WO2023172074A1 - 가스 처리 시스템 및 이를 포함하는 선박 - Google Patents

가스 처리 시스템 및 이를 포함하는 선박 Download PDF

Info

Publication number
WO2023172074A1
WO2023172074A1 PCT/KR2023/003197 KR2023003197W WO2023172074A1 WO 2023172074 A1 WO2023172074 A1 WO 2023172074A1 KR 2023003197 W KR2023003197 W KR 2023003197W WO 2023172074 A1 WO2023172074 A1 WO 2023172074A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
refrigerant
heat exchanger
liquefied gas
boil
Prior art date
Application number
PCT/KR2023/003197
Other languages
English (en)
French (fr)
Inventor
이재준
박종완
박민균
Original Assignee
한국조선해양 주식회사
주식회사 현대미포조선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220029677A external-priority patent/KR20230132672A/ko
Application filed by 한국조선해양 주식회사, 주식회사 현대미포조선 filed Critical 한국조선해양 주식회사
Publication of WO2023172074A1 publication Critical patent/WO2023172074A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2/14Heating; Cooling of liquid-freight-carrying tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation

Definitions

  • the present invention relates to a gas processing system and a vessel incorporating the same.
  • a ship is a means of transportation that sails the ocean carrying a large amount of minerals, crude oil, natural gas, or more than a thousand containers. It is made of steel and uses thrust generated through the rotation of a propeller while floating on the water surface due to buoyancy. Go through.
  • liquefied gases such as liquefied natural gas and liquefied petroleum gas as a fuel for ships, replacing gasoline or diesel.
  • Such liquefied gas is stored in a liquefied gas storage tank in liquid form.
  • Liquefied natural gas is reduced to 1/600 in volume by liquefaction
  • liquefied petroleum gas is reduced to 1/260 in volume by liquefaction, and 1/230 in butane by liquefaction. It has the advantage of high storage efficiency.
  • the present invention was created to solve the problems of the prior art as described above, and the purpose of the present invention is to suppress evaporation gas from the tank by injecting supercooled liquefied gas into the tank.
  • a gas processing system includes a liquefied gas storage tank; A cooling device that supercools and returns the liquefied gas in the liquefied gas storage tank; And a main compressor that pressurizes the boil-off gas of the liquefied gas storage tank and supplies it to a demander, wherein the cooling device includes a subcooler that supercools the liquefied gas with a refrigerant; And a gas heat exchanger that cools the refrigerant with at least one of evaporation gas discharged from the liquefied gas storage tank and delivered to the consumer or liquefied gas discharged from the liquefied gas storage tank and delivered to the consumer, the gas heat exchanger , has a refrigerant flow path through which a refrigerant flows, and a gas flow path through which at least one of liquefied gas or boil-off gas flows.
  • a boil-off gas line that delivers boil-off gas from the liquefied gas storage tank to the consumer; And it further includes a liquefied gas line that delivers liquefied gas from the liquefied gas storage tank to the demand source, wherein the boil-off gas line and the liquefied gas line may be provided to share the gas flow path of the gas heat exchanger.
  • a boil-off gas bypass line that branches off from the boil-off gas line and bypasses the gas heat exchanger
  • a liquefied gas bypass line that branches off from the liquefied gas line and bypasses the gas heat exchanger;
  • it may further include a control unit that controls the flow of the boil-off gas bypass line and the liquefied gas bypass line.
  • the cooling device further includes a refrigerant line through which a refrigerant circulates, the gas heat exchanger has a plurality of refrigerant passages connected to the refrigerant line, and the subcooler has a plurality of refrigerants in the gas heat exchanger. It may be provided on the refrigerant line that interconnects the flow paths.
  • the cooling device includes a refrigerant compressor that compresses refrigerant and delivers it to one of the refrigerant passages of the gas heat exchanger; And it may further include a refrigerant expander that expands the refrigerant discharged from one of the refrigerant passages of the gas heat exchanger and transfers it to the subcooler.
  • the gas heat exchanger includes: a boil-off gas heat exchanger that cools the refrigerant with boil-off gas discharged from the liquefied gas storage tank and delivered to the consumer; And a liquefied gas heat exchanger that cools the refrigerant with the liquefied gas discharged from the liquefied gas storage tank and delivered to the demand place, wherein the boil-off gas heat exchanger and the liquefied gas heat exchanger may be provided in series on the refrigerant line. there is.
  • the boil-off gas heat exchanger may have a gas flow path shared by the boil-off gas line and the liquefied gas line, and may be provided downstream of the liquefied gas heat exchanger based on the flow of the liquefied gas.
  • the cooling device further includes a refrigerant heat exchanger that exchanges heat with the refrigerant downstream of the refrigerant compressor and the refrigerant downstream of the subcooler, and the refrigerant heat exchanger may be provided in parallel with the gas heat exchanger.
  • the gas heat exchanger includes: a boil-off gas heat exchanger that cools the refrigerant with boil-off gas discharged from the liquefied gas storage tank and delivered to the consumer; And a liquefied gas heat exchanger that cools the refrigerant with the liquefied gas discharged from the liquefied gas storage tank and delivered to the demand source, wherein the cooling device exchanges heat with the refrigerant downstream of the refrigerant compressor and the refrigerant downstream of the subcooler.
  • a ship according to one aspect of the present invention has the above gas processing system.
  • the gas processing system according to the present invention and the ship including the same can reduce evaporation gas generated in the tank by injecting supercooled liquefied gas into the tank.
  • FIG. 1 is a conceptual diagram of a gas processing system according to a first embodiment of the present invention.
  • Figure 2 is a conceptual diagram of a gas processing system according to a second embodiment of the present invention.
  • Figure 3 is a conceptual diagram of a gas processing system according to a third embodiment of the present invention.
  • Figure 4 is a conceptual diagram of a gas processing system according to a fourth embodiment of the present invention.
  • Figure 5 is a conceptual diagram of a gas processing system according to a fifth embodiment of the present invention.
  • Figure 6 is a conceptual diagram of a gas processing system according to a sixth embodiment of the present invention.
  • Figure 7 is a conceptual diagram of a cooling device according to the first embodiment of the present invention.
  • Figure 8 is a conceptual diagram of a cooling device according to a second embodiment of the present invention.
  • Figure 9 is a conceptual diagram of a cooling device according to a third embodiment of the present invention.
  • Figure 10 is a conceptual diagram of a cooling device according to a fourth embodiment of the present invention.
  • Figure 11 is a conceptual diagram of a gas processing system according to a seventh embodiment of the present invention.
  • Figure 12 is a conceptual diagram of a gas processing system according to the eighth embodiment of the present invention.
  • Figure 13 is a conceptual diagram of a gas processing system according to the ninth embodiment of the present invention.
  • Figure 14 is a conceptual diagram of a gas processing system according to the tenth embodiment of the present invention.
  • Figure 15 is a conceptual diagram of a gas processing system according to the 11th embodiment of the present invention.
  • Figure 16 is a conceptual diagram of a gas processing system according to the twelfth embodiment of the present invention.
  • Figure 17 is a conceptual diagram of a gas processing system according to the 13th embodiment of the present invention.
  • Figure 18 is a conceptual diagram of a gas processing system according to the fourteenth embodiment of the present invention.
  • Figure 19 is a conceptual diagram of a gas processing system according to the 15th embodiment of the present invention.
  • Figure 20 is a conceptual diagram of a gas processing system according to the 15th embodiment of the present invention.
  • Figure 21 is a conceptual diagram of a gas processing system according to the 15th embodiment of the present invention.
  • Figure 22 is a conceptual diagram of a gas processing system according to the 16th embodiment of the present invention.
  • Figure 23 is a conceptual diagram of a gas processing system according to the 16th embodiment of the present invention.
  • Figure 24 is a conceptual diagram of a gas processing system according to the 17th embodiment of the present invention.
  • Figure 25 is a conceptual diagram of a gas processing system according to the 17th embodiment of the present invention.
  • Figure 26 is a conceptual diagram of a gas processing system according to embodiments of the present invention.
  • Figure 27 is a conceptual diagram of a gas processing system according to embodiments of the present invention.
  • Figure 28 is a conceptual diagram of a gas processing system according to embodiments of the present invention.
  • Figure 29 is a conceptual diagram of a gas processing system according to embodiments of the present invention.
  • Figure 30 is a conceptual diagram of a gas processing system according to embodiments of the present invention.
  • first, second, etc. are intended to refer to the fact that a plurality of specific configurations are provided in the present invention, and each expression may refer to any one of the plurality of configurations. If the first, second, etc. expressions are not added, the corresponding configuration may be a concept that encompasses all configurations to which the first, second, etc. expressions are added.
  • gas can be used to encompass all gas fuels that are generally stored in a liquid state, such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), ethylene, ammonia, etc., and can be converted to a liquid state by heating or pressurizing. In cases other than , it can also be expressed as liquefied gas for convenience. This can also be applied to evaporation gas.
  • LNG liquefied natural gas
  • LPG liquefied petroleum gas
  • ethylene ethylene
  • ammonia etc.
  • LNG can be used to encompass both natural gas (NG) in a liquid state as well as natural gas (NG) in a supercritical state
  • boil-off gas includes not only gaseous boil-off gas but also liquefied boil-off gas. It can be used with meaning.
  • HP high pressure
  • LP low pressure
  • high temperature high temperature
  • low temperature high temperature
  • low temperature low temperature
  • the present invention includes a vessel equipped with a gas processing system described below.
  • the concept of ship includes gas propulsion ships, gas carriers, FSRUs, FPSOs, bunkering vessels, and offshore plants.
  • the present invention not only allows pressure sensors (PT), temperature sensors (TT), flow sensors (FT), etc. to be installed in appropriate locations without limitation, but the measured values by each sensor can be used to operate the configurations described below. It can be used in a variety of ways without limitation.
  • straight lines in the drawings of the present invention represent flow paths through which various fluids such as gas, refrigerant, heat, and non-explosive gases move, and can be interpreted as pipelines.
  • FIG. 1 is a conceptual diagram of a gas processing system according to a first embodiment of the present invention.
  • the gas processing system 1 may include a liquefied gas storage tank 10, a cooling device 20, a main compressor 30, and a demand source 40. You can.
  • the liquefied gas storage tank 10 stores liquefied gas to be supplied to the demander 40. At this time, the liquefied gas storage tank 10 can store liquefied gas in a liquid state and may have the form of a pressure tank. A plurality of liquefied gas storage tanks 10 may be provided, and a plurality or more may be arranged side by side.
  • the liquefied gas storage tank 10 has an insulating structure, but when heat enters the liquefied gas storage tank 10 from the outside, the liquefied gas stored in the liquefied gas storage tank 10 becomes warm and part of it evaporates. This evaporated liquefied gas is stored in the upper space of the liquid level of the liquid liquefied gas stored in the liquefied gas storage tank 10 as boil-off gas (BOG; Boil off gas).
  • BOG boil-off gas
  • the liquefied gas storage tank 10 has a liquefied gas storage tank (L1) that allows the evaporated gas stored in the upper space of the liquefied gas storage tank 10 to be extracted to the outside of the liquefied gas storage tank 10. 10) It can be provided at the top.
  • the boil-off gas line (L1) is branched in the middle and connected to the boil-off gas branch line (L1a), and a boil-off gas heat exchanger (21) may be provided on the boil-off gas branch line (L1a).
  • the boil-off gas line (L1) bypasses the boil-off gas heat exchanger (21), and the boil-off gas branch line (L1a) can pass through the boil-off gas heat exchanger (21).
  • a configuration in which heat exchange is implemented such as the boil-off gas heat exchanger 21, and the boil-off gas or liquefied gas flows, can be defined as a gas heat exchanger.
  • the boil-off gas line (L1) and the boil-off gas branch line (L1a) are provided with valves (V1, V1a) for temperature control.
  • the opening degrees of the valves V1 and V1a may be adjusted according to the temperature required by the main compressor 30 and the temperature of the boil-off gas. For example, as the temperature of the boil-off gas is higher than the temperature required by the main compressor 30, the boil-off gas branch valve (V1a) provided on the boil-off gas branch line (L1a) may be closed, and the boil-off gas branch valve (V1a) provided on the boil-off gas branch line (L1a) may be closed. As the temperature of the boil-off gas is lower than the required temperature, the boil-off gas valve (V1) provided on the boil-off gas line (L1) can be closed.
  • the boil-off gas is delivered to the consumer (40) through the boil-off gas line (L1) or the boil-off gas branch line (L1a).
  • the boil-off gas passes through the boil-off gas heat exchanger 21, the boil-off gas delivered to the consumer 40 can be heated, and at the same time, the refrigerant in the refrigerant line RL can be cooled.
  • the boil-off gas can be delivered to the demander 40 and the boil-off gas is consumed at the demander 40 to lower the pressure inside the liquefied gas storage tank 10.
  • the gas processing system 1 controls the boil-off gas to pass through the boil-off gas heat exchanger 21 according to the internal pressure of the liquefied gas storage tank 10, or the liquefied gas is transferred to the liquefied gas heat exchanger. It may include a control unit (not shown) that controls passage through (22).
  • the control unit can lower the temperature of the refrigerant by transferring the boil-off gas to the boil-off gas heat exchanger 21 in the process of consuming the boil-off gas. Specifically, the control unit opens the boil-off gas branch valve (V1a) and transfers the boil-off gas to the boil-off gas heat exchanger (21).
  • the control unit may transfer the liquefied gas to the liquefied gas heat exchanger 22 in the process of supplying the liquefied gas to the demander 40 to lower the temperature of the refrigerant.
  • the control unit opens the liquefied gas branch valve (V2) and transfers the boil-off gas to the liquefied gas heat exchanger (22).
  • the demand source 40 may be a dual fuel (DF) engine as the main propulsion device.
  • DF dual fuel
  • the liquefied gas is delivered to the consumer (40)
  • the power generation engine (41) that generates the electricity needed within the ship or to the GCU (Gas Combustion Unit, 42) that burns boil-off gas. It may include becoming.
  • the boil-off gas heat exchanger (21) can heat-exchange the refrigerant and the boil-off gas of the liquefied gas storage tank (10), and the liquefied gas heat exchanger (22) can heat-exchange the refrigerant and the liquefied gas of the liquefied gas storage tank (10). there is.
  • the boil-off gas heat exchanger 21 and the liquefied gas heat exchanger 22 may be a combined heat exchanger. That is, the boil-off gas heat exchanger 21 can heat exchange the refrigerant and the boil-off gas of the liquefied gas storage tank 10 and allow heat exchange to occur between the refrigerants. Likewise, the liquefied gas heat exchanger 22 can heat exchange the refrigerant and the liquefied gas in the liquefied gas storage tank 10 and allow heat exchange to occur between the refrigerants.
  • the liquefied gas storage tank 10 may be provided with pumps 11 and 12, and the liquefied gas stored in the liquefied gas storage tank 10 can be extracted through the pumps 11 and 12.
  • the pumps 11 and 12 may be immersed in the liquefied gas stored inside the liquefied gas storage tank 10 or may be provided outside the liquefied gas storage tank 10.
  • the pumps 11 and 12 When the pumps 11 and 12 are provided outside the liquefied gas storage tank 10, the pumps 11 and 12 can be installed at a lower position than the liquefied gas storage tank 10.
  • the pumps 11 and 12 may not be able to pump liquefied gas if the level of the liquefied gas is low.
  • the pumps 11 and 12 are installed at a lower position than the liquefied gas storage tank 10, so that the liquefied gas is maintained at a constant level. It may not fall below the water level and it can prevent pumping from being impossible due to the low level of the liquefied gas.
  • the pumps 11 and 12 may be boosting pumps provided inside the liquefied gas storage tank 10 and submerged in the liquefied gas.
  • the first pump 11 can deliver the liquefied gas to the subcooler 24 through the subcooling line (SL).
  • the liquefied gas supercooled through the subcooler 24 is circulated to the liquefied gas storage tank 10 through the injection device 13.
  • the circulated liquefied gas is sprayed into the liquefied gas storage tank 10 to cool the liquefied gas inside the liquefied gas storage tank 10.
  • the circulated liquefied gas may be injected close to the bottom of the liquefied gas storage tank 10.
  • the second pump 12 can deliver liquefied gas to the consumer 40.
  • the second pump 12 can bypass the liquefied gas heat exchanger 22 and deliver the liquefied gas to the consumer 40 through the liquefied gas line L2 connected to the front of the main compressor 30.
  • the second pump 12 may allow the liquefied gas to pass through the liquefied gas heat exchanger 22 and be delivered to the consumer 40.
  • the second pump 12 passes through the liquefied gas heat exchanger 22, the liquefied gas mixing line (L2a) connected to the front of the main compressor 30, the liquefied gas heat exchanger 22, and the liquefied gas heater 51. ) through the liquefied gas heating line (L3a), the liquefied gas bypass line (L3) that passes through the liquefied gas heat exchanger (22) and bypasses the liquefied gas heater (51), or the main line that passes through the liquefied gas heat exchanger (22).
  • the liquefied gas can be delivered to the consumer (40) through the liquefied gas delivery line (L4) connected to the rear end of the compressor (30).
  • the liquefied gas delivered to the demander 40 passes through the liquefied gas heat exchanger 22, the liquefied gas delivered to the demander 40 can be heated, and at the same time, the refrigerant in the refrigerant line RL can be cooled.
  • the liquid liquefied gas is supplied to the liquefied gas heater to vaporize the liquefied gas and the boil-off gas is supplied to the demander 40 ) can be transmitted.
  • One or more liquefied gas storage tanks 10 may be provided, and one of the liquefied gas storage tanks 10 may be a pressurized tank.
  • the boil-off gas generated from the plurality of liquefied gas storage tanks 10 can be stored in a pressurized tank, and the boil-off gas can be pressurized within the pressurized tank.
  • the boil-off gas can be supplied to the demand source 40 using the pressure of the pressurization tank without providing additional pressure to the pressurization tank.
  • the boil-off gas from the liquefied gas storage tank 10, which is not a pressurized tank can also be delivered to the consumer 40 together with the boil-off gas from the pressurized tank.
  • Figure 2 is a conceptual diagram of a gas processing system according to a second embodiment of the present invention.
  • the liquid liquefied gas in the liquefied gas storage tank 10 passes through the liquefied gas heat exchanger 22 and is supplied to the demander 40. It can be. Some of the liquefied gas that has passed through the liquefied gas heat exchanger (22) bypasses the liquefied gas heat exchanger (22) depending on the temperature at the front of the main compressor (30) and is connected to the liquefied gas line (L2) connected to the front of the main compressor (30). ) can be supplied to the consumer (40).
  • the liquid liquefied gas can be vaporized in the liquefied gas heat exchanger 22 and supplied to the front of the main compressor 30. At this time, in order to meet the temperature required by the main compressor 30, a portion of the liquefied gas is converted into liquefied gas.
  • the heat exchanger (22) can be bypassed.
  • the liquefied gas that has passed through the liquefied gas heat exchanger (22) and the liquefied gas that has bypassed the liquefied gas heat exchanger (22) may be mixed in the mixer (50).
  • a first liquefied gas mixing valve (V21) and a second liquefied gas mixing valve (V22) may be provided.
  • the control unit may open the first liquefied gas mixing valve (V21) and operate the liquefied gas heat exchanger 22 through the liquefied gas line (L2). Liquefied gas may be supplied without passing through.
  • the liquefied gas branch valve (V2) may be closed and the liquefied gas supply valve (V3) may be open, and in this case, the liquefied gas may be connected to the liquefied gas heat exchanger (22). It can be bypassed and delivered through the liquefied gas bypass line (L3) or the liquefied gas heating line (L3a).
  • Figure 3 is a conceptual diagram of a gas processing system according to a third embodiment of the present invention.
  • the liquid liquefied gas in the liquefied gas storage tank 10 may pass through the liquefied gas heat exchanger 22. After that, depending on the temperature of the rear end of the main compressor (30), the liquefied gas passes through the liquefied gas heat exchanger (22) and is connected to the liquefied gas heater (51) so that the temperature of the liquefied gas is finally adjusted to the temperature of the rear end of the main compressor (30).
  • liquefied gas heating line (L3a) passing through, or the liquefied gas bypass line (L3) passing through the liquefied gas heat exchanger (22) and bypassing the liquefied gas heater (51). It can be controlled to be supplied to the demand source 40 through .
  • the liquefied gas can be supplied directly to the consumer (40) without passing through the main compressor (30). Since the liquefied gas does not pass through the main compressor 30, the temperature does not increase in the main compressor 30. Therefore, in order to meet the temperature conditions required by the consumer 40, the liquefied gas heater 51 can adjust the temperature to match the temperature at the rear end of the main compressor 30.
  • a liquefied gas bypass valve (V31) and a liquefied gas heating valve (V32) may be provided to control the path of the liquefied gas.
  • the control unit can control the liquefied gas bypass valve (V31) to open in order to lower the temperature of the liquefied gas supplied to the rear of the main compressor (30), and a portion of the liquefied gas can be supplied through the liquefied gas bypass line (L3). there is.
  • the main compressor 30 can not be operated or the load on the main compressor 30 can be reduced, so the gas processing system (1) ) can reduce the power used.
  • Figure 4 is a conceptual diagram of a gas processing system according to a fourth embodiment of the present invention.
  • the liquefied gas can bypass the liquefied gas heater (51). there is.
  • the liquid liquefied gas in the liquefied gas storage tank 10 will pass through the liquefied gas heat exchanger 22 and be delivered to the consumer 40 through the liquefied gas transmission line L4 connected to the rear end of the main compressor 30. You can.
  • the liquefied gas delivery valve (V4) provided in the liquefied gas delivery line (L4) may be opened.
  • Figure 5 is a conceptual diagram of a gas processing system according to a fifth embodiment of the present invention.
  • an ejector 14 may be provided in the subcooling line (SL).
  • the ejector 14 is provided at the front of the subcooler 24 and uses the liquefied gas entering the subcooler 24 as a driving force to suck in evaporated gas, mix the evaporated gas and liquefied gas, and circulate it to the liquefied gas storage tank. there is. In this process, the boil-off gas in the liquefied gas storage tank 10 can be liquefied and recovered.
  • the ejector 14 may be provided at the rear of the subcooler 24.
  • the supercooled liquefied gas is used as a driving force to suck in the boil-off gas in the liquefied gas storage tank 10 and condense it. You can do it.
  • the ejector 14 When the ejector 14 is installed at the front end of the subcooler 24, the mixing ratio of evaporation gas increases, and the volume of the fluid mixed with liquefied gas and evaporation gas increases due to the increased ratio of evaporation gas, so the mixed fluid
  • the size of the subcooler 24 for cooling can also be increased. Therefore, the ejector 14 is preferably installed at the rear of the subcooler 24 in consideration of the installation cost and installation space efficiency of the subcooler 24.
  • Figure 6 is a conceptual diagram of a gas processing system according to a sixth embodiment of the present invention.
  • an evaporation gas condensing device 15 may be provided at the rear of the subcooler 24.
  • the rear end of the main compressor 30 and the rear end of the subcooler 24 are connected to each other, and the boil-off gas condensing device 15 mixes a part of the boil-off gas supplied from the rear end of the main compressor 30 with the supercooled liquefied gas. Evaporative gas can be liquefied.
  • the boil-off gas condensation device 15 may also be provided at the front of the subcooler 24. Additionally, heat exchange may occur between the boil-off gas flowing from the rear end of the main compressor 30 to the rear end of the subcooler 24 and the boil-off gas flowing from the boil-off gas line L1.
  • Figure 7 is a conceptual diagram of a cooling device according to the first embodiment of the present invention.
  • the cooling device 20 includes a subcooling line (SL) and a refrigerant line (RL).
  • the subcooling line (SL) is connected to the liquefied gas storage tank 10, and the liquefied gas discharged from the liquefied gas storage tank 10 flows through the subcooling line (SL).
  • Refrigerant for supercooling the liquefied gas flows through the refrigerant line (RL).
  • the refrigerant line RL may be provided with a refrigerant expander 23, a subcooler 24, a refrigerant compressor 25, a refrigerant cooler 26, and a refrigerant heat exchanger 27.
  • the refrigerant cooler 26 and the refrigerant heat exchanger 27 may be connected in series.
  • the refrigerant cooler 26 may be provided downstream of the refrigerant compressor 25, and a refrigerant heat exchanger 27 may be provided downstream of the refrigerant cooler 26.
  • the refrigerant is compressed to high pressure in the refrigerant compressor (25).
  • the refrigerant compressor 25 may have a structure in which the compression stage and the cooler are connected in multiple stages.
  • the refrigerant becomes high-pressure in the refrigerant compressor 25 and is then guided to the refrigerant cooler 26, where it exchanges heat with evaporation gas or liquefied gas delivered to the consumer 40, thereby removing compression heat.
  • the high-pressure refrigerant cooled in the refrigerant cooler 26 is guided to the refrigerant heat exchanger 27 and can exchange heat with the refrigerant that passed through the subcooler 24.
  • the refrigerant is guided to the refrigerant expander 23, and is decompressed in the refrigerant expander 23 to become a low-temperature, low-pressure refrigerant.
  • the refrigerant is guided to the subcooler (24) and can exchange heat with the liquefied gas that comes out of the liquefied gas storage tank (10) and circulates into the liquefied gas storage tank (10).
  • the refrigerant exchanges heat in the subcooler 24 to increase its temperature, and the relatively high temperature refrigerant is guided to the refrigerant compressor 25 and compressed to high pressure in the refrigerant compressor 25.
  • the refrigerant line RL may branch at the bottom of the refrigerant compressor 25 so that the refrigerant can bypass the refrigerant cooler 26.
  • the temperature of the refrigerant introduced into the refrigerant cooler 26 the temperature of the evaporation gas, or the temperature of the liquefied gas, some of the refrigerant may bypass the refrigerant cooler 26, and the flow rate of the refrigerant may be adjusted.
  • the evaporation gas or liquefied gas may bypass the refrigerant cooler 26, and the flow rate of the evaporation gas or liquefied gas may vary. It can be adjusted.
  • Figure 8 is a conceptual diagram of a cooling device according to a second embodiment of the present invention.
  • the cooling device 20 changes the order of the refrigerant cooler 26 and the refrigerant heat exchanger 27 in FIG. 7, so that the refrigerant heat exchanger 27 is connected to the refrigerant compressor 25.
  • a refrigerant cooler 26 may be provided downstream of the refrigerant heat exchanger 27.
  • the refrigerant becomes high pressure in the refrigerant compressor (25) and is then guided to the refrigerant heat exchanger (27), where it exchanges heat with the refrigerant that passed through the subcooler (24), and is then guided to the refrigerant cooler (26), where it is supplied to the consumer (40). ) can exchange heat with boil-off gas or liquefied gas delivered to the
  • Figure 9 is a conceptual diagram of a cooling device according to a third embodiment of the present invention.
  • the refrigerant line (RL) may be branched into a first refrigerant line (RL1) connected to the refrigerant heat exchanger (27) downstream of the refrigerant compressor (25) and a second refrigerant line (RL2) connected to the refrigerant cooler (26). there is.
  • the refrigerant becomes high-pressure in the refrigerant compressor (25) and is then guided to the refrigerant cooler (26), where heat of compression can be removed by heat exchange with the evaporation gas or liquefied gas delivered to the consumer (40), and the refrigerant heat exchanger (27). It can be cooled by heat exchange with the refrigerant that has passed through the subcooler 24.
  • the refrigerant is guided to the refrigerant expander 23, and is decompressed in the refrigerant expander 23 to become a low-temperature, low-pressure refrigerant.
  • the refrigerant is guided to the subcooler (24) and can exchange heat with the liquefied gas that comes out of the liquefied gas storage tank (10) and circulates into the liquefied gas storage tank (10).
  • Figure 10 is a conceptual diagram of a cooling device according to a fourth embodiment of the present invention.
  • cooling device 20 includes an integrated heat exchanger 28.
  • the integrated heat exchanger 28 may function as a refrigerant cooler 26 and the refrigerant heat exchanger 27 integrated into one.
  • the refrigerant becomes high pressure in the refrigerant compressor (25) and is then guided to the integrated heat exchanger (28), where the heat of compression can be removed by heat exchange with the boil-off gas or liquefied gas delivered to the consumer (40), and at the same time, the subcooler (24) ) can be cooled by heat exchange with the refrigerant that has passed through it.
  • the refrigerant is guided to the refrigerant expander 23, and is decompressed in the refrigerant expander 23 to become a low-temperature, low-pressure refrigerant.
  • the refrigerant is guided to the subcooler (24) and can exchange heat with the liquefied gas that comes out of the liquefied gas storage tank (10) and circulates into the liquefied gas storage tank (10).
  • FIG. 7 to 9 show that the refrigerant cooler 26 is connected to the boil-off gas branch line (L1a), and Figure 10 shows that the integrated heat exchanger 28 is connected to the boil-off gas branch line (L1a).
  • the refrigerant cooler 26 or the integrated heat exchanger 28 may be connected to the liquefied gas lines L2a, L3a, and L4.
  • the refrigerant cooler (26) or the integrated heat exchanger (28) is connected to the boil-off gas branch line (L1a)
  • the refrigerant can be cooled by the boil-off gas
  • the refrigerant cooler (26) or the integrated heat exchanger (28) is liquefied.
  • the refrigerant can be cooled by liquefied gas.
  • cooling device 20 according to the embodiment of FIGS. 7 to 10 can be applied to the gas processing system 1 according to the embodiment of FIGS. 1 to 6.
  • the gas processing system 1 can supercool liquefied gas using a refrigerant and circulate the supercooled liquefied gas into the tank to reduce evaporation gas generated in the tank.
  • the gas processing system 1 can cool the refrigerant using the cold heat of the evaporation gas or cool the refrigerant using the cold heat of the liquefied gas, depending on the internal pressure of the liquefied gas storage tank 10. .
  • the boil-off gas bypasses the boil-off gas heat exchanger 21 according to the temperature at the front of the main compressor 30. You can control it to do so.
  • the gas processing system 1 when cooling the refrigerant using the cold heat of the liquefied gas, uses the liquefied gas heat exchanger 22 according to the temperature at the front of the main compressor 30. It can be controlled to bypass, and depending on the temperature at the rear end of the main compressor 30, the liquefied gas can be controlled to bypass the liquefied gas heater 51.
  • Figure 11 is a conceptual diagram of a gas processing system according to a seventh embodiment of the present invention.
  • the gas processing system 1 includes a cooling device 20 that implements subcooling of the liquefied gas, similar to the previous embodiments.
  • the cooling device of this embodiment includes a refrigerant expander 23, a subcooler 24, a refrigerant compressor 25, etc. These components may be arranged in series or parallel on the refrigerant line (RL) constituting a closed loop.
  • RL refrigerant line
  • the refrigerant expander 23 is provided in the refrigerant line RL, expands the refrigerant discharged from the refrigerant heat exchanger 27, and transfers it to the subcooler 24.
  • the flow path through which the refrigerant is transferred from the refrigerant heat exchanger 27 to the refrigerant expander 23 may be different from the flow path through which the refrigerant flows from the refrigerant compressor 25 to the refrigerant heat exchanger 27, which will be described later.
  • the refrigerant expander 23 may be an expansion turbine, a pressure reducing valve, an expander, etc., and other non-limiting pressure reduction/expansion means may be used. Additionally, the refrigerant expander 23 may be connected to the refrigerant compressor 25 to form a compander.
  • the refrigerant expander 23 expands the refrigerant between the refrigerant heat exchanger 27 and the subcooler 24 to lower the pressure of the refrigerant and simultaneously lower the temperature of the refrigerant.
  • the refrigerant decompressed and cooled by the refrigerant expander 23 can be used to subcool the liquefied gas in the subcooler 24.
  • the subcooler 24 supercools the liquefied gas with a refrigerant.
  • the subcooler 24 may be provided on the subcooling line (SL) and the refrigerant line (RL), and one flow path is connected to the subcooling line (SL) and the other flow path is connected to the refrigerant line (RL). It has a structure.
  • the subcooler 24 receives the liquefied gas discharged from the liquefied gas storage tank 10 by the first pump 11, etc., and also receives the depressurized refrigerant from the refrigerant expander 23.
  • the subcooler 24 can subcool the liquefied gas discharged from the liquefied gas storage tank 10 with the refrigerant depressurized in the refrigerant expander 23.
  • the liquefied gas subcooled by the subcooler 24 is returned to the inside of the liquefied gas storage tank 10 through the injection device 13 provided in the form of a spray or pipe. Through this, the generation of boil-off gas in the liquefied gas storage tank 10 can be suppressed.
  • the subcooling line (SL) connected to the subcooler 24 may be provided to allow liquefied gas to flow between the pump and the injection device 13. However, the subcooling line (SL) can allow at least a portion of the liquefied gas discharged from the liquefied gas storage tank 10 to bypass the subcooler 24.
  • the pump that delivers the liquefied gas to the subcooling line (SL) may be the first pump 11 or the second pump 12.
  • the pump for subcooling and the pump for supply to the demand source 40 are integrated. It can be provided.
  • liquefied gas can be delivered to the subcooler 24 or the demand source 40 using one pump.
  • various valves are provided in the liquefied gas line (L2)
  • the flow rate of the liquefied gas delivered to the subcooler 24 or the consumer 40 can be adjusted. Control of the flow rate of liquefied gas through valve opening adjustment can be achieved by the previously mentioned control unit.
  • the refrigerant compressor 25 is provided in the refrigerant line RL and compresses the refrigerant and delivers it to one of the flow paths of the gas heat exchangers 21a and 22.
  • the gas heat exchanger of this embodiment will be described in detail below.
  • the refrigerant compressor 25 may have a structure in which compression stages and coolers are provided alternately, and at least two compression stages may be used. Of course, the number of stages in the compression stage is not limited. In addition, it has been explained that the compression end of the refrigerant compressor (25) can be integrally connected to the refrigerant expander (23) through one shaft.
  • This embodiment is similar to the first embodiment and is provided with a boil-off gas heat exchanger (21a) and a liquefied gas heat exchanger (22) as a gas heat exchanger, but the boil-off gas heat exchanger (21a) may be different from the previous first embodiment. .
  • the boil-off gas heat exchanger 21a of this embodiment has a plurality of passages for heat exchange between refrigerants and can cool the refrigerant through boil-off gas. Moreover, the boil-off gas heat exchanger 21a can also use the cold heat of the liquefied gas to cool the refrigerant.
  • the boil-off gas heat exchanger 21a does not have an additional dedicated flow path for liquefied gas to flow in addition to the refrigerant flow path and the boil-off gas flow path.
  • the boil-off gas heat exchanger (21a) of this embodiment can allow liquefied gas to flow as needed in the flow path through which the boil-off gas flows.
  • the boil-off gas heat exchanger (21a) is used for boiling gas discharged from the liquefied gas storage tank 10 and delivered to the consumer 40 or liquefied gas discharged from the liquefied gas storage tank 10 and delivered to the consumer 40.
  • the refrigerant can be cooled by at least one of them.
  • the boil-off gas heat exchanger 21a may have a refrigerant flow path through which a refrigerant flows, and a gas flow path through which at least one of liquefied gas or boil-off gas flows.
  • the gas flow path may be connected to both the boil-off gas line (L1) and the liquefied gas line (L2).
  • boil-off gas line (L1) and the liquefied gas line (L2) are provided to share the gas flow path of the boil-off gas heat exchanger (21a). Therefore, boil-off gas or liquefied gas can alternatively flow in one flow path in the boil-off gas heat exchanger (21a).
  • the boil-off gas line (L1) delivers boil-off gas from the liquefied gas storage tank 10 to the consumer 40, and may be provided to cool the refrigerant while the boil-off gas passes through the boil-off gas heat exchanger (21a).
  • the boil-off gas line (L1) may be provided so that at least some of the boil-off gas bypasses the boil-off gas heat exchanger (21a).
  • the boil-off gas line (L1) has a boil-off gas bypass line ( L1c) may be provided, and an evaporation gas bypass valve (not shown) may be provided in the evaporation gas bypass line (L1c). Additionally, the evaporation gas bypass valve can be controlled by the controller.
  • the boil-off gas is transferred to the boil-off gas heat exchanger (21a) as needed, and can cool the refrigerant heated by the heat of compression while being compressed by the refrigerant compressor (25).
  • the evaporation gas may cool both the refrigerant before compression and the refrigerant after compression.
  • liquefied gas can also be transferred to the boil-off gas heat exchanger (21a) and used to cool the refrigerant.
  • Liquefied gas is delivered from the liquefied gas storage tank 10 to the consumer 40 along the liquefied gas line (L2). At least some of this liquefied gas will be delivered to the consumer 40 through the liquefied gas heater 51, etc. and some of the remainder may pass through the liquefied gas heat exchanger (22) and the boil-off gas heat exchanger (21a).
  • the liquefied gas line (L2) is provided to pass through the boil-off gas heat exchanger (21a).
  • the liquefied gas line (L2) and the boil-off gas line (L1) join upstream of the gas flow path of the boil-off gas heat exchanger (21a). It can be.
  • the gas flow path of the boil-off gas heat exchanger (21a) can be connected to the liquefied gas line (L2) and the boil-off gas line (L1), but liquefied gas or boil-off gas can alternatively flow in the gas flow path. there is.
  • the gas flow path downstream of the boil-off gas heat exchanger 21a may be branched into a boil-off gas line L1 and a liquefied gas line L2 (particularly, a liquefied gas delivery line L4).
  • the branching of gas downstream of the gas flow path may be controlled by the controller through various valves shown in the drawing or not shown.
  • the liquefied gas flowing along the liquefied gas line (L2) flows into the boil-off gas heat exchanger (21a)
  • the liquefied gas flows along the liquefied gas line (L2) downstream of the boil-off gas heat exchanger (21a) to the demand point (40). ) can be transmitted.
  • boil-off gas flowing along the boil-off gas line (L1) flows into the boil-off gas heat exchanger (21a)
  • the boil-off gas flowing downstream of the boil-off gas heat exchanger (21a) flows to the main compressor (30) along the boil-off gas line (L1). ) and then can be delivered to the consumer (40).
  • the gas flow path of the boil-off gas heat exchanger 21a may have a structure in which gases of different pressures can flow.
  • the boil-off gas flowing into the gas flow path through the boil-off gas line (L1) is in a low pressure state having the pressure to flow into the main compressor (30), while the liquefied gas flowing into the gas flow path through the liquefied gas line (L2) is in the main compressor. (30) It may be in a high pressure state with a pressure to mix with the downstream boil-off gas. Therefore, the gas flow path of the boil-off gas heat exchanger 21a can be provided so that boil-off gas of relatively low pressure or liquefied gas of relatively high pressure can alternatively flow.
  • the liquefied gas line (L2) can allow the liquefied gas to bypass the boil-off gas heat exchanger (21a).
  • a liquefied gas bypass line (L4a) is branched from the liquefied gas line (L2) upstream of the boil-off gas heat exchanger (21a), and the liquefied gas bypass line (L4a) is a liquefied gas line downstream of the boil-off gas heat exchanger (21a). It can be joined to (L2).
  • the liquefied gas bypass line (L4a) branches off from the liquefied gas line (L2) upstream of the liquefied gas heat exchanger (22), and may join the liquefied gas line (L2) downstream of the boil-off gas heat exchanger (21a). Therefore, the liquefied gas can bypass the liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21a at the same time through the liquefied gas bypass line (L4a).
  • the liquefied gas bypass line (L4a) may be provided to implement bypass of the liquefied gas for each of the liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21a.
  • the flow is controlled by the control unit.
  • the control unit can control the flow of the boil-off gas bypass line (L1c) and the liquefied gas bypass line (L4a) based on variables such as the internal pressure of the liquefied gas storage tank 10 and the state of the refrigerant.
  • the boil-off gas line (L1) and the liquefied gas line (L2) are both connected to the gas flow path, so the boil-off gas line (L1) and the liquefied gas line (L2) share the gas flow path with each other.
  • the gas flow path can be implemented alternatively.
  • the line can be defined as a gas sharing line.
  • the boil-off gas heat exchanger (21a) cools the refrigerant with the boil-off gas discharged from the liquefied gas storage tank (10) and delivered to the consumer (40), and is arranged in series on the liquefied gas heat exchanger (22) and the refrigerant line (RL). It can be.
  • the refrigerant line RL may sequentially pass through the boil-off gas heat exchanger 21a and the liquefied gas heat exchanger 22 downstream of the refrigerant compressor 25. Conversely, the refrigerant line RL may sequentially pass through the liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21a downstream of the subcooler 24 and then be connected to the refrigerant compressor 25.
  • the boil-off gas heat exchanger (21a) like the liquefied gas heat exchanger (22), is provided with a flow path through which the liquefied gas flows. Based on the flow of the liquefied gas, the boil-off gas heat exchanger (21a) is the liquefied gas heat exchanger (22). It can be arranged downstream.
  • the liquefied gas heat exchanger 22 cools the refrigerant with the liquefied gas discharged from the liquefied gas storage tank 10 and delivered to the demand source 40.
  • the liquefied gas heat exchanger 22 may have at least two or more refrigerant passages so that the refrigerant flows and exchanges heat with each other, and may also include a gas passage through which the liquefied gas flows.
  • a liquefied gas line (L2) is connected to the gas flow path of the liquefied gas heat exchanger (22) and the liquefied gas flows, and the liquefied gas in the gas flow path can cool the refrigerant compressed by the refrigerant compressor (25).
  • the liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21a are arranged in series based on the flow of refrigerant and liquefied gas. Therefore, the liquefied gas can transfer cold heat to the refrigerant in the liquefied gas heat exchanger (22) along the liquefied gas line (L2), and then additionally transfer cold heat to the refrigerant in the boil-off gas heat exchanger (21a).
  • the boil-off gas heat exchanger (21a) transfers cold heat to the refrigerant in the boil-off gas heat exchanger (21a) along the boil-off gas line (L1), and the liquefied gas heat exchanger (22) exchanges heat with the liquefied gas as the liquefied gas bypasses.
  • the liquefied gas heat exchanger (22) exchanges heat with the liquefied gas as the liquefied gas bypasses.
  • heat exchange between the liquefied gas and the refrigerant does not occur, and only heat exchange between the refrigerants can occur.
  • the liquefied gas bypass line (L4a) is provided to bypass the liquefied gas heat exchanger (22) and the boil-off gas heat exchanger (21a) at the same time.
  • the liquefied gas bypass line (L4a) is connected to the liquefied gas heat exchanger (22). If each of the boil-off gas heat exchangers (21a) can be bypassed, it will be possible to operate in which the liquefied gas cools the refrigerant in the liquefied gas heat exchanger (22) while the boil-off gas cools the refrigerant in the boil-off gas heat exchanger (21a).
  • the refrigerant is compressed by the refrigerant compressor 25 and then passed through the refrigerant passage of the boil-off gas heat exchanger (21a) and then transferred to the refrigerant passage of the liquefied gas heat exchanger (22).
  • the refrigerant is cooled by receiving cold heat from at least the liquefied gas or the liquefied gas through at least the boil-off gas heat exchanger (21a) among the boil-off gas heat exchanger (21a) and the liquefied gas heat exchanger (22) under the control of the control unit. .
  • the refrigerant discharged from the liquefied gas heat exchanger (22) is expanded in the refrigerant expander (23) and then transferred to the subcooler (24).
  • the refrigerant subcools the liquefied gas discharged from the liquefied gas storage tank 10 in the subcooler 24 and then is transferred to another refrigerant passage of the liquefied gas heat exchanger 22.
  • the refrigerant downstream of the subcooler (24) sequentially passes through another refrigerant passage of the liquefied gas heat exchanger (22) and another refrigerant passage of the boil-off gas heat exchanger (21a), and is cooled by at least the liquefied gas among the liquefied gas and the boil-off gas. You can.
  • the refrigerant downstream of the subcooler 24 may be used to cool the refrigerant compressed in the refrigerant compressor 25.
  • the refrigerant receives the cold heat of the evaporation gas or liquefied gas before and after the subcooler 24 in the refrigerant line RL, thereby ensuring effective subcooling.
  • the liquefied gas is used in the liquefied gas heat exchanger (22) ) as well as the boil-off gas heat exchanger (21a), and the boil-off gas is arranged to pass only the boil-off gas heat exchanger (21a).
  • the boil-off gas heat exchanger 21a liquefied gas and boil-off gas can exchange heat by passing through the same space (one gas flow path).
  • Figure 12 is a conceptual diagram of a gas processing system according to the eighth embodiment of the present invention.
  • the gas processing system 1 is provided with a liquefied gas heat exchanger 22 when compared to the seventh embodiment described above, and the liquefied gas heat exchanger 22 It may be in the form of a gas flow path that selectively receives liquefied gas and boil-off gas. Additionally, the cooling device 20 of this embodiment may include a refrigerant heat exchanger 27.
  • This embodiment can be understood as changing the liquefied gas heat exchanger 22 and omitting the boil-off gas heat exchanger 21 compared to the previous embodiment. Or, explained in another way, this embodiment may be interpreted as a form in which the liquefied gas heat exchanger 22 is omitted in the previous embodiment and the boil-off gas heat exchanger 21 is provided.
  • this embodiment may be interpreted as an integrated form of the liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21 described in the seventh embodiment.
  • the gas heat exchanger of this embodiment will be described as a liquefied gas heat exchanger (22).
  • the liquefied gas heat exchanger 22 of this embodiment includes one refrigerant passage through which the refrigerant compressed in the refrigerant compressor 25 flows, and another refrigerant passage through which the refrigerant discharged from the subcooler 24 flows. can do.
  • the liquefied gas heat exchanger 22 includes a gas flow path.
  • the gas flow path may be connected not only to the liquefied gas line (L2) but also to the boil-off gas line (L1). Therefore, the liquefied gas heat exchanger 22 can cool the refrigerant through at least one of the liquefied gas and the boil-off gas.
  • the gas flow path of the liquefied gas heat exchanger (22) is provided with a gas sharing line, and the liquefied gas line (L2) and the boil-off gas line (L1) are joined or branched before and after the gas sharing line.
  • boil-off gas or liquefied gas may alternatively flow in the gas flow path of the liquefied gas heat exchanger 22.
  • the liquefied gas heat exchanger 22 can cool the refrigerant downstream of the refrigerant compressor 25 using liquefied gas, or can cool the refrigerant downstream of the refrigerant compressor 25 using evaporation gas.
  • the boil-off gas and the liquefied gas flowing into the gas flow path of the liquefied gas heat exchanger 22 at the same time can be included as an example of the present invention, under the premise that the pressure difference is almost or can be eliminated. This can also be applied to the boil-off gas heat exchanger 21 of the previous embodiment.
  • This embodiment includes a refrigerant heat exchanger 27 in addition to the liquefied gas heat exchanger 22.
  • the refrigerant heat exchanger 27 may be provided in parallel with the liquefied gas heat exchanger 22 on the refrigerant line RL. there is.
  • the refrigerant heat exchanger (27) is configured to exchange heat with the refrigerant downstream of the refrigerant compressor (25) and the refrigerant downstream of the subcooler (24).
  • the refrigerant line (RL) is branched downstream of the refrigerant compressor (25) to form a refrigerant heat exchanger ( 27) or can be connected to the liquefied gas heat exchanger (22), respectively. Therefore, some of the refrigerant compressed in the refrigerant compressor 25 may be transferred to the refrigerant heat exchanger 27, and the remainder may be transferred to the liquefied gas heat exchanger 22.
  • the liquefied gas heat exchanger 22 of this embodiment can serve as a configuration to cool the refrigerant bypassing the refrigerant heat exchanger 27.
  • the refrigerant line (RL) is merged downstream of the liquefied gas heat exchanger (22) and the refrigerant heat exchanger (27) and then transferred to the refrigerant expander (23), so the liquefied gas heat exchanger (22) and the refrigerant heat exchanger (27) ) can be used complementary to each other to control the temperature of the refrigerant.
  • the refrigerant line RL may have a structure that branches off at one point and joins at another point in order to provide the refrigerant heat exchanger 27 and the liquefied gas heat exchanger 22 in parallel. Furthermore, a refrigerant bypass line (not shown) may be provided in the refrigerant line RL.
  • the refrigerant bypass line can bypass both the refrigerant heat exchanger 27 and the liquefied gas heat exchanger 22 downstream of the refrigerant compressor 25 and transfer the refrigerant to the refrigerant expander 23.
  • the refrigerant bypass line may bypass both the refrigerant heat exchanger 27 and the liquefied gas heat exchanger 22 downstream of the subcooler 24 and deliver the refrigerant to the refrigerant compressor 25.
  • the refrigerant heat exchanger 27 and the liquefied gas heat exchanger 22 can be used in conjunction with each other to control the temperature of the refrigerant, and the refrigerant bypass line can also be used to control the temperature of the refrigerant.
  • the control unit controls the refrigerant flow rate from the refrigerant line (RL) to the refrigerant heat exchanger 27 and the liquefied gas heat exchanger 22 using a valve, etc., and can also control the refrigerant bypass flow rate through the refrigerant bypass line.
  • the control unit can control the refrigerant flow in the refrigerant bypass line in various ways.
  • liquefied gas or boil-off gas is alternatively used for cooling the refrigerant, and while providing one gas heat exchanger, the refrigerant heat exchanger 27 can be arranged in parallel.
  • Figure 13 is a conceptual diagram of a gas processing system according to the ninth embodiment of the present invention.
  • the gas processing system 1 includes a cooling device 20 including one boil-off gas heat exchanger 21 and two liquefied gas heat exchangers 22 and 22a. ) and a refrigerant heat exchanger (27).
  • the boil-off gas heat exchanger 21 can heat exchange the refrigerant compressed in the refrigerant compressor 25 and cooled in the liquefied gas heat exchanger 22a, which will be described later, with the refrigerant discharged from the refrigerant heat exchanger 27. Additionally, the boil-off gas heat exchanger (21) can utilize the cold heat of the boil-off gas supplied to the consumer (40).
  • the boil-off gas heat exchanger 21 of this embodiment is similar to the boil-off gas heat exchanger 21 described in the previous first embodiment, but the upstream of the boil-off gas heat exchanger 21 is based on the refrigerant flow downstream of the refrigerant compressor 25. The difference is that a liquefied gas heat exchanger (22a) and a refrigerant heat exchanger (27) are provided downstream.
  • the liquefied gas heat exchanger (22, 22a) of this embodiment is provided between the liquefied gas heat exchanger (22) provided in parallel with the refrigerant heat exchanger (27), the refrigerant compressor (25), and the boil-off gas heat exchanger (21). It can be divided into a liquefied gas heat exchanger (22a).
  • the liquefied gas heat exchanger 22 disposed in parallel with the refrigerant heat exchanger 27 may be used to supplement the refrigerant temperature control in the refrigerant heat exchanger 27.
  • the refrigerant line RL may be arranged to bypass the refrigerant heat exchanger 27 between the boil-off gas heat exchanger 21 and the refrigerant expander 23 and instead pass through the liquefied gas heat exchanger 22.
  • the refrigerant heat exchanger 27 and the liquefied gas heat exchanger 22 can be used in conjunction to compensate for the temperature control of the refrigerant, and the distribution of the refrigerant can be controlled by the control unit.
  • the liquefied gas heat exchanger (22a) provided downstream of the refrigerant compressor 25 can cool the refrigerant compressed in the refrigerant compressor 25 with liquefied gas.
  • the liquefied gas may be the liquefied gas that has previously passed through the liquefied gas heat exchanger (22) provided in parallel with the refrigerant heat exchanger (27).
  • the two liquefied gas heat exchangers (22, 22a) may be provided in series.
  • at least one of the liquefied gas heat exchangers (22, 22a) may be provided to enable bypass of the liquefied gas.
  • the two liquefied gas heat exchangers (22, 22a) may be arranged in series with the boil-off gas heat exchanger (21) in between.
  • the boil-off gas heat exchanger 21 also has a structure that allows bypass of boil-off gas.
  • this embodiment takes into account the fact that the temperature gradient of the liquefied gas (-160°C to 40°C) is wider than the temperature gradient of the boil-off gas (-90°C to 40°C). That is, in this embodiment, the liquefied gas passes through both liquefied gas heat exchangers (22, 22a), and the boil-off gas passes only one boil-off gas heat exchanger (21).
  • the liquefied gas heat exchanger 22 is configured in parallel with the refrigerant heat exchanger 27 to cool a part of the refrigerant, and all remaining cold heat can be utilized in the liquefied gas heat exchanger 22a.
  • Figure 14 is a conceptual diagram of a gas processing system according to the tenth embodiment of the present invention.
  • the gas processing system 1 when compared to the preceding ninth embodiment, is provided with two liquefied gas heat exchangers (22, 22a) and one boil-off gas heat exchanger. It is the same in that it is provided with the unit 21, but the separate refrigerant heat exchanger 27 can be omitted.
  • This embodiment does not provide a separate refrigerant heat exchanger (27) that only implements heat exchange between refrigerants without the liquefied gas or boil-off gas flowing, but instead provides a separate refrigerant heat exchanger (27) that implements heat exchange between refrigerants in the liquefied gas heat exchanger (22) or boil-off gas heat exchanger (21). It is possible to ensure sufficient heat exchange.
  • the boil-off gas heat exchanger 21 is provided with a plurality of refrigerant passages, so that the refrigerant before and after the refrigerant compressor 25 exchanges heat with each other within the boil-off gas heat exchanger 21 and is cooled by the boil-off gas. can do.
  • At least one of the two liquefied gas heat exchangers 22 and 22a (22) includes a plurality of refrigerant passages. Therefore, the refrigerant before and after the subcooler 24 exchanges heat with each other within the liquefied gas heat exchanger 22 and can be cooled by the liquefied gas.
  • this embodiment can be understood as integrating the liquefied gas heat exchanger 22 and the refrigerant heat exchanger 27, which were provided in parallel in the previous embodiment.
  • Figure 15 is a conceptual diagram of a gas processing system according to the 11th embodiment of the present invention.
  • the gas processing system 1 may be provided with one boil-off gas heat exchanger 21 and two liquefied gas heat exchangers 22 and 22a.
  • boil-off gas heat exchanger (21) is similar to that previously described in the tenth embodiment, but in this embodiment, a separate boil-off gas heat exchanger (21) and the refrigerant expander (23) are installed based on the refrigerant line (RL). Heat exchange configuration may not be added.
  • At least one of the two liquefied gas heat exchangers (22, 22a) may be provided in parallel with the boil-off gas heat exchanger (21) based on the refrigerant flow. That is, the refrigerant that has passed through one of the liquefied gas heat exchangers (22a) via the refrigerant compressor (25) is branched through the refrigerant line (RL) to another liquefied gas heat exchanger (22) or the boil-off gas heat exchanger (21). ) can be transmitted.
  • the refrigerant that has passed through the other liquefied gas heat exchanger (22) and the boil-off gas heat exchanger (21) may be joined upstream of the refrigerant expander (23) and transferred to the subcooler (24). Therefore, the other liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21 can be utilized and controlled in conjunction with each other in controlling the temperature of the refrigerant.
  • the two liquefied gas heat exchangers (22, 22a) can be arranged in series based on the liquefied gas line (L2), and the liquefied gas heat exchanger (22) provided upstream can evaporate gas based on the refrigerant line (RL). It can be arranged in parallel with the heat exchanger (21).
  • one liquefied gas heat exchanger 22a and the other liquefied gas heat exchanger 22 are provided in series, and one liquefied gas heat exchanger 22a is provided in series.
  • the liquefied gas heat exchanger (22a) may be provided in series with the boil-off gas heat exchanger (21).
  • the liquefied gas heat exchanger (22, 22a) may be provided with two flow paths to facilitate mutual heat exchange between the refrigerant and the liquefied gas, and the evaporation gas heat exchanger 21 performs mutual heat exchange and evaporation between the refrigerants. It may be in charge of cooling through gas. That is, the evaporation gas heat exchanger 21 may have a plurality of refrigerant passages and at least one gas passage, while the liquefied gas heat exchanger (22, 22a) may have one refrigerant passage and at least one gas passage.
  • the liquefied gas heat exchanger 22 provided upstream of the flow of liquefied gas may be omitted.
  • one liquefied gas heat exchanger (22a) and one boil-off gas heat exchanger (21) may be provided, and the refrigerant is sequentially cooled in the liquefied gas heat exchanger (22a) and the boil-off gas heat exchanger (21) after compression. It flows into the subcooler (24) through the cooling expander.
  • Figure 16 is a conceptual diagram of a gas processing system according to the twelfth embodiment of the present invention.
  • the gas processing system 1 includes a refrigerant heat exchanger 27 and a liquefied gas heat exchanger 22, similar to the ninth embodiment previously described in FIG. 13. Can be placed in parallel.
  • this embodiment further includes a modified boil-off gas heat exchanger (21b).
  • the boil-off gas heat exchanger 21b of this embodiment may be provided between the refrigerant compressor 25 and the refrigerant heat exchanger 27 or between the refrigerant compressor 25 and the liquefied gas heat exchanger 22 in the refrigerant line RL. .
  • the boil-off gas heat exchanger (21b) can cool the refrigerant compressed in the refrigerant compressor (25) with the boil-off gas flowing along the boil-off gas line (L1).
  • the boil-off gas heat exchanger 21b of this embodiment can allow boil-off gas or liquefied gas to flow in one gas flow path. That is, the boil-off gas heat exchanger (21b) of this embodiment is similar to the boil-off gas heat exchanger (21a) previously described in the seventh embodiment, and has a gas flow path shared by the liquefied gas line (L2) and the boil-off gas line (L1). It can be provided.
  • the boil-off gas heat exchanger (21b) may be provided with a gas flow path to which the boil-off gas line (L1) upstream of the main compressor (30) is connected. At this time, the liquefied gas line (L2) may also be connected to the gas flow path of the boil-off gas heat exchanger (21b).
  • the gas flow path of the boil-off gas heat exchanger (21b) may be connected to the downstream portion of the liquefied gas heat exchanger (22) in the liquefied gas line (L2). That is, the liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21b may be sequentially arranged in series based on the flow of liquefied gas.
  • the boil-off gas heat exchanger (21b) cools the refrigerant compressed in the refrigerant compressor (25) using the boil-off gas flowing into the main compressor (30), or heat exchanges the refrigerant with the refrigerant in the liquefied gas heat exchanger (22).
  • the refrigerant can be cooled using the remaining cold heat of the liquefied gas.
  • the liquefied gas line (L2) can be arranged to bypass the liquefied gas heat exchanger (22), and the boil-off gas heat exchanger (21b) is discharged from the liquefied gas storage tank (10) through the liquefied gas line (L2).
  • Refrigerant can be cooled using flowing liquefied gas.
  • Boil-off gas or liquefied gas may alternatively flow in the gas flow path of the boil-off gas heat exchanger (21b).
  • the boil-off gas line (L1) and the liquefied gas line (L2) are joined or branched upstream or downstream of the gas flow path provided in the boil-off gas heat exchanger (21b).
  • the gas flow path can be referred to as a gas sharing line.
  • the refrigerant heat exchanger 27 and the liquefied gas heat exchanger 22 are provided in parallel on the refrigerant line RL, so the refrigerant heat exchanger 27 and the liquefied gas are based on the boil-off gas heat exchanger 21b.
  • the heat exchangers 22 may be provided in series on each refrigerant line (RL).
  • the refrigerant is compressed and discharged from the refrigerant compressor (25), cooled by evaporation gas or liquefied gas in the evaporation gas heat exchanger (21b), and subcooled via the refrigerant heat exchanger (27) or liquefied gas heat exchanger (22). It can be delivered to group 24.
  • Figure 17 is a conceptual diagram of a gas processing system according to the 13th embodiment of the present invention.
  • the gas processing system 1 divides the boil-off gas heat exchanger 21 described in the previous 12th embodiment into one boil-off gas heat exchanger 21. and one liquefied gas heat exchanger (22a).
  • the liquefied gas heat exchanger (22a) and the boil-off gas heat exchanger (21) are sequentially prepared based on the refrigerant line (RL), and then the refrigerant heat exchanger (27) and the liquefied gas heat exchanger (22) are arranged in parallel. You can.
  • the refrigerant can be sequentially cooled in the liquefied gas heat exchanger (22a) and the boil-off gas heat exchanger (21), then exchange heat between refrigerants in the refrigerant heat exchanger (27) and then be transferred to the refrigerant expander (23).
  • the refrigerant is sequentially cooled through the liquefied gas heat exchanger (22a) and the boil-off gas heat exchanger (21), then cooled by the liquefied gas in another liquefied gas heat exchanger (22) and transferred to the refrigerant expander (23).
  • the boil-off gas heat exchanger (21b) provided downstream of the liquefied gas heat exchanger (22) receives the boil-off gas based on the flow of the liquefied gas
  • the liquefied gas is supplied to one liquefied gas heat exchanger (22) Cold heat is transferred to the refrigerant through the refrigerant.
  • two liquefied gas heat exchangers (22, 22a) are provided based on the flow of liquefied gas, and the boil-off gas heat exchanger 21 is provided independently of the liquefied gas heat exchanger (22a). Therefore, in this embodiment, the liquefied gas can perform two-stage heat exchange with the refrigerant, regardless of the operation of transferring cold heat to the refrigerant through evaporation gas. Through this, this embodiment can sufficiently recover the cold heat of the liquefied gas using the refrigerant.
  • Figure 18 is a conceptual diagram of a gas processing system according to the fourteenth embodiment of the present invention.
  • the gas processing system 1 integrates the liquefied gas heat exchanger 22 and the refrigerant heat exchanger 27 provided in parallel in the preceding thirteenth embodiment. You can.
  • This embodiment may be provided with two liquefied gas heat exchangers (22, 22a) and one boil-off gas heat exchanger (21).
  • the liquefied gas heat exchanger (22) provided upstream based on the flow of liquefied gas is may include a plurality of refrigerant flow paths and at least one gas flow path.
  • the refrigerant sequentially flows through one of the liquefied gas heat exchangers (22a), the boil-off gas heat exchanger (21), and the liquefied gas heat exchanger (22), thereby receiving the cold heat of the liquefied gas and boil-off gas. can be cooled by
  • 19 to 21 are conceptual diagrams of a gas processing system according to the 15th embodiment of the present invention.
  • Figure 19 shows a case where the cold heat of the boil-off gas and liquefied gas is not transferred to the refrigerant
  • Figure 20 shows a case where only the cold heat of the boil-off gas is transferred to the refrigerant
  • Figure 21 shows a case where only the cold heat of the liquefied gas is transferred to the refrigerant. is shown.
  • the gas processing system 1 includes a refrigerant heat exchanger 27, a boil-off gas heat exchanger 21, and a liquefied gas heat exchanger 22, respectively. However, they can all be arranged in parallel based on the refrigerant line (RL).
  • the refrigerant can circulate along various closed loops.
  • the refrigerant in this embodiment circulates along the refrigerant compressor 25, the refrigerant heat exchanger 27, the refrigerant expander 23, and the subcooler 24, as shown in FIG. 19, and is liquefied and supplied to the demander 40. It may not receive cold heat from gas or evaporation gas.
  • the refrigerant may circulate along the refrigerant compressor 25, the boil-off gas heat exchanger 21, the refrigerant expander 23, and the subcooler 24, as shown in FIG. 20.
  • the boil-off gas heat exchanger 21 includes a gas flow path and a refrigerant flow path, and may include a plurality of refrigerant flow paths. Therefore, the boil-off gas heat exchanger 21 exchanges heat with the refrigerant compressed by the refrigerant compressor 25 and the refrigerant before being compressed in the refrigerant compressor 25, and can transfer the cold heat of the boil-off gas to the refrigerant.
  • the refrigerant may circulate along the refrigerant compressor 25, the liquefied gas heat exchanger 22, the refrigerant expander 23, and the subcooler 24, as shown in FIG. 21.
  • the liquefied gas heat exchanger 22 includes at least one gas passage and a plurality of refrigerant passages, so that heat exchange between refrigerants before and after the refrigerant compressor 25 and cooling of the refrigerant through the liquefied gas can be implemented.
  • the refrigerant can be controlled not to utilize the cold heat of the liquefied gas or boil-off gas as needed, or the refrigerant can be controlled to utilize the cold heat of either the liquefied gas or the boil-off gas.
  • the refrigerant line (RL) branches downstream from the refrigerant compressor 25 to the refrigerant heat exchanger 27, the boil-off gas heat exchanger 21, and the liquefied gas heat exchanger 22, and the branched refrigerant flow rate is It can be controlled by a controller. Therefore, the refrigerant can be cooled by the cold heat of at least one of liquefied gas or boil-off gas.
  • this embodiment can implement control that combines non-use of cold heat, utilization of cold heat of evaporation gas, and utilization of cold heat of liquefied gas, and thus cooling control for the refrigerant can be performed in various ways.
  • 22 and 23 are conceptual diagrams of a gas processing system according to the 16th embodiment of the present invention.
  • Figure 22 shows a case where the refrigerant is cooled by the cold heat of evaporation gas
  • Figure 23 shows a case where the refrigerant is cooled by liquefied gas.
  • the gas processing system 1 includes a refrigerant heat exchanger 27, a boil-off gas heat exchanger 21, and a liquefaction
  • a gas heat exchanger 22 may be provided, and a refrigerant heat exchanger 27, an evaporation gas heat exchanger 21, and a liquefied gas heat exchanger 22 may be arranged in parallel based on the refrigerant line RL.
  • this embodiment may further include a refrigerant bypass line (not shown).
  • the refrigerant bypass line may be provided to bypass the refrigerant heat exchanger 27, the boil-off gas heat exchanger 21, and the liquefied gas heat exchanger 22, respectively, in the refrigerant line RL.
  • the refrigerant line (RL) branches downstream of the refrigerant compressor (25) into the refrigerant heat exchanger (27), the boil-off gas heat exchanger (21), and the liquefied gas heat exchanger (22).
  • This embodiment further extends the refrigerant heat exchanger (27). ), etc., it is possible to implement a flow in which the refrigerant is transferred from the subcooler 24 to the refrigerant compressor 25 without heat exchange.
  • this embodiment can control the inlet temperature of the refrigerant compressor 25 by controlling the refrigerant flow in the refrigerant bypass line through the control unit.
  • a refrigerant bypass valve may be provided in the refrigerant bypass line.
  • the refrigerant subcools the liquefied gas in the subcooler 24 and then flows along the boil-off gas heat exchanger 21 and the refrigerant bypass line. Accordingly, some of the refrigerant is cooled by the evaporation gas supplied to the demand source 40, and the rest is delivered to the refrigerant compressor 25 without cooling by the evaporation gas. Since the refrigerant flowing along the refrigerant bypass line is not cooled by evaporation gas, the inlet temperature of the refrigerant compressor (25) may increase when the refrigerant flow rate in the refrigerant bypass line increases.
  • the inlet temperature of the refrigerant compressor 25 may be lowered.
  • the refrigerant is cooled with the cold heat of the evaporation gas to increase subcooling efficiency, and the inlet temperature of the refrigerant compressor 25 can be appropriately controlled.
  • the refrigerant may subcool the liquefied gas in the subcooler 24 and then flow along the liquefied gas heat exchanger 22 and the refrigerant bypass line. That is, some of the refrigerant flows into the refrigerant passage of the liquefied gas heat exchanger (22) and can be cooled by the liquefied gas, and the remainder bypasses the liquefied gas heat exchanger (22) along the refrigerant bypass line to recover the cold heat of the liquefied gas. I never do that.
  • the inlet temperature of the refrigerant compressor 25 can be appropriately adjusted by controlling the bypass flow rate of the refrigerant bypass line. This operation may be implemented by a control unit.
  • part of the refrigerant discharged from the subcooler (24) flows into the refrigerant heat exchanger (27) and the remainder bypasses the refrigerant heat exchanger (27).
  • 24 and 25 are conceptual diagrams of a gas processing system according to the 17th embodiment of the present invention.
  • Figure 24 shows a state in which the refrigerant is cooled using evaporation gas
  • Figure 25 shows a state in which the refrigerant is cooled using liquefied gas.
  • the gas processing system 1 according to the 17th embodiment of the present invention includes a liquefied gas heat exchanger 22 and a boil-off gas heat exchanger 21, and a separate refrigerant heat exchanger. (27) may not be provided.
  • This embodiment may be provided with a liquefied gas heat exchanger 22 and a boil-off gas heat exchanger 21, similar to that described in the first embodiment.
  • the liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21 are arranged in series based on the refrigerant line RL.
  • the liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21 are arranged in series.
  • the heat exchanger 21 may be arranged in parallel with respect to the refrigerant line RL.
  • the refrigerant flows along the refrigerant line (RL) and passes only the boil-off gas heat exchanger (21) among the boil-off gas heat exchanger (21) and the liquefied gas heat exchanger (22) downstream of the refrigerant compressor (25). Afterwards, it can be delivered to the refrigerant expander (23).
  • the refrigerant flows along the refrigerant line (RL) and passes only the liquefied gas heat exchanger (22) among the boil-off gas heat exchanger (21) and the liquefied gas heat exchanger (22) downstream of the refrigerant compressor (25). Afterwards, it can be delivered to the refrigerant expander (23).
  • the refrigerant may be distributed to the boil-off gas heat exchanger 21 and the liquefied gas heat exchanger 22 downstream of the refrigerant compressor 25.
  • the boil-off gas heat exchanger 21 and the liquefied gas heat exchanger 22 may operate in conjunction with each other to control the refrigerant temperature.
  • the control unit may adjust the distribution of the refrigerant based on the flow rate of the boil-off gas and liquefied gas supplied to the demander 40, the temperature of the boil-off gas and the liquefied gas, etc.
  • 26 to 30 are conceptual diagrams of gas processing systems according to embodiments of the present invention.
  • the gas processing system 1 shown in FIGS. 26 to 30 is a simplified illustration of only the cooling device 20 in the previously described embodiments. 26 to 30 also show a bypass line (not shown) and a bypass valve (not shown) to bypass the gas heat exchanger (21, 21a, 22) or the subcooler (24) and refrigerant heat exchanger (27). Symbols not shown) are shown as dotted lines, but of course, bypass lines, etc. can be added or omitted as needed.
  • the present invention includes an embodiment in which a gas heat exchanger has one flow path that allows the flow of liquefied gas or boil-off gas.
  • the refrigerant obtains cold heat through either evaporation gas or liquefied gas and is used to subcool the liquefied gas in the subcooler 24.
  • a gas heat exchanger 21a that cools the refrigerant is provided so that liquefied gas or boil-off gas can alternatively flow in one flow path.
  • the present invention includes an embodiment in which the boil-off gas heat exchanger 21 and the liquefied gas heat exchanger 22 are arranged in series with respect to the refrigerant line RL.
  • (A) of FIG. 27 it may be related to the cooling device 20 of FIG. 1.
  • (A) in FIG. 27 may be interpreted as showing a partial configuration of the cooling device 20 included in FIGS. 14 and 18, etc.
  • a refrigerant heat exchanger 27 may be added compared to the case of Figure 27 (A). In this case, it may be related to the cooling device 20 shown in FIG. 17 above.
  • the present invention includes an embodiment in which the boil-off gas heat exchanger 21 and the liquefied gas heat exchanger 22 are arranged in parallel with respect to the refrigerant line RL.
  • (A) of FIG. 28 it may be related to the cooling device 20 previously described in FIGS. 24 and 25.
  • a separate refrigerant heat exchanger 27 may be added compared to Figure 28 (A), and in this case, it may be related to the cooling device 20 shown in Figures 19 to 23, etc. .
  • the present invention includes an embodiment in which two gas heat exchangers (22, 21a) are arranged in series with respect to the refrigerant line (RL).
  • the liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21a may be provided sequentially as two gas heat exchangers 22 and 21a. At this time, at least one of the liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21a (22, 21a) has a structure in which the boil-off gas or the liquefied gas alternatively flows on one flow path. You can.
  • FIG. 29 (A) it may correspond to the cooling device 20 of FIG. 11 above.
  • FIG. 26 (A) which is explained as being related to FIG. 11, is different from FIG. 29 (A) in that the liquefied gas heat exchanger 22 shown in FIG. 11 is omitted.
  • Figure 29 (B) a refrigerant heat exchanger 27 is added separately compared to Figure 29 (A).
  • Figure 29(B) can be viewed as being related to the cooling device 20 of Figure 12, and can further be understood as corresponding to the cooling device 20 of Figure 16.
  • the present invention is provided with a plurality of gas heat exchangers (22, 21b, 21) and a refrigerant heat exchanger (27), and a plurality of gas heat exchangers (22, 21b) on the refrigerant line (RL).
  • , 21) includes a case where one of them is arranged in parallel with the refrigerant heat exchanger (27) and at least the other one is arranged in series with the refrigerant heat exchanger (27).
  • the liquefied gas heat exchanger 22 may be provided in parallel with the refrigerant heat exchanger 27.
  • a boil-off gas heat exchanger (21b) is provided, and the boil-off gas heat exchanger (21b) may have a structure in which liquefied gas or boil-off gas is alternatively supplied to any one flow path.
  • This evaporation gas heat exchanger (21b) may be provided in series with the refrigerant heat exchanger (27).
  • the liquefied gas heat exchanger 22 and the boil-off gas heat exchanger 21b are arranged in series based on the refrigerant line RL.
  • the liquefied gas heat exchanger 22 may be provided between the subcooler 24 and the refrigerant compressor 25, and the boil-off gas heat exchanger 21b may be provided between the refrigerant compressor 25 and the refrigerant heat exchanger 27. You can.
  • the boil-off gas heat exchanger (21b) is divided into a boil-off gas heat exchanger (21) and a liquefied gas heat exchanger (22a).
  • the liquefied gas and the boil-off gas are divided into a boil-off gas heat exchanger (21b).
  • the shared line may not exist.
  • the present invention may further include a structure capable of subcooling liquefied gas through various combinations of a gas heat exchanger and a refrigerant heat exchanger 27 as another embodiment.
  • the present invention is not limited to the embodiments described above, and of course may include a combination of the above embodiments or a combination of at least one of the above embodiments with known techniques as another embodiment.
  • Gas processing system 10 Liquefied gas storage tank
  • injection device 14 ejector
  • L1 Boil-off gas line
  • L1a Boil-off gas branch line
  • L1c Evaporative gas bypass line
  • L2 Liquefied gas line
  • L2a Liquefied gas mixing line
  • L3 Liquefied gas bypass line
  • L3a Liquefied gas heating line
  • L4 Liquefied gas delivery line
  • RL Refrigerant line RL1: First refrigerant line
  • V1a Evaporative gas branch valve
  • V2 Liquefied gas branch valve
  • V21 1st liquefied gas mixing valve
  • V22 2nd liquefied gas mixing valve
  • V3 Liquefied gas supply valve
  • V31 Liquefied gas bypass valve
  • V32 Liquefied gas heating valve
  • V4 Liquefied gas delivery valve

Abstract

본 발명은 가스 처리 시스템 및 이를 포함하는 선박에 관한 것으로, 액화가스 저장탱크; 상기 액화가스 저장탱크의 액화가스를 과냉시켜 되돌리는 냉각 장치; 및 상기 액화가스 저장탱크의 증발가스를 가압하여 수요처로 공급하는 메인 압축기를 포함하며, 상기 냉각 장치는, 냉매로 액화가스를 과냉시키는 과냉기; 및 상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 증발가스 또는 상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 액화가스 중 적어도 어느 하나로 냉매를 냉각하는 가스 열교환기를 포함하며, 상기 가스 열교환기는, 냉매가 유동하는 냉매 유로와, 액화가스 또는 증발가스 중 적어도 어느 하나가 유동하는 가스 유로를 갖는다.

Description

가스 처리 시스템 및 이를 포함하는 선박
본 발명은 가스 처리 시스템 및 이를 포함하는 선박에 관한 것이다.
선박은 대량의 광물이나 원유, 천연가스, 또는 몇천 개 이상의 컨테이너 등을 싣고 대양을 항해하는 운송수단으로서, 강철로 이루어져 있고 부력에 의해 수선면에 부유한 상태에서 프로펠러의 회전을 통해 발생되는 추력을 통해 이동한다.
이러한 선박은 엔진을 구동함으로써 추력을 발생시키는데, 이때 엔진은 가솔린 또는 디젤을 사용하여 피스톤을 움직여서 피스톤의 왕복운동에 의해 크랭크 축이 회전되도록 함으로써, 크랭크 축에 연결된 샤프트가 회전되어 프로펠러가 구동되도록 하는 것이 일반적이었다.
그러나, 추진 연료로서 HFO 또는 MFO와 같은 중유를 사용하는 경우, 배기가스에 포함된 각종 유해물질로 인한 환경오염이 심각하기 때문에, 중유를 연료유로 사용하는 경우에 대한 규제가 강화되고 있고, 이러한 규제를 만족 시키기 위한 비용이 점차 증가하고 있다.
이에 따라 선박의 연료로서, 가솔린이나 디젤을 대체하여 액화천연가스(Liquefied Natural Gas), 액화석유가스(Liquefied Petroleum Gas) 등과 같은 액화가스를 사용하는 기술의 개발이 이루어지고 있다.
이와 같은 액화가스는 액상으로 액화가스 저장탱크에 저장되는데, 액화천연가스는 액화에 의해 1/600의 부피로 줄어들고, 액화석유가스는 액화에 의해 프로판은 1/260, 부탄은 1/230의 부피로 줄어들어 저장 효율이 높다는 장점이 있다.
그러나 이러한 액화가스는 -50도씨 이하의 극저온으로 저장되므로, 외부 열침투에 의해 증발가스가 발생하는 등의 문제가 있는 바, 액화가스를 안정적으로 저장하고 처리하기 위한 기술이 지속적으로 연구 개발되고 있다.
본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 창출된 것으로서, 본 발명의 목적은, 과냉각된 액화가스를 탱크로 주입하여 탱크에서 증발가스를 억제하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따른 가스 처리 시스템은, 액화가스 저장탱크; 상기 액화가스 저장탱크의 액화가스를 과냉시켜 되돌리는 냉각 장치; 및 상기 액화가스 저장탱크의 증발가스를 가압하여 수요처로 공급하는 메인 압축기를 포함하며, 상기 냉각 장치는, 냉매로 액화가스를 과냉시키는 과냉기; 및 상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 증발가스 또는 상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 액화가스 중 적어도 어느 하나로 냉매를 냉각하는 가스 열교환기를 포함하며, 상기 가스 열교환기는, 냉매가 유동하는 냉매 유로와, 액화가스 또는 증발가스 중 적어도 어느 하나가 유동하는 가스 유로를 갖는다.
구체적으로, 상기 액화가스 저장탱크에서 상기 수요처로 증발가스를 전달하는 증발가스라인; 및 상기 액화가스 저장탱크에서 상기 수요처로 액화가스를 전달하는 액화가스라인을 더 포함하며, 상기 증발가스라인 및 상기 액화가스라인은, 상기 가스 열교환기의 상기 가스 유로를 공유하도록 마련될 수 있다.
구체적으로, 상기 증발가스라인에서 분기되어 상기 가스 열교환기를 우회하는 증발가스 우회라인; 상기 액화가스라인에서 분기되어 상기 가스 열교환기를 우회하는 액화가스 우회라인; 및 상기 증발가스 우회라인 및 상기 액화가스 우회라인의 유동을 제어하는 제어부를 더 포함할 수 있다.
구체적으로, 상기 냉각 장치는, 냉매가 순환하는 냉매라인을 더 포함하며, 상기 가스 열교환기는, 상기 냉매라인과 연결되는 복수의 냉매 유로를 갖고, 상기 과냉기는, 상기 가스 열교환기의 복수의 상기 냉매 유로를 상호 연결하는 상기 냉매라인 상에 마련될 수 있다.
구체적으로, 상기 냉각 장치는, 냉매를 압축하여 상기 가스 열교환기의 어느 하나의 상기 냉매 유로로 전달하는 냉매 압축기; 및 상기 가스 열교환기의 어느 하나의 상기 냉매 유로에서 배출되는 냉매를 팽창시켜 상기 과냉기로 전달하는 냉매 팽창기를 더 포함할 수 있다.
구체적으로, 상기 가스 열교환기는, 상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 증발가스로 냉매를 냉각하는 증발가스 열교환기; 및 상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 액화가스로 냉매를 냉각하는 액화가스 열교환기를 포함하며, 상기 증발가스 열교환기 및 상기 액화가스 열교환기는, 상기 냉매라인 상에 직렬로 마련될 수 있다.
구체적으로, 상기 증발가스 열교환기는, 상기 증발가스라인 및 상기 액화가스라인이 서로 공유하는 상기 가스 유로를 갖고, 액화가스의 흐름을 기준으로 상기 액화가스 열교환기의 하류에 마련될 수 있다.
구체적으로, 상기 냉각 장치는, 상기 냉매 압축기 하류의 냉매와 상기 과냉기 하류의 냉매를 상호 열교환시키는 냉매 열교환기를 더 포함하며, 상기 냉매 열교환기는, 상기 가스 열교환기와 병렬로 마련될 수 있다.
구체적으로, 상기 가스 열교환기는, 상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 증발가스로 냉매를 냉각하는 증발가스 열교환기; 및 상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 액화가스로 냉매를 냉각하는 액화가스 열교환기를 포함하고, 상기 냉각 장치는, 상기 냉매 압축기 하류의 냉매와 상기 과냉기 하류의 냉매를 상호 열교환시키는 냉매 열교환기를 더 포함하며, 상기 냉매 열교환기와 상기 액화가스 열교환기는, 상기 냉매라인 상에 병렬로 마련되고, 상기 증발가스 열교환기와 상기 액화가스 열교환기 또는 상기 냉매 열교환기는, 상기 냉매라인 상에 직렬로 마련될 수 있다.
본 발명의 일 측면에 따른 선박은, 상기 가스 처리 시스템을 갖는다.
본 발명에 따른 가스 처리 시스템 및 이를 포함하는 선박은, 과냉각된 액화가스를 탱크로 주입하여 탱크에서 발생하는 증발가스를 줄일 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 제1 실시예에 따른 가스 처리 시스템의 개념도이다.
도 2는 본 발명의 제2 실시예에 따른 가스 처리 시스템의 개념도이다.
도 3은 본 발명의 제3 실시예에 따른 가스 처리 시스템의 개념도이다.
도 4는 본 발명의 제4 실시예에 따른 가스 처리 시스템의 개념도이다.
도 5는 본 발명의 제5 실시예에 따른 가스 처리 시스템의 개념도이다.
도 6은 본 발명의 제6 실시예에 따른 가스 처리 시스템의 개념도이다.
도 7은 본 발명의 제1 실시예에 따른 냉각 장치의 개념도이다.
도 8은 본 발명의 제2 실시예에 따른 냉각 장치의 개념도이다.
도 9는 본 발명의 제3 실시예에 따른 냉각 장치의 개념도이다.
도 10은 본 발명의 제4 실시예에 따른 냉각 장치의 개념도이다.
도 11은 본 발명의 제7 실시예에 따른 가스 처리 시스템의 개념도이다.
도 12는 본 발명의 제8 실시예에 따른 가스 처리 시스템의 개념도이다.
도 13은 본 발명의 제9 실시예에 따른 가스 처리 시스템의 개념도이다.
도 14는 본 발명의 제10 실시예에 따른 가스 처리 시스템의 개념도이다.
도 15는 본 발명의 제11 실시예에 따른 가스 처리 시스템의 개념도이다.
도 16은 본 발명의 제12 실시예에 따른 가스 처리 시스템의 개념도이다.
도 17은 본 발명의 제13 실시예에 따른 가스 처리 시스템의 개념도이다.
도 18은 본 발명의 제14 실시예에 따른 가스 처리 시스템의 개념도이다.
도 19는 본 발명의 제15 실시예에 따른 가스 처리 시스템의 개념도이다.
도 20은 본 발명의 제15 실시예에 따른 가스 처리 시스템의 개념도이다.
도 21은 본 발명의 제15 실시예에 따른 가스 처리 시스템의 개념도이다.
도 22는 본 발명의 제16 실시예에 따른 가스 처리 시스템의 개념도이다.
도 23은 본 발명의 제16 실시예에 따른 가스 처리 시스템의 개념도이다.
도 24는 본 발명의 제17 실시예에 따른 가스 처리 시스템의 개념도이다.
도 25는 본 발명의 제17 실시예에 따른 가스 처리 시스템의 개념도이다.
도 26은 본 발명의 실시예들에 따른 가스 처리 시스템의 개념도이다.
도 27은 본 발명의 실시예들에 따른 가스 처리 시스템의 개념도이다.
도 28은 본 발명의 실시예들에 따른 가스 처리 시스템의 개념도이다.
도 29는 본 발명의 실시예들에 따른 가스 처리 시스템의 개념도이다.
도 30은 본 발명의 실시예들에 따른 가스 처리 시스템의 개념도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
이하에서, 제1, 제2 등과 같은 표현은 본 발명에서 특정 구성이 복수 개로 마련되는 것을 지칭하기 위한 것으로, 각각의 표현은 복수 개의 구성 중 어느 하나를 지칭하는 것일 수 있다. 제1, 제2 등의 표현이 부가되지 않은 경우, 해당 구성은 제1, 제2 등의 표현이 부가된 구성을 모두 포괄하는 개념일 수 있다.
본 발명에서 가스는 액화천연가스(LNG) 또는 액화석유가스(LPG), 에틸렌, 암모니아 등과 같이 일반적으로 액체 상태로 보관되는 모든 가스 연료를 포괄하는 의미로 사용될 수 있으며, 가열이나 가압에 의해 액체 상태가 아닌 경우 등도 편의상 액화가스로 표현할 수 있다. 이는 증발가스도 마찬가지로 적용될 수 있다.
또한 LNG는 편의상 액체 상태인 NG(Natural Gas) 뿐만 아니라 초임계 상태 등인 천연가스(NG)를 모두 포괄하는 의미로 사용될 수 있으며, 증발가스는 기체 상태의 증발가스뿐만 아니라 액화된 증발가스를 포함하는 의미로 사용될 수 있다.
이하에서, 고압(HP: High pressure), 저압(LP: Low pressure), 고온 및 저온은 상대적인 것으로서, 절대적인 수치를 나타내는 것은 아님을 알려둔다.
본 발명은 이하에서 설명하는 가스 처리 시스템이 구비되는 선박을 포함한다. 이때 선박은 가스 추진선, 가스 운반선, FSRU, FPSO, Bunkering vessel, 해양플랜트 등을 모두 포함하는 개념이다.
본 발명은 압력센서(PT), 온도센서(TT), 유량센서(FT) 등이 제한 없이 적절한 위치에 구비될 수 있음은 물론이며, 각 센서에 의한 측정값은 이하에서 설명하는 구성들의 운영에 제한 없이 다양하게 사용될 수 있다.
또한 본 발명의 도면에서 직선은 가스나 냉매, 열매, 비폭발성가스 등의 다양한 유체가 이동하는 유로를 나타나는 것으로서, 파이프 라인으로 해석될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 제1 실시예에 따른 가스 처리 시스템의 개념도이다.
도 1을 참고하여 보면, 본 발명의 일 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10), 냉각 장치(20), 메인 압축기(30) 및 수요처(40)를 포함할 수 있다.
액화가스 저장탱크(10)는, 수요처(40)에 공급될 액화가스를 저장한다. 이때, 액화가스 저장탱크(10)는 액체상태의 액화가스를 보관할 수 있고, 압력 탱크 형태를 가질 수 있다. 액화가스 저장탱크(10)는 복수 개로 마련될 수 있으며, 복수 개 이상이 나란히 배치될 수 있다.
액화가스 저장탱크(10)는 단열 구조로 되어 있지만, 외부로부터 액화가스 저장탱크(10)로 열이 들어가면 액화가스 저장탱크(10) 내에 저장되어 있는 액화가스가 따뜻해져 그 일부가 증발한다. 이 증발된 액화가스는, 증발가스(BOG; Boil off gas)로서 액화가스 저장탱크(10) 내에 저장되어 있는 액상의 액화가스의 액면의 상부 공간에 저장된다.
액화가스 저장탱크(10)에는, 액화가스 저장탱크(10) 내의 상부 공간에 저장되어 있는 증발가스를 액화가스 저장탱크(10) 외부로 빼낼 수 있는 증발가스라인(L1)이 액화가스 저장탱크(10)의 상부에 구비될 수 있다. 상기 증발가스라인(L1)은 중간에 분기되어 증발가스 분기라인(L1a)과 연결되고 상기 증발가스 분기라인(L1a) 상에는 증발가스 열교환기(21)가 구비될 수 있다.
즉, 상기 증발가스라인(L1)은 증발가스 열교환기(21)를 우회하고, 증발가스 분기라인(L1a)은 증발가스 열교환기(21)를 통과할 수 있다.
참고로 이하에서 증발가스 열교환기(21) 등과 같이 열교환을 구현하되 증발가스나 액화가스가 유동하는 구성을 가스 열교환기로 정의할 수 있다.
증발가스라인(L1) 및 증발가스 분기라인(L1a)에는 온도제어를 위한 밸브(V1, V1a)가 구비된다. 상기 밸브(V1, V1a)는 메인 압축기(30)에서 요구하는 온도와 증발가스의 온도에 따라서, 개도가 조절될 수 있다. 예를 들어, 메인 압축기(30)에서 요구하는 온도보다 증발가스의 온도가 높을수록 증발가스 분기라인(L1a) 상에 구비되는 증발가스 분기밸브(V1a)가 닫힐 수 있고, 메인 압축기(30)에서 요구하는 온도보다 증발가스의 온도가 낮을수록 증발가스라인(L1) 상에 구비되는 증발가스밸브(V1)가 닫힐 수 있다.
증발가스는 증발가스라인(L1) 또는 증발가스 분기라인(L1a)을 통해 수요처(40)로 전달된다. 증발가스가 증발가스 열교환기(21)를 통과하는 경우 수요처(40)로 전달되는 증발가스는 가열될 수 있고, 동시에 냉매라인(RL) 내 냉매는 냉각될 수 있다.
액화가스 저장탱크(10)의 내부 압력이 높은 경우, 증발가스를 수요처(40)로 전달하여 상기 수요처(40)에서 증발가스를 소모하여 액화가스 저장탱크(10) 내부의 압력을 낮출 수 있다.
본 발명의 일 실시예에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10)의 내압에 따라 증발가스가 증발가스 열교환기(21)를 통과하도록 제어하거나, 액화가스가 액화가스 열교환기(22)를 통과하도록 제어하는 제어부(도시하지 않음)를 포함할 수 있다.
액화가스 저장탱크(10)에 증발가스가 많이 발생되어 액화가스 저장탱크(10)의 압력이 큰 경우, 증발가스를 소모하여 액화가스 저장탱크(10)의 압력을 낮출 수 있다. 이때 제어부는 증발가스를 소모하는 과정에서 증발가스를 증발가스 열교환기(21)로 전달하여 냉매의 온도를 낮출 수 있다. 구체적으로 제어부는 증발가스 분기밸브(V1a)를 열어 증발가스를 증발가스 열교환기(21)로 전달한다.
반면, 액화가스 저장탱크(10)에 증발가스가 많이 발생되지 않아 액화가스 저장탱크(10)의 압력이 크지 않은 경우, 액화가스를 기화시켜 수요처(40)로 공급할 수 있다. 이때 제어부는 액화가스를 수요처(40)로 공급하는 과정에서 액화가스를 액화가스 열교환기(22)로 전달하여 냉매의 온도를 낮출 수 있다. 구체적으로, 제어부는 액화가스 분기밸브(V2)를 열어 증발가스를 액화가스 열교환기(22)로 전달한다.
수요처(40)는 메인 추진 장치로서 이중 연료 연소(Dual Fuel, DF) 엔진일 수 있다. 본 명세서에서 액화가스가 수요처(40)로 전달된다고 기재한 경우, 이는 액화가스가 선박 내에서 필요한 전기를 생성하는 발전용 엔진(41) 또는 증발가스를 태우는 GCU(Gas Combustion Unit, 42)로 전달되는 것을 포함할 수 있다.
증발가스 열교환기(21)는 냉매와 액화가스 저장탱크(10)의 증발가스를 열교환시킬 수 있고, 액화가스 열교환기(22)는 냉매와 액화가스 저장탱크(10)의 액화가스를 열교환시킬 수 있다.
또한, 증발가스 열교환기(21) 및 액화가스 열교환기(22)는 병합형 열교환기일 수 있다. 즉, 증발가스 열교환기(21)는 냉매와 액화가스 저장탱크(10)의 증발가스를 열교환시키는 동시에 냉매 사이에서 열교환이 일어나도록 할 수 있다. 마찬가지로 액화가스 열교환기(22)는 냉매와 액화가스 저장탱크(10)의 액화가스를 열교환시키는 동시에 냉매 사이에서 열교환이 일어나도록 할 수 있다.
액화가스 저장탱크(10)에는 펌프(11, 12)가 마련될 수 있으며, 펌프(11, 12)를 통해 액화가스 저장탱크(10)에 저장된 액화가스를 빼낼 수 있다. 펌프(11, 12)는 액화가스 저장탱크(10)의 내부에 저장된 액화가스에 잠기도록 구비되거나 또는 액화가스 저장탱크(10)의 외부에 구비될 수 있다.
액화가스 저장탱크(10)의 외부에 펌프(11, 12)가 구비되는 경우, 액화가스 저장탱크(10)보다 낮은 위치에 펌프(11, 12)를 설치할 수 있다. 펌프(11, 12)는 액화가스의 수위가 낮으면 액화가스를 펌핑할 수 없는 경우가 있는데, 펌프(11, 12)가 액화가스 저장탱크(10)보다 낮은 위치에 설치되어, 액화가스가 일정 수위보다 낮아지지 않을 수 있고 액화가스의 수위가 낮아 펌핑이 불가능한 것을 방지할 수 있다.
펌프(11, 12)는 액화가스 저장탱크(10)의 내부에 마련되어 액화가스에 잠기도록 구비되는 부스팅 펌프일 수 있다.
제1 펌프(11)는 과냉라인(SL)을 통해 과냉기(24)로 액화가스를 전달할 수 있다. 과냉기(24)를 거쳐 과냉각된 액화가스는 주입장치(13)를 통해 액화가스 저장탱크(10)로 순환된다. 바람직하게는, 순환된 액화가스는 액화가스 저장탱크(10)에 분사되어 액화가스 저장탱크(10) 내부의 액화가스를 냉각할 수 있다. 액화가스 저장탱크(10) 내부의 액화가스를 냉각하여 액화가스 저장탱크(10) 내 증발가스 발생을 억제할 수 있다. 도면에는 표현되지 않았으나, 순환된 액화가스는 액화가스 저장탱크(10) 하부와 가깝게 주입될 수 있다.
제2 펌프(12)는 액화가스를 수요처(40)로 전달할 수 있다. 제2 펌프(12)는 액화가스 열교환기(22)를 우회하여 메인 압축기(30)의 전단에 연결되는 액화가스라인(L2)을 통하여 액화가스를 수요처(40)로 전달할 수 있다.
또한, 제2 펌프(12)는 액화가스가 액화가스 열교환기(22)를 통과하여 수요처(40)로 전달되도록 할 수 있다. 제2 펌프(12)는 액화가스 열교환기(22)를 통과하여 메인 압축기(30)의 전단에 연결되는 액화가스 혼합라인(L2a), 액화가스 열교환기(22)를 통과하고 액화가스 히터(51)를 통과하는 액화가스 히팅라인(L3a), 액화가스 열교환기(22)를 통과하고 액화가스 히터(51)를 우회하는 액화가스 우회라인(L3) 또는 액화가스 열교환기(22)를 통과하여 메인 압축기(30)의 후단에 연결되는 액화가스 전달라인(L4)을 통하여 액화가스를 수요처(40)로 전달할 수 있다.
수요처(40)로 전달되는 액화가스가 액화가스 열교환기(22)를 통과하는 경우 수요처(40)로 전달되는 액화가스는 가열될 수 있고, 동시에 냉매라인(RL) 내 냉매는 냉각될 수 있다.
액화가스 저장탱크(10)의 내부 압력이 높지 않고, 수요처(40)로 액화가스의 공급이 필요한 경우, 액상의 액화가스를 액화가스 히터로 공급하여 액화가스를 기화시키고 상기 증발가스를 수요처(40)로 전달할 수 있다.
액화가스 저장탱크(10)는 하나 이상이 구비될 수 있고, 상기 액화가스 저장탱크(10) 중 하나는 가압탱크일 수 있다. 복수의 액화가스 저장탱크(10)에서 발생하는 증발가스를 가압탱크에 저장하여, 상기 가압탱크 내에서 증발가스를 가압할 수 있다. 상기 가압탱크에 추가적인 압력을 제공하지 않고 가압탱크의 압력을 이용하여 증발가스를 수요처(40)로 공급할 수 있다. 물론, 가압탱크가 아닌 액화가스 저장탱크(10)의 증발가스도 가압탱크의 증발가스와 함께 수요처(40)로 전달될 수 있다.
이하에서, 도 1을 통해 설명한 것과 동일한 내용은 그 설명을 앞선 실시예의 내용으로 갈음하기로 한다.
도 2는 본 발명의 제2 실시예에 따른 가스 처리 시스템의 개념도이다.
도 2를 참고하여 보면, 액화가스 저장탱크(10)의 내압이 작은 경우, 액화가스 저장탱크(10)의 액상의 액화가스는, 액화가스 열교환기(22)를 통과하여 수요처(40)로 공급될 수 있다. 액화가스 열교환기(22)를 통과한 액화가스 중 일부는 메인 압축기(30) 전단의 온도에 따라 액화가스 열교환기(22)를 우회하여 메인 압축기(30)의 전단에 연결되는 액화가스라인(L2)을 통하여 수요처(40)로 공급될 수 있다.
즉, 액상의 액화가스는 액화가스 열교환기(22)에서 기화되어 메인 압축기(30) 전단에 공급될 수 있으며, 이때, 메인 압축기(30)에서 요구하는 온도를 맞추기 위해, 액화가스 일부는 액화가스 열교환기(22)를 우회할 수 있다.
액화가스 열교환기(22)를 통과한 액화가스와 액화가스 열교환기(22)를 우회한 액화가스는 혼합기(50)에서 혼합될 수 있다.
이와 같이 액화가스의 온도를 조절하기 위해, 제1 액화가스 혼합밸브(V21) 및 제2 액화가스 혼합밸브(V22)가 구비될 수 있다. 제어부는 메인 압축기(30) 전단에 공급되는 액화가스의 온도를 낮추기 위해서, 제1 액화가스 혼합밸브(V21)를 개방할 수 있고, 액화가스라인(L2)을 통해 액화가스 열교환기(22)를 통과하지 않은 액화가스가 공급될 수 있다.
냉각 장치(20)가 작동될 필요가 없는 상황에서 액화가스 분기밸브(V2)는 닫혀있고, 액화가스 공급밸브(V3)는 열려있을 수 있고, 이 경우 액화가스는 액화가스 열교환기(22)를 우회하여 액화가스 우회라인(L3) 또는 액화가스 히팅라인(L3a)을 통해 전달될 수 있다.
도 3은 본 발명의 제3 실시예에 따른 가스 처리 시스템의 개념도이다.
도 3을 참고하여 보면, 액화가스 저장탱크(10)의 내압이 작은 경우, 액화가스 저장탱크(10)의 액상의 액화가스는, 액화가스 열교환기(22)를 통과할 수 있다. 그 이후 액화가스의 온도가 최종적으로 메인 압축기(30) 후단의 온도에 맞춰지도록 메인 압축기(30)의 후단의 온도에 따라, 액화가스는 액화가스 열교환기(22)를 통과하고 액화가스 히터(51)를 통과하는 액화가스 히팅라인(L3a)을 통해 수요처(40)로 공급되도록 제어되거나, 또는 액화가스 열교환기(22)를 통과하고 액화가스 히터(51)를 우회하는 액화가스 우회라인(L3)을 통해 수요처(40)로 공급되도록 제어될 수 있다.
여기서 액화가스는, 메인 압축기(30)를 통과하지 않고 곧바로 수요처(40)로 공급될 수 있다. 액화가스는 메인 압축기(30)를 통과하지 않으므로, 메인 압축기(30)에서 온도 상승이 이루어지지 않는다. 따라서 수요처(40)에서 요구하는 온도 조건을 맞추기 위해 액화가스 히터(51)는 메인 압축기(30) 후단의 온도에 맞도록 온도를 조절할 수 있다.
이때, 액화가스 히터(51)를 통과한 액화가스의 온도가 수요처(40)에서 요구하는 온도 조건보다 높아지게 되는 경우에는, 액화가스의 일부가 액화가스 히터(51)를 우회하는 액화가스 우회라인(L3)을 통해 수요처(40)로 공급될 수 있다.
액화가스의 경로를 조절하기 위해 액화가스 우회밸브(V31) 및 액화가스 히팅밸브(V32)가 구비될 수 있다. 제어부는 메인 압축기(30) 후단에 공급되는 액화가스의 온도를 낮추기 위해서, 액화가스 우회밸브(V31)가 열리도록 제어할 수 있고, 액화가스 우회라인(L3)을 통해 액화가스 일부가 공급될 수 있다.
이와 같이 액화가스 히터(51)를 통해 액화가스를 수요처(40)로 직접 공급하는 경우 메인 압축기(30)를 가동하지 않거나, 메인 압축기(30)에서의 부하를 줄일 수 있으므로, 가스 처리 시스템(1)에서 사용되는 전력을 줄일 수 있다.
도 4는 본 발명의 제4 실시예에 따른 가스 처리 시스템의 개념도이다.
도 4를 참고하여 보면, 액화가스 열교환기(22)에서 충분한 가열이 이루어져 액화가스가 수요처(40)에서 요구하는 온도 조건을 충족시킨 경우에는, 액화가스는 액화가스 히터(51)를 우회할 수 있다. 액화가스 저장탱크(10)의 액상의 액화가스는, 액화가스 열교환기(22)를 통과하여 메인 압축기(30)의 후단에 연결되는 액화가스 전달라인(L4)을 통하여 수요처(40)로 전달될 수 있다. 이 경우 액화가스 전달라인(L4)에 마련되는 액화가스 전달밸브(V4)가 개방될 수 있다.
도 5는 본 발명의 제5 실시예에 따른 가스 처리 시스템의 개념도이다.
도 5를 참고하여 보면, 과냉라인(SL)에는 이젝터(14)가 구비될 수 있다. 상기 이젝터(14)는 과냉기(24)의 전단에 구비되어 과냉기(24)로 들어가는 액화가스를 구동력으로 하여 증발가스를 흡입하고 증발가스와 액화가스를 혼합하여 액화가스 저장탱크로 순환시킬 수 있다. 이 과정에서 액화가스 저장탱크(10)의 증발가스는 액화되어 회수될 수 있다.
도면에는 도시되지 않았으나, 이젝터(14)는 과냉기(24)의 후단에 구비될 수 있고, 이 경우에는 과냉각된 액화가스를 구동력으로 사용하여 액화가스 저장탱크(10) 내 증발가스를 흡입하고 응축시킬 수 있다.
이젝터(14)가 과냉기(24)의 전단부에 설치되면 증발가스가 혼합되는 비율이 커지고, 늘어난 증발가스의 비율로 인해 액화가스와 증발가스가 혼합된 유체의 부피가 커지므로, 혼합된 유체를 냉각하기 위한 과냉기(24)의 크기도 커질 수 있다. 따라서, 이젝터(14)는 과냉기(24)의 설치 비용과 설치 공간의 효율성을 고려하여 과냉기(24)의 후단에 설치되는 것이 바람직하다.
도 6은 본 발명의 제6 실시예에 따른 가스 처리 시스템의 개념도이다.
도 6을 참고하여 보면, 과냉기(24)의 후단에는 증발가스 응축장치(15)가 구비될 수 있다. 메인 압축기(30)의 후단과 과냉기(24)의 후단이 서로 연결되고, 증발가스 응축장치(15)는 메인 압축기(30)의 후단에서 공급되는 증발가스의 일부와 과냉각된 액화가스를 혼합시켜 증발가스를 액화시킬 수 있다. 도면에는 표시되지 않았으나, 증발가스 응축장치(15)는 과냉기(24)의 전단에서도 구비될 수 있다. 또한, 메인 압축기(30)의 후단에서 과냉기(24)의 후단으로 흐르는 증발가스와 증발가스라인(L1)에서 흐르는 증발가스 사이에서 열교환이 일어날 수 있다.
도 7은 본 발명의 제1 실시예에 따른 냉각 장치의 개념도이다.
도 7을 참고하여 보면, 냉각 장치(20)는 과냉라인(SL)과 냉매라인(RL)을 포함한다. 과냉라인(SL)은 액화가스 저장탱크(10)와 연결되어, 과냉라인(SL)에는 액화가스 저장탱크(10)로부터 배출된 액화가스가 흐른다. 냉매라인(RL)에는 액화가스를 과냉하기 위한 냉매가 흐른다.
냉매라인(RL)에는 냉매 팽창기(23), 과냉기(24), 냉매 압축기(25), 냉매 냉각기(26) 및 냉매 열교환기(27)가 구비될 수 있다. 냉매 냉각기(26)와 냉매 열교환기(27)는 직렬로 연결될 수 있다. 상기 냉매 냉각기(26)는 냉매 압축기(25)의 하류에 구비될 수 있고, 상기 냉매 냉각기(26)의 하류에 냉매 열교환기(27)가 구비될 수 있다.
냉매는, 냉매 압축기(25)에서 고압으로 압축된다. 여기서 냉매 압축기(25)는 압축단과 쿨러가 다단으로 연결된 구조일 수 있다.
냉매는 냉매 압축기(25)에서 고압이 된 후 냉매 냉각기(26)로 유도되어, 수요처(40)로 전달되는 증발가스 또는 액화가스와 열교환하여 압축열이 제거될 수 있다.
냉매 냉각기(26)에서 냉각된 고압의 냉매는 냉매 열교환기(27)로 유도되어 과냉기(24)를 통과한 냉매와 열교환할 수 있다.
이후 상기 냉매는 냉매 팽창기(23)로 유도되고, 상기 냉매 팽창기(23)에서 감압되어 저온 저압의 냉매가 된다. 상기 냉매는 과냉기(24)로 유도되고 액화가스 저장탱크(10)에서 나와 액화가스 저장탱크(10)로 순환되는 액화가스와 열교환할 수 있다.
냉매는 과냉기(24)에서 열교환하여 온도가 상승하고, 비교적 고온의 냉매는 냉매 압축기(25)로 유도되어 상기 냉매 압축기(25)에서 고압으로 압축된다.
냉매가 냉매 냉각기(26)를 우회할 수 있도록 냉매라인(RL)은 냉매 압축기(25)의 하단에서 분기될 수 있다. 냉매 냉각기(26)로 도입되는 냉매의 온도, 증발가스의 온도 또는 액화가스의 온도 등에 따라서 냉매의 일부는 냉매 냉각기(26)를 우회할 수 있고, 냉매의 유량이 조절될 수 있다. 마찬가지로, 냉매 냉각기(26)로 도입되는 냉매의 온도, 증발가스의 온도 또는 액화가스의 온도 등에 따라서 증발가스 또는 액화가스는 냉매 냉각기(26)를 우회할 수 있고, 증발가스 또는 액화가스의 유량이 조절될 수 있다.
도 8은 본 발명의 제2 실시예에 따른 냉각 장치의 개념도이다.
도 8을 보면, 제2 실시예에 따른 냉각 장치(20)는 도 7에서 냉매 냉각기(26)와 냉매 열교환기(27)의 순서를 달리하여 상기 냉매 열교환기(27)는 냉매 압축기(25)의 하류에 구비될 수 있고, 상기 냉매 열교환기(27)의 하류에 냉매 냉각기(26)가 구비될 수 있다.
냉매는 냉매 압축기(25)에서 고압이 된 후 냉매 열교환기(27)로 유도되어, 과냉기(24)를 통과한 냉매와 열교환하고, 그 이후에 냉매 냉각기(26)로 유도되어, 수요처(40)로 전달되는 증발가스 또는 액화가스와 열교환할 수 있다.
도 9는 본 발명의 제3 실시예에 따른 냉각 장치의 개념도이다.
도 9를 참고하여 보면, 냉매 냉각기(26)와 상기 냉매 열교환기(27)는 병렬로 연결될 수 있다. 냉매라인(RL)은 냉매 압축기(25)의 하류에서 냉매 열교환기(27)로 연결되는 제1 냉매라인(RL1)과 냉매 냉각기(26)로 연결되는 제2 냉매라인(RL2)으로 분기될 수 있다.
냉매는 냉매 압축기(25)에서 고압이 된 후 냉매 냉각기(26)로 유도되어, 수요처(40)로 전달되는 증발가스 또는 액화가스와 열교환하여 압축열이 제거될 수 있으며, 냉매 열교환기(27)로 유도되어 과냉기(24)를 통과한 냉매와 열교환하여 냉각될 수 있다.
이후 상기 냉매는 냉매 팽창기(23)로 유도되고, 상기 냉매 팽창기(23)에서 감압되어 저온 저압의 냉매가 된다. 상기 냉매는 과냉기(24)로 유도되고 액화가스 저장탱크(10)에서 나와 액화가스 저장탱크(10)로 순환되는 액화가스와 열교환할 수 있다.
도 10은 본 발명의 제4 실시예에 따른 냉각 장치의 개념도이다.
도 10을 참고하여 보면, 냉각 장치(20)는 통합 열교환기(28)를 포함한다. 통합 열교환기(28)는 냉매 냉각기(26)와 상기 냉매 열교환기(27)가 하나로 통합된 기능을 할 수 있다.
냉매는 냉매 압축기(25)에서 고압이 된 후 통합 열교환기(28)로 유도되어, 수요처(40)로 전달되는 증발가스 또는 액화가스와 열교환하여 압축열이 제거될 수 있으며, 동시에 과냉기(24)를 통과한 냉매와 열교환하여 냉각될 수 있다.
이후 상기 냉매는 냉매 팽창기(23)로 유도되고, 상기 냉매 팽창기(23)에서 감압되어 저온 저압의 냉매가 된다. 상기 냉매는 과냉기(24)로 유도되고 액화가스 저장탱크(10)에서 나와 액화가스 저장탱크(10)로 순환되는 액화가스와 열교환할 수 있다.
도 7 내지 도 9는 냉매 냉각기(26)가 증발가스 분기라인(L1a)과 연결되는 것을 나타내고 있고 도 10은 통합 열교환기(28)가 증발가스 분기라인(L1a)과 연결되는 것을 나타내고 있으나, 상기 냉매 냉각기(26) 또는 상기 통합 열교환기(28)는 액화가스 라인들(L2a, L3a, L4)과 연결될 수 있다. 냉매 냉각기(26) 또는 통합 열교환기(28)가 증발가스 분기라인(L1a)과 연결되는 경우, 냉매는 증발가스에 의해 냉각될 수 있고, 냉매 냉각기(26) 또는 통합 열교환기(28)가 액화가스 라인들(L2a, L3a, L4)과 연결되는 경우 냉매는 액화가스에 의해 냉각될 수 있다.
도 7 내지 도 10의 일 실시예에 따른 냉각 장치(20)는 도 1 내지 도 6의 일 실시예에 따른 가스 처리 시스템(1)에 적용될 수 있음은 당연하다.
이와 같이 본 발명에 따른 가스 처리 시스템(1)은, 냉매를 이용하여 액화가스를 과냉각하고, 과냉각된 액화가스를 탱크로 순환되어 탱크에서 발생하는 증발가스를 줄일 수 있다.
또한, 본 발명에 따른 가스 처리 시스템(1)은, 액화가스 저장탱크(10) 내압에 따라, 증발가스의 냉열을 이용하여 냉매를 냉각하거나, 액화가스의 냉열을 이용하여 냉매를 냉각할 수 있다.
또한, 본 발명에 따른 가스 처리 시스템(1)은, 증발가스의 냉열을 이용하여 냉매를 냉각하는 경우, 메인 압축기(30)의 전단의 온도에 따라서 증발가스가 증발가스 열교환기(21)를 우회하도록 제어할 수 있다.
또한, 본 발명에 따른 가스 처리 시스템(1)은, 액화가스의 냉열을 이용하여 냉매를 냉각하는 경우, 메인 압축기(30)의 전단의 온도에 따라서, 액화가스가 액화가스 열교환기(22)를 우회하도록 제어할 수 있고, 메인 압축기(30)의 후단의 온도에 따라서, 액화가스가 액화가스 히터(51)를 우회하도록 제어할 수 있다.
도 11은 본 발명의 제7 실시예에 따른 가스 처리 시스템의 개념도이다.
이하에서는 본 실시예가 앞선 실시예 대비 달라지는 점 위주로 설명하도록 하며, 설명을 생략한 부분은 앞선 내용으로 갈음한다. 이는 본 발명에 포함되어 있는 모든 실시예에 적용된다.
도 11을 참조하면, 본 발명의 제7 실시예에 따른 가스 처리 시스템(1)은, 앞선 실시예들과 마찬가지로 액화가스의 과냉을 구현하는 냉각 장치(20)를 포함한다.
구체적으로 본 실시예의 냉각장치는, 냉매 팽창기(23), 과냉기(24), 냉매 압축기(25) 등을 포함한다. 이러한 구성들은 폐루프를 구성하는 냉매라인(RL) 상에 직렬 또는 병렬로 배치될 수 있다.
냉매 팽창기(23)는, 냉매라인(RL)에 마련되며 냉매 열교환기(27)에서 배출되는 냉매를 팽창시켜서 과냉기(24)로 전달한다. 참고로 냉매 열교환기(27)에서 냉매 팽창기(23)로 냉매가 전달되는 유로는, 후술하는 냉매 압축기(25)로부터 냉매 열교환기(27)로 냉매가 유입되는 유로와 다를 수 있다.
냉매 팽창기(23)는 팽창터빈, 감압밸브, 팽창기 등일 수 있으며, 이외에도 제한되지 않는 감압/팽창 수단이 사용될 수 있다. 또한 냉매 팽창기(23)는 냉매 압축기(25)와 연결되어 컴팬더(compander)를 이룰 수도 있다.
냉매 팽창기(23)는 냉매 열교환기(27)와 과냉기(24) 사이에서 냉매를 팽창시켜서 냉매의 압력을 떨어뜨림과 동시에 냉매의 온도를 하락시키게 된다. 냉매 팽창기(23)에 의해 감압 및 냉각된 냉매는 과냉기(24)에서 액화가스를 과냉시키는데 사용될 수 있다.
과냉기(24)는, 냉매로 액화가스를 과냉시킨다. 과냉기(24)는 과냉라인(SL) 및 냉매라인(RL) 상에 마련될 수 있으며, 어느 하나의 유로가 과냉라인(SL)과 연결되고 다른 하나의 유로가 냉매라인(RL)에 연결되는 구조를 갖는다.
과냉기(24)는 액화가스 저장탱크(10)로부터 제1 펌프(11) 등에 의해 배출되는 액화가스를 전달받고, 또한 냉매 팽창기(23)로부터 감압된 냉매를 전달받는다. 과냉기(24)는 액화가스 저장탱크(10)에서 배출된 액화가스를, 냉매 팽창기(23)에서 감압된 냉매로 과냉시킬 수 있다.
과냉기(24)에 의해 과냉된 액화가스는 스프레이 또는 파이프 등의 형태로 마련되는 주입장치(13)를 통해 액화가스 저장탱크(10) 내부로 복귀된다. 이를 통해 액화가스 저장탱크(10)에는 증발가스의 발생이 억제될 수 있다.
과냉기(24)에 연결되는 과냉라인(SL)은 펌프와 주입장치(13) 사이에서 액화가스가 유동하도록 마련될 수 있다. 다만 과냉라인(SL)은 액화가스 저장탱크(10)에서 배출되는 액화가스 중 적어도 일부가 과냉기(24)를 우회하도록 할 수 있다.
과냉라인(SL)으로 액화가스를 전달하는 펌프는 제1 펌프(11) 또는 제2 펌프(12)일 수 있으며, 본 실시예의 경우 과냉을 위한 펌프와 수요처(40)로의 공급을 위한 펌프가 통합 마련될 수 있다.
즉 본 실시예는 하나의 펌프를 이용하여 액화가스를 과냉기(24) 또는 수요처(40)로 전달할 수 있다. 이 경우 액화가스라인(L2)에는 각종 밸브가 마련됨에 따라, 과냉기(24) 또는 수요처(40)로 전달되는 액화가스의 유량이 조정될 수 있다. 밸브 개도 조절을 통한 액화가스의 유량 조절은 앞서 언급한 제어부에 의해 이루어질 수 있다.
냉매 압축기(25)는, 냉매라인(RL)에 마련되며 냉매를 압축하여 가스 열교환기(21a, 22)의 어느 하나의 유로로 전달한다. 본 실시예의 가스 열교환기는 이하에서 자세히 설명하도록 한다.
냉매 압축기(25)는 압축단과 쿨러가 교대로 마련되는 구조일 수 있고, 적어도 2단의 압축단이 이용될 수 있다. 물론 압축단의 단수는 한정하지 않는다. 또한 냉매 압축기(25)는 압축단이 냉매 팽창기(23)와 하나의 축을 통해 일체로 연결되는 것도 가능함은 설명하였다.
본 실시예는 제1 실시예와 유사하게 가스 열교환기로 증발가스 열교환기(21a) 및 액화가스 열교환기(22)를 구비하되, 앞선 제1 실시예 대비 증발가스 열교환기(21a)가 달라질 수 있다.
본 실시예의 증발가스 열교환기(21a)는, 냉매 간 열교환하는 복수의 유로를 구비하면서도 증발가스를 통해 냉매를 냉각할 수 있다. 더욱이 증발가스 열교환기(21a)는 액화가스의 냉열도 냉매 냉각에 이용할 수 있다.
다만 증발가스 열교환기(21a)는 냉매의 유로와 증발가스 유로 외에, 액화가스가 유동하는 전용 유로를 추가로 구비하지 않는다. 본 실시예의 증발가스 열교환기(21a)는 증발가스가 유동하는 유로에 필요에 따라 액화가스가 유동하도록 할 수 있다.
즉 증발가스 열교환기(21a)는, 액화가스 저장탱크(10)에서 배출되어 수요처(40)로 전달되는 증발가스 또는 액화가스 저장탱크(10)에서 배출되어 수요처(40)로 전달되는 액화가스 중 적어도 어느 하나로 냉매를 냉각할 수 있다.
특히 증발가스 열교환기(21a)는, 냉매가 유동하는 냉매 유로와, 액화가스 또는 증발가스 중 적어도 어느 하나가 유동하는 가스 유로를 가질 수 있다. 이때 가스 유로는 증발가스라인(L1) 및 액화가스라인(L2)이 모두 연결될 수 있다.
즉 증발가스라인(L1)과 액화가스라인(L2)은, 증발가스 열교환기(21a)의 가스 유로를 공유하도록 마련된다. 따라서 증발가스 열교환기(21a)에는 하나의 유로 상에 증발가스 또는 액화가스가 택일적으로 유동할 수 있다.
증발가스라인(L1)은 액화가스 저장탱크(10)에서 수요처(40)로 증발가스를 전달하되, 증발가스가 증발가스 열교환기(21a)를 경유하면서 냉매를 냉각하도록 마련될 수 있다. 물론 증발가스라인(L1)은 적어도 일부의 증발가스가 증발가스 열교환기(21a)를 우회하도록 마련될 수 있다. 일례로 증발가스라인(L1)에는 증발가스 열교환기(21a)의 상류로부터 분기되고 증발가스 열교환기(21a)와 메인 압축기(30) 사이에서 증발가스라인(L1)에 합류되는 증발가스 우회라인(L1c)이 마련될 수 있으며, 증발가스 우회라인(L1c)에는 증발가스 우회밸브(부호 도시하지 않음)가 구비될 수 있다. 또한 증발가스 우회밸브는 제어부에 의해 제어될 수 있다.
증발가스는 필요에 따라 증발가스 열교환기(21a)로 전달되어, 냉매 압축기(25)에 의해 압축되면서 압축열로 인해 가열된 냉매를 냉각할 수 있다. 증발가스는 압축 전 냉매 및 압축 후 냉매를 모두 냉각할 수도 있다.
또한 액화가스 역시 증발가스 열교환기(21a)로 전달되어 냉매를 냉각하는데 사용될 수 있다. 액화가스는 액화가스라인(L2)을 따라 액화가스 저장탱크(10)에서 수요처(40)로 전달되는데, 이러한 액화가스 중 적어도 일부는 액화가스 히터(51) 등을 거쳐 수요처(40)로 전달될 수 있고, 나머지 중 일부는 액화가스 열교환기(22) 및 증발가스 열교환기(21a)를 경유할 수 있다.
액화가스라인(L2)은 증발가스 열교환기(21a)를 경유하도록 마련되는데, 이 경우 액화가스라인(L2)과 증발가스라인(L1)이 증발가스 열교환기(21a)의 가스 유로의 상류에서 합류될 수 있다.
따라서 증발가스 열교환기(21a)의 가스 유로는, 액화가스라인(L2)이 연결되고 또한 증발가스라인(L1)이 연결될 수 있으며, 다만 가스 유로에는 액화가스 또는 증발가스가 택일적으로 유동할 수 있다.
증발가스 열교환기(21a)의 가스 유로의 하류는, 증발가스라인(L1) 및 액화가스라인(L2)(특히 액화가스 전달라인(L4))으로 분기될 수 있다. 이때 가스 유로의 하류에서 가스의 분기는 도면에 도시되었거나 도시가 생략된 각종 밸브를 통해 제어부에 의해 제어될 수 있다.
일례로 증발가스 열교환기(21a)에 액화가스라인(L2)을 따라 유동하는 액화가스가 유입되면, 증발가스 열교환기(21a)의 하류에서 액화가스는 액화가스라인(L2)을 따라 수요처(40)로 전달될 수 있다.
반면 증발가스 열교환기(21a)에 증발가스라인(L1)을 따라 유동하는 증발가스가 유입되면, 증발가스 열교환기(21a)의 하류에서 증발가스는 증발가스라인(L1)을 따라 메인 압축기(30)로 유입된 후 수요처(40)로 전달될 수 있다.
증발가스 열교환기(21a)의 가스 유로는, 서로 다른 압력의 가스가 유동 가능한 구조를 가질 수 있다. 증발가스라인(L1)을 통해 가스 유로로 유입되는 증발가스는 메인 압축기(30)에 유입될 압력을 갖는 저압 상태인 반면, 액화가스라인(L2)을 통해 가스 유로로 유입되는 액화가스는 메인 압축기(30) 하류의 증발가스에 혼합될 압력을 갖는 고압 상태일 수 있다. 따라서 증발가스 열교환기(21a)의 가스 유로는 상대적 저압의 증발가스 또는 상대적 고압의 액화가스가 택일적으로 유동 가능하게 마련될 수 있다.
액화가스라인(L2)은 액화가스가 증발가스 열교환기(21a)를 우회하도록 할 수 있다. 이를 위해 액화가스라인(L2)에서 증발가스 열교환기(21a)의 상류에는 액화가스 우회라인(L4a)이 분기되며, 액화가스 우회라인(L4a)은 증발가스 열교환기(21a) 하류의 액화가스라인(L2)에 합류될 수 있다.
액화가스 우회라인(L4a)은 액화가스라인(L2)에서 액화가스 열교환기(22) 상류로부터 분기되고, 액화가스라인(L2)에서 증발가스 열교환기(21a) 하류에 합류될 수 있다. 따라서 액화가스 우회라인(L4a)을 통해 액화가스가 액화가스 열교환기(22) 및 증발가스 열교환기(21a)를 한꺼번에 우회할 수 있다.
물론 액화가스 우회라인(L4a)은 액화가스 열교환기(22) 및 증발가스 열교환기(21a)마다 각각 액화가스의 우회를 구현하도록 마련될 수도 있을 것이다.
액화가스 우회 및 앞서 언급한 증발가스 우회는, 제어부에 의해 유동이 제어된다. 제어부는 액화가스 저장탱크(10)의 내압, 냉매 상태 등의 변수를 토대로, 증발가스 우회라인(L1c) 및 액화가스 우회라인(L4a)의 유동을 제어할 수 있다.
증발가스 열교환기(21a)에서 가스 유로는 증발가스라인(L1) 및 액화가스라인(L2)이 모두 연결되어 있어서 증발가스라인(L1) 및 액화가스라인(L2)이 가스 유로를 서로 공유한다. 다만 가스 유로는 가스의 유동이 택일적으로 구현될 수 있다.
이 경우 가스 유로의 상류에서 증발가스라인(L1)과 액화가스라인(L2)이 합류된 지점으로부터, 가스 유로의 하류에서 증발가스라인(L1)과 액화가스라인(L2)으로 분기되는 지점까지의 라인을, 가스 공유라인으로 정의할 수 있다.
증발가스 열교환기(21a)는 액화가스 저장탱크(10)에서 배출되어 수요처(40)로 전달되는 증발가스로 냉매를 냉각하는데, 액화가스 열교환기(22)와 냉매라인(RL) 상에서 직렬로 마련될 수 있다.
즉 냉매라인(RL)은 냉매 압축기(25)의 하류에서 증발가스 열교환기(21a) 및 액화가스 열교환기(22)를 차례로 경유할 수 있다. 반대로 냉매라인(RL)은 과냉기(24)의 하류에서 액화가스 열교환기(22) 및 증발가스 열교환기(21a)를 차례로 경유한 뒤 냉매 압축기(25)로 연결될 수 있다.
증발가스 열교환기(21a)는 액화가스 열교환기(22)와 마찬가지로 액화가스가 유동하는 유로를 구비하는데, 액화가스의 흐름을 기준으로 증발가스 열교환기(21a)는 액화가스 열교환기(22)의 하류에 마련될 수 있다.
액화가스 열교환기(22)는, 액화가스 저장탱크(10)에서 배출되어 수요처(40)로 전달되는 액화가스로 냉매를 냉각한다. 액화가스 열교환기(22)는 냉매가 유동하면서 상호 열교환하도록 적어도 둘 이상의 냉매 유로를 가질 수 있으며, 또한 액화가스가 유동하는 가스 유로를 포함할 수 있다.
액화가스 열교환기(22)의 가스 유로에는 액화가스라인(L2)이 연결되어 액화가스가 유동하며, 가스 유로의 액화가스는 냉매 압축기(25)에 의해 압축된 냉매를 냉각할 수 있다.
액화가스 열교환기(22)와 증발가스 열교환기(21a)는, 냉매 및 액화가스의 흐름을 기준으로 직렬로 마련된다. 따라서 액화가스는 액화가스라인(L2)을 따라 액화가스 열교환기(22)에서 냉매에 냉열을 전달한 후, 증발가스 열교환기(21a)에서 추가적으로 냉매에 냉열을 전달할 수 있다.
또는, 증발가스 열교환기(21a)는 증발가스라인(L1)을 따라 증발가스 열교환기(21a)에서 냉매에 냉열을 전달하며, 액화가스 열교환기(22)는 액화가스가 우회함에 따라 액화가스 열교환기(22)에서 액화가스와 냉매 간의 열교환은 일어나지 않고 냉매 간 열교환만 일어날 수 있다.
이는 액화가스 우회라인(L4a)이 액화가스 열교환기(22) 및 증발가스 열교환기(21a)를 한꺼번에 우회하도록 마련되기 때문이다, 물론 액화가스 우회라인(L4a)이 액화가스 열교환기(22)와 증발가스 열교환기(21a)를 각각 우회할 수 있다면, 액화가스 열교환기(22)에서 액화가스가 냉매를 냉각하는 동시에 증발가스 열교환기(21a)에서 증발가스가 냉매를 냉각하는 작동이 가능할 것이다.
이하에서는 냉매의 흐름을 기준으로 다시 설명한다. 냉매는 냉매 압축기(25)에 의해 압축된 후 증발가스 열교환기(21a)의 냉매 유로를 경유하고 액화가스 열교환기(22)의 냉매 유로로 전달된다. 냉매는 제어부의 제어에 따라 증발가스 열교환기(21a) 및 액화가스 열교환기(22) 중 적어도 증발가스 열교환기(21a)를 통해, 액화가스나 증발가스 중 적어도 액화가스의 냉열을 전달받아 냉각된다.
액화가스 열교환기(22)에서 배출되는 냉매는, 냉매 팽창기(23)에서 팽창된 후 과냉기(24)로 전달된다. 냉매는 액화가스 저장탱크(10)에서 배출된 액화가스를 과냉기(24)에서 과냉시킨 뒤, 다시 액화가스 열교환기(22)의 다른 냉매 유로로 전달된다.
과냉기(24) 하류의 냉매는 액화가스 열교환기(22)의 다른 냉매 유로 및 증발가스 열교환기(21a)의 다른 냉매 유로를 차례로 경유하면서, 액화가스 및 증발가스 중 적어도 액화가스에 의해 냉각될 수 있다. 또는 과냉기(24) 하류의 냉매는 냉매 압축기(25)에서 압축된 냉매를 냉각하는데 사용될 수 있다.
증발가스 열교환기(21a)의 다른 냉매 유로로부터 배출된 냉매는 냉매 압축기(25)로 유입되어 순환된다. 즉 본 실시예의 냉매라인(RL)을 살펴보면, 액화가스 열교환기(22)의 복수의 냉매 유로를 상호 연결하는 냉매라인(RL) 상에 과냉기(24)가 마련될 수 있고, 증발가스 열교환기(21a)의 복수의 냉매 유로를 상호 연결하는 냉매라인(RL) 상에 냉매 압축기(25)가 마련될 수 있다.
따라서 냉매는 냉매라인(RL)에서 과냉기(24) 전후에 증발가스 또는 액화가스의 냉열을 전달받게 되어, 효과적인 과냉을 보장할 수 있다.
이와 같이 본 실시예는, 액화가스의 온도구배(-160℃ 내지 40℃)가 증발가스의 온도구배(-90℃ 내지 40℃)보다 넓은 점을 고려하여, 액화가스가 액화가스 열교환기(22)는 물론이고 증발가스 열교환기(21a)도 통과하도록 할 수 있고, 증발가스는 증발가스 열교환기(21a)만 통과하도록 마련한다. 특히 증발가스 열교환기(21a)에서 액화가스와 증발가스는 같은 공간(하나의 가스 유로)을 통과하여 열교환을 진행할 수 있다.
도 12는 본 발명의 제8 실시예에 따른 가스 처리 시스템의 개념도이다.
도 12를 참조하면, 본 발명의 제8 실시예에 따른 가스 처리 시스템(1)은, 앞서 설명한 제7 실시예와 대비할 때 액화가스 열교환기(22)를 구비하되, 액화가스 열교환기(22)가 액화가스 및 증발가스를 택일적으로 전달받는 가스 유로를 갖는 형태일 수 있다. 또한 본 실시예의 냉각 장치(20)는 냉매 열교환기(27)를 포함할 수 있다.
본 실시예는 앞선 실시예 대비 액화가스 열교환기(22)를 변경하고 증발가스 열교환기(21)를 생략하는 형태로 이해될 수 있다. 또는 다른 방면으로 설명하면, 본 실시예는 앞선 실시예에서 액화가스 열교환기(22)를 생략하고 증발가스 열교환기(21)를 구비하는 형태로도 해석될 수 있을 것이다.
또는 본 실시예는 제7 실시예에서 설명한 액화가스 열교환기(22) 및 증발가스 열교환기(21)가 통합된 형태로 해석될 수도 있다. 다만 이하에서는 편의상 본 실시예의 가스 열교환기는 액화가스 열교환기(22)인 것으로 설명한다.
본 실시예의 액화가스 열교환기(22)는, 냉매 압축기(25)에 압축된 냉매가 유동하는 어느 하나의 냉매 유로와, 과냉기(24)에서 배출된 냉매가 유동하는 다른 하나의 냉매 유로를 포함할 수 있다.
또한 액화가스 열교환기(22)는 가스 유로를 포함하는데, 이때 가스 유로는 액화가스라인(L2)이 연결될 뿐만 아니라, 증발가스라인(L1)도 연결될 수 있다. 따라서 액화가스 열교환기(22)는 액화가스 및 증발가스 중 적어도 어느 하나를 통해 냉매를 냉각할 수 있다.
액화가스 열교환기(22)의 가스 유로는 앞서 언급한 것과 같이 가스 공유라인이 마련되며, 가스 공유라인의 전후에는 액화가스라인(L2)과 증발가스라인(L1)의 합류 또는 분기가 이루어진다.
액화가스 저장탱크(10)에서 배출되는 증발가스량과 수요처(40)의 요구량 사이의 관계 등에 따라, 액화가스 열교환기(22)의 가스 유로에는 증발가스 또는 액화가스가 택일적으로 유동할 수 있다.
이 경우 액화가스 열교환기(22)는 액화가스를 이용하여 냉매 압축기(25) 하류의 냉매를 냉각하거나, 또는 증발가스를 이용하여 냉매 압축기(25) 하류의 냉매를 냉각할 수 있다.
물론 필요에 따라, 압력 차이가 거의 없거나 해소될 수 있다는 전제하에, 증발가스 및 액화가스가 액화가스 열교환기(22)의 가스 유로에 동시에 유입되는 것도 본 발명의 예시로서 포함될 수 있다. 이는 앞선 실시예의 증발가스 열교환기(21)에도 마찬가지로 적용될 수 있다.
본 실시예는, 액화가스 열교환기(22)에 더하여 냉매 열교환기(27)를 포함하는데, 냉매 열교환기(27)는 냉매라인(RL) 상에서 액화가스 열교환기(22)와 병렬로 마련될 수 있다.
냉매 열교환기(27)는 냉매 압축기(25) 하류의 냉매와 과냉기(24) 하류의 냉매를 상호 열교환시키는 구성인데, 냉매라인(RL)은 냉매 압축기(25) 하류에서 분지되어 냉매 열교환기(27) 또는 액화가스 열교환기(22)로 각각 연결될 수 있다. 따라서 냉매 압축기(25)에서 압축된 냉매 중 일부는 냉매 열교환기(27)로 전달되고, 나머지는 액화가스 열교환기(22)로 전달될 수 있다.
따라서 본 실시예의 액화가스 열교환기(22)는, 냉매 열교환기(27)를 우회하는 냉매를 냉각하는 구성으로 작용할 수 있다. 또한 액화가스 열교환기(22)와 냉매 열교환기(27) 각각의 하류에서 냉매라인(RL)은 합류된 후 냉매 팽창기(23)로 전달되므로, 액화가스 열교환기(22) 및 냉매 열교환기(27)는 냉매의 온도 조절을 위해 상호 보완적으로 사용될 수 있다.
냉매라인(RL)은 냉매 열교환기(27) 및 액화가스 열교환기(22)를 병렬로 구비하기 위해, 일 지점에서 분지되고 타 지점에서 합류되는 구조를 가질 수 있다. 더 나아가 냉매라인(RL)에는 냉매 우회라인(부호 도시하지 않음)이 마련될 수 있다.
냉매 우회라인은 냉매 압축기(25) 하류에서 냉매 열교환기(27) 및 액화가스 열교환기(22)를 모두 우회하여 냉매 팽창기(23)로 냉매를 전달할 수 있다. 또는 반대로 냉매 우회라인은 과냉기(24) 하류에서 냉매 열교환기(27) 및 액화가스 열교환기(22)를 모두 우회하여 냉매 압축기(25)로 냉매를 전달할 수 있다.
냉매 열교환기(27) 및 액화가스 열교환기(22)가 냉매의 온도 제어를 위해 상호 연계되어 사용될 수 있으며, 냉매 우회라인 또한 냉매의 온도 조절을 위해 사용될 수 있다. 제어부는 냉매라인(RL)에서 냉매 열교환기(27) 및 액화가스 열교환기(22)로의 냉매 유동량을 밸브 등으로 제어하며, 또한 냉매 우회라인을 통한 냉매 우회유량을 제어할 수 있다.
도면에 나타난 냉매 우회라인을 사용하는 경우는 주로 냉매 압축기(25)로 유입되는 냉매의 온도를 높일 필요가 없을 때일 수 있다. 물론 이외에 냉매 압축기(25)의 가동 상태, 냉매라인(RL)을 따라 순환하는 냉매의 압력, 유량 등의 상태 등에 따라, 제어부는 냉매 우회라인의 냉매 흐름을 다양하게 제어할 수 있다.
이와 같이 본 실시예는, 액화가스 또는 증발가스를 택일적으로 냉매 냉각에 활용하되, 하나의 가스 열교환기를 구비하면서도 냉매 열교환기(27)를 병렬로 배치해 사용할 수 있다.
도 13은 본 발명의 제9 실시예에 따른 가스 처리 시스템의 개념도이다.
도 13을 참조하면, 본 발명의 제9 실시예에 따른 가스 처리 시스템(1)은, 냉각 장치(20)가 하나의 증발가스 열교환기(21)와, 2개의 액화가스 열교환기(22, 22a) 및 냉매 열교환기(27)를 포함할 수 있다.
증발가스 열교환기(21)는, 냉매 압축기(25)에서 압축되고 후술할 액화가스 열교환기(22a)에서 냉각된 냉매를, 냉매 열교환기(27)에서 배출되는 냉매와 열교환할 수 있다. 또한 증발가스 열교환기(21)는 수요처(40)로 공급되는 증발가스의 냉열을 활용할 수 있다.
본 실시예의 증발가스 열교환기(21)는 앞선 제1 실시예에서 설명한 증발가스 열교환기(21)와 유사하나, 냉매 압축기(25) 하류의 냉매 흐름을 기준으로 증발가스 열교환기(21)의 상류 및 하류에 각각 액화가스 열교환기(22a)와 냉매 열교환기(27)가 마련된다는 점에서 차이가 있다.
본 실시예의 액화가스 열교환기(22, 22a)는, 냉매 열교환기(27)와 병렬로 마련되는 액화가스 열교환기(22)와, 냉매 압축기(25)와 증발가스 열교환기(21) 사이에 마련되는 액화가스 열교환기(22a)로 구분될 수 있다.
냉매 열교환기(27)와 병렬로 배치되는 액화가스 열교환기(22)는 냉매 열교환기(27)에서의 냉매 온도 제어를 보충하기 위해 사용될 수 있다. 이를 위해 냉매라인(RL)은 증발가스 열교환기(21)와 냉매 팽창기(23) 사이에서 냉매 열교환기(27)를 우회하면서, 대신 액화가스 열교환기(22)를 경유하도록 마련될 수 있다.
즉 냉매 열교환기(27)와 액화가스 열교환기(22)는, 냉매의 온도 제어를 상호 보상하도록 연계되어 사용될 수 있고, 제어부에 의해 냉매의 분배가 제어될 수 있다.
또한 본 발명에서 냉매 압축기(25) 하류에 마련되는 액화가스 열교환기(22a)는, 냉매 압축기(25)에서 압축된 냉매를 액화가스로 냉각할 수 있다. 이때 액화가스는 앞서 냉매 열교환기(27)와 병렬로 마련되는 액화가스 열교환기(22)를 경유한 액화가스일 수 있다.
즉 액화가스의 흐름을 기준으로, 두 액화가스 열교환기(22, 22a)는 직렬로 마련될 수 있다. 물론 적어도 어느 하나의 액화가스 열교환기(22, 22a)에 대해 액화가스의 우회가 가능하도록 마련될 수 있다.
반면 냉매의 흐름을 기준으로, 두 액화가스 열교환기(22, 22a)는 증발가스 열교환기(21)를 사이에 두고 직렬로 마련될 수 있다. 물론 증발가스 열교환기(21) 역시 증발가스의 우회가 가능한 구조이다.
본 실시예는 앞서 언급한 바와 같이 액화가스의 온도구배(-160℃ 내지 40℃)가 증발가스의 온도구배(-90℃ 내지 40℃)보다 넓은 점을 고려한 것이다. 즉 본 실시예는 액화가스가 두 액화가스 열교환기(22, 22a)를 모두 통과하도록 하며, 증발가스는 하나의 증발가스 열교환기(21)만 통과하도록 마련하였다.
또한 본 실시예는, 액화가스 열교환기(22)를 냉매 열교환기(27)와 병렬로 구성하여 냉매의 일부를 냉각시켜주고, 남은 냉열은 액화가스 열교환기(22a)에서 모두 활용할 수 있다.
도 14는 본 발명의 제10 실시예에 따른 가스 처리 시스템의 개념도이다.
도 14를 참조하면, 본 발명의 제10 실시예에 따른 가스 처리 시스템(1)은, 앞선 제9 실시예와 대비할 때 2개의 액화가스 열교환기(22, 22a)를 구비하고 하나의 증발가스 열교환기(21)를 구비한다는 점에서는 동일하되, 별도의 냉매 열교환기(27)를 생략할 수 있다.
본 실시예는 액화가스나 증발가스가 유동하지 않고 냉매 간 열교환만 구현하는 냉매 열교환기(27)를 별도로 마련하지 않는 대신, 액화가스 열교환기(22) 또는 증발가스 열교환기(21)에서 냉매 간 열교환이 충분히 이루어지도록 할 수 있다.
일례로 본 실시예에서 증발가스 열교환기(21)는 복수 개의 냉매 유로를 구비함으로써, 냉매 압축기(25)의 전후에서 냉매가 증발가스 열교환기(21) 내에서 상호 열교환되면서 증발가스에 의해 냉각되도록 할 수 있다.
또한 본 실시예에서 두 액화가스 열교환기(22, 22a) 중 적어도 어느 하나의 액화가스 열교환기(22)는, 복수 개의 냉매 유로를 구비한다. 따라서 과냉기(24)의 전후에서 냉매가 액화가스 열교환기(22) 내에서 상호 열교환되면서 액화가스에 의해 냉각될 수 있다.
즉 본 실시예는, 앞선 실시예에서 병렬로 마련되던 액화가스 열교환기(22) 및 냉매 열교환기(27)를 통합한 것으로 이해될 수 있다.
도 15는 본 발명의 제11 실시예에 따른 가스 처리 시스템의 개념도이다.
도 15를 참조하면, 본 발명의 제11 실시예에 따른 가스 처리 시스템(1)은, 1개의 증발가스 열교환기(21) 및 2개의 액화가스 열교환기(22, 22a)를 구비할 수 있다.
1개의 증발가스 열교환기(21)는 앞서 제10 실시예에서 설명한 것과 유사하나, 본 실시예에서 냉매라인(RL)을 기준으로 증발가스 열교환기(21)와 냉매 팽창기(23) 사이에는 별도의 열교환 구성이 부가되지 않을 수 있다.
또한 본 실시예는, 냉매 흐름을 기준으로 2개의 액화가스 열교환기(22, 22a) 중 적어도 어느 하나가 증발가스 열교환기(21)와 병렬로 마련될 수 있다. 즉 냉매 압축기(25)를 거쳐 어느 하나의 액화가스 열교환기(22a)를 경유한 냉매는, 냉매라인(RL)을 통해 분기되어 다른 하나의 액화가스 열교환기(22) 또는 증발가스 열교환기(21)로 전달될 수 있다.
다른 하나의 액화가스 열교환기(22) 및 증발가스 열교환기(21)를 통과한 냉매는, 냉매 팽창기(23)의 상류에서 합류되고 과냉기(24)로 전달될 수 있다. 따라서 다른 하나의 액화가스 열교환기(22)와 증발가스 열교환기(21)는 냉매의 온도를 조절함에 있어서 상호 연계되어 활용 및 제어될 수 있다.
액화가스라인(L2)을 기준으로 2개의 액화가스 열교환기(22, 22a)는 직렬로 배치될 수 있으며, 상류에 마련되는 액화가스 열교환기(22)는 냉매라인(RL)을 기준으로 증발가스 열교환기(21)와 병렬로 배치될 수 있다.
또한 냉매라인(RL)에서 냉매 압축기(25) 하류의 냉매 흐름을 기준으로, 어느 하나의 액화가스 열교환기(22a)와 다른 하나의 액화가스 열교환기(22)가 직렬로 마련되고, 또한 어느 하나의 액화가스 열교환기(22a)가 증발가스 열교환기(21)와 직렬로 마련될 수 있다.
본 실시예는 액화가스 열교환기(22, 22a)의 경우 냉매와 액화가스 간의 상호 열교환을 담당하도록 2개의 유로를 구비하는 형태일 수 있고, 증발가스 열교환기(21)가 냉매 간 상호 열교환 및 증발가스를 통한 냉각을 담당하는 형태일 수 있다. 즉 증발가스 열교환기(21)는 복수 개의 냉매 유로 및 적어도 하나 이상의 가스 유로를 가질 수 있고, 반면 액화가스 열교환기(22, 22a)는 하나의 냉매 유로 및 적어도 하나 이상의 가스 유로를 가질 수 있다.
본 실시예에서 액화가스의 흐름을 기준으로 상류에 마련되는 액화가스 열교환기(22)는 생략될 수 있다. 이 경우 하나의 액화가스 열교환기(22a)와 하나의 증발가스 열교환기(21)가 구비될 수 있으며, 냉매는 압축 후 액화가스 열교환기(22a) 및 증발가스 열교환기(21)에서 차례로 냉각되고 냉각 팽창기를 거쳐 과냉기(24)로 유입된다.
도 16은 본 발명의 제12 실시예에 따른 가스 처리 시스템의 개념도이다.
도 16을 참조하면, 본 발명의 제12 실시예에 따른 가스 처리 시스템(1)은, 앞서 도 13에서 설명한 제9 실시예와 유사하게 냉매 열교환기(27) 및 액화가스 열교환기(22)를 병렬로 배치할 수 있다.
*216더 나아가 본 실시예는, 수정된 증발가스 열교환기(21b)를 더 포함한다. 본 실시예의 증발가스 열교환기(21b)는 냉매라인(RL)에서 냉매 압축기(25)와 냉매 열교환기(27) 사이 또는 냉매 압축기(25)와 액화가스 열교환기(22) 사이에 마련될 수 있다. 증발가스 열교환기(21b)는 증발가스라인(L1)을 따라 유동하는 증발가스로 냉매 압축기(25)에서 압축된 냉매를 냉각할 수 있다.
추가로 본 실시예의 증발가스 열교환기(21b)는, 하나의 가스 유로에 증발가스가 유동하거나 또는 액화가스가 유동하도록 할 수 있다. 즉 본 실시예의 증발가스 열교환기(21b)는 앞서 제7 실시예에서 설명한 증발가스 열교환기(21a)와 유사하게, 액화가스라인(L2) 및 증발가스라인(L1)이 상호 공유하는 가스 유로를 구비할 수 있다.
구체적으로 증발가스 열교환기(21b)는 메인 압축기(30) 상류의 증발가스라인(L1)이 연결되는 가스 유로를 구비할 수 있다. 이때 증발가스 열교환기(21b)의 가스 유로에는, 액화가스라인(L2)도 연결될 수 있다.
다만 증발가스 열교환기(21b)의 가스 유로는, 액화가스라인(L2)에서 액화가스 열교환기(22)의 하류 부분이 연결될 수 있다. 즉 액화가스의 흐름을 기준으로 액화가스 열교환기(22)와 증발가스 열교환기(21b)가 직렬로 순차 배치될 수 있다.
이 경우 증발가스 열교환기(21b)는, 메인 압축기(30)로 유입되는 증발가스를 이용하여 냉매 압축기(25)에서 압축된 냉매를 냉각하거나, 또는 액화가스 열교환기(22)에서 냉매와 열교환된 액화가스의 남아있는 냉열을 이용해 냉매를 냉각할 수 있다.
물론 액화가스라인(L2)은 액화가스 열교환기(22)를 우회하도록 마련될 수 있는 바, 증발가스 열교환기(21b)는 액화가스 저장탱크(10)로부터 배출되어 액화가스라인(L2)을 통해 유동하는 액화가스를 이용하여 냉매를 냉각할 수 있다.
증발가스 열교환기(21b)의 가스 유로에는 증발가스 또는 액화가스가 택일적으로 유동할 수 있다. 이를 위해 증발가스라인(L1)과 액화가스라인(L2)은 증발가스 열교환기(21b)에 구비된 가스 유로의 상류 또는 하류에서 합류되거나 분기된다. 또한 가스 유로는 가스 공유라인으로 지칭될 수 있음은 앞서 설명한 것과 같다.
본 실시예에서 냉매 열교환기(27)와 액화가스 열교환기(22)는 냉매라인(RL) 상에 병렬로 마련되므로, 증발가스 열교환기(21b)를 기준으로 냉매 열교환기(27) 및 액화가스 열교환기(22)는 각각 냉매라인(RL) 상에 직렬로 마련될 수 있다. 이 경우 냉매는 냉매 압축기(25)에서 압축 배출 후, 증발가스 열교환기(21b)에서 증발가스 또는 액화가스에 의해 냉각되고, 냉매 열교환기(27) 또는 액화가스 열교환기(22)를 경유해 과냉기(24)로 전달될 수 있다.
도 17은 본 발명의 제13 실시예에 따른 가스 처리 시스템의 개념도이다.
도 17을 참조하면, 본 발명의 제13 실시예에 따른 가스 처리 시스템(1)은, 앞선 제12 실시예에서 설명한 증발가스 열교환기(21)를 분할하여, 하나의 증발가스 열교환기(21) 및 하나의 액화가스 열교환기(22a)로 구성할 수 있다.
이 경우 냉매라인(RL)을 기준으로 액화가스 열교환기(22a), 증발가스 열교환기(21)가 차례로 마련되며, 이후 냉매 열교환기(27) 및 액화가스 열교환기(22)가 병렬로 배치될 수 있다.
따라서 냉매는 액화가스 열교환기(22a) 및 증발가스 열교환기(21)에서 차례대로 냉각된 후, 냉매 열교환기(27)에서 냉매간 열교환하여 냉매 팽창기(23)로 전달될 수 있다. 또는 냉매는 액화가스 열교환기(22a)와 증발가스 열교환기(21)를 통해 순차적으로 냉각된 뒤, 다른 액화가스 열교환기(22)에서 액화가스에 의해 냉각되고 냉매 팽창기(23)로 전달된다.
앞선 실시예의 경우 액화가스의 흐름을 기준으로 액화가스 열교환기(22)의 하류에 마련되는 증발가스 열교환기(21b)가 증발가스를 전달받는 경우, 액화가스는 하나의 액화가스 열교환기(22)를 통해서 냉매로 냉열을 전달하게 된다.
반면 본 실시예는, 액화가스의 흐름을 기준으로 2개의 액화가스 열교환기(22, 22a)가 마련되고, 증발가스 열교환기(21)가 액화가스 열교환기(22a)와 독립적으로 구비된다. 따라서 본 실시예는 증발가스로 냉매에 냉열을 전달하는 작동과 무관하게, 액화가스가 냉매와 2단 열교환할 수 있게 된다. 이를 통해 본 실시예는 액화가스의 냉열을 냉매로 충분히 회수할 수 있다.
도 18은 본 발명의 제14 실시예에 따른 가스 처리 시스템의 개념도이다.
도 18을 참조하면, 본 발명의 제14 실시예에 따른 가스 처리 시스템(1)은, 앞선 제13 실시예에서 병렬로 마련되는 액화가스 열교환기(22) 및 냉매 열교환기(27)를 통합할 수 있다.
본 실시예는 2개의 액화가스 열교환기(22, 22a) 및 하나의 증발가스 열교환기(21)를 구비할 수 있는데, 액화가스의 흐름을 기준으로 상류에 마련되는 액화가스 열교환기(22)는, 복수 개의 냉매 유로 및 적어도 하나의 가스 유로를 포함할 수 있다.
따라서 냉매라인(RL)을 기준으로 냉매는 어느 하나의 액화가스 열교환기(22a), 증발가스 열교환기(21) 및 액화가스 열교환기(22)를 순차적으로 유동하면서 액화가스 및 증발가스의 냉열에 의해 냉각될 수 있다.
도 19 내지 도 21은 본 발명의 제15 실시예에 따른 가스 처리 시스템의 개념도이다.
참고로 도 19의 경우 증발가스 및 액화가스의 냉열이 냉매로 전달되지 않는 경우이고, 도 20은 증발가스의 냉열만 냉매로 전달되는 경우이며, 도 21은 액화가스의 냉열만 냉매로 전달되는 경우를 도시하였다.
도 19 내지 도 21을 참조하면, 본 발명의 제15 실시예에 따른 가스 처리 시스템(1)은, 냉매 열교환기(27), 증발가스 열교환기(21), 액화가스 열교환기(22)를 각각 구비하되, 모두 냉매라인(RL)을 기준으로 병렬로 배치되도록 마련할 수 있다.
이 경우 냉매는 다양한 폐순환 루프를 따라 순환할 수 있다. 일례로 본 실시예의 냉매는 도 19에서와 같이 냉매 압축기(25), 냉매 열교환기(27), 냉매 팽창기(23) 및 과냉기(24)를 따라 순환하게 되고, 수요처(40)로 공급되는 액화가스나 증발가스의 냉열을 전달받지 않을 수 있다.
또는 냉매는, 도 20에서와 같이 냉매 압축기(25), 증발가스 열교환기(21), 냉매 팽창기(23), 과냉기(24)를 따라 순환할 수 있다. 이 경우 증발가스 열교환기(21)는 가스 유로와 냉매 유로를 포함하되, 복수 개의 냉매 유로를 포함할 수 있다. 따라서 증발가스 열교환기(21)는 냉매 압축기(25)에 의해 압축된 냉매 및 냉매 압축기(25)에서 압축되기 전의 냉매를 상호 열교환시키면서, 증발가스의 냉열을 냉매로 전달할 수 있다.
또는 냉매는, 도 21에서와 같이 냉매 압축기(25), 액화가스 열교환기(22), 냉매 팽창기(23), 과냉기(24)를 따라 순환할 수 있다. 이 경우 액화가스 열교환기(22)는 적어도 하나의 가스 유로와 복수 개의 냉매 유로를 포함함으로써, 냉매 압축기(25) 전후에서 냉매 간의 열교환 및 액화가스를 통한 냉매의 냉각을 구현할 수 있다.
본 실시예는 냉매가 필요에 따라 액화가스 및 증발가스의 냉열을 활용하지 않도록 제어하거나, 냉매가 액화가스 또는 증발가스 중 어느 하나의 냉열을 활용하도록 제어할 수 있다.
또한 본 실시예에서 냉매라인(RL)은 냉매 압축기(25) 하류에서 냉매 열교환기(27), 증발가스 열교환기(21), 액화가스 열교환기(22)로 각각 분기되는데, 분기되는 냉매 유량이 제어부에 의해 제어될 수 있다. 따라서 냉매는 액화가스 또는 증발가스 중 적어도 어느 하나의 냉열에 의해 냉각될 수 있다.
즉 본 실시예는 냉열 미활용, 증발가스의 냉열 활용, 액화가스의 냉열 활용 등을 상호 조합하는 제어를 구현할 수 있는 바, 냉매에 대한 냉각 제어가 다양하게 이루어질 수 있다.
도 22 및 도 23은 본 발명의 제16 실시예에 따른 가스 처리 시스템의 개념도이다.
도 22는 냉매가 증발가스의 냉열로 냉각되는 경우를 도시한 것이고, 도 23은 냉매가 액화가스에 의해 냉각되는 경우를 도시한 것이다.
물론 도시하지 않았으나 본 실시예는 앞선 제15 실시예와 마찬가지로, 냉매가 액화가스 및 증발가스의 냉열 회수 없이 냉매 상호간 열교환만 이루어지는 것도 가능하다.
도 22 및 도 23을 참조하면, 본 발명의 제16 실시예에 따른 가스 처리 시스템(1)은, 앞선 제15 실시예와 유사하게 냉매 열교환기(27), 증발가스 열교환기(21) 및 액화가스 열교환기(22)를 구비할 수 있고, 냉매라인(RL)을 기준으로 냉매 열교환기(27), 증발가스 열교환기(21), 액화가스 열교환기(22)가 병렬로 배열될 수 있다.
다만 본 실시예는 제15 실시예와 비교할 때, 냉매 우회라인(부호 도시하지 않음)을 더 포함할 수 있다. 냉매 우회라인은 냉매라인(RL)에서 냉매 열교환기(27), 증발가스 열교환기(21), 액화가스 열교환기(22)를 각각 우회하도록 마련될 수 있다.
냉매라인(RL)은 냉매 압축기(25) 하류에서 냉매 열교환기(27), 증발가스 열교환기(21), 액화가스 열교환기(22)로 분기되는데, 본 실시예는 더 나아가 냉매 열교환기(27) 등을 우회하여 냉매가 열교환 없이 과냉기(24)에서 냉매 압축기(25)로 전달되는 흐름을 구현할 수 있다.
이 경우 본 실시예는 제어부를 통해 냉매 우회라인의 냉매 유동을 제어함으로써, 냉매 압축기(25)의 inlet 온도를 조절할 수 있다. 이를 위해 냉매 우회라인에는 냉매 우회밸브가 마련될 수 있다.
구체적으로 살펴보면, 도 22의 경우 냉매는 과냉기(24)에서 액화가스를 과냉시킨 뒤 증발가스 열교환기(21) 및 냉매 우회라인을 따라 유동한다. 따라서 냉매 중 일부는 수요처(40)로 공급되는 증발가스에 의해 냉각되고, 나머지는 증발가스에 의한 냉각 없이 냉매 압축기(25)로 전달된다. 냉매 우회라인을 따라 유동하는 냉매는 증발가스에 의한 냉각이 없으므로, 냉매 우회라인의 냉매 유량 증가 시 냉매 압축기(25) inlet 온도가 상승할 수 있다.
반면 냉매 우회라인을 따라 유동하는 냉매의 유량이 감소되거나 삭제되면, 냉매 압축기(25) inlet 온도가 낮아질 수 있다. 이와 같이 본 실시예는 냉매를 증발가스의 냉열로 냉각하여 과냉 효율을 높이면서도, 냉매 압축기(25) inlet 온도를 적절히 조절할 수 있다.
반면 도 23의 경우, 냉매는 과냉기(24)에서 액화가스를 과냉시킨 뒤 액화가스 열교환기(22) 및 냉매 우회라인을 따라 유동할 수 있다. 즉 냉매 중 일부는 액화가스 열교환기(22)의 냉매 유로로 유입되어 액화가스에 의해 냉각될 수 있고, 나머지는 냉매 우회라인을 따라 액화가스 열교환기(22)를 우회하여 액화가스의 냉열을 회수하지 않는다.
앞서 도 22를 참고해 설명한 것과 마찬가지로, 도 23의 경우에도 냉매 우회라인의 우회 유량을 제어함으로써 냉매 압축기(25)의 유입 온도를 적절히 조절할 수 있다. 이러한 작동은 제어부에 의해 구현될 수 있다.
또한 도면에 나타내진 않았으나, 과냉기(24)에서 배출되는 냉매는 일부가 냉매 열교환기(27)로 유입되고 나머지가 냉매 열교환기(27)를 우회하는 것도 가능하다.
도 24 및 도 25는 본 발명의 제17 실시예에 따른 가스 처리 시스템의 개념도이다.
참고로 도 24는 증발가스를 이용해 냉매를 냉각하는 상태를 나타내고, 도 25는 액화가스를 이용해 냉매를 냉각하는 상태를 나타낸다. 물론 본 실시예는 증발가스 및 액화가스를 모두 이용하여 냉매를 냉각하는 것도 가능하다.
도 24 및 도 25를 참조하면, 본 발명의 제17 실시예에 따른 가스 처리 시스템(1)은, 액화가스 열교환기(22) 및 증발가스 열교환기(21)를 구비하며, 별도의 냉매 열교환기(27)는 마련하지 않을 수 있다.
본 실시예는 제1 실시예에서 설명한 것과 마찬가지로 액화가스 열교환기(22) 및 증발가스 열교환기(21)를 구비할 수 있다. 다만 제1 실시예의 경우 액화가스 열교환기(22) 및 증발가스 열교환기(21)가 냉매라인(RL)을 기준으로 직렬 배치된 것과 달리, 본 실시예는 액화가스 열교환기(22) 및 증발가스 열교환기(21)가 냉매라인(RL)을 기준으로 병렬 배치될 수 있다.
따라서 도 24의 경우, 냉매는 냉매라인(RL)을 따라 유동하면서 냉매 압축기(25) 하류에서 증발가스 열교환기(21)와 액화가스 열교환기(22) 중 증발가스 열교환기(21)만을 경유한 뒤, 냉매 팽창기(23)로 전달될 수 있다.
반면 도 25의 경우, 냉매는 냉매라인(RL)을 따라 유동하면서 냉매 압축기(25) 하류에서 증발가스 열교환기(21)와 액화가스 열교환기(22) 중 액화가스 열교환기(22)만을 경유한 뒤, 냉매 팽창기(23)로 전달될 수 있다.
물론 도면에 나타나지 않았으나, 본 실시예는 냉매 압축기(25) 하류에서 냉매가 증발가스 열교환기(21) 및 액화가스 열교환기(22)로 분배될 수 있다. 이 경우 증발가스 열교환기(21) 및 액화가스 열교환기(22)는, 냉매 온도 조절을 위해 상호 연계되어 작동할 수 있다. 이때 수요처(40)로 공급되는 증발가스 및 액화가스의 유량, 증발가스 및 액화가스의 온도 등을 토대로, 제어부가 냉매의 분배를 조절할 수 있을 것이다.
도 26 내지 도 30은 본 발명의 실시예들에 따른 가스 처리 시스템의 개념도이다.
도 26 내지 도 30에 나타난 가스 처리 시스템(1)은, 앞서 설명한 실시예들에서 냉각 장치(20) 부분만 간략하게 도시한 것이다. 또한 도 26 내지 도 30에는 가스 열교환기(21, 21a, 22)를 우회하거나, 과냉기(24), 냉매 열교환기(27)를 우회하도록 바이패스 라인(부호 도시하지 않음)과 바이패스 밸브(부호 도시하지 않음)가 점선으로 도시되었는데, 바이패스 라인 등은 필요에 따라 부가 또는 생략될 수 있음은 물론이다.
도 26을 참조하면, 본 발명은 가스 열교환기가 액화가스 또는 증발가스의 유동을 가능하게 하는 하나의 유로를 갖는 실시예를 포함한다.
구체적으로 도 26의 (A)의 경우 앞서 도 11의 냉각 장치(20)와 관련되는 것이다. 즉 도 26의 (A)에 따르면 냉매는 증발가스 또는 액화가스 중 어느 하나를 통해 냉열을 획득하고 과냉기(24)에서 액화가스의 과냉에 사용하는데, 이때 냉매를 냉각시키는 가스 열교환기(21a)는 하나의 유로 상에 액화가스 또는 증발가스가 택일적으로 유동 가능하도록 마련된다.
또한 도 26의 (B)의 경우, 앞선 도 12의 냉각 장치(20)와 관련되는 것으로서, 가스 열교환기 외에 냉매 열교환기(27)가 별도로 부가된 형태를 갖는다.
물론 도 26의 (B)의 경우 앞선 도 16의 일부 구성을 표시한 것으로 해석될 수도 있다.
도 27을 참조하면, 본 발명은 증발가스 열교환기(21) 및 액화가스 열교환기(22)가 냉매라인(RL)을 기준으로 직렬 배치되는 실시예를 포함한다.
구체적으로 도 27의 (A)의 경우 앞서 도 1의 냉각 장치(20)와 관련될 수 있다. 물론 도 27의 (A)는 도 14 및 도 18 등에 포함되는 냉각 장치(20)의 일부 구성을 표시한 것으로 해석될 수도 있다.
또한 도 27의 (B)의 경우, 도 27의 (A) 경우와 대비할 때 냉매 열교환기(27)가 부가될 수 있다. 이 경우 앞선 도 17 등에 나타난 냉각 장치(20)와 관련될 수 있다.
도 28을 참조하면, 본 발명은 증발가스 열교환기(21) 및 액화가스 열교환기(22)가 냉매라인(RL)을 기준으로 병렬 배치되는 실시예를 포함한다.
구체적으로 도 28의 (A)의 경우 앞서 도 24 및 도 25에서 설명한 냉각 장치(20)와 관련될 수 있다.
도 28의 (B)의 경우 도 28의 (A) 대비 별도의 냉매 열교환기(27)가 부가되는 것일 수 있고, 이 경우 앞선 도 19 내지 도 23 등에 나타난 냉각 장치(20)와 관련될 수 있다.
도 29를 참조하면, 본 발명은 2개의 가스 열교환기(22, 21a)가 냉매라인(RL)을 기준으로 직렬로 배치되는 실시예를 포함한다.
구체적으로 도 29의 (A)의 경우 2개의 가스 열교환기(22, 21a)로서 액화가스 열교환기(22) 및 증발가스 열교환기(21a)가 차례대로 마련되는 것일 수 있다. 이때 액화가스 열교환기(22) 및 증발가스 열교환기(21a) 중 적어도 어느 하나의 가스 열교환기(22, 21a)는, 하나의 유로 상에 증발가스 또는 액화가스가 택일적으로 유동하는 구조를 가질 수 있다.
도 29의 (A)의 경우, 앞서 도 11의 냉각 장치(20)에 대응되는 것일 수 있다. 참고로 도 11과 관련되는 것으로 설명한 도 26의 (A)의 경우, 도 11에서 나타난 액화가스 열교환기(22)를 생략한 형태라는 점에서 도 29의 (A)와 차이가 있다.
도 29의 (B)의 경우 도 29의 (A) 대비 냉매 열교환기(27)를 별도로 부가한 것이다. 도 29의 (B)는 도 12의 냉각 장치(20)와 관련된다고 볼 수 있고, 더욱이 도 16의 냉각 장치(20)에 대응되는 것으로 이해될 수 있다.
도 30을 참조하면, 본 발명은 가스 열교환기(22, 21b, 21)가 복수 개로 마련되며 또한 냉매 열교환기(27)를 구비하되, 냉매라인(RL) 상에서 복수 개의 가스 열교환기(22, 21b, 21) 중 어느 하나가 냉매 열교환기(27)와 병렬로 배치되고 적어도 다른 하나가 냉매 열교환기(27)와 직렬로 배치되는 경우를 포함한다.
구체적으로 도 30의 (A)의 경우 액화가스 열교환기(22)가 냉매 열교환기(27)와 병렬로 마련될 수 있다. 또한 도 30의 (A)에는 증발가스 열교환기(21b)가 마련되는데, 증발가스 열교환기(21b)는 어느 하나의 유로 상에 액화가스 또는 증발가스가 택일적으로 공급되는 구조를 가질 수 있다. 이러한 증발가스 열교환기(21b)는 냉매 열교환기(27)와 직렬로 마련될 수 있다.
또한 액화가스 열교환기(22)와 증발가스 열교환기(21b)는 냉매라인(RL)을 기준으로 직렬로 마련된다. 액화가스 열교환기(22)는 과냉기(24)와 냉매 압축기(25) 사이에 마련될 수 있고, 증발가스 열교환기(21b)는 냉매 압축기(25)와 냉매 열교환기(27) 사이에 마련될 수 있다.
도 30의 (B)의 경우 도 30의 (A) 대비 증발가스 열교환기(21b)를 증발가스 열교환기(21)와 액화가스 열교환기(22a)로 분할한 것으로서, 이 경우 액화가스와 증발가스가 공유되는 라인은 존재하지 않을 수 있다.
이외에도 본 발명은 가스 열교환기 및 냉매 열교환기(27)의 다양한 조합을 통해 액화가스의 과냉이 가능한 구조를 다른 실시예로서 더 포함할 수 있다.
본 발명은 상기에서 설명한 실시예로 한정되지 않으며, 상기 실시예들의 조합 또는 상기 실시예 중 적어도 어느 하나와 공지 기술의 조합을 또 다른 실시예로서 포함할 수 있음은 물론이다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 청구범위에 의하여 명확해질 것이다.
[부호의 설명]
1: 가스 처리 시스템 10: 액화가스 저장탱크
11: 제1 펌프 12: 제2 펌프
13: 주입장치 14: 이젝터
15: 증발가스 응축장치 20: 냉각 장치
21, 21a, 21b: 증발가스 열교환기 22, 22a: 액화가스 열교환기
23: 냉매 팽창기 231: 분배기
24: 과냉기 25: 냉매 압축기
26: 냉매 냉각기 27: 냉매 열교환기
28: 통합 열교환기 30: 메인 압축기
40: 수요처 41: 발전용 엔진
42: GCU 50: 혼합기
51: 액화가스 히터
L1: 증발가스라인 L1a: 증발가스 분기라인
L1c: 증발가스 우회라인 L2: 액화가스라인
L2a: 액화가스 혼합라인 L3: 액화가스 우회라인
L3a: 액화가스 히팅라인 L4: 액화가스 전달라인
L4a: 액화가스 우회라인 SL: 과냉라인
RL: 냉매라인 RL1: 제1 냉매라인
RL2: 제2 냉매라인 V1: 증발가스밸브
V1a: 증발가스 분기밸브 V2: 액화가스 분기밸브
V21: 제1 액화가스 혼합밸브 V22: 제2 액화가스 혼합밸브
V3: 액화가스 공급밸브 V31: 액화가스 우회밸브
V32: 액화가스 히팅밸브 V4: 액화가스 전달밸브

Claims (10)

  1. 액화가스 저장탱크;
    상기 액화가스 저장탱크의 액화가스를 과냉시켜 되돌리는 냉각 장치; 및
    상기 액화가스 저장탱크의 증발가스를 가압하여 수요처로 공급하는 메인 압축기를 포함하며,
    상기 냉각 장치는,
    냉매로 액화가스를 과냉시키는 과냉기; 및
    상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 증발가스 또는 상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 액화가스 중 적어도 어느 하나로 냉매를 냉각하는 가스 열교환기를 포함하며,
    상기 가스 열교환기는,
    냉매가 유동하는 냉매 유로와, 액화가스 또는 증발가스 중 적어도 어느 하나가 유동하는 가스 유로를 갖는, 가스 처리 시스템.
  2. 제 1 항에 있어서,
    상기 액화가스 저장탱크에서 상기 수요처로 증발가스를 전달하는 증발가스라인; 및
    상기 액화가스 저장탱크에서 상기 수요처로 액화가스를 전달하는 액화가스라인을 더 포함하며,
    상기 증발가스라인 및 상기 액화가스라인은, 상기 가스 열교환기의 상기 가스 유로를 공유하도록 마련되는, 가스 처리 시스템.
  3. 제 2 항에 있어서,
    상기 증발가스라인에서 분기되어 상기 가스 열교환기를 우회하는 증발가스 우회라인;
    상기 액화가스라인에서 분기되어 상기 가스 열교환기를 우회하는 액화가스 우회라인; 및
    상기 증발가스 우회라인 및 상기 액화가스 우회라인의 유동을 제어하는 제어부를 더 포함하는, 가스 처리 시스템.
  4. 제 2 항에 있어서, 상기 냉각 장치는,
    냉매가 순환하는 냉매라인을 더 포함하며,
    상기 가스 열교환기는, 상기 냉매라인과 연결되는 복수의 냉매 유로를 갖고,
    상기 과냉기는, 상기 가스 열교환기의 복수의 상기 냉매 유로를 상호 연결하는 상기 냉매라인 상에 마련되는, 가스 처리 시스템.
  5. 제 4 항에 있어서, 상기 냉각 장치는,
    냉매를 압축하여 상기 가스 열교환기의 어느 하나의 상기 냉매 유로로 전달하는 냉매 압축기; 및
    상기 가스 열교환기의 어느 하나의 상기 냉매 유로에서 배출되는 냉매를 팽창시켜 상기 과냉기로 전달하는 냉매 팽창기를 더 포함하는, 가스 처리 시스템.
  6. 제 4 항에 있어서, 상기 가스 열교환기는,
    상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 증발가스로 냉매를 냉각하는 증발가스 열교환기; 및
    상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 액화가스로 냉매를 냉각하는 액화가스 열교환기를 포함하며,
    상기 증발가스 열교환기 및 상기 액화가스 열교환기는, 상기 냉매라인 상에 직렬로 마련되는, 가스 처리 시스템.
  7. 제 6 항에 있어서, 상기 증발가스 열교환기는,
    상기 증발가스라인 및 상기 액화가스라인이 서로 공유하는 상기 가스 유로를 갖고, 액화가스의 흐름을 기준으로 상기 액화가스 열교환기의 하류에 마련되는, 가스 처리 시스템.
  8. 제 5 항에 있어서, 상기 냉각 장치는,
    상기 냉매 압축기 하류의 냉매와 상기 과냉기 하류의 냉매를 상호 열교환시키는 냉매 열교환기를 더 포함하며,
    상기 냉매 열교환기는,
    상기 가스 열교환기와 병렬로 마련되는, 가스 처리 시스템.
  9. 제 5 항에 있어서, 상기 가스 열교환기는,
    상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 증발가스로 냉매를 냉각하는 증발가스 열교환기; 및
    상기 액화가스 저장탱크에서 배출되어 상기 수요처로 전달되는 액화가스로 냉매를 냉각하는 액화가스 열교환기를 포함하고,
    상기 냉각 장치는,
    상기 냉매 압축기 하류의 냉매와 상기 과냉기 하류의 냉매를 상호 열교환시키는 냉매 열교환기를 더 포함하며,
    상기 냉매 열교환기와 상기 액화가스 열교환기는, 상기 냉매라인 상에 병렬로 마련되고,
    상기 증발가스 열교환기와 상기 액화가스 열교환기 또는 상기 냉매 열교환기는, 상기 냉매라인 상에 직렬로 마련되는, 가스 처리 시스템.
  10. 제 1 항의 상기 가스 처리 시스템을 갖는, 선박.
PCT/KR2023/003197 2022-03-08 2023-03-08 가스 처리 시스템 및 이를 포함하는 선박 WO2023172074A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0029677 2022-03-08
KR1020220029677A KR20230132672A (ko) 2022-03-08 2022-03-08 가스 처리 시스템
KR10-2022-0140734 2022-10-27
KR20220140734 2022-10-27

Publications (1)

Publication Number Publication Date
WO2023172074A1 true WO2023172074A1 (ko) 2023-09-14

Family

ID=87935446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003197 WO2023172074A1 (ko) 2022-03-08 2023-03-08 가스 처리 시스템 및 이를 포함하는 선박

Country Status (1)

Country Link
WO (1) WO2023172074A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080361A (ja) * 2009-10-02 2011-04-21 Mitsubishi Heavy Ind Ltd 液化ガス燃料供給装置、この運転方法、これを備えた液化ガス運搬船およびこれを備えた液化ガス貯蔵設備
WO2013032340A1 (en) * 2011-09-02 2013-03-07 Hamworthy Oil & Gas Systems As System and method for boosting bog in a lng fuel system
KR20150115126A (ko) * 2014-04-02 2015-10-14 현대중공업 주식회사 액화가스 처리 시스템
KR20190117406A (ko) * 2018-04-06 2019-10-16 한국조선해양 주식회사 가스 처리 시스템 및 이를 포함하는 선박
KR102265257B1 (ko) * 2016-03-07 2021-06-16 현대중공업 주식회사 증발가스 재액화 시스템 및 선박

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080361A (ja) * 2009-10-02 2011-04-21 Mitsubishi Heavy Ind Ltd 液化ガス燃料供給装置、この運転方法、これを備えた液化ガス運搬船およびこれを備えた液化ガス貯蔵設備
WO2013032340A1 (en) * 2011-09-02 2013-03-07 Hamworthy Oil & Gas Systems As System and method for boosting bog in a lng fuel system
KR20150115126A (ko) * 2014-04-02 2015-10-14 현대중공업 주식회사 액화가스 처리 시스템
KR102265257B1 (ko) * 2016-03-07 2021-06-16 현대중공업 주식회사 증발가스 재액화 시스템 및 선박
KR20190117406A (ko) * 2018-04-06 2019-10-16 한국조선해양 주식회사 가스 처리 시스템 및 이를 포함하는 선박

Similar Documents

Publication Publication Date Title
WO2017078244A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2012124885A1 (ko) 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템의 운전방법
WO2014092369A1 (ko) 선박의 액화가스 처리 시스템
WO2020017769A1 (ko) 휘발성 유기화합물 처리 시스템 및 선박
WO2013172644A1 (ko) 액화가스 처리 시스템 및 방법
WO2012128448A1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 및 방법
WO2012128447A1 (ko) 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템
WO2017171164A1 (ko) 선박용 증발가스 재액화 장치 및 방법
WO2016195279A1 (ko) 선박
WO2018062601A1 (ko) 선박의 증발가스 재액화 장치 및 방법
WO2014209029A1 (ko) 선박의 증발가스 처리 시스템 및 방법
WO2019027065A1 (ko) 증발가스 재액화 시스템 및 증발가스 재액화 시스템 내의 윤활유 배출 방법
WO2014065618A1 (ko) 선박의 액화가스 처리 시스템
WO2016195232A1 (ko) 선박
WO2016126025A1 (ko) 선박의 연료가스 공급시스템
WO2018230950A1 (ko) 증발가스 재액화 시스템 및 선박
WO2023172074A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2016148318A1 (en) System for supplying fuel to engine of ship
WO2019027068A1 (ko) 증발가스 재액화 시스템 및 증발가스 재액화 시스템 내의 윤활유 배출 방법
WO2016195229A1 (ko) 선박
WO2016148319A1 (en) System for supplying fuel to engine of ship
WO2016195233A1 (ko) 선박
WO2019027063A1 (ko) 증발가스 재액화 시스템 및 증발가스 재액화 시스템 내의 윤활유 배출 방법, 그리고 엔진의 연료 공급 방법
WO2013172642A1 (ko) 액화가스 처리 시스템 및 방법
WO2013172645A1 (ko) 액화가스 처리 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23767175

Country of ref document: EP

Kind code of ref document: A1