the boil-off gas generated in the liquefied gas storage tank 10 and the boil-off gas compressed by the boil-off gas compressor 50, but is not limited thereto.
  • the boil-off gas compressor 50 may form first to fifth compression stages from the upstream to the downstream side based on the flow of the boil-off gas, and the final discharge pressure may be 100 to 150 bar or 200 to 400 bar instead of 15 to 20 bar. Can be designed as.
  • the boil-off gas is 1 to 3 bar in the first compression stage of the evaporation gas compressor 50, 5 to 10 bar in the second compression stage, 15 to 20 bar in the third compression stage, and 50 to 100 bar in the fourth compression stage, and 100 in the fifth compression stage. To 150 bar.
  • the gas treatment system 1 is connected to the liquefied gas storage tank 10 again from the liquefied gas storage tank 10 through the 22nd line L22 and the 22nd line L22.
  • the evaporation gas compressor 50, the evaporation gas heat exchanger 521, the gas-liquid separator 522, and the expansion valve 523 are provided on the evaporator gas compressor. That is, the boil-off gas generated in the liquefied gas storage tank 10 is supplied to the boil-off gas compressor 50 through the twenty-second line L22, and the boil-off gas compressor 50 is generated in the liquefied gas storage tank 10.
  • the boil-off gas heat exchanger 521 By pressurizing the boil-off gas in multiple stages and pressurizing it to a high pressure and supplying it to the boil-off gas heat exchanger 521, the boil-off gas heat exchanger 521 is made to re-liquefy the boil-off gas. At this time, the reliquefied boil-off gas is separated into the gas phase and the liquid phase in the gas-liquid separator 522, the liquid phase is returned to the liquefied gas storage tank 10 and the gas phase is joined upstream of the boil-off gas compressor 50 on the 22nd line (L22). Can be.
  • the boil-off gas branched from the intermediate stage of the boil-off gas compressor 50 through the twenty-third line L23 is supplied to the propulsion engine 21, and through the twenty-fourth line L24.
  • the boil-off gas branched from the middle end of the boil-off gas compressor 50 may be supplied to the power generation engine 22.
  • the twenty-third line L23 is branched between the third compression stage and the fourth compression stage of the boil-off gas compressor 50, and connected to the propulsion engine 21, thereby discharging from the third compression stage of the boil-off gas compressor 50.
  • 15 to 20 bar of the boil-off gas can be supplied to the propulsion engine 21
  • the 24th line L24 is branched between the second and third compression stages of the boil-off gas compressor 50 and the power generation engine 22 and By being connected, 5 to 10 bar of boil-off gas discharged from the second compression stage of the boil-off gas compressor 50 may be supplied to the power generation engine 22.
  • the boil-off gas discharged from the final stage of the boil-off gas compressor 50 through the twenty-fifth line L25 may be returned to the middle stage of the boil-off gas compressor 50.
  • the twenty-fifth line L25 is branched from the final stage of the boil-off gas compressor 50 and connected between the third and fourth compression stages of the boil-off gas compressor 50, whereby the final stage of the boil-off gas compressor 50 is provided.
  • 100 to 250 bar or 200 to 400 bar discharged from the boil-off gas may be supplied between the third and fourth compression stages of the boil-off gas compressor 50.
  • the twenty-fifth line L25 is branched from the final stage of the boil-off gas compressor 50 so as to be connected upstream than the twenty-fourth line L24 between the third and fourth compression stages of the boil-off gas compressor 50.
  • the boil-off gas discharged from the final stage of the boil-off gas compressor 50 may be supplied to the twenty-fourth line L24.
  • the gas treatment system 1 supplies the boil-off gas at an appropriate pressure to the propulsion engine 21 or the power generation engine 22 and at the same time does not have an additional boil-off compressor.
  • the liquefaction of the boil-off gas can be made, thereby reducing the system construction cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

본 발명의 실시예에 따른 가스 처리 시스템은, 히터가 증발가스 압축기에서 압축된 증발가스와 합류되기 전의 강제기화기에서 강제 기화된 액화가스를 승온시키도록 구성되는 것을 특징으로 한다.

Description

가스 처리 시스템 및 이를 포함하는 선박
본 발명은 가스 처리 시스템 및 이를 포함하는 선박에 관한 것이다.
최근 기술 개발에 따라 가솔린이나 디젤을 대체하여 액화천연가스(Liquefied Natural Gas), 액화석유가스(Liquefied Petroleum Gas) 등과 같은 액화가스를 널리 사용하고 있다.
액화천연가스는 가스전에서 채취한 천연가스를 정제하여 얻은 메탄을 냉각해 액화시킨 것이며, 무색ㆍ투명한 액체로 공해물질이 거의 없고 열량이 높아 대단히 우수한 연료이다. 반면 액화석유가스는 유전에서 석유와 함께 나오는 프로판(C3H8)과 부탄(C4H10)을 주성분으로 한 가스를 상온에서 압축하여 액체로 만든 연료이다. 액화석유가스는 액화천연가스와 마찬가지로 무색무취이고 가정용, 업무용, 공업용, 자동차용 등의 연료로 널리 사용되고 있다.
이와 같은 액화가스는 지상에 설치되어 있는 액화가스 저장탱크에 저장되거나 또는 대양을 항해하는 운송수단인 선박에 구비되는 액화가스 저장탱크에 저장되는데, 액화천연가스는 액화에 의해 1/600의 부피로 줄어들고, 액화석유가스는 액화에 의해 프로판은 1/260, 부탄은 1/230의 부피로 줄어들어 저장 효율이 높다는 장점이 있다. 이러한 액화가스를 연료로 사용하는 엔진이 구동되기 위해서 필요한 온도 및 압력 등은, 탱크에 저장되어 있는 액화가스의 상태와는 다를 수 있다.
또한 LNG를 액상으로 보관할 때 탱크로 열침투가 발생함에 따라 일부 LNG가 기화되어 증발가스(BOG: Boil off Gas)가 생성되는데, 이러한 증발가스는 액화가스 처리 시스템상에 문제를 일으킬 수 있어 기존에는 증발가스를 외부로 배출시켜 태우는 방법(기존에는 탱크 압력을 낮춰 탱크의 파손 위험을 제거하기 위해서 증발가스를 단순히 외부로 배출 처리하였다.)으로 소비를 시킴으로서 문제를 해결하고자 하였으나 이는 환경오염과 자원낭비의 문제를 일으키고 있다.
이에 최근에는 증발가스를 효율적으로 처리하는 기술로서, 생성된 증발가스를 재액화시켜 엔진에 공급하는 등의 활용방안이 이루어지고 있으나 이러한 활용에도 충분한 증발가스의 소모가 이루어지지 아니하여 효율적인 자원의 활용이 이루어지지 못하였다.
선주들은 상기와 같이 LNG를 연료로 하는 MEGI엔진을 사용하여 선박을 추진함으로써, 근래에 실행되고 있는 Nox 배출 규제 및 환경 오염 방지를 탁월하고 효과적으로 대응하여왔다. 다만, MEGI엔진은 엔진 구동 요구 압력이 300bar로 매우 높아 전력소모가 막대하고, 설치 비용이 상당히 많이 요구되며, 시스템의 구성이 복잡하여 설치 면적이 많이 필요하는 문제점이 있었다.
따라서, MEGI엔진을 대체할 수 있는 엔진을 연구하여 저속 2행정 저압분사엔진(2sDF 또는 XDF)이 개발되었으며, 저속 2행정 저압분사엔진을 사용한 연료 공급 시스템의 개발의 필요성이 대두되고 있는 실정이다.
본 발명은 종래의 기술을 개선하고자 창출된 것으로서, 본 발명의 목적은, 액화가스 저장탱크에서 수요처로 액화가스 및/또는 증발가스를 효과적으로 공급하는 가스 처리 시스템 및 이를 포함하는 선박을 제공하기 위한 것이다.
본 발명에 따른 가스 처리 시스템은, 액화가스 저장탱크와 수요처를 연결하는 제1 공급라인; 상기 제1 공급라인 상에 구비되며, 상기 액화가스 저장탱크에서 만선 상태에 발생되는 자연발생 증발가스를 모두 처리할 수 있는 용량을 최대처리용량으로 가지는 증발가스 압축기; 상기 액화가스 저장탱크와 상기 제1 공급라인 상의 상기 증발가스 압축기 하류에 연결되는 제2 공급라인; 상기 제2 공급라인 상에 구비되며, 상기 액화가스 저장탱크에 저장된 액화가스를 강제 기화시켜 강제발생 증발가스를 발생시키는 강제 기화기; 및 상기 제2 공급라인 상에 구비되며, 상기 증발가스 압축기에서 압축된 증발가스와 합류되기 전의 상기 강제기화기에서 강제 기화된 액화가스를 승온시키는 히터를 포함하는 것을 특징으로 한다.
구체적으로, 상기 히터는, 상기 증발가스 압축기에서 압축된 증발가스의 온도가 기설정온도 이상이면, 상기 강제기화기에서 강제 기화된 액화가스를 승온하지 않고, 상기 증발가스 압축기에서 압축된 증발가스의 온도가 상기 기설정온도 미만이면, 상기 강제기화기에서 강제 기화된 액화가스를 승온시킬 수 있다.
구체적으로, 상기 히터는, 공선 상태에서 사용될 수 있다.
구체적으로, 상기 수요처는, 저속 2행정 저압가스 분사엔진일 수 있다.
구체적으로, 상기 증발가스 압축기의 토출압력에 대응하여 가동되는 액화가스 펌프를 더 포함할 수 있다.
또한, 본 발명에 따른 선박은 상기 가스 처리 시스템을 포함할 수 있다.
본 발명에 따른 가스 처리 시스템 및 이를 포함하는 선박은, 액화가스 저장탱크에서 수요처로 액화가스 및/또는 증발가스를 효과적으로 공급하여 시스템 안정성 및 신뢰도를 높일 수 있다.
도 1은 본 발명의 제1 실시예에 따른 액화가스 처리 시스템의 개념도이다.
도 2는 본 발명의 제2 실시예에 따른 액화가스 처리 시스템의 개념도이다.
도 3은 본 발명의 제3 실시예에 따른 액화가스 처리 시스템의 개념도이다.
도 4는 본 발명의 제4 실시예에 따른 액화가스 처리 시스템의 개념도이다.
도 5는 본 발명의 제5 실시예에 따른 액화가스 처리 시스템의 개념도이다.
도 6은 본 발명의 제6 실시예에 따른 액화가스 처리 시스템의 개념도이다.
도 7은 본 발명의 제7 실시예에 따른 액화가스 처리 시스템의 개념도이다.
도 8은 본 발명의 제8 실시예에 따른 액화가스 처리 시스템의 개념도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
이하에서 액화가스는 LPG, LNG, 에탄 등일 수 있으며, 예시적으로 LNG(Liquefied Natural Gas)를 의미할 수 있으며, 증발가스는 자연 기화된 LNG 등인 BOG(Boil Off Gas)를 의미할 수 있다.
액화가스는 액체 상태, 기체 상태, 액체와 기체 혼합 상태, 과냉 상태, 초임계 상태 등과 같이 상태 변화와 무관하게 지칭될 수 있으며, 증발가스 역시 마찬가지임을 알려 둔다. 또한 본 발명은 처리 대상이 액화가스로 한정되지 않고, 액화가스 처리 시스템 및/또는 증발가스 처리 시스템일 수 있고, 하기 설시할 각 도면의 시스템은 서로 적용될 수 있음은 자명하다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 제1 실시예에 따른 액화가스 처리 시스템의 개념도, 도 2는 본 발명의 제2 실시예에 따른 액화가스 처리 시스템의 개념도, 도 3은 본 발명의 제3 실시예에 따른 액화가스 처리 시스템의 개념도, 도 4는 본 발명의 제4 실시예에 따른 액화가스 처리 시스템의 개념도, 도 5는 본 발명의 제5 실시예에 따른 액화가스 처리 시스템의 개념도이고, 도 6은 본 발명의 제6 실시예에 따른 액화가스 처리 시스템의 개념도이다.
도 1 내지 도 8을 참고하면, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10), 기액분리기(11), 추진엔진(21), 발전엔진(22), 가스연소장치(23), 부스팅 펌프(30), 강제기화기(41), 기액분리기(42), 제1 히터(43), 증발가스 압축기(50), H/D 압축기(51) 및 LNG 기화기(60)를 포함하여 구성될 수 있다.
이하에서는 상기 본 발명의 일 실시예에 따른 가스 처리 시스템(1)의 각 구성에 대해서 설명하고, 구성상의 설명이 완료된 후 시스템의 구성간 관계를 통한 각 실시예에 대해서 설명하도록 한다. 또한, 도 1 내지 도 8에 도시된 구성 중 하기 설명에 기술되지 않은 구성은 각 실시예에 대한 설명에서 기술될 것이다.
액화가스 저장탱크(10)는, 제1 라인(L1)을 통해 추진엔진(21)과 연결되며, 추진엔진(21), 발전엔진(22), 가스연소장치(23)에 공급될 액화가스 또는 증발가스를 저장한다.
액화가스 저장탱크(10)는, 액화가스를 액체상태로 보관하여야 하는데, 이때, 액화가스 저장탱크(10)는, 압력탱크의 형태를 가질 수 있다. 여기서 액화가스 저장탱크(10)는, 다양한 형태로 그 종류를 한정하지는 않는다.
기액분리기(11)는, 제1 라인(L1) 상에 구비되며, 액화가스 저장탱크(10)로부터 공급받는 증발가스의 상을 분리할 수 있다.
구체적으로, 기액분리기(11)는, 제1 라인(L1) 상에 증발가스 압축기(50)와 액화가스 저장탱크(10) 사이에 구비되어 액화가스 저장탱크(10)로부터 공급받는 증발가스의 상을 액상과 기상으로 분리할 수 있다. 기액분리기(11)에서 분리된 기상은, 증발가스 압축기(50)로 공급하며, 액상은, 액화가스 저장탱크(10)로 복귀될 수 있다.
증발가스 압축기(50)가 액화가스 저장탱크(10)로부터 공급받는 증발가스는, 온도가 약 -150도이고 압력이 약 1bar 내지 2bar(바람직하게는 1.03bar)로 증발가스의 상(Phase)이 전량 기화된 상이 아닐 수 있다. 따라서, 기액분리기(11)는, 증발가스 압축기(50)로 기상의 증발가스만을 공급하여 증발가스 압축기(50)의 구동효율을 향상시키고, 기상이 아닌 액상의 증발가스를 액화가스 저장탱크(10)로 복귀시켜 증발가스의 낭비를 방지할 수 있다.
수요처(21,22,23)는 액화가스 저장탱크(10)로부터 공급되는 액화가스를 소비할 수 있으며, 이에 한정되지 않고 기존의 액화가스에서 별도의 처리를 통해 형성된 증발가스(일례로 플래시가스 또는 강제발생증발가스)나 액화가스 저장탱크(10)에서 자연적으로 발생된 증발가스(일례로 자연발생증발가스) 또한 소비할 수 있다.
수요처(21,22,23)는 추진엔진(21), 발전엔진(22), 가스연소장치(23)를 포함할 수 있다. 다만, 이는 본 발명의 실시예에 따른 가스 처리 시스템(1)을 쉽게 설명하기 위해 든 일례일 뿐 이에 한정되지 않는다.
추진엔진(21)은, 액화가스 저장탱크(10)에 저장된 액화가스 또는 증발가스를 연료로 하여 선박(도시하지 않음)에 추력을 공급한다.
추진엔진(21)은, 액화가스, 증발가스 또는 오일 등의 연소에 의해 실린더(도시하지 않음) 내부의 피스톤(도시하지 않음)이 왕복운동 함에 따라, 피스톤에 연결된 크랭크 축(도시하지 않음)이 회전되고, 크랭크 축에 연결되는 샤프트(도시하지 않음)가 회전될 수 있다. 따라서, 추진엔진(21)은, 구동 시 샤프트에 연결된 프로펠러(도시하지 않음)가 회전함에 따라, 해양 부유식 구조물이 전진 또는 후진할 수 있다.
본 발명의 실시예에서의 추진엔진(21)은, 저속 2행정 저압가스분사엔진일 수 있으며, 일레로 바르질라(wartsila)사에서 개발한 2s DF 엔진(XDF 엔진)일 수 있고, 오토 사이클(Otto cycle)에 따라 구동될 수 있다.
즉, 추진엔진(21)은, 실린더에 공급된 공기-연료 혼합기를 먼저 상사점까지 압축하고, 압축 상사점에서 외부로부터 점화연료(Pilot Fuel)에 의해 점화가 이루어지는 순간에 공기-연료 혼합기가 모두 완전 연소되도록 하여 폭발적인 동력을 발생시키도록 한다. 이때, 공기-연료 혼합 질량비는, 14.7:1보다 적은 희박 상태일 수 있어 린번(Lean burn) 엔진의 형태일 수 있다.
이때 점화 연료는 HFO(Heavy Fuel Oil) 또는 MDO(Marine Diesel Oil)를 사용하게 되며, 보통 점화연료와 고압 가스의 비율은 약 1:99 정도로 매우 소량만으로도 점화가 가능하다.
추진엔진(21)은, 8bar 내지 20bar(바람직하게는 10bar)의 액화가스를 공급받아 동력을 발생시킬 수 있으며, 공급되는 액화가스의 상태는 추진엔진 (21)이 요구하는 상태에 따라 달라질 수 있다.
보통 대형 선박에서는 MEGI 엔진을 통해 추력을 발생시키고 있으나, 본 발명의 실시예에서는 선박의 추력을 발생시키는 기관으로 저속 2행정 저압가스 분사엔진을 사용함으로써 많은 이점이 창출된다.
MEGI 엔진은, 구동시키기 위해 필요한 공급연료의 압력이 약 200bar 내지 300bar인 고압이 필요하여, 구동하기 위한 소모 전력이 약 210KW 내지 220KW(약 215KW) 정도로 상당히 많은 전력이 필요한 문제점이 있다.
이에 반해, 저속 2행정 저압가스 분사엔진은, 구동시키기 위해 필요한 공급연료의 압력이 8bar 내지 20bar(바람직하게는 10bar 내지 17bar)인 저압으로, 구동하기 위한 소모 전력이 약 13KW 내지 17KW(약 15KW) 정도로 MEGI 엔진에 비해 많은 전력을 저감할 수 있는 효과가 있다.
또한, MEGI 엔진은 구동압력이 상당히 높아 MEGI 엔진이 필요로 하는 압력을 생성하기 위해서 그에 수반하는 가스 공급 시스템(도시하지 않음)이 매우 복잡하고 많은 공간을 차지하는 문제점이 있다. 그에 반해 저속 2행정 저압가스 분사엔진은, 구동압력이 저압으로 낮아 연료공급시스템이 매우 간단하고 차지하는 공간이 적은 이점이 있다.
발전엔진(22)은, 발전 또는 기타 동력을 발생시키기 위한 엔진일 수 있다. 발전엔진(22)은, 이종연료엔진으로서 일례로 DFDE일 수 있으며, 액화가스와 연료유(Fuel Oil)가 혼합되어 공급되지 않고 액화가스 또는 연료유(오일)가 선택적으로 공급될 수 있다. 이는 연소 온도가 상이한 두 물질이 혼합 공급되는 것을 차단하여, 엔진의 효율이 떨어지는 것을 방지하기 위함이다.
가스연소장치(Gas Combustion Unit; 23)는, 잉여 증발가스를 소모하기 위해 증발가스를 연소시키는 장치를 말한다.
가스연소장치(23)는, 액화가스 저장탱크(10)에서 발생된 증발가스를 처리하거나, 추진엔진(21) 또는 발전엔진(22)으로 공급되는 증발가스가 과도하게 많을 경우, 이를 추가 처리할 수 있다.
부스팅 펌프(30)는, 제2 라인(L2) 상에 구비되며, 액화가스 저장탱크(10)의 내부 또는 외부에 설치되어 액화가스 저장탱크(10)에 저장된 액화가스를 강제기화기(41)로 공급할 수 있다. 이때, 부스팅 펌프(30)는, 내부에 배치되는 경우 잠형의 형태일 수 있다.
부스팅 펌프(30)는, 액화가스 저장탱크(10)에 저장된 액화가스를 빼내어 수 내지 수십 bar 이내로 가압할 수 있으며, 바람직하게는 추진엔진(21)이 요구하는 압력으로 액화가스를 가압할 수 있다.
구체적으로, 부스팅 펌프(30)는, 액화가스 저장탱크(10)에 저장된 액화가스를 대략 8 내지 25bar(바람직하게는 10bar 내지 17bar)로 가압할 수 있고, 이는 추진엔진(21)인 저속 2행정 저압가스분사엔진(일례로 X-DF 엔진)이 공급받을 연료의 적정압력에 해당될 수 있다. 여기서 부스팅 펌프(30)는, 대략 8 내지 25bar의 압력까지 한 번에 가압할 수 있다.
이에 더해 부스팅 펌프(30)는, 증발가스 압축기(50)의 토출압력에 대응하여 가동될 수 있다. 부스팅 펌프(30)는 액화가스 저장탱크(10)에 저장된 액화가스를 증발가스 압축기(50) 하류에 합류하도록 공급하므로, 증발가스 압축기(50)에서 토출되는 압력에 대응하여 액화가스를 가압할 수 있다.
액화가스 저장탱크(10)에서 저장된 액화가스는 액체상태로 놓여있으므로, 부스팅 펌프(30)는, 액화가스 저장탱크(10)로부터 배출되는 액화가스를 가압하여 압력 및 온도를 다소 높일 수 있으며, 부스팅 펌프(30)에 의해 가압된 액화가스는 여전히 액체상태일 수 있다.
강제기화기(41)는, 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제로 기화시킨다. 구체적으로, 강제기화기(41)는, 제2 라인(L2) 상에 구비되어 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제로 기화시킨 후 기액분리기(42)로 공급할 수 있다.
강제기화기(41)는, 액화가스를 기화시킬 수 있으며, 부스팅 펌프(30)에서 가압된 압력을 유지한 상태로 기액분리기(42)로 기화된 액화가스를 공급할 수 있다.
기액분리기(42)는, 제2 라인(L2) 상에 구비되며 강제기화기(41)로부터 공급받는 액화가스의 상(phase)을 분리할 수 있다.
구체적으로, 기액분리기(42)는, 제2 라인(L2) 상에 강제기화기(41)와 제1 히터(43) 사이에 구비되어 강제기화기(41)로부터 공급받는 액화가스의 상을 분리하고, 기상의 증발가스만을 추진엔진(21)으로 공급할 수 있다.
기액분리기(42)는, 제2 라인(L2)을 통해 제1 히터(43)로 기상의 증발가스만을 공급하고, 기상이 아닌 액상의 증발가스를 액화가스 저장탱크(10)로 복귀시킬 수 있다.
이로써, 본 발명의 실시예에서는, 증발가스의 낭비를 방지할 수 있어 효율적인 증발가스의 사용이 가능해질 수 있다.
제1 히터(43)는, 제2 라인(L2) 상에 추진엔진(21)과 기액분리기(42) 사이에 마련되며, 기액분리기(42)로부터 공급되는 강제기화된 액화가스를 가열할 수 있다.
제1 히터(43)는, 기액분리기(42)로부터 공급되는 강제기화된 액화가스를 추진엔진(21)이 요구하는 온도까지 가열할 수 있으며, 대략 40 내지 50도의 온도까지 가열할 수 있다. 여기서 제1 히터(43)는, Low Duty(L/D, 저용량) 히터일 수 있다.
증발가스 압축기(50)는, 제1 라인(L1) 상에 구비되며, 액화가스 저장탱크(10)에서 발생되는 증발가스를 압축하여 추진엔진(21)으로 공급한다. 이때, 증발가스 압축기(50)는 8bar 내지 20bar(바람직하게는 10bar 내지 17bar)로 증발가스를 압축할 수 있다.
증발가스 압축기(50)로 공급되는 증발가스는 대략 온도 -150도 압력 1.03bar의 상태에서 대략 온도 45도 압력 8bar 내지 20bar(바람직하게는 10bar 내지 17bar)의 상태로 변화하여 추진엔진(21)으로 공급될 수 있다.
증발가스 압축기(50)는, 5단 내지 7단으로 구성될 수 있으며, 바람직하게는 6단으로 구성될 수 있다. 구체적으로, 증발가스 압축기(50)는, 원심형으로 구성되어 제1 내지 제6 단으로 구성될 수 있으며, 각 단의 압축기 후단에는 증발가스 냉각기(도시하지 않음)가 추가적으로 구비될 수 있다.
증발가스 압축기(50)는, 구비되는 압축기의 단수가 5단 미만이 되면 유입되는 가스의 압력 범위가 좁아 추진엔진(21)의 구동에 비효율적이게 되고, 7단이 초과가 되면 불필요한 압축이 수행되어 오버사이징(Oversizing)이 되게 된다.
따라서, 본 발명의 실시예에서는 증발가스 압축기(50)를 구성하는 압축기의 단수를 5단 내지 7단으로 한정하여 추진엔진(21)의 구동에 필요한 최적의 압축단수를 실현하게 되는 효과가 있다.
이로써, 추진엔진(21)을 구동하기에 효율적인 압축이 가능하게 되며, 증발가스 압축기(50)의 전력 소모량을 최적화할 수 있는 효과가 있다.
또한, 증발가스 압축기(50)는, 액화가스 저장탱크(10)에서 만선 상태에 발생되는 자연발생 증발가스를 모두 처리할 수 있는 용량을 최대처리용량으로 가지도록 설계된다. 여기서 만선 상태란 선박에 구비되는 액화가스 저장탱크(10)에 액화가스를 가득 채워서 항해하는 만선 항해(Laden Voyage)시의 상태를 말한다.
이를 통해, 증발가스 압축기(50)는, 기존의 증발가스 압축기의 최대처리용량보다 적은 양의 최대처리용량을 가지도록 설계되어, 종래보다 작은 사이즈의 압축기를 사용할 수 있고, 이로 인해 시스템 구축비용이 절감되며 선박 내의 공간확보를 최대로 이룰 수 있는 효과가 있다.
상기 증발가스 압축기(50)의 최대처리용량 한정에 대한 상세한 설명은 각 실시예의 설명에서 상세하게 후술하도록 한다.
High Duty(H/D) 압축기(51)는, 액화가스 저장탱크(10)로 액화가스를 로딩하거나 액화가스 저장탱크(10)에 저장된 액화가스를 외부로 언로딩 하는 경우에, 액화가스 저장탱크(10)에서 발생되는 증발가스를 외부로 배출시키거나 소각하기 위해 상기 증발가스를 압축하는 용도로 사용될 수 있으며 그 압축기의 형식은 한정하지 않는다.
이하 H/D 압축기(51)가 액화가스 저장탱크(10)로 액화가스를 로딩하거나 액화가스 저장탱크(10)에 저장된 액화가스를 외부로 언로딩 하는 과정을 설명하도록 한다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 로딩 또는 언로딩시 액화가스 저장탱크(10)에서 발생되는 증발가스를 가압하는 H/D 압축기(51), H/D 압축기(51)에 의해 압축된 증발가스를 가열하는 제2 히터(511) 및 벙커링시 액화가스 저장탱크(10)에 공급할 액화가스가 저장된 육상 수요처(Shore; 부호 도시하지 않음)를 포함할 수 있다.
외부에서 액화가스 저장탱크(10)로 액화가스를 최초로 로딩(Loading)하는 경우, 즉 벙커링시에는, 액화가스가 발화성 물질이라는 점을 감안하여 일반적인 저장탱크와는 다른 특별한 작업, 즉 치환작업이 선행되어야 한다.
일반적으로 액화가스 저장탱크(10)의 치환방법은 건조 가스를 액화가스 저장탱크(10)의 내부에 공급하여 수분을 제거하고, 화재나 폭발의 가능성을 없애기 위해 불활성 가스를 액화가스 저장탱크(10)의 내부에 공급하여 산소를 제거하도록 한다. 이후, 후술할 LNG 기화기(60)를 이용하여 액화가스를 기화시켜 만든 탄화수소 가스를 액화가스 저장탱크(10)의 내부에 공급하여 불활성 가스를 제거하는 가싱업(gassing-up) 단계를 거치고, 액화가스를 이용하여 액화가스 저장탱크(10)를 냉각시키는 쿨다운(Cool-down)과정이 진행되게 된다. 가싱업과 쿨다운 과정이 완료되면 치환방법이 마무리되게 되고 이후 비로소 LNG 등의 액화가스를 액화가스 저장탱크(10)의 내부에 공급하여 선적 작업을 수행하게 된다.
이와 반대로 액화가스 저장탱크(10)에 저장된 액화가스를 육상 수요처(Shore)로 언로딩(Unloading)하는 경우에는, 상기 기재된 과정과는 약간 다른 작업이 진행된다.
먼저 액화가스 저장탱크(10)에 저장된 액화가스를 육상 수요처(Shore)로 모두 배출시킨다. 이때 잔존 액화가스가 존재하게 되는데, 잔존 액화가스를 모두 제거하기 위해서 워밍업(warming-up) 단계를 거치게 된다. 워밍업 단계는 액화가스 저장탱크(10)에 발생된 증발가스를 H/D 압축기(51)로 압축후 제2 히터(511)로 가열하여 액화가스 저장탱크(10)의 내부 온도를 증가시켜 잔존 액화가스가 모두 기화되게 한다. 워밍업 단계 이후 액화가스 저장탱크(10) 내에 잔존하는 증발가스를 모두 제거하기 위해 불활성 가스가 공급되며, 이후 산소를 공급하여 내부에 공기가 공급되도록 한다. 상기 과정을 거침으로써, 액화가스 저장탱크(10)의 언로딩 과정이 완료된다.
여기서 액화가스 로딩 과정 중(벙커링시)에서, 액화가스 저장탱크(10)를 쿨다운하더라도 액화가스를 선적시에는 많은 증발가스가 발생하게 되는데, 이때 액화가스 저장탱크(10)의 내압이 상승할 우려가 있어, 발생된 증발가스를 외부 수요처(Shore)로 배출시키기 위해 H/D 압축기(51)가 사용된다.
또한 액화가스 언로딩 과정 중에서, 워밍업 단계에서는 액화가스 저장탱크(10)의 내부 온도를 높이기 위해 증발가스를 압축하는 과정에서 H/D 압축기(51)가 사용되게 된다.
H/D 압축기(51)는, 상기와 같이 액화가스 로딩 과정중 사용되는 압축과정과 액화가스 언로딩 과정 중 사용되는 압축과정을 모두 구현할 수 있다.
즉, H/D 압축기(51)는, 벙커링시 발생하는 증발가스를 가압하여 육상 수요처(Shore)로 공급하거나, 또는, 액화가스 언로딩시 워밍업 단계에 액화가스 저장탱크(10)에서 잔존하는 증발가스를 가압하여 다시 액화가스 저장탱크(10)로 리턴시켜 상기 증발가스가 액화가스 저장탱크(10)로 순환하도록 할 수 있다.
구체적으로, H/D 압축기(51)는, 벙커링시, 액화가스 저장탱크(10)에서 발생하는 증발가스를 제4 라인(L4)을 통해 공급받아 압축하여 육상 수요처(Shore)로 공급할 수 있고, 액화가스 언로딩시, 액화가스 저장탱크(10)에 잔존하는 증발가스를 압축하여 제2 히터(511)로 가열한 후 액화가스 저장탱크(10)로 복귀시켜, 증발가스가 액화가스 저장탱크(10), H/D 압축기(51), 제2 히터(511), 액화가스 저장탱크(10) 순으로 순환되게 할 수 있다. 이로써, 액화가스 저장탱크(10)에 저장되어 있는 액화가스를 모두 기화시킬 수 있고, 기화된 액화가스는 모두 액화가스 저장탱크(10) 외부로 배출될 수 있다.
LNG 기화기(60)는, 외부 육상 수요처(Shore)로부터 액화가스 저장탱크(10)로 액화가스를 최초로 로딩(Loading)하는 경우, 즉 벙커링시에 선행되는 치환작업 중 가싱업(gassing-up) 단계에서 사용될 수 있다.
구체적으로, LNG 기화기(60)는, 육상 수요처(shore)로부터 액화가스를 공급받아 액화가스를 가열하여 기화시킬 수 있으며, 기화된 액화가스를 액화가스 저장탱크(10)로 공급함으로써, 액화가스 저장탱크(10)에 가득찬 불활성 가스를 기화된 액화가스로 모두 치환할 수 있다. 이를 통해 가싱업 단계가 수행되고, 이후 진행될 쿨다운(Cool-down)과정이 원활하게 진행되게 된다.
이하에서는 상기 설명된 본 발명의 가스 처리 시스템(1)들의 구성들을 기초로 하여 도출될 수 있는 본 발명의 가스 처리 시스템(1)의 다양한 실시예에 대해서 설명하도록 한다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 증발가스 압축기(50)를 액화가스 저장탱크(10)에서 만선 상태에 발생되는 자연발생 증발가스를 모두 처리할 수 있는 용량을 최대처리용량으로 가지도록 설계하여, 액화가스 저장탱크(10)에서 추진엔진(21)으로 액화가스 및/또는 증발가스를 경제적이고 효과적으로 공급함으로써 시스템 안정성 및 신뢰도를 향상시키는 기술을 포함할 수 있다.
도 1을 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 액화가스 저장탱크(10)에 저장된 액화가스를 가압하는 부스팅 펌프(30), 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며, 증발가스 압축기(50)를 구비하는 제1 라인(L1), 액화가스 저장탱크(10)와 제1 라인(L1) 상의 증발가스 압축기(50) 하류에 연결되며, 부스팅 펌프(30) 및 강제기화기(41)를 구비하는 제2 라인(L2)를 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고 제1 라인(L1) 상에 증발가스 압축기(50)를 구비한다. 또한, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제2 라인(L2)을 통해 액화가스 저장탱크(10)와 제1 라인(L1) 상의 증발가스 압축기(50) 하류를 연결하며 제2 라인(L2) 상에 부스팅 펌프(30), 강제기화기(41) 및 제1 히터(43)를 구비하여, 제1 라인(L1)을 통해 추진엔진(21)으로 공급되는 연료를 보충할 수 있다.
여기서 증발가스 압축기(50)는, 액화가스 저장탱크(10)에서 만선 상태에 발생되는 자연발생 증발가스를 모두 처리할 수 있는 용량을 최대처리용량으로 가지도록 설계될 수 있다.
종래, 액화가스 저장탱크에서 발생되는 증발가스를 처리하여 추진엔진으로 공급하는 증발가스 압축기는 선박이 최대선속을 가질 경우에 추진엔진이 필요로 하는 증발가스량을 모두 처리 가능한 용량을 최대처리용량으로 가지도록 설계되었다.
결국 증발가스 압축기는, 액화가스 저장탱크에서 만선상태에서 자연적으로 발생되는 증발가스뿐만 아니라 액화가스 저장탱크에 저장된 액화가스를 강제로 기화시킨 강제발생 증발가스까지 공급받아 처리할 수 있어야 해서, 그 최대처리용량이 매우 크게 설정될 필요가 있었다.
따라서, 증발가스 압축기는 최대처리용량이 매우 크게 설정되어 증발가스 압축기 구축비용이 너무 많이 드는 문제점이 있었다. 게다가 최대처리용량이 큰 증발가스 압축기는 크기도 매우 크고 구축공간도 많이 필요하여 선박의 사용가능공간이 협소해져 공간확보측면에서 매우 불리한 문제점이 있었다.
이를 해결하기 위해 본 발명의 실시예에서 증발가스 압축기(50)는, 상기 설명한 바와 같이 액화가스 저장탱크(10)에서 만선 상태에 발생되는 자연발생 증발가스를 모두 처리할 수 있는 용량을 최대처리용량으로 가지도록 설계된다. 여기서 만선 상태란 선박에 구비되는 액화가스 저장탱크(10)에 액화가스를 거의 가득 채워서 항해하는 만선 항해(Laden Voyage)시의 상태를 말한다.
이를 통해, 증발가스 압축기(50)는, 기존의 증발가스 압축기의 최대처리용량보다 적은 양의 최대처리용량을 가지도록 설계되는 증발가스 압축기를 사용할 수 있고, 이로 인해 시스템 구축비용이 절감되며 선박 내의 공간확보를 최대로 이룰 수 있는 효과가 있다.
상기 기술한 바와 같이 증발가스 압축기(50)가 액화가스 저장탱크(10)에서 만선 상태에 발생되는 자연발생 증발가스를 모두 처리할 수 있는 용량을 최대처리용량으로 가지도록 설계되는 경우, 선박이 최대선속을 내기 위해서는 증발가스 압축기(50)에서 토출되는 증발가스만으로 부족하게 된다.
이로 인해, 본 발명에서는 이 부족분을 보충하여 선박이 최대선속을 내도록 하기 위해 증발가스 압축기(50) 후단으로 강제기화기(41)에 의해 강제기화된 강제발생증발가스를 공급하도록 하여 추진엔진(21)이 최대선속을 내기 위한 연료를 충분히 공급받을 수 있도록 구현하고 있다.
따라서, 본 발명의 실시예에서는 증발가스 압축기(50)의 최대용량 한정에 따른 이익에 반사되어 도출되는 문제점을 해결함으로써, 증발가스 압축기(50)의 최대용량한정이 실질적으로 구현 가능하도록 한다.
또한, 상기 기술한 본 발명의 실시예에 따른 가스 처리 시스템(1)을 구비한 선박은 증발가스 압축기(50)에서 사용하는 에너지가 줄어들게 되므로, 공선항해(Ballast Voyage)에서 에너지 소모량이 감소되어 선박의 추진력에 더 많은 에너지를 사용할 여력이 발생하게 되는 효과가 있다.
또한, 본 발명의 실시예에서는, 증발가스 압축기(50)에서 압축된 증발가스를 재액화하는 재액화장치(530)를 구비할 수 있다.(도 3 참조) 이때, 재액화장치(530)는 별도의 냉매를 사용하는 재액화장치이다.
본 발명의 실시예에서는 추진엔진(21)이 15 내지 20bar를 연료의 압력으로 요구하므로, 증발가스 압축기(50)에서 재액화 효율이 높은 압력인 100 내지 150bar 또는 200 내지 400bar로 압축할 수 없어 액화가스 저장탱크(10)에서 발생되는 증발가스와 증발가스 압축기(50)에서 압축된 증발가스 중 적어도 일부와 열교환하더라도 효과적으로 재액화될 수 없다.
따라서, 본 발명의 실시예에서는 증발가스의 효율적인 처리를 위해 별도의 냉매를 구비하는 재액화장치(530)를 구비할 수 있다.
여기서 재액화장치(530)에 의해 재액화된 증발가스는 기액분리기(531)로 공급되어 기상과 액상으로 분리될 수 있다. 기상은 다시 제1 라인(L1) 상의 증발가스 압축기(50)의 상류로 공급되어 액화가스 저장탱크(10)에서 발생된 증발가스와 합류되고 액상은 다시 액화가스 저장탱크(10)로 복귀할 수 있다.
또한, 재액화장치(530)는 제1 라인(L1) 상의 증발가스 압축기(50) 하류에서 분기되어 제1 라인(L1) 상의 증발가스 압축기(50) 상류로 연결되는 제17 라인(L17) 상에 구비될 수 있으며, 제17 라인(L17) 상에는 기액분리기(531) 또한 구비되어 기상을 제17 라인(L17)을 통해 제1 라인(L1) 상의 증발가스 압축기(50)의 상류로 공급할 수 있다. 재액화장치(530)에 사용되는 냉매는, 질소(N2) 또는 혼합냉매 등이 사용될 수 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 히터(43)를 제2 라인(L2) 상에 구비하도록 함으로써, 제1 히터(43)의 부하를 감소시킬 수 있는 기술을 포함할 수 있다.
도 1을 참고로 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 액화가스 저장탱크(10)에 저장된 액화가스를 가압하는 부스팅 펌프(30), 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 제2 라인(L2) 상에 구비되며 증발가스 압축기(50)에서 압축된 증발가스와 합류되기 전의 강제기화기(41)에서 강제 기화된 액화가스를 승온시키는 제1 히터(43), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며, 증발가스 압축기(50)를 구비하는 제1 라인(L1), 액화가스 저장탱크(10)와 제1 라인(L1) 상의 증발가스 압축기(50) 하류에 연결되며, 부스팅 펌프(30), 강제기화기(41) 및 제1 히터(43)를 구비하는 제2 라인(L2)를 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고 제1 라인(L1) 상에 증발가스 압축기(50)를 구비한다. 또한, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제2 라인(L2)을 통해 액화가스 저장탱크(10) 제1 라인(L1) 상의 증발가스 압축기(50) 하류를 연결하며 제2 라인(L2) 상에 부스팅 펌프(30), 강제기화기(41) 및 제1 히터(43)를 구비하여, 제1 라인(L1)을 통해 추진엔진(21)으로 공급되는 연료를 보충할 수 있다.
여기서 증발가스 압축기(50)는, 액화가스 저장탱크(10)에서 만선 상태에 발생되는 자연발생 증발가스를 모두 처리할 수 있는 용량을 최대처리용량으로 가지도록 설계될 수 있다.
이에 더해 본 발명의 실시예에서는, 제2 라인(L2) 상의 강제기화기(41) 하류에 제1 히터(43)를 구비할 수 있다.
제1 히터(43)는, 증발가스 압축기(50)에서 압축된 증발가스의 온도가 기설정온도 이상이면 강제기화기(41)에서 강제 기화된 액화가스를 승온하지 않고, 증발가스 압축기(50)에서 압축된 증발가스의 온도가 기설정온도 미만이면, 강제기화기(41)에서 강제 기화된 액화가스를 승온시킬 수 있다. 이때, 기설정 온도는 추진엔진(21)이 요구하는 온도로써, 일례로 40 내지 50도 일 수 있으며, 바람직하게는 대략 45도일 수 있다.
여기서, 제1 히터(43)의 제어는 별도의 제어부(도시하지 않음) 및 제어장치(도시하지 않음)를 통해 구현될 수 있으며, 제어장치의 일례로 온도센서 및 이와 연동되는 전자장치들이 있을 수 있다.
또한, 제1 히터(43)는 공선 상태에서만 사용될 수 있다. 선박이 공선상태에 있는 경우에는 액화가스 저장탱크(10)에서 발생되는 증발가스가 적게 발생되므로, 증발가스 압축기(50)에서 토출되는 증발가스의 온도가 낮을 수 있다. 이 경우 제2 라인(L2)을 통해서 공급되는 강제기화된 액화가스의 온도를 상대적으로 높여 추진엔진(21)으로 공급되는 연료의 최종온도를 향상시킬 수 있다.
여기서 공선 상태란 선박에 구비되는 액화가스 저장탱크(10)에 액화가스가 거의 비워져서 항해하는 공선 항해(Ballast Voyage)시의 상태를 말한다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 강제기화기(41), 제1 히터(43), LNG 기화기(60)로 공급되는 액화가스 및/또는 증발가스의 유량을 효과적으로 조절함으로써 강제기화기(41), 제1 히터(43), LNG 기화기(60)의 부하를 감소시키고 효율적인 온도조절을 가능케하는 기술을 포함할 수 있다.
도 2를 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 강제기화기(41)로부터 공급되는 강제기화된 액화가스를 공급받아 가열시키는 제1 히터(43), 외부 저장소(Shore)로부터 액화가스를 공급받아 기화시켜 액화가스 저장탱크(10)로 복귀시키는 LNG 기화기(60), 액화가스 저장탱크(10)와 제1 라인(L1) 상의 증발가스 압축기(50) 하류에 연결되며, 부스팅 펌프(30), 강제기화기(41) 및 제1 히터(43)를 구비하는 제2 라인(L2), 외부 저장소와 액화가스 저장탱크(10)를 연결하며 LNG 기화기(60)를 구비하는 제3 라인(L3)을 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제2 라인(L2)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고 제2 라인(L2) 상에 부스팅 펌프(30), 강제기화기(41) 및 제1 히터(43)를 구비한다. 또한, 본 발명의 실시예에서는, 제3 라인(L3)을 통해 외부 저장소와 액화가스 저장탱크(10)를 연결하고 LNG 기화기(60)를 구비할 수 있다.
이에 더해 본 발명의 실시예에서는, 제2 라인(L2) 상의 강제기화기(41) 또는 제1 히터(43)와 제3 라인(L3) 상의 LNG 기화기(60)로 유입되는 액화가스 및/또는 증발가스의 유량을 조절하는 유량조절장치를 더 포함할 수 있다.
유량조절장치는, 강제기화기(41), 제1 히터(43) 또는 LNG 기화기(60) 각각에 동일 또는 유사하게 구비될 수 있으며, 하기에는 일례로 강제기화기(41)에 구비되는 유량조절장치에 대해서 설명하도록 한다. 또한, 본 유량조절장치는 상기 기술한 강제기화기(41), 제1 히터(43) 또는 LNG 기화기(60)에만 한정되는 것은 아니다.
유량조절장치는, 강제기화기(41)를 바이패스 하여 연결되며, 복수 개 구비되는 유량조절배관(CL1~CL6)과 유량조절배관(CL1~CL5) 및 제2 라인(L2) 상에 구비되는 유량조절밸브(411~417)를 포함할 수 있다.
구체적으로, 유량조절배관(CL1~CL6)은, 제1 내지 제6 유량조절라인(CL1~CL6)으로 구성될 수 있다.
제1 유량조절라인(CL1)은, 제2 라인(L2) 상의 강제기화기(41)를 바이패스하여 연결되며 제3 조절밸브(413)를 구비할 수 있다. 이를 통해 제1 유량조절라인(CL1)은, 강제기화기(41)로 유입되는 액화가스 및/또는 증발가스의 유량을 조절할 수 있으며, 강제기화기(41)에서 기화되어 토출되는 액화가스 및/또는 증발가스의 온도를 조절할 수 있다.
일례로, 강제기화기(41)로 유입되는 액화가스 및/또는 증발가스의 유량을 줄이기 위해서는 제1 유량조절라인(CL1)으로 유량을 바이패스할 수 있으며, 강제기화기(41)에서 기화되어 토출되는 액화가스 및/또는 증발가스를 제1 유량조절라인(CL1)으로 바이패스하여 온도를 낮출 수 있다. 여기서 제3 조절밸브(413)는 제1 유량조절라인(CL1)상에 흐르는 액화가스 및 증발가스의 유량 및/또는 압력을 조절한다.
또한, 강제기화기(41)의 하류에 연결되는 제1 유량조절라인(CL1)의 끝단은 병렬로 분기되어 제2 라인(L2)에 연결될 수 있다. 이를 통해 강제기화기(41)에서 기화되어 토출되는 액화가스 및/또는 증발가스의 온도의 추가적인 미세조절이 가능하도록 하는 효과가 있다.
제2 유량조절라인(CL2)은, 제1 유량조절라인(CL1) 상에 제3 조절밸브(413)를 바이패스하여 연결되며 제4 조절밸브(414)를 구비할 수 있다. 여기서, 제4 조절밸브(414)는, 제3 조절밸브(413)에 병렬로 연결될 수 있으며, 액화가스 및/또는 증발가스를 처리하는 용량이 서로 동일한 용량을 가지도록 구성되어 교차 구동할 수 있으며, 서로를 백업할 수 있다.
이를 통해 제2 유량조절라인(CL2) 및 제4 조절밸브(414)는, 강제기화기(41)의 압력 조절 및 유량 조절을 위한 밸브의 백업 시스템을 마련하여 안정성이 향상되는 효과가 있다.
또한, 제4 조절밸브(414)는, 제3 조절밸브(413)에 병렬로 연결되며, 제3 조절밸브(413)의 유량조절단위보다 작거나 같도록 구성되어 통합 구동함으로써 세밀한 유량의 제어를 수행할 수 있다.
보통 밸브가 유량 조절을 수행하는 범위는 밸브의 유량 처리용량의 상하 약 10 내지 15% 정도 수준이이므로, 밸브의 유량 처리용량이 작을수록 미세한 유량조절이 가능해질 수 있다. 일례로 제3 조절밸브(413)의 유량 처리용량이 100이고 제4 조절밸브(414)의 유량 처리용량이 50인 경우, 제3 조절밸브(413)는 5이상 95 이하의 유량처리가 가능하고, 제4 조절밸브(414)는 2.5이상 47.5이하의 유량처리가 가능하게 될 수 있다. 즉, 제3 조절밸브(413)가 처리하지 못하는 미세유량조절을 제4 조절밸브(414)의 추가로 인해 해결할 수 있다.
이를 통해 제4 조절밸브(414)만으로 유량조절을 수행하는 것에 비해 좀 더 세밀한 유량조절이 가능해지는 효과가 있다.
제3 유량조절라인(CL3)은, 제2 라인(L2) 상의 제1 조절밸브(411)를 바이패스하여 연결되며 제2 조절밸브(412)를 구비할 수 있다. 또한, 제2 조절밸브(412)는, 제1 조절밸브(411)에 병렬로 연결되어, 액화가스 및/또는 증발가스를 처리하는 용량이 서로 동일한 용량을 가지도록 구성되어 교차 구동함으로써 서로를 백업할 수 있고, 또는 제1 조절밸브(411)의 유량조절단위보다 작거나 같도록 구성되어 통합 구동함으로써 세밀한 유량의 제어를 수행할 수 있다.
제4 유량조절라인(CL4)은, 제2 라인(L2) 상의 제1 유량조절라인(CL1)을 바이패스하여 연결되며 제5 조절밸브(415) 및 제7 조절밸브(417)를 구비할 수 있다. 여기서 제7 조절밸브(417)는, 블록 밸브(Block valve)일 수 있다. 제7 조절밸브(417)는 세팅유량값을 임의로 설정하게되면 세팅유량값만 통과하도록 제어할 수 있다.
제5 유량조절라인(CL5)은, 제4 유량조절라인(CL4) 상에 제5 조절밸브(415)를 바이패스하여 연결되며, 제6 조절밸브(416)를 구비할 수 있다. 여기서 제6 조절밸브(416)는, 제5 조절밸브(415)에 병렬로 연결되어, 액화가스 및/또는 증발가스를 처리하는 용량이 서로 동일한 용량을 가지도록 구성되어 교차 구동함으로써 서로를 백업할 수 있고, 또는 제5 조절밸브(415)의 유량조절단위보다 작거나 같도록 구성되어 통합 구동함으로써 세밀한 유량의 제어를 수행할 수 있다.
제6 유량조절라인(CL6)은, 제4 유량조절라인(CL4) 상에 제5 조절밸브(415)와 제7 조절밸브(417) 사이에서 분기되어 제2 라인(L2)에 연결될 수 있다. 제6 유량조절라인(CL6)은 조절밸브없이 구비되며, 제7 조절밸브(417)의 세팅유량값에 따라 나머지 유량이 유입되어 제2 라인(L2)으로 공급하도록 할 수 있다. 이때, 제6 유량조절라인(CL6)은, 제2 라인(L2) 상에 연결되는 단부가 제2 라인(L2) 상의 제4 유량조절라인(CL4)이 연결되는 부분보다 하류에 연결될 수 있다.
이와 같이 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제2 라인(L2) 상의 강제기화기(41) 또는 제1 히터(43)와 제3 라인(L3) 상의 LNG 기화기(60)로 유입되는 액화가스 및/또는 증발가스의 유량을 조절하는 유량조절장치를 구비함으로써, 액화가스 및/또는 증발가스의 유량을 효과적으로 조절하고, 강제기화기(41), 제1 히터(43), LNG 기화기(60)의 부하를 감소시키며, 효율적인 온도조절을 가능케할 수 있다. 또한, 이를 통해 기존의 밸브를 백업할 수 있어 유량조절의 신뢰성이 향상되는 효과가 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, H/D 압축기(51)가 구비되는 제4 라인(L4)이 액화가스 저장탱크(10)뿐만 아니라 가스연소장치(23) 등 기타 수요처(도시하지 않음)로 연결되도록 하여, 위급 상황에서도 액화가스 저장탱크(10)에서 발생된 증발가스를 효과적으로 처리할 수 있는 기술을 포함할 수 있다.
도 1을 참고로 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 로딩 또는 언로딩시 액화가스 저장탱크(10)에서 발생되는 증발가스를 압축하는 H/D 압축기(51), H/D 압축기(51)에서 압축된 증발가스를 가열하는 제2 히터(511), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며, 증발가스 압축기(50)를 구비하는 제1 라인(L1), 액화가스 저장탱크(10)에 발생된 증발가스가 다시 액화가스 저장탱크(10)로 재인입되도록 연결되며 H/D 압축기(51)를 구비하는 제4 라인(L4), 제4 라인(L4)상의 제2 히터(511) 후단에서 분기되어 가스연소장치(23)와 연결되는 제5 라인(L5)을 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고 제1 라인(L1) 상에 증발가스 압축기(50)를 구비한다. 또한, 본 발명의 실시예에서는, 제4 라인(L4)을 통해 액화가스 저장탱크(10)에 발생된 증발가스가 다시 액화가스 저장탱크(10)로 재인입되도록 연결하고, 제4 라인(L4) 상에 H/D 압축기(51)를 구비할 수 있다.
이에 더해 본 발명의 실시예에서는, 제4 라인(L4)상의 제2 히터(511) 후단에서 분기되어 가스연소장치(23)와 연결되는 제5 라인(L5)을 더 포함할 수 있다.
종래에는, 추진엔진(21) 또는 발전엔진(22)에서 증발가스를 소비할 수 없거나, 증발가스 압축기(50)가 증발가스를 처리 할 수 없는 경우(일례로 오작동 또는 정지)에는 액화가스 저장탱크(10)에서 발생되는 증발가스를 처리할 수 없어 액화가스 저장탱크(10)의 안전상에 문제가 발생할 우려가 존재하였다.
이에 본 발명의 실시예에서는, 항시 구비되는 H/D 압축기(51)가 증발가스 압축기(50)를 백업 또는 보조하도록 설계함으로서, 상기의 문제점을 해결하고 있다. 또한, 구비되는 H/D 압축기(51)가 증발가스 압축기(50)를 실질적으로 백업 또는 보조하도록 구현하기 위해서 제4 라인(L4)상의 제2 히터(511) 후단에서 분기되어 가스연소장치(23)와 연결되는 제5 라인(L5)을 새롭게 추가하였다.
즉, 본 발명의 실시예에서 추진엔진(21) 또는 발전엔진(22)에서 증발가스를 소비할 수 없거나, 증발가스 압축기(50)가 증발가스를 처리 할 수 없는 경우에는, H/D 압축기(51)를 가동하여 액화가스 저장탱크(10)에서 발생된 증발가스를 가스연소장치(23)로 공급할 수 있고, 또는 증발가스 압축기(50)를 백업 또는 보조해야하는 경우에 H/D 압축기(51)를 가동하여 액화가스 저장탱크(10)에서 발생된 증발가스를 추진엔진(21), 발전엔진(22) 또는 가스연소장치(23)에 공급할 수 있다.
이를 통해 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 위급상황에서도 신속하게 대처할 수 있는 효과가 있으며, 시스템의 안전성 및 신뢰성이 향상되는 효과가 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 증발가스 압축기(50)를 액화가스 저장탱크(10)에서 만선 상태에 발생되는 자연발생 증발가스를 모두 처리할 수 있는 용량을 최대처리용량으로 가지도록 설계하고, 증발가스 압축기(50) 및 시스템 라인들(L1,L2)의 구동을 제어하여, 액화가스 저장탱크(10)에서 추진엔진(21)으로 액화가스 및/또는 증발가스를 경제적이고 효과적으로 공급함으로써 시스템 안정성 및 신뢰도를 향상시키는 기술을 포함할 수 있다.
도 1을 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 액화가스 저장탱크(10)에 저장된 액화가스를 가압하는 부스팅 펌프(30), 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며, 증발가스 압축기(50)를 구비하는 제1 라인(L1), 액화가스 저장탱크(10)와 제1 라인(L1) 상의 증발가스 압축기(50) 하류에 연결되며, 부스팅 펌프(30) 및 강제기화기(41)를 구비하는 제2 라인(L2), 제1 라인(L1) 및 제2 라인(L2) 상에 유동하는 액화가스 및/또는 증발가스를 제어하는 제어부(71)를 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고 제1 라인(L1) 상에 증발가스 압축기(50)를 구비한다. 여기서 증발가스 압축기(50)는, 액화가스 저장탱크(10)에서 만선 상태에 발생되는 자연발생 증발가스를 모두 처리할 수 있는 용량을 최대처리용량으로 가지도록 설계될 수 있다. 또한, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제2 라인(L2)을 통해 액화가스 저장탱크(10) 제1 라인(L1) 상의 증발가스 압축기(50) 하류를 연결하며 제2 라인(L2) 상에 부스팅 펌프(30), 강제기화기(41) 및 제1 히터(43)를 구비하여, 제1 라인(L1)을 통해 추진엔진(21)으로 공급되는 연료를 보충할 수 있다.
이에 더하여 본 발명의 실시예에서는, 제1 라인(L1) 및 제2 라인(L2) 상에 유동하는 액화가스 및/또는 증발가스를 제어하는 제어부(71)를 더 포함할 수 있다.
제어부(71)는, 선박의 속도와 기설정속도를 비교하여 제1 라인(L1) 및 제2 라인(L2)상의 증발가스 및/또는 액화가스의 유동을 제어할 수 있다. 여기서 기설정속도는, 액화가스 저장탱크(10)에서 만선 상태에 발생되는 자연증발가스만을 추진엔진(21)이 모두 소비할 경우 선박이 추진되는 속도를 말하며, 일례로 15 내지 19노트(Knots)일 수 있다.(바람직하게는 17노트)
구체적으로 제어부(71)는, 선박의 속도가 기설정속도 이내인 경우, 제1 라인(L1)을 통해서만 액화가스 저장탱크(10) 내의 증발가스를 추진엔진(21)으로 공급하도록 제어하고, 선박의 속도가 기설정속도 초과인 경우, 제1 라인(L1) 및 제2 라인(L2)을 통해서 액화가스 저장탱크(10) 내의 액화가스 및/또는 증발가스를 추진엔진(21)으로 공급하도록 제어할 수 있다.
또한 제어부(71)는 상기의 제어뿐만 아니라 액화가스 저장탱크(10)에서 발생되는 자연발생증발가스의 양과 추진엔진(21)이 요구하는 연료량을 비교하여 제1 라인(L1) 또는 제2 라인(L2) 상의 증발가스 및/또는 액화가스의 유동을 제어할 수 있다.
구체적으로 제어부(71)는, 추진엔진(21)이 요구하는 연료량이 자연발생 증발가스의 양보다 많은 경우, 제1 라인(L1) 및 제2 라인(L2)을 통해서 액화가스 저장탱크(10) 내의 액화가스 및/또는 증발가스를 추진엔진(21)으로 공급하도록 제어하고, 추진엔진(21)이 요구하는 연료량이 자연발생 증발가스의 양보다 적은 경우, 제1 라인(L1)을 통해서만 액화가스 저장탱크(10) 내의 증발가스를 추진엔진(21), 발전엔진(22) 또는 가스연소장치(23)로 공급되도록 제어할 수 있다.
여기서, 제어부(71)는 상기 기술한 제어를 실현하기 위한 다양한 제어장치(도시하지 않음)들을 구비할 수 있으며, 이러한 제어장치의 일례로 밸브(부호도시하지 않음) 및 이와 연동되는 전자장치(도시하지않음)들이 있을 수 있다.
상기와 같은 제어부(71)의 제어를 통해 증발가스 압축기(50)의 구동을 경제적인 제어 및 최적화된 제어가 가능하도록 할 수 있다.
또한, 본 발명의 실시예에서는, 재액화장치(530)이 설치될 수 있다.(도 3참조) 재액화장치(530)는, 별도의 냉매(질소 또는 혼합냉매)를 이용하여 증발가스를 액화시킬 수 있으며, 저압으로 압축된 증발가스를 효과적으로 재액화시킬 수 있다.
구체적으로 재액화장치(530)는, 증발가스 압축기(50)에 의해 15 내지 20bar로 가압된 증발가스를 공급받아 재액화할 수 있으며, 기액분리기(531)로 공급된다. 재액화된 증발가스는, 기액분리기(531)에서 액상과 기상으로 분리되어 액상은 액화가스 저장탱크(10)로 복귀되고 기상은 다시 액화가스 저장탱크(10)에서 배출되는 증발가스와 합류하여 증발가스 압축기(50)로 공급될 수 있다.
이와 같이 선박을 추진하기 위한 동력의 연료로 저압의 액화가스 또는 증발가스를 사용하는 본 발명의 실시예에서는, 별도의 냉매를 가지는 재액화장치(530)를 구비함으로써, 증발가스의 효율적인 처리가 가능해지는 효과가 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 별도의 가압수단 없이 가스연소장치(23)로 액화가스 저장탱크(10)에 발생된 증발가스를 공급하는 제6 라인(L6)을 구비함으로써, 시스템 구축비용을 절감하고 액화가스 저장탱크(10)의 내압을 효과적으로 관리할 수 있는 기술을 포함할 수 있다.
도 1을 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 액화가스 저장탱크(10)에서 발생된 증발가스를 소각하는 가스연소장치(23), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며, 증발가스 압축기(50)를 구비하는 제1 라인(L1), 액화가스 저장탱크(10)와 가스연소장치(23)를 연결하며, 별도의 가압수단이 구비되지 않는 제6 라인(L6)을 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고 제1 라인(L1) 상에 증발가스 압축기(50)를 구비한다.
제6 라인(L6)은, 별도의 가압수단을 구비하지 않고 액화가스 저장탱크(10)와 가스연소장치(23)를 연결하며, 액화가스 저장탱크(10)의 내압으로 액화가스 저장탱크(10)에서 발생된 증발가스를 가스연소장치(23)로 공급할 수 있다.
종래에 가스연소장치(23)와 액화가스 저장탱크(10)를 연결하여 액화가스 저장탱크(10)에서 발생된 증발가스를 가스연소장치(23)로 공급하는 라인에는 항상 압축기가 구비되어야 했다. 가스연소장치(23)는, 일정압력(일례로 3 내지 5bar)이 되어야 증발가스를 연소시킬 수 있으며, 이에 따라 액화가스 저장탱크(10)에서 발생되는 증발가스를 가압하기 위한 가압수단이 필요하였다. 이러한 가압수단의 설치는 구축비용의 증대 및 선박 내 공간의 부족의 문제점을 일으켜왔다.
이에 본 발명의 실시예에서는, 별도의 가압수단을 구비하지 않고 액화가스 저장탱크(10)의 내압으로 액화가스 저장탱크(10)에서 발생된 증발가스를 가스연소장치(23)로 공급함으로써, 상기와 같은 문제점을 해결하고 구축비용의 절감 및 선박 내 공간 확보의 효과를 얻을 수 있다.
제6 라인(L6)은 가압수단이 없어 종래의 라인과 같은 직경을 가질 경우 가스연소장치(23)로 공급되는 증발가스의 양이 줄어들고 그에 따라 액화가스 저장탱크(10) 내의 증발가스를 효율적으로 처리하지 못하는 문제점이 발생한다.
이에 따라 본 발명의 실시예에서 제6 라인(L6)은, 별도의 가압수단을 구비하지 않는 대신 종래 라인의 직경보다 더 큰 직경을 가질 수 있으며, 액화가스 저장탱크(10)에서 발생된 증발가스를 가스연소장치(23)로 공급하는데 지체되지 않도록 하는 직경을 가질 수 있다. 여기서 제1 라인(L1)은 종래의 액화가스 저장탱크(10)의 내압 상승시 증발가스를 가스연소장치(23)로 공급하는 라인과는 다르나 그 직경은 동일 유사할 수 있다. 다시 말하면, 본 발명의 실시예에서 제6 라인(L6)은, 제1 라인(L1)의 직경보다 더 큰 직경을 가질 수 있다.
본 발명의 실시예에서 가스연소장치(23)는, 제1 압력을 가진 증발가스를 소비하는 제1 버너부(도시하지 않음), 제2 압력을 가진 증발가스를 소비하는 제2 버너부(도시하지 않음)으로 구성될 수 있다. 여기서, 제1 라인(L1)에서 증발가스 압축기(50) 하류에서 분기된 제1a 라인(L1a)은, 제1 버너부와 연결되고 제6 라인(L6)은, 제2 버너부와 연결될 수 있다. 이때, 제1 압력은, 3 내지 5bar일 수 있고, 제2 압력은 1 내지 2bar일 수 있다.
여기서 제1 버너부는, 증발가스 압축기(50)를 통해서 추진엔진(21)에 공급되는 압축된 증발가스가 과도하게 많은 경우에 과잉 증발가스분을 소비하며, 제2 버너부는 액화가스 저장탱크(10)에 증발가스 발생량이 급격히 많아져 액화가스 저장탱크(10)의 내압이 상승하는 경우, 액화가스 저장탱크(10)의 파손을 방지하기 위해 과잉발생 증발가스분을 소비할 수 있다.
이와 같이 본 발명의 실시예에서는 별도의 가압수단을 구비하지 않는 제6 라인(L6)을 구비함으로써, 액화가스 저장탱크(10)의 내압을 효과적으로 관리함과 동시에 구축비용을 최소화하고 선박내 공간을 충분히 확보할 수 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 워밍업(Warming-up)시에 증발가스를 가열시 기존 워밍업에 사용되는 제2 히터(511)와 강제기화기(41)에 의해 강제 기화된 액화가스를 승온시키는 제1 히터(43)를 함께 사용하도록 하되, 기존 워밍업에 사용되는 제2 히터(511)의 승온처리용량을 줄이도록 함으로써, 히터 구축비용을 감소시키고 히터의 최적화된 사용이 가능해지도록 하는 기술을 포함할 수 있다.
도 4를 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 강제기화기(41)로부터 공급되는 강제기화된 액화가스를 공급받아 가열시키는 제1 히터(43), 로딩 또는 언로딩시 액화가스 저장탱크(10)에서 발생되는 증발가스를 압축하는 H/D 압축기(51), H/D 압축기(51)에서 압축된 증발가스를 가열하는 제2 히터(511), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며 부스팅 펌프(30), 강제기화기(41) 및 제1 히터(43)를 구비하는 제2 라인(L2), 액화가스 저장탱크(10)에 발생된 증발가스가 다시 액화가스 저장탱크(10)로 재인입되도록 연결되며 H/D 압축기(51)를 구비하는 제4 라인(L4), 제1 히터(43)와 제2 히터(511)의 상류에서 제2 라인(L2)과 제4 라인(L4)을 연결하는 제7a 라인(L7a) 및 제1 히터(43)와 제2 히터(511)의 하류에서 제2 라인(L2)과 제4 라인(L4)을 연결하는 제7b 라인(L7b)을 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제2 라인(L2)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고 제2 라인(L2) 상에 부스팅 펌프(30), 강제기화기(41) 및 제1 히터(43)를 구비한다. 또한, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제4 라인(L4)을 통해 액화가스 저장탱크(10)에 발생된 증발가스가 다시 액화가스 저장탱크(10)로 재인입되도록 연결하며 H/D 압축기(51) 및 제2 히터(511)를 구비한다.
이에 더하여 본 발명의 실시예에서는, 제1 히터(43)와 제2 히터(511)의 상류에서 제2 라인(L2)과 제4 라인(L4)을 연결하는 제7a 라인(L7a) 및 제1 히터(43)와 제2 히터(511)의 하류에서 제2 라인(L2)과 제4 라인(L4)을 연결하는 제7b 라인(L7b)을 더 포함할 수 있다.
즉, 제7a 라인(L7a) 및 제7b 라인(L7b)을 통해 제2 라인(L2)과 제4 라인(L4)은, 제1 히터(43)와 제2 히터(511)의 상류 또는 하류 중 적어도 어느 하나에서 서로 연결되며, 제1 히터(43)와 제2 히터(511)가 서로 병렬로 마련되도록 할 수 있다.
이때, 제1 히터(43)와 제2 히터(511)는, 그 승온처리용량의 합이 액화가스 로딩 또는 언로딩시 발생되는 증발가스를 모두 승온처리할 수 있는 용량으로 설계될 수 있으며, 제2 히터(511)는 제1 히터(43)를 보조할 수 있다.
구체적으로, 제1 히터(43)는, 강제기화기(41)가 강제 기화시킨 액화가스를 모두 승온 처리 할 수 있는 용량을 가지도록 설계하고, 제2 히터(511)는, 액화가스 로딩 또는 언로딩시 발생되는 증발가스를 모두 승온 처리할 수 있는 용량에서 제1 히터(43)가 가진 용량을 뺀 용량을 가지도록 설계될 수 있다.
일례로 액화가스 로딩 또는 언로딩시 발생되는 증발가스를 모두 승온 처리할 수 있는 용량을 100이라 하고, 강제기화기(41)가 강제 기화시킨 액화가스를 모두 승온 처리 할 수 있는 용량을 40이라고 하면, 제1 히터(43)의 승온처리용량은 40으로, 제2 히터(511)의 승온처리용량은 60으로 설정할 수 있다.
종래의 경우에는 액화가스 로딩 또는 언로딩시 발생되는 증발가스가 양이 매우 많아 이를 처리하기 위한 히터의 용량이 상당히 크게 필요하였다. 이로 인해 히터 구축비용이 증가하고 많은 공간의 확보가 요구되는 단점이 있었다.
이러한 문제점을 해결하기 위해 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 상기 기술한 바와 같이 제1 및 제2 히터(43,511)를 설계하고 제7a 라인(L7a) 및 제7b 라인(L7b)을 구비하여, 기존 강제기화기(41)를 통해 추진엔진(21)으로 연료를 공급시에는 제1 히터(43)만을 가동하도록 하고, 액화가스 로딩 또는 언로딩시 발생되는 증발가스를 승온시에는 제1 히터(43)와 제2 히터(511)를 모두 가동토록 제어함으로서, 히터 구축비용을 감소시키고 히터의 최적화된 사용이 가능해지는 효과가 있다.
여기서, 제1 히터(43), 제2 히터(511), 제7a 라인(L7a) 및 제7b 라인(L7b)의 제어는 별도의 제어부(도시하지 않음) 및 제어장치(도시하지 않음)를 통해 구현될 수 있으며, 제어장치의 일례로 제어밸브 및 이와 연동되는 전자장치들이 있을 수 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 증발가스 압축기(50)로 6단 압축기를 사용함으로써, 별도의 히터를 생략가능하도록 하는 기술을 포함할 수 있다.
도 1을 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며, 증발가스 압축기(50)를 구비하는 제1 라인(L1), 액화가스 저장탱크(10)와 제1 라인(L1) 상의 증발가스 압축기(50) 하류를 연결하며 부스팅 펌프(30), 강제기화기(41) 및 제1 히터(43)를 구비하는 제2 라인(L2)을 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고 제1 라인(L1) 상에 증발가스 압축기(50)를 구비한다. 또한, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제2 라인(L2)을 통해 액화가스 저장탱크(10) 제1 라인(L1) 상의 증발가스 압축기(50) 하류를 연결하며 제2 라인(L2) 상에 부스팅 펌프(30), 강제기화기(41) 및 제1 히터(43)를 구비하여, 제1 라인(L1)을 통해 추진엔진(21)으로 공급되는 연료를 보충할 수 있다.
이에 더하여 본 발명의 실시예에서는, 증발가스 압축기(50)가 추진엔진(21)이 요구하는 온도로 증발가스를 토출하도록 15 내지 20bar로 증발가스를 압축할 수 있다.
종래의 경우 증발가스 압축기가 4단으로 구비되는 경우에는 증발가스 압축기에서 토출되는 온도가 낮아 별도의 히터를 구비하여야 하는 문제점이 있었다.
이에 본 발명의 실시예에서 증발가스 압축기(50)는 6단 원심형 또는 2단 스크류형으로 형성함으로써, 증발가스 압축기(50)가 15 내지 20bar로 증발가스를 압축하여 토출되는 증발가스가 추진엔진(21)이 요구하는 온도가 되도록 할 수 있다. 이로 인해 본 발명의 실시예에 따른 가스 처리 시스템(1)에서는 제1 라인(L1) 상에 별도의 히터를 구비지 않을 수 있다.
이와 같이 본 발명의 실시예에서는, 증발가스 압축기(50) 후단에 히터를 생략할 수 있어 시스템 구축비용이 절감되고 선박의 공간 활용성을 극대화할 수 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 부스팅 펌프(30)가 액화가스를 15 내지 20bar로 가압한 후 기액분리기(42)로 공급하도록 하여, 별도의 쿨링장치 없이도 기액분리기(42)에서 메탄가가 조절되도록 하는 기술을 포함할 수 있다.
메탄가 조절이란 기화된 액화가스 내의 성분 중 헤비카본(프로판, 부탄 등)을 제거하는 작업으로, 발전엔진(22)에 공급되는 기화된 액화가스의 메탄가가 발전엔진(22)이 요구하는 메탄가보다 높도록 조절하는 작업을 말한다. 이는, 발전엔진(22)에서 노킹현상이 발생하는 것을 방지하기 위함이다.
구체적으로, 자연발생 기화가스는 성분이 대부분 메탄으로 이루어져 있어 메탄가가 발전엔진(22)이 요구하는 메탄가보다 높아 별도의 주의가 필요치 않으나 강제발생기화가스는 메탄 외에도 에탄, 프로판, 부탄과 같은 중탄화수소(HHC; 헤비카본) 성분이 함유되어 있어 메탄가가 발전엔진(22)이 요구하는 메탄가보다 낮을 수 있으므로 주의가 필요하다.
이를 위해 종래에는 강제발생 기화가스를 별도의 쿨링을 통해 저온으로 유지하여 헤비카본성분들이 액상으로 남아 기액분리기에서 걸러질 수 있도록 사용하였다. 보통 헤비카본이 5bar에서 비등점이 대략 -80도에 해당하고 17bar에서는 비등점이 -70도에 해당한다.
도 1을 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에 저장된 액화가스를 가압하는 부스팅 펌프(30), 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 강제기화기(41)로부터 강제기화된 액화가스를 공급받아 메탄가를 조절하는 기액분리기(42), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며 부스팅 펌프(30), 강제기화기(41) 및 기액분리기(42)를 구비하는 제2 라인(L2)을 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제2 라인(L2)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고 제2 라인(L2) 상에 부스팅 펌프(30), 강제기화기(41) 및 기액분리기(42)를 구비하여, 제2 라인(L2)의 기액분리기(42)에서 메탄가가 조절된 연료를 추진엔진(21)으로 공급할 수 있다.
이에 더하여 본 발명의 실시예에서는, 부스팅 펌프(30)가 액화가스 저장탱크(10)에 저장된 액화가스를 15 내지 20bar로 압축한 후 강제기화기(41)로 공급하고, 강제기화기(41)에서 액화가스를 강제기화시킨 후 기액분리기(42)로 공급하며, 기액분리기(42)는 별도의 쿨링장치 없이 강제기화기(41)로부터 강제기화된 액화가스를 기액분리하여 메탄가 조절을 수행할 수 있다.
종래의 경우에는 부스팅 펌프가 액화가스 저장탱크에 저장된 액화가스를 5 내지 7bar로 가압하여 강제기화기로 공급하고, 강제기화기는 액화가스를 강제기화시켜 기액분리기로 공급하므로, 기액분리기는 5 내지 7bar의 상태인 강제기화된 액화가스를 공급받게된다.
보통 자연발생증발가스 그대로 추진엔진의 연료로 사용하는 경우에는 증발가스의 경우 액화가스에서 증발가스로 변화하면서 메탄가가 조절되므로 메탄가 조절이 불필요한데 반해, 액화가스를 강제기화시킨 강제발생 증발가스를 추진엔진의 연료로 공급하기 위해서는 메탄가 조절을 한 후 공급해야 한다.
구체적으로 종래의 메탄가 조절은, 부스팅 펌프에 의해 5bar까지 가압된 액화가스를 강제기화기에서 -163도에서 대략 -65 내지 -75도까지 가열한 후 다시 -80도 이하까지 냉각시켜 기액분리기로 공급하였다. 이때, 5bar -80도의 강제기화된 액화가스 중 헤비카본은 비등점 이하로 떨어지므로 액상으로 잔류하게 되고, 그 외의 카본들은 기상상태로 추진엔진으로 공급되게 된다. 즉, 메탄가 조절은 메탄가를 낮추도록 하는 과정이다.
상기 기술한 바와 같이 종래의 경우에는 부스팅 펌프의 구동을 5bar 내지 7bar로 제어함으로써, 기액분리기는 메탄가 조절에 별도의 쿨링이 필요한 문제점이 있었다. 더욱이 상기 쿨링작업은 액화가스 저장탱크에 저장된 액화가스로 이루어지는 경우가 있어 운송물의 보존 차원에서는 불이익이 발생하는 문제점이 있다.
이를 해결하기 위해 본 발명의 실시예에서는, 상기 기술한 바와 같이 추진엔진(21)에 강제기화된 액화가스를 연료공급시 부스팅 펌프(30)가 액화가스를 15 내지 20bar로 가압하도록 제어하여, 별도의 쿨링장치 없이도 기액분리기(42)에서 메탄가 조절이 이루어지도록 하고 있다.
액화가스가 15 내지 20bar로 가압되는 경우 강제기화기에서 -163도에서 -65 내지 -75도까지 가열되더라도 헤비카본의 비등점을 넘지 않기 때문에(17bar에서는 비등점이 -70까지 올라감) 헤비카본은 액상으로 잔류하게 된다. 이로 인해 기액분리기(42)에서는 별도의 쿨링장치가 없어도 메탄가 조절이 이루어질 수 있다.
이와 같이 본 발명의 실시예에서는 추진엔진(21)에 강제기화된 액화가스를 연료공급시 부스팅 펌프(30)가 액화가스를 15 내지 20bar로 가압하도록 제어하여, 별도의 쿨링장치를 구비하지 않고도 기액분리기(42)에서 메탄가 조절이 이루어질 수 있어, 시스템 구축비용이 절감되고, 운송물을 최대한 보호할 수 있다.
또한, 본 발명의 실시예에서는, 추진엔진(21)이 오작동을 일으키거나 작동중단되는 경우, 부스팅 펌프(30)가 5 내지 10bar로 액화가스 저장탱크(10)에 저장된 액화가스를 가압하여 발전연료로 발전엔진(22)으로 공급하도록 제어할 수 있다. 이때 강제기화기(41)는, 5 내지 10bar로 가압된 액화가스를 -90 내지 -130도의 온도까지만 가열하여 강제기화시킨 후 기액분리기(42)로 공급할 수 있다. 이 경우 강제기화된 액화가스 중 헤비카본은, 비등점(5bar에서는 비등점이 -80임)을 넘지 않으므로 액상으로 잔류하고 메탄가가 조절될 수 있다.
이와 같이 본 발명의 실시예에서는 추진엔진(21)의 가동조건에 따라 부스팅 펌프(30)의 가압압력을 조절하여, 추진엔진(21)의 가동 조건에 따라 메탄가 조절의 비등점을 조절함으로서 별도의 쿨링장치를 구비하지 않고도 기액분리기(42)에서 메탄가 조절이 이루어질 수 있다. 이로 인해 시스템 구축비용이 절감되고, 운송물을 최대한 보호할 수 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 추진엔진(21)의 가동 조건에 따라 증발가스 압축기(50)가 토출하는 압력이 발전엔진(22)이 요구하는 압력에 맞추어 토출되도록 하는 기술을 포함할 수 있다.
도 1을 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 추진엔진(21)의 작동여부를 판단하여 발전엔진(22)의 연료 유입 압력을 제어하는 제어부(72), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며 증발가스 압축기(50)를 구비하는 제1 라인(L1), 제1 라인(L1) 상의 증발가스 압축기(50)의 하류에 분기되어 발전엔진(22)과 연결하는 제7 라인(L7)을 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고, 제1 라인(L1) 상에 증발가스 압축기(50)를 구비하여, 증발가스 압축기(50)에 의해 압축된 증발가스를 추진엔진(21)에 공급할 수 있다. 또한, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 증발가스 압축기(50)가 토출하는 압력이 발전엔진(22)이 요구하는 압력에 맞추어 토출되도록 할 수 있다.
이에 더하여 본 발명의 실시예에서는, 추진엔진(21)의 작동여부를 판단하여 발전엔진(22)의 연료 유입 압력을 제어하는 제어부(72), 증발가스 압축기(50)의 상류에 배치되어 증발가스 압축기(50)로 유입되는 증발가스의 유량을 제어하는 유량제어장치(501), 증발가스 압축기(50) 하류에서 상류로 리턴되는 제8 라인(L8) 및 제1 라인(L1) 상의 증발가스 압축기(50) 하류에 배치되는 밸브(502)를 더 포함할 수 있다.
제어부(72)는, 추진엔진(21)의 작동여부를 판단하여 발전엔진(22)의 연료 유입 압력을 제어하기 위한 세 가지 실시예를 가지며 이하에서 이를 설명하도록 한다.
먼저 제1 실시예로 제어부(72)는, 증발가스 압축기(50)에서 압축된 증발가스를 추진엔진(21) 또는 발전엔진(22) 중 어느 하나로 공급할 지 여부를 판단하여, 증발가스 압축기(50)가 증발가스를 추진엔진(21)이 요구하는 압력으로 압축하여 토출시키거나 발전엔진(22)이 요구하는 압력으로 압축하여 토출시키도록 증발가스 압축기(50)를 가변주파수드라이브(Variable-Frequency Drive) 제어할 수 있다. 여기서 추진엔진(21)이 요구하는 압력은 15 내지 20bar일 수 있으며, 발전엔진(22)이 요구하는 압력은 5 내지 10bar일 수 있다.
구체적으로, 추진엔진(21)이 오작동 또는 작동정지되는 경우, 제어부(72)는, 추진엔진(21)의 구동을 정지시키고 발전엔진(22)을 가동할 수 있다. 이를 위해 제어부(72)는, 증발가스 압축기(50)를 가변주파수드라이브 제어하여 증발가스 압축기(50)가 증발가스를 발전엔진(22)이 요구하는 압력으로 압축하여 토출하도록 하고, 증발가스 압축기(50)에서 토출된 증발가스를 추진엔진(21)이 아닌 발전엔진(22)으로 공급하도록 할 수 있다.
또한, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 부스팅 펌프(30), 강제기화기(41)를 구비하는 제2 라인(L2)을 더 포함할 수 있다.
이때, 제어부(72)는, 증발가스 압축기(50)뿐만 아니라 추가로 부스팅 펌프(30)를 가변주파수드라이브 제어하여, 추진엔진(21)으로 공급시 부스팅 펌프(30)가 액화가스를 추진엔진(21)이 요구하는 압력으로 가압하도록 하고, 발전엔진(22)으로 공급시 부스팅 펌프(30)가 액화가스를 발전엔진(22)이 요구하는 압력으로 가압하도록 할 수 있다.
이와 같이 본 발명의 실시예에서는, 제어부(72)를 통해 증발가스 압축기(50)를 가변주파수드라이브 제어함으로써, 추진엔진(21)의 상태에 따라 발전엔진(22)이 요구하는 압력으로 증발가스의 압력을 조절하여 발전엔진(22)으로의 공급이 가능하게 되므로, 구축 비용이 절감되고 탄력적인 연료의 공급이 가능해지는 효과가 있다.
제2 실시예로 제어부(72)는, 증발가스 압축기(50)에서 압축된 증발가스를 추진엔진(21) 또는 발전엔진(22) 중 어느 하나로 공급할 지 여부를 판단하여, 제1 라인(L1) 또는 제8 라인(L8) 상에 유동하는 액화가스 및/또는 증발가스의 흐름을 제어할 수 있다.
구체적으로, 제어부(72)는, 추진엔진(21)이 오작동 또는 작동 정지되는 경우, 증발가스 압축기(50)에서 토출되는 증발가스 중 적어도 일부를 제8 라인(L8) 상에 유동하도록 제어하여 증발가스 압축기(50)에서 토출되는 증발가스의 압력이 발전엔진(22)이 요구하는 압력이 되도록 할 수 있다. 여기서 제8 라인(L8) 상에 유동하는 증발가스는 증발가스 압축기(50) 상류로 공급될 수 있으며, 밸브(502)는 삼방밸브일 수 있다.
이때, 제어부(72)는, 증발가스 압축기(50)에서 토출되어 발전엔진(22)이 요구하는 압력이 된 나머지 일부의 증발가스를 제7 라인(L7) 상에 유동하도록 제어함으로써, 증발가스 압축기(50)에서 압축된 증발가스가 추진엔진(21)이 아닌 발전엔진(22)으로 공급되도록 제어할 수 있다.
이와 같이 본 발명의 실시예에서는, 제어부(72)를 통해 증발가스 압축기(50)에서 토출되는 증발가스 중 적어도 일부를 증발가스 압축기(50) 상류로 리턴시키도록 제어함으로써, 추진엔진(21)의 상태에 따라 발전엔진(22)이 요구하는 압력으로 증발가스의 압력을 조절하여 발전엔진(22)으로의 공급할 수 있다.
제3 실시예로 제어부(72)는, 증발가스 압축기(50)에서 압축된 증발가스를 추진엔진(21) 또는 발전엔진(22) 중 어느 하나로 공급할 지 여부를 판단한 후, 증발가스 압축기(50)가 추진엔진(21)이 요구하는 압력 또는 발전엔진(22)이 요구하는 압력으로 증발가스를 압축하도록 유량제어장치(501)를 제어할 수 있다. 여기서 유량제어장치(501)는, 인렛가이드베인(Inlet Guide Vain; IGV)일 수 있으며, 증발가스 압축기(50)로 유입되는 증발가스의 유량을 제어하여 증발가스 압축기(50)에서 토출되는 증발가스의 압력이 피동적으로 조절되도록 할 수 있다.
구체적으로, 제어부(72)는, 추진엔진(21)이 오작동 또는 작동 정지되는 경우, 증발가스 압축기(50)로 유입되는 증발가스의 유량이 줄어들도록 유량제어장치(501)를 가동하며, 이로 인해 증발가스 압축기(50)가 발전엔진(22)이 요구하는 압력으로 증발가스를 압축하도록 할 수 있다.
이때, 제어부(72)는, 유량제어장치(501)와 증발가스 압축기(50) 하류에 구비되는 밸브(502)를 함께 작동시켜 상기의 제3 실시예를 구현할 수 있다.
제어부(72)는, 추진엔진(21)이 오작동 또는 작동 정지되는 경우, 밸브(502)의 개도를 증가시키고 유량제어장치(501)를 가동하여, 줄어든 증발가스량을 공급받는 증발가스 압축기(50)가 토출하는 압축된 증발가스를 발전엔진(22)이 공급받도록 하고, 추진엔진(21)이 정상작동하는 경우, 밸브(502)의 개도를 감소시키고 유량제어장치(501)를 정지시켜, 증발가스 압축기(50)에서 토출하는 압축된 증발가스를 추진엔진(21)이 공급받도록 할 수 있다.
이와 같이 본 발명의 실시예에서는, 제어부(72)를 통해 유량제어장치(501)를 제어함으로써, 증발가스 압축기(50)로 유입되는 증발가스의 유량을 제어하여 증발가스 압축기(50)에서 토출되는 압력이 피동적으로 변경되도록 하고, 이로 인해 추진엔진(21)의 상태에 따라 발전엔진(22)이 요구하는 압력으로 증발가스의 압력을 조절하여 발전엔진(22)으로의 공급할 수 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 가싱업(Gassing-up)시 수행되는 LNG 기화기(60)를 강제기화기(41)에 보조하도록 구성하여 강제기화기(41)를 통한 연료공급의 안전성을 향상시키도록 하는 기술을 포함할 수 있다.
도 7을 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에 저장된 액화가스를 가압하는 부스팅 펌프(30), 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 외부 저장소(Shore)로부터 액화가스를 공급받거나 또는 액화가스 저장탱크(10)로부터 액화가스를 공급받아 기화시켜 액화가스 저장탱크(10)로 복귀시키는 LNG 기화기(60), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며 부스팅 펌프(30), 강제기화기(41)를 구비하는 제2 라인(L2), 외부 저장소와 액화가스 저장탱크(10)를 연결하거나 또는 액화가스 저장탱크(10)와 액화가스 저장탱크(10)를 연결하며 LNG 기화기(60)를 구비하는 제3 라인(L3) 및 제2 라인(L2)과 제3 라인(L3)을 연결하는 제9 라인(L9)을 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제2 라인(L2)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고 제2 라인(L2) 상에 부스팅 펌프(30), 강제기화기(41)를 구비하여, 강제기화기(41)에 의해 강제 기화된 액화가스가 추진엔진(21)으로 공급될 수 있다. 또한, 제3 라인(L3)을 통해 외부 저장소와 액화가스 저장탱크(10)를 연결하거나 또는 액화가스 저장탱크(10)와 액화가스 저장탱크(10)를 연결하고(이때, 제2 라인(L2) 상에서 분기되어 LNG 기화기(60)를 연결한 후 다시 다른 액화가스 저장탱크(10)와 연결되도록 형성될 수 있다.) LNG 기화기(60)를 구비하여, 가싱업 시에 액화가스를 기화시켜 액화가스 저장탱크(10)로 공급할 수 있다.
여기서 제3 라인(L3)이 액화가스 저장탱크(10)와 액화가스 저장탱크(10)를 서로 연결하는 이유는, 액화가스 저장탱크(10)가 선박에 복수 개 설치되고,(일례로 제1 액화가스 저장탱크(10) 및 제2 액화가스 저장탱크(10)가 구비) 비상시 또는 기타 경우에 제2 액화가스 저장탱크(10)에서 비어있는 제1 액화가스 저장탱크(10)로 액화가스를 공급해야할 필요가 있을 경우 활용해야 하기 때문이다.
이에 더하여 본 발명의 실시예에서는, 제2 라인(L2)과 제3 라인(L3)을 연결하는 제9 라인(L9)을 더 포함할 수 있다.
제9 라인(L9)은, 제3 라인(L3)의 LNG 기화기(60)의 하류에서 분기되어 제2 라인(L2)의 강제기화기(41)의 하류에 연결될 수 있다. 이 경우 LNG 기화기(60)는, 액화가스 기화시 수용 가능한 압력이 강제기화기(41)의 수용가능압력과 동일할 수 있으며, 대략 15 내지 20bar일 수 있다.
즉, 본 발명의 실시예에서는 강제기화기(41)가 오작동 또는 작동정지되는 경우 LNG 기화기(60)를 사용하여 추진엔진(21)에 강제기화된 액화가스를 공급할 수 있다.
구체적으로, 강제기화기(41)가 오작동 또는 작동정지되는 경우, 액화가스 저장탱크(10)에 저장된 액화가스를 부스팅 펌프(30)가 15 내지 20bar로 가압하여 제 3 라인(L3)을 통해 LNG기화기(60)로 보내고, LNG 기화기(60)에서 강제기화된 액화가스가 제9 라인(L9)을 통해서 제2 라인(L2)의 강제기화기 하류로 공급된 후 제2 라인(L2)을 통해 추진엔진(21)으로 공급될 수 있다.
이와 같이 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 가싱업(Gassing-up)시 수행되는 LNG 기화기(60)를 강제기화기(41)에 보조하도록 구성하여 강제기화기(41)를 통한 연료공급의 안전성을 향상시킬 수 있고 신뢰성이 증대될 수 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)의 단열부(101)에 액화가스가 누수시 이를 증발가스 압축기(50)로 흡입하도록 구성하는 기술을 포함할 수 있다.
도 4을 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 단열부(101)를 가지는 액화가스 저장탱크(10), 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 액화가스 저장탱크(10)에 저장된 액화가스를 가압하는 부스팅 펌프(30), 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 액화가스 저장탱크(10)의 단열부(101)에 액화가스가 누출되는 경우 단열부(101)에 누출된 액화가스가 증발가스 압축기(50)로 흡입되도록 증발가스 압축기(50)를 제어하는 제어부(73), 단열부(101)의 액화가스 누출 여부를 감지하는 감지센서(81), 강제기화기(41)로부터 강제기화된 액화가스를 공급받아 액화가스의 상분리를 수행하는 기액분리기(42), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며 증발가스 압축기(50)를 구비하는 제1 라인(L1), 액화가스 저장탱크(10)와 제1 라인(L1) 상의 증발가스 압축기(50)의 하류를 연결하며 부스팅 펌프(30), 강제기화기(41), 기액분리기(42)를 구비하는 제2 라인(L2), 액화가스 저장탱크(10)의 단열부(101)와 제2 라인(L2)을 연결하는 제10 라인(L10), 제2 라인(L2)과 제1 라인(L1)을 연결하는 제11a 라인(L11a) 및 제11b 라인(L11b)을 주요 구성으로 포함할 수 있다. 여기서 단열부(101)는, 액화가스 저장탱크(10)에 마련되는 IBS(InterBarrier Space)일 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고, 제1 라인(L1) 상에 증발가스 압축기(50)를 구비하여 증발가스 압축기(50)에서 압축된 증발가스를 추진엔진(21)으로 공급할 수 있다. 또한, 제2 라인(L2)을 통해 액화가스 저장탱크(10) 제1 라인(L1) 상의 증발가스 압축기(50) 하류를 연결하며 제2 라인(L2) 상에 부스팅 펌프(30), 강제기화기(41) 및 제1 히터(43)를 구비하여, 제1 라인(L1)을 통해 추진엔진(21)으로 공급되는 연료를 보충할 수 있다.
이에 더하여 본 발명의 실시예에서는, 액화가스 저장탱크(10)의 단열부(101)와 제2 라인(L2)을 연결하는 제10 라인(L10), 액화가스 저장탱크(10)의 단열부(101)에 액화가스의 누수 여부를 판단하여 증발가스 압축기(50)를 통해 누수된 액화가스를 흡입하도록 제어하는 제어부(73), 단열부(101)에 액화가스의 누수여부를 감지하는 감지센서(81), 제2 라인(L2)의 강제기화기(41)와 기액분리기(42) 사이에서 분기되어 제1 라인(L1)의 증발가스 압축기(50) 상류를 연결하는 제11a 라인(L11a)을 더 포함할 수 있다.
제어부(73)는, 단열부(101)에 액화가스가 누출되는 경우, 단열부(101)에 누출된 액화가스를 강제기화기(41)로 강제기화시킨 후, 강제기화된 액화가스를 증발가스 압축기(50)가 흡입하도록 제어할 수 있다. 이때, 제어부(73)는, 감지센서(81)로부터 유선 또는 무선으로 단열부(101)로의 액화가스 누출여부를 수신받을 수 있다.
구체적으로, 제어부(73)는, 단열부(101)에 액화가스가 누출되었다는 정보를 감지센서(81)로부터 유선 또는 무선으로 수신받고, 제10 라인(L10)을 통해 단열부(101)에 누출된 액화가스를 강제기화기(41)로 공급하여, 단열부(101)에 누출된 액화가스를 강제기화기(41)로 강제기화시킨 후, 제11a 라인(L11a)을 통해 강제기화된 액화가스를 증발가스 압축기(50)가 흡입하도록 제어할 수 있다. 이때, 제어부(73)는, 증발가스 압축기(50)를 가동하여, 단열부(101)에 음압이 걸리도록 함으로써, 증발가스 압축기(50)가 단열부(101)에 누출된 액화가스를 흡입하도록 제어할 수 있다.
또한, 본 발명의 실시예에서는, 제11a 라인(L11a) 대신 제2 라인(L2)의 기액분리기(42) 하류에서 분기되어 제1 라인(L1)의 증발가스 압축기(50) 상류를 연결하는 제11b 라인(L11b)을 더 포함할 수 있다. 물론 이에 한정되지 않고 제11a 라인(L11a) 및 제11b 라인(L11b) 둘 다 구비될 수 있으나, 이하에서는 구체적인 설명을 위해 제11b 라인(L11b)만 구비되는 것으로 설명하도록 한다.
제어부(73)는, 단열부(101)에 액화가스가 누출되는 경우, 단열부(101)에 누출된 액화가스를 강제기화기(41)로 강제기화시킨 후 기액분리기(42)에서 분리된 기상만을 증발가스 압축기(50)가 흡입하도록 제어할 수 있다. 이를 통해 강제기화기(41)에서 강제기화된 액화가스 중에서도 액상이 포함될 우려가 있어 증발가스 압축기(50)의 구동효율이 떨어질 수 있는 문제점을 기액분리기(42)로서 해결할 수 있다.
구체적으로, 제어부(73)는, 단열부(101)에 액화가스가 누출되었다는 정보를 감지센서(81)로부터 유선 또는 무선으로 수신받고, 제10 라인(L10)을 통해 단열부(101)에 누출된 액화가스를 강제기화기(41)로 공급하여, 단열부(101)에 누출된 액화가스를 강제기화기(41)로 강제기화시키며, 강제기화된 액화가스를 기액분리기(42)로 공급하여 기액분리기(42)에서 기상과 액상으로 분리하도록 제어할 수 있다.
이후 제어부(73)는, 기액분리기(42)에서 분리된 기상을 제11b 라인(L11b)을 통해 증발가스 압축기(50)가 흡입하도록 제어하며, 기액분리기(42)에서 분리된 액상을 액화가스 저장탱크(10)로 복귀하도록 제어할 수 있다. 이때, 제어부(73)는, 증발가스 압축기(50)를 가동하여, 단열부(101)에 음압이 걸리도록 함으로써, 증발가스 압축기(50)가 단열부(101)에 누출된 액화가스를 흡입하도록 제어할 수 있다.
이와 같이 본 발명의 실시예에서는, 액화가스 저장탱크(10)의 단열부(101)에 액화가스가 누수시 이를 증발가스 압축기(50)로 흡입하도록 제어하여 액화가스 저장탱크(10)의 안전성을 향상시키고 시스템 구축 비용을 절감할 수 있는 효과가 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 증발가스 열교환기(521) 및 추가 증발가스 압축기(52)를 이용하여 액화가스 저장탱크(10)에서 발생된 증발가스를 효과적으로 재액화시킴과 동시에 증발가스의 사용을 효율적으로 수행하도록 하는 기술을 포함할 수 있다.
도 2를 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 증발가스 압축기(50)에서 압축된 증발가스를 추가 압축하는 추가 증발가스 압축기(52), 액화가스 저장탱크(10)에서 발생된 증발가스, 추가 증발가스 압축기(52)에 의해 추가 압축된 증발가스 또는 기액분리기(522)에서 분리된 기상의 증발가스 중 적어도 어느 하나를 서로 열교환시키는 증발가스 열교환기(521), 증발가스 열교환기(521)에서 열교환된 증발가스를 기상과 액상으로 분리하는 기액분리기(522), 증발가스 열교환기(522)에서 열교환된 증발가스를 감압 또는 팽창시키는 팽창밸브(523), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며 증발가스 압축기(50)를 구비하는 제1 라인(L1), 제1 라인(L1) 상의 증발가스 압축기(50)의 하류에서 분기되어 기액분리기(522)와 연결되며 추가 증발가스 압축기(52), 증발가스 열교환기(521), 팽창밸브(523)를 구비하는 제12 라인(L12) 및 기액분리기(522)와 증발가스 열교환기(521)를 연결하는 제13 라인(L13)을 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고, 제1 라인(L1) 상에 증발가스 압축기(50)를 구비하여 증발가스 압축기(50)에서 압축된 증발가스를 추진엔진(21)으로 공급할 수 있다. 여기서 증발가스 압축기(50)는, 액화가스 저장탱크(10)에서 만선 상태에 발생되는 자연발생 증발가스를 모두 처리할 수 있는 용량을 최대처리용량으로 가지도록 설계될 수 있다.
이에 더하여 본 발명의 실시예에서는, 제12 라인(L12)을 통해 제1 라인(L1)상의 증발가스 압축기(50) 하류에서 기액분리기(522)를 연결하고, 제12 라인(L12) 상에 추가 증발가스 압축기(52), 증발가스 열교환기(521), 팽창밸브(523)를 구비하여 증발가스 압축기(50)에서 압축된 증발가스 중 적어도 일부를 추가 증발가스 압축기(52)로 압축한 후 증발가스 열교환기(521)로 공급하여 재액화시키도록 할 수 있다.
본 발명의 실시예에서 추진엔진(21)은 저속 2행정 저압가스분사엔진으로 15 내지 20bar의 압력을 필요로한다. 이에, 증발가스 압축기(50) 또한 15 내지 20bar까지만 압축을 수행하게 된다.
따라서, 증발가스 열교환기(521)는, 증발가스 압축기(50)에서 압축된 증발가스 중 추진엔진(21)으로 공급되지 못한 증발가스를 추가 압축 없이 액화가스 저장탱크(10)에서 발생되는 증발가스와 열교환시키는 경우 압축된 증발가스의 압력이 15 내지 20bar에 불과하여 증발가스의 재액화가 이루어지지 않는 문제점이 있다.
이에 본 발명의 실시예에서는, 증발가스 열교환기(521)의 상류에 추가 증발가스 압축기(52)를 구비함으로써, 추가 압축된 증발가스를 증발가스 열교환기(521)가 공급받아 재액화시키므로 증발가스의 재액화가 실현되는 효과가 있다.
추가 증발가스 압축기(52)는 일례로 2단 내지 3단으로 구성될 수 있으며, 증발가스 압축기(50)에서 15 내지 20bar로 압축된 증발가스를 100 내지 150 또는 200 내지 400bar까지 추가 압축할 수 있다.
여기서, 증발가스 열교환기(521)는, 액화가스 저장탱크(10)에서 발생되는 증발가스를 제1 라인(L1)을 통해 공급받고, 추가 증발가스 압축기(52)에 의해 추가 압축된 증발가스를 제12 라인(L12)을 통해 공급받으며, 기액분리기(522)에서 분리된 기상을 제13 라인(L13)을 통해서 공급받을 수 있다. 이에 증발가스 열교환기(521)는, 액화가스 저장탱크(10)에서 공급되는 증발가스, 추가 증발가스 압축기(52)에 의해 추가 압축된 증발가스 또는 기액분리기(522)에서 분리된 기상 중 적어도 두 개 이상을 서로 열교환시킬 수 있다.
바람직하게 증발가스 열교환기(521)는, 추가 증발가스 압축기(52)에 의해 추가 압축된 증발가스를 액화가스 저장탱크(10)에서 공급되는 증발가스와 1차 열교환시킨 후 기액분리기(522)에서 분리된 기상과 2차 열교환시킬 수 있다. 이를 통해서 추가 압축된 증발가스의 재액화율이 극도로 향상되는 효과가 있다.
이때, 증발가스 열교환기(521)에서 열교환되어 재액화된 증발가스는 팽창밸브(523)에 의해 1 내지 7bar로 감압된 상태로 기액분리기(522)로 공급되며, 기액분리기(522)에서 기상과 액상으로 분리될 수 있다. 여기서 기상은 다시 증발가스 열교환기(521)로 공급되어 추가 압축된 증발가스에 냉열을 추가적으로 공급함으로써 재액화효율을 증대시킬 수 있고, 액상은 액화가스 저장탱크(10)로 복귀될 수 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 증발가스를 효과적으로 재액화시키고 증발가스의 사용을 더욱 효율적으로 수행하기 위해 상기 기술한 주요 구성들의 배치 변경을 통한 여섯 가지 실시예를 추가적으로 가질 수 있으며, 이하에서 이에 대해 설명하도록 한다.
먼저 제1 실시예로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 기액분리기(522)에서 분리된 기상을 증발가스 열교환기(521)를 경유하여 제1 라인(L1) 상의 증발가스 열교환기(521) 하류에 공급할 수 있다.
이를 위해 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 기액분리기(522)와 제1 라인(L1) 상의 증발가스 열교환기(521)와 증발가스 압축기(50) 사이를 연결하며 증발가스 열교환기(521)를 경유하는 제14 라인(L14)을 구비할 수 있다.
이를 통해서 기액분리기(522)에서 분리된 기상을 액화가스 저장탱크(10)에서 증발가스 압축기(50)로 공급되는 증발가스와 혼?d시킴으로써, 증발가스로 인한 액화가스 저장탱크(10)의 내압 상승이나 증발가스의 외부 방출을 최소화할 수 있다.
제2 실시예로 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 실시예에 더하여 액화가스 저장탱크(10)에 저장된 액화가스를 가압하는 부스팅 펌프(30), 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 액화가스 저장탱크(10)와 제1 라인(L1) 상의 증발가스 압축기(50)의 하류를 연결하며 부스팅 펌프(30), 강제기화기(41), 기액분리기(42)를 구비하는 제2 라인(L2)을 더 포함할 수 있다.
이와 같이 제2 실시예에서는 제1 실시예를 더해 부스팅 펌프(30), 강제기화기(41), 기액분리기(42)를 구비하는 제2 라인(L2)을 증발가스 압축기(50) 하류에 연결함으로써, 증발가스 압축기(50)의 부하가 감소되는 효과가 있다.
제3 실시예로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 실시예에 더하여 액화가스 저장탱크(10)에 저장된 액화가스를 가압하는 부스팅 펌프(30), 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 액화가스 저장탱크(10)와 제1 라인(L1) 상의 증발가스 압축기(50)의 상류를 연결하며 부스팅 펌프(30), 강제기화기(41), 기액분리기(42)를 구비하는 제16 라인(L16)을 더 포함할 수 있다. 제3 실시예에서 증발가스 압축기(50)는, 상기 기술한 증발가스 압축기(50)와 달리 선박이 최대선속을 가질 경우에 추진엔진(21)이 필요로 하는 증발가스량을 모두 처리 가능한 용량을 최대처리용량으로 가지도록 설계될 수 있다.
이와 같이 제3 실시예에서는 제1 실시예를 더해 부스팅 펌프(30), 강제기화기(41), 기액분리기(42)를 구비하는 제16 라인(L16)을 증발가스 압축기(50) 상류에 연결함으로써, 추진엔진(21)인 저속2행정 저압가스분사엔진의 로드 변화에 따라 강제기화기(41)로 증발가스를 추가 공급할 수 있어 탄력적으로 대응이 가능하며, 추진엔진(21)의 필요압력을 효율적으로 제어할 수 있는 효과가 있다.
제4 실시예로 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 기액분리기(522)에서 분리된 기상을 증발가스 열교환기(521)를 경유하여 제12 라인(L12) 상의 추가 증발가스 압축기(52)의 상류에 공급할 수 있다.
이를 위해 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 기액분리기(522)와 제12 라인(L12) 상의 추가 증발가스 압축기(52)의 상류를 연결하며 증발가스 열교환기(521)를 경유하는 제15 라인(L15)을 구비할 수 있다.
이를 통해서 기액분리기(522)에서 분리된 기상을 추가 증발가스 압축기(52)의 상류로 공급되는 압축된 증발가스와 혼?d시킴으로써, 증발가스 압축기(50)의 부하를 절감하고 그 크기를 최소화할 수 있다.
제5 실시예로 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제4 실시예에 더하여 액화가스 저장탱크(10)에 저장된 액화가스를 가압하는 부스팅 펌프(30), 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 액화가스 저장탱크(10)와 제1 라인(L1) 상의 증발가스 압축기(50)의 하류를 연결하며 부스팅 펌프(30), 강제기화기(41), 기액분리기(42)를 구비하는 제2 라인(L2)을 더 포함할 수 있다.
이와 같이 제5 실시예에서는 제4 실시예를 더해 부스팅 펌프(30), 강제기화기(41), 기액분리기(42)를 구비하는 제2 라인(L2)을 증발가스 압축기(50) 하류에 연결함으로써, 증발가스 압축기(50)의 부하가 감소되는 효과가 있다.
제6 실시예로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제4 실시예에 더하여 액화가스 저장탱크(10)에 저장된 액화가스를 가압하는 부스팅 펌프(30), 부스팅 펌프(30)로부터 가압된 액화가스를 공급받아 강제 기화시키는 강제기화기(41), 액화가스 저장탱크(10)와 제1 라인(L1) 상의 증발가스 압축기(50)의 상류를 연결하며 부스팅 펌프(30), 강제기화기(41), 기액분리기(42)를 구비하는 제16 라인(L16)을 더 포함할 수 있다. 제6 실시예에서 증발가스 압축기(50)는, 상기 기술한 증발가스 압축기(50)와 달리 선박이 최대선속을 가질 경우에 추진엔진(21)이 필요로 하는 증발가스량을 모두 처리 가능한 용량을 최대처리용량으로 가지도록 설계될 수 있다.
이와 같이 제6 실시예에서는 제4 실시예를 더해 부스팅 펌프(30), 강제기화기(41), 기액분리기(42)를 구비하는 제16 라인(L16)을 증발가스 압축기(50) 상류에 연결함으로써, 추진엔진(21)인 저속2행정 저압가스분사엔진의 로드 변화에 따라 강제기화기(41)로 증발가스를 추가 공급할 수 있어 탄력적으로 대응이 가능하며, 추진엔진(21)의 필요압력을 효율적으로 제어할 수 있는 효과가 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 추진엔진(21)으로 공급할 증발가스를 압축하는 증발가스 압축기를 별도의 구동원으로 구동되는 복수 개의 증발가스 압축기로 마련하여 증발가스 압축기의 백업을 위한 구성을 간소화하는 기술을 포함할 수 있다.
도 6을 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 제1 증발가스 압축기(54) 및 제2 증발가스 압축기(55), 제1 증발가스 압축기(54)와 제2 증발가스 압축기(55) 사이에 구비되는 버퍼 탱크(90), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며 제1 및 제2 증발가스 압축기(54,55)와 버퍼탱크(90)를 구비하는 제1 라인(L1), 제1 라인(L1) 상의 제1 증발가스 압축기(54)와 제2 증발가스 압축기(55) 사이에서 분기되어 발전엔진(22)과 연결되며 버퍼탱크(90)를 구비하는 제18 라인(L18)을 주요 구성으로 포함할 수 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고, 제1 라인(L1) 상에 제1 및 제2 증발가스 압축기(54,55)를 구비하여 제1 및 제2 증발가스 압축기(54,55)에서 압축된 증발가스를 추진엔진(21)으로 공급할 수 있다.
이때, 제1 및 제2 증발가스 압축기(54,55)는 서로를 백업할 수 있도록 서로 다른 별개의 구동원을 통해서 각각 구동된다. 즉 제1 증발가스 압축기(54)와 제2 증발가스 압축기(55)는 그 구동원이 서로 다르다.
이에 대해서는 하기에 구체적으로 설명하도록 한다.
제1 증발가스 압축기(54)는, 원심형 압축기로 대략 5 내지 10bar로 압축할 수 있으며, 제1 라인(L1) 상에 구비되는 버퍼탱크(90)의 상류에 배치될 수 있다. 이때, 제1 증발가스 압축기(54)는 극저온용 압축기일 수 있다. 또한, 버퍼탱크(90)는, 별도의 저장매체일 수 있지만, 제1 라인(L1)에서 임의 부분이 직경이 확대되는 등으로 제1 라인(L1) 상에 별도의 공간이 마련될 수도 있다.
제1 증발가스 압축기(54)는, 각각 병렬로 형성되는 제1a 증발가스 압축기(541)와 제1b 증발가스 압축기(542)로 구성될 수 있다. 이때 제1a 증발가스 압축기(541)와 제1b 증발가스 압축기(542)도 서로 다른 별개의 구동원으로 구동되며 서로를 백업할 수 있다.
일례로 제1a 증발가스 압축기(541)가 메인 압축기이고 제1b 증발가스 압축기(542)가 보조 압축기일 수 있으며, 제1a 증발가스 압축기(541)가 오작동을 일으키거나 작동불능이 되는 경우 제1b 증발가스 압축기(542)가 작동하여 제1a 증발가스 압축기(541)를 백업할 수 있으며, 제1a 증발가스 압축기(541)가 지정된 양의 증발가스를 모두 압축할 수 없는 경우, 제1a 증발가스 압축기(541)와 제1b 증발가스 압축기(542)가 함께 구동하면서 제1b 증발가스 압축기(542)가 제1a 증발가스 압축기(541)를 보조할 수 있다.
제2 증발가스 압축기(55)는, 왕복동형 압축기로 대략 15 내지 20bar로 제1 증발가스 압축기(54)에 의해 압축된 증발가스를 추가 압축할 수 있으며, 제1 라인(L1) 상이 구비되는 버퍼탱크(90)의 하류에 배치될 수 있다. 이때, 제2 증발가스 압축기(55)는 제1 증발가스 압축기(54)와 달리 보조용 압축기를 별도로 형성하지 않는다. 이때, 제2 증발가스 압축기(55)는 상온용 압축기일 수 있다.
제어부(74)는, 제1a, 제1b 및 제2 증발가스 압축기(541,542,55)의 구동 상태를 파악하여 제1a, 제1b 및 제2 증발가스 압축기(541,542,55)의 구동을 제어하고 제18 라인(L18) 상에 유동하는 액화가스 및/또는 증발가스의 유동을 제어할 수 있다. 이때 제18 라인(L18) 상에 유동하는 액화가스 및/또는 증발가스의 유동 제어는 별도로 마련되는 밸브(도시하지 않음)에 의해 제어될 수 있다.
구체적으로, 제어부(74)는, 제1a 증발가스 압축기(541)의 보조 또는 백업 필요시 제1b 증발가스 압축기(542)를 가동시킬 수 있고, 제2 증발가스 압축기(55)의 보조 또는 백업 필요시 일례로 제1a 증발가스 압축기(541)만 가동하여 제18 라인(L18)을 통해 발전엔진(22)으로 증발가스를 공급하도록 제어할 수 있다.
제어부(74)는, 제2 증발가스 압축기(55)의 보조 또는 백업 필요시 버퍼 탱크(90)에 제1 증발가스 압축기(54)에서 압축된 증발가스를 임시 저장 후 제18 라인(L18)으로 공급하여 발전엔진(22)으로 증발가스를 공급할 수 있다.
또한, 본 발명의 실시예에서는, 제1 및/또는 제2 증발가스 압축기(54,55)에 의해 압축된 증발가스를 추가 압축하는 제1 및 제2 추가 증발가스 압축기(56,57), 액화가스 저장탱크(10)에서 발생된 증발가스, 제1 및 제2 추가 증발가스 압축기(56,57)에 의해 추가 압축된 증발가스 또는 기액분리기(522)에서 분리된 기상의 증발가스 중 적어도 어느 하나를 서로 열교환시키는 증발가스 열교환기(521), 증발가스 열교환기(521)에서 열교환된 증발가스를 기상과 액상으로 분리하는 기액분리기(522), 증발가스 열교환기(522)에서 열교환된 증발가스를 감압 또는 팽창시키는 팽창밸브(523), 제1 라인(L1) 상의 제2 증발가스 압축기(55) 하류에서 분기되어 기액분리기(522)와 연결되며 제1 및 제2 추가 증발가스 압축기(56,57), 증발가스 열교환기(521), 팽창밸브(523)를 구비하는 제19 라인(L19), 제2 추가 증발가스 압축기(57)를 바이패스하는 제20 라인(L20)을 더 포함할 수 있다.
여기서, 증발가스 열교환기(521)는, 액화가스 저장탱크(10)에서 발생된 증발가스와 제1 및 제2 추가 증발가스 압축기(56,57)에 의해 추가 압축된 증발가스만을 열교환시킬 수 도 있으며 물론 이에 한정되지 않는다.
이때, 제어부(74)는, 제1 및 제2 증발가스 압축기(54,55)의 구동 상태를 파악하여 제1 및 제2 추가 증발가스 압축기(56,57)의 구동을 제어하고, 제20 라인(L20) 상에 유동하는 액화가스 및/또는 증발가스의 유동을 제어함으로써, 증발가스 열교환기(521)을 통한 증발가스의 재액화를 신뢰성 있게 구현할 수 있다. 이때 제20 라인(L20) 상에 유동하는 액화가스 및/또는 증발가스의 유동 제어는 별도로 마련되는 밸브(도시하지 않음)에 의해 제어될 수 있다.
구체적으로, 제어부(74)는, 제1 또는 제2 증발가스 압축기(54,55)의 정상작동시 제2 추가 증발가스 압축기(57)를 가동시키지 않고 제20 라인(L20)을 통해 바이패스하여 제1 추가 증발가스 압축기(56)로 바로 공급되도록 제어하고, 제1 또는 제2 증발가스 압축기(54,55)의 보조 또는 백업 필요시 제2 추가 증발가스 압축기(57)를 가동시킬 수 있다.
이때, 제2 추가 증발가스 압축기(57)는, 제1 또는 제2 증발가스 압축기(54,55)가 압축할 수 있는 용량과 동일하게 설계되어 제1 또는 제2 증발가스 압축기(54,55)의 오작동 또는 작동 정지시 제1 또는 제2 증발가스 압축기(54,55)가 압축하는 만큼 증발가스를 압축하여 제1 추가 증발가스 압축기(56)로 공급하도록 함으로써, 제1 또는 제2 증발가스 압축기(54,55)의 오작동 또는 작동 정지가 발생하더라도 증발가스 열교환기(521)에서 증발가스의 재액화가 연속성있게 구현되도록 할 수 있다.
일례로 제어부(74)는, 제2 추가 증발가스 압축기(57)가 제2 증발가스 압축기(55)가 압축할 수 있는 용량과 동일하게 설계되는 경우, 제2 증발가스 압축기(55)의 정상작동시 제2 증발가스 압축기(55)에 의해 압축된 증발가스가 제20 라인(L20)을 통해 제2 추가 증발가스 압축기(57)를 바이패스하여 제1 추가 증발가스 압축기(56)로 공급되도록 하고, 제2 증발가스 압축기(55)의 오작동 또는 작동 정지되는 경우, 제2 증발가스 압축기(55)가 압축하는 만큼 증발가스를 압축하여 제1 추가 증발가스 압축기(56)로 공급할 수 있다.
또한, 본 발명의 실시예에서는, 제 19 라인(L19) 상의 제1 추가 증발가스 압축기(56) 하류에 유동하는 증발가스의 압력을 측정하는 제1 압력센서(82) 및 제 1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력을 측정하는 제2 압력센서(83)를 더 포함할 수 있다. 이때, 제 1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력은, 제19 라인(L19) 상의 제2 추가 증발가스 압축기(57)의 상류의 압력과 동일하다.
이때, 제어부(74)는, 제1 압력센서(82)로부터 제 19 라인(L19) 상의 제1 추가 증발가스 압축기(56) 하류에 유동하는 증발가스의 압력 정보 또는 제2 압력센서(83)로부터 제 1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력 정보를 전달받아 제19 라인(L19) 상의 제1 추가 증발가스 압축기(56) 하류에 유동하는 증발가스의 압력상태 또는 제 1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력상태에 따라 제2 증발가스 압축기(55) 및 제1 및 제2 추가 증발가스 압축기(56,57)의 구동을 제어함으로써, 추진엔진(21)의 상태에 대한 탄력적인 대응이 가능해지고 증발가스 열교환기(521)을 통한 증발가스의 재액화를 신뢰성 있게 구현할 수 있다.
구체적으로, 제어부(74)는, 제19 라인(L19) 상의 제1 추가 증발가스 압축기(56) 하류에 유동하는 증발가스의 압력 정보를 제1 압력센서(82)로부터 유선 또는 무선의 형태로 수신받고, 제19 라인(L19) 상의 제1 추가 증발가스 압축기(56) 하류에 유동하는 증발가스의 압력이 기설정압력보다 증가하는 경우, 제1 또는 제2 추가 증발가스 압축기(56,57) 중 어느 하나의 증발가스 압축기가 증발가스를 비압축하도록 제어하고, 제19 라인(L19) 상의 제1 추가 증발가스 압축기(56) 하류에 유동하는 증발가스의 압력이 기설정압력보다 감소하는 경우, 제1 및 제2 추가 증발가스 압축기(56,57) 모두가 증발가스를 압축하도록 제어한다.
또한, 제어부(74)는, 제 1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력 정보를 제2 압력센서(83)로부터 유선 또는 무선의 형태로 수신받고, 제1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력이 기설정압력보다 증가하는 경우, 제1 또는 제2 증발가스 압축기(54,55) 중 어느 하나의 증발가스 압축기가 증발가스를 비압축하도록 제어하고, 제1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력이 기설정압력보다 감소하는 경우, 제1 또는 제2 증발가스 압축기(54,55) 모두가 증발가스를 압축하도록 제어한다.
또한, 본 발명의 실시예에서 제어부(74)는, 증발가스 열교환기(521)의 가동여부에 따라 제1 및 제2 추가 증발가스 압축기(56,57)의 구동을 제어할 수 있다.
구체적으로, 제어부(74)는, 증발가스 열교환기(521)가 가동되는 경우, 제1 또는 제2 증발가스 압축기(54,55) 모두가 증발가스를 압축하도록 제어하고, 증발가스 열교환기(521)가 가동 중단되는 경우, 제1 또는 제2 증발가스 압축기(54,55) 중 어느 하나의 증발가스 압축기가 증발가스를 비압축하도록 제어할 수 있다.
여기서 비압축 제어란 증발가스 압축기는 피스톤(도시지 않음)에 의해 구동되지만 흡기밸브(도시지 않음)와 배기밸브(도시지 않음)가 모두 열려 실질적으로 압축이 이루어지지 않도록 하는 제어를 말한다.
또한, 본 발명의 실시예에서는, 제2 증발가스 압축기(55), 제1 추가 증발가스 압축기(56)에서 압축된 증발가스를 각각의 압축기 후단에서 전단으로 바이패스하는 제1 및 제2 바이패스 라인(BL1, BL2)을 더 포함할 수 있다. 여기서, 각각의 제1 및 제2 바이패스 라인(BL1, BL2) 상에는 조절밸브(부호 도시하지 않음)가 구비되어 제1 및 제2 바이패스 라인(BL1, BL2)의 유량조절을 수행할 수 있으며, 추가로, 제2 바이패스 라인(BL2)에 병렬로 연결되는 제3 바이패스라인(BL3)을 더 포함할 수 있다. 제3 바이패스라인(BL3) 상에는 블록밸브(부호 도시하지 않음)가 구비될 수 있다.
이때, 제어부(74)는, 제1 압력센서(82)로부터 제 19 라인(L19) 상의 제1 추가 증발가스 압축기(56) 하류에 유동하는 증발가스의 압력 정보 또는 제2 압력센서(83)로부터 제 1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력 정보를 전달받아 제19 라인(L19) 상의 제1 추가 증발가스 압축기(56) 하류에 유동하는 증발가스의 압력상태 또는 제 1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력상태에 따라 제1 및 제2 바이패스 라인(BL1, BL2) 상에 유동하는 증발가스의 유동을 제어함으로써, 추진엔진(21)의 상태에 대한 탄력적인 대응이 가능해지고 증발가스 열교환기(521)을 통한 증발가스의 재액화를 신뢰성 있게 구현할 수 있다.
구체적으로, 제어부(74)는, 제19 라인(L19) 상의 제1 추가 증발가스 압축기(56) 하류에 유동하는 증발가스의 압력 정보를 제1 압력센서(82)로부터 유선 또는 무선의 형태로 수신받고, 제19 라인(L19) 상의 제1 추가 증발가스 압축기(56) 하류에 유동하는 증발가스의 압력이 기설정압력보다 증가하는 경우, 제1 추가 증발가스 압축기(56)에 의해 추가 압축된 증발가스가 제2 바이패스라인(BL2)을 통해 제1 추가 증발가스 압축기(56)의 후단에서 전단으로 바이패스되도록 제어하고, 제19 라인(L19) 상의 제1 추가 증발가스 압축기(56) 하류에 유동하는 증발가스의 압력이 기설정압력보다 감소하는 경우, 제1 추가 증발가스 압축기(56)에 의해 추가 압축된 증발가스가 증발가스 열교환기(521)로 공급되도록 제어할 수 있다.
또한, 제어부(74)는, 제 1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력 정보를 제2 압력센서(83)로부터 유선 또는 무선의 형태로 수신받고, 제1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력이 기설정압력보다 증가하는 경우, 제2 증발가스 압축기(55)에 의해 압축된 증발가스가 제1 바이패스라인(BL1)을 통해 제2 증발가스 압축기(55)의 후단에서 전단으로 바이패스되도록 제어하고, 제1 라인(L1) 상의 추진엔진(21) 상류에 유동하는 증발가스의 압력이 기설정압력보다 감소하는 경우, 제2 증발가스 압축기(55)에 의해 압축된 증발가스가 추진엔진(21) 또는 제1 추가 증발가스 압축기(56)로 공급되도록 제어할 수 있다.
또한, 본 발명의 실시예에서 제어부(74)는, 증발가스 열교환기(521)의 가동여부에 따라 제1 및 제2 바이패스 라인(BL1, BL2) 상에 유동하는 증발가스의 유동을 제어할 수 있다.
구체적으로, 제어부(74)는, 증발가스 열교환기(521)가 가동되는 경우, 제1 추가 증발가스 압축기(56)에 의해 추가 압축된 증발가스가 증발가스 열교환기(521)로 공급되도록 제어하고, 증발가스 열교환기(521)가 가동 중단되는 경우, 제1 추가 증발가스 압축기(56)에 의해 추가 압축된 증발가스가 제2 바이패스라인(BL2)을 통해 제1 추가 증발가스 압축기(56)의 후단에서 전단으로 바이패스되도록 제어할 수 있다.
이를 통해서 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제어부(74)의 제어를 통해 증발가스 열교환기(521)의 가동을 최소화하고 추진엔진(21)과 증발가스 열교환기(521)의 구동을 개별적으로 컨트롤 할 수 있어 매우 효율적인 증발가스의 처리가 가능해지는 효과가 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 발전엔진(22)의 작동여부에 따라 증발가스 압축기(50)의 압축단 중 적어도 일부의 단이 증발가스를 비압축하도록 제어하여 별도의 감압수단 없이도 발전엔진(22)으로 증발가스를 공급하는 기술을 포함할 수 있다.
도 2를 참고로 하여 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 발전엔진(22)의 작동여부에 따라 증발가스 압축기(50)의 복수 개의 압축단을 제어하는 제어부(75), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며 증발가스 압축기(50)를 구비하는 제1 라인(L1), 제1 라인(L1) 상의 증발가스 압축기(50) 하류에서 분기되어 발전엔진(22)과 연결되는 제7 라인(L7) 을 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고, 제1 라인(L1) 상에 증발가스 압축기(50)를 구비하여 증발가스 압축기(50)에서 압축된 증발가스를 추진엔진(21)으로 공급할 수 있다.
또한, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제7 라인(L7)을 통해 증발가스 압축기(50)에서 압축된 증발가스를 별도의 감압수단 없이 발전엔진(22)으로 공급할 수 있다.
이에 더하여 본 발명의 실시예에서는, 발전엔진(22)의 작동여부를 판단하여 증발가스 압축기(50)의 복수 개의 압축단을 제어함으로써, 발전엔진(22)의 연료 유입 압력을 제어하는 제어부(75)를 더 포함할 수 있다.
제어부(75)는, 발전엔진(22)의 작동여부에 따라 증발가스 압축기(50)의 압축단 중 적어도 일부의 단이 증발가스를 비압축하도록 제어할 수 있다.
구체적으로, 제어부(75)는, 발전엔진(22)만 작동하고 추진엔진(21)은 작동하지 않는 경우, 발전엔진(22)의 연료요구압력에 맞춰 증발가스 압축기(50)의 복수 개의 압축단 중 일부 압축단만 증발가스를 비압축하도록 제어하여 별도의 감압수단없이도 제7 라인(L7)을 통해 증발가스가 발전엔진(22)으로 공급되도록 제어하고, 발전엔진(22)은 작동하지 않고 추진엔진(21)만 작동하는 경우, 추진엔진(21)의 연료요구압력에 맞춰 증발가스 압축기(50)의 복수 개의 압축단 모두 증발가스를 압축하도록 제어하여 추진엔진(21)으로 증발가스가 공급되도록 제어할 수 있다.
이와 같이 본 발명의 실시예에서는, 제어부(75)를 통해 별도의 감압수단 없이도 발전엔진(22)이 요구하는 압력으로 증발가스의 압력을 조절하여 발전엔진(22)으로의 공급이 가능하게 되므로, 구축 비용이 절감되고 탄력적인 연료의 공급이 가능해지는 효과가 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 증발가스 압축기(50) 후단의 과압을 방지하기 위한 과압방지라인인 제21 라인(L21)을 로딩 또는 언로딩시 액화가스 저장탱크(10)에서 발생되는 증발가스를 처리하는 제4 라인(L4) 상에 적어도 일부 공유하도록 하여 과압방지라인을 안정적으로 구축할 수 있는 기술을 포함할 수 있다.
도 8을 참고로 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 로딩 또는 언로딩시 액화가스 저장탱크(10)에서 발생되는 증발가스를 압축하는 H/D 압축기(51), H/D 압축기(51)에서 압축된 증발가스를 가열하는 제2 히터(511), 액화가스 저장탱크(10)와 추진엔진(21)을 연결하며, 증발가스 압축기(50)를 구비하는 제1 라인(L1), 액화가스 저장탱크(10)에 발생된 증발가스가 다시 액화가스 저장탱크(10)로 재인입되도록 연결되며 H/D 압축기(51)를 구비하는 제4 라인(L4), 제1 라인(L1) 상의 증발가스 압축기(50) 하류에서 분기되어 제4 라인(L4)상의 제2 히터(511) 후단에 연결되는 제21 라인(L21)을 주요 구성으로 포함할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제1 라인(L1)을 통해 액화가스 저장탱크(10)와 추진엔진(21)을 연결하고 제1 라인(L1) 상에 증발가스 압축기(50)를 구비한다. 또한, 본 발명의 실시예에서는, 제4 라인(L4)을 통해 액화가스 저장탱크(10)에 발생된 증발가스가 다시 액화가스 저장탱크(10)로 재인입되도록 연결하고, 제4 라인(L4) 상에 H/D 압축기(51)를 구비할 수 있다.
이에 더해 본 발명의 실시예에서는, 제1 라인(L1) 상의 증발가스 압축기(50) 하류에서 분기되어 제4 라인(L4)상의 제2 히터(511) 후단에 연결되는 제21 라인(L21)을 더 포함할 수 있다. 즉, 제21 라인(L21)은, 로딩 또는 언로딩시 액화가스 저장탱크(10)에서 발생되는 증발가스를 처리하는 제4 라인(L4)을 적어도 일부 공유하도록 형성될 수 있다.
종래에 증발가스 압축기의 하류에 과압이 형성되는 경우 과압방지를 위한 과압방지라인을 별도로 마련하여 액화가스 저장탱크로 연결하였다. 그러나 증발가스 압축기에 의해 압축된 증발가스는 액화가스 저장탱크의 내압보다 매우 커 그대로 액화가스 저장탱크로 리턴시 액화가스 저장탱크가 과압으로 인해 부서질 우려가 있어 과압방지라인을 매우 길게 형성하여 과압방지라인 상에서 감압이 일어나도록 설계하였다. 이로 인해 종래에는 과압방지라인의 구축비용이 매우 많이 드는 문제점이 있었다.
이에 본 발명의 실시예에서는, 과압방지라인을 제21 라인(L21)과 같이 로딩 또는 언로딩시외에는 사용되지 않는 제4 라인(L4) 상에 적어도 일부 공유하도록 연결하여, 시스템 구축 비용을 절감하고 시스템 안전성을 향상시키고 있다.
구체적으로, 본 발명의 실시예에서는, 제2 압력센서(83)에 의해 측정된 증발가스 압축기(50) 하류의 압력 기설정압력보다 큰 경우, 증발가스 압축기(50) 에 의해 압축된 증발가스가 제21 라인(L21)을 통해 액화가스 저장탱크(10)로 공급되도록 제어할 수 있으며, 이러한 제어는 별도의 제어부(도시하지 않음) 및 제어부에 의해 구동되는 밸브(도시하지 않음) 및 이에 연동되는 기타장치(도시하지 않음) 에 의해 이루어질 수 있다.
본 발명의 실시예에 따른 가스 처리 시스템(1)은, 증발가스 압축기(50)에 의해 고압으로 압축된 증발가스는 증발가스 열교환기(521)로 바로 공급하고 추진엔진(21) 및 발전엔진(22)으로 공급할 증발가스는 증발가스 압축기(50)의 중간단에서 분기시켜 마련하는 기술을 포함할 수 있다.
도 5를 참고로 살펴본 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)에서 발생된 증발가스를 압축하는 증발가스 압축기(50), 액화가스 저장탱크(10)에서 발생된 증발가스, 증발가스 압축기(50)에 의해 압축된 증발가스 또는 기액분리기(522)에서 분리된 기상의 증발가스 중 적어도 어느 하나를 서로 열교환시키는 증발가스 열교환기(521), 증발가스 열교환기(521)에서 열교환된 증발가스를 기상과 액상으로 분리하는 기액분리기(522), 증발가스 열교환기(522)에서 열교환된 증발가스를 감압 또는 팽창시키는 팽창밸브(523), 액화가스 저장탱크(10)에서 다시 액화가스 저장탱크(10)로 연결되며 증발가스 압축기(50), 증발가스 열교환기(521), 기액분리기(522) 및 팽창밸브(523)를 구비하는 제22 라인(L22), 제22 라인(L22) 상의 증발가스 압축기(50) 제3 압축단과 제4 압축단 사이에서 분기되어 추진엔진(21)과 연결되는 제23 라인(L23), 제22 라인(L22) 상의 증발가스 압축기(50) 제2 압축단과 제3 압축단 사이에서 분기되어 발전엔진(22)과 연결되는 제24 라인(L24), 제22 라인(L22) 상의 증발가스 압축기(50) 하류에서 분기되어 증발가스 압축기(50) 제3 압축단과 제4 압축단 사이로 연결되는 제 25 라인(L25)을 주요 구성으로 포함할 수 있다. 여기서, 증발가스 열교환기(521)는, 액화가스 저장탱크(10)에서 발생된 증발가스와 증발가스 압축기(50)에 의해 압축된 증발가스만을 열교환시킬 수 도 있으며 물론 이에 한정되지 않는다.
이때, 증발가스 압축기(50)는, 증발가스의 흐름을 기준으로 상류에서 하류로 갈수록 제1 내지 제5 압축단을 형성할 있으며, 최종 토출압력을 15 내지 20bar가 아닌 100 내지 150bar 또는 200 내지 400bar로 설계될 수 있다.
일례로 증발가스를 증발가스 압축기(50)의 제1 압축단에서는 1 내지 3bar 제2 압축단에서는 5 내지 10bar 제3 압축단에서는 15 내지 20bar 제4 압축단에서는 50 내지 100bar 제5 압축단에서는 100 내지 150bar로 가압할 수 있다.
구체적으로, 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 제22 라인(L22)을 통해 액화가스 저장탱크(10)에서 다시 액화가스 저장탱크(10)로 연결되며 제22 라인(L22) 상에 증발가스 압축기(50), 증발가스 열교환기(521), 기액분리기(522) 및 팽창밸브(523)를 구비한다. 즉, 제22 라인(L22)을 통해 액화가스 저장탱크(10)에서 발생된 증발가스를 증발가스 압축기(50)로 공급하고, 증발가스 압축기(50)는 액화가스 저장탱크(10)에서 발생된 증발가스를 다단 가압하여 고압으로 가압하고 이를 증발가스 열교환기(521)로 공급하여, 증발가스 열교환기(521)에서 증발가스의 재액화가 이루어지도록 한다. 이때, 재액화된 증발가스는 기액분리기(522)에서 기상과 액상으로 분리되어 액상은 액화가스 저장탱크(10)로 복귀되고 기상은 제22 라인(L22) 상의 증발가스 압축기(50) 상류에 합류될 수 있다.
또한, 본 발명의 실시예에서는, 제23 라인(L23)을 통해 증발가스 압축기(50)의 중간단에서 분기된 증발가스가 추진엔진(21)으로 공급되도록 하고, 제24 라인(L24)을 통해 증발가스 압축기(50)의 중간단에서 분기된 증발가스가 발전엔진(22)으로 공급되도록 할 수 있다.
이때, 제23 라인(L23)은, 증발가스 압축기(50) 제3 압축단과 제4 압축단 사이에서 분기되어 추진엔진(21)과 연결됨으로써, 증발가스 압축기(50)의 제3 압축단에서 토출되는 15 내지 20bar의 증발가스를 추진엔진(21)으로 공급할 수 있고, 제24 라인(L24)은, 증발가스 압축기(50) 제2 압축단과 제3 압축단 사이에서 분기되어 발전엔진(22)과 연결됨으로써, 증발가스 압축기(50)의 제2 압축단에서 토출되는 5 내지 10bar의 증발가스를 발전엔진(22)으로 공급할 수 있다.
이에 더해 본 발명의 실시예에서는, 제25 라인(L25)을 통해 증발가스 압축기(50)의 최종단에서 토출된 증발가스가 증발가스 압축기(50)의 중간단으로 리턴되도록 할 수 있다.
이때, 제25 라인(L25)은, 증발가스 압축기(50) 최종단에서 분기되어 증발가스 압축기(50)의 제3 압축단과 제4 압축단 사이에 연결됨으로써, 증발가스 압축기(50)의 최종단에서 토출되는 100 내지 250bar 또는 200 내지 400bar의 증발가스를 증발가스 압축기(50)의 제3 압축단과 제4 압축단 사이에 공급할 수 있다.
구체적으로, 제25 라인(L25)은, 증발가스 압축기(50) 최종단에서 분기되어 증발가스 압축기(50)의 제3 압축단과 제4 압축단 사이 중 제24 라인(L24)보다 상류에 연결되도록 하여, 추진엔진(21)에서 필요로 하는 연료량이 기설정유량 이상인 경우, 증발가스 압축기(50)의 최종단에서 토출되는 증발가스를 제24 라인(L24)으로 공급하도록 할 수 있다.
이를 통해 본 발명의 실시예에 따른 가스 처리 시스템(1)은, 추진엔진(21) 또는 발전엔진(22)에 적정압력의 증발가스를 공급함과 동시에 추가적인 증발가스 압축기의 구비없이도 증발가스 열교환기(521)에서 증발가스의 재액화가 이루어질 수 있도록 하여, 시스템 구축비용이 절감되는 효과가 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (16)

  1. 액화가스 저장탱크와 수요처를 연결하는 제1 공급라인;
    상기 제1 공급라인 상에 구비되며, 상기 액화가스 저장탱크에서 만선 상태에 발생되는 자연발생 증발가스를 모두 처리할 수 있는 용량을 최대처리용량으로 가지는 증발가스 압축기;
    상기 액화가스 저장탱크와 상기 제1 공급라인 상의 상기 증발가스 압축기 하류에 연결되는 제2 공급라인; 및
    상기 제2 공급라인 상에 구비되며, 상기 액화가스 저장탱크에 저장된 액화가스를 강제 기화시켜 강제발생 증발가스를 발생시키는 강제 기화기를 포함하는 것을 특징으로 하는 가스 처리 시스템.
  2. 제 1 항에 있어서,
    상기 액화가스 저장탱크에서 만선 상태에 발생되는 자연발생 증발가스만을 상기 수요처가 모두 소비할 경우 선박이 추진되는 속도를 기설정 속도라 할 때,
    상기 선박의 속도와 상기 기설정속도를 비교하여 상기 제1 공급라인 또는 상기 제2 공급라인 상의 증발가스 또는 액화가스의 유동을 제어하는 제어부를 포함하는 것을 특징으로 하는 가스 처리 시스템.
  3. 제 2 항에 있어서, 상기 제어부는,
    상기 선박의 속도가 상기 기설정 속도 이내인 경우, 상기 제1 공급라인을 통해서만 상기 액화가스 저장탱크 내의 증발가스를 상기 수요처로 공급하도록 제어하고,
    상기 선박의 속도가 상기 기설정 속도 초과인 경우, 상기 제1 공급라인 및 상기 제2 공급라인을 통해서 상기 액화가스 저장탱크 내의 액화가스 또는 증발가스를 상기 수요처로 공급하도록 제어하는 것을 특징으로 하는 가스 처리 시스템.
  4. 제 1 항에 있어서,
    상기 자연발생 증발가스의 양과 상기 수요처가 요구하는 연료량을 비교하여, 상기 제1 공급라인 또는 상기 제2 공급라인 상의 증발가스 또는 액화가스의 유동을 제어하는 제어부를 포함하는 것을 특징으로 하는 가스 처리 시스템.
  5. 제 4 항에 있어서, 상기 제어부는,
    상기 수요처가 요구하는 연료량이 상기 자연발생 증발가스의 양보다 많은 경우, 상기 제1 공급라인 및 상기 제2 공급라인을 통해서 상기 액화가스 저장탱크 내의 액화가스 또는 증발가스를 상기 수요처로 공급하도록 제어하는 것을 특징으로 하는 가스 처리 시스템.
  6. 제 5 항에 있어서,
    상기 액화가스 저장탱크에서 발생된 증발가스를 처리하는 가스연소장치를 더 포함하고,
    상기 수요처가 요구하는 연료량이 상기 자연발생 증발가스의 양보다 적은 경우, 상기 제1 공급라인을 통해서만 상기 액화가스 저장탱크 내의 증발가스를 상기 수요처 또는 상기 가스연소장치로 공급하도록 제어하는 것을 특징으로 하는 가스 처리 시스템.
  7. 제 1 항에 있어서,
    상기 증발가스 압축기에서 압축된 증발가스를 재액화시키는 재액화장치; 및
    상기 제1 공급라인 상에 분기되어 상기 재액화장치에 연결되는 제3 공급라인을 더 포함하는 것을 특징으로 하는 가스 처리 시스템.
  8. 제 1 항, 제 2 항, 제 4 항 또는 제 7 항 중 어느 한 항에 있어서,
    상기 수요처는, 저속 2행정 저압가스 분사엔진이며,
    상기 제2 공급라인 상에 구비되어, 상기 액화가스 저장탱크에 저장된 액화가스를 상기 수요처가 요구하는 압력으로 가압하여 상기 수요처로 공급하는 펌프를 더 포함하는 것을 특징으로 하는 가스 처리 시스템.
  9. 제 1 항, 제 2 항, 제 4 항 또는 제 7 항 중 어느 한 항에 있어서,
    상기 가스 처리 시스템을 포함하는 것을 특징으로 하는 선박.
  10. 제 1 항, 제 2 항, 제 4 항 또는 제 7 항 중 어느 한 항에 있어서,
    상기 수요처는, 저속 2행정 저압가스 분사엔진이며,
    상기 제2 공급라인 상에 구비되어, 상기 액화가스 저장탱크에 저장된 액화가스를 상기 수요처가 요구하는 압력으로 가압하여 상기 수요처로 공급하는 펌프를 더 포함하는 가스 처리 시스템을 포함하는 것을 특징으로 하는 선박.
  11. 제 1 항에 있어서,
    상기 제2 공급라인 상에 구비되며, 상기 증발가스 압축기에서 압축된 증발가스와 합류되기 전의 상기 강제기화기에서 강제 기화된 액화가스를 승온시키는 히터를 더 포함하는 것을 특징으로 하는 가스 처리 시스템.
  12. 제 11 항에 있어서, 상기 히터는,
    상기 증발가스 압축기에서 압축된 증발가스의 온도가 기설정온도 이상이면, 상기 강제기화기에서 강제 기화된 액화가스를 승온하지 않고,
    상기 증발가스 압축기에서 압축된 증발가스의 온도가 상기 기설정온도 미만이면, 상기 강제기화기에서 강제 기화된 액화가스를 승온시키는 것을 특징으로 하는 가스 처리 시스템.
  13. 제 11 항에 있어서, 상기 히터는,
    공선 상태에서 사용되는 것을 특징으로 하는 가스 처리 시스템.
  14. 제 11 항에 있어서, 상기 수요처는,
    저속 2행정 저압가스 분사엔진인 것을 특징으로 하는 가스 처리 시스템.
  15. 제 11 항에 있어서,
    상기 증발가스 압축기의 토출압력에 대응하여 가동되는 액화가스 펌프를 더 포함하는 것을 특징으로 하는 가스 처리 시스템.
  16. 제 11 항 내지 제 15 항 중 어느 한 항에 있어서,
    상기 가스 처리 시스템을 포함하는 것을 특징으로 하는 선박.
PCT/KR2016/007405 2015-11-05 2016-07-07 가스 처리 시스템 및 이를 포함하는 선박 WO2017078245A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018520516A JP6800967B2 (ja) 2015-11-05 2016-07-07 ガス処理システム及びこれを含む船舶
EP16862264.5A EP3372485A4 (en) 2015-11-05 2016-07-07 GAS TREATMENT SYSTEM AND CONTAINER THEREWITH
CN201680060727.6A CN108137133B (zh) 2015-11-05 2016-07-07 气体处理系统及包括其的船舶
US15/772,720 US10683831B2 (en) 2015-11-05 2016-07-07 Gas treatment system and vessel including the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20150155365 2015-11-05
KR10-2015-0155365 2015-11-05
KR1020160039634A KR101816387B1 (ko) 2015-04-07 2016-03-31 가스 처리 시스템 및 이를 포함하는 선박
KR10-2016-0039571 2016-03-31
KR10-2016-0039634 2016-03-31
KR1020160039571A KR101792405B1 (ko) 2015-04-07 2016-03-31 가스 처리 시스템 및 이를 포함하는 선박

Publications (1)

Publication Number Publication Date
WO2017078245A1 true WO2017078245A1 (ko) 2017-05-11

Family

ID=58662173

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2016/007405 WO2017078245A1 (ko) 2015-11-05 2016-07-07 가스 처리 시스템 및 이를 포함하는 선박
PCT/KR2016/007404 WO2017078244A1 (ko) 2015-11-05 2016-07-07 가스 처리 시스템 및 이를 포함하는 선박

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007404 WO2017078244A1 (ko) 2015-11-05 2016-07-07 가스 처리 시스템 및 이를 포함하는 선박

Country Status (7)

Country Link
US (2) US10683831B2 (ko)
EP (2) EP3372485A4 (ko)
JP (2) JP6873116B2 (ko)
KR (1) KR101938938B1 (ko)
CN (2) CN108137133B (ko)
PL (1) PL3372484T3 (ko)
WO (2) WO2017078245A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516917A (ja) * 2016-05-11 2019-06-20 イノベイティブ クライオジェニック システムズ, インコーポレイテッド ガス貯蔵および処理設備

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2998561C (en) * 2015-09-21 2023-09-19 Duncan Mayes A composite product and a process for producing said product
EP3372485A4 (en) * 2015-11-05 2019-07-24 Hyundai Heavy Industries Co., Ltd. GAS TREATMENT SYSTEM AND CONTAINER THEREWITH
KR101751854B1 (ko) * 2015-11-12 2017-06-28 대우조선해양 주식회사 선박
JP6703837B2 (ja) * 2016-01-07 2020-06-03 株式会社神戸製鋼所 ボイルオフガス供給装置
JP6882859B2 (ja) * 2016-07-05 2021-06-02 川崎重工業株式会社 運航管理システム
KR102394953B1 (ko) * 2017-12-28 2022-05-06 대우조선해양 주식회사 선박용 증발가스 재액화 시스템 및 방법
WO2019194670A1 (ko) * 2018-04-06 2019-10-10 현대중공업 주식회사 가스 처리 시스템 및 이를 포함하는 선박
KR20210027273A (ko) 2018-06-01 2021-03-10 스틸헤드 엘엔지 (에이에스엘엔지) 엘티디. 액화 장치, 방법, 및 시스템
WO2019241302A1 (en) * 2018-06-11 2019-12-19 Liftrock Llc Methods and apparati for quickset gas lift separation and liquid storage
CN109132251B (zh) * 2018-09-14 2024-08-20 丁玉龙 一种基于液态气体储能的离岸可再生能源输运系统及方法
KR102233192B1 (ko) * 2018-11-14 2021-03-29 대우조선해양 주식회사 선박용 연료 공급 시스템 및 방법
KR102189080B1 (ko) * 2018-12-04 2020-12-09 한국조선해양 주식회사 증발가스 재액화 시스템 및 이를 포함하는 선박
JP7394859B2 (ja) * 2019-01-02 2023-12-08 コリア シップビルディング アンド オフショア エンジニアリング カンパニー リミテッド 排気ガス処理装置及びこれを含む船舶
CN113677942B (zh) 2019-03-27 2023-06-09 Lge知识产权管理有限公司 冷却蒸发气体的方法和用于该方法的装置
KR102142940B1 (ko) * 2019-04-09 2020-08-11 가부시키가이샤 고베 세이코쇼 압축기 유닛 및 압축기 유닛의 정지 방법
JP6595143B1 (ja) * 2019-07-03 2019-10-23 株式会社神戸製鋼所 圧縮機ユニット及び圧縮機ユニットの制御方法
GB201912221D0 (en) * 2019-08-26 2019-10-09 Babcock Ip Man Number One Limited Method of cooling boil off gas and an apparatus therefor
KR102374651B1 (ko) * 2020-07-31 2022-03-14 현대중공업 주식회사 벙커링 선박
KR102374654B1 (ko) * 2020-07-31 2022-03-14 현대중공업 주식회사 벙커링 선박
CN112046686B (zh) * 2020-08-03 2022-12-13 沪东中华造船(集团)有限公司 一种乙烷运输船不可液化的高甲烷含量挥发气体处理系统
CN111891327A (zh) * 2020-08-05 2020-11-06 上海外高桥造船有限公司 一种原油货舱透气系统及包含其的海上浮式生产储油船
KR20220031150A (ko) 2020-09-03 2022-03-11 대우조선해양 주식회사 액화가스 운반선의 연료공급시스템 및 방법
CN112361208B (zh) * 2020-09-30 2022-06-17 中国船舶重工集团公司第七0四研究所 一种船用闪蒸天然气处理装置和方法
CN112628593B (zh) * 2020-12-11 2022-07-05 江南造船(集团)有限责任公司 一种液氢蒸发气处理系统及其控制方法
US20230400154A1 (en) * 2022-06-10 2023-12-14 Plug Power Inc. Systems and methods for mixing and dispensing gas at a controlled temperature using cryogenic fluid
KR102695329B1 (ko) * 2022-08-01 2024-08-16 한국가스공사 액화수소 공급 시스템 및 방법
JP7543469B1 (ja) 2023-03-08 2024-09-02 株式会社ジャパンエンジンコーポレーション 燃料供給装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252294A (ja) * 2002-03-05 2003-09-10 National Maritime Research Institute ハイブリッド型舶用推進装置
KR20060122155A (ko) * 2005-05-25 2006-11-30 삼성중공업 주식회사 전기추진 액화천연가스 수송선의 연료공급장치
JP4073445B2 (ja) * 2005-06-17 2008-04-09 株式会社川崎造船 液化天然ガス運搬船の蒸発ガス供給システム
KR101309631B1 (ko) * 2012-03-20 2013-09-17 에스티엑스조선해양 주식회사 Lng 연료 사용 선박의 연료공급 시스템
KR20150092771A (ko) * 2014-01-27 2015-08-17 현대중공업 주식회사 액화가스 처리 시스템

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2686079A (en) * 1951-03-13 1954-08-10 Athey Products Corp Side dump trailer
CH561620A5 (ko) * 1972-12-11 1975-05-15 Sulzer Ag
ES2369071T3 (es) 2000-02-03 2011-11-25 Gdf Suez Gas Na Llc Sistema de recuperación de vapor que utiliza compresor accionado por un turboexpansor.
KR20030073975A (ko) 2002-03-14 2003-09-19 대우조선해양 주식회사 엘앤지 운반선의 증발가스 처리 방법 및 시스템 장치
FR2870206B1 (fr) * 2004-05-14 2006-08-04 Alstom Sa Installation pour la fourniture de combustible gazeux a un ensemble de production energetique d'un navire de transport de gaz liquefie.
WO2006031634A1 (en) 2004-09-13 2006-03-23 Argent Marine Operations, Inc System and process for transporting lng by non-self-propelled marine lng carrier
KR100726293B1 (ko) 2005-10-18 2007-06-11 삼성중공업 주식회사 개선된 냉각장치를 포함하는 선박의 이중 연료 엔진의연료공급장치
KR100845819B1 (ko) 2006-12-20 2008-07-14 삼성중공업 주식회사 메탄가 제어가 가능한 액화천연가스 수송선의가스연료공급장치
KR101167148B1 (ko) 2007-04-20 2012-07-20 신영중공업주식회사 증발가스 재액화 장치
KR20080097141A (ko) * 2007-04-30 2008-11-04 대우조선해양 주식회사 인-탱크 재응축 수단을 갖춘 부유식 해상 구조물 및 상기부유식 해상 구조물에서의 증발가스 처리방법
KR200441890Y1 (ko) 2007-07-19 2008-09-16 대우조선해양 주식회사 Lng 운반선의 증발가스 처리 시스템
KR20100111139A (ko) 2009-04-06 2010-10-14 주식회사 이노칩테크놀로지 입력 장치 및 이를 갖는 전자 장치
AU2011280115A1 (en) 2010-07-21 2013-01-10 Synfuels International, Inc. Methods and systems for storing and transporting gases
KR101271041B1 (ko) * 2010-11-09 2013-06-04 삼성중공업 주식회사 연료가스 공급장치 및 방법
US20140060110A1 (en) 2011-03-11 2014-03-06 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel supply system for marine structure having reliquefaction apparatus and high-pressure natural gas injection engine
KR101106089B1 (ko) * 2011-03-11 2012-01-18 대우조선해양 주식회사 고압 천연가스 분사 엔진을 위한 연료 공급 방법
KR20120107835A (ko) * 2011-03-22 2012-10-04 대우조선해양 주식회사 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템
JP5715479B2 (ja) * 2011-05-02 2015-05-07 ジャパンマリンユナイテッド株式会社 ボイルオフガス処理装置及び液化ガスタンク
KR20130044019A (ko) 2011-10-21 2013-05-02 삼성중공업 주식회사 Bog 유량 제어 시스템 및 방법
KR101350807B1 (ko) * 2012-10-24 2014-01-16 대우조선해양 주식회사 선박용 엔진의 하이브리드 연료공급 시스템
KR101386543B1 (ko) 2012-10-24 2014-04-18 대우조선해양 주식회사 선박의 증발가스 처리 시스템
WO2014092368A1 (ko) 2012-12-11 2014-06-19 대우조선해양 주식회사 선박의 액화가스 처리 시스템
US20140352330A1 (en) * 2013-05-30 2014-12-04 Hyundai Heavy Industries Co., Ltd. Liquefied gas treatment system
KR101519541B1 (ko) * 2013-06-26 2015-05-13 대우조선해양 주식회사 증발가스 처리 시스템
KR20150017424A (ko) 2013-07-19 2015-02-17 현대중공업 주식회사 액화가스 연료공급 시스템
KR102033534B1 (ko) 2013-08-14 2019-10-17 대우조선해양 주식회사 Df 엔진의 연료가스 압력 제어 시스템 및 방법
KR20150028494A (ko) 2013-09-06 2015-03-16 대우조선해양 주식회사 Dfdg 연료가스 공급 시스템 및 방법
JP5746301B2 (ja) 2013-10-11 2015-07-08 三井造船株式会社 液化ガス運搬船用燃料ガス供給システム
KR102189743B1 (ko) 2013-11-28 2020-12-15 삼성중공업 주식회사 선박의 연료가스 공급 시스템 및 방법
KR101480255B1 (ko) 2013-12-06 2015-01-09 현대중공업 주식회사 액화가스 처리 시스템
KR101525728B1 (ko) * 2014-01-27 2015-06-03 현대중공업 주식회사 액화가스 처리 시스템 및 방법
KR20150013399A (ko) * 2014-12-15 2015-02-05 현대중공업 주식회사 액화가스 연료공급 시스템
RU2703355C2 (ru) * 2015-06-02 2019-10-16 Дэу Шипбилдинг Энд Марин Инджиниринг Ко., Лтд. Судно
EP3362353A4 (en) 2015-10-16 2019-07-31 Cryostar SAS METHOD OF EVAPORATION GAS TREATMENT APPARATUS FOR FEEDING AT LEAST ONE MOTOR
EP3372485A4 (en) * 2015-11-05 2019-07-24 Hyundai Heavy Industries Co., Ltd. GAS TREATMENT SYSTEM AND CONTAINER THEREWITH

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252294A (ja) * 2002-03-05 2003-09-10 National Maritime Research Institute ハイブリッド型舶用推進装置
KR20060122155A (ko) * 2005-05-25 2006-11-30 삼성중공업 주식회사 전기추진 액화천연가스 수송선의 연료공급장치
JP4073445B2 (ja) * 2005-06-17 2008-04-09 株式会社川崎造船 液化天然ガス運搬船の蒸発ガス供給システム
KR101309631B1 (ko) * 2012-03-20 2013-09-17 에스티엑스조선해양 주식회사 Lng 연료 사용 선박의 연료공급 시스템
KR20150092771A (ko) * 2014-01-27 2015-08-17 현대중공업 주식회사 액화가스 처리 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516917A (ja) * 2016-05-11 2019-06-20 イノベイティブ クライオジェニック システムズ, インコーポレイテッド ガス貯蔵および処理設備

Also Published As

Publication number Publication date
US20190203667A1 (en) 2019-07-04
CN108137132A (zh) 2018-06-08
KR20170053105A (ko) 2017-05-15
JP2019500258A (ja) 2019-01-10
PL3372484T3 (pl) 2024-08-12
EP3372484A1 (en) 2018-09-12
EP3372485A4 (en) 2019-07-24
KR101938938B1 (ko) 2019-01-15
EP3372485A1 (en) 2018-09-12
CN108137133B (zh) 2020-04-14
US10683831B2 (en) 2020-06-16
EP3372484A4 (en) 2019-06-12
WO2017078244A1 (ko) 2017-05-11
CN108137132B (zh) 2020-04-14
CN108137133A (zh) 2018-06-08
JP6873116B2 (ja) 2021-05-19
EP3372484C0 (en) 2024-04-03
EP3372484B1 (en) 2024-04-03
US20180320637A1 (en) 2018-11-08
JP2018534202A (ja) 2018-11-22
US11041466B2 (en) 2021-06-22
JP6800967B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2017078245A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2012124886A1 (ko) 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템
WO2012128448A1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 및 방법
WO2012128447A1 (ko) 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템
WO2014092368A1 (ko) 선박의 액화가스 처리 시스템
WO2014209029A1 (ko) 선박의 증발가스 처리 시스템 및 방법
WO2012124884A1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 방법
WO2014065618A1 (ko) 선박의 액화가스 처리 시스템
WO2017171164A1 (ko) 선박용 증발가스 재액화 장치 및 방법
WO2020017769A1 (ko) 휘발성 유기화합물 처리 시스템 및 선박
WO2013172644A1 (ko) 액화가스 처리 시스템 및 방법
WO2016195279A1 (ko) 선박
WO2018062601A1 (ko) 선박의 증발가스 재액화 장치 및 방법
WO2019194670A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2016195232A1 (ko) 선박
WO2019027065A1 (ko) 증발가스 재액화 시스템 및 증발가스 재액화 시스템 내의 윤활유 배출 방법
WO2016126025A1 (ko) 선박의 연료가스 공급시스템
WO2018230950A1 (ko) 증발가스 재액화 시스템 및 선박
WO2018124815A1 (ko) 연료가스 공급 시스템
WO2016195233A1 (ko) 선박
WO2019027063A1 (ko) 증발가스 재액화 시스템 및 증발가스 재액화 시스템 내의 윤활유 배출 방법, 그리고 엔진의 연료 공급 방법
WO2016195229A1 (ko) 선박
WO2016148318A1 (en) System for supplying fuel to engine of ship
WO2016195231A1 (ko) 선박
WO2023172074A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862264

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018520516

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016862264

Country of ref document: EP