WO2021167343A1 - 가스 처리 시스템 및 이를 포함하는 선박 - Google Patents

가스 처리 시스템 및 이를 포함하는 선박 Download PDF

Info

Publication number
WO2021167343A1
WO2021167343A1 PCT/KR2021/002020 KR2021002020W WO2021167343A1 WO 2021167343 A1 WO2021167343 A1 WO 2021167343A1 KR 2021002020 W KR2021002020 W KR 2021002020W WO 2021167343 A1 WO2021167343 A1 WO 2021167343A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquefied
boil
liquefied gas
pressure pump
Prior art date
Application number
PCT/KR2021/002020
Other languages
English (en)
French (fr)
Inventor
노일용
박종완
한상무
Original Assignee
한국조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국조선해양 주식회사 filed Critical 한국조선해양 주식회사
Priority to JP2022548858A priority Critical patent/JP2023514996A/ja
Priority to EP21757590.1A priority patent/EP4108561A4/en
Priority to CN202180010870.5A priority patent/CN115038642A/zh
Priority to US17/799,305 priority patent/US20230081154A1/en
Priority claimed from KR1020210021198A external-priority patent/KR102474904B1/ko
Publication of WO2021167343A1 publication Critical patent/WO2021167343A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass
    • B63J2099/001Burning of transported goods, e.g. fuel, boil-off or refuse
    • B63J2099/003Burning of transported goods, e.g. fuel, boil-off or refuse of cargo oil or fuel, or of boil-off gases, e.g. for propulsive purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0142Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0178Arrangement in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0185Arrangement comprising several pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0348Water cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0348Water cooling
    • F17C2227/0351Water cooling using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0355Heat exchange with the fluid by cooling using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/044Avoiding pollution or contamination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/022Mixing fluids identical fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a gas treatment system and a ship comprising the same.
  • liquefied petroleum gas that is, LPG (Liquefied petroleum gas) is liquefied by pressurizing the gas at room temperature with hydrocarbons having a low boiling point such as propane and butane among petroleum components.
  • This liquefied petroleum gas is filled in a small and light pressure vessel (cylinder) and widely used as fuel for household, business, industrial, and automobile use.
  • Liquefied petroleum gas is extracted in gaseous form at the production site, stored after being liquefied through a liquefied petroleum gas processing facility, and transported to the land while maintaining the liquid phase by a liquefied petroleum gas carrier, and then supplied to consumers in various forms such as gas. do.
  • the storage tank for storing liquefied petroleum gas uses low temperature steel (Low Temperature Carbon Steel and Nickel Steel) that is strong at low temperatures, and a reliquefaction facility is also provided for the liquefied petroleum gas carrier.
  • the present invention was created to solve the problems of the prior art as described above, and an object of the present invention is to provide a gas processing system capable of generating propulsion using liquefied petroleum gas or ammonia and a ship including the same. .
  • a gas processing system is a system for processing liquefied gas, which is heavy hydrocarbons or ammonia, comprising: a fuel tank for storing the liquefied gas as fuel to be supplied to a propulsion engine of a ship; a liquefied gas supply line for supplying the liquefied gas of the fuel tank to the propulsion engine in a liquid phase and provided with a high-pressure pump; a re-liquefaction device for liquefying boil-off gas generated in a cargo tank for storing liquefied gas; and a liquefied gas recovery line for recovering the liquid liquefied gas discharged from the propulsion engine upstream of the high-pressure pump, wherein the re-liquefaction device delivers the liquefied boil-off gas to the fuel tank by the high-pressure pump. to be supplied to the propulsion engine.
  • the liquefied gas recovery line is provided with a pressure reducing valve for reducing the surplus liquid liquefied gas discharged from the propulsion engine and mixed with lubricating oil, and lubricating oil used in the propulsion engine is mixed while passing through the inside of the propulsion engine.
  • the surplus liquid liquefied gas may be transferred to the liquefied gas supply line upstream of the high-pressure pump to be re-introduced into the propulsion engine.
  • the liquefied gas recovery line may be provided with a cooler that cools the liquefied gas pressure-reduced by the pressure-reducing valve and flows into the high-pressure pump in a liquid phase.
  • the reliquefaction apparatus a compressor for multi-stage compression of boil-off gas discharged from the cargo tank; a condenser for liquefying the compressed boil-off gas by cooling it with a refrigerant; and an intercooler that mutually exchanges some of the BOG liquefied in the condenser and the rest, and transmits BOG generated by the heat exchange to the compressor.
  • the reliquefaction apparatus further includes a gas-liquid separator for gas-liquid separation of the boil-off gas liquefied in the condenser, and a reliquefaction mode for transferring the liquid phase separated in the gas-liquid separator to the cargo tank via the intercooler and
  • the liquid phase separated in the gas-liquid separator may be transferred to the fuel tank and operated in at least one of a fuel supply mode to be supplied to the propulsion engine.
  • the reliquefaction apparatus a compressor for multi-stage compression of boil-off gas discharged from the cargo tank; a condenser for cooling and liquefying the compressed boil-off gas; And it may include a boil-off gas heat exchanger for exchanging the boil-off gas transferred from the cargo tank to the compressor and the boil-off gas liquefied in the condenser.
  • the reliquefaction apparatus further includes a gas-liquid separator for gas-liquid separation of the boil-off gas liquefied in the condenser, and the liquid phase separated in the gas-liquid separator is transferred to the cargo tank via the boil-off gas heat exchanger.
  • mode and the liquid phase separated in the gas-liquid separator may be operated in at least one of a fuel supply mode in which the liquid phase separated from the gas-liquid separator is transferred to the fuel tank to be supplied to the propulsion engine.
  • a gas processing system is a system for processing liquefied gas, which is heavy hydrocarbons or ammonia, comprising: a liquefied gas supply line that supplies the liquefied gas stored in a cargo tank to the propulsion engine in a liquid phase and is provided with a high-pressure pump; a re-liquefaction device for liquefying the boil-off gas generated in the cargo tank and transferring it to the high-pressure pump; and a liquefied gas recovery line for recovering the liquid liquefied gas discharged from the propulsion engine to an upstream of the high-pressure pump, wherein the re-liquefaction device includes: a condenser for cooling and liquefying the boil-off gas with a refrigerant; and a buffer for temporarily storing the boil-off gas liquefied in the condenser, wherein in preparation for a pressure change of the boil-off gas transferred from the buffer to the high-pressure pump according to the temperature of the refrigerant, at least
  • the liquefied gas recovery line is provided with a pressure reducing valve for reducing the surplus liquid liquefied gas discharged from the propulsion engine and mixed with lubricating oil, and lubricating oil used in the propulsion engine is mixed while passing through the inside of the propulsion engine.
  • the surplus liquid liquefied gas may be transferred to the liquefied gas supply line upstream of the high-pressure pump to be re-introduced into the propulsion engine.
  • the liquefied gas recovery line may be provided with a cooler that cools the liquefied gas pressure-reduced by the pressure-reducing valve and flows into the high-pressure pump in a liquid phase.
  • the buffer may be a gas-liquid separator for gas-liquid separation of the boil-off gas liquefied in the condenser.
  • the re-liquefaction device may deliver the liquefied boil-off gas to the liquefied gas supply line between the cargo tank and the high-pressure pump.
  • the reliquefaction apparatus a compressor for multi-stage compression of boil-off gas discharged from the cargo tank; and an intercooler that mutually exchanges some of the BOG liquefied in the condenser and the rest, and transmits BOG generated by the heat exchange to the compressor.
  • the reliquefaction device includes a reliquefaction mode for transferring the liquid phase separated in the gas-liquid separator to the cargo tank via the intercooler, and the liquefied gas supply line upstream of the high pressure pump for the liquid phase separated from the gas-liquid separator It may operate in at least any one of the fuel supply modes to be delivered to the propulsion engine and supplied to the propulsion engine.
  • the ship which concerns on this invention is a liquefied gas carrier which has the said gas processing system.
  • the gas treatment system according to the present invention and a ship including the same can use liquefied petroleum gas or ammonia as a propulsion fuel, deviating from the conventional system using only diesel oil, thereby reducing environmental pollution and increasing energy efficiency.
  • FIG. 1 is a conceptual diagram of a gas processing system according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a gas processing system according to a second embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of a gas processing system according to a third embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of a gas processing system according to a fourth embodiment of the present invention.
  • FIG. 5 is a conceptual diagram of a gas processing system according to a fifth embodiment of the present invention.
  • FIG. 6 is a conceptual diagram of a gas processing system according to a sixth embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of a gas processing system according to a seventh embodiment of the present invention.
  • the liquefied gas in the present specification may be LPG (propane, butane, etc.) or ammonia as heavy hydrocarbons, but is not limited thereto and may include all materials having a boiling point lower than room temperature and calorific value.
  • liquefied gas/evaporated gas in the present specification is not necessarily limited to liquid or gaseous due to the name.
  • the present invention includes a ship equipped with a gas treatment system as described below.
  • a ship is a concept that includes all gas carriers, merchant ships carrying cargo or people other than gas, FSRUs, FPSOs, bunkering vessels, and offshore plants, but note that it may be a liquefied gas carrier as an example.
  • the pressure sensor (PT), the temperature sensor (TT), etc. may be provided at an appropriate position without limitation, and the measurement value by each sensor is dependent on the operation of the components described below. It can be used in various ways without limitation.
  • FIG. 1 is a conceptual diagram of a gas processing system according to a first embodiment of the present invention.
  • the gas processing system 1 includes a gas storage unit, a fuel supply unit 20 , a reliquefaction unit 30 , and a fuel recovery unit 40 .
  • the gas storage unit includes a cargo tank 10 , a fuel tank 12 , and the like as a configuration for storing liquefied gas.
  • the cargo tank 10 is a plurality of tanks for cargo provided in the ship that is a liquefied gas carrier.
  • the vessel is a vessel other than the gas carrier, it may be a tank or container that is separately added to the inside or the outside of the vessel.
  • the cargo tank 10 is a tank for storing liquefied gas as a low-temperature liquid at atmospheric pressure, and various insulating structures may be added to the wall to prevent vaporization of the liquefied gas. Also, the cargo tank 10 may be a membranous tank or an independent tank, and the shape or specification thereof is not limited.
  • a liquefied gas delivery line L21 may be provided from the cargo tank 10 to the fuel tank 12 to be described later, and the liquefied gas of the cargo tank 10 through the liquefied gas delivery line L21 is the fuel tank 12 . is transmitted to The liquefied gas transferred to the fuel tank 12 is used as a fuel of the propulsion engine E.
  • the propulsion engine (E) suffices as long as a configuration for propelling a ship is sufficient, and it can be interpreted as any configuration capable of directly or indirectly generating propulsion force by consuming liquefied gas such as a turbine, a fuel cell, etc. rather than an engine. .
  • the propulsion engine (E) may be used as a term encompassing all gas demanders such as an engine for propulsion, an engine for power generation, and a gas combustion device.
  • a transfer pump 11 may be assigned to the cargo tank 10 , and a liquefied gas delivery line L21 may be connected to the transfer pump 11 .
  • the transfer pump 11 may be provided inside the cargo tank 10 and may be provided as a submerged type submerged in liquefied gas.
  • the transfer pump 11 may be provided in some of the plurality of cargo tanks 10 .
  • the cargo tank 10 is basically for the purpose of transporting cargo, and a cargo pump (unloading pump, stripping pump, etc., not shown) for the unloading of cargo is at least two for each cargo tank 10 .
  • a cargo tank 10 is to use the liquefied gas stored therein as fuel such as a propulsion engine (E) (ME-LGI), in addition to the cargo pump, a transfer pump 11 can be added.
  • E propulsion engine
  • the liquefied gas stored in the fourth cargo tank 10 close to the engine room in which the propulsion engine E is accommodated is transferred to the fuel tank 12 .
  • the transfer pump 11 may be provided only in the fourth cargo tank 10 .
  • boil-off gas is generated in the cargo tank 10 .
  • the cargo tank 10 may be provided with a boil-off gas discharge line (L10) for discharging boil-off gas. BOG discharged from the cargo tank 10 is liquefied and returned or may be used as a fuel of the propulsion engine E, which will be described in detail below in the section describing the re-liquefaction unit 30 .
  • the cargo tank 10 may be provided in plurality in order to respectively store at least two kinds of liquefied gases among liquefied gases (propane, butane, propylene, etc.) containing heavy hydrocarbons as a main component. That is, the cargo tank 10 may include a first cargo tank 10 for storing a first type of liquefied gas and a second cargo tank 10 for storing a second type of liquefied gas, for example, The first cargo tank 10 may store propane, and the second cargo tank 10 may store butane.
  • the boil-off gas of the cargo tank 10 is liquefied through the condenser 32 of the re-liquefaction unit 30 to be described later.
  • the condenser 32 is at least It may be provided as much as the type of liquefied gas stored in the cargo tank 10 (additionally, a backup may be provided).
  • the cargo tank 10 stores two types of liquefied gas
  • the compressor 31 is provided as a set corresponding to the condenser 32
  • a plurality of compressors 31 may also be provided according to the number of the condensers 32 .
  • the cargo tank 10 can produce two or more types of liquefied gas. Even if it is provided to store, the number of installed (or operated) of the condenser 32 can be reduced to less than or equal to the number of types of liquefied gas.
  • the BOG of the cargo tank 10 is transferred to the condenser 32 through the BOG discharge line L10 and can be liquefied by refrigerant heat exchange in the condenser 32, and the liquefied BOG is the fuel tank 12. It is transmitted to the high-pressure pump 22 to be described later through the , and may not be returned to the cargo tank 10 (fuel supply mode).
  • the fuel tank 12 stores the liquefied gas as fuel to be supplied to the propulsion engine (E).
  • the fuel tank 12 may be of the same or different type as the stand-alone (SPB type, MOSS type) or membrane-type cargo tank 10 for storing a large amount of liquefied gas at atmospheric pressure, and a stand-alone type (Type) for storing liquefied gas at high pressure C, pressure vessel type).
  • the fuel tank 12 may store the liquefied gas above the critical pressure (for example, around 18 bar), or store it below the critical pressure (for example, around 8 bar), inside or outside the wall to prevent vaporization of the liquefied gas.
  • a heat insulating structure may be provided on at least one side of the.
  • the fuel tank 12 may be mounted on the upper deck in a ship, and is provided to be supported on the upper deck through a saddle.
  • the fuel tank 12 does not interfere with the components (manifold, etc.) for loading/unloading the liquefied gas of the cargo tank 10 on the upper deck.
  • the fuel tank 12 may be provided on the port side or starboard side of the bow on the upper deck.
  • the fuel tank 12 may be referred to as a deck tank.
  • the fuel tank 12 may be configured to temporarily store liquefied gas between the cargo tank 10 and the propulsion engine E, and the fuel tank 12 is a cargo tank 10 using the liquefied gas stored therein. ) may be of a configuration having a function of condensing the boil-off gas generated from.
  • the fuel tank 12 may be used as the recondenser 32 for condensing the boil-off gas generated in the cargo tank 10 using the liquefied gas stored therein.
  • a boil-off gas branch line (not shown) branching from the upstream of the condenser 32 toward the fuel tank 12 may be provided.
  • the above-described liquefied gas delivery line L21 is connected from the cargo tank 10 to the fuel tank 12 , and the liquefied gas is delivered to the fuel tank 12 by the transfer pump 11 immersed in the cargo tank 10 .
  • the liquefied gas stored in the fuel tank 12 may be managed at an appropriate level/pressure in consideration of the operating state of the vessel.
  • the liquefied gas is returned from the fuel tank 12 to the cargo tank 10 , but this is the same as the composition of the liquefied gas stored in the liquefied gas of the cargo tank 10 when the liquefied gas stored in the fuel tank 12 is the same. may be limited to
  • the liquefied gas stored in the fuel tank 12 may be transferred from the fuel tank 12 to the propulsion engine E through the low-pressure pump 21 of the fuel supply unit 20 to be described later.
  • a liquefied gas supply line L20 may be provided from the fuel tank 12 to the propulsion engine E. That is, a liquefied gas delivery line L21 is provided from the cargo tank 10 to the fuel tank 12, and a liquefied gas supply line L20 is provided from the fuel tank 12 to the propulsion engine E.
  • the liquefied gas supply line (L20) may be provided such that the liquefied gas is supplied to the propulsion engine (E) by bypassing the fuel tank 12 from the cargo tank 10, in this case the liquefied gas supply line (L20) is the cargo
  • the liquefied gas of the tank 10 and/or the fuel tank 12 may be delivered to the propulsion engine E.
  • the fuel supply unit 20 supplies the liquefied gas to the propulsion engine (E) so that the propulsion engine (E) is operated.
  • the fuel supply unit 20 includes a low-pressure pump 21 , a high-pressure pump 22 , a heat exchanger 23 , and the like, and a filter (not shown) may be provided at an appropriate position.
  • the low-pressure pump 21 delivers the liquefied gas of the fuel tank 12 to the propulsion engine E.
  • the low pressure pump 21 may be provided inside or outside the fuel tank 12 , and may be provided on the liquefied gas supply line L20 connected from the fuel tank 12 to the propulsion engine E .
  • the low pressure pump 21 may pressurize the liquefied gas to a pressure lower than the required pressure of the propulsion engine E. Specifically, the low pressure pump 21 may pressurize the liquefied gas according to the suction pressure (eg, 20 bar) of the high pressure pump 22 disposed downstream. That is, the low-pressure pump 21 increases the pressure of the liquefied gas by the differential pressure between the internal pressure of the fuel tank 12 and the suction pressure of the high-pressure pump 22 .
  • the suction pressure eg, 20 bar
  • the low-pressure pump 21 may be omitted.
  • a liquefied gas return line (not shown) may be provided downstream of the low pressure pump 21 in the liquefied gas supply line L20.
  • the liquefied gas return line serves to recover excess liquefied gas to the fuel tank 12 when the flow rate delivered to the propulsion engine E through the low pressure pump 21 exceeds the required flow rate of the propulsion engine E. can do.
  • the liquefied gas return line is a function of increasing the internal pressure of the fuel tank 12 by allowing the liquefied gas pressurized by the low-pressure pump 21 to be re-introduced into the fuel tank 12 after being discharged from the fuel tank 12 .
  • the fuel tank 12 can minimize the generation of boil-off gas in the fuel tank 12 by maintaining a high internal pressure.
  • the high-pressure pump 22 pressurizes the liquefied gas of the fuel tank 12 in response to the required pressure of the propulsion engine E and delivers it to the propulsion engine E.
  • the pressure required by the propulsion engine (E) may be 20 to 50 bar, but may vary depending on the specifications of the propulsion engine (E).
  • the high-pressure pump 22 is provided on the liquefied gas supply line L20 extending from the fuel tank 12 to the propulsion engine E.
  • the type of the high-pressure pump 22 is not particularly limited, and a plurality of the high-pressure pumps 22 may be provided in parallel to be able to back up each other as shown in the figure.
  • the high-pressure pump 22 may be provided upstream of the heat exchanger 23 to be described later as shown in the drawing, or may be provided downstream of the heat exchanger 23 unlike the drawing. In the latter case, the high-pressure pump 22 may pressurize the liquefied gas whose temperature is controlled by the heat exchanger 23 to the pressure required by the propulsion engine E.
  • the liquefied gas may be introduced into the high-pressure pump 22 in a liquid phase.
  • the heat exchanger 23 can control the temperature of the liquefied gas in consideration of the above.
  • the pressure of the liquefied gas sucked into the high-pressure pump 22 may correspond to the pressure of the liquefied gas discharged by the low-pressure pump 21 . It may also correspond to the pressure of the liquefied gas recovered from the propulsion engine (E).
  • a filter (not shown) for filtering out impurities may be provided downstream of the high pressure pump 22 , and the filter may be additionally provided upstream of the low pressure pump 21 as shown in the figure.
  • a fuel supply valve (not shown) may be provided downstream of the high-pressure pump 22 in the liquefied gas supply line L20, and at this time, a fuel supply valve and a pressure reducing valve provided in the liquefied gas recovery line L30 ( (not shown) may be referred to as a fuel valve train (FVT) as it is composed of one train.
  • FVT fuel valve train
  • a liquefied gas circulation line L22 connected to a liquefied gas recovery line L30 of a fuel recovery unit 40 to be described later may be provided in the liquefied gas supply line L20 downstream of the high-pressure pump 22 .
  • the liquefied gas discharged from the high-pressure pump 22 is transferred to the liquefied gas recovery line L30 along the liquefied gas circulation line L22 and circulated to the high-pressure pump 22 again.
  • the high pressure pump 22 is set at a minimum required flow rate for operational stability and the like. This is called a minimum flow, and it is preferable that a liquefied gas satisfying the minimum required flow is introduced into the high-pressure pump 22 during operation.
  • the consumption of the propulsion engine E or the like downstream of the high-pressure pump 22 may not satisfy the minimum required flow rate of the high-pressure pump 22 .
  • the high-pressure pump 22 is the case in which the propulsion engine (E) is operated at a low load or stopped in operation in an operating situation.
  • the high-pressure pump 22 for the stable operation of the high-pressure pump 22 , even if the required flow rate of the propulsion engine E is less than the minimum required flow rate of the high-pressure pump 22 , the high-pressure pump 22 is liquefied above the minimum required flow rate. In order to allow the gas to flow in, the liquefied gas may be circulated.
  • the liquefied gas of 20 is the liquefied gas circulation line L22, the liquefied gas recovery line downstream of the high-pressure pump 22 It may be circulated to the high-pressure pump 22 via (L30).
  • the liquefied gas circulation line (L22) is when the required flow rate of the propulsion engine (E) is less than or equal to the minimum required flow rate of the high-pressure pump (22), the required flow rate of the propulsion engine (E) compared to the minimum required flow rate of the high-pressure pump (22) is excluded. By circulating more than the flow rate, it is possible to ensure the minimum required flow rate of the high-pressure pump 22 .
  • the heat exchanger 23 is provided downstream of the low pressure pump 21 to change the temperature of the liquefied gas. Since the heat exchanger 23 may increase or decrease the temperature of the liquefied gas, it may be referred to as a fuel conditioner.
  • the heat exchanger 23 can lower the temperature of the liquefied gas, and when entering into stable operation, the heat exchanger (23) can increase the temperature of the liquefied gas.
  • the heat exchanger 23 may be provided downstream of the high-pressure pump 22 as shown in the drawing, or unlike the drawing, the heat exchanger 23 may be provided upstream of the high-pressure pump 22 . In the latter case, the heat exchanger 23 may control the temperature of the liquefied gas below the boiling point of the liquefied gas so that the gaseous liquefied gas does not flow into the high-pressure pump 22 .
  • the heat exchanger 23 may implement heat exchange with liquefied gas using a variety of heat exchange media.
  • the heat exchange medium may be seawater, fresh water, glycol water, exhaust gas, or the like, but is not limited thereto.
  • the re-liquefaction unit 30 liquefies the boil-off gas generated in the cargo tank 10 .
  • the reliquefaction unit 30 may constitute a reliquefaction apparatus by being configured as a module in which several components are disposed on one skid, and the reliquefaction unit 30 may include a plurality of reliquefaction apparatuses. However, only one reliquefaction device is shown in the drawings for convenience.
  • This reliquefaction apparatus includes a compressor 31 , a condenser 32 , a gas-liquid separator 33 , an intercooler 34 , and an aftercooler 35 .
  • the compressor 31, the aftercooler 35, the condenser 32, and the gas-liquid separator 33 may be sequentially disposed on the boil-off gas discharge line L10, and the intercooler 34 is the gas-liquid separator 33. It may be provided on the boil-off gas return line (L11) connected to the cargo tank (10).
  • the compressor 31 compresses the boil-off gas discharged from the cargo tank 10 .
  • the compressor 31 may increase the boiling point of the boil-off gas by compression, thereby increasing the liquefaction efficiency in the condenser 32 to be described below.
  • the compressor 31 may be configured in multiple stages, may be configured in three stages as shown in the drawing, or may be provided in various stages other than the compressor 31 .
  • the compressor 31 may be provided in parallel on the boil-off gas discharge line L10 to be able to back up each other.
  • the compressor 31 may deliver the compressed boil-off gas to the condenser 32 so that it can be liquefied, or it may deliver it to the fuel tank 12 in which the liquefied gas is filled with an appropriate amount.
  • BOG liquefied in the condenser 32 is supplied to the fuel tank 12, and in the latter case, high-pressure BOG is directly injected into the fuel tank 12 and cooled by the liquefied gas in the fuel tank 12. can be liquefied.
  • a drum (not shown) may be provided upstream of the compressor 31 .
  • the drum is a gas-liquid separation configuration for filtering the droplets among the boil-off gas discharged from the cargo tank 10 , and the droplets may be provided to be returned to the cargo tank 10 .
  • the drum may protect the compressor 31 by preventing droplets from flowing into the compressor 31 , and the drum may be omitted depending on the type of the compressor 31 .
  • the condenser 32 liquefies the boil-off gas generated in the cargo tank 10 .
  • a refrigerant may be used for liquefaction of BOG, and the refrigerant may be glycol water, nitrogen, or seawater.
  • the condenser 32 may have a two-stream structure including a boil-off gas stream into which the boil-off gas compressed in the compressor 31 is introduced, and a refrigerant stream through which a refrigerant for heat exchange with the boil-off gas flows.
  • the type of the condenser 32 is not limited, such as Shell & Tube, PCHE, etc., and a bath type through which BOG passes to exchange heat in the housing in which the refrigerant is stored is also possible.
  • the cargo tank 10 may be provided in plurality to respectively store at least two types of liquefied gas, and the condenser 32 may be provided to liquefy all of the different types of boil-off gas.
  • a plurality of condensers 32 may be provided to correspond to the type of liquefied gas.
  • different types of BOG are integrated and delivered to one condenser 32 , thereby reducing the number of installations (or operation numbers) of the condenser 32 .
  • the reliquefaction apparatus of this embodiment can operate (fuel supply mode) to deliver the liquefied boil-off gas to the fuel tank 12 instead of the cargo tank 10 to be consumed by the propulsion engine E.
  • the re-liquefaction apparatus converts the liquefied boil-off gas into the cargo tank 10. It can also be operated in reliquefaction mode delivered to
  • the gas-liquid separator 33 temporarily stores the boil-off gas liquefied in the condenser 32 .
  • the gas-liquid separator 33 may have a container shape or a partially expanded tube shape to have a buffer function.
  • the gas-liquid separator 33 may separate the liquefied BOG into a gaseous phase and a liquid phase, and then transfer the liquid phase to the cargo tank 10 or the fuel tank 12 .
  • the gas-liquid separator 33 delivers only the liquid phase to the cargo tank 10 and the like, and the gas phase can be accommodated therein, and by maintaining a certain level of internal pressure, it is possible to prevent evaporation of the boil-off gas.
  • the re-liquefaction device uses the liquefied boil-off gas in the fuel tank 12 instead of the cargo tank 10 in order to prevent mixing of the composition of the liquefied gas (or to supply the boil-off gas to the propulsion engine E). ) can be operated in the fuel supply mode, and for this purpose, the gas-liquid separator 33 may be provided with a boil-off gas delivery line L12 that delivers the liquid phase to the fuel tank 12 .
  • a boil-off gas return line L11 may be provided from the gas-liquid separator 33 toward the cargo tank 10, and an intercooler 34 on the boil-off gas return line L11 ) may be provided.
  • the reliquefaction apparatus is a reliquefaction mode in which the liquid phase separated in the gas-liquid separator 33 is transferred to the cargo tank 10 via the intercooler 34, and/or the liquid phase separated in the gas-liquid separator 33 is transferred to the fuel tank. It can operate in at least any one of the fuel supply modes to be delivered to (12) and supplied to the propulsion engine (E).
  • the reliquefaction apparatus may operate in a mode in which the reliquefaction mode and the fuel supply mode are combined.
  • the complex mode a portion of the liquid separated in the gas-liquid separator 33 is transferred to the cargo tank 10 and the remainder is transferred to the fuel tank 12, and the flow rate at which the liquid phase is branched to the fuel tank 12 is the propulsion engine ( E) can be controlled according to the load.
  • the intercooler 34 mutually exchanges some of the BOG liquefied in the condenser 32 and the rest, and transfers the gaseous BOG generated by heat exchange among the BOG introduced from the condenser 32 to the compressor 31 .
  • the intercooler 34 is used to cool the boil-off gas in the middle stage of the compressor 31 composed of a plurality of stages.
  • the temperature rises due to the heat of compression. In this case, there is a problem in that the load on the compressor 31 increases. Therefore, the present embodiment may use the intercooler 34 for intermediate cooling.
  • the intercooler 34 is provided in the form of a container for storing some of the BOG liquefied in the condenser 32, and the BOG stored therein is converted into the remaining BOG liquefied in the condenser 32 (cargo tank 10). ) is used as a cooling refrigerant.
  • the boil-off gas return line L11 is branched from the upstream of the intercooler 34, and one end delivers the boil-off gas into the intercooler 34, and the other end intercooler 34 to exchange heat with the boil-off gas stored in the intercooler 34. It is connected to the cargo tank 10 after passing through the interior.
  • the intercooler 34 receives the boil-off gas transferred from the condenser 32 to the cargo tank 10 from the condenser 32 and exchanges heat with the boil-off gas stored therein, and is delivered to the cargo tank 10 .
  • the boil-off gas can be sufficiently liquefied.
  • the portion passing through the intercooler 34 in the BOG return line L11 may be provided in the form of a coil, and also the intercooler 34 in the BOG return line L11 to improve cooling efficiency.
  • a pressure reducing valve (not shown) may be provided at a portion for transferring the boil-off gas to the inside.
  • the intercooler 34 transfers the vapor phase of the boil-off gas stored therein to the intermediate stage of the compressor 31 .
  • the vapor phase BOG delivered from the intercooler 34 to the intermediate stage of the compressor 31 is in a cryogenic state adjacent to the boiling point. Accordingly, the BOG at the intermediate stage of the compressor 31 may be cooled while being mixed with the gaseous BOG delivered from the intercooler 34 .
  • the intercooler 34 may be allocated to each of the intermediate stages of the multi-stage compressor 31 . However, in this case, the BOG is circulated by the intercooler 34, and due to the amount of BOG transferred from the intercooler 34 to the middle stage of the compressor 31, it can be introduced from the cargo tank 10 to the reliquefaction device. The amount of boil-off gas may be limited.
  • the re-liquefaction apparatus has a re-liquefaction capacity of the amount excluding the amount of boil-off gas transferred to the middle stage of the compressor 31 by the intercooler 34 compared to the allowable inflow amount of the first stage of the compressor 31 .
  • the allowable inflow of the first stage of the compressor 31 is 800
  • the BOG of 200 is circulated in the middle stage (between stages 1 and 2 and between stages 2 and 3) of the compressor 31 by the intercooler 34 .
  • the amount of BOG that the reliquefaction apparatus can finally receive from the cargo tank 10 is reduced to 400.
  • the intercooler 34 is allocated only to a part of the intermediate stage of the compressor 31 , and the aftercooler 35 rather than the intercooler 34 is provided in the rest of the intermediate stages of the compressor 31 . By doing so, the capacity of the reliquefaction apparatus can be increased.
  • the intercooler 34 may be replaced with a separator.
  • the separator separates the liquefied BOG in the condenser 32 similarly to the gas-liquid separator 33 described above, and the liquid phase can be delivered to the cargo tank 10 and the gas phase can be delivered to the intermediate stage of the compressor 31 .
  • the separator since the separator merely separates the BOG and does not implement heat exchange between the BOG, the BOG return line L11 in the form of a coil may be omitted.
  • the aftercooler 35 is provided at a part of the intermediate stage of the compressor 31 and may cool the BOG using a separate refrigerant.
  • the aftercooler 35 may implement the function of a precooler from the viewpoint of the condenser 32 .
  • the aftercooler 35 may use a refrigerant such as seawater similarly to the condenser 32, and may utilize various refrigerants in addition. However, the aftercooler 35 may use a separate refrigerant supplied from the outside, not the liquefied gas stored in the cargo tank 10 or the boil-off gas discharged from the cargo tank 10 .
  • the intercooler 34 is connected between the first and second stages of the compressor 31 to circulate the vapor phase boil-off gas, and the aftercooler 35 is located between the second and third stages of the compressor 31 .
  • the reliquefaction unit 30 of this embodiment can be operated in two modes.
  • the re-liquefaction unit 30 is a re-liquefaction mode in which the boil-off gas liquefied in the condenser 32 is delivered to the cargo tank 10 via the intercooler 34, and the boil-off gas in the upstream or downstream of the condenser 32. It can be operated in fuel supply mode that is delivered to the propulsion engine (E) side.
  • the multi-stage compressed BOG is liquefied through the condenser 32 , and then passed through the gas-liquid separator 33 and transferred to the intercooler 34 .
  • the BOG is branched upstream of the intercooler 34, some BOG may be filled into the intercooler 34, and the remaining BOG is not mixed with the BOG filled in the intercooler 34, but only exchanges heat. It passes through the inside of the intercooler 34. After the BOG passed through the intercooler 34 is cooled or supercooled to stably maintain a liquid phase, it may be returned to the cargo tank 10 .
  • the multi-stage compressed BOG may be delivered from the upstream of the condenser 32 to the fuel tank 12, or the multi-stage compressed and condensed BOG may be delivered to the fuel tank 12 to the high-pressure pump 22 It can be transmitted to the propulsion engine (E) by the.
  • the fuel supply mode it is not preferable to return the liquefied boil-off gas to the cargo tank 10, or the load of the propulsion engine E is high, so that the required flow rate of the propulsion engine E is only liquefied gas stored in the fuel tank 12. If it is not met, it can be operated.
  • the fuel recovery unit 40 recovers the liquid liquefied gas discharged from the propulsion engine (E).
  • the fuel recovery unit 40 may recover the liquid liquefied gas to the upstream of the high-pressure pump 22 , and for this purpose, the liquefied gas is recovered from the propulsion engine E to the liquefied gas supply line L20 upstream of the high-pressure pump 22 .
  • a line L30 is provided.
  • the propulsion engine (E) (ME-LGI, etc.) in the present invention receives and consumes LPG, etc. in liquid phase and consumes surplus liquid fuel. It has a structure that emits
  • the liquefied gas recovered from the propulsion engine (E) is not the liquefied gas before flowing into the propulsion engine (E), but is a liquefied gas that has passed through the inside of the propulsion engine (E), and is While having temperature/pressure (for example, around 45 bar, 50 degrees or more), lubricating oil used in the propulsion engine (E) may be mixed inside the liquefied gas.
  • the liquefied gas recovery line (L30) connected to the propulsion engine (E) so that the surplus liquefied gas is recovered is a high-pressure pump (22), not the cargo tank (10), for the surplus liquefied gas returned from the propulsion engine (E). It can be transmitted to the propulsion engine (E) to be re-introduced.
  • the liquefied gas recovery line (L30) passes through the inside of the propulsion engine (E), and the surplus liquid liquefied gas in which the lubricant used in the propulsion engine (E) is mixed, the high pressure pump (22) upstream of the liquefied gas supply line By passing it to (L20) and re-introducing it to the propulsion engine (E), it is possible to prevent contamination of the liquefied gas in the cargo tank 10 due to the lubricating oil.
  • the fuel recovery unit 40 includes a pressure reducing valve and a cooler 41 provided in the liquefied gas recovery line L30 , and may further include a collection tank 42 and a knockout drum 43 .
  • the pressure reducing valve is discharged from the propulsion engine (E) and decompresses the surplus liquid liquefied gas mixed with lubricating oil.
  • the pressure reducing valve may be a Joule-Thompson valve, and may be provided to constitute a fuel supply train (FVT) together with the fuel supply valve.
  • Such a pressure reducing valve may reduce the pressure of the liquefied gas of high pressure (about 30 to 50 bar) recovered from the propulsion engine (E) to match the suction pressure of the high pressure pump (22).
  • the cooler 41 cools the liquefied gas pressure-reduced in the pressure reducing valve in the liquefied gas recovery line L30 so that it flows into the high-pressure pump 22 as a liquid.
  • the cooler 41 may utilize a variety of refrigerants that are not limited, and may cool the liquefied gas below the boiling point of the depressurized liquefied gas.
  • the cooler 41 may use seawater as a refrigerant, and in this case, the heat exchanger 23 and the cooler 41 may be integrally connected by one refrigerant supply unit.
  • the cooler 41 Since the cooling by the cooler 41 can be made in consideration of the mixing with the liquefied gas transferred from the fuel tank 12 to the high-pressure pump 22, the cooler 41 has a temperature slightly higher than the boiling point of the depressurized liquefied gas. It is also possible to control the cooling of the liquefied gas in the furnace.
  • the liquid (or a state close to liquid) cooled by the cooler 41 is mixed upstream of the high-pressure pump 22 in the liquefied gas supply line L20 through the liquefied gas recovery line L30, and the liquefied gas A mixer (not shown) may be provided at a point where the recovery line L30 is connected to the liquefied gas supply line L20.
  • the liquefied gas circulation line (L22) described above is branched from the liquefied gas supply line (L20) downstream of the high-pressure pump 22 so that it can be connected between the propulsion engine E and the cooler 41 downstream of the high-pressure pump 22. It may be connected upstream of the cooler 41 in the liquefied gas recovery line L30.
  • the degree of heat generation of the high-pressure pump 22 may be limited within a preset value when the liquefied gas is circulated through the liquefied gas circulation line L22 by using the cooler 41 .
  • the high-pressure pump 22 can continuously pump the liquefied gas above the minimum required flow rate, and the surplus liquefied gas recovered by the liquefied gas circulation line L22 is circulated to the high-pressure pump 22 through the cooler 41. , it is possible to prevent overheating of the high-pressure pump 22 .
  • the collection tank 42 collects some of the liquefied gas returned from the propulsion engine (E).
  • the collection tank 42 may be branched from the liquefied gas recovery line L30 connected from the propulsion engine E to the liquefied gas supply line L20 upstream of the high-pressure pump 22, and the liquefied gas recovery line L30 ) to the collection tank 42, the liquefied gas collection line (L31) may be extended.
  • the liquefied gas collection line L31 extends from between the pressure reducing valve and the cooler 41 in the liquefied gas recovery line L30 and is connected to the collection tank 42, and also upstream from the collection tank 42 to the cooler 41 of the liquefied gas recovery line (L30). That is, the liquefied gas collection line L31 is provided partially in parallel with the liquefied gas recovery line L30 and may be provided with a collection tank 42 .
  • the collection tank 42 separates the recovered liquefied gas from gas to liquid. Since a cavitation problem may occur when gaseous liquefied gas flows into the high-pressure pump 22, the present invention provides for gas-liquid separation while passing the liquefied gas flowing along the liquefied gas recovery line L30 as necessary through the collection tank 42. Thus, it is possible to block the inflow of the gaseous liquefied gas to the high-pressure pump 22 .
  • the collection tank 42 collects the liquefied gas of the liquefied gas recovery line L30 and delivers only the liquid liquefied gas to the high-pressure pump 22 , thereby ensuring stable operation of the high-pressure pump 22 .
  • the knockout drum 43 may receive the liquefied gas recovered from the propulsion engine E from the collection tank 42 and filter out impurities (lubricating oil, etc.) contained in the liquefied gas.
  • a liquefied gas processing line L32 may be connected from the collection tank 42 to the knockout drum 43, and the liquefied gas processing line L32 is a collection tank ( The liquid liquefied gas transferred from 42 to the liquefied gas recovery line L30 may be transferred to the knockout drum 43 .
  • the knockout drum 43 separates lubricating oil from the liquefied gas introduced therein. Specifically, the knockout drum 43 discharges the liquefied gas in the gas phase and the lubricating oil in the liquid phase. That is, the knockout drum 43 implements a gas-liquid separation function similarly to the collection tank 42 .
  • the knockout drum 43 may use a heating unit such as tracing to promote vaporization of the liquefied gas, and the tracing is configured to use a medium such as steam or seawater as a heat source or to heat using electricity can be
  • the knockout drum 43 heats liquefied gas mixed with lubricating oil by a heating unit, and discharges the liquefied gas through a vent mast (not shown), and the lubricating oil is drained from the lower portion to be treated (recycled).
  • vent mast discharges a material to be vented from the cargo tank 10 to the outside between the propulsion engine E to the atmosphere.
  • the vent mast is provided on the deck of the ship and has a certain height to protect the crew on the deck.
  • the vent mast may be connected from the collection tank 42 or the knockout drum 43, as well as the boil-off gas discharge line L10, the liquefied gas supply line L20, the fuel tank 12, and the like. Through this, the vent mast protects the system by implementing external emission in emergency situations such as normal operation or shutdown of the propulsion engine (E).
  • vent mast may discharge the purging gas to the outside during purging of the boil-off gas discharge line (L10) and the liquefied gas supply line (L20).
  • the purging gas may be nitrogen gas or an inert gas.
  • FIG. 2 is a conceptual diagram of a gas processing system according to a second embodiment of the present invention.
  • the re-liquefaction unit 30 liquefies the boil-off gas and delivers it to the high-pressure pump 22 .
  • the re-liquefaction apparatus delivers the liquefied BOG to the fuel tank 12 as in the previous embodiment, or to the liquefied gas supply line L20 between the fuel tank 12 and the high-pressure pump 22 .
  • a boil-off gas supply line L13 may be provided in addition to the boil-off gas return line L11 and the boil-off gas delivery line L12 as a line for transferring the liquid phase separated by the gas-liquid separator 33 .
  • the boil-off gas supply line L13 has one end extending from the gas-liquid separator 33 or the boil-off gas delivery line L12, and the other end is between the high-pressure pump 22 and the low-pressure pump 21 in the liquefied gas supply line L20. can be connected
  • the point at which the boil-off gas delivery line (L12) is connected to the liquefied gas supply line (L20) may be upstream or the same point as the point where the liquefied gas recovery line (L30) is connected to the liquefied gas supply line (L20). Therefore, the high-pressure pump 22 pressurizes the liquid boil-off gas delivered from the re-liquefaction device in addition to the liquefied gas supplied from the low-pressure pump 21 and the surplus liquefied gas recovered through the liquefied gas recovery line L30 to pressurize the propulsion engine. (E) can be supplied.
  • BOG liquefied in the condenser 32 bypasses the fuel tank 12 through the BOG supply line L13 and merges with the liquefied gas recovered from the liquefied gas recovery line L30, and then to the high-pressure pump 22 When supplied, the inflow of gas can still be prevented in the high-pressure pump 22 .
  • the inlet pressure of the high-pressure pump 22 and the boil-off gas pressure downstream of the condenser 32 (which may be the internal pressure of the gas-liquid separator 33) are equally controlled, so that the The boiling point of the liquefied gas flowing in the liquefied gas supply line L20 and the boiling point of the boil-off gas flowing in the boil-off gas supply line L13 may be controlled to be the same. That is, a separate pressurization/compression means is not provided on the boil-off gas supply line L13 between the gas-liquid separator 33 and the high-pressure pump 22 .
  • the inlet pressure of the high-pressure pump 22 is the same as the pressure downstream of the pressure reducing valve on the liquefied gas recovery line L30. That is, the boiling point of the liquid liquefied gas flowing in the liquefied gas recovery line L30 is also the same as the boiling point of the boil-off gas on the boil-off gas supply line L13.
  • the condenser 32 of the re-liquefaction apparatus and the cooler 41 on the liquefied gas recovery line L30 may use the same refrigerant. That is, the refrigerant having the same condition (temperature) is supplied to the condenser 32 and the cooler 41 to implement cooling of the boil-off gas/liquid liquefied gas at approximately the same temperature.
  • the cooler 41 of the fuel recovery unit 40 prevents vaporization at the inlet end of the high-pressure pump 22, while cooling the liquid liquefied gas having the first pressure with the first refrigerant, the re-liquefaction unit Since the condenser 32 of 30 also cools the boil-off gas having the first pressure with the first refrigerant, the cooler 41 and the condenser 32 are controlled in connection with each other so that the gas does not flow into the high-pressure pump 22 .
  • the condenser 32 uses the same refrigerant as the cooler 41 at the same pressure as the liquid liquefied gas recovered from the fuel recovery unit 40 , condensed, even if the reliquefaction device bypasses the fuel tank 12 and directly delivers the boil-off gas to the high-pressure pump 22 , the operation stability of the high-pressure pump 22 can be ensured.
  • the reliquefaction apparatus of this embodiment includes a bypass line L14.
  • the bypass line L14 allows at least a portion of the boil-off gas to be supplied to the gas-liquid separator 33 by bypassing the condenser 32, and a bypass valve 36 for flow control is provided in the bypass line L14.
  • BOG When the temperature of the refrigerant used by the condenser 32 is low, BOG may be supercooled by the refrigerant. When the supercooled liquid boil-off gas flows into the gas-liquid separator 33 downstream of the condenser 32 , it may cause a drop in internal pressure of the gas-liquid separator 33 .
  • the temperature of the refrigerant in the condenser 32 may determine the degree of cooling of the boil-off gas, which determines the internal pressure in the gas-liquid separator 33 .
  • the internal pressure of the gas-liquid separator 33 may be the pressure of the boil-off gas delivered to the high-pressure pump 22 through the boil-off gas supply line L13. Vaporization in the high-pressure pump 22 is concerned.
  • this embodiment can implement a control to increase the pressure of the gas-liquid separator 33 according to the refrigerant temperature. .
  • the bypass line L14 prepares for a change in the pressure of the boil-off gas transferred from the gas-liquid separator 33 to the high-pressure pump 22 according to the temperature of the refrigerant, at least partially by opening the bypass valve 36 .
  • of the boil-off gas may be supplied to the gas-liquid separator 33 by bypassing the condenser 32 .
  • the liquid BOG transferred from the reliquefaction device to the high-pressure pump 22 is prevented from being vaporized again by controlling whether the condenser 32 is bypassed by using the refrigerant temperature as a variable.
  • the cavitation phenomenon in the pump 22 can be prevented in advance.
  • the condenser 32 and the cooler 41 use the same refrigerant as described above. During operation, only the liquid phase can be stably introduced into the inlet end of the high-pressure pump 22 .
  • FIG. 3 is a conceptual diagram of a gas processing system according to a third embodiment of the present invention.
  • the fuel tank 12 may be omitted, and the liquefied gas delivery line L21 or boil-off gas may be omitted compared to the second embodiment.
  • the transmission line L12 and the like may also be omitted.
  • the liquefied gas supply line L20 may be directly connected from the cargo tank 10 to the propulsion engine E, and the low pressure pump 21, the high pressure pump 22, and the heat exchanger on the liquefied gas supply line L20. (23) and the like may be provided.
  • the low-pressure pump 21 may be disposed downstream of the transfer pump 11 in the liquefied gas supply line L20 as shown in the drawing, but such that the discharge pressure of the transfer pump 11 corresponds to the inlet pressure of the high-pressure pump 22 . If provided, the low pressure pump 21 may be omitted.
  • the re-liquefaction apparatus may deliver the liquefied boil-off gas to the liquefied gas supply line L20 between the cargo tank 10 and the high-pressure pump 22 .
  • the re-liquefaction apparatus may deliver the liquid phase separated in the gas-liquid separator 33 to the liquefied gas supply line L20 upstream of the high-pressure pump 22 to be supplied to the propulsion engine E in the fuel supply mode.
  • the re-liquefaction apparatus liquefies the BOG and delivers it to the high-pressure pump 22 , but depending on the temperature of the refrigerant, a part of the BOG bypasses the condenser 32 and passes through the gas-liquid separator 33 to high pressure It can be delivered to the liquefied gas supply line (L20) upstream of the pump (22).
  • FIG. 4 is a conceptual diagram of a gas processing system according to a fourth embodiment of the present invention.
  • the boil-off gas supply line L13 is omitted, and the recovery point of the liquefied gas is the fuel tank, as compared to the second embodiment. (12) is set.
  • the re-liquefaction apparatus may deliver the liquefied boil-off gas to the fuel tank 12 . This may be accomplished by the boil-off gas delivery line L12 as mentioned above. That is, the reliquefaction apparatus may deliver the liquid phase separated by the gas-liquid separator 33 to the fuel tank 12 in the fuel supply mode to be supplied to the propulsion engine E.
  • the liquefied gas recovery line L30 of the fuel recovery unit 40 may extend from the propulsion engine E and be connected to the inside of the fuel tank 12 . Therefore, the liquefied gas recovery line (L30) can deliver the surplus liquid liquefied gas mixed with the lubricating oil used in the propulsion engine (E) to the fuel tank (12). At this time, the liquid liquefied gas introduced into the fuel tank 12 may be re-introduced into the propulsion engine E through the low-pressure pump 21 and the high-pressure pump 22 .
  • the fuel tank 12 of this embodiment is a configuration that allows the excess liquefied gas to be directly recovered therein, and may have a higher internal pressure compared to the previous second embodiment. That is, the internal pressure of the fuel tank 12 may be adjusted to a pressure at which the recovered liquefied gas is not vaporized. In this case, when the internal pressure of the fuel tank 12 corresponds to the inlet pressure of the high-pressure pump 22 , the low-pressure pump 21 ) can be omitted.
  • this embodiment can also control the flow of liquid BOG according to the temperature of the refrigerant used in the condenser 32 .
  • this embodiment in preparation for a pressure change of the BOG delivered to the fuel tank 12 according to the temperature of the refrigerant, at least a portion of BOG bypasses the condenser 32 and the fuel tank 12 ) can be supplied.
  • liquid BOG is transferred to the high-pressure pump 22 through the fuel tank 12 , and a low-pressure pump 21 may be provided between the fuel tank 12 and the high-pressure pump 22 . Therefore, the refrigerant temperature of the condenser 32 affects the internal pressure of the fuel tank 12 , which may affect the inlet pressure of the low pressure pump 21 , which indirectly affects the inlet pressure of the high pressure pump 22 . can affect Of course, when the low pressure pump 21 is omitted, the internal pressure of the fuel tank 12 may directly affect the inlet pressure of the high pressure pump 22 .
  • the reliquefaction apparatus of this embodiment in preparation for pressure fluctuations of the boil-off gas transferred from the gas-liquid separator 33 to the fuel tank 12 according to the refrigerant temperature, some of the boil-off gas bypasses the condenser 32 and the gas-liquid separator It can be supplied to the fuel tank 12 through (33). That is, in the present embodiment, the internal pressure of the gas-liquid separator 33 and the internal pressure of the fuel tank 12 can be adjusted at once through the bypass control of the boil-off gas.
  • the fuel tank 12 since the liquid boil-off gas liquefied in the condenser 32 is transferred to the high-pressure pump 22 through the fuel tank 12, the fuel tank 12 has a bar re-liquefaction apparatus capable of implementing a gas-liquid separation function.
  • the gas-liquid separator 33 may be omitted.
  • FIG. 5 is a conceptual diagram of a gas processing system according to a fifth embodiment of the present invention.
  • connection point of the boil-off gas supply line L13 may be different from that of the second embodiment.
  • the boil-off gas supply line L13 of this embodiment may deliver the boil-off gas upstream of the gas-liquid separator 33 to the liquefied gas supply line L20 between the fuel tank 12 and the high-pressure pump 22 . That is, the boil-off gas supply line (L13) has one end connected between the condenser 32 and the gas-liquid separator 33 in the reliquefaction apparatus, and the other end is connected to the upstream of the high-pressure pump 22 in the liquefied gas supply line L20. have.
  • This boil-off gas supply line (L13) is provided to prepare for fluctuations in the internal pressure of the gas-liquid separator 33 according to the temperature of the refrigerant. Specifically, in the BOG supply line L13, when the BOG is supercooled in the condenser 32 and introduced into the high-pressure pump 22 through the gas-liquid separator 33 when the temperature of the refrigerant is lower than the reference value, the pressure is sufficient. In order to prevent this from happening, the upstream of the high-pressure pump 22 and the upstream of the gas-liquid separator 33 may be directly communicated.
  • the condenser 32 and the high-pressure pump 22 are sequentially arranged downstream along the flow of the boil-off gas, so that the pressure at the inlet end of the high-pressure pump 22 is It matches the discharge end pressure of (31). Therefore, the compressor 31 receives the inlet pressure of the high pressure pump 22 (the pressure of the liquid liquefied gas recovered through the liquefied gas recovery line L30) as a resistance, and the operation is controlled, so that the discharge pressure of the compressor 31 is increased can be adjusted.
  • the downstream of the condenser 32 and the upstream of the high-pressure pump 22 are directly connected to the boil-off gas supply line L13, and the compressor 31 is discharged.
  • the stage receives resistance by the inlet pressure of the high-pressure pump 22 , so that the discharge pressure of the compressor 31 is controlled to correspond to the inlet pressure of the high-pressure pump 22 .
  • the gas-liquid separator 33 is bypassed and the downstream of the condenser 32 and the upstream of the high-pressure pump 22 are in communication to have the same pressure, so that the discharge of the compressor 31
  • the pressure may be adjusted to match the inlet pressure of the high-pressure pump 22 .
  • the downstream of the compressor 31 and the upstream of the high-pressure pump 22 are communicated with each other in order to prepare for the inappropriate pressure of the liquid boil-off gas because the temperature of the refrigerant used in the condenser 32 is too low,
  • the discharge pressure of the compressor 31 match the inlet pressure of the high-pressure pump 22 , vaporization in the high-pressure pump 22 can be effectively prevented.
  • FIG. 6 is a conceptual diagram of a gas processing system according to a sixth embodiment of the present invention.
  • the fuel tank 12 can be omitted when compared to the fifth embodiment, and the liquefied gas delivery line L21 or evaporation
  • the gas delivery line L12 and the like may also be omitted.
  • the liquefied gas supply line L20 may be directly connected from the cargo tank 10 to the propulsion engine E, and the low pressure pump 21, the high pressure pump 22, and the heat exchanger on the liquefied gas supply line L20. (23) and the like may be provided.
  • the low pressure pump 21 can be omitted as described above in the third embodiment.
  • the re-liquefaction apparatus may deliver the liquefied boil-off gas to the liquefied gas supply line L20 between the cargo tank 10 and the high-pressure pump 22 .
  • the re-liquefaction apparatus may deliver the liquid phase separated in the gas-liquid separator 33 to the liquefied gas supply line L20 upstream of the high-pressure pump 22 to be supplied to the propulsion engine E in the fuel supply mode.
  • the re-liquefaction apparatus liquefies the boil-off gas and delivers it to the high-pressure pump 22, but according to the temperature of the refrigerant, the downstream of the condenser 32 and the upstream of the high-pressure pump 22 are in communication with the compressor ( 31) can be adjusted to match the inlet pressure of the high-pressure pump (22).
  • FIG. 7 is a conceptual diagram of a gas processing system according to a seventh embodiment of the present invention.
  • the reliquefaction apparatus of this embodiment includes a compressor 31 , a condenser 32 , a gas-liquid separator 33 , an aftercooler 35 , and a boil-off gas heat exchanger 37 . Since the compressor 31, the condenser 32, and the gas-liquid separator 33 are the same as described above, a detailed description thereof will be omitted.
  • the boil-off gas heat exchanger 37 heats the boil-off gas transferred from the cargo tank 10 to the compressor 31 and the boil-off gas liquefied in the condenser 32 .
  • the boil-off gas heat exchanger 37 is a stream through which boil-off gas transferred from the cargo tank 10 to the compressor 31 flows, and a stream through which boil-off gas transferred from the gas-liquid separator 33 to the cargo tank 10 flows. It may have a 2 stream structure with
  • the boil-off gas heat exchanger 37 may be provided on the boil-off gas return line L11 to have one stream parallel to the boil-off gas discharge line L10 and another stream parallel to the boil-off gas return line L11. and may be provided to replace the intercooler 34 described above.
  • the boil-off gas heat exchanger 37 may be added to the previous embodiment having the intercooler 34 .
  • the temperature may be higher than the boiling point at atmospheric pressure.
  • the boil-off gas discharged from the cargo tank 10 may have a pressure of atmospheric pressure and a temperature close to the boiling point.
  • the boil-off gas heat exchanger 37 can heat the boil-off gas transferred from the gas-liquid separator 33 with the boil-off gas of low temperature discharged from the cargo tank 10 to cool it.
  • BOG as a cooling object and BOG as a cooling body may have different pressures, and the pressure difference is formed as a differential pressure between the internal pressure in the cargo tank 10 and the internal pressure of the gas-liquid separator 33.
  • a pressure reducing valve (not shown) is provided at at least one point either upstream or downstream of the boil-off gas heat exchanger 37 on the boil-off gas return line L11 to reduce the boil-off gas compressed in the compressor 31 to realize additional cooling.
  • the reliquefaction apparatus including the boil-off gas heat exchanger 37 may operate in a fuel supply mode or a reliquefaction mode as described in the first embodiment above. That is, the reliquefaction device operates in a reliquefaction mode in which the liquid phase separated in the gas-liquid separator 33 is transferred to the cargo tank 10 via the boil-off gas heat exchanger 37 provided in the boil-off gas return line L11, and / Alternatively, the liquid phase separated in the gas-liquid separator 33 may be transferred to the fuel tank 12 through the boil-off gas delivery line L12 to be operated in a fuel supply mode to be supplied to the propulsion engine E.
  • the structure of the reliquefaction apparatus can be simplified by using the boil-off gas heat exchanger 37 instead of the intercooler 34 , and since the boil-off gas circulation through the intercooler 34 is omitted, re-liquefaction It is possible to increase the reliquefaction capacity of the device.
  • the present invention may include a combination of at least one embodiment and the prior art and a combination of at least two or more embodiments as additional embodiments, in addition to the embodiments described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

본 발명은 가스 처리 시스템 및 이를 포함하는 선박에 관한 것으로서, 중탄화수소 또는 암모니아인 액화가스를 처리하는 시스템으로서, 액화가스를 선박의 추진엔진에 공급할 연료로 저장하는 연료탱크; 상기 연료탱크의 액화가스를 상기 추진엔진에 액상으로 공급하며 고압펌프가 마련되는 액화가스 공급라인; 액화가스를 저장하는 카고탱크에서 발생한 증발가스를 액화시키는 재액화장치; 및 상기 추진엔진에서 배출되는 액상 액화가스를 상기 고압펌프의 상류로 회수하는 액화가스 회수라인을 포함하며, 상기 재액화장치는, 액화된 증발가스를 상기 연료탱크로 전달하여 상기 고압펌프에 의해 상기 추진엔진에 공급되도록 한다.

Description

가스 처리 시스템 및 이를 포함하는 선박
본 발명은 가스 처리 시스템 및 이를 포함하는 선박에 관한 것이다.
일반적으로, 액화석유가스 즉, LPG(Liquefied petroleum gas)는 석유 성분 중 프로판 및 부탄 등 비등점이 낮은 탄화수소를 주성분으로 가스를 상온에서 가압하여 액화한 것이다. 이러한 액화석유가스를 소형의 가벼운 압력용기(봄베)에 충전해서 가정용, 업무용, 공업용, 자동차용 등의 연료로 널리 이용하게 된다.
액화석유가스는 생산지에서 기체 상태로 추출되며, 액화석유가스 처리 설비를 통해 액화되어 저장되었다가, 액화석유가스 운반선에 의해 액상을 유지하면서 육상으로 수송된 후, 기체 등의 다양한 형태로 수요처에 공급된다.
이러한 액화석유가스의 비등점은 약 -50℃ 내외이므로, 액화석유가스를 운반하기 위한 액화석유가스 운반선은 이보다 낮은 온도를 유지해야 한다. 따라서 액화석유가스를 보관하는 저장탱크는 저온에 강한 저온강(Low Temperature Carbon Steel 및 Nickel Steel)을 사용하며, 액화석유가스 운반선에는 재액화설비도 마련된다.
이러한 액화석유가스 운반선은, 종래의 경우 디젤유를 사용하여 엔진을 가동함으로써 추진력을 발생시켰다. 그런데 디젤유는 선박 추진용 엔진에서 연소하는 과정에서 유해성분인 질소산화물(NOx), 유황산화물(SOx), 이산화탄소(CO2)가 발생하게 되고, 이러한 유해성분이 대기로 방출됨으로써 환경을 오염시키는 문제가 있다.
따라서 최근에는 디젤유를 사용하는 경우와 대비할 때 배기의 오염도를 대폭 낮출 수 있도록, 액화석유가스를 이용하여 가동하는 엔진의 개발 및 액화석유가스를 엔진에 공급하는 제반 시스템의 개발이 지속적으로 이루어지고 있다.
본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 창출된 것으로서, 본 발명의 목적은, 액화석유가스나 암모니아를 이용하여 추진력을 발생시킬 수 있는 가스 처리 시스템 및 이를 포함하는 선박을 제공하기 위한 것이다.
본 발명의 일 측면에 따른 가스 처리 시스템은, 중탄화수소 또는 암모니아인 액화가스를 처리하는 시스템으로서, 액화가스를 선박의 추진엔진에 공급할 연료로 저장하는 연료탱크; 상기 연료탱크의 액화가스를 상기 추진엔진에 액상으로 공급하며 고압펌프가 마련되는 액화가스 공급라인; 액화가스를 저장하는 카고탱크에서 발생한 증발가스를 액화시키는 재액화장치; 및 상기 추진엔진에서 배출되는 액상 액화가스를 상기 고압펌프의 상류로 회수하는 액화가스 회수라인을 포함하며, 상기 재액화장치는, 액화된 증발가스를 상기 연료탱크로 전달하여 상기 고압펌프에 의해 상기 추진엔진에 공급되도록 한다.
구체적으로, 상기 액화가스 회수라인은, 상기 추진엔진에서 배출되며 윤활유가 섞인 잉여분의 액상 액화가스를 감압하는 감압밸브가 마련되고, 상기 추진엔진의 내부를 거치면서 상기 추진엔진에서 사용되는 윤활유가 혼입된 잉여분의 액상 액화가스를 상기 고압펌프 상류의 상기 액화가스 공급라인으로 전달하여 상기 추진엔진에 재유입되도록 할 수 있다.
구체적으로, 상기 액화가스 회수라인은, 상기 감압밸브에 의해 감압된 액화가스를 냉각해 상기 고압펌프에 액상으로 유입되도록 하는 쿨러가 마련될 수 있다.
구체적으로, 상기 재액화장치는, 상기 카고탱크에서 배출되는 증발가스를 다단 압축하는 압축기; 압축된 증발가스를 냉매로 냉각하여 액화시키는 응축기; 및 상기 응축기에서 액화된 증발가스 중 일부와 나머지를 상호 열교환시키며, 열교환에 의해 발생한 증발가스를 상기 압축기에 전달하는 인터쿨러를 포함할 수 있다.
구체적으로, 상기 재액화장치는, 상기 응축기에서 액화된 증발가스를 기액분리하는 기액분리기를 더 포함하며, 상기 기액분리기에서 분리된 액상을 상기 인터쿨러를 경유해 상기 카고탱크로 전달하는 재액화 모드 및 상기 기액분리기에서 분리된 액상을 상기 연료탱크로 전달하여 상기 추진엔진에 공급되도록 하는 연료공급 모드 중 적어도 어느 하나로 작동할 수 있다.
구체적으로, 상기 재액화장치는, 상기 카고탱크에서 배출되는 증발가스를 다단 압축하는 압축기; 압축된 증발가스를 냉각하여 액화시키는 응축기; 및 상기 카고탱크에서 상기 압축기로 전달되는 증발가스와, 상기 응축기에서 액화된 증발가스를 열교환시키는 증발가스 열교환기를 포함할 수 있다.
구체적으로, 상기 재액화장치는, 상기 응축기에서 액화된 증발가스를 기액분리하는 기액분리기를 더 포함하며, 상기 기액분리기에서 분리된 액상을 상기 증발가스 열교환기를 경유해 상기 카고탱크로 전달하는 재액화 모드 및 상기 기액분리기에서 분리된 액상을 상기 연료탱크로 전달하여 상기 추진엔진에 공급되도록 하는 연료공급 모드 중 적어도 어느 하나로 작동할 수 있다.
본 발명의 다른 측면에 따른 가스 처리 시스템은, 중탄화수소 또는 암모니아인 액화가스를 처리하는 시스템으로서, 카고탱크에 저장된 액화가스를 상기 추진엔진에 액상으로 공급하며 고압펌프가 마련되는 액화가스 공급라인; 상기 카고탱크에서 발생한 증발가스를 액화시켜 상기 고압펌프로 전달되도록 하는 재액화장치; 및 상기 추진엔진에서 배출되는 액상 액화가스를 상기 고압펌프의 상류로 회수하는 액화가스 회수라인을 포함하며, 상기 재액화장치는, 증발가스를 냉매로 냉각하여 액화시키는 응축기; 및 상기 응축기에서 액화된 증발가스를 임시 저장하는 버퍼를 포함하며, 상기 냉매의 온도에 따라 상기 버퍼로부터 상기 고압펌프로 전달되는 증발가스의 압력 변동을 대비하여, 적어도 일부의 증발가스가 상기 응축기를 우회하여 상기 버퍼로 공급되도록 하는 바이패스 라인을 갖는다.
구체적으로, 상기 액화가스 회수라인은, 상기 추진엔진에서 배출되며 윤활유가 섞인 잉여분의 액상 액화가스를 감압하는 감압밸브가 마련되고, 상기 추진엔진의 내부를 거치면서 상기 추진엔진에서 사용되는 윤활유가 혼입된 잉여분의 액상 액화가스를 상기 고압펌프 상류의 상기 액화가스 공급라인으로 전달하여 상기 추진엔진에 재유입되도록 할 수 있다.
구체적으로, 상기 액화가스 회수라인은, 상기 감압밸브에 의해 감압된 액화가스를 냉각해 상기 고압펌프에 액상으로 유입되도록 하는 쿨러가 마련될 수 있다.
구체적으로, 상기 버퍼는, 상기 응축기에서 액화된 증발가스를 기액분리하는 기액분리기일 수 있다.
구체적으로, 상기 재액화장치는, 액화된 증발가스를 상기 카고탱크와 상기 고압펌프 사이의 상기 액화가스 공급라인으로 전달할 수 있다.
구체적으로, 상기 재액화장치는, 상기 카고탱크에서 배출되는 증발가스를 다단 압축하는 압축기; 및 상기 응축기에서 액화된 증발가스 중 일부와 나머지를 상호 열교환시키며, 열교환에 의해 발생한 증발가스를 상기 압축기에 전달하는 인터쿨러를 포함할 수 있다.
구체적으로, 상기 재액화장치는, 상기 기액분리기에서 분리된 액상을 상기 인터쿨러를 경유해 상기 카고탱크로 전달하는 재액화 모드 및 상기 기액분리기에서 분리된 액상을 상기 고압펌프 상류의 상기 액화가스 공급라인으로 전달하여 상기 추진엔진에 공급되도록 하는 연료공급 모드 중 적어도 어느 하나로 작동할 수 있다.
본 발명에 따른 선박은, 상기 가스 처리 시스템을 갖는 액화가스 운반선이다.
본 발명에 따른 가스 처리 시스템 및 이를 포함하는 선박은, 디젤유만을 사용하던 종래의 시스템을 벗어나서, 액화석유가스나 암모니아를 추진 연료로 사용할 수 있도록 하여 환경 오염을 저감하고 에너지 효율을 높일 수 있다.
도 1은 본 발명의 제1 실시예에 따른 가스 처리 시스템의 개념도이다.
도 2는 본 발명의 제2 실시예에 따른 가스 처리 시스템의 개념도이다.
도 3은 본 발명의 제3 실시예에 따른 가스 처리 시스템의 개념도이다.
도 4는 본 발명의 제4 실시예에 따른 가스 처리 시스템의 개념도이다.
도 5는 본 발명의 제5 실시예에 따른 가스 처리 시스템의 개념도이다.
도 6은 본 발명의 제6 실시예에 따른 가스 처리 시스템의 개념도이다.
도 7은 본 발명의 제7 실시예에 따른 가스 처리 시스템의 개념도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 참고로 본 명세서에서 액화가스는 중탄화수소로서 LPG(프로판, 부탄 등)이거나 또는 암모니아 등일 수 있지만, 이로 한정하지 않고 비등점이 상온보다 낮으며 발열량을 갖는 모든 물질을 포괄할 수 있다.
또한 본 명세서에서 액화가스/증발가스는, 명칭으로 인하여 액상 또는 기상으로 반드시 한정되는 것은 아님을 알려둔다.
본 발명은 이하에서 설명하는 가스 처리 시스템이 구비되는 선박을 포함한다. 이때 선박은 가스 운반선, 가스가 아닌 화물이나 사람을 운반하는 상선, FSRU, FPSO, Bunkering vessel, 해양플랜트 등을 모두 포함하는 개념이며, 다만 예시로서 액화가스 운반선일 수 있음을 알려둔다.
본 발명의 도면에 도시하지 않았으나, 압력센서(PT), 온도센서(TT) 등이 제한 없이 적절한 위치에 구비될 수 있음은 물론이며, 각 센서에 의한 측정값은 이하에서 설명하는 구성들의 운영에 제한 없이 다양하게 사용될 수 있다.
도 1은 본 발명의 제1 실시예에 따른 가스 처리 시스템의 개념도이다.
도 1을 참조하면, 본 발명의 제1 실시예에 따른 가스 처리 시스템(1)은, 가스 저장부, 연료 공급부(20), 재액화부(30), 연료 회수부(40)를 포함한다.
가스 저장부는, 액화가스를 저장하는 구성으로서 카고탱크(10), 연료탱크(12) 등을 포함한다.
카고탱크(10)는, 액화가스 운반선인 선박의 선내에 마련되는 복수 개의 화물용 탱크이다. 물론 선박이 가스 운반선 외의 선종일 경우에는 선내 또는 선외 등에 별도로 추가되는 탱크나 용기 등일 수 있다.
카고탱크(10)는 대기압에서 액화가스를 저온 액상으로 저장하는 탱크이며, 액화가스의 기화를 방지하기 위하여 벽체에 다양한 단열 구조가 부가될 수 있다. 또한 카고탱크(10)는 멤브레인형 탱크이거나 독립형 탱크 등일 수 있으며, 그 형태나 제원 등은 한정되지 않는다.
카고탱크(10)에서 후술할 연료탱크(12)로 액화가스 전달라인(L21)이 구비될 수 있고, 액화가스 전달라인(L21)을 통해 카고탱크(10)의 액화가스가 연료탱크(12)로 전달된다. 연료탱크(12)로 전달된 액화가스는 추진엔진(E)의 연료로 사용된다.
참고로 본 명세서에서 추진엔진(E)은 선박을 추진하기 위한 구성이면 족하며, 엔진이 아닌 터빈, 연료전지 등과 같이 액화가스를 소비하여 직간접적으로 추진력을 발생시킬 수 있는 모든 구성으로 해석 가능하다. 또한 본 명세서에서 추진엔진(E)은 추진을 위한 엔진과 발전용 엔진, 가스연소장치 등의 모든 가스 수요처를 포괄하는 용어로 사용될 수 있다.
카고탱크(10)에는 이송펌프(11)가 할당될 수 있고, 이송펌프(11)에는 액화가스 전달라인(L21)이 연결될 수 있다. 이송펌프(11)는 카고탱크(10)의 내부에 마련될 수 있으며, 액화가스에 잠겨있는 submerged type으로 마련될 수 있다.
이송펌프(11)는 복수 개의 카고탱크(10) 중 일부에 마련될 수 있다. 카고탱크(10)는 기본적으로 화물 운송을 목적으로 하는 것으로서, 화물의 언로딩(unloading)을 위한 카고펌프(하역펌프, 스트리핑펌프 등, 도시하지 않음)가 각 카고탱크(10)마다 적어도 2개 마련되는데, 적어도 어느 하나의 카고탱크(10)는 내부에 저장된 액화가스를 추진엔진(E)(ME-LGI) 등의 연료로 사용하기 위해, 카고펌프에 더하여 이송펌프(11)가 추가될 수 있다.
일례로 카고탱크(10)가 선박의 길이 방향으로 나란하게 4개가 마련될 때, 추진엔진(E)이 수용된 엔진룸에 근접한 4번 카고탱크(10)에 저장된 액화가스가 연료탱크(12)로 전달된 후 추진엔진(E)의 연료로 사용될 수 있고, 이를 위해 4번 카고탱크(10)에만 이송펌프(11)가 마련될 수 있다.
카고탱크(10)에 저장된 액화가스는 외부 열침투에 의하여 자연 증발하게 되므로, 카고탱크(10)에는 증발가스가 발생한다. 카고탱크(10)에는 증발가스를 배출하는 증발가스 배출라인(L10)이 마련될 수 있다. 카고탱크(10)에서 배출되는 증발가스는 액화되어 리턴되거나 추진엔진(E)의 연료로 사용될 수 있는데, 이에 대해서는 이하 재액화부(30)를 서술하는 부분에서 자세히 설명한다.
카고탱크(10)는, 중탄화수소를 주성분으로 하는 액화가스들(프로판, 부탄, 프로필렌 등) 중에서 적어도 2종의 액화가스를 각각 저장하기 위하여 복수 개로 마련될 수 있다. 즉 카고탱크(10)는 제1 종의 액화가스를 저장하는 제1 카고탱크(10)와, 제2 종의 액화가스를 저장하는 제2 카고탱크(10)를 포함할 수 있으며, 일례로 제1 카고탱크(10)는 프로판, 제2 카고탱크(10)는 부탄 등을 저장할 수 있다.
카고탱크(10)의 증발가스는, 후술할 재액화부(30)의 응축기(32)를 통해 액화되는데, 액화된 증발가스가 카고탱크(10)로 리턴되도록 구성할 경우, 응축기(32)는 적어도 카고탱크(10)에 저장되는 액화가스의 종류만큼 구비될 수 있다(추가로 백업용이 마련될 수 있음).
즉 카고탱크(10)가 2종의 액화가스를 저장하는 경우, 응축기(32)는 적어도 3개가 마련되는 것이 바람직하다. 또한 응축기(32)에 대응하여 압축기(31)가 세트로 마련되므로, 압축기(31) 또한 응축기(32)의 수에 맞게 다수 구비될 수 있다.
다만 본 실시예는, 응축기(32)에 의해 액화된 증발가스를 카고탱크(10)로 리턴하지 않고 연료탱크(12) 등으로 전달할 수도 있도록 함으로써, 카고탱크(10)가 2종 이상의 액화가스를 저장하도록 마련되더라도 응축기(32)의 설치 대수(또는 가동 대수)를 액화가스의 종류 수 이하로 줄일 수 있다.
즉 카고탱크(10)의 증발가스는 증발가스 배출라인(L10)을 통해 응축기(32)로 전달되어 응축기(32)에서 냉매 열교환에 의해 액화될 수 있으며, 액화된 증발가스는 연료탱크(12)를 거쳐 후술하는 고압펌프(22)로 전달되고, 카고탱크(10)로 리턴되지 않을 수 있다(연료공급 모드).
연료탱크(12)는, 액화가스를 추진엔진(E)에 공급할 연료로 저장한다. 연료탱크(12)는 대기압으로 액화가스를 대량 저장하는 독립형(SPB타입, MOSS타입)이나 멤브레인형인 카고탱크(10)와 동일하거나 또는 상이한 타입일 수 있고, 고압으로 액화가스를 저장하는 독립형(Type C, 압력용기타입)일 수 있다.
이때 연료탱크(12)는 액화가스를 임계압력 이상으로 저장하거나(일례로 18bar 내외), 또는 임계압력 미만으로 저장할 수 있으며(일례로 8bar 내외), 액화가스의 기화 방지를 위해 벽체의 내부 또는 외부 중 적어도 일측에 단열구조가 마련될 수 있다.
연료탱크(12)는 선박에서 상갑판 상에 탑재될 수 있고, 새들(saddle)을 통해 상갑판에 지지되도록 마련된다. 연료탱크(12)는 상갑판에서 카고탱크(10)의 액화가스 로딩/언로딩을 위한 구성들(매니폴드 등)과 간섭되지 않으면서, 선박의 항해 시 시야(visibility)를 가리지 않는 위치에 배치될 수 있다. 일례로 연료탱크(12)는 상갑판에서 선수 측의 좌현 또는 우현에 마련될 수 있다. 이 경우 연료탱크(12)는 데크탱크(deck tank)로 지칭될 수 있다.
연료탱크(12)는 카고탱크(10)와 추진엔진(E) 사이에서 액화가스를 임시로 저장해두는 구성일 수 있으며, 또한 연료탱크(12)는 내부에 저장된 액화가스를 이용하여 카고탱크(10)에서 발생한 증발가스를 응축시키는 기능을 갖는 구성일 수도 있다.
즉 연료탱크(12)는, 내부에 저장된 액화가스를 이용하여 카고탱크(10)에서 발생한 증발가스를 전달받아 응축시키는 재응축기(32)로 사용될 수도 있다. 이를 위해 카고탱크(10)에서 연장된 증발가스 배출라인(L10)에는, 응축기(32)의 상류에서 연료탱크(12)를 향해 분기되는 증발가스 분기라인(도시하지 않음)이 마련될 수 있다.
카고탱크(10)에서 연료탱크(12)로는 앞서 설명한 액화가스 전달라인(L21)이 연결되며, 카고탱크(10) 내에 침지된 이송펌프(11)에 의해 액화가스가 연료탱크(12)로 전달될 수 있다. 연료탱크(12)에 저장된 액화가스는 선박의 운항 상태 등을 고려하여 적정한 레벨/압력으로 관리될 수 있다.
반대로 연료탱크(12)에서 카고탱크(10)로 액화가스가 리턴되는 것도 가능하겠지만, 이는 연료탱크(12)에 저장된 액화가스가 카고탱크(10)의 액화가스에 저장된 액화가스의 조성과 동일한 경우로 제한될 수 있다.
연료탱크(12)에 저장된 액화가스는 후술할 연료 공급부(20)의 저압펌프(21)를 통해 연료탱크(12)로부터 추진엔진(E)으로 전달될 수 있다. 연료탱크(12)에서 추진엔진(E)까지 액화가스 공급라인(L20)이 마련될 수 있다. 즉 카고탱크(10)에서 연료탱크(12)까지는 액화가스 전달라인(L21)이 구비되고, 연료탱크(12)에서 추진엔진(E)까지는 액화가스 공급라인(L20)이 구비된다.
물론 액화가스 공급라인(L20)은 카고탱크(10)에서 연료탱크(12)를 우회하여 추진엔진(E)으로 액화가스가 공급되도록 마련될 수도 있으며, 이 경우 액화가스 공급라인(L20)은 카고탱크(10) 및/또는 연료탱크(12)의 액화가스를 추진엔진(E)으로 전달할 수 있다.
연료 공급부(20)는, 액화가스를 추진엔진(E)에 공급하여 추진엔진(E)이 가동되도록 한다. 연료 공급부(20)는 저압펌프(21), 고압펌프(22), 열교환기(23) 등을 포함하며, 적절한 위치에 필터(부호 도시하지 않음)가 마련될 수도 있다.
저압펌프(21)는, 연료탱크(12)의 액화가스를 추진엔진(E)으로 전달한다. 저압펌프(21)는 연료탱크(12) 내부 또는 외부에 마련될 수 있으며, 연료탱크(12)에서 추진엔진(E)으로 연결되는 액화가스 공급라인(L20) 상에 구비될 수 있다.
저압펌프(21)는, 추진엔진(E)의 요구압력보다 낮은 압력으로 액화가스를 가압할 수 있다. 구체적으로 저압펌프(21)는 하류에 배치되는 고압펌프(22)의 흡입압력(일례로 20bar)에 맞게 액화가스를 가압할 수 있다. 즉 저압펌프(21)는 연료탱크(12)의 내압과 고압펌프(22)의 흡입압력 간의 차압만큼 액화가스의 압력을 높인다.
다만 연료탱크(12)의 저장 압력이 고압펌프(22)의 흡입압력에 상응할 경우, 저압펌프(21)는 생략될 수도 있다.
액화가스 공급라인(L20)에서 저압펌프(21)의 하류에는, 액화가스 리턴라인(도시하지 않음)이 마련될 수 있다. 액화가스 리턴라인은 저압펌프(21)를 통해 추진엔진(E)으로 전달되는 유량이 추진엔진(E)의 요구유량을 넘어설 경우, 잉여분의 액화가스를 연료탱크(12)로 회수하는 역할을 할 수 있다.
또는 액화가스 리턴라인은, 연료탱크(12)에서 배출된 후 저압펌프(21)에 의해 가압된 액화가스가 연료탱크(12) 내로 재유입되도록 함으로써, 연료탱크(12)의 내압을 높여주는 기능을 구현하도록 할 수 있다. 따라서 연료탱크(12)는 내압을 높게 유지하여 연료탱크(12) 내에서의 증발가스의 발생을 최소화할 수 있다.
고압펌프(22)는, 연료탱크(12)의 액화가스를 추진엔진(E)의 요구압력에 대응하여 가압해 추진엔진(E)으로 전달한다. 추진엔진(E)이 요구하는 압력은 20 내지 50bar일 수 있지만, 추진엔진(E)의 제원에 따라 달라질 수 있다.
고압펌프(22)는 연료탱크(12)에서 추진엔진(E)으로 연장되는 액화가스 공급라인(L20) 상에 마련된다. 고압펌프(22)의 타입은 특별히 한정하지 않으며, 또한 고압펌프(22)는 도면에 나타난 것과 같이 복수 개가 서로 백업 가능하게 병렬로 마련될 수 있다.
고압펌프(22)는 도면과 같이 후술할 열교환기(23)의 상류에 마련되거나, 또는 도면과 달리 열교환기(23)의 하류에 마련될 수도 있다. 후자의 경우 고압펌프(22)는 열교환기(23)에 의해 온도가 조절된 액화가스를 추진엔진(E)이 요구하는 압력으로 가압할 수 있다.
고압펌프(22)의 액화가스 가압 과정에서 캐비테이션(cavitation)의 발생을 억제하기 위해, 고압펌프(22)에는 액화가스가 액상으로 유입될 수 있다. 열교환기(23)가 고압펌프(22)의 상류에 마련될 경우, 열교환기(23)는 위 사항을 고려해 액화가스의 온도를 제어할 수 있다.
고압펌프(22)에 흡입되는 액화가스의 압력은, 저압펌프(21)에 의하여 토출되는 액화가스의 압력에 대응될 수 있다. 또한 추진엔진(E)에서 회수되는 액화가스의 압력에도 대응될 수 있다.
고압펌프(22)의 하류에는 불순물을 걸러내기 위한 필터(부호 도시하지 않음)가 마련될 수 있는데, 필터는 도면에서와 같이 저압펌프(21)의 상류 등에도 추가로 마련될 수 있다.
또한 액화가스 공급라인(L20)에서 고압펌프(22)의 하류에는 연료공급밸브(도시하지 않음)가 마련될 수 있으며, 이때 연료공급밸브와, 액화가스 회수라인(L30)에 구비된 감압밸브(도시하지 않음)는, 하나의 트레인으로 구성되어 FVT(fuel valve train)로 지칭될 수 있다.
고압펌프(22)의 하류의 액화가스 공급라인(L20)에는, 후술할 연료 회수부(40)의 액화가스 회수라인(L30)으로 연결되는 액화가스 순환라인(L22)이 마련될 수 있다. 고압펌프(22)에서 토출된 액화가스는 액화가스 순환라인(L22)을 따라 액화가스 회수라인(L30)으로 전달되어, 다시 고압펌프(22)로 순환된다.
고압펌프(22)는 가동 안정성 등을 위하여 최소 요구유량이 설정된다. 이를 minimum flow라고 하며, 가동 시 고압펌프(22)에는 최소 요구유량을 만족하는 액화가스가 유입되는 것이 바람직하다.
그런데 고압펌프(22) 하류의 추진엔진(E) 등에서의 소비량이 고압펌프(22)의 최소 요구유량을 만족하지 못하는 경우가 있다. 일례로 고압펌프(22)는 가동 중인 상황에서 추진엔진(E)이 저부하로 가동하거나 가동을 정지한 경우 등이 그러하다.
이때 본 실시예는 고압펌프(22)의 안정적인 가동을 위하여, 추진엔진(E)의 요구유량이 고압펌프(22)의 최소 요구유량에 못미치더라도, 고압펌프(22)에는 최소 요구유량 이상의 액화가스가 유입되도록 하기 위해, 액화가스를 순환시킬 수 있다.
즉 고압펌프(22)의 최소 요구유량이 100이고 추진엔진(E)의 요구유량이 80이면, 20의 액화가스는 고압펌프(22)의 하류에서 액화가스 순환라인(L22), 액화가스 회수라인(L30)을 거쳐 고압펌프(22)로 순환될 수 있다.
따라서 액화가스 순환라인(L22)은 추진엔진(E)의 요구유량이 고압펌프(22)의 최소 요구유량 이하일 때, 고압펌프(22)의 최소 요구유량 대비 추진엔진(E)의 요구유량을 제외한 유량 이상을 순환시켜서, 고압펌프(22)의 최소 요구유량을 보장할 수 있다.
열교환기(23)는, 저압펌프(21)의 하류에 마련되어 액화가스의 온도를 변화시킨다. 열교환기(23)는 액화가스의 온도를 상승시킬 수 있고 또는 낮출 수도 있으므로, fuel conditioner로 지칭될 수도 있다.
일례로 본 실시예의 초기 가동 시에는, 추진엔진(E)으로부터 회수되는 고온 액화가스의 유량이 많기 때문에, 열교환기(23)는 액화가스의 온도를 낮출 수 있으며, 안정 가동에 접어들 경우 열교환기(23)는 액화가스의 온도를 높일 수 있다.
열교환기(23)는 도면에서와 같이 고압펌프(22) 하류에 마련될 수 있지만, 또는 도면과 달리 열교환기(23)는 고압펌프(22)의 상류에 마련될 수도 있다. 후자의 경우 열교환기(23)는 고압펌프(22)에 기상 액화가스가 유입되지 않도록, 액화가스의 비등점 이하로 액화가스의 온도를 조절할 수 있다.
열교환기(23)는, 다양한 열교환 매체를 이용하여 액화가스와의 열교환을 구현할 수 있으며, 일례로 열교환 매체는 해수, 청수, 글리콜워터, 배기 등일 수 있지만, 이로 한정되는 것은 아니다.
재액화부(30)는, 카고탱크(10)에서 발생하는 증발가스를 액화시킨다. 재액화부(30)는 하나의 스키드 상에 여러 구성이 배치되는 모듈로서 이루어져서 재액화장치를 구성할 수 있으며, 재액화부(30)는 복수의 재액화장치를 포함할 수 있다. 다만 도면에서는 편의상 1대의 재액화장치만 도시하였다.
이러한 재액화장치는 압축기(31), 응축기(32), 기액분리기(33), 인터쿨러(34), 애프터쿨러(35)를 포함한다. 이때 압축기(31), 애프터쿨러(35), 응축기(32) 및 기액분리기(33)는 증발가스 배출라인(L10) 상에 차례대로 직렬 배치될 수 있으며, 인터쿨러(34)는 기액분리기(33)에서 카고탱크(10)로 연결되는 증발가스 리턴라인(L11) 상에 마련될 수 있다.
압축기(31)는, 카고탱크(10)에서 배출되는 증발가스를 압축한다. 압축기(31)는 압축에 의하여 증발가스의 비등점이 상승하도록 할 수 있으며, 이를 통해 이하 설명하는 응축기(32)에서의 액화 효율을 높일 수 있다.
압축기(31)는 다단으로 구성될 수 있고, 도면에서와 같이 3단으로 구성되거나 또는 이외의 다양한 단수로 마련될 수 있다. 또한 압축기(31)는 증발가스 배출라인(L10) 상에 병렬로 구비되어 서로 백업 가능하게 구비될 수 있다.
압축기(31)는 압축된 증발가스가 액화될 수 있도록 응축기(32)로 전달하거나, 액화가스가 적정량 채워져 있는 연료탱크(12)로 전달할 수 있다. 전자의 경우 응축기(32)에서 액화된 증발가스는 연료탱크(12)로 공급되며, 후자의 경우 고압의 증발가스가 연료탱크(12)에 직접 주입되고 연료탱크(12) 내의 액화가스에 의해 냉각되어 액화될 수 있다.
압축기(31) 상류에는 드럼(도시하지 않음)이 구비될 수 있다. 드럼은 카고탱크(10)에서 배출된 증발가스 중 액적을 걸러내기 위한 기액분리 구성으로서, 액적은 카고탱크(10)로 리턴되도록 마련될 수 있다.
드럼은 압축기(31)로 액적이 유입되지 않도록 하여 압축기(31)를 보호할 수 있으며, 압축기(31)의 타입에 따라 드럼은 생략 가능하다.
응축기(32)는, 카고탱크(10)에서 발생한 증발가스를 액화시킨다. 증발가스의 액화는 냉매를 이용할 수 있고, 냉매는 글리콜워터, 질소 또는 해수 등일 수 있지만, 이하 본 명세서에서 응축기(32)의 냉매는 해수인 것으로 가정하여 설명한다.
응축기(32)는 압축기(31)에서 압축된 증발가스가 유입되는 증발가스 스트림과, 증발가스와 열교환하기 위한 냉매가 유동하는 냉매 스트림을 포함하는 2 stream 구조를 가질 수 있다.
이러한 응축기(32)는 Shell&Tube, PCHE 등 그 타입이 제한되지 않으며, 냉매가 저장된 하우징 내에 증발가스가 열교환하기 위해 지나가는 bath type 도 가능하다.
카고탱크(10)는 앞서 설명한 바와 같이 적어도 2종의 액화가스를 각각 저장하기 위해 복수 개로 마련될 수 있는데, 응축기(32)는 서로 다른 종류의 증발가스를 모두 액화하도록 마련될 수 있다.
서로 다른 종류의 액화가스를 저장하는 복수 개의 카고탱크(10)를 구비할 경우, 액화가스의 종류에 대응하여 복수의 응축기(32)를 구비할 수 있다. 또는 앞서 언급한 바와 같이, 본 실시예는 서로 다른 종류의 증발가스가 하나의 응축기(32)에 통합 전달되도록 하여, 응축기(32)의 설치 대수(또는 가동 대수)를 줄일 수 있다.
이는 본 실시예의 재액화장치가, 액화된 증발가스를 카고탱크(10)가 아닌 연료탱크(12)로 전달하여 추진엔진(E)에 소비되도록 하는 작동(연료공급 모드)이 가능하기 때문이다.
물론 응축기(32)에서 액화된 증발가스가 카고탱크(10)로 리턴되더라도 카고탱크(10) 내에서의 조성 오염이 발생하지 않는 경우라면, 재액화장치는 액화된 증발가스를 카고탱크(10)로 전달하는 재액화 모드로 가동할 수도 있다.
기액분리기(33)는, 응축기(32)에서 액화된 증발가스를 임시 저장한다. 기액분리기(33)는 버퍼의 기능을 갖도록 용기 형태 또는 관이 부분적으로 확장된 형태 등을 가질 수 있다.
기액분리기(33)는 액화된 증발가스를 기상과 액상으로 분리한 후, 액상을 카고탱크(10)나 연료탱크(12) 등으로 전달할 수 있다. 기액분리기(33)는 액상만 카고탱크(10) 등으로 전달하고 기상은 내부에 수용할 수 있으며, 일정 수준의 내압을 유지하도록 함으로써 증발가스의 기화를 방지할 수 있다.
앞서 언급한 바와 같이 재액화장치는 액화가스의 조성 혼합을 방지하기 위해(또는 증발가스를 추진엔진(E)에 공급하기 위해), 액화된 증발가스를 카고탱크(10)가 아닌 연료탱크(12)로 전달하는 연료공급 모드로 작동할 수 있는데, 이를 위해 기액분리기(33)는 액상을 연료탱크(12)로 전달하는 증발가스 전달라인(L12)이 마련될 수 있다.
또는 재액화장치가 재액화 모드로 가동하기 위해, 기액분리기(33)에서 카고탱크(10)를 향해 증발가스 리턴라인(L11)이 마련될 수 있고, 증발가스 리턴라인(L11) 상에는 인터쿨러(34)가 구비될 수 있다.
따라서 재액화장치는, 기액분리기(33)에서 분리된 액상을 인터쿨러(34)를 경유해 카고탱크(10)로 전달하는 재액화 모드, 및/또는 기액분리기(33)에서 분리된 액상을 연료탱크(12)로 전달하여 추진엔진(E)에 공급되도록 하는 연료공급 모드 중 적어도 어느 하나로 작동할 수 있다.
즉 재액화장치는 재액화 모드와 연료공급 모드가 복합된 모드로 작동하는 것도 가능하다. 복합 모드의 경우 기액분리기(33)에서 분리된 액상은 일부가 카고탱크(10)로 전달되고 나머지가 연료탱크(12)로 전달되며, 액상이 연료탱크(12)로 분기되는 유량은 추진엔진(E)의 부하에 따라 제어될 수 있다.
인터쿨러(34)는, 응축기(32)에서 액화된 증발가스 중 일부와 나머지를 상호 열교환시키며, 응축기(32)로부터 유입된 증발가스 중 열교환에 의해 발생한 기상 증발가스를 압축기(31)에 전달한다.
인터쿨러(34)는 복수 단으로 구성되는 압축기(31)의 중간단에서 증발가스를 냉각하기 위해 사용된다. 증발가스는 압축기(31)에 의해 압축되면 압축열로 인하여 승온되는데, 이 경우 압축기(31) 부하가 증가하는 문제가 있다. 따라서 본 실시예는 중간 냉각을 위해 인터쿨러(34)를 사용할 수 있다.
구체적으로 인터쿨러(34)는, 응축기(32)에서 액화된 증발가스 중 일부를 저장하는 용기 형태로 마련되고, 내부에 저장된 증발가스를 응축기(32)에서 액화된 증발가스 중 나머지(카고탱크(10)로 전달되는 유량)를 냉각하는 냉매로 사용한다.
이를 위해 증발가스 리턴라인(L11)은 인터쿨러(34) 상류에서 분기되어, 일측은 인터쿨러(34) 내로 증발가스를 전달하고, 타측은 인터쿨러(34)에 저장된 증발가스와 열교환하기 위해 인터쿨러(34) 내부를 경유한 뒤 카고탱크(10)로 연결된다.
즉 인터쿨러(34)는, 응축기(32)에서 카고탱크(10)로 전달되는 증발가스를, 응축기(32)로부터 전달받아 내부에 저장하고 있는 증발가스와 열교환하여, 카고탱크(10)로 전달되는 증발가스를 충분히 액화시킬 수 있다.
이때 열교환 효율 향상을 위해 증발가스 리턴라인(L11)에서 인터쿨러(34) 내부를 경유하는 부분은 코일 형태로 마련될 수 있으며, 또한 냉각 효율 향상을 위해 증발가스 리턴라인(L11)에서 인터쿨러(34) 내부로 증발가스를 전달하는 부분에는 감압밸브(부호 도시하지 않음)가 마련될 수 있다.
또한 인터쿨러(34)는, 내부에 저장된 증발가스 중 기상을 압축기(31)의 중간단에 전달한다. 인터쿨러(34)에서 압축기(31)의 중간단으로 전달되는 기상의 증발가스는 비등점에 인접한 극저온 상태이다. 따라서 압축기(31)의 중간단에서의 증발가스는, 인터쿨러(34)로부터 전달되는 기상 증발가스와 혼합되면서 냉각될 수 있다.
인터쿨러(34)는 다단 압축기(31)의 중간단 각각에 모두 할당될 수 있다. 다만 이 경우 인터쿨러(34)에 의해 증발가스가 순환하게 되는 바, 인터쿨러(34)로부터 압축기(31) 중간단으로 전달되는 증발가스량으로 인해, 카고탱크(10)로부터 재액화장치로 유입될 수 있는 증발가스량이 제한될 수 있다.
즉 재액화장치는, 압축기(31) 1단의 유입 허용량 대비, 인터쿨러(34)에 의해 압축기(31) 중간단으로 전달되는 증발가스량을 제외한 만큼의 재액화 용량을 갖게 된다. 일례로 압축기(31) 1단의 유입 허용량이 800이라고 할 때, 인터쿨러(34)에 의해 압축기(31) 중간단(1단과 2단 사이 및 2단과 3단 사이)에 각각 200의 증발가스가 순환하게 되면, 최종적으로 재액화장치가 카고탱크(10)로부터 전달받을 수 있는 증발가스량은 400으로 감소한다.
이를 개선하고자, 본 실시예는 압축기(31)의 중간단 중 일부에만 인터쿨러(34)가 할당되도록 하고, 압축기(31)의 중간단 중 나머지에는 인터쿨러(34)가 아닌 애프터쿨러(35)가 마련되도록 하여, 재액화장치의 용량을 증대할 수 있다.
인터쿨러(34)는, 세퍼레이터로 대체될 수 있다. 세퍼레이터는 앞서 설명한 기액분리기(33)와 유사하게 응축기(32)에서 액화된 증발가스를 기액 분리하여, 액상은 카고탱크(10)로 전달하고 기상은 압축기(31)의 중간단으로 전달할 수 있다. 이 경우 세퍼레이터는 단순히 증발가스를 기액분리할 뿐 증발가스 간의 열교환을 구현하지 않으므로, 내부에 코일 형태의 증발가스 리턴라인(L11)이 생략될 수 있다.
애프터쿨러(35)는, 압축기(31) 중간단 중 일부에 마련되며 별도의 냉매를 이용해 증발가스를 냉각할 수 있다. 애프터쿨러(35)는 응축기(32) 관점에서 보면 예냉기의 기능을 구현할 수 있다.
애프터쿨러(35)는 응축기(32)와 유사하게 해수 등의 냉매를 이용할 수 있으며, 이외에도 다양한 냉매를 활용할 수 있다. 다만 애프터쿨러(35)는 카고탱크(10)에 저장된 액화가스 또는 카고탱크(10)로부터 배출되는 증발가스가 아닌, 외부로부터 공급되는 별도의 냉매를 사용할 수 있다.
도면을 기준으로 설명하면, 본 실시예는 압축기(31) 1단과 2단 사이에 인터쿨러(34)를 연결해 기상 증발가스를 순환하게 되고, 압축기(31) 2단과 3단 사이에 애프터쿨러(35)를 마련할 수 있다.
이때 압축기(31) 1단의 유입 허용량이 800이고 인터쿨러(34)의 순환이 200만큼 이루어진다면, 본 실시예는 카고탱크(10)로부터 재액화장치로 600의 증발가스량의 전달이 허용된다.
즉 본 실시예는, 재액화장치가 압축기(31) 중간단 각각 인터쿨러(34)를 모두 연결하는 경우와 대비할 때, 적어도 어느 하나의 인터쿨러(34)를 애프터쿨러(35)로 대체하여 재액화 용량을 높일 수 있다.
이와 같은 본 실시예의 재액화부(30)는, 2가지 모드로 가동할 수 있다. 일례로 재액화부(30)는 응축기(32)에서 액화된 증발가스를 인터쿨러(34)를 경유하여 카고탱크(10)로 전달하는 재액화 모드와, 응축기(32)의 상류 또는 하류에서 증발가스를 추진엔진(E) 측으로 전달하는 연료공급 모드로 가동할 수 있다.
구체적으로 재액화 모드는, 다단 압축된 증발가스가 응축기(32)를 거쳐 액화된 후, 기액분리기(33)를 지나 인터쿨러(34)로 전달된다. 이때 증발가스는 인터쿨러(34)의 상류에서 분기되며, 일부의 증발가스는 인터쿨러(34) 내부로 채워질 수 있고, 나머지의 증발가스는 인터쿨러(34) 내부에 채워진 증발가스와 혼합되진 않고 열교환만 하도록 인터쿨러(34) 내를 경유하게 된다. 인터쿨러(34)를 경유한 증발가스는 안정적으로 액상을 유지하도록 냉각되거나 또는 과냉된 후, 카고탱크(10)로 리턴될 수 있다.
반면 연료공급 모드는, 다단 압축된 증발가스를 응축기(32) 상류에서 연료탱크(12)로 전달할 수 있고, 또는 다단 압축 및 응축된 증발가스를 연료탱크(12)로 전달하여 고압펌프(22)에 의해 추진엔진(E)으로 전달되도록 할 수 있다.
연료공급 모드는 액화된 증발가스를 카고탱크(10)로 리턴하는 것이 바람직하지 않거나, 추진엔진(E)의 부하가 높아 연료탱크(12) 내에 저장된 액화가스만으로는 추진엔진(E)의 요구유량을 충족시키지 못하는 경우 등에 가동할 수 있다.
일례로 카고탱크(10)에 프로판, 부탄이 저장되어 있을 때, 부탄을 처리하는 재액화장치에 문제가 발생해 작동이 정지되는 경우, 프로판을 처리하는 다른 재액화장치를 이용하여 부탄을 액화할 수 있다. 이때 프로판을 처리하는 재액화장치에 잔류한 프로판이 부탄에 혼입될 우려가 있으므로, 액화된 부탄을 카고탱크(10)로 전달하는 대신 연료탱크(12)로 전달하는 연료공급 모드가 이루어질 수 있다.
이 외에도 카고탱크(10)로의 전달보다는 연료탱크(12) 등으로의 전달이 바람직한 다양한 상황에서, 재액화 모드를 대신하여 연료공급 모드로 작동이 가능하다. 또한 앞서 언급한 바와 같이 재액화 모드와 연료공급 모드가 복합된 복합 모드의 작동도 가능함은 물론이다.
연료 회수부(40)는, 추진엔진(E)에서 배출되는 액상 액화가스를 회수한다. 연료 회수부(40)는 액상 액화가스를 고압펌프(22)의 상류로 회수할 수 있으며, 이를 위해 추진엔진(E)에서 고압펌프(22) 상류의 액화가스 공급라인(L20)으로 액화가스 회수라인(L30)이 마련된다.
LNG를 기상으로 공급받아 소비하는 상용 엔진(ME-GI, XDF 등)과 달리, 본 발명에서의 추진엔진(E)(ME-LGI 등)은 LPG 등을 액상으로 공급받아 소비하면서 잉여분의 액상 연료를 배출하는 구조를 갖는다.
이는 기상의 경우와 달리 액상의 경우 연료공급량의 미세 제어가 용이하지 않아, 추진엔진(E)이 충분한 양의 액상 연료를 공급받음에 따라 잉여분의 연료가 발생하기 때문이다.
다만 추진엔진(E)에서 회수되는 액화가스는 추진엔진(E)에 유입되기 전의 액화가스가 아니라, 추진엔진(E)의 내부를 거친 액화가스로서, 추진엔진(E)의 요구압력에 대응되는 온도/압력을 갖는 상태이면서(일례로 45bar 내외, 50도씨 이상), 액화가스 내부에는 추진엔진(E)에서 사용되는 윤활유가 혼입될 수 있다.
즉 추진엔진(E)으로부터 회수되는 잉여분의 액화가스에는 윤활유가 섞여 있게 되므로, 화물 오염을 방지하기 위해, 회수된 액화가스를 카고탱크(10)로 전달하지 않는 것이 바람직하다.
따라서 추진엔진(E)에 연결되어 잉여분의 액화가스가 회수되도록 하는 액화가스 회수라인(L30)은, 추진엔진(E)에서 리턴되는 잉여 액화가스를 카고탱크(10)가 아닌 고압펌프(22)로 전달하여 추진엔진(E)에 재유입되도록 할 수 있다.
즉 액화가스 회수라인(L30)은, 추진엔진(E)의 내부를 거치면서 추진엔진(E)에서 사용되는 윤활유가 혼입된 잉여분의 액상 액화가스를, 고압펌프(22) 상류의 액화가스 공급라인(L20)으로 전달하여 추진엔진(E)에 재유입되도록 함으로써, 윤활유로 인해 카고탱크(10) 내의 액화가스가 오염되지 않도록 할 수 있다.
이러한 연료 회수부(40)는 액화가스 회수라인(L30)에 마련되는 감압밸브, 쿨러(41)를 포함하며, 또한 포집탱크(42)와 녹아웃 드럼(43)을 더 포함할 수 있다.
감압밸브는, 감압밸브는 추진엔진(E)에서 배출되며 윤활유가 섞인 잉여분의 액상 액화가스를 감압한다. 감압밸브는 줄-톰슨 밸브일 수 있고, 연료공급밸브와 함께 연료공급트레인(FVT)을 구성하도록 마련될 수 있다.
이러한 감압밸브는 추진엔진(E)에서 회수되는 고압(약 30 내지 50bar 내외)의 액화가스를 감압하여 고압펌프(22)의 흡입압력에 맞출 수 있다.
쿨러(41)는, 액화가스 회수라인(L30)에서 감압밸브에서 감압된 액화가스를 냉각해 고압펌프(22)에 액상으로 유입되도록 한다. 쿨러(41)는 제한되지 않는 다양한 냉매를 활용할 수 있으며, 감압된 액화가스의 비등점 이하로 액화가스를 냉각할 수 있다. 일례로 쿨러(41)는 해수를 냉매로 이용할 수 있으며, 이때 열교환기(23)와 쿨러(41)는 하나의 냉매 공급부에 의해 통합 연결될 수 있다.
쿨러(41)에 의한 냉각은, 연료탱크(12)로부터 고압펌프(22)로 전달되는 액화가스와의 혼합을 고려하여 이루어질 수 있으므로, 쿨러(41)는 감압된 액화가스의 비등점보다 다소 높은 온도로 액화가스를 냉각하는 제어도 가능하다.
쿨러(41)에 의해 냉각된 액상(또는 액상에 근접한 상태) 액화가스는, 액화가스 회수라인(L30)을 통해 액화가스 공급라인(L20)에서 고압펌프(22)의 상류에 혼입되며, 액화가스 회수라인(L30)이 액화가스 공급라인(L20)에 연결되는 지점에는 믹서(도시하지 않음)가 마련될 수 있다.
앞서 설명한 액화가스 순환라인(L22)은 고압펌프(22)의 하류에서 추진엔진(E)과 쿨러(41) 사이로 연결될 수 있도록, 고압펌프(22) 하류의 액화가스 공급라인(L20)에서 분기되어 액화가스 회수라인(L30)에서 쿨러(41)의 상류로 연결될 수 있다.
이는 고압펌프(22)의 가동으로 인해 액화가스가 펌핑 및 가열되는데, 가열된 액화가스를 지속 순환하면 고압펌프(22) 자체의 온도가 불필요하게 높아질 수 있기 때문에, 이를 억제하기 위함이다. 즉 본 실시예는 쿨러(41)를 이용하여, 액화가스 순환라인(L22)을 통한 액화가스의 순환 시 고압펌프(22)의 발열 정도를 기설정값 이내로 제한할 수 있다.
따라서 고압펌프(22)는 최소 요구유량 이상의 액화가스를 지속적으로 펌핑할 수 있으면서, 액화가스 순환라인(L22)에 의해 회수되는 잉여 액화가스는 쿨러(41)를 거쳐 고압펌프(22)로 순환하므로, 고압펌프(22)의 과열을 방지할 수 있다.
포집탱크(42)는, 추진엔진(E)에서 리턴되는 액화가스 중 일부를 포집한다. 포집탱크(42)는 추진엔진(E)으로부터 고압펌프(22) 상류의 액화가스 공급라인(L20)까지 연결되는 액화가스 회수라인(L30)에서 분기되어 구비될 수 있으며, 액화가스 회수라인(L30)에서 포집탱크(42)로 액화가스 포집라인(L31)이 연장될 수 있다.
이때 액화가스 포집라인(L31)은, 액화가스 회수라인(L30)에서 감압밸브와 쿨러(41) 사이로부터 연장되어 포집탱크(42)로 연결되며, 또한 포집탱크(42)로부터 쿨러(41) 상류의 액화가스 회수라인(L30)으로 합류될 수 있다. 즉 액화가스 포집라인(L31)은, 액화가스 회수라인(L30)과 부분적으로 병렬로 구비되며 포집탱크(42)가 구비되도록 마련될 수 있다.
포집탱크(42)는, 회수되는 액화가스를 기액분리한다. 고압펌프(22)로 기상의 액화가스가 유입되면 캐비테이션 문제가 발생할 수 있으므로, 본 발명은 액화가스 회수라인(L30)을 따라 유동하는 액화가스가 필요에 따라 포집탱크(42)를 경유하면서 기액분리되어, 기상 액화가스의 고압펌프(22) 유입을 차단할 수 있다.
즉 포집탱크(42)는 액화가스 회수라인(L30)의 액화가스를 포집하여 액상 액화가스만을 고압펌프(22)로 전달해, 고압펌프(22)의 안정적인 가동을 보장할 수 있다.
녹아웃 드럼(43)은, 추진엔진(E)에서 회수되는 액화가스를 포집탱크(42)로부터 전달받아, 액화가스에 포함된 불순물(윤활유 등)을 걸러낼 수 있다. 포집탱크(42)에서 녹아웃 드럼(43)으로는 액화가스 처리라인(L32)이 연결될 수 있으며, 액화가스 처리라인(L32)은 포집탱크(42)에서 분리된 기상의 액화가스 외에도, 포집탱크(42)에서 액화가스 회수라인(L30)으로 전달되는 액상의 액화가스를 녹아웃 드럼(43)으로 전달할 수 있다.
녹아웃 드럼(43)은 내부에 유입된 액화가스에서 윤활유를 분리한다. 구체적으로 녹아웃 드럼(43)은 액화가스는 기상으로 배출하고 윤활유는 액상으로 배출한다. 즉 녹아웃 드럼(43)은 포집탱크(42)와 유사하게 기액분리 기능을 구현한다.
다만 녹아웃 드럼(43)은 액화가스의 기화를 촉진하기 위해, 트레이싱(tracing) 등의 가열부를 사용할 수 있고, 트레이싱은 스팀이나 해수 등과 같은 매체를 열원으로 사용하는 것이거나 또는 전기를 이용해 가열하는 구성일 수 있다.
녹아웃 드럼(43)은 윤활유가 섞인 액화가스를 가열부로 가열하여, 액화가스는 벤트마스트(도시하지 않음) 등으로 배출하고, 윤활유는 하부에서 드레인하여 처리(재활용)할 수 있다.
참고로 벤트마스트(도시하지 않음)는, 카고탱크(10)로부터 추진엔진(E) 사이에서 외부로 벤트되어야 하는 물질을 대기 중에 방출한다. 벤트마스트는 선박에서 갑판 상에 마련되며 일정한 높이를 가져서 갑판 상의 승선원을 보호할 수 있다.
벤트마스트는 포집탱크(42)나 녹아웃 드럼(43)으로부터 연결될 수 있음은 물론이고, 증발가스 배출라인(L10), 액화가스 공급라인(L20), 연료탱크(12) 등에도 연결될 수 있다. 이를 통해 벤트마스트는 정상 운전 또는 추진엔진(E)의 가동 중단 등과 같은 긴급 상황 등에서 외부 방출을 구현해 시스템을 보호한다.
또한 벤트마스트는 증발가스 배출라인(L10), 액화가스 공급라인(L20) 등의 퍼징 시 퍼징가스를 외부로 배출할 수 있다. 이때 퍼징가스는 질소가스 또는 불활성가스 등일 수 있다.
이와 같이 본 실시예는, 카고탱크(10)에서 발생하는 증발가스를 재액화한 후 연료탱크(12)에 전달하여 추진엔진(E)에 공급되도록 함으로써, 서로 다른 종류의 액화가스를 재액화 후 카고탱크(10)로 리턴할 경우 액화가스 조성이 오염될 수 있는 문제를 해소할 수 있고, 응축기(32)의 설치 대수나 가동 대수를 절감할 수 있다.
도 2는 본 발명의 제2 실시예에 따른 가스 처리 시스템의 개념도이다.
이하에서는 본 실시예가 앞선 실시예 대비 달라지는 점 위주로 설명하도록 하며, 설명을 생략한 부분은 앞선 내용으로 갈음한다. 이는 후술하는 실시예에서도 마찬가지임을 알려둔다.
도 2를 참조하면, 본 발명의 제2 실시예에 따른 가스 처리 시스템(1)은, 재액화부(30)가 증발가스를 액화시켜 고압펌프(22)로 전달되도록 한다. 구체적으로 재액화장치는, 액화된 증발가스를 앞선 실시예에서와 마찬가지로 연료탱크(12)로 전달하거나, 또는 연료탱크(12)와 고압펌프(22) 사이의 액화가스 공급라인(L20)으로 전달할 수 있다.
이를 위해 기액분리기(33)에서 분리된 액상을 전달하는 라인으로서 증발가스 리턴라인(L11), 증발가스 전달라인(L12)에 더하여, 증발가스 공급라인(L13)이 구비될 수 있다. 증발가스 공급라인(L13)은 일단이 기액분리기(33) 또는 증발가스 전달라인(L12)으로부터 연장되어, 타단이 액화가스 공급라인(L20)에서 고압펌프(22)와 저압펌프(21) 사이에 연결될 수 있다.
증발가스 전달라인(L12)이 액화가스 공급라인(L20)에 연결되는 지점은, 액화가스 회수라인(L30)이 액화가스 공급라인(L20)에 연결되는 지점의 상류 또는 동일 지점일 수 있다. 따라서 고압펌프(22)는 저압펌프(21)로부터 공급되는 액화가스, 액화가스 회수라인(L30)을 통해 회수되는 잉여분의 액화가스에 더하여, 재액화장치에서 전달되는 액상 증발가스를 가압하여 추진엔진(E)에 공급할 수 있다.
응축기(32)에서 액화된 증발가스가, 증발가스 공급라인(L13)을 통해 연료탱크(12)를 우회하여 액화가스 회수라인(L30)에서 회수되는 액화가스와 합류된 후 고압펌프(22)로 공급될 경우, 고압펌프(22)에서는 여전히 기체의 유입이 방지될 수 있다.
구체적으로 본 실시예는, 고압펌프(22)의 유입 압력과 응축기(32) 하류의 증발가스 압력(기액분리기(33)의 내압일 수 있음)이 동일하게 제어하여, 고압펌프(22) 상류의 액화가스 공급라인(L20)에서 유동하는 액화가스의 비등점과, 증발가스 공급라인(L13)에서 유동하는 증발가스의 비등점이 동일하게 형성되도록 제어할 수 있다. 즉 기액분리기(33)와 고압펌프(22) 사이에서 증발가스 공급라인(L13) 상에는 별도의 가압/압축 수단이 마련되지 않는다.
그런데 고압펌프(22)의 유입 압력은 액화가스 회수라인(L30) 상에서 감압밸브 하류의 압력과 동일하다. 즉 액화가스 회수라인(L30)에서 유동하는 액상 액화가스의 비등점 역시, 증발가스 공급라인(L13) 상에서 증발가스의 비등점과 동일하게 된다.
이때 재액화장치의 응축기(32)와 액화가스 회수라인(L30) 상의 쿨러(41)는, 동일한 냉매를 이용할 수 있다. 즉 응축기(32)와 쿨러(41)에는 동일 조건(온도)을 갖는 냉매가 공급되어, 대략 동일한 온도로 증발가스/액상 액화가스의 냉각을 구현하게 된다.
따라서 본 실시예는, 연료 회수부(40)의 쿨러(41)가 고압펌프(22) 유입단에서의 기화를 방지하도록, 제1 압력을 갖는 액상 액화가스를 제1 냉매로 냉각하면서, 재액화부(30)의 응축기(32) 역시 제1 압력을 갖는 증발가스를 제1 냉매로 냉각하게 되므로, 쿨러(41)와 응축기(32)는 고압펌프(22)에 기체가 유입되지 않도록 상호 연계하여 제어될 수 있다.
즉 본 실시예는 고압펌프(22)의 유입 압력이 낮더라도, 응축기(32)가 연료 회수부(40)에서 회수되는 액상 액화가스와 동일 압력 기준에서 쿨러(41)와 동일한 냉매를 사용해 증발가스를 응축시키므로, 재액화장치가 연료탱크(12)를 우회하여 증발가스를 고압펌프(22)로 직접 전달하더라도, 고압펌프(22)의 가동 안정성을 보장할 수 있다.
따라서 본 실시예의 재액화장치는 연료공급 모드로 가동할 때, 기액분리기(33)에서 분리된 액상을 연료탱크(12)로 전달하는 것에 더하여, 고압펌프(22) 상류의 액화가스 공급라인(L20)으로 전달하여 추진엔진(E)에 공급되도록 할 수 있으며, 증발가스 전달라인(L12) 또는 증발가스 공급라인(L13)으로의 유동 제어는, 카고탱크(10)에서 배출되는 증발가스량, 추진엔진(E)의 부하, 연료탱크(12)의 내압 등의 다양한 변수에 따라 제어될 수 있다.
또한 본 실시예의 재액화장치는, 바이패스 라인(L14)을 포함한다. 바이패스 라인(L14)은 적어도 일부의 증발가스가 응축기(32)를 우회하여 기액분리기(33)로 공급되도록 하며, 바이패스 라인(L14)에는 유동 조절을 위한 바이패스 밸브(36)가 마련될 수 있다.
응축기(32)가 사용하는 냉매의 온도가 저온일 경우, 증발가스는 냉매에 의해 과냉될 수 있다. 과냉된 액상 증발가스가 기액분리기(33)로 응축기(32) 하류의 유입되면, 기액분리기(33)의 내압 하강을 야기할 수 있다.
즉 응축기(32)에서의 냉매 온도는 증발가스의 냉각 정도를 결정할 수 있고, 이는 기액분리기(33)에서의 내압을 결정하게 된다. 기액분리기(33)의 내압은 증발가스 공급라인(L13)을 통해 고압펌프(22)로 전달되는 증발가스의 압력일 수 있는데, 기액분리기(33)의 내압이 낮으면 증발가스의 비등점이 낮아지면서 고압펌프(22)에서의 기화가 우려된다.
따라서 응축기(32)의 냉매 온도가 고압펌프(22)에서 유입단에서의 기화 문제로 이어질 수 있는 바, 본 실시예는 냉매 온도에 따라 기액분리기(33)의 압력을 높여주는 제어를 구현할 수 있다.
이를 위해 바이패스 라인(L14)은, 냉매의 온도에 따라 기액분리기(33)로부터 고압펌프(22)로 전달되는 증발가스의 압력 변동을 대비하여, 바이패스 밸브(36)의 개방에 의해 적어도 일부의 증발가스가 응축기(32)를 우회하여 기액분리기(33)로 공급되도록 할 수 있다.
응축기(32)를 우회한 고온 기상 증발가스가 기액분리기(33)로 유입되면 기액분리기(33)의 내압이 상승하게 되므로, 증발가스 공급라인(L13)을 통해 기액분리기(33)로부터 액화가스 공급라인(L20)으로 전달되는 액상 증발가스의 압력이 상승하게 되어, 비등점이 높아진다.
따라서 본 실시예는, 냉매 온도를 변수로 하여 응축기(32)의 우회 여부를 조절하는 제어를 통해, 재액화장치로부터 고압펌프(22)로 전달되는 액상 증발가스가 다시 기화되는 것을 방지함으로써, 고압펌프(22)에서의 캐비테이션 현상을 미연에 방지할 수 있다.
또한 기액분리기(33)의 내압이 액화가스 회수라인(L30)에서 회수되는 액상 액화가스의 압력에 대응되도록 제어됨에 따라, 앞서 설명한 바와 같이 응축기(32)와 쿨러(41)가 동일 냉매를 사용하여 작동하면서 고압펌프(22)의 유입단에 액상만이 안정적으로 유입되도록 할 수 있다.
이와 같이, 응축기(32)에서 사용되는 냉매의 온도가 저온이면 재액화장치로부터 고압펌프(22)로 전달되는 액상 증발가스의 압력이 낮아 기화되어 고압펌프(22)로 유입될 우려가 있는 바, 본 실시예는 냉매 온도에 따라 일부 증발가스가 응축기(32)를 우회하는 제어를 적용하여 위와 같은 문제를 효과적으로 해소할 수 있다.
도 3은 본 발명의 제3 실시예에 따른 가스 처리 시스템의 개념도이다.
도 3을 참조하면, 본 발명의 제3 실시예에 따른 가스 처리 시스템(1)은, 앞선 제2 실시예 대비 연료탱크(12)가 생략될 수 있고, 액화가스 전달라인(L21)이나 증발가스 전달라인(L12) 등 역시 생략될 수 있다.
이 경우 카고탱크(10)에서 추진엔진(E)으로 직접 액화가스 공급라인(L20)이 연결될 수 있고, 액화가스 공급라인(L20) 상에 저압펌프(21), 고압펌프(22), 열교환기(23) 등이 구비될 수 있다.
저압펌프(21)는 도면과 같이 액화가스 공급라인(L20)에서 이송펌프(11)의 하류에 배치될 수 있지만, 이송펌프(11)의 토출 압력이 고압펌프(22)의 유입 압력에 대응되도록 마련된다면, 저압펌프(21)는 생략 가능하다.
또한 본 실시예에서, 재액화장치는 액화된 증발가스를 카고탱크(10)와 고압펌프(22) 사이의 액화가스 공급라인(L20)으로 전달할 수 있다. 이때 재액화장치는 연료공급 모드에서, 기액분리기(33)에서 분리된 액상을 고압펌프(22) 상류의 액화가스 공급라인(L20)으로 전달하여 추진엔진(E)에 공급되도록 할 수 있다.
또한 재액화장치는, 앞선 실시예와 마찬가지로, 증발가스를 액화시켜 고압펌프(22)로 전달하되, 냉매의 온도에 따라 증발가스 일부가 응축기(32)를 우회하고 기액분리기(33)를 거쳐 고압펌프(22) 상류의 액화가스 공급라인(L20)으로 전달되도록 할 수 있다.
도 4는 본 발명의 제4 실시예에 따른 가스 처리 시스템의 개념도이다.
도 4를 참조하면, 본 발명의 제4 실시예에 따른 가스 처리 시스템(1)은, 앞선 제2 실시예와 대비할 때 증발가스 공급라인(L13)이 생략되며, 액화가스의 회수 지점이 연료탱크(12)로 설정된다.
본 실시예에서 재액화장치는, 액화된 증발가스를 연료탱크(12)로 전달할 수 있다. 이는 앞서 언급한 바와 같이 증발가스 전달라인(L12)에 의해 이루어질 수 있다. 즉 재액화장치는 연료공급 모드에서 기액분리기(33)에서 분리된 액상을 연료탱크(12)로 전달하여 추진엔진(E)에 공급되도록 할 수 있다.
다만 본 실시예에서 연료 회수부(40)의 액화가스 회수라인(L30)은, 추진엔진(E)으로부터 연장되어 연료탱크(12) 내부로 연결될 수 있다. 따라서 액화가스 회수라인(L30)은, 추진엔진(E)에서 사용되는 윤활유가 혼입된 잉여분의 액상 액화가스를 연료탱크(12)로 전달할 수 있다. 이때 연료탱크(12)로 유입된 액상 액화가스는 저압펌프(21) 및 고압펌프(22)를 통해 추진엔진(E)에 재유입될 수 있다.
본 실시예의 연료탱크(12)는 잉여분의 액화가스가 내부에 직접 회수되도록 하는 구성으로서, 앞선 제2 실시예 대비 내압이 높게 설정되어 있을 수 있다. 즉 연료탱크(12)는 회수되는 액화가스가 기화되지 않는 압력으로 내압이 조절될 수 있고, 이 경우 연료탱크(12)의 내압이 고압펌프(22)의 유입압력에 대응되면, 저압펌프(21)는 생략될 수 있다.
제2, 3 실시예에서와 마찬가지로, 본 실시예 역시 응축기(32)에서 사용되는 냉매의 온도에 따라 액상 증발가스의 흐름을 제어할 수 있다. 구체적으로 본 실시예에서 재액화장치는, 냉매의 온도에 따라 연료탱크(12)로 전달되는 증발가스의 압력 변동을 대비하여, 적어도 일부의 증발가스가 응축기(32)를 우회하여 연료탱크(12)로 공급되도록 할 수 있다.
본 실시예는 액상 증발가스가 연료탱크(12)를 거쳐 고압펌프(22)로 전달되며, 연료탱크(12)와 고압펌프(22) 사이에 저압펌프(21)가 구비될 수 있다. 따라서 응축기(32)의 냉매 온도는 연료탱크(12)의 내압에 영향을 미치게 되며, 이는 저압펌프(21)의 유입압력에 영향을 줄 수 있고, 이는 고압펌프(22)의 유입압력에 간접적으로 영향을 미칠 수 있다. 물론 저압펌프(21)가 생략되면 연료탱크(12)의 내압이 고압펌프(22)의 유입압력에 직접 영향을 줄 수 있다.
따라서 본 실시예의 재액화장치는, 냉매 온도에 따라 기액분리기(33)에서 연료탱크(12)로 전달되는 증발가스의 압력 변동을 대비하여, 일부의 증발가스가 응축기(32)를 우회하여 기액분리기(33)를 거쳐 연료탱크(12)로 공급되도록 할 수 있다. 즉 본 실시예는 증발가스의 바이패스 조절을 통해, 기액분리기(33)의 내압 및 연료탱크(12)의 내압을 한꺼번에 조절할 수 있다.
또는 본 실시예의 경우 응축기(32)에서 액화된 액상 증발가스가 연료탱크(12)를 거쳐 고압펌프(22)로 전달되므로, 연료탱크(12)가 기액분리 기능을 구현할 수 있는 바 재액화장치에는 기액분리기(33)가 생략될 수도 있다.
도 5는 본 발명의 제5 실시예에 따른 가스 처리 시스템의 개념도이다.
도 5를 참조하면, 본 발명의 제5 실시예에 따른 가스 처리 시스템(1)은, 제2 실시예와 대비할 때 증발가스 공급라인(L13)의 연결 지점이 상이하게 마련될 수 있다.
본 실시예의 증발가스 공급라인(L13)은, 기액분리기(33) 상류의 증발가스를 연료탱크(12)와 고압펌프(22) 사이의 액화가스 공급라인(L20)으로 전달할 수 있다. 즉 증발가스 공급라인(L13)은 일단이 재액화장치에서 응축기(32)와 기액분리기(33) 사이에 연결되며, 타단이 액화가스 공급라인(L20)에서 고압펌프(22)의 상류에 연결될 수 있다.
이러한 증발가스 공급라인(L13)은, 냉매의 온도에 따라 기액분리기(33)의 내압 변동을 대비하기 위해 구비된다. 구체적으로 증발가스 공급라인(L13)은 냉매의 온도가 기준값보다 낮은 저온일 경우, 응축기(32)에서 증발가스가 과냉되어 기액분리기(33)를 거쳐 고압펌프(22)로 유입될 때 압력이 충분하지 않게 될 것을 방지하고자, 고압펌프(22)의 상류와 기액분리기(33)의 상류를 직접 연통시킬 수 있다.
이 경우, 재액화장치의 압축기(31)는 증발가스의 흐름을 따라 하류에 응축기(32)와 고압펌프(22)가 차례대로 배치되는 상황이 되므로, 고압펌프(22) 유입단의 압력이 압축기(31)의 토출단 압력에 매칭된다. 따라서 압축기(31)는 고압펌프(22) 유입압력(액화가스 회수라인(L30)을 통해 회수되는 액상 액화가스의 압력)을 저항으로 받게 되면서 가동이 제어되어, 압축기(31)의 토출압력이 상향 조절될 수 있다.
즉 본 실시예는 응축기(32)에서 사용되는 냉매의 온도가 너무 낮을 경우, 응축기(32) 하류와 고압펌프(22) 상류를 증발가스 공급라인(L13)으로 직접 연통시켜서, 압축기(31) 토출단이 고압펌프(22) 유입압력에 의해 저항을 받도록 하여, 압축기(31)의 토출압력이 고압펌프(22)의 유입압력에 대응되도록 제어된다.
따라서 본 실시예는, 저온 냉매와의 열교환을 우회하는 대신, 기액분리기(33)를 우회하여 응축기(32) 하류와 고압펌프(22) 상류가 동일 압력을 갖도록 연통시켜서, 압축기(31)의 토출압력이 고압펌프(22)의 유입압력에 맞춰지도록 할 수 있다.
이와 같이 본 실시예는, 응축기(32)에서 사용되는 냉매의 온도가 너무 낮아 액상 증발가스의 압력이 적절하지 않게 될 것을 대비하고자, 압축기(31) 하류와 고압펌프(22) 상류를 연통시켜서, 압축기(31)의 토출압력이 고압펌프(22) 유입압력에 맞춰지게 하여, 고압펌프(22)에서의 기화를 효과적으로 방지할 수 있다.
도 6은 본 발명의 제6 실시예에 따른 가스 처리 시스템의 개념도이다.
도 6을 참조하면, 본 발명의 제6 실시예에 따른 가스 처리 시스템(1)은, 제5 실시예와 대비할 때 연료탱크(12)를 생략할 수 있고, 액화가스 전달라인(L21)이나 증발가스 전달라인(L12) 등 역시 생략될 수 있다.
이 경우 카고탱크(10)에서 추진엔진(E)으로 직접 액화가스 공급라인(L20)이 연결될 수 있고, 액화가스 공급라인(L20) 상에 저압펌프(21), 고압펌프(22), 열교환기(23) 등이 구비될 수 있다. 이떄 저압펌프(21)가 생략될 수 있음은 앞서 제3 실시예에서 언급한 바와 같다.
본 실시예에서 재액화장치는 액화된 증발가스를 카고탱크(10)와 고압펌프(22) 사이의 액화가스 공급라인(L20)으로 전달할 수 있다. 이때 재액화장치는 연료공급 모드에서, 기액분리기(33)에서 분리된 액상을 고압펌프(22) 상류의 액화가스 공급라인(L20)으로 전달하여 추진엔진(E)에 공급되도록 할 수 있다.
또한 재액화장치는, 앞선 실시예와 마찬가지로, 증발가스를 액화시켜 고압펌프(22)로 전달하되, 냉매의 온도에 따라 응축기(32) 하류와 고압펌프(22) 상류가 연통되도록 하여, 압축기(31)의 토출압력이 고압펌프(22)의 유입압력에 맞춰지도록 할 수 있다.
도 7은 본 발명의 제7 실시예에 따른 가스 처리 시스템의 개념도이다.
도 7을 참조하면, 본 발명의 제7 실시예에 따른 가스 처리 시스템(1)은, 앞선 실시예들 대비 재액화장치의 세부 구성에서 변화가 있으며, 그 외 구성은 앞선 실시예 중 적어도 어느 하나의 구성들을 포함할 수 있다.
본 실시예의 재액화장치는, 압축기(31), 응축기(32), 기액분리기(33), 애프터쿨러(35), 증발가스 열교환기(37)를 포함한다. 압축기(31)와 응축기(32) 및 기액분리기(33)는 앞서 설명한 바와 같으므로 자세한 설명은 생략한다.
증발가스 열교환기(37)는, 카고탱크(10)에서 압축기(31)로 전달되는 증발가스와, 응축기(32)에서 액화된 증발가스를 열교환시킨다. 구체적으로 증발가스 열교환기(37)는 카고탱크(10)로부터 압축기(31)로 전달되는 증발가스가 흐르는 스트림과, 기액분리기(33)에서 카고탱크(10)로 전달되는 증발가스가 흐르는 스트림을 갖는 2 stream 구조일 수 있다.
일례로 증발가스 열교환기(37)는 증발가스 배출라인(L10)과 나란한 하나의 스트림과, 증발가스 리턴라인(L11)과 나란한 다른 스트림을 갖도록, 증발가스 리턴라인(L11) 상에 마련될 수 있으며, 앞서 설명한 인터쿨러(34)를 대체하도록 마련될 수 있다. 물론 인터쿨러(34)를 갖는 앞선 실시예에 증발가스 열교환기(37)가 부가될 수도 있다.
응축기(32)에서 액화된 증발가스는 압축기(31)에서 압축된 상태이므로, 비록 액상이지만 온도는 대기압에서의 비등점보다 높을 수 있다. 반면 카고탱크(10)로부터 배출된 증발가스는 대기압 수준의 압력을 갖고 비등점에 근접한 온도를 가질 수 있다.
따라서 증발가스 열교환기(37)는 기액분리기(33)로부터 전달된 증발가스를, 카고탱크(10)에서 배출된 저온의 증발가스와 열교환시켜 냉각할 수 있다. 이때 증발가스 열교환기(37)에서 냉각 객체인 증발가스와 냉각 주체로 증발가스는 압력이 서로 다를 수 있는데, 압력 차는 카고탱크(10)에서의 내압 및 기액분리기(33)의 내압 간의 차압으로 형성될 수 있다.
증발가스 리턴라인(L11) 상에서 증발가스 열교환기(37)의 상류 또는 하류 중 적어도 일 지점에는 감압밸브(도시하지 않음)가 마련되어, 압축기(31)에서 압축된 증발가스를 감압해 추가적인 냉각을 구현할 수 있다.
이러한 증발가스 열교환기(37)를 포함하는 재액화장치는, 앞선 제1 실시예에서 설명한 것과 같이 연료공급 모드 또는 재액화 모드로 가동할 수 있다. 즉 재액화장치는 기액분리기(33)에서 분리된 액상을 증발가스 리턴라인(L11)에 마련된 증발가스 열교환기(37)를 경유해 카고탱크(10)로 전달하는 재액화 모드로 가동하거나, 및/또는 기액분리기(33)에서 분리된 액상을 증발가스 전달라인(L12)을 통해 연료탱크(12)로 전달하여 추진엔진(E)에 공급되도록 하는 연료공급 모드로 가동할 수 있다.
이와 같이 본 실시예는, 인터쿨러(34)를 대신하여 증발가스 열교환기(37)를 이용함으로써 재액화장치의 구조를 간소화시킬 수 있고, 인터쿨러(34)를 통한 증발가스 순환이 생략되므로, 재액화장치의 재액화 용량을 증대시킬 수 있다.
본 발명은 앞서 설명한 실시예 외에, 적어도 어느 하나의 실시예와 종래기술을 조합한 것과 적어도 둘 이상의 실시예를 조합한 것을 추가적인 실시예로 포함할 수 있음은 물론이다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (15)

  1. 중탄화수소 또는 암모니아인 액화가스를 처리하는 시스템으로서,
    액화가스를 선박의 추진엔진에 공급할 연료로 저장하는 연료탱크;
    상기 연료탱크의 액화가스를 상기 추진엔진에 액상으로 공급하며 고압펌프가 마련되는 액화가스 공급라인;
    액화가스를 저장하는 카고탱크에서 발생한 증발가스를 액화시키는 재액화장치; 및
    상기 추진엔진에서 배출되는 액상 액화가스를 상기 고압펌프의 상류로 회수하는 액화가스 회수라인을 포함하며,
    상기 재액화장치는,
    액화된 증발가스를 상기 연료탱크로 전달하여 상기 고압펌프에 의해 상기 추진엔진에 공급되도록 하는, 가스 처리 시스템.
  2. 제 1 항에 있어서, 상기 액화가스 회수라인은,
    상기 추진엔진에서 배출되며 윤활유가 섞인 잉여분의 액상 액화가스를 감압하는 감압밸브가 마련되고, 상기 추진엔진의 내부를 거치면서 상기 추진엔진에서 사용되는 윤활유가 혼입된 잉여분의 액상 액화가스를 상기 고압펌프 상류의 상기 액화가스 공급라인으로 전달하여 상기 추진엔진에 재유입되도록 하는, 가스 처리 시스템.
  3. 제 2 항에 있어서, 상기 액화가스 회수라인은,
    상기 감압밸브에 의해 감압된 액화가스를 냉각해 상기 고압펌프에 액상으로 유입되도록 하는 쿨러가 마련되는, 가스 처리 시스템.
  4. 제 1 항에 있어서, 상기 재액화장치는,
    상기 카고탱크에서 배출되는 증발가스를 다단 압축하는 압축기;
    압축된 증발가스를 냉매로 냉각하여 액화시키는 응축기; 및
    상기 응축기에서 액화된 증발가스 중 일부와 나머지를 상호 열교환시키며, 열교환에 의해 발생한 증발가스를 상기 압축기에 전달하는 인터쿨러를 포함하는, 가스 처리 시스템.
  5. 제 4 항에 있어서, 상기 재액화장치는,
    상기 응축기에서 액화된 증발가스를 기액분리하는 기액분리기를 더 포함하며,
    상기 기액분리기에서 분리된 액상을 상기 인터쿨러를 경유해 상기 카고탱크로 전달하는 재액화 모드 및 상기 기액분리기에서 분리된 액상을 상기 연료탱크로 전달하여 상기 추진엔진에 공급되도록 하는 연료공급 모드 중 적어도 어느 하나로 작동하는, 가스 처리 시스템.
  6. 제 1 항에 있어서, 상기 재액화장치는,
    상기 카고탱크에서 배출되는 증발가스를 다단 압축하는 압축기;
    압축된 증발가스를 냉각하여 액화시키는 응축기; 및
    상기 카고탱크에서 상기 압축기로 전달되는 증발가스와, 상기 응축기에서 액화된 증발가스를 열교환시키는 증발가스 열교환기를 포함하는, 가스 처리 시스템.
  7. 제 6 항에 있어서, 상기 재액화장치는,
    상기 응축기에서 액화된 증발가스를 기액분리하는 기액분리기를 더 포함하며,
    상기 기액분리기에서 분리된 액상을 상기 증발가스 열교환기를 경유해 상기 카고탱크로 전달하는 재액화 모드 및 상기 기액분리기에서 분리된 액상을 상기 연료탱크로 전달하여 상기 추진엔진에 공급되도록 하는 연료공급 모드 중 적어도 어느 하나로 작동하는, 가스 처리 시스템.
  8. 중탄화수소 또는 암모니아인 액화가스를 처리하는 시스템으로서,
    카고탱크에 저장된 액화가스를 상기 추진엔진에 액상으로 공급하며 고압펌프가 마련되는 액화가스 공급라인;
    상기 카고탱크에서 발생한 증발가스를 액화시켜 상기 고압펌프로 전달되도록 하는 재액화장치; 및
    상기 추진엔진에서 배출되는 액상 액화가스를 상기 고압펌프의 상류로 회수하는 액화가스 회수라인을 포함하며,
    상기 재액화장치는,
    증발가스를 냉매로 냉각하여 액화시키는 응축기; 및
    상기 응축기에서 액화된 증발가스를 임시 저장하는 버퍼를 포함하며,
    상기 냉매의 온도에 따라 상기 버퍼로부터 상기 고압펌프로 전달되는 증발가스의 압력 변동을 대비하여, 적어도 일부의 증발가스가 상기 응축기를 우회하여 상기 버퍼로 공급되도록 하는 바이패스 라인을 갖는, 가스 처리 시스템.
  9. 제 8 항에 있어서, 상기 액화가스 회수라인은,
    상기 추진엔진에서 배출되며 윤활유가 섞인 잉여분의 액상 액화가스를 감압하는 감압밸브가 마련되고, 상기 추진엔진의 내부를 거치면서 상기 추진엔진에서 사용되는 윤활유가 혼입된 잉여분의 액상 액화가스를 상기 고압펌프 상류의 상기 액화가스 공급라인으로 전달하여 상기 추진엔진에 재유입되도록 하는, 가스 처리 시스템.
  10. 제 9 항에 있어서, 상기 액화가스 회수라인은,
    상기 감압밸브에 의해 감압된 액화가스를 냉각해 상기 고압펌프에 액상으로 유입되도록 하는 쿨러가 마련되는, 가스 처리 시스템.
  11. 제 8 항에 있어서, 상기 버퍼는,
    상기 응축기에서 액화된 증발가스를 기액분리하는 기액분리기인, 가스 처리 시스템.
  12. 제 11 항에 있어서, 상기 재액화장치는,
    액화된 증발가스를 상기 카고탱크와 상기 고압펌프 사이의 상기 액화가스 공급라인으로 전달하는, 가스 처리 시스템.
  13. 제 12 항에 있어서, 상기 재액화장치는,
    상기 카고탱크에서 배출되는 증발가스를 다단 압축하는 압축기; 및
    상기 응축기에서 액화된 증발가스 중 일부와 나머지를 상호 열교환시키며, 열교환에 의해 발생한 증발가스를 상기 압축기에 전달하는 인터쿨러를 포함하는, 가스 처리 시스템.
  14. 제 13 항에 있어서, 상기 재액화장치는,
    상기 기액분리기에서 분리된 액상을 상기 인터쿨러를 경유해 상기 카고탱크로 전달하는 재액화 모드 및 상기 기액분리기에서 분리된 액상을 상기 고압펌프 상류의 상기 액화가스 공급라인으로 전달하여 상기 추진엔진에 공급되도록 하는 연료공급 모드 중 적어도 어느 하나로 작동하는, 가스 처리 시스템.
  15. 제 1 항 내지 제 14 항 중 어느 한 항의 상기 가스 처리 시스템을 갖는 액화가스 운반선인 것을 특징으로 하는 선박.
PCT/KR2021/002020 2020-02-17 2021-02-17 가스 처리 시스템 및 이를 포함하는 선박 WO2021167343A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022548858A JP2023514996A (ja) 2020-02-17 2021-02-17 ガス処理システム及びそれを含む船舶
EP21757590.1A EP4108561A4 (en) 2020-02-17 2021-02-17 GAS PROCESSING SYSTEM AND VESSEL INCLUDING SAME
CN202180010870.5A CN115038642A (zh) 2020-02-17 2021-02-17 气体处理系统及包括该气体处理系统的船舶
US17/799,305 US20230081154A1 (en) 2020-02-17 2021-02-17 Gas treatment system and ship including same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2020-0019253 2020-02-17
KR20200019253 2020-02-17
KR20200055463 2020-05-08
KR10-2020-0055463 2020-05-08
KR1020210021198A KR102474904B1 (ko) 2020-02-17 2021-02-17 가스 처리 시스템 및 이를 포함하는 선박
KR10-2021-0021198 2021-02-17
KR1020210021173A KR102474922B1 (ko) 2020-02-17 2021-02-17 가스 처리 시스템 및 이를 포함하는 선박
KR10-2021-0021173 2021-02-17

Publications (1)

Publication Number Publication Date
WO2021167343A1 true WO2021167343A1 (ko) 2021-08-26

Family

ID=77391096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002020 WO2021167343A1 (ko) 2020-02-17 2021-02-17 가스 처리 시스템 및 이를 포함하는 선박

Country Status (3)

Country Link
US (1) US20230081154A1 (ko)
JP (1) JP2023514996A (ko)
WO (1) WO2021167343A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049216A (ja) * 2017-09-08 2019-03-28 川崎重工業株式会社 船舶
KR20190071179A (ko) * 2017-12-14 2019-06-24 대우조선해양 주식회사 선박용 증발가스 재액화 시스템 및 방법
KR20190080178A (ko) * 2017-12-28 2019-07-08 삼성중공업 주식회사 액화가스 연료 선박의 연료 공급시스템
KR20190105841A (ko) * 2018-03-06 2019-09-18 대우조선해양 주식회사 Lpg 연료 선박 및 lpg 연료 선박의 연료 공급 방법
US20190323659A1 (en) * 2016-12-23 2019-10-24 Shell Oil Company Vessel for the transport of liquefied gas and method of operating the vessel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO334725B1 (no) * 2009-11-02 2014-05-12 Wärtsilä Oil & Gas Systems As LNG-brenseltanksystem for minst én gassmotor for skipsfremdrift
US20140060110A1 (en) * 2011-03-11 2014-03-06 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel supply system for marine structure having reliquefaction apparatus and high-pressure natural gas injection engine
EP2746707B1 (en) * 2012-12-20 2017-05-17 Cryostar SAS Method and apparatus for reliquefying natural gas
KR102241202B1 (ko) * 2019-02-01 2021-04-16 현대중공업 주식회사 가스 처리 시스템 및 이를 포함하는 선박

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190323659A1 (en) * 2016-12-23 2019-10-24 Shell Oil Company Vessel for the transport of liquefied gas and method of operating the vessel
JP2019049216A (ja) * 2017-09-08 2019-03-28 川崎重工業株式会社 船舶
KR20190071179A (ko) * 2017-12-14 2019-06-24 대우조선해양 주식회사 선박용 증발가스 재액화 시스템 및 방법
KR20190080178A (ko) * 2017-12-28 2019-07-08 삼성중공업 주식회사 액화가스 연료 선박의 연료 공급시스템
KR20190105841A (ko) * 2018-03-06 2019-09-18 대우조선해양 주식회사 Lpg 연료 선박 및 lpg 연료 선박의 연료 공급 방법

Also Published As

Publication number Publication date
US20230081154A1 (en) 2023-03-16
JP2023514996A (ja) 2023-04-12

Similar Documents

Publication Publication Date Title
WO2014209029A1 (ko) 선박의 증발가스 처리 시스템 및 방법
WO2014065618A1 (ko) 선박의 액화가스 처리 시스템
WO2014092369A1 (ko) 선박의 액화가스 처리 시스템
WO2012128447A1 (ko) 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템
WO2012128448A1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 및 방법
WO2012124884A1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 방법
WO2019194670A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
KR20210104597A (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2012124886A1 (ko) 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템
WO2017078245A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2015130122A1 (ko) 증발가스 처리 시스템
WO2018139753A1 (ko) 액화천연가스 연료 선박의 연료 공급 시스템 및 방법
WO2009102136A2 (ko) 탄화수소 액화가스를 처리하기 위한 처리장치 및 방법
WO2017171166A1 (ko) 선박용 증발가스 재액화 장치 및 방법
WO2018230950A1 (ko) 증발가스 재액화 시스템 및 선박
WO2016126025A1 (ko) 선박의 연료가스 공급시스템
WO2016126037A1 (ko) 선박의 증발가스 처리장치 및 처리방법
WO2016195232A1 (ko) 선박
WO2018124815A1 (ko) 연료가스 공급 시스템
WO2016195233A1 (ko) 선박
WO2021167343A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2016200170A1 (ko) 가스 처리 시스템을 포함하는 선박
WO2017209492A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2017135804A1 (ko) 가스 재기화 시스템을 구비하는 선박
WO2016195231A1 (ko) 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021757590

Country of ref document: EP

Effective date: 20220919