WO2014115982A1 - 방사성 폐수지 이송 및 처리를 위한 시스템과 그것을 이용한 방사성 폐수지 이송 및 처리방법 - Google Patents

방사성 폐수지 이송 및 처리를 위한 시스템과 그것을 이용한 방사성 폐수지 이송 및 처리방법 Download PDF

Info

Publication number
WO2014115982A1
WO2014115982A1 PCT/KR2014/000189 KR2014000189W WO2014115982A1 WO 2014115982 A1 WO2014115982 A1 WO 2014115982A1 KR 2014000189 W KR2014000189 W KR 2014000189W WO 2014115982 A1 WO2014115982 A1 WO 2014115982A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste resin
water
radioactive waste
line
hopper
Prior art date
Application number
PCT/KR2014/000189
Other languages
English (en)
French (fr)
Inventor
최종서
이충상
임재원
유정현
이윤재
Original Assignee
(주)대우건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130007480A external-priority patent/KR101385666B1/ko
Priority claimed from KR1020130007481A external-priority patent/KR101385667B1/ko
Application filed by (주)대우건설 filed Critical (주)대우건설
Publication of WO2014115982A1 publication Critical patent/WO2014115982A1/ko
Priority to SA515360795A priority Critical patent/SA515360795B1/ar

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Definitions

  • the present invention relates to a radioactive waste resin transport and treatment system and a radioactive waste resin transport and treatment method using the same, which can safely and easily replace and treat ion exchange resins used for purification of radioactive liquid, and furthermore,
  • the present invention relates to a radioactive waste paper conveying and processing system which can be easily transported to a spaced place, and a radioactive waste paper conveying and processing method using the same.
  • Tanks or tanks storing reactor cores or spent fuel are generally filled with water (hard water or heavy water) to coolants and moderators that block heat and radiation from the radioactive material. It is common to let it work.
  • the water used as the coolant and the moderator contains foreign substances such as fission products, radionuclides, and corrosion products generated by the nuclear fission process or effects thereof. Therefore, it is necessary to remove these foreign substances from the water when the water needs to be purified. .
  • an ion exchange method for ion exchange using an ion exchange resin is used to remove ions including radionuclides.
  • the ion exchange resin is used in an ion exchanger and is replaced with a new ion exchange resin when the electrical conductivity at the rear of the ion exchanger or the differential pressure between the inlet and outlet of the ion exchanger rises above a predetermined value during use. do.
  • the ion exchange resin contained in the ion exchanger is generally referred to as a radioactive waste resin.
  • an ion exchange resin is a term including a radioactive waste resin, and an ion exchange resin used in an ion exchange resin to be disposed of corresponds to a radioactive waste resin.
  • Radioactive waste resins are exchanged through the following treatments.
  • the first is to load the ion exchange resin into the cartridge (cartridge) and load it in the ion exchanger, and to replace the cartridge using a crane or the like when replacing the ion exchange resin.
  • This method has the disadvantage that the operator is likely to be exposed by radiation emitted from the radioactive waste resin contained in the cartridge taken out of the ion exchanger during the replacement operation. Therefore, this method requires the provision of a crane, a dedicated cask, etc. for handling, shielding and storing the cartridge.
  • the second method is to transfer the radioactive waste resin by using the pressure of the service water itself or by applying pressure to the water with the waste resin transfer pump. That is, the method uses a pressurized water (water) to transfer the radioactive waste resin in the ion exchanger to the waste resin tank.
  • a pressurized water water
  • this method can transport and handle the waste resin remotely, which facilitates work and is advantageous in terms of reducing the exposure of workers.
  • a separate discharge facility for removing the radioactive waste resin from the waste resin tank is required.
  • the radioactive waste resin replaced by an ion exchanger is transferred to a waste resin storage tank, where radioactive decay occurs for a certain period of time to lower the radiation level.
  • the waste resin drying system (SRDS) is then connected to the waste resin storage tank, or the water is supplied again to transfer the radioactive waste resin to the solidification treatment plant.
  • This method is suitable for the replacement and disposal of large-capacity radioactive waste resins, but it is inefficient for small-scale treatments considering the auxiliary facilities and the installation area.
  • these facilities are used as mobile equipment for nuclear power plants.
  • the present invention is capable of optimizing a facility for treating radioactive waste resin, having good connectivity with other facilities, and transporting radioactive waste resin to a safe and easily spaced place, and having high ease of manufacture and economical treatment of radioactive waste resin.
  • a system and a method of treating radioactive waste resin using the same are provided.
  • the first embodiment is a radioactive waste resin processing system for treating radioactive waste resin produced during the purification of radioactive liquid using ion exchange resin,
  • Recovery detecting means for generating a signal when the amount of the water supplied to the ion exchanger reaches a predetermined amount
  • a hopper connected to the ion exchanger and a recovery line
  • a recovery valve installed in the recovery line and open when receiving the signal of the recovery sensing means to flow the mixture of the radioactive waste resin and the water through the recovery line into the hopper;
  • the hopper is,
  • One or more filters installed in the housing and separating the radioactive waste resin from the mixture flowing from the recovery line;
  • waste resin discharge means for discharging the radioactive waste resin separated from the mixture to the outside of the housing.
  • a radioactive waste resin transport and treatment system for treating a radioactive waste resin produced during the purification of radioactive liquid using an ion exchange resin
  • Pressurizing means connected to the radioactive waste resin through an ion exchanger and a pressurizing line to supply water, compressed air, and at least one of the water and the compressed air to the ion exchanger;
  • a dehydration hopper connected to the ion exchanger and the recovery line;
  • Recovery detection means for generating a signal when at least one of the water, the compressed air, and the water and the compressed air supplied to the ion exchanger reaches a predetermined amount
  • a recovery valve installed in the recovery line and open when receiving the signal of the recovery sensing means to flow the mixture of the radioactive waste resin and the water into the dehydration hopper through the recovery line;
  • a combined hopper connected to the dehydration hopper and a connection transfer line;
  • a transfer pump connected to the dehydration hopper and the buffer tank and a feed water supply line, and supplying the water to the dehydration hopper so that the mixture is transferred to the combined hopper through the connection transfer line.
  • a filter installed in the housing, the filter separating the radioactive waste resin from the mixture introduced into the housing,
  • waste resin discharge means for discharging the radioactive waste resin separated from the mixture to the outside of the housing.
  • a radioactive waste resin processing system for treating radioactive waste resin generated during the purification of radioactive liquid using ion exchange resin
  • Water supply means or pressurization means connected to the ion exchanger containing the radioactive waste resin through a water supply line or a pressurization line to supply water, compressed air, and at least one of the water and the compressed air to the ion exchanger;
  • Recovery detection means for generating a signal when at least one of the water, the compressed air, and the water and the compressed air supplied to the ion exchanger reaches a predetermined amount
  • a hopper connected to the ion exchanger and a recovery line
  • a recovery valve installed in the recovery line and open when receiving the signal of the recovery sensing means to flow the mixture of the radioactive waste resin and the water through the recovery line into the hopper;
  • the hopper is,
  • One or more filters installed in the housing and separating the radioactive waste resin from the mixture flowing from the recovery line;
  • waste resin discharge means for discharging the radioactive waste resin separated from the mixture to the outside of the housing.
  • a hopper for simultaneously performing dehydration and discharge of radioactive waste resin is unnecessary, and a separate waste resin discharge facility is unnecessary, and an optimized design is possible according to the generation amount of radioactive waste resin from a small capacity to a large capacity.
  • the present invention by having a dehydration hopper for dewatering the radioactive waste resin and a combined hopper which is spaced apart from the dehydration hopper and simultaneously performs the dehydration and discharge of the radioactive waste resin transported from the dehydration hopper, the near and long distance transport of the radioactive waste resin Safety and ease of use is improved, no separate waste resin discharge facility is required, and optimized design can be made according to the generation amount of radioactive waste resin from small capacity to large capacity.
  • the above-mentioned combined hopper is advantageous in terms of manufacturability of the hopper because no pressure is applied above atmospheric pressure.
  • the hopper of FIG. 1 or the dehydrating hopper of FIG. 4 it may be considered to be able to operate at atmospheric pressure or higher pressure depending on the position, distance, and the like of the transfer point.
  • an independent module type having a hopper, a buffer tank and a water feed pump as basic elements, it is advantageous in terms of linkage because it can be linked to other equipment as well as independent operation.
  • maintenance can be facilitated by discharging all the residue in the pipe after the transfer of the radioactive waste resin is completed, it is advantageous in terms of recycling by utilizing the existing system water in the buffer tank.
  • FIG. 1 is a schematic diagram of a radioactive waste resin treatment system according to a first embodiment of the present invention.
  • Figure 2 is a schematic diagram showing in detail the hopper shown in FIG.
  • Figure 3 is a flow chart for explaining the radioactive waste resin treatment method using a radioactive waste resin treatment system according to a first embodiment of the present invention
  • FIG. 4 is a schematic diagram of a radioactive waste resin transport and treatment system according to a second embodiment of the present invention.
  • Figure 5 is a schematic diagram showing in detail the dehydration hopper shown in FIG.
  • FIG. 6 is a schematic diagram showing in detail the combined hopper shown in FIG.
  • FIG. 7 is a flowchart illustrating a method for transporting and treating radioactive waste resin using a radioactive waste resin transport and treatment system according to a second embodiment of the present invention.
  • the radioactive waste resin is conveyed at the pressure of water (water), and in addition to the air pressure, the radioactive waste resin is conveyed at the water (water) or / and air pressure.
  • control of each component and / or control of operations are performed by control of a controller (not shown).
  • FIG. 1 is a schematic diagram of a radioactive waste resin treatment system according to a first embodiment of the present invention.
  • the radioactive waste resin processing system 100 includes an ion exchanger 111, a recovery line 120, a recovery valve 121, a hopper 130, and a buffer tank 140. ), Water supply line 150, pressure sensor 152, water supply means 160 and the like.
  • Control of each configuration / operation is performed by control of a controller (not shown).
  • the water supply means 160 is installed in a nuclear power plant (not shown) to supply water, which is a general matter, and thus a detailed description thereof will be omitted.
  • the purified water system 110 is a means for circulating water (hereinafter referred to as service water) used as a moderator or coolant for a reactor (not shown), and the purified water system 110 includes an ion exchanger 111 and a circulation line ( 112 and 115, the circulation pump 113, the circulation valve 114, the drain line 116, the drain valve 117 and the drain 118 and the like.
  • the ion exchange resin is loaded in the ion exchanger 111, and the circulation lines 112 and 115 are connected to the reactor. Therefore, when the circulation valve 114 is opened and the circulation pump 113 is operated, the water in the reactor circulates through the ion exchanger 111, and in this process, ions including radionuclides among the foreign substances contained in the water are ions. It is collected in the ion exchange resin while being exchanged with ions in the exchange resin.
  • the ion exchange resin loaded in the ion exchanger 111 is newly replaced.
  • the ion exchange resin used is a radioactive waste resin. Are treated.
  • the buffer tank 140 supplies water when the radioactive waste resin in the ion exchanger 111 is transported, and is connected to the ion exchanger 111 by the water supply line 150.
  • the water supply line 150 is provided with a water supply pump 151, a pressure sensor 152, and a water supply valve 153.
  • the hopper 130 is connected to the ion exchanger 111 by the recovery line 120 and is connected to the buffer tank 140 by the dehydration line 141.
  • the recovery line 120 is provided with a recovery valve 121, the inspection means 122 and the on-off valve 123 and the like.
  • the slabs 10 and 20 are simplified parts of buildings (not shown) in which the radioactive waste resin treatment system 100 is installed, and may be formed to shield radiation.
  • the hopper 130 may be kept in a state in which the radioactive waste resin is accommodated for a certain period of time as described below, and may be arranged in a separate shielded space.
  • FIG. 2 shows the schematic diagram of the hopper shown in FIG. 1 in detail.
  • the hopper 130 is disposed in the shielding space I formed by the slabs 10 and 20 and the shielding walls 30 and 40.
  • the slab 20 may be provided with a hatch door 21 and an auxiliary hatch door 22 that can be opened and closed.
  • the hatch door 21 may be used for the maintenance of the hopper 130, and the auxiliary hatch door 22 may be used for meter reading of various instruments including the water level gauge 138 or monitoring in the shielded space I. .
  • the hopper 130 includes a housing 130a having a predetermined shape including a container type, a cylinder type, a filter 131, 132, 133, waste resin discharge means 134, agitation means 135, and an outlet opening / closing means ( 136, the water level 138, the air supply line 139 is connected to the housing or connecting pipe (not shown) to supply air into the housing, connected to the air supply valve 139a and the housing and introduced through the air supply line An exhaust line 139b for discharging the air is included.
  • the filters 131, 132, and 133 are used to filter the radioactive waste resin R1 from the mixture of the radioactive waste resin R1 and the water, and are installed in the housing 130a.
  • the filters 131, 132, and 133 may have different shapes according to the installed positions.
  • plate-shaped filters 131 and 133 may be installed at the sidewall portion or the lower portion of the housing 130a, and a cylindrical filter 133 may be installed at an intermediate position in the housing 130a.
  • the mixture introduced into the housing 130a through the recovery line 120 is disposed by the radioactive waste resin R1 by the filters 131, 132, and 133.
  • the water is installed so that only the water passes through the filters 131, 132, and 133 to flow out of the housing 130a through the dehydration line 141.
  • the dehydration line 141 is provided with a dehydration valve 142 for opening and closing the dehydration line 141, the dehydration valve 142 may be opened only when the water is discharged through the dehydration line 141. .
  • a waste resin outlet 137 may be formed in the housing 130a. At this time, the waste resin discharge port 137 is formed to penetrate the shielding wall 40 so that the radioactive waste resin R1 separated from the water can be discharged to the outside of the shielded space I.
  • the discharge means 134 may be installed on the lower side of the housing 130a, the screw 134c, the screw 134c is installed in the discharge means 134 to reach the waste resin discharge port 137 from the lower side of the housing 130a
  • Screw drive shaft 134b and screw drive means 134a for rotating the screw drive shaft 134b may be included.
  • the discharge means 134 may allow the radioactive waste resin R1 accommodated in the housing 130a to be discharged to the outside through the waste resin discharge port 137 according to the operation of the screw driving means 134a.
  • the outlet opening / closing means 136 may include a cover 136c covering the waste resin outlet 137, a rod 136b connected to the cover 136c, and a cylinder 136a for moving the rod 136b.
  • the outlet opening and closing means 136 may open or close the waste resin outlet 137 according to the operation of the cylinder 136a.
  • the portion where the waste resin outlet 137 of the housing 130a is formed and the cover 136c are made of a material capable of shielding radiation, and when the cover 136c covers the waste resin outlet 137, the radioactive waste resin It is possible to prevent the radiation radiated from (R1) from leaking outside the shielded space (I).
  • the stirring means 135 may include a stirring blade 135c, a stirring roller 135d, a stirring shaft 135b, and a stirring blade driving means 135a disposed in the housing 130a.
  • Stirring means 135 is for stirring the radioactive waste resin (R1) accommodated in the housing 130a, the radioactive waste resin (R1) can be easily moved to the discharge means 134 by the stirring means (135). .
  • the waste resin outlet 137 may include a waste resin drum 170 for receiving the radioactive waste resin R2 from which water is separated from the mixture.
  • the waste water drum 170 may be disposed at a portion where the waste water drum 170 is disposed.
  • a meter 180 may be installed to measure the amount of the radioactive waste resin R2 contained in the waste resin drum 170.
  • the air supply line 139 and the exhaust line 139b connected to the housing 130a are for flowing air into the interior space of the housing 130a for drying the radioactive waste resin R1 contained in the housing 130a. Air supplied into the housing 130a by the air supply line 139 is discharged to the outside of the housing 130a through the exhaust line 139b.
  • a heating means such as a heating wire (not shown) may be further installed in the air supply line 139, which may dry the radioactive waste resin R1 by heating the air supplied into the housing 130a through the air supply line 139. It is to improve the speed.
  • the exhaust line 139b may be connected to a gaseous waste treatment system (not shown) generally provided in the reactor.
  • the buffer tank 140 may be connected by the water supply means 160 and the water supply line 161 to receive water, and the water supply line 150 and the water supply means 160 may have a water outlet line ( Water 163 connected to the water contained in the buffer tank 140 may be recovered to the water supply means 160.
  • the inlet valve 162 installed in the inlet line 161 and the outlet valve 164 installed in the outlet line 163 are for controlling the supply or recovery of water from the water supply unit 160 to the buffer tank 140.
  • the return line 154 connecting the water supply line 150 and the buffer tank 140 is for flowing back to the buffer tank 140 when water is filled in the water supply line 150.
  • Figure 3 is a flow chart for explaining a radioactive waste resin treatment method using a radioactive waste resin processing system according to an embodiment of the present invention.
  • a radioactive waste resin treatment method using a radioactive waste resin treatment system according to an embodiment of the present invention having the configuration as described above with reference to FIGS. 1 to 3 will be described.
  • the radioactive waste resin treatment method using a radioactive waste resin treatment system water supply step (S10), recovery step (S20), inspection step (S30), separation step (S40) And discharge step (S50) is included.
  • the water supply step S10 is a step of supplying water to the ion exchanger 111 from the buffer tank 140 until the pressure in the water supply line 150 measured by the pressure sensor 152 reaches a predetermined pressure. This is done by the following procedure.
  • the radioactive waste resin contained in the ion exchanger 111 is treated according to the radioactive waste resin treatment method using the radioactive waste resin processing system according to the first embodiment of the present invention, and then the new waste is discharged into the ion exchanger 111. Load and use radioactive waste resin.
  • the circulation valve 114 of the water purification system 110 is closed to prevent the water from being circulated through the circulation lines 112 and 115.
  • water is supplied to the buffer tank 140 by the water supply means 160.
  • the circulation lines 112 and 115 are generally configured such that water flows downward from the upper side of the ion exchanger 111 and ion exchange takes place. Therefore, the radioactive waste resin has a shape accumulated upward from the bottom of the ion exchanger 111, and immediately after the circulation of water in the water purification system 110 is blocked, the radioactive waste resin is disposed in the circulation lines 112 and 115 in the ion exchanger 111. The water circulated by the water becomes full.
  • the drain valve 117 is opened so that a part of the water in full water in the ion exchanger 111 is discharged to the drain 118.
  • the drain 118 may be a buffer tank 140 or a liquid waste treatment system (not shown) generally provided in the reactor.
  • the water supply line 150 is connected to the lower side of the ion exchanger 111. That is, the water is supplied upward from the bottom of the ion exchanger 111 through the water supply line 150 so that the radioactive waste resin accumulated in the bottom surface of the ion exchanger 111 is suspended in the water.
  • the water supply pump 151 is operated until the pressure of the water supply line 150 measured by the pressure sensor 152 reaches a predetermined pressure so that the water is supplied to the ion exchanger 111.
  • the supply of water through the water supply line 150 continues until the pressure measured by the pressure sensor 152 reaches a predetermined pressure, which is tested at the time of installing the radioactive waste resin treatment system 100. It can be decided through the back.
  • the feed pump 151 may be one of a progressive cavity pump type capable of continuously applying sufficient accumulating pressure.
  • the recovery valve 121 interlinked with the pressure sensor 150 is opened, so that the mixture of radioactive waste resin and water in the ion exchanger 111 is returned to the recovery line ( A recovery step S20 is performed to flow to the hopper 130 through 120. At this time, the on-off valve 123 is also opened.
  • the radioactive waste resin in the ion exchanger 111 may be quickly flowed to the hopper 130 through the recovery line 120.
  • the feed pump 151 may be continuously operated to allow the mixture to flow smoothly. If the length of the recovery line 120 is short or the height of which the ion exchanger 111 is installed with respect to the hopper 130 is sufficiently high, the operation of the water supply pump 151 is stopped and the water supply line 150 and the recovery line 120 are stopped. It is also possible to make the mixture flow only by the pressure difference of).
  • the ion exchanger 111 is installed at a relatively higher position than the hopper 130 and the length of the recovery line 120 is shorter, the flow of the mixture becomes smoother, so that the radioactive waste resin treatment system 100 is installed. This can be taken into account.
  • the hopper 130 may be configured as an atmospheric container. have. That is, the hopper 130 does not need to be configured as a pressure vessel capable of withstanding high pressure.
  • the radioactive waste resin processing system 100 can easily manufacture the hopper 130, and there is an advantage in that the cost of manufacturing the hopper 130 is saved.
  • the water level meter 138 measures the amount of the mixture contained in the hopper 130, and by using the water level meter 138, the amount of the mixture introduced into the housing 130a of the hopper 130 can be confirmed. Since the hopper 130 may be designed to have a suitable volume according to the capacity of the ion exchanger 111, the water level gauge 138 may be clogged with the recovery line 120, or may be normally connected to the recovery valve 121 and the opening / closing valve 123. It can also be used to determine if it is working.
  • an inspection step S30 may be performed to determine whether the radioactive waste resin in the ion exchanger 111 has been sufficiently moved to the hopper 130.
  • the inspection means 122 installed in the recovery line 120, the inspection means 122 can determine the amount of radioactive resin contained in the device or the device for measuring the radiation level of the mixture.
  • Transparent piping and the like can be used.
  • the recovery step (S20) may continue, and if it is determined that the movement of the radioactive waste resin is completed, the recovery step (S20). Can be completed.
  • the operation of the feed water pump 151 is stopped to stop the water supply to the ion exchanger 111.
  • the recovery valve 121, the opening / closing valve 123, and the water supply valve 153 are blocked, and a drain (not shown) installed in the recovery line 120 and a return valve 155 or drain installed in the water supply line 150 are provided.
  • a drain step may be performed to open the water outlet valve 164 installed in the water outlet line 163 to discharge water remaining in the pipe and the buffer tank 140. Therefore, the drain line may be provided at the bottom or the side of the buffer tank 140.
  • the draining step prevents corrosion or decay due to water remaining in the recovery line 120, the water supply line 150, and the buffer tank 140, and maintains and repairs the radioactive waste resin treatment system 100. It is possible to facilitate the operation for, and to prevent the radiation is emitted to the surroundings due to the remaining radioactive material.
  • Separation step (S40) is a step to allow the mixture of the radioactive waste resin and the water flowed into the hopper 130 to be separated into the water and radioactive waste resin by the filter (131, 132, 133) described above.
  • the radioactive waste resin R1 separated from the water accumulates in the housing 130a of the hopper 130 as shown.
  • the mixture can be stirred by operating the stirring means 135 so that the water contained in the mixture can be easily discharged through the filters 131, 132, and 133.
  • Water passing through the filters 131, 132, and 133 flows into the buffer tank 140 through the dehydration line 141.
  • a screen having an eye smaller than the radioactive waste resin particles may be used as the filters 131, 132, and 133.
  • the radioactive waste resin (R1) separated from the water contains radioactive material, which may emit a level of radiation harmful to the human body or the environment. Therefore, as described above, the hopper 130 is installed in the shielded shield space (I) so that radiation does not leak to the outside.
  • the radioactive waste resin (R1) Since the radioactive material contained in the radioactive waste resin (R1) collapses over time, and thus the amount of radiation is reduced, the radioactive waste resin (R1) in the hopper 130 until the radiation level of the radioactive waste resin (R1) is sufficiently lowered below a predetermined level. A waiting step can be made to be accommodated.
  • Decay storage which relates to the fact that the half-life of the radionuclide in the radioactive waste paper is stored to reduce radioactivity in a dehydrated state for a certain period of time.
  • air may be circulated in the housing 130a of the hopper 130 by using the air supply line 139 and the exhaust line 139b to sufficiently remove the moisture contained in the radioactive waste resin R1.
  • the air supply line 139 may be provided with a heating means (not shown) to shorten the period required for drying the radioactive waste resin R1.
  • the filters 131, 132, and 133 may be blocked by particles of the radioactive waste resin R1, thereby reducing the separation effect of the mixture.
  • At least a portion 133 of the filters 131, 132, and 133 may be formed in a cylindrical shape or the like as mentioned above.
  • the cylindrical filter 133 is prevented from being blocked by the particles of the radioactive waste resin R1 even if the radioactive waste resin R1 accumulates in the housing 130a of the hopper 130 due to gravity or the like. Can be.
  • a backflushing line (not shown) may be installed in the filters 131, 132, and 133 to prevent deterioration of the performance of the filters 131, 132, and 133.
  • the backwash line may be installed in the housing 130a such that water is sprayed in the direction opposite to the direction in which the mixture is filtered by the filters 131, 132, and 133.
  • a device is provided at a position corresponding to the filter that can spray water or / and air to the filter in the reverse direction of the filtering direction to remove the radioactive wastewater particles attached to the filter.
  • the radioactive waste resin R1 particles are dropped from the filters 131, 132 and 133 by spraying water into the backwashing line. As a result, the performance of the filters 131, 132, and 133 can be maintained not to be lowered.
  • the backwashing line may be connected to each filter 131, 132, and 133 together with the dewatering line 141.
  • the cylindrical filter 133 may be formed so that one side thereof is opened, and a dewatering line 141 and a back washing line (not shown) may be connected to the opened portion.
  • the backwashing step for performing such backwashing may be performed during the separation step S40 or between the separation step S40 and the standby step.
  • Discharge step (S50) is a step for the radioactive waste resin (R1) is discharged to the outside of the housing 130a of the hopper 130 by the discharge means (134).
  • the radioactive waste resin R1 is in the form of a powder containing a large amount of small particles, when the time elapses in a state accumulated in the housing 130a, the radioactive waste resin R1 may be aggregated with each other or a cavitation by a bridge may occur. In this case, even if the discharge means 134 is operated, the radioactive waste resin R1 accommodated in the housing 130a of the hopper 130 may not be smoothly discharged.
  • the radioactive waste resin R1 may be stirred by the stirring means 135 while the discharge step S50 is being performed.
  • the radioactive waste resin R1 is further provided by applying a vibration to the housing 130a during the discharging step S50 by further installing a knocker to apply vibration to the housing 130a.
  • the radioactive waste resin R1 attached to the inner wall of the housing 130a or the filters 131, 132, 133, and the like may be easily removed by the discharge means 134.
  • the vibrating means may be installed or spaced apart from the housing to strike the housing.
  • the vibrating means may be connected to one side / other side of the vibrating means such that a string or the like is coupled to move forward / backward, and the string may be coupled to the slab.
  • the dried radioactive waste resin R1 may be scattered and flow out to the outside through the exhaust line 139b.
  • the air supply valve 139a may be closed during the discharge step S50 to stop the circulation of air through the air supply line 139 and the exhaust line 139b.
  • the discharge means 134 When the discharge means 134 is operated to operate the discharge opening and closing means 136 to allow the cover 136c to open the waste resin discharge port (137). Therefore, the radioactive waste resin R1 flows by the discharge means 134 and is discharged through the waste resin discharge port 137.
  • the radioactive waste resin R2 discharged to the waste resin outlet 137 is measured by the meter 180 and accommodated in the waste resin drum 170 or a bag (not shown) containing the waste by a predetermined amount.
  • the operation of the discharge means 134 is stopped and the cover 136c ) To allow the waste resin outlet 137 to be closed, and then the waste resin drum 170 or the bag may be replaced and the radioactive waste resin may be discharged again.
  • the waste resin drum 170 After measuring the type and amount of radioactive material contained therein through radionuclide analysis of the radioactive waste resin (R2), if the radioactive level is above the disposal limit, the waste resin drum 170 is sealed and disposed. If it is below the limit, it may be accommodated in a packaging container such as a sack so that it is stored in a self-contained waste storage warehouse. This is well known and will not be described in detail.
  • the radioactive waste resin processing system 100 is provided with a sensor for measuring the state of each component and a control unit for controlling the operation of each component, in the cab All controls can be made and all controls can be automated.
  • the hopper 130 can simultaneously perform dehydration and discharge of the radioactive waste resin R1, It is not necessary to have waste resin discharge facilities.
  • the pressure sensor 152 is an ion exchanger 111 from the buffer tank 140
  • an example of recovery detection means for generating a signal to open the recovery valve 121 receiving the signal is applied.
  • a water flow sensor in addition to the pressure sensor 152, a water level sensor, a water level sensor, and the like may be used.
  • the water flow detection sensor when the water flow detection sensor is applied as the recovery detection means, the water flow detection sensor is installed (not shown) in the drain line 116, and water is supplied to the ion exchanger 111 through the water supply line 150. When the amount of water supplied to the ion exchanger 111 exceeds a predetermined amount, the water is discharged through the drain line 116. At this time, if the water flow detection sensor detects this and issues a signal, the valve 117 may be closed, and then the recovery valve 121 may detect this to allow the recovery line 120 to be opened.
  • the water flow sensor when the water flow sensor is installed (not shown) in the water supply line 150 to detect whether water is introduced into the ion exchanger 111 through the water supply line 150, the water flows into the ion exchanger 111. When a predetermined time elapses from the start of the inflow, it can be seen that a sufficient amount of water is supplied into the ion exchanger 111. At this time, if the water flow detection sensor detects this and issues a signal, the valve 117 may be closed, and then the recovery valve 121 may detect this to allow the recovery line 120 to be opened.
  • the water level sensor when the water level sensor is applied as the recovery detecting means, the water level sensor is installed in the ion exchanger 111 (not shown), and when the amount of water supplied into the ion exchanger 111 reaches a predetermined amount, the water level sensor is By causing the signal to be emitted, the recovery valve 121 may be opened after closing the valve 117.
  • the water quantity sensor when the water quantity sensor is applied as the recovery detection means, by installing a water quantity sensor (not shown) in the water supply line 150 (for example, side by side with the pressure sensor), to measure the amount of water flowing into the ion exchanger (111). When the amount of water introduced reaches a predetermined amount, the water quantity sensor may generate a signal to close the valve 117 and then open the recovery valve 121.
  • the recovery detecting means applied to the radioactive waste resin processing system 100 and the radioactive waste resin processing method using the same may be variously changed.
  • the buffer tank 140 is connected to the ion exchanger 111 through the water supply line 150 to supply water, but the water supply means 160 is fixed to the ion exchanger 111. If water can be supplied to the water pressure supply means 160 may be directly connected to the water supply line 150.
  • one embodiment of the present invention does not include the buffer tank 140, the water supply pump 151 and the water discharge line 163, it can be modified to be connected to the water supply line 150, the inlet line 161. .
  • the dehydration line 141 may be connected to the drain 118 to allow the water discharged from the hopper 130 to flow into the drain 118.
  • FIG. 4 is a schematic diagram of a radioactive waste resin transport and treatment system according to a second embodiment of the present invention.
  • the ion exchanger 111, recovery line 120, recovery valve 121, dehydration hopper 330, the radioactive waste resin transport and processing system 101 according to an embodiment of the present invention
  • the pressurizing means may include a buffer tank 140, a water feed pump 251, a compressed air line 256, a pressure control valve 257 and the like.
  • Control of each of the above components and / or control of operations is performed by control of a controller (not shown).
  • the buffer tank 140 is connected to a water supply means installed in a nuclear power plant (not shown) and supplying water (hereinafter, referred to as service water). Detailed description will be omitted.
  • the water supply means (not shown, see FIG. 1 water supply means 160) is directly connected to the pressure line 250 instead of the buffer tank 140 may be included in the pressure means, which will be described again below.
  • the buffer tank 140 may be provided with a drain for discharging all the water therein or a drainage means for draining back to the water supply means.
  • the purified water system 110 is a means for circulating water used as a moderator or coolant for a reactor (not shown).
  • the purified water system 110 includes an ion exchanger 111, circulation lines 112, 115, a circulation pump 113, The circulation valves 114 and 119, the drain line 116, the drain valve 117 and the drain 118 are included.
  • the ion exchange resin is loaded in the ion exchanger 111, and the circulation lines 112 and 115 are connected to a reactor or the like. Accordingly, when the circulation valves 114 and 119 are opened and the circulation pump 113 is operated, the water in the reactor circulates through the ion exchanger 111, and in this process, ions including radionuclides among foreign substances contained in the water. Is trapped in the ion exchange resin as it is exchanged with ions in the ion exchange resin.
  • the ion exchange resin loaded in the ion exchanger 111 is newly replaced.
  • the ion exchange resin used is a radioactive waste resin. Are treated.
  • the buffer tank 140 supplies water when the radioactive waste resin in the ion exchanger 111 is transported, and is connected to the ion exchanger 111 by a pressure line 250.
  • the pressurization line 250 includes a water supply pump 251, a pressure sensor 252, a water supply valve 253, a return line 254 and a return valve 155, a compressed air line 256, and a pressure control valve 257. Is installed.
  • the feed water pump 251 is used to supply the water in the buffer tank 140 to the ion exchanger 111 through the pressurization line 250, and the return line 254 may supply the water in the pressurization line 250 to the buffer tank 140. Can be used to return to
  • the pressure sensor 252 is installed to measure the pressure inside the pressure line 250.
  • the dehydration hopper 330 is connected to the ion exchanger 111 by the recovery line 120 and is connected to the buffer tank 140 by the dehydration line 141.
  • the dehydration line 141 is provided with a dehydration valve 142 for opening and closing the dehydration line 141, the dehydration valve 142 can be opened only when the water is discharged through the dehydration line 141.
  • the dehydration hopper 33 includes a drain line 116, a drain valve 117, a drain 118, and the like.
  • the dehydration hopper is set to be operated in a form capable of companies rather than atmospheric operation in consideration of long-distance transport and the like.
  • the dehydration hopper is considered to be pressurized rather than atmospheric operation when considering long distance transport, and pressurization may be performed in two ways as follows.
  • the remaining 50-10% can be filled with air.
  • the recovery line 120 is provided with a recovery valve 121 and the inspection means 122.
  • the feed water supply line 260 connects the dehydration hopper 330 and the buffer tank 140.
  • the feed water supply line 260 is provided with a transfer pump 261, and the feed water supply line 260 is again a buffer tank 140.
  • Return line 262 connected to the is installed.
  • the transfer pump 261 is used to supply the water in the buffer tank 140 to the dehydration hopper 330 through the feed water supply line 260, and the return line 262 may supply the water in the feed water supply line 260 to the buffer tank ( 140 can be used to return.
  • the feed water supply line 260 is connected to the compressed air supply means not shown.
  • a pressure adjusting valve 257 is installed in the feed water supply line 260 so that the compressed air supplied to the feed water supply line 256 through the compressed air supply means (not shown) has a constant pressure.
  • a pressure regulating valve such as a pressure reducing valve is used as the pressure regulating valve 257. Since the pressure regulating valve is well known, a description thereof is omitted.
  • Water purification system 110 recovery line 120, recovery valve 121, dehydration hopper 330, connection transfer line 337, buffer tank 140, pressure line 250, pressure sensor 252 described above ,
  • the feed water supply line 260 and the transfer pump 261 is installed in the first building (A) as shown, the combined hopper 230 is installed in the second building (B), dehydration hopper 330 And the combined hopper 230 is connected by a connection transfer line 337.
  • the first building A and the second building B are one example indicating that they are configured at positions spaced apart from each other.
  • the dehydration hopper and the combined hopper may be configured in the same building when the hopper is in a spaced apart position.
  • Transfer valves 337a and 337b may be installed in the connection transfer line 337 as shown.
  • the first building A may mean a place where the radioactive waste resin is generated
  • the second building B may mean a place where a treatment such as drying, solidification or packaging of the radioactive waste resin is performed. That is, the first building (A) and the second building (B) may be arranged in a short distance or long distance, and unlike shown, a plurality of first buildings (A) connected to one second building (B) 337 may be connected.
  • the wastewater tank 240 and the solidification means 290 may be installed in the second building B.
  • FIG. 5 is a detailed schematic diagram of the dehydration hopper shown in FIG. 4.
  • the dewatering hopper 330 is disposed in the shielding space I1 formed by the slabs 10 and 20 and the shielding walls 30 and 40.
  • the slabs 10 and 20 are simplified parts of the first building (A of FIG. 4) among the buildings in which the radioactive waste resin transport and treatment system 101 is installed, and may be formed to shield radiation.
  • the dehydration hopper 330 may be kept in a state in which the mixture of the radioactive waste resin and water R1 is accommodated for a predetermined time, as described below, so that the dehydration hopper 330 may be disposed in a separate shielded space I1.
  • the slab 20 may be provided with a hatch door 21 and an auxiliary hatch door 22 that can be opened and closed.
  • the hatch door 21 may be used for maintenance of the dehydration hopper 330, and the auxiliary hatch door 22 may be used for meter reading of various instruments including the water level gauge 138 or monitoring in the shielded space I1. have.
  • the dewatering hopper 330 includes a housing 130a having a predetermined shape including a container type, a cylinder type, a filter 131, 132, 133, a stirring means 135, a water gauge 138, an air supply line 139, The air supply valve 139a and the exhaust line 139b are included.
  • the filters 131, 132, and 133 are for separating the radioactive waste resin from the mixture R1 of radioactive waste resin and water, and are installed in the housing 130a.
  • the filters 131, 132, and 133 may have different shapes according to the installed positions.
  • plate-shaped filters 131 and 133 may be installed at the sidewall portion or the lower portion of the housing 130a, and a cylindrical filter 133 may be installed at an intermediate position in the housing 130a.
  • the mixture R1 introduced into the housing 130a through the recovery line 120 is discharged by the radioactive wastewater by the filters 131, 132, and 133.
  • the filters 131, 132, and 133 After being separated into paper and water, only the water passes through the filters 131, 132, and 133 and is installed to flow through the dehydration line 141 to the buffer tank (140 of FIG. 4).
  • the dehydration valve 142 is opened to allow the water to flow through the dehydration line (141).
  • the stirring means 135 may include a stirring blade 135c, a stirring roller 135d, a stirring shaft 135b, and a stirring blade driving means 135a disposed in the housing 130a.
  • Stirring means 135 is for stirring the mixture (R1) accommodated in the housing (130a), the mixture (R1) may be stirred by the stirring means 135 may be in a high fluidity state.
  • the air supply line 139 and the exhaust line 139b connected to the housing 130a are for flowing air into the housing 130a for ventilation inside the housing 130a, and the housing ( The air supplied into the 130a is discharged to the outside of the housing 130a through the exhaust line 139b.
  • the air supply line 139 may be further provided with a heating means such as a heating wire not shown. This is for heating the air supplied into the housing 130a through the air supply line 139.
  • a heating means such as a heating wire not shown. This is for heating the air supplied into the housing 130a through the air supply line 139.
  • the exhaust line 139b may be connected to a gaseous waste treatment system (not shown) generally provided in the reactor.
  • connection transfer line 337 and the feed water supply line 260 are connected to the housing 130a of the dehydration hopper 330.
  • the feed valve 337a is opened while the water in the buffer tank 140 is supplied through the feed water supply line 260, the mixture R1 may flow through the connection transfer line 337.
  • the stirring means 135 may be operated to smooth the flow of the mixture R1, and after supplying a sufficient amount of water through the feed water supply line 260 while observing the water level gauge 138, the transfer valve ( By allowing the 337a) to open, the mixture R1 may be smoothly flowed by the hydraulic pressure.
  • the compressed air line 256 connected to the pressure line 250 is for supplying compressed air to the pressure line 250, and the compressed air supply means (not shown) is connected to the pressure line 250. do.
  • a pressure control valve 257 is installed in the compressed air line 256, so that the compressed air supplied to the compressed air line 256 through the compressed air supply means (not shown) has a constant pressure.
  • a pressure regulating valve such as a pressure reducing valve is used as the pressure regulating valve 257. Since the pressure regulating valve is well known, a description thereof is omitted.
  • an open / close valve (not shown) may be installed in the compressed air line 256 to control whether the compressed air is supplied through the pressurized line 250, and the compressed air is supplied through the pressurized line 250. If the check valve (not shown) to prevent the flow into the buffer tank 140 may be installed in the pressure line (250).
  • FIG. 6 shows the combined hopper shown in FIG. 4.
  • the combined hopper 230 is disposed in the shielding space I2 formed by the slabs 50 and 60 and the shielding walls 70 and 80.
  • the slabs 50 and 60 are simplified parts of the second building (B of FIG. 4) among buildings in which the radioactive waste resin transport and treatment system 101 is installed, and may be formed to shield radiation.
  • the combined hopper 230 may be kept in a state in which the radioactive waste resin R2 is accommodated for a certain period of time as described below, and may be arranged in a separate shielded space I2.
  • the slab 50 may be provided with a hatch door 61 and an auxiliary hatch door 62 that can be opened and closed. Since the hatch door 61 and the auxiliary hatch door 62 have the same structure and operation as the hatch door 21 and the auxiliary hatch door 22 described with reference to FIG. 5, detailed descriptions thereof will be omitted.
  • the combined hopper 230 includes a housing 230a having a predetermined shape including a container type, a cylinder type, a filter 231, 232, 233, a discharge means 234, a stirring means 235, and an opening and closing means 236. ), Level gauge 238, air supply line 239, air supply valve 239a and exhaust line 239b, and the like.
  • the stirring means 235 the water level meter 238, the air supply line 239, the air supply valve 239a, and the exhaust line 239b, the filter 131, described with reference to FIG. 132 and 133, the stirring means 135, the water level meter 138, the air supply line 139, the air supply valve 139a and the exhaust line (139b) and the same structure and operation, the description thereof will be described with reference to FIG. Will be replaced by one explanation.
  • the filters 231, 232, and 233 filter the mixture of radioactive waste resin and water R1 flowing from the dehydration hopper (330 of FIG. 4) through the connection transfer line 337, and thus, the radioactive waste resin R2 and water. Disconnect.
  • the mixture R1 introduced into the housing 230a through the connection transfer line 337 is formed by the radioactive waste resin (B) by the filters 231, 232, and 233. After separation into R2) and water, only the water is installed to flow through the filters 231, 232, 233 to the buffer tank (140 of FIG. 4) through the dehydration line 241.
  • the dehydration valve 142 installed in the dehydration line 241 to open and close the dehydration line 241 is opened to allow the water to flow to the waste water tank 240 through the dehydration line 241.
  • the wastewater tank 240 may be connected to a liquid waste treatment system (not shown) which is generally installed in a nuclear power plant (not shown).
  • a waste resin outlet 237 may be formed in the housing 230a of the combined hopper 230.
  • the waste resin discharge port 237 is formed to penetrate the shielding wall 80 so that the radioactive waste resin R2 separated from the water can be discharged to the outside of the shielded space I2.
  • Discharge means 234 may be installed on the lower side of the housing (230a), the discharging means 234 is a screw 234c, screw 234c installed to reach the waste resin discharge port 237 from the lower side of the housing (230a) Screw drive shaft 234b and screw drive shaft 234b connected to the screw drive means 234a may be included.
  • the discharge means 234 may allow the radioactive waste resin R2 contained in the housing 230a to be discharged to the outside through the waste resin discharge port 237 according to the operation of the screw driving means 234a.
  • the outlet opening / closing means 236 may include a cover 236c for covering the waste resin outlet 237, a rod 236b connected to the cover 236c, and a cylinder 236a for moving the rod 236b.
  • the outlet opening and closing means 236 may open or close the waste resin outlet 237 according to the operation of the cylinder 236a.
  • the portion where the waste resin outlet 237 of the housing 230a is formed and the cover 236c are made of a material capable of shielding radiation, and when the cover 236c covers the waste resin outlet 237, the radioactive waste resin Radiation emitted from R2 may be prevented from leaking outside the shielded space I2.
  • the waste resin discharge port 237 may include a waste resin drum 270 in which the radioactive waste resin R3 discharged from the combined hopper 230 is accommodated, and a portion of the waste resin drum 270 disposed therein.
  • a meter 280 may be installed to measure an amount R3 is received in the waste resin drum 270.
  • the radioactive waste resin R3 accommodated in the waste resin drum 270 may be transferred to the solidification means 290. This will be described again below.
  • Figure 7 is a flow chart for explaining the radioactive waste resin transport and treatment method using a radioactive waste resin transport and treatment system according to an embodiment of the present invention.
  • the radioactive waste resin transport and treatment method using the radioactive waste resin transport and treatment system according to an embodiment of the present invention having the configuration as described above with reference to FIGS. 4 to 7 will be described.
  • the radioactive waste resin transport and treatment method using a radioactive waste resin transport and treatment system according to an embodiment of the pressure step (S100), recovery step (S200), inspection step (S300), transport A step S400, a separation step S500, and a discharge step S600 are included.
  • Pressurization step (S100) is a step for allowing water to be supplied from the buffer tank 140 to the ion exchanger 111 until the pressure in the pressure line 250 measured by the pressure sensor 252 reaches a predetermined pressure. This is done by the following procedure.
  • the radioactive waste resin contained in the ion exchanger 111 is treated according to the radioactive waste resin transport and treatment method using the radioactive waste resin transport and treatment system according to an embodiment of the present invention, after which the inside of the ion exchanger 111 is empty. ), Use a new radioactive waste resin.
  • the circulation valves 114 and 116 of the water purification system 110 are closed to prevent the water from being circulated to the circulation lines 112 and 115.
  • water is supplied to the buffer tank 140 by a water supply means (not shown).
  • the circulation lines 112 and 115 are generally configured such that water flows downward from the upper side of the ion exchanger 111 and ion exchange takes place. Therefore, the radioactive waste resin has a shape accumulated upward from the bottom of the ion exchanger 111, and immediately after the circulation of water in the water purification system 110 is blocked, the radioactive waste resin is disposed in the circulation lines 112 and 115 in the ion exchanger 111. The water circulated by the water becomes full.
  • the drain valve 118 is opened to allow some or all of the water in the full state in the ion exchanger 111 to be discharged to the drain 119 so that a space is formed in the ion exchanger 111.
  • the drain 119 may be a buffer tank 140 or a liquid waste treatment system (not shown) generally provided in the reactor.
  • the pressurization line 250 is connected to the lower side of the ion exchanger 111 to improve the flowability of the radioactive waste resin. That is, the radioactive waste resin accumulated in the bottom surface of the ion exchanger 111 by supplying water or compressed air or water and compressed air upward from the lower side of the ion exchanger 111 through the pressurization line 250. It can be suspended at.
  • the drain valve 118 remains open, and water or compressed air or water and compressed air are supplied into the ion exchanger 111 to discharge the mixture of radioactive waste resin and water to the drain 119. As soon as it is confirmed that the drain valve 118 is shut off.
  • the water supply pump 251 is operated until the pressure of the pressure line 250 measured by the pressure sensor 252 reaches a predetermined pressure so that the water is supplied to the ion exchanger 111, or the compressed air supply means ( (Not shown) and open / close a valve (not shown) installed in the compressed air line 256 to supply the compressed air whose pressure is constantly adjusted by the pressure regulating valve 257 to the ion exchanger 111. Be sure to If necessary, water and compressed air may be simultaneously supplied to the ion exchanger 111.
  • the supply of water or compressed air or pressurized water and compressed air through the pressurization line 250 is continued until the pressure measured by the pressure sensor 252 reaches a predetermined pressure. At the time of installing the processing system 101, it can be determined through a test or the like.
  • the feed pump 251 may be one of a progressive cavity pump type capable of continuously applying sufficient accumulating pressure.
  • a recovery step S200 is performed to flow to the dehydration hopper 330 through the 120.
  • the radioactive waste resin in the ion exchanger 111 may be easily flowed to the dehydration hopper 330 through the recovery line 120. .
  • compressed air when compressed air is supplied to the ion exchanger 111 through the pressure line 250, compressed air is introduced into the space formed in the ion exchanger 111 mentioned above to pressurize the mixture of radioactive waste resin and water.
  • the mixture may be more easily flowed through the recovery line 120.
  • the pressure inside the pressurizing line 250 is applied to a predetermined pressure.
  • compressed air is supplied into the ion exchanger 111 through the pressurizing line 250 until it is reached, the compressed air is expanded in the recovery step S200 and the flow of the mixture through the recovery line 120 becomes easier. Can proceed.
  • the compressed air supplied through the pressure line 250 is adjusted to a constant pressure by using the pressure regulating valve 257, the flow rate of the compressed air supplied by the compressed air supply means (not shown) is constant. If it can be maintained, it is possible to predict whether or not the pressure inside the pressure line 250 has reached a predetermined pressure without the pressure gauge 252 by measuring a constant time from the time when the compressed air is supplied.
  • the feed water pump 251 or the compressed air supply means are continuously operated.
  • the length of the recovery line 120 is short or the height of the ion exchanger 111 is installed with respect to the dehydration hopper 330 is sufficient
  • the operation of the water supply pump 251 or the compressed air supply means may be stopped and the mixture may flow only by the pressure difference between the pressure line 250 and the recovery line 120.
  • the ion exchanger 111 is installed at a position relatively higher than the dehydration hopper 330 and the length of the recovery line 120 is shorter, the flow of the mixture becomes smoother. This can be taken into account during installation.
  • the dehydration hopper 330 is configured as an atmospheric container. Can be. That is, the dehydration hopper 330 does not need to be configured as a pressure vessel capable of withstanding high pressure.
  • the radioactive waste resin transport and treatment system 101 can easily manufacture the dehydration hopper 330, and the cost required for manufacturing the dehydration hopper 330 is reduced. .
  • the water level meter 138 measures the amount of the mixture R1 contained in the dehydration hopper 330.
  • the mixture R1 is introduced into the housing 130a of the dewatering hopper 330 by using the water level meter 138. You can check the amount. Since the dehydration hopper 330 may be designed to have a suitable volume according to the capacity of the ion exchanger 111, the water level gauge 138 may determine whether the recovery line 120 is blocked, whether the recovery valve 121 is normally operated, or the like. It can also be used to determine.
  • an inspection step S300 for determining whether the radioactive waste resin in the ion exchanger 111 has been sufficiently moved to the dehydration hopper 330 may be performed.
  • the inspection means 122 installed in the recovery line 120, the inspection means 122 can determine the amount of radioactive waste resin contained in the device or the device for measuring the radiation level of the mixture Transparent piping and the like can be used.
  • the recovery step (S200) may continue, and if it is determined that the movement of the radioactive waste resin is completed, the recovery step (S200). Can be completed. In this process, the inside of the ion exchanger 111 and the inside of the recovery line 120 can be sufficiently washed by the water.
  • the operation of the water supply pump 251 or the compressed air supply means (not shown) is stopped, and thus the water or the compressed air is ionized.
  • the supply to the exchange 111 is stopped.
  • the recovery valve 121 and the water supply valve 253 are blocked, and a drain (not shown) installed in the recovery line 120, a return valve 155 or a drain (not shown) installed in the pressure line 250, etc.
  • the drain step may be performed to open the water so that water remaining in the pipe and the buffer tank 140 is discharged.
  • the draining step prevents corrosion or decay due to water remaining in the recovery line 120, the pressurization line 250, and the buffer tank 140, and maintains the radioactive waste resin transport and treatment system 101.
  • the maintenance work can be easily performed, and radioactive material can remain to prevent radiation from being emitted to the surroundings.
  • the transfer step S400 may be performed.
  • the mixture R1 introduced into the dehydration hopper 330 in the recovery step S200 is transferred to the combined hopper 230 through the connection transfer line 337.
  • the transfer valves 337a and 337b are opened to allow the mixture R1 to flow through the connection transfer line 337.
  • the transfer step (S400) by operating the transfer pump 261 to the water supply of the buffer tank 140 through the feed water supply line 260 into the housing (130a) by the mixture (R1) is connected to the transfer line 337
  • the dehydration hopper 330 and the combined hopper 230 may be spaced apart from each other so that a sufficient amount of water is supplied when the length of the feed water supply line 260 is long.
  • Separation step (S50) is a step for separating the mixture of radioactive waste resin and the water flow to the dehydration hopper 330 into the water and radioactive waste resin by the filter (231, 232, 233) described above.
  • the radioactive waste resin R2 separated from the water accumulates in the housing 230a of the combined hopper 230 as shown.
  • the mixture may be stirred by operating the stirring means 235 so that the water contained in the mixture may be easily discharged through the filters 231, 232, and 233.
  • a screen having a smaller mesh than the radioactive waste resin particles may be used.
  • the radioactive waste resin (R2) separated from the water contains radioactive material, which may emit a level of radiation harmful to the human body or the environment. Therefore, as described above, the combined hopper 230 is installed in the shielded shield space (I2) so that radiation does not leak to the outside.
  • a waiting step may be performed to be housed within.
  • Decay storage which relates to the fact that the half-life of the radionuclide in the radioactive waste paper is stored to reduce radioactivity in a dehydrated state for a certain period of time.
  • the air supply line 239 may be provided with a heating means (not shown) to shorten the time required for drying the radioactive waste resin R2.
  • the filters 131, 132, 133, 231, 232, and 233 are mixed with the mixture R1 or the radioactive waste resin R2. It may be blocked by the particles of, the separation effect may be reduced.
  • the filters 131, 132, 133, 231, 232, and 233 have been described above.
  • the cylindrical filters 133 and 233 may be prevented from being blocked by the particles of the radioactive waste resin even if the radioactive waste resin accumulates in the housings 130a and 230a due to gravity and the like.
  • the filters 131, 132, 133, 231, 232, and 233 have backflushing lines (not shown). Can be installed.
  • the backwashing line may be installed in the housings 130a and 230a such that water is sprayed in a direction opposite to the direction in which the mixture is filtered by the filters 131, 132, 133, 231, 232 and 233.
  • the radioactive wastewater from the filters 131, 132, 133, 231, 232, and 233 by spraying water into the backwash line. Since the particles may be dropped, the performance of the filters 131, 132, 133, 231, 232, and 233 may be maintained so as not to be lowered.
  • the back washing line may be connected to the respective filters 131, 132, 133, 231, 232, and 233 together with the dehydration lines 141 and 241.
  • the cylindrical filters 133 and 233 may be formed to have one side open, and the dewatering lines 141 and 241 and the back washing line (not shown) may be connected to the open portion.
  • the backwashing step for performing such backwashing may be performed between the recovery step S200 and the waiting step.
  • the radioactive waste resin introduced from another unit is accommodated in the combined hopper 230 and is radioactive.
  • the waiting step may be performed between the recovery step S200 and the transfer step S400.
  • the dehydration valve 142 When the standby step is performed using the dehydration hopper 330, the dehydration valve 142 is sufficiently opened after the recovery step S200 to sufficiently separate the water from the mixture R1, and the air supply line 139 and the exhaust line
  • the radioactive waste resin may be sufficiently dried by ventilating the housing 130a through the 139b.
  • the air supplied through the air supply line 139 is heated by the aforementioned heating means (not shown), thereby promoting drying of the radioactive waste resin.
  • the radiation level of the radioactive waste resin is sufficiently lowered, and then the water is supplied to the radioactive waste resin by the transfer step S400 as described above, and then the radioactive waste resin through the connection transfer line 337. And a mixture of water may be transferred to the combined hopper 230.
  • Discharge step S60 may be performed.
  • Discharge step (S600) is a step to allow the radioactive waste resin (R2) is discharged to the outside of the housing 230a of the combined hopper 230 by the discharge means (234).
  • the radioactive waste resin R2 is in the form of a powder containing a large amount of small particles, when the time elapses in a state accumulated in the housing 230a, the radioactive waste resin R2 may be aggregated with each other or a cavitation by a bridge may occur. In this case, even if the discharge means 234 is operated, the radioactive waste resin R2 accommodated in the housing 230a of the combined hopper 230 may not be smoothly discharged.
  • the radioactive waste resin R2 may be stirred by the stirring means 235 while the discharging step S600 is being performed.
  • the radioactive waste resin R2 is further provided by applying a vibration to the housing 230a during the discharging step S600 by further installing a knocker to apply the vibration to the housing 230a.
  • the radioactive waste resin R2 attached to the inner wall of the housing 230a or the filters 231, 232, and 233 can be easily removed.
  • the vibrating means may be installed or spaced apart from the housing to strike the housing.
  • the excitation means may be coupled to the coupling means such as a rope so that the flow back and forth and the rope is coupled to the slab.
  • the dried radioactive waste resin R2 may be scattered and flow out to the outside through the exhaust line 239b.
  • the air supply valve 239a may be closed during the discharge step S600 to stop the circulation of air through the air supply line 239 and the exhaust line 239b.
  • the discharge means 234 When the discharge means 234 is operated to operate the discharge opening and closing means 236 to allow the cover 236c to open the waste resin discharge port (237). Therefore, the radioactive waste resin R2 flows by the discharge means 234 and is discharged through the waste resin discharge port 237.
  • the radioactive waste resin R3 discharged to the waste resin outlet 237 is measured by the meter 280 and accommodated in the waste resin drum 270 or a bag (not shown) containing the waste by a predetermined amount.
  • the operation of the discharge means 234 is stopped and the cover 236c ) To allow the waste resin outlet 237 to be closed, and then the waste resin drum 270 or bag may be replaced and the radioactive waste resin may be discharged again.
  • the waste resin drum 270 may be solidified (290). It can be transferred to the sealing treatment, and if it is below the disposal limit, it may be accommodated in a packaging container such as a bag to be stored in its own storage warehouse. This is well known and will not be described in detail.
  • the radioactive waste resin transport and processing system 101 is provided with a sensor for measuring the state of each component and a control unit for controlling the operation of each component, All controls can be made in the cab and all controls can be automated.
  • the radioactive waste resin is easily separated into the combined hopper 230 installed from the dehydration hopper 330.
  • the cost required for the installation of a separate facility for the transfer of the radioactive waste resin is saved, and the operating cost required for the operation can also be saved.
  • the pressure sensor 252 is the water or compression supplied to the ion exchanger 111
  • an example of a recovery detecting means for generating a signal to open the recovery valve 121 receiving the signal is applied.
  • a water flow sensor in addition to the pressure sensor 252, a water flow sensor, a water level sensor, a water quantity sensor, and the like may be used.
  • the water flow detection sensor when the water flow detection sensor is applied as the recovery detection means, if the water flow detection sensor is installed in the drain line 117, and water is supplied to the ion exchanger 111 through the pressure line 250, the ion exchanger When the amount of water supplied to the 111 exceeds a predetermined amount, the water begins to be discharged through the pressure line 250.
  • the predetermined amount of water is supplied when only water is supplied through the pressurizing line 250, when only compressed air is supplied, and when water and compressed air are supplied together, the drainage line 116 is an ion exchanger ( 111 may be installed in a different location.
  • the recovery valve 121 may detect this to allow the recovery line 120 to be opened.
  • the water flow sensor when the water flow sensor is installed in the pressure line 250 to detect whether water is introduced into the ion exchanger 111 through the pressure line 250, a time point at which water starts to flow into the ion exchanger 111 is provided. When a predetermined time has elapsed from it can be seen that a sufficient amount of water is supplied into the ion exchanger (111). At this time, when the water flow detection sensor detects this and issues a signal, the recovery valve 121 may detect this to allow the recovery line 120 to be opened.
  • the water level sensor when the water level sensor is applied as the recovery detecting means, the water level sensor is installed in the ion exchanger 111 and the water level sensor issues a signal when the amount of water supplied into the ion exchanger 111 reaches a predetermined amount. 121 can be opened.
  • the water quantity sensor when the water quantity sensor is applied as the recovery detection means, by installing the water level sensor in the pressure line 250 to measure the amount of water flowing into the ion exchanger 111, the amount of water introduced reaches a predetermined amount. If the quantity sensor is to give a signal it may be to the recovery valve 121 is opened.
  • the recovery detecting means applied to the radioactive waste resin transport and treatment method using the radioactive waste resin transport and treatment system according to an embodiment of the present invention may be variously changed.
  • the buffer tank 140 is connected to the ion exchanger 111 through the pressurization line 250 to supply water, but the water supply means (not shown) is the ion exchanger 111.
  • Water supply means may be directly connected to the pressure line 250 if the water can be supplied to a constant water pressure.
  • the dehydration line 141 may be connected to the drain 118 to allow the water discharged from the dehydration hopper 330 to flow into the drain 118.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

방사성 폐수지 이송 및 처리시스템 및 그것을 이용한 방사성 폐수지 이송 및 처리방법이 개시된다. 본 발명의 실시 예에 따르면, 이온교환수지를 이용한 방사성 액체의 정화 과정에서 생성된 방사성 폐수지를 처리하는 방사성 폐수지 처리시스템으로서, 상기 방사성 폐수지가 수용된 이온교환기와 급수라인 또는 가압라인을 통해 연결되어 상기 이온교환기로 용수, 압축공기 및 상기 용수와 상기 압축공기 중에서 적어도 하나를 공급하는 급수수단 또는 가압수단; 상기 이온교환기로 공급된 상기 용수, 상기 압축공기 및 상기 용수와 상기 압축공기중에서 적어도 하나의 양이 미리 정해진 양에 도달되면 신호를 발하는 회수감지수단; 상기 이온교환기와 회수라인으로 연결된 호퍼; 및 상기 회수라인에 설치되고, 상기 회수감지수단의 신호를 수신하면 개방되어 상기 회수라인을 통하여 상기 방사성 폐수지 및 상기 용수의 혼합물이 상기 호퍼로 유동되도록 하는 회수밸브를 포함하고, 상기 호퍼는, 미리 정한 형상의 하우징; 상기 하우징 내에 설치되고, 상기 회수라인으로부터 유입되는 상기 혼합물로부터 상기 방사성 폐수지를 분리하는 하나 이상의 필터; 및 상기 혼합물로부터 분리된 상기 방사성 폐수지를 상기 하우징의 외부로 배출하는 폐수지 배출수단을 포함하여 동작한다.

Description

방사성 폐수지 이송 및 처리를 위한 시스템과 그것을 이용한 방사성 폐수지 이송 및 처리방법
본 발명은 방사성 폐수지 이송 및 처리시스템 및 그것을 이용한 방사성 폐수지 이송 및 처리방법에 관한 것으로, 방사성 액체의 정화에 사용되는 이온교환수지를 안전하고 용이하게 교체 및 처리할 수 있고, 또한 방사성 폐수지를 이격된 장소로 용이하게 이송할 수 있는 방사성 폐수지 이송 및 처리시스템과 그것을 이용한 방사성 폐수지 이송 및 처리방법에 관한 것이다.
원자로심(reactor core)이나 사용 후 핵연료(spent fuel) 등을 저장하는 탱크 또는 수조에는 일반적으로 물(경수 또는 중수)을 채움으로써 상기 물이 방사성물질로부터 발생되는 열과 방사선을 차단하는 냉각재 및 감속재로 작용되도록 하는 것이 일반적이다.
이와 같이 냉각재 및 감속재로 사용되는 물에는 핵분열 과정이나 그 영향에 의해 발생된 핵분열생성물, 방사성핵종, 부식생성물 등의 이물질이 혼입되므로, 물의 정화가 필요할 때에는 물로부터 이러한 이물질들이 제거되도록 할 필요가 있다. 이물질들 중 방사성핵종을 포함하는 이온의 제거에는 이온교환수지를 이용하여 이온교환하는 이온교환법이 사용되고 있다.
이온교환수지는 이온교환기(ion exchanger)에 수용된 상태로 사용되며, 사용 중 이온교환기 후단의 전기전도도 또는 이온교환기의 유입구와 유출구 사이의 차압이 미리 정해진 수치 이상으로 상승하였을 때 새로운 이온교환수지로 교체한다. 이때 이온교환기 내에 수용되어 있던 이온교환수지를 일반적으로 방사성 폐수지(spent resin) 라고 칭한다.
부연하면, 이온교환수지는 방사성 폐수지를 포함하는 용어이며, 이온교환 수지 중에서 사용되어 폐기의 대상이 되는 이온교환수지가 방사성 폐수지에 해당된다.
방사성 폐수지는 아래와 같은 처리과정을 거쳐 교환되고 있다.
첫 번째는 이온교환수지를 카트리지(cartridge)에 담아 이온교환기에 장전 후 사용하는 방법으로, 이온교환수지를 교체하고자 할 때 크레인 등을 이용하여 카트리지를 교체하는 방법이다.
이 방법은 교체작업 중 이온교환기로부터 꺼낸 카트리지 내에 수용된 방사성 폐수지로부터 방출되는 방사선에 의해 작업자가 피폭될 가능성이 크다는 단점을 갖는다. 따라서 이 방법은 카트리지의 취급, 차폐 및 보관을 위한 크레인, 전용 캐스크(cask) 등의 구비를 필요로 한다.
두 번째 방법으로는 용수(service water) 자체의 압력을 이용하거나 폐수지 이송펌프로 용수에 압력을 가하여 방사성 폐수지를 이송하는 방법이다. 즉, 압력이 가해진 용수(물)를 이용하여 이온교환기 내의 방사성 폐수지를 폐수지 탱크로 이송하는 방법이다.
이 방법은 첫 번째 방법에 비하여 원격으로 폐수지를 이송 및 취급할 수 있으므로 작업이 용이하고 작업자의 피폭 저감측면에서도 유리하다. 그러나 폐수지 탱크 내에 수용된 방사성 폐수지의 드럼 포장 또는 고화처리 등을 위해서는 폐수지 탱크로부터 방사성 폐수지를 다시 꺼낼 수 있는 별도의 배출설비가 필요하다.
상용원전의 경우, 이온교환기에서 교체한 방사성 폐수지는 폐수지 저장탱크로 이송되며, 여기서 일정 기간 방사성붕괴(radioactive decay)가 일어나도록 하여 방사선준위가 낮아지도록 한다. 이후 폐수지 저장탱크에 폐수지 건조설비(SRDS: spent resin drying system)를 연결하거나, 다시 용수를 공급하여 방사성 폐수지가 고형화(solidification) 처리설비로 이송되도록 한다.
이 방법은 대용량의 방사성 폐수지의 교체 및 처리에는 적합하나, 소규모의 처리용으로는 부대설비, 설치면적 등을 고려할 때 효율적이지 못한 측면이 있다. 상용원전에서는 방사성 폐수지 배출기능을 포함하는 폐수지 건조설비 및 고형화 처리설비의 고비용 소요를 고려하여, 이들 설비를 이동식(mobile)으로 구비함으로써 원자력 발전소의 호기간 공용설비로 사용하고 있다.
폐수지 저장탱크 및 이들 설비간의 연계운전을 고려할 때 자주, 소량씩 방사성 폐수지를 배출하는 것은 용이하지 않으므로, 효율적인 운전을 위해서는 폐수지 저장탱크 등 관련 기기들을 상대적으로 크게 만들 필요가 있으며, 이에 따라 설비를 위한 많은 면적의 부지 또한 필요하게 된다.
선행기술문헌으로써, 대한민국 등록실용신안공보 제20-04474315호(등록일: 2009년 4월 21일)가 있다.
본 발명은 방사성 폐수지를 처리하는 설비의 최적화가 가능하고, 타 설비와의 연계성이 좋으며, 방사성 폐수지를 안전하고 용이하게 이격된 장소로 이송할 수 있고, 제작의 용이성 및 경제성이 높은 방사성 폐수지 처리시스템 및 그것을 이용한 방사성 폐수지 처리방법을 제공하고자 한다.
상기 목적들을 달성하기 위하여, 제 1실 시 예는, 이온교환수지를 이용한 방사성 액체의 정화 과정에서 생성된 방사성 폐수지를 처리하는 방사성 폐수지 처리시스템으로서,
상기 방사성 폐수지가 수용된 이온교환기와 급수라인을 통해 연결되어 상기 이온교환기로 용수를 공급하는 급수수단 또는 버퍼탱크;
상기 이온교환기로 공급된 상기 용수의 양이 미리 정해진 양에 도달되면 신호를 발하는 회수감지수단;
상기 이온교환기와 회수라인으로 연결된 호퍼; 및
상기 회수라인에 설치되고, 상기 회수감지수단의 신호를 수신하면 개방되어 상기 회수라인을 통하여 상기 방사성 폐수지 및 상기 용수의 혼합물이 상기 호퍼로 유동되도록 하는 회수밸브를 포함하고,
상기 호퍼는,
미리 정한 형상의 하우징;
상기 하우징 내에 설치되고, 상기 회수라인으로부터 유입되는 상기 혼합물로부터 상기 방사성 폐수지를 분리하는 하나 이상의 필터; 및
상기 혼합물로부터 분리된 상기 방사성 폐수지를 상기 하우징의 외부로 배출하는 폐수지 배출수단을 포함하여 동작한다.
본 발명에 따른 제 2실 시 예는, 이온교환수지를 이용한 방사성 액체의 정화 과정에서 생성된 방사성 폐수지를 처리하는 방사성 폐수지 이송 및 처리시스템으로서,
상기 방사성 폐수지가 수용된 이온교환기와 가압라인을 통해 연결되어 상기 이온교환기로 용수, 압축공기 및 상기 용수와 상기 압축공기 중에서 적어도 하나를 공급하는 가압수단;
상기 이온교환기와 회수라인으로 연결된 탈수호퍼;
상기 이온교환기로 공급된 상기 용수, 상기 압축공기 및 상기 용수와 상기 압축공기중에서 적어도 하나의 양이 미리 정해진 양에 도달되면 신호를 발하는 회수감지수단; 및
상기 회수라인에 설치되고, 상기 회수감지수단의 신호를 수신하면 개방되어 상기 회수라인을 통하여 상기 방사성 폐수지 및 상기 용수의 혼합물이 상기 탈수호퍼로 유동되도록 하는 회수밸브;
상기 탈수호퍼와 연결이송라인으로 연결된 겸용호퍼; 및
상기 탈수호퍼 및 상기 버퍼탱크와 이송급수라인으로 연결되고, 상기 용수를 상기 탈수호퍼로 공급하여 상기 혼합물이 상기 연결이송라인을 통하여 상기 겸용호퍼로 이송되도록 하는 이송펌프를 포함하고,
상기 탈수호퍼 및 상기 겸용호퍼는,
미리 정한 형상의 하우징; 및
상기 하우징 내에 설치되고, 상기 하우징 내부로 유입되는 상기 혼합물로부터 상기 방사성 폐수지를 분리하는 필터를 각각 포함하고,
상기 겸용호퍼는,
상기 혼합물로부터 분리된 상기 방사성 폐수지를 상기 하우징의 외부로 배출하는 폐수지 배출수단을 포함하여 동작한다.
본 발명에 따른 제 3실 시 예는, 이온교환수지를 이용한 방사성 액체의 정화 과정에서 생성된 방사성 폐수지를 처리하는 방사성 폐수지 처리시스템으로서,
상기 방사성 폐수지가 수용된 이온교환기와 급수라인 또는 가압라인을 통해 연결되어 상기 이온교환기로 용수, 압축공기 및 상기 용수와 상기 압축공기 중에서 적어도 하나를 공급하는 급수수단 또는 가압수단;
상기 이온교환기로 공급된 상기 용수, 상기 압축공기 및 상기 용수와 상기 압축공기중에서 적어도 하나의 양이 미리 정해진 양에 도달되면 신호를 발하는 회수감지수단;
상기 이온교환기와 회수라인으로 연결된 호퍼; 및
상기 회수라인에 설치되고, 상기 회수감지수단의 신호를 수신하면 개방되어 상기 회수라인을 통하여 상기 방사성 폐수지 및 상기 용수의 혼합물이 상기 호퍼로 유동되도록 하는 회수밸브를 포함하고,
상기 호퍼는,
미리 정한 형상의 하우징;
상기 하우징 내에 설치되고, 상기 회수라인으로부터 유입되는 상기 혼합물로부터 상기 방사성 폐수지를 분리하는 하나 이상의 필터; 및
상기 혼합물로부터 분리된 상기 방사성 폐수지를 상기 하우징의 외부로 배출하는 폐수지 배출수단을 포함하여 동작한다.
본 발명의 실시 예에 따르면, 방사성 폐수지의 탈수 및 배출을 동시에 행하는 호퍼를 구비하여 별도의 폐수지 배출설비가 불필요하며, 소용량부터 대용량까지 방사성 폐수지의 발생량에 맞춘 최적화 설계가 가능하다.
본 발명의 실시 예에 따르면, 방사성 폐수지의 탈수를 행하는 탈수호퍼 및 탈수호퍼와 이격 배치되고 탈수호퍼로부터 이송되는 방사성 폐수지의 탈수와 배출을 동시에 행하는 겸용호퍼를 구비함으로써, 방사성 폐수지의 근거리 및 원거리 이송의 안전성 및 용이성이 향상되고, 별도의 폐수지 배출설비가 불필요하며, 소용량부터 대용량까지 방사성 폐수지의 발생량에 맞춘 최적화 설계가 가능하다.
또한 본 발명의 실시 예에 따르면, 상술한 겸용 호퍼에는 대기압 이상의 압력이 가해지지 않으므로 호퍼의 제작성 측면에서 유리하다. 도 1의 호퍼, 또는 도 4의 탈수 호퍼의 경우, 이송지점의 위치, 거리 등에 따라 대기압 또는 그 이상의 압력에서 운전이 가능하도록 고려할 수 있다.
또한 본 발명의 실시 예에 따르면, 호퍼, 버퍼탱크 및 급수펌프를 기본요소로 하는 독립적 모듈형태로서, 단독운전뿐만 아니라 타 설비와의 연계운전이 가능하므로 연계성 측면에서 유리하다.
또한 본 발명의 실시 예에 따르면, 방사성 폐수지의 이송이 완료된 후 배관 내의 잔여물이 모두 배출되도록 함으로써 유지보수가 용이해질 수 있으며, 버퍼탱크에는 기존 계통수를 활용함으로써 재활용 측면에서 유리하다.
도 1은 본 발명의 제 1 실시 예에 따른 방사성 폐수지 처리시스템의 계통도
도 2는 도 1에 도시된 호퍼를 상세히 나타낸 계통도
도 3은 본 발명의 제 1 실시 예에 따른 방사성 폐수지 처리시스템을 이용한 방사성 폐수지 처리방법을 설명하기 위한 순서도
도 4는 본 발명의 제 2 실시 예에 따른 방사성 폐수지 이송 및 처리시스템의 계통도
도 5는 도 4에 도시된 탈수호퍼를 상세히 나타낸 계통도
도 6은 도 4에 도시된 겸용호퍼를 상세히 나타낸 계통도
도 7은 본 발명의 제 2 실시 예에 따른 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법을 설명하기 위한 순서도
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명의 각 실시 예 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명은 생략한다.
또한 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
또한, 본 발명에서 기재된 "포함하다", "구성하다" 또는 "구비하다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다.
본 발명의 실시 예에서, 방사성 폐수지는 물(용수)의 압력으로 이송되며, 여기에 공기압력를 부가하여 물(용수) 또는/및 공기 압력으로 방사성 폐수지가 이송된다.
또한 본 발명에서 각 구성들의 제어 또는/및 동작들의 제어는 제어부(미도시)의 제어에 의해 수행된다.
이하, 본 발명의 실시 예를 첨부한 도면들을 참조하여 상세히 설명하기로 한다.
도 1에는 본 발명의 제 1 실시 예에 따른 방사성 폐수지 처리시스템의 계통도가 도시되어 있다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 방사성 폐수지 처리시스템(100)에는 이온교환기(111), 회수라인(120), 회수밸브(121), 호퍼(130), 버퍼탱크(140), 급수라인(150), 압력센서(152), 급수수단(160) 등이 포함된다.
상기 각 구성/동작들의 제어는 제어부(미도시)의 제어에 의해 수행된다.
급수수단(160)은 원자력 발전소(도시되지 않음) 내에 설치되어 물을 공급하는 수단으로, 이는 일반적인 사항이므로 구체적인 설명은 생략한다.
정수계통(110)은 도시되지 않은 원자로 등에 감속재 또는 냉각재로서 사용되는 물(이하, 용수(service water)라고 칭함)을 순환시키는 수단으로, 정수계통(110)에는 이온교환기(111), 순환라인(112, 115), 순환펌프(113), 순환밸브(114), 배수라인(116), 배수밸브(117) 및 드레인(118) 등이 포함된다.
이온교환기(111) 내에는 이온교환수지가 장전되어 있고, 순환라인(112, 115)은 원자로에 연결된다. 따라서, 순환밸브(114)를 개방하고 순환펌프(113)를 작동시키면 원자로 내의 용수가 이온교환기(111)를 거치며 순환하게 되고, 이 과정에서 용수에 포함된 이물질 중 방사성핵종을 포함하는 이온은 이온교환수지 내의 이온과 교환되면서 이온교환수지에 포집된다.
앞에서 언급했던 바와 같이, 이온교환기(111)가 일정기간 사용되어 소정의 조건에 이르게 되면 이온교환기(111) 내에 장전되어 있던 이온교환수지를 새로 교환하게 되는데, 사용되고 있던 이온교환수지는 방사성 폐수지로서 취급된다.
버퍼탱크(140)는 이온교환기(111) 내의 방사성 폐수지를 이송시키는 등의 동작을 할 때 용수를 공급하기 위한 것으로, 급수라인(150)에 의해 이온교환기(111)와 연결된다.
급수라인(150)에는 급수펌프(151), 압력센서(152) 및 급수밸브(153)가 설치된다.
한편, 호퍼(130)는 회수라인(120)에 의해 이온교환기(111)와 연결되며, 탈수라인(141)에 의해 버퍼탱크(140)와 연결된다. 회수라인(120)에는 회수밸브(121), 검사수단(122) 및 개폐밸브(123) 등이 설치된다.
슬라브(10, 20)는 방사성 폐수지 처리시스템(100)이 설치된 건축물(도시되지 않음)의 일부를 단순화하여 나타낸 것으로, 방사선을 차폐할 수 있도록 형성될 수 있다. 특히 호퍼(130)에는 아래에서 설명할 내용과 같이 방사성 폐수지가 일정 기간 수용된 상태가 유지될 수 있으므로, 별도의 차폐공간에 배치되도록 할 수 있다.
이에 대해서는 도 2를 참조하여 설명한다.
도 2에는 도 1에 도시된 호퍼의 계통도가 상세히 도시되어 있다.
도 2를 참조하면, 호퍼(130)는 슬라브(10, 20) 및 차폐벽(30, 40)에 의해 형성된 차폐공간(I) 내에 배치된다.
슬라브(20)에는 개폐가 가능한 해치도어(21) 및 보조해치도어(22)가 설치될 수 있다. 해치도어(21)는 호퍼(130)의 정비 등에 사용될 수 있으며, 보조해치도어(22)는 아래에서 설명할 수위계(138)를 포함한 각종 계기의 검침이나 차폐공간(I) 내의 감시 등에 사용될 수 있다.
호퍼(130)에는 용기타입, 실린더 타입 등을 포함하는 미리 정한 형상의 하우징(130a), 필터(131, 132, 133), 폐수지 배출수단(134), 교반수단(135), 배출구 개폐수단(136), 수위계(138), 상기 하우징 또는 연결배관(미도시)에 연결되어 상기 하우징 내로 공기를 공급하는 급기라인(139), 급기밸브(139a) 및 상기 하우징에 연결되어 급기라인을 통해 유입된 상기 공기를 배출하는 배기라인(139b) 등이 포함된다.
필터(131, 132, 133)는 방사성 폐수지(R1) 및 용수의 혼합물로부터 방사성 폐수지(R1)를 거르기 위한 것으로, 하우징(130a) 내에 설치된다. 이때 필터(131, 132, 133)는 설치되는 위치에 따라 서로 다른 형상을 가질 수 있다. 예를 들어, 하우징(130a)의 측벽 부분이나 하측 부분에는 평판 형상의 필터(131, 133)가 설치될 수 있고, 하우징(130a) 내의 중간 위치에는 원통 형상의 필터(133)가 설치될 수 있다,
하우징(130a)에 연결된 회수라인(120) 및 탈수라인(141)은, 회수라인(120)을 통하여 하우징(130a) 내로 유입된 혼합물이 필터(131, 132, 133)에 의해 방사성 폐수지(R1) 및 용수로 분리된 후, 용수만 필터(131, 132, 133)를 통과하여 탈수라인(141)을 통해 하우징(130a) 외부로 유동될 수 있도록 설치된다.
여기서, 탈수라인(141)에는 탈수라인(141)을 개폐하는 탈수밸브(142)가 설치되는데, 탈수밸브(142)는 탈수라인(141)을 통하여 용수가 배출되도록 할 때에만 개방되도록 할 수 있다.
하우징(130a)에는 폐수지 배출구(137)가 형성될 수 있다. 이때 폐수지 배출구(137)는 차폐벽(40)을 관통하는 형상으로 형성되어 용수와 분리된 방사성 폐수지(R1)가 차폐공간(I) 외부로 배출될 수 있도록 형성된다.
상기 배출수단(134)은 하우징(130a)의 하측에 설치될 수 있으며, 배출수단(134)에는 하우징(130a)의 하측으로부터 폐수지 배출구(137)에 이르도록 설치된 스크루(134c), 스크루(134c)에 연결된 스크루 구동축(134b) 및 스크루 구동축(134b)을 회전시키는 스크루 구동수단(134a)이 포함될 수 있다.
따라서 상기 배출수단(134)은 스크루 구동수단(134a)의 작동에 따라 하우징(130a) 내에 수용되어 있던 방사성 폐수지(R1)가 폐수지 배출구(137)를 통하여 외부로 배출되도록 할 수 있다.
배출구 개폐수단(136)에는 폐수지 배출구(137)를 커버하는 커버(136c)와, 커버(136c)에 연결된 로드(136b) 및 로드(136b)를 이동시키는 실린더(136a)가 포함될 수 있다.
따라서 상기 배출구 개폐수단(136)은 실린더(136a)의 작동에 따라 폐수지 배출구(137)를 개방 또는 폐쇄할 수 있다. 여기서, 하우징(130a)의 폐수지 배출구(137)가 형성된 부분 및 커버(136c)는 방사선을 차폐할 수 있는 소재로 제조되어 커버(136c)가 폐수지 배출구(137)를 커버했을 때에는 방사성 폐수지(R1)로부터 방사되는 방사선이 차폐공간(I) 외부로 누출되지 않도록 할 수 있다.
교반수단(135)에는 하우징(130a) 내에 배치된 교반날개(135c), 교반롤러(135d), 교반축(135b) 및 교반날개 구동수단(135a) 등이 포함될 수 있다. 교반수단(135)은 하우징(130a) 내에 수용된 방사성 폐수지(R1)를 교반하기 위한 것으로, 방사성 폐수지(R1)는 교반수단(135)에 의해 배출수단(134)으로 용이하게 이동될 수 있다.
폐수지 배출구(137)에는 혼합물로부터 용수가 분리된 방사성 폐수지(R2)가 수용되는 폐수지 드럼(170)이 배치될 수 있고, 폐수지 드럼(170)이 배치된 부분에는 상기 용수가 분리된 방사성 폐수지(R2)가 폐수지 드럼(170)에 수용된 양을 측정하기 위한 계량기(180)가 설치될 수 있다.
한편, 하우징(130a)에 연결된 급기라인(139) 및 배기라인(139b)은 하우징(130a)에 수용된 방사성 폐수지(R1)의 건조를 위하여 하우징(130a) 내부 공간 내로 공기를 유동시키기 위한 것으로, 급기라인(139)에 의해 하우징(130a) 내로 공급된 공기는 배기라인(139b)을 통하여 하우징(130a) 외부로 배출된다.
이때, 급기라인(139)에는 도시되지 않은 열선 등과 같은 가열수단이 더 설치될 수 있는데, 이는 급기라인(139)을 통하여 하우징(130a) 내로 공급되는 공기를 가열함으로써 방사성 폐수지(R1)의 건조속도를 향상시키기 위한 것이다.
참고로, 배기라인(139b)을 통하여 배출되는 공기에도 방사성물질이 포함될 수 있으므로, 배기라인(139b)은 원자로에 일반적으로 구비되는 기체폐기물처리계통(도시되지 않음)에 연결될 수 있다.
다시 도 1을 참조하면, 버퍼탱크(140)는 급수수단(160)과 입수라인(161)에 의해 연결되어 용수를 공급받을 수 있고, 급수라인(150)과 급수수단(160)은 출수라인(163)에 의해 연결되어 버퍼탱크(140) 내에 수용된 용수가 급수수단(160)으로 회수될 수도 있다. 입수라인(161)에 설치된 입수밸브(162) 및 출수라인(163)에 설치된 출수밸브(164)는 용수가 급수수단(160)으로부터 버퍼탱크(140)로 공급되거나 회수되는 것을 조절하기 위한 것이다.
급수라인(150)과 버퍼탱크(140)를 연결하는 복귀라인(154)은 급수라인(150) 내에 용수가 채워져 있을 경우 이를 버퍼탱크(140)로 다시 유동시키기 위한 것이다.
도 3에는 본 발명의 일 실시 예에 따른 방사성 폐수지 처리시스템을 이용한 방사성 폐수지 처리방법을 설명하기 위한 순서도가 도시되어 있다. 도 1 내지 도 3을 함께 참조하여 상술한 바와 같은 구성을 갖는 본 발명의 일 실시 예에 따른 방사성 폐수지 처리시스템을 이용한 방사성 폐수지 처리방법에 대하여 설명한다.
도 3을 참조하면, 본 발명의 일 실시 예에 따른 방사성 폐수지 처리시스템을 이용한 방사성 폐수지 처리방법에는 급수단계(S10), 회수단계(S20), 검사단계(S30), 분리단계(S40) 및 배출단계(S50)가 포함된다.
급수단계(S10)는 압력센서(152)에 의해 측정된 급수라인(150) 내의 압력이 미리 정해진 압력에 도달될 때까지 버퍼탱크(140)로부터 이온교환기(111)로 용수가 공급되도록 하는 단계로서, 아래와 같은 절차로 행해진다.
앞에서 설명했던 바와 같이, 이온교환기(111) 후단의 전기전도도 또는 이온교환기(111)의 순환라인(112, 115)이 연결된 유입구 및 유출구 사이의 차압이 미리 정해진 수치 이상으로 상승되면 이온교환수지를 새로운 것으로 교체하여야 한다.
이때 이온교환기(111) 내에 수용되어 있는 방사성 폐수지는 본 발명의 제 1 실시 예에 따른 방사성 폐수지 처리시스템을 이용한 방사성 폐수지 처리방법에 따라 처리하고, 이후 내부가 비워진 이온교환기(111)에 새로운 방사성 폐수지를 장전하여 사용한다.
이온교환기(111) 내의 방사성 폐수지를 처리하기 위해서는, 우선 정수계통(110)의 순환밸브(114)를 폐쇄하여 순환라인(112, 115)으로 용수가 순환되지 않도록 한다. 이때, 버퍼탱크(140)에는 급수수단(160)에 의해 용수가 공급되도록 한다.
순환라인(112, 115)은 이온교환기(111)의 상측으로부터 하방향으로 용수가 유동하며 이온교환이 일어나도록 구성되는 것이 일반적이다. 따라서, 방사성 폐수지는 이온교환기(111)의 저면으로부터 상방향으로 누적된 형상을 갖게 되며, 정수계통(110)의 용수 순환이 차단된 직후에는 이온교환기(111) 내에 순환라인(112, 115)에 의해 순환하던 용수가 가득 차있는 상태가 된다.
방사성 폐수지가 회수라인(120)을 통하여 호퍼(130)로 원활하게 유동되도록 하기 위해서는 상술한 바와 같이 누적된 상태인 방사성 폐수지가 유동성을 갖도록 할 필요가 있다.
따라서, 배수밸브(117)를 개방하여 이온교환기(111) 내에 만수 상태인 용수 중 일부가 드레인(118)으로 배출되도록 한다. 여기서, 드레인(118)은 버퍼탱크(140)이거나 원자로에 일반적으로 구비된 액체폐기물처리계통(도시되지 않음)이 될 수 있다.
방사성 폐수지의 유동성을 향상시키기 위하여 급수라인(150)은 이온교환기(111)의 하측에 연결되도록 한다. 즉, 급수라인(150)을 통하여 용수가 이온교환기(111)의 하측으로부터 상방향으로 공급되도록 함으로써 이온교환기(111)의 저면에 누적된 상태인 방사성 폐수지가 용수 내에서 부유하도록 한다.
이때 배수밸브(117)는 개방된 상태를 유지하다가, 이온교환기(111) 내로 용수가 공급되어 방사성 폐수지와 용수가 혼합된 혼합물이 드레인(118)으로 배출되는 것이 확인되는 즉시 배수밸브(117)를 차단한다.
이후 압력센서(152)에 측정되는 급수라인(150)의 압력이 미리 정해진 압력에 도달될 때까지 급수펌프(151)를 작동시켜 용수가 이온교환기(111)로 공급되도록 한다. 급수라인(150)을 통한 용수의 공급은 압력센서(152)에 의해 측정된 압력이 미리 정해진 압력에 도달될 때까지 계속되는데, 미리 정해진 압력은 방사성 폐수지 처리시스템(100)을 설비할 당시에 테스트 등을 거쳐서 정할 수 있다.
참고로, 급수펌프(151)로는 충분한 축압을 연속적으로 가할 수 있는 공동펌프(progressive cavity pump) 형식의 것이 사용될 수 있다.
급수라인(150) 내의 압력이 미리 정해진 압력에 도달되면 압력센서(150)와 연동(interlink)된 회수밸브(121)가 개방되어 이온교환기(111) 내의 방사성 폐수지 및 용수의 혼합물이 회수라인(120)을 통하여 호퍼(130)로 유동되도록 하는 회수단계(S20)가 행해진다. 이때 개폐밸브(123) 또한 개방되도록 한다.
급수라인(150) 내의 압력이 충분히 높은 상태일 때 회수밸브(121)가 개방되도록 함으로써 이온교환기(111) 내의 방사성 폐수지는 회수라인(120)을 통하여 호퍼(130)로 신속하게 유동될 수 있다.
다만, 회수라인(120)의 길이가 길거나 이온교환기(111) 및 호퍼(130)가 설치된 상대적인 높이 차이가 작을 경우 등에는 급수펌프(151)가 계속 작동되도록 하여 혼합물이 원활하게 유동되도록 할 수 있고, 회수라인(120)의 길이가 짧거나 호퍼(130)에 대하여 이온교환기(111)가 설치된 높이가 충분히 높은 경우에는 급수펌프(151)의 작동을 중지시키고 급수라인(150) 및 회수라인(120)의 압력차에 의해서만 혼합물이 유동되도록 할 수도 있다.
참고로, 이온교환기(111)가 호퍼(130)보다 상대적으로 높은 위치에 설치되고 회수라인(120)의 길이가 짧을수록 혼합물의 유동이 더욱 원활해지므로, 방사성 폐수지 처리시스템(100) 설치 시 이를 고려할 수 있다.
그리고, 상술한 바와 같이 혼합물의 원활한 유동을 위하여 급수라인(150) 및 이온교환기(111)에만 압력이 가해지고 호퍼(130)에는 압력이 가해지지 않으므로, 호퍼(130)는 대기압 용기로 구성될 수 있다. 즉 호퍼(130)는 높은 압력을 견딜 수 있는 압력용기로 구성될 필요가 없다.
따라서 본 발명의 일 실시 예에 따른 방사성 폐수지 처리시스템(100)은 호퍼(130)를 용이하게 제조할 수 있으며, 호퍼(130)의 제조에 소요되는 비용이 절약되는 장점이 있다.
한편, 수위계(138)는 호퍼(130) 내에 수용된 혼합물의 양을 측정하는 것으로, 수위계(138)를 이용함으로써 호퍼(130)의 하우징(130a) 내로 혼합물이 유입된 양을 확인할 수 있다. 호퍼(130)는 이온교환기(111)의 용량에 따라 적합한 용적을 갖도록 설계될 수 있으므로, 수위계(138)는 회수라인(120)이 막히거나 회수밸브(121) 및 개폐밸브(123) 등의 정상작동 여부를 판단하는 데에 사용될 수도 있다.
회수단계(S20) 중에는 이온교환기(111) 내의 방사성 폐수지가 호퍼(130)로 충분히 이동되었는지의 여부를 판단하는 검사단계(S30)가 행해질 수 있다.
검사단계(S30)에는 회수라인(120)에 설치된 검사수단(122)이 사용될 수 있는데, 검사수단(122)으로는 혼합물의 방사선준위를 측정하는 장치 또는 혼합물에 포함된 방사성 폐수지의 양을 확인할 수 있는 투명배관 등이 사용될 수 있다.
즉, 검사수단(122)을 통하여 혼합물에 포함된 방사성 폐수지의 양을 직접 관찰하거나 방사선준위를 측정함으로써 이온교환기(111) 내의 방사성 폐수지가 호퍼(130)로 충분히 이동되었는지의 여부를 판단할 수 있다.
검사단계(S30)를 통하여 이온교환기(111) 내의 방사성 폐수지가 충분히 이동되지 않았다고 판단될 경우 회수단계(S20)가 계속될 수 있으며, 방사성 폐수지의 이동이 완료되었다고 판단될 경우에는 회수단계(S20)가 완료되도록 할 수 있다.
회수라인(120)을 통한 혼합물의 유동, 즉 회수단계(S20)가 완료된 후에는 급수펌프(151)의 작동을 중지시켜 용수가 이온교환기(111)로 공급되는 것을 중단한다. 이후 회수밸브(121), 개폐밸브(123) 및 급수밸브(153)를 차단하고, 회수라인(120)에 설치된 드레인(도시되지 않음), 급수라인(150)에 설치된 복귀밸브(155) 또는 드레인(도시되지 않음), 출수라인(163)에 설치된 출수밸브(164) 등을 개방하여 배관 내 및 버퍼탱크(140) 내에 잔류하는 용수가 배출되도록 하는 드레인단계가 행해질 수 있다. 따라서 드레인 라인은 버퍼 탱크(140) 하부 또는 측면에 구비 될 수 있다.
드레인단계는 회수라인(120), 급수라인(150) 및 버퍼탱크(140) 내에 용수가 잔류함에 따라 부식이나 부패 등이 유발되는 것을 방지하고, 방사성 폐수지 처리시스템(100)의 유지 및 보수를 위한 작업을 용이하게 행할 수 있도록 하며, 방사성물질이 잔류하여 주변에 방사선이 방출되는 것이 방지되도록 할 수 있다.
회수단계(S20)가 완료된 후에는 분리단계(S40)가 행해질 수 있다. 분리단계(S40)는 호퍼(130)로 유동된 방사성 폐수지 및 용수의 혼합물이 앞에서 설명한 필터(131, 132, 133)에 의해 용수 및 방사성 폐수지로 분리되도록 하는 단계이다.
혼합물 중 용수만 필터(131, 132, 133)를 통과함에 따라 용수와 분리된 방사성 폐수지(R1)는 도시된 바와 같이 호퍼(130)의 하우징(130a) 내에 누적된다. 이 과정에서 혼합물에 포함된 용수가 필터(131, 132, 133)를 통하여 용이하게 배출될 수 있도록 교반수단(135)을 작동시켜 혼합물을 교반할 수 있다.
필터(131, 132, 133)를 통과한 용수는 탈수라인(141)을 통하여 버퍼탱크(140)로 유입된다. 여기서, 필터(131, 132, 133)로는 방사성 폐수지 입자보다 작은 눈을 갖는 스크린 등이 사용될 수 있다.
용수와 분리된 방사성 폐수지(R1)에는 방사성물질이 포함되어 있으므로 인체 또는 환경에 유해한 수준의 방사선이 방출될 수 있다. 따라서 앞에서 설명한 바와 같이, 호퍼(130)는 방사선이 외부로 유출되지 않도록 차폐된 차폐공간(I) 내에 설치된다.
방사성 폐수지(R1)에 포함된 방사선물질은 시간이 지남에 따라 붕괴되어 방사선의 방출량이 감소되므로, 방사성 폐수지(R1)의 방사선준위가 미리 정해진 수준 이하로 충분히 낮아질 때까지 호퍼(130) 내에 수용되어 있도록 하는 대기단계가 행해질 수 있다.
상기 사항은 Decay storage를 나타내는 내용으로써, 방사성폐수지 내 방사성핵종의 반감기를 고려, 일정기간 탈수 상태에서 방사능의 저감을 위해 저장한다는 내용에 관한 것이다.
대기단계 중에는 방사성 폐수지(R1)에 포함된 수분이 충분히 제거되도록 하기 위하여 급기라인(139) 및 배기라인(139b)을 이용하여 호퍼(130)의 하우징(130a) 내에서 공기가 순환되도록 할 수 있으며, 앞에서 설명한 바와 같이 급기라인(139)에는 가열수단(도시되지 않음)이 설치되어 방사성 폐수지(R1)의 건조에 소요되는 기간이 단축되도록 할 수도 있다.
한편, 혼합물이 필터(131, 132, 133)에 의해 분리되는 과정에서 필터(131, 132, 133)가 방사성 폐수지(R1)의 입자에 의해 막혀서 혼합물의 분리 효과가 저하될 수 있다.
필터(131, 132, 133)의 성능이 저하되는 것을 방지하기 위하여, 필터(131, 132, 133)의 적어도 일부(133)는 앞에서 언급했던 바와 같이 원통 형상 등으로 형성될 수 있다. 원통 형상의 필터(133)는 방사성 폐수지(R1)가 호퍼(130)의 하우징(130a) 내에 누적되더라도 그 일부분은 중력 등의 영향 등으로 방사성 폐수지(R1)의 입자에 의해 막히는 것이 방지될 수 있다.
또한, 필터(131, 132, 133)의 성능이 저하되는 것을 방지하기 위하여 필터(131, 132, 133)에는 도시되지 않은 역세척(backflushing)라인이 설치될 수 있다. 역세척라인은 혼합물이 필터(131, 132, 133)에 의해 걸러지는 방향의 반대 방향으로 용수가 분사되도록 하우징(130a)에 설치될 수 있다.
부연하면, 필터에 부착된 방사성 폐수 입자들을 제거하기 위해 필터를 통해 걸러지는 방향의 역 방향에서 물 또는/및 공기를 필터에 분사할 수 있는 장치를 필터와 대응되는 위치에 구비한다.
따라서, 방사성 폐수지(R1)의 입자에 의해 필터(131, 132, 133)가 막혔을 경우 역세척라인으로 용수를 분사함으로써 필터(131, 132, 133)로부터 방사성 폐수지(R1) 입자가 탈락되도록 할 수 있으므로, 필터(131, 132, 133)의 성능이 낮아지지 않게 유지될 수 있다.
도시되지는 않았으나, 역세척라인은 탈수라인(141)과 함께 각 필터(131, 132, 133)에 연결될 수 있다. 예를 들어 원통 형상의 필터(133)는, 일측이 개방되도록 형성되고 이 개방된 부분에 탈수라인(141) 및 역세척라인(도시되지 않음)이 연결될 수 있다.
이러한 역세척을 행하는 역세척단계는 분리단계(S40) 중 또는 분리단계(S40)와 대기단계 사이에 행해질 수 있다.
상술한 바와 같은 작동에 의해 분리단계(S40)가 완료된 후에는, 배출단계(S50)가 행해질 수 있다. 배출단계(S50)는 배출수단(134)에 의해 방사성 폐수지(R1)가 호퍼(130)의 하우징(130a) 외부로 배출되도록 하는 단계이다.
방사성 폐수지(R1)는 다량의 작은 입자가 포함된 분말 형상이므로, 하우징(130a) 내에서 누적된 상태로 시간이 경과되면 서로 응집되거나 브리지(bridge)에 의한 공동현상 등이 발생될 수 있다. 이럴 경우, 배출수단(134)이 작동되더라도 호퍼(130)의 하우징(130a)에 수용된 방사성 폐수지(R1)가 원활히 배출되지 않을 수 있다.
이를 방지하기 위하여, 배출단계(S50)가 행해지는 중에는 교반수단(135)에 의해 방사성 폐수지(R1)가 교반되도록 할 수 있다. 또한, 도시되지는 않았으나 하우징(130a)에 진동을 가할 수 있는 가진수단(Knocker)을 더 설치하여 배출단계(S50)가 행해지는 중 하우징(130a)에 진동을 가함으로써 방사성 폐수지(R1)가 더욱 원활하게 배출수단(134)으로 이동되도록 하는 동시에 하우징(130a)의 내벽이나 필터(131, 132, 133) 등에 부착된 방사성 폐수지(R1)가 용이하게 탈락되도록 할 수 있다.
상기 가진수단은 하우징에 설치 또는 이격된 상태로 구비되어 상기 하우징을 타격할 수 있다. 상기 가진수단은 앞/뒤로 이동되도록 줄등의 결합수단이 상기 가진수단의 일측/타측에 연결될 수 있고 상기 줄은 슬라브에 결합 가능하다.
참고로, 배출단계(S50) 중에는 건조된 방사성 폐수지(R1)가 비산되어 배기라인(139b)을 통하여 외부로 유출될 수 있다. 이럴 경우 기체폐기물의 양이 증가될 수 있으므로, 배출단계(S50) 중에는 급기밸브(139a)가 폐쇄되도록 하여 급기라인(139) 및 배기라인(139b)을 통한 공기의 순환이 중단되도록 할 수도 있다.
배출수단(134)이 작동될 때에는 배출구 개폐수단(136)을 작동시켜 커버(136c)가 폐수지 배출구(137)를 개방하도록 한다. 따라서, 방사성 폐수지(R1)는 배출수단(134)에 의해 유동되어 폐수지 배출구(137)를 통해 배출된다.
폐수지 배출구(137)로 배출된 방사성 폐수지(R2)는 계량기(180)에 의해 측정되어 일정한 양씩 폐수지드럼(170) 또는 폐기물을 수용하는 자루(도시되지 않음) 등에 수용된다.
이때 계량기(180)에 의해 미리 정해진 양의 방사성 폐수지(R2)가 폐수지드럼(170) 또는 자루(도시되지 않음) 등에 수용된 것이 측정되면, 배출수단(134)의 작동을 정지시키고 커버(136c)가 폐수지 배출구(137)를 폐쇄하도록 한 후 폐수지드럼(170) 또는 자루를 교체하고 다시 방사성 폐수지가 배출되도록 하는 것을 반복할 수 있다.
방사성 폐수지(R2)의 핵종분석을 통하여 이에 포함된 방사성물질의 종류 및 양을 측정한 후, 측정된 결과에 따라 방사성준위가 처분제한치 이상일 경우에는 폐수지드럼(170)을 밀봉처리하고, 처분제한치 이하일 경우에는 자루와 같은 포장용기에 수용시켜서 자체적으로 구비된 폐기물 보관창고에 저장되도록 할 수도 있다. 이는 잘 알려진 사항이므로 상세한 설명을 생략한다.
참고로, 도시되지는 않았으나, 본 발명의 일 실시 예에 따른 방사성 폐수지 처리시스템(100)에는 각 구성요소의 상태를 측정하는 센서 및 각 구성요소의 작동을 제어하는 제어부가 구비되어, 운전실에서 모든 조종을 행하도록 할 수 있으며, 모든 제어가 자동화되도록 할 수 있다.
이상 설명한 바와 같은 본 발명의 일 실시 예에 따른 방사성 폐수지 처리시스템을 이용한 방사성 폐수지 처리방법에 따르면, 호퍼(130)가 방사성 폐수지(R1)의 탈수 및 배출을 동시에 행할 수 있으므로, 별도의 폐수지 배출설비를 구비할 필요가 없다.
따라서 방사성 폐수지 처리시스템(100)의 설치에 소요되는 비용이 절약되며 가동에 소요되는 운영비용 또한 절약될 수 있다.
참고로, 상술한 바와 같은 본 발명의 일 실시 예에 따른 방사성 폐수지 처리시스템(100) 및 그것을 이용한 방사성 폐수지 처리방법에서, 압력센서(152)는 버퍼탱크(140)로부터 이온교환기(111)로 공급된 용수의 양이 미리 정해진 양에 도달되면 신호를 발하여 이 신호를 수신한 회수밸브(121)가 개방되도록 하는 회수감지수단의 한 예를 적용한 것이다.
도시되지는 않았으나, 회수감지수단으로는 압력센서(152) 외에도 수류감지센서, 수위센서, 수량센서 등이 사용될 수 있다.
예를 들어, 회수감지수단으로 수류감지센서가 적용된 경우, 수류감지센서가 배수라인(116)에 설치(미도시)되도록 하고, 급수라인(150)을 통하여 이온교환기(111)에 용수가 공급되도록 하면, 이온교환기(111)로 공급된 용수의 양이 미리 정해진 양을 초과할 경우 배수라인(116)을 통하여 용수가 배출되기 시작한다. 이때 수류감지센서가 이를 감지하여 신호를 발하면 밸브(117)를 닫은 후, 회수밸브(121)가 이를 감지하여 회수라인(120)이 개방되도록 할 수 있다.
또는, 수류감지센서를 급수라인(150)에 설치(미도시)하여 용수가 급수라인(150)을 통해 이온교환기(111)로 유입되는지의 여부를 감지하도록 하면, 용수가 이온교환기(111)로 유입되기 시작한 시점으로부터 미리 정해진 시간이 경과된 경우 이온교환기(111) 내로 충분한 양의 용수가 공급된 것으로 볼 수 있다. 이때 수류감지센서가 이를 감지하여 신호를 발하면 밸브(117)를 닫은 후, 회수밸브(121)가 이를 감지하여 회수라인(120)이 개방되도록 할 수 있다.
또는, 회수감지수단으로 수위센서가 적용된 경우, 이온교환기(111) 내에 수위센서를 설치(미도시)하고, 이온교환기(111) 내로 공급된 용수의 양이 미리 정해진 양에 도달되면 상기 수위센서가 신호를 발하게 함으로써 밸브(117)를 닫은 후 회수밸브(121)가 개방되도록 할 수 있다.
또는, 회수감지수단으로 수량센서가 적용된 경우, 급수라인(150)에 수량센서를 설치(미도시)하여 (예를 들어 압력센서와 나란히), 이온교환기(111)로 유입되는 용수의 양을 측정하게 하고, 유입된 용수의 양이 미리 정해진 양에 도달되면 수량센서가 신호를 발하게 함으로써 밸브(117)를 닫은 후 회수밸부(121)가 개방되도록 할 수도 있다.
이와 같이, 본 발명의 일 실시 예에 따른 방사성 폐수지 처리시스템(100) 및 그것을 이용한 방사성 폐수지 처리방법에 적용되는 회수감지수단은 다양하게 변경될 수 있다.
한편, 본 발명의 일 실시 예에서는 버퍼탱크(140)가 급수라인(150)을 통해 이온교환기(111)와 연결되어 용수를 공급하도록 구성되었으나, 급수수단(160)이 이온교환기(111)로 일정한 수압의 용수를 공급할 수 있다면 급수수단(160)이 급수라인(150)에 직접 연결될 수도 있다.
즉, 본 발명의 일 실시 예는 버퍼탱크(140), 급수펌프(151) 및 출수라인(163) 등을 포함하지 않고, 급수라인(150)에 입수라인(161)이 연결되도록 변형될 수 있다. 이때, 탈수라인(141)은 드레인(118)에 연결되어 호퍼(130)로부터 배출되는 용수가 드레인(118)으로 유입되도록 할 수 있다.
이하 본 발명의 제 2 실시 예에 대하여 첨부한 도면들을 참조하여 상세히 설명하기로 한다.
도 4에는 본 발명의 제 2 실시 예에 따른 방사성 폐수지 이송 및 처리시스템의 계통도가 도시되어 있다.
도 4를 참조하면, 본 발명의 일 실시 예에 따른 방사성 폐수지 이송 및 처리시스템(101)에는 이온교환기(111), 회수라인(120), 회수밸브(121), 탈수호퍼(330), 연결이송라인(337), 가압수단, 가압라인(250), 압력센서(252), 이송급수라인(260), 이송펌프(261), 겸용호퍼(230) 등이 포함된다. 여기서, 가압수단에는 버퍼탱크(140), 급수펌프(251), 압축공기라인(256), 압력조정밸브(257) 등이 포함될 수 있다.
상기 각 구성들의 제어 또는/및 동작들의 제어는 제어부(미도시)의 제어에 의해 수행된다.
도시되지는 않았으나, 버퍼탱크(140)에는 원자력 발전소(도시되지 않음) 내에 설치되어 물(이하, 용수(service water)라고 칭함)을 공급하는 수단인 급수수단이 연결되는데, 급수수단은 일반적인 사항이므로 구체적인 설명은 생략한다. 다만, 급수수단(도시되지 않음, 단 도 1 급수수단(160) 참고)은 버퍼탱크(140) 대신 가압라인(250)에 직접 연결되어 가압수단에 포함될 수 있는데, 이에 대해서는 아래에서 다시 설명한다.
그리고, 도시되지는 않았으나, 버퍼탱크(140)에는 내부의 용수를 모두 배출할 수 있는 드레인이 구비되거나 다시 급수수단으로 배수하는 배수수단이 설치될 수 있다.
정수계통(110)은 도시되지 않은 원자로 등에 감속재 또는 냉각재로서 사용되는 용수를 순환시키는 수단으로, 정수계통(110)에는 이온교환기(111), 순환라인(112, 115), 순환펌프(113), 순환밸브(114, 119), 배수라인(116), 배수밸브(117) 및 드레인 (118) 등이 포함된다.
이온교환기(111) 내에는 이온교환수지가 장전되어 있고, 순환라인(112, 115)은 원자로 등에 연결된다. 따라서, 순환밸브(114, 119)를 개방하고 순환펌프(113)를 작동시키면 원자로 내의 용수가 이온교환기(111)를 거치며 순환하게 되고, 이 과정에서 용수에 포함된 이물질 중 방사성 핵종을 포함하는 이온은 이온교환수지 내의 이온과 교환되면서 이온교환수지에 포집된다.
앞에서 언급했던 바와 같이, 이온교환기(111)가 일정기간 사용되어 소정의 조건에 이르게 되면 이온교환기(111) 내에 장전되어 있던 이온교환수지를 새로 교환하게 되는데, 사용되고 있던 이온교환수지는 방사성 폐수지로서 취급된다.
버퍼탱크(140)는 이온교환기(111) 내의 방사성 폐수지를 이송시키는 등의 동작을 할 때 용수를 공급하기 위한 것으로, 가압라인(250)에 의해 이온교환기(111)와 연결된다.
가압라인(250)에는 급수펌프(251), 압력센서(252), 급수밸브(253), 복귀라인(254) 및 복귀밸브(155), 압축공기라인(256) 및 압력조정밸브(257)가 설치된다.
급수펌프(251)는 가압라인(250)을 통하여 버퍼탱크(140) 내의 용수를 이온교환기(111)로 공급할 때 사용되고, 복귀라인(254)은 가압라인(250) 내의 용수를 버퍼탱크(140)로 복귀시키고자 할 때 사용될 수 있다. 압력센서(252)는 가압라인(250) 내부의 압력을 측정할 수 있도록 설치된다.
한편, 탈수호퍼(330)는 회수라인(120)에 의해 이온교환기(111)와 연결되며, 탈수라인(141)에 의해 버퍼탱크(140)와 연결된다. 탈수라인(141)에는 탈수라인(141)을 개폐하는 탈수밸브(142)가 설치되는데, 탈수밸브(142)는 탈수라인(141)을 통하여 용수가 배출되도록 할 때에만 개방되도록 할 수 있다.
또한 탈수호퍼(33)에는 배수라인(116), 배수밸브(117) 및 드레인(118) 등이 포함된다.
상기 탈수호퍼는 장거리 이송등을 고려시, 대기압 운전보다는 기업이 가능한 형태로 동작되도록 설정한다.
예를 들어, 탈수호퍼는 장거리 이송 등을 고려시 대기압 운전보다는 가압이 가능한 형태로 고려하고 있으며, 가압은 다음과 같이 두가지 방법으로 진행될 수 있다.
1) 물로만 가압하거나,
2) 하나의 예로 써, 물로 50-90%을 채운후, 나머지 50-10%는 공기로 채울 수 있다.
회수라인(120)에는 회수밸브(121) 및 검사수단(122)이 설치된다.
이송급수라인(260)은 탈수호퍼(330) 및 버퍼탱크(140)를 연결하며, 이송급수라인(260)에는 이송펌프(261)가 설치되고, 이송급수라인(260)은 다시 버퍼탱크(140)와 연결된 복귀라인(262)이 설치된다.
이송펌프(261)는 이송급수라인(260)을 통하여 버퍼탱크(140) 내의 용수를 탈수호퍼(330)로 공급할 때 사용되고, 복귀라인(262)은 이송급수라인(260) 내의 용수를 버퍼탱크(140)로 복귀시키고자 할 때 사용될 수 있다.
또한 이송급수라인(260)으로 압축공기를 공급하기 위한 것으로, 이송급수라인(260)에는 도시되지 않은 압축공기공급수단이 연결된다. 그리고, 이송급수라인(260)에는 압력조정밸브(257)가 설치되어, 압축공기공급수단(도시되지 않음)을 통하여 이송급수라인(256)으로 공급되는 압축공기가 일정한 압력을 갖도록 한다.
참고로, 압력조절밸브(257)로는 감압밸브와 같은 압력조절밸브(pressure regulating valve)가 사용되는데, 이러한 압력조절밸브는 잘 알려진 사항이므로, 그 자체에 대한 설명은 생략한다.
이상 설명한 정수계통(110), 회수라인(120), 회수밸브(121), 탈수호퍼(330), 연결이송라인(337), 버퍼탱크(140), 가압라인(250), 압력센서(252), 이송급수라인(260) 및 이송펌프(261) 등은 도시된 바와 같이 제1 건물(A)에 설치되고, 겸용호퍼(230)는 제2 건물(B)에 설치되며, 탈수호퍼(330) 및 겸용호퍼(230)는 연결이송라인(337)에 의해 연결된다.
상기에서 제 1 건물(A), 제 2 건물(B)은 서로 이격된 위치에 구성됨을 나타내는 하나의 예이다. 따라서 탈수 호퍼와 겸용 호퍼가 서로 이격된 위치에 있는 경우 같은 건물 내에 구성될 수도 있다.
상기 연결이송라인(337)에는 도시된 바와 같이 이송밸브(337a, 337b)가 설치될 수 있다.
참고로, 제1 건물(A)은 방사성 폐수지가 발생되는 장소를 의미하고, 제2 건물(B)은 방사성 폐수지의 건조, 고형화 또는 포장 등의 처리가 행해지는 장소를 의미하는 것으로 볼 수 있다. 즉, 제1 건물(A) 및 제2 건물(B)는 근거리 또는 원거리 이격 배치될 수 있고, 도시된 바와 달리 복수의 제1 건물(A)이 하나의 제2 건물(B)과 연결이송라인(337)으로 연결될 수도 있다.
제 2 건물(B)에는 겸용호퍼(230) 외에 폐수탱크(240) 및 고형화수단(290)이 설치될 수 있다.
도 5에는 도 4에 도시된 탈수호퍼의 계통도가 상세히 도시되어 있다.
도 5를 참조하면, 탈수호퍼(330)는 슬라브(10, 20) 및 차폐벽(30, 40)에 의해 형성된 차폐공간(I1) 내에 배치된다.
슬라브(10, 20)는 방사성 폐수지 이송 및 처리시스템(101)이 설치된 건축물 중 제1 건물(도 4의 A)의 일부를 단순화하여 나타낸 것으로, 방사선을 차폐할 수 있도록 형성될 수 있다. 특히 탈수호퍼(330)에는 아래에서 설명할 내용과 같이 방사성 폐수지 및 용수의 혼합물(R1)이 일정 기간 수용된 상태가 유지될 수 있으므로, 별도의 차폐공간(I1) 내에 배치되도록 할 수 있다.
슬라브(20)에는 개폐가 가능한 해치도어(21) 및 보조해치도어(22)가 설치될 수 있다. 해치도어(21)는 탈수호퍼(330)의 정비 등에 사용될 수 있으며, 보조해치도어(22)는 아래에서 설명할 수위계(138)를 포함한 각종 계기의 검침이나 차폐공간(I1) 내의 감시 등에 사용될 수 있다.
탈수호퍼(330)에는 용기타입, 실린더 타입 등을 포함하는 미리 정한 형상의 하우징(130a), 필터(131, 132, 133), 교반수단(135), 수위계(138), 급기라인(139), 급기밸브(139a) 및 배기라인(139b) 등이 포함된다.
필터(131, 132, 133)는 방사성 폐수지 및 용수의 혼합물(R1)로부터 방사성 폐수지를 분리하기 위한 것으로, 하우징(130a) 내에 설치된다. 이때 필터(131, 132, 133)는 설치되는 위치에 따라 서로 다른 형상을 가질 수 있다. 예를 들어, 하우징(130a)의 측벽 부분이나 하측 부분에는 평판 형상의 필터(131, 133)가 설치될 수 있고, 하우징(130a) 내의 중간 위치에는 원통 형상의 필터(133)가 설치될 수 있다,
하우징(130a)에 연결된 회수라인(120) 및 탈수라인(141)은, 회수라인(120)을 통하여 하우징(130a) 내로 유입된 혼합물(R1)이 필터(131, 132, 133)에 의해 방사성 폐수지 및 용수로 분리된 후, 용수만 필터(131, 132, 133)를 통과하여 탈수라인(141)을 통해 버퍼탱크(도 4의 140)로 유동될 수 있도록 설치된다. 이때, 탈수밸브(142)는 개방되어 용수가 탈수라인(141)을 통하여 유동될 수 있도록 한다.
교반수단(135)에는 하우징(130a) 내에 배치된 교반날개(135c), 교반롤러(135d), 교반축(135b) 및 교반날개 구동수단(135a) 등이 포함될 수 있다. 교반수단(135)은 하우징(130a) 내에 수용된 혼합물(R1)을 교반하기 위한 것으로, 혼합물(R1)은 교반수단(135)에 의해 교반되어 유동성이 높은 상태가 될 수 있다.
한편, 하우징(130a)에 연결된 급기라인(139) 및 배기라인(139b)은 하우징(130a) 내부의 환기를 위하여 하우징(130a) 내로 공기를 유동시키기 위한 것으로, 급기라인(139)에 의해 하우징(130a) 내로 공급된 공기는 배기라인(139b)을 통하여 하우징(130a) 외부로 배출된다.
이때, 급기라인(139)에는 도시되지 않은 열선 등과 같은 가열수단이 더 설치될 수 있다. 이는 급기라인(139)을 통하여 하우징(130a) 내로 공급되는 공기를 가열하기 위한 것으로, 혼합물(R1)로부터 분리된 방사성 폐수지(R1)를 탈수호퍼(330) 내에서 건조하게 될 경우 건조속도를 향상시키기 위한 것이다.
참고로, 배기라인(139b)을 통하여 배출되는 공기에도 방사성물질이 포함될 수 있으므로, 배기라인(139b)은 원자로에 일반적으로 구비되는 기체폐기물처리계통(도시되지 않음)에 연결될 수 있다.
탈수호퍼(330)의 하우징(130a)에는 앞에서 설명한 바와 같이 연결이송라인(337) 및 이송급수라인(260)이 연결된다. 이송급수라인(260)을 통하여 버퍼탱크(140) 내의 용수가 공급되도록 하면서 이송밸브(337a)를 개방하면 연결이송라인(337)을 통하여 혼합물(R1)이 유동될 수 있다.
이때, 혼합물(R1)의 유동을 원활하게 하기 위하여 교반수단(135)을 작동시킬 수 있고, 수위계(138)를 관찰하면서 이송급수라인(260)을 통해 충분한 양의 용수가 공급된 후 이송밸브(337a)가 개방되도록 함으로써 수압에 의해 혼합물(R1)이 더욱 원활하게 유동되도록 할 수도 있다.
다시 도 4를 참조하면, 가압라인(250)에 연결된 압축공기라인(256)은 가압라인(250)으로 압축공기를 공급하기 위한 것으로, 가압라인(250)에는 도시되지 않은 압축공기공급수단이 연결된다. 그리고, 압축공기라인(256)에는 압력조정밸브(257)가 설치되어, 압축공기공급수단(도시되지 않음)을 통하여 압축공기라인(256)으로 공급되는 압축공기가 일정한 압력을 갖도록 한다.
참고로, 압력조절밸브(257)로는 감압밸브와 같은 압력조절밸브(pressure regulating valve)가 사용되는데, 이러한 압력조절밸브는 잘 알려진 사항이므로, 그 자체에 대한 설명은 생략한다.
그리고, 압축공기라인(256)에는 가압라인(250)을 통한 압축공기의 공급 여부가 조절될 수 있도록 개폐밸브(도시되지 않음)가 설치될 수 있으며, 가압라인(250)을 통하여 압축공기가 공급될 경우 버퍼탱크(140)로 유입되는 것을 방지하는 체크밸브(도시되지 않음)가 가압라인(250)에 설치될 수 있다.
도 6에는 도 4에 도시된 겸용호퍼가 도시되어 있다.
도 6을 참조하면, 겸용호퍼(230)는 슬라브(50, 60) 및 차폐벽(70, 80)에 의해 형성된 차폐공간(I2) 내에 배치된다.
슬라브(50, 60)는 방사성 폐수지 이송 및 처리시스템(101)이 설치된 건축물 중 제2 건물(도 4의 B)의 일부를 단순화하여 나타낸 것으로, 방사선을 차폐할 수 있도록 형성될 수 있다. 특히 겸용호퍼(230)에는 아래에서 설명할 내용과 같이 방사성 폐수지(R2)가 일정 기간 수용된 상태가 유지될 수 있으므로, 별도의 차폐공간(I2) 내에 배치되도록 할 수 있다.
슬라브(50)에는 개폐가 가능한 해치도어(61) 및 보조해치도어(62)가 설치될 수 있다. 해치도어(61) 및 보조해치도어(62)는 도 5를 참조하여 설명한 해치도어(21) 및 보조해치도어(22)와 구조 및 작용이 동일하므로 상세한 설명을 생략한다.
겸용호퍼(230)에는 용기타입, 실린더 타입 등을 포함하는 미리 정한 형상의 하우징(230a), 필터(231, 232, 233), 배출수단(234), 교반수단(235), 배출구 개폐수단(236), 수위계(238), 급기라인(239), 급기밸브(239a) 및 배기라인(239b) 등이 포함된다.
이 중 필터(231, 232, 233), 교반수단(235), 수위계(238), 급기라인(239), 급기밸브(239a) 및 배기라인(239b)는 도 5를 참조하여 설명한 필터(131, 132, 133), 교반수단(135), 수위계(138), 급기라인(139), 급기밸브(139a) 및 배기라인(139b)과 구조 및 작용이 동일하므로, 이들에 대한 설명은 도 5를 참조하여 한 설명으로 갈음하기로 한다.
다만, 필터(231, 232, 233)는 연결이송라인(337)을 통하여 탈수호퍼(도 4의 330)로부터 유입되는 방사성 폐수지 및 용수의 혼합물(R1)을 걸러서 방사성 폐수지(R2) 및 용수를 분리한다.
따라서, 연결이송라인(337) 및 탈수라인(241)은, 연결이송라인(337)을 통하여 하우징(230a) 내로 유입된 혼합물(R1)이 필터(231, 232, 233)에 의해 방사성 폐수지(R2) 및 용수로 분리된 후, 용수만 필터(231, 232, 233)를 통과하여 탈수라인(241)을 통해 버퍼탱크(도 4의 140)로 유동될 수 있도록 설치된다.
이때, 탈수라인(241)을 개폐할 수 있도록 탈수라인(241)에 설치된 탈수밸브(142)는 개방되어 용수가 탈수라인(241)을 통하여 폐수탱크(240)로 유동될 수 있도록 한다. 여기서, 폐수탱크(240)는 원자력 발전소(도시되지 않음) 내에 일반적으로 설치되는 액체폐기물처리계통(도시되지 않음)에 연결될 수 있다.
겸용호퍼(230)의 하우징(230a)에는 폐수지 배출구(237)가 형성될 수 있다. 이때 폐수지 배출구(237)는 차폐벽(80)을 관통하는 형상으로 형성되어 용수와 분리된 방사성 폐수지(R2)가 차폐공간(I2) 외부로 배출될 수 있도록 형성된다.
배출수단(234)은 하우징(230a)의 하측에 설치될 수 있으며, 배출수단(234)에는 하우징(230a)의 하측으로부터 폐수지 배출구(237)에 이르도록 설치된 스크루(234c), 스크루(234c)에 연결된 스크루 구동축(234b) 및 스크루 구동축(234b)을 회전시키는 스크루 구동수단(234a)이 포함될 수 있다.
따라서 배출수단(234)은 스크루 구동수단(234a)의 작동에 따라 하우징(230a) 내에 수용되어 있던 방사성 폐수지(R2)가 폐수지 배출구(237)를 통하여 외부로 배출되도록 할 수 있다.
배출구 개폐수단(236)에는 폐수지 배출구(237)를 커버하는 커버(236c)와, 커버(236c)에 연결된 로드(236b) 및 로드(236b)를 이동시키는 실린더(236a)가 포함될 수 있다.
따라서 배출구 개폐수단(236)은 실린더(236a)의 작동에 따라 폐수지 배출구(237)를 개방 또는 폐쇄할 수 있다. 여기서, 하우징(230a)의 폐수지 배출구(237)가 형성된 부분 및 커버(236c)는 방사선을 차폐할 수 있는 소재로 제조되어 커버(236c)가 폐수지 배출구(237)를 커버했을 때에는 방사성 폐수지(R2)로부터 방사되는 방사선이 차폐공간(I2) 외부로 누출되지 않도록 할 수 있다.
폐수지 배출구(237)에는 겸용호퍼(230)로부터 배출된 방사성 폐수지(R3)가 수용되는 폐수지 드럼(270)이 배치될 수 있고, 폐수지 드럼(270)이 배치된 부분에는 방사성 폐수지(R3)가 폐수지 드럼(270)에 수용된 양을 측정하기 위한 계량기(280)가 설치될 수 있다.
폐수지 드럼(270)에 수용된 방사성 폐수지(R3)는 고형화수단(290)으로 이송될 수 있다. 이에 대해서는 아래에서 다시 설명한다.
도 7에는 본 발명의 일 실시 예에 따른 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법을 설명하기 위한 순서도가 도시되어 있다. 도 4 내지 도 7를 함께 참조하여 상술한 바와 같은 구성을 갖는 본 발명의 일 실시 예에 따른 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법에 대하여 설명한다.
도 7를 참조하면, 본 발명의 일 실시 예에 따른 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법에는 가압단계(S100), 회수단계(S200), 검사단계(S300), 이송단계(S400), 분리단계(S500) 및 배출단계(S600)가 포함된다.
가압단계(S100)는 압력센서(252)에 의해 측정된 가압라인(250) 내의 압력이 미리 정해진 압력에 도달될 때까지 버퍼탱크(140)로부터 이온교환기(111)로 용수가 공급되도록 하는 단계로서, 아래와 같은 절차로 행해진다.
앞에서 설명했던 바와 같이, 이온교환기(111) 후단의 전기전도도 또는 이온교환기(111)의 순환라인(112, 115)이 연결된 유입구 및 유출구 사이의 차압이 미리 정해진 수치 이상으로 상승되면 이온교환수지를 새로운 것으로 교체하여야 한다.
이때 이온교환기(111) 내에 수용되어 있는 방사성 폐수지는 본 발명의 일 실시 예에 따른 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법에 따라 처리하고, 이후 내부가 비워진 이온교환기(111)에 새로운 방사성 폐수지를 장전하여 사용한다.
이온교환기(111) 내의 방사성 폐수지를 처리하기 위해서는, 우선 정수계통(110)의 순환밸브(114, 116)를 폐쇄하여 순환라인(112, 115)으로 용수가 순환되지 않도록 한다. 이때, 버퍼탱크(140)에는 급수수단(도시되지 않음)에 의해 용수가 공급되도록 한다.
순환라인(112, 115)은 이온교환기(111)의 상측으로부터 하방향으로 용수가 유동하며 이온교환이 일어나도록 구성되는 것이 일반적이다. 따라서, 방사성 폐수지는 이온교환기(111)의 저면으로부터 상방향으로 누적된 형상을 갖게 되며, 정수계통(110)의 용수 순환이 차단된 직후에는 이온교환기(111) 내에 순환라인(112, 115)에 의해 순환하던 용수가 가득 차있는 상태가 된다.
방사성 폐수지가 회수라인(120)을 통하여 탈수호퍼(330)로 원활하게 유동되도록 하기 위해서는 상술한 바와 같이 누적된 상태인 방사성 폐수지가 유동성을 갖도록 할 필요가 있다.
따라서, 배수밸브(118)를 개방하여 이온교환기(111) 내에 만수 상태인 용수 중 일부 또는 전부가가 드레인(119)으로 배출되도록 하여 이온교환기(111) 내에 공간이 형성되도록 한다. 여기서, 드레인(119)은 버퍼탱크(140)이거나 원자로에 일반적으로 구비된 액체폐기물처리계통(도시되지 않음)이 될 수 있다.
방사성 폐수지의 유동성을 향상시키기 위하여 가압라인(250)은 이온교환기(111)의 하측에 연결되도록 한다. 즉, 가압라인(250)을 통하여 용수 또는 압축공기 또는 용수와 압축공기가 이온교환기(111)의 하측으로부터 상방향으로 공급되도록 함으로써 이온교환기(111)의 저면에 누적된 상태인 방사성 폐수지가 용수 내에서 부유되도록 할 수 있다.
단, 가압라인(250)을 통하여 압축공기만이 공급되도록 할 경우에는 상술한 바와 같이 이온교환기(111) 내에 만수 상태였던 용수를 드레인(119)으로 배출되도록 할 때 용수의 일부가 이온교환기(111) 내에 잔류하도록 한다.
이 과정에서 배수밸브(118)는 개방된 상태를 유지하다가, 이온교환기(111) 내로 용수 또는 압축공기 또는 용수와 압축공기가 공급되어 방사성 폐수지와 용수가 혼합된 혼합물이 드레인(119)으로 배출되는 것이 확인되는 즉시 배수밸브(118)를 차단한다.
이후 압력센서(252)에 측정되는 가압라인(250)의 압력이 미리 정해진 압력에 도달될 때까지 급수펌프(251)를 작동시켜 용수가 이온교환기(111)로 공급되도록 하거나, 압축공기공급수단(도시되지 않음)을 작동시키고, 압축공기라인(256)에 설치된 개폐밸브(도시되지 않음)를 개방하여 압력조절밸브(257)에 의해 압력이 일정하게 조정된 압축공기가 이온교환기(111)로 공급되도록 한다. 필요에 따라서는 용수 및 압축공기가 동시에 이온교환기(111)로 공급되도록 할 수도 있다.
가압라인(250)을 통한 용수 또는 압축공기 또는 용수와 압축공기의 공급은 압력센서(252)에 의해 측정된 압력이 미리 정해진 압력에 도달될 때까지 계속되는데, 미리 정해진 압력은 방사성 폐수지 이송 및 처리시스템(101)을 설비할 당시에 테스트 등을 거쳐서 정할 수 있다.
참고로, 급수펌프(251)로는 충분한 축압을 연속적으로 가할 수 있는 공동펌프(progressive cavity pump) 형식의 것이 사용될 수 있다.
가압라인(250) 내의 압력이 미리 정해진 압력에 도달되면 압력센서(250)와 연동(interlink)된 회수밸브(121)가 개방되어 이온교환기(111) 내의 방사성 폐수지 및 용수의 혼합물이 회수라인(120)을 통하여 탈수호퍼(330)로 유동되도록 하는 회수단계(S200)가 행해진다.
가압라인(250) 내의 압력이 충분히 높은 상태일 때 회수밸브(121)가 개방되도록 함으로써 이온교환기(111) 내의 방사성 폐수지는 회수라인(120)을 통하여 탈수호퍼(330)로 용이하게 유동될 수 있다.
특히, 가압라인(250)을 통하여 압축공기가 이온교환기(111)에 공급되도록 하면, 앞에서 언급한 이온교환기(111) 내에 형성된 공간에 압축공기가 유입되어 방사성 폐수지 및 용수의 혼합물이 가압되도록 함으로써 혼합물이 회수라인(120)을 통하여 더욱 용이하게 유동되도록 할 수 있다.
예를 들어, 가압단계(S100)에서 이온교환기(111) 내에 60 내지 80%의 용수가 잔류하거나 가압라인(250)에 의해 공급되도록 한 후, 가압라인(250) 내부의 압력이 미리 정해진 압력에 도달될 때까지 가압라인(250)을 통하여 이온교환기(111) 내로 압축공기가 공급되도록 하면, 회수단계(S200)에서 압축된 공기가 팽창되면서 회수라인(120)을 통한 혼합물의 유동이 더욱 용이하게 진행될 수 있다.
참고로, 가압라인(250)을 통하여 공급되는 압축공기는 압력조정밸브(257)를 이용하여 일정한 압력으로 조절되므로, 압축공기공급수단(도시되지 않음)에 의해 공급되는 압축공기의 유량이 일정하게 유지될 수 있다면 압축공기가 공급되기 시작한 시점으로부터 일정한 시간을 측정함으로써 압력계(252) 없이도 가압라인(250) 내부의 압력이 미리 정해진 압력에 도달되었는지의 여부를 예측하는 것이 가능하다.
회수라인(120)의 길이가 길거나 이온교환기(111) 및 탈수호퍼(330)가 설치된 상대적인 높이 차이가 작을 경우 등에는 급수펌프(251) 또는 압축공기공급수단(도시되지 않음)이 계속 작동되도록 하여 혼합물의 유동성을 높임으로써 혼합물이 회수라인(120)을 통하여 원활하게 유동되도록 할 수 있고, 회수라인(120)의 길이가 짧거나 탈수호퍼(330)에 대하여 이온교환기(111)가 설치된 높이가 충분히 높은 경우에는 급수펌프(251) 또는 압축공기공급수단(도시되지 않음)의 작동을 중지시키고 가압라인(250) 및 회수라인(120)의 압력차에 의해서만 혼합물이 유동되도록 할 수도 있다.
즉, 이온교환기(111)가 탈수호퍼(330)보다 상대적으로 높은 위치에 설치되고 회수라인(120)의 길이가 짧을수록 혼합물의 유동이 더욱 원활해지므로, 방사성 폐수지 이송 및 처리시스템(101) 설치 시 이를 고려할 수 있다.
그리고, 상술한 바와 같이 회수단계(S200)에서 가압라인(250) 및 이온교환기(111)에만 압력이 가해지고 탈수호퍼(330)에는 압력이 가해지지 않으므로, 탈수호퍼(330)는 대기압 용기로 구성될 수 있다. 즉 탈수호퍼(330)는 높은 압력을 견딜 수 있는 압력용기로 구성될 필요가 없다.
따라서 본 발명의 일 실시 예에 따른 방사성 폐수지 이송 및 처리시스템(101)은 탈수호퍼(330)를 용이하게 제조할 수 있으며, 탈수호퍼(330)의 제조에 소요되는 비용이 절약되는 장점이 있다.
한편, 수위계(138)는 탈수호퍼(330) 내에 수용된 혼합물(R1)의 양을 측정하는 것으로, 수위계(138)를 이용함으로써 탈수호퍼(330)의 하우징(130a) 내로 혼합물(R1)이 유입된 양을 확인할 수 있다. 탈수호퍼(330)는 이온교환기(111)의 용량에 따라 적합한 용적을 갖도록 설계될 수 있으므로, 수위계(138)는 회수라인(120)이 막혔는지의 여부, 회수밸브(121)의 정상작동 여부 등을 판단하는 데에 사용될 수도 있다.
회수단계(S200) 중에는 이온교환기(111) 내의 방사성 폐수지가 탈수호퍼(330)로 충분히 이동되었는지의 여부를 판단하는 검사단계(S300)가 행해질 수 있다.
검사단계(S300)에는 회수라인(120)에 설치된 검사수단(122)이 사용될 수 있는데, 검사수단(122)으로는 혼합물의 방사선준위를 측정하는 장치 또는 혼합물에 포함된 방사성 폐수지의 양을 확인할 수 있는 투명배관 등이 사용될 수 있다.
즉, 검사수단(122)을 통하여 혼합물에 포함된 방사성 폐수지의 양을 직접 관찰하거나 방사선준위를 측정함으로써 이온교환기(111) 내의 방사성 폐수지가 탈수호퍼(330)로 충분히 이동되었는지의 여부를 판단할 수 있다.
검사단계(S300)를 통하여 이온교환기(111) 내의 방사성 폐수지가 충분히 이동되지 않았다고 판단될 경우 회수단계(S200)가 계속될 수 있으며, 방사성 폐수지의 이동이 완료되었다고 판단될 경우에는 회수단계(S200)가 완료되도록 할 수 있다. 이 과정에서, 이온교환기(111) 내부 및 회수라인(120)의 내부는 용수에 의해 충분히 세척될 수 있다.
회수라인(120)을 통한 혼합물(R1)의 유동, 즉 회수단계(S200)가 완료된 후에는 급수펌프(251) 또는 압축공기공급수단(도시되지 않음)의 작동을 중지시켜 용수 또는 압축공기가 이온교환기(111)로 공급되는 것을 중단한다. 이후 회수밸브(121) 및 급수밸브(253)를 차단하고, 회수라인(120)에 설치된 드레인(도시되지 않음), 가압라인(250)에 설치된 복귀밸브(155) 또는 드레인(도시되지 않음) 등을 개방하여 배관 내 및 버퍼탱크(140) 내에 잔류하는 용수가 배출되도록 하는 드레인단계가 행해질 수 있다.
드레인단계는 회수라인(120), 가압라인(250) 및 버퍼탱크(140) 내에 용수가 잔류함에 따라 부식이나 부패 등이 유발되는 것을 방지하고, 방사성 폐수지 이송 및 처리시스템(101)의 유지 및 보수를 위한 작업을 용이하게 행할 수 있도록 하며, 방사성물질이 잔류하여 주변에 방사선이 방출되는 것이 방지되도록 할 수 있다.
회수단계(S200)가 완료된 후에는 이송단계(S400)가 행해질 수 있다.
회수단계(S200)에서 탈수호퍼(330) 내로 유입된 혼합물(R1)은 연결이송라인(337)을 통하여 겸용호퍼(230)로 이송된다. 이를 위해서 이송밸브(337a, 337b)가 개방되어 혼합물(R1)이 연결이송라인(337)을 통하여 유동될 수 있도록 한다.
이때, 혼합물(R1)의 유동성을 높이기 위하여 탈수라인(141)에 설치된 탈수밸브(142)의 개폐를 조절함으로써 혼합물(R1)에 적절한 양의 용수가 포함된 상태를 유지시킬 수 있다.
이송단계(S400)에서는 이송펌프(261)를 작동시켜 이송급수라인(260)을 통하여 버퍼탱크(140)의 용수가 하우징(130a) 내로 공급되도록 함으로써 혼합물(R1)이 연결이송라인(337)을 통하여 용이하게 유동되도록 할 수 있는데, 탈수호퍼(330) 및 겸용호퍼(230)가 원거리 이격되어 이송급수라인(260)의 길이가 긴 경우에는 충분한 양의 용수가 공급되도록 한다.
또한, 이송단계(S400) 중에는 교반수단(135)으로 혼합물을 교반하여 혼합물(R1)의 유동성을 높임으로써 혼합물(R1)이 더욱 용이하게 유동되도록 할 수 있다.
이송단계(S400)가 완료된 후에는 분리단계(S50)가 행해질 수 있다. 분리단계(S50)는 탈수호퍼(330)로 유동된 방사성 폐수지 및 용수의 혼합물이 앞에서 설명한 필터(231, 232, 233)에 의해 용수 및 방사성 폐수지로 분리되도록 하는 단계이다.
혼합물 중 용수만 필터(231, 232, 233)를 통과함에 따라 용수와 분리된 방사성 폐수지(R2)는 도시된 바와 같이 겸용호퍼(230)의 하우징(230a) 내에 누적된다. 이 과정에서 혼합물에 포함된 용수가 필터(231, 232, 233)를 통하여 용이하게 배출될 수 있도록 교반수단(235)을 작동시켜 혼합물을 교반할 수 있다.
필터(231, 232, 233)를 통과한 용수는 탈수라인(241)을 통하여 폐수탱크(240)로 유입된다. 이때 탈수라인(241)을 개폐할 수 있도록 설치된 탈수밸브(242)는 개방된다.
참고로, 필터(131, 132, 133, 231, 232, 233)로는 방사성 폐수지 입자보다 작은 눈(mesh)을 갖는 스크린 등이 사용될 수 있다.
용수와 분리된 방사성 폐수지(R2)에는 방사성물질이 포함되어 있으므로 인체 또는 환경에 유해한 수준의 방사선이 방출될 수 있다. 따라서 앞에서 설명한 바와 같이, 겸용호퍼(230)는 방사선이 외부로 유출되지 않도록 차폐된 차폐공간(I2) 내에 설치된다.
방사성 폐수지(R2)에 포함된 방사선물질은 시간이 지남에 따라 붕괴되어 방사선의 방출량이 감소되므로, 방사성 폐수지(R2)의 방사선준위가 미리 정해진 수준 이하로 충분히 낮아질 때까지 겸용호퍼(230) 내에 수용되어 있도록 하는 대기단계가 행해질 수 있다.
상기 사항은 Decay storage를 나타내는 내용으로써, 방사성폐수지 내 방사성핵종의 반감기를 고려, 일정기간 탈수 상태에서 방사능의 저감을 위해 저장한다는 내용에 관한 것이다.
대기단계 중에는 방사성 폐수지(R1)에 포함된 수분이 충분히 제거되도록 하기 위하여 급기라인(239) 및 배기라인(239b)을 이용하여 겸용호퍼(230)의 하우징(230a) 내에서 공기가 순환되도록 할 수 있으며, 앞에서 설명한 바와 같이 급기라인(239)에는 가열수단(도시되지 않음)이 설치되어 방사성 폐수지(R2)의 건조에 소요되는 기간이 단축되도록 할 수도 있다.
한편, 혼합물이 필터(131, 132, 133, 231, 232, 233)에 의해 분리되는 과정에서 필터(131, 132, 133, 231, 232, 233)가 혼합물(R1) 또는 방사성 폐수지(R2)의 입자에 의해 막혀서 분리 효과가 저하될 수 있다.
필터(131, 132, 133, 231, 232, 233)의 성능이 저하되는 것을 방지하기 위하여, 필터(131, 132, 133, 231, 232, 233)의 적어도 일부(133, 233)는 앞에서 언급했던 바와 같이 원통 형상 등으로 형성될 수 있다. 원통 형상의 필터(133, 233)는 방사성 폐수지가 하우징(130a, 230a) 내에 누적되더라도 그 일부분은 중력 등의 영향 등으로 방사성 폐수지의 입자에 의해 막히는 것이 방지될 수 있다.
또한, 필터(131, 132, 133, 231, 232, 233)의 성능이 저하되는 것을 방지하기 위하여 필터(131, 132, 133, 231, 232, 233)에는 도시되지 않은 역세척(backflushing)라인이 설치될 수 있다. 역세척라인은 혼합물이 필터(131, 132, 133, 231, 232, 233)에 의해 걸러지는 방향의 반대 방향으로 용수가 분사되도록 하우징(130a, 230a)에 설치될 수 있다.
따라서, 방사성 폐수지의 입자에 의해 필터(131, 132, 133, 231, 232, 233)가 막혔을 경우 역세척라인으로 용수를 분사함으로써 필터(131, 132, 133, 231, 232, 233)로부터 방사성 폐수지 입자가 탈락되도록 할 수 있으므로, 필터(131, 132, 133, 231, 232, 233)의 성능이 낮아지지 않게 유지될 수 있다.
도시되지는 않았으나, 역세척라인은 탈수라인(141, 241)과 함께 각 필터(131, 132, 133, 231, 232, 233)에 연결될 수 있다. 예를 들어 원통 형상의 필터(133, 233)는, 일측이 개방되도록 형성되고 이 개방된 부분에 탈수라인(141, 241) 및 역세척라인(도시되지 않음)이 연결될 수 있다.
이러한 역세척을 행하는 역세척단계는 회수단계(S200) 내지 대기단계 사이에 행해질 수 있다.
참고로, 도시되지는 않았으나, 만약 겸용호퍼(230)의 수리 등을 위하여 일정기간 겸용호퍼(230)를 사용할 수 없는 상태이거나, 겸용호퍼(230)에 다른 호기로부터 유입된 방사성 폐수지가 수용되어 방사성붕괴가 일어나도록 대기 중일 경우 등에는, 회수단계(S200) 및 이송단계(S400) 사이에 대기단계가 행해질 수도 있다.
탈수호퍼(330)를 이용하여 대기단계가 행해질 경우, 회수단계(S200) 이후 탈수밸브(142)가 충분히 개방되도록 하여 혼합물(R1)로부터 용수가 충분히 분리되도록 하고, 급기라인(139) 및 배기라인(139b)을 통하여 하우징(130a) 내에 환기가 되도록 하여 방사성 폐수지가 충분히 건조되도록 할 수 있다.
이때 앞에서 언급했던 가열수단(도시되지 않음)에 의해 급기라인(139)을 통해 공급되는 공기가 가열되도록 함으로써 방사성 폐수지의 건조를 촉진시킬 수 있다.
이 상태로 일정한 시간이 경과되어 방사성 폐수지의 방사선준위가 충분히 낮아진 다음에는 앞에서 설명한 바와 같은 이송단계(S400)를 수행하여 방사성 폐수지에 용수가 공급되도록 한 후 연결이송라인(337)을 통하여 방사성 폐수지 및 용수의 혼합물이 겸용호퍼(230)로 이송되도록 할 수 있다.
이와 같이 대기단계가 이송단계(S400) 전에 행해진 경우에는, 이송단계(S400S5000 용수와 혼합된 방사성 폐수지(S2)로부터 용수를 분리하는 분리단계(S500)를 행한 후 추가적인 대기단계 없이 아래에서 설명할 배출단계(S60)가 행해질 수 있다.
상술한 바와 같은 작동에 의해 분리단계(S500)가 완료된 후에는, 배출단계(S600)가 행해질 수 있다. 배출단계(S600)는 배출수단(234)에 의해 방사성 폐수지(R2)가 겸용호퍼(230)의 하우징(230a) 외부로 배출되도록 하는 단계이다.
방사성 폐수지(R2)는 다량의 작은 입자가 포함된 분말 형상이므로, 하우징(230a) 내에서 누적된 상태로 시간이 경과되면 서로 응집되거나 브리지(bridge)에 의한 공동현상 등이 발생될 수 있다. 이럴 경우, 배출수단(234)이 작동되더라도 겸용호퍼(230)의 하우징(230a)에 수용된 방사성 폐수지(R2)가 원활히 배출되지 않을 수 있다.
이를 방지하기 위하여, 배출단계(S600)가 행해지는 중에는 교반수단(235)에 의해 방사성 폐수지(R2)가 교반되도록 할 수 있다. 또한, 도시되지는 않았으나 하우징(230a)에 진동을 가할 수 있는 가진수단(Knocker)을 더 설치하여 배출단계(S600)가 행해지는 중 하우징(230a)에 진동을 가함으로써 방사성 폐수지(R2)가 더욱 원활하게 배출수단(234)으로 이동되도록 하는 동시에 하우징(230a)의 내벽이나 필터(231, 232, 233) 등에 부착된 방사성 폐수지(R2)가 용이하게 탈락되도록 할 수 있다.
상기 가진수단은 하우징에 설치 또는 이격된 상태로 구비되어 상기 하우징을 타격할 수 있다. 상기 가진수단은 앞/뒤로 유동되도록 줄등의 결합수단이 연결될 수 있고 상기 줄은 슬라브에 결합 가능하다.
참고로, 배출단계(S600) 중에는 건조된 방사성 폐수지(R2)가 비산되어 배기라인(239b)을 통해 외부로 유출될 수 있다. 이럴 경우 기체폐기물의 양이 증가될 수 있으므로, 배출단계(S600) 중에는 급기밸브(239a)가 폐쇄되도록 하여 급기라인(239) 및 배기라인(239b)을 통한 공기의 순환이 중단되도록 할 수도 있다.
배출수단(234)이 작동될 때에는 배출구 개폐수단(236)을 작동시켜 커버(236c)가 폐수지 배출구(237)를 개방하도록 한다. 따라서, 방사성 폐수지(R2)는 배출수단(234)에 의해 유동되어 폐수지 배출구(237)를 통해 배출된다.
폐수지 배출구(237)로 배출된 방사성 폐수지(R3)는 계량기(280)에 의해 측정되어 일정한 양씩 폐수지드럼(270) 또는 폐기물을 수용하는 자루(도시되지 않음) 등에 수용된다.
이때 계량기(280)에 의해 미리 정해진 양의 방사성 폐수지(R3)가 폐수지드럼(270) 또는 자루(도시되지 않음) 등에 수용된 것이 측정되면, 배출수단(234)의 작동을 정지시키고 커버(236c)가 폐수지 배출구(237)를 폐쇄하도록 한 후 폐수지드럼(270) 또는 자루를 교체하고 다시 방사성 폐수지가 배출되도록 하는 것을 반복할 수 있다.
방사성 폐수지(R3)의 핵종분석을 통하여 이에 포함된 방사성물질의 종류 및 양을 측정한 후, 측정된 결과에 따라 방사성준위가 처분제한치 이상일 경우에는 폐수지드럼(270)을 고형화수단(290)으로 이송하여 밀봉처리를 할 수 있고, 처분제한치 이하일 경우에는 자루와 같은 포장용기에 수용시켜서 자체적으로 구비된 폐기물 보관창고에 저장되도록 할 수도 있다. 이는 잘 알려진 사항이므로 상세한 설명을 생략한다.
참고로, 도시되지는 않았으나, 본 발명의 일 실시 예에 따른 방사성 폐수지 이송 및 처리시스템(101)에는 각 구성요소의 상태를 측정하는 센서 및 각 구성요소의 작동을 제어하는 제어부가 구비되어, 운전실에서 모든 조종을 행하도록 할 수 있으며, 모든 제어가 자동화되도록 할 수 있다.
이상 설명한 바와 같은 본 발명의 일 실시 예에 따른 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법에 따르면, 탈수호퍼(330)로부터 이격 설치된 겸용호퍼(230)로 방사성 폐수지가 용이하게 이송될 수 있도록 함으로써, 방사성 폐수지의 이송을 위한 별도의 설비 등의 설치에 소요되는 비용이 절약되며 가동에 소요되는 운영비용 또한 절약될 수 있다.
참고로, 상술한 바와 같은 본 발명의 일 실시 예에 따른 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법에서, 압력센서(252)는 이온교환기(111)로 공급된 용수 또는 압축공기 또는 용수와 압축공기의 양이 미리 정해진 양에 도달되면 신호를 발하여 이 신호를 수신한 회수밸브(121)가 개방되도록 하는 회수감지수단의 한 예를 적용한 것이다.
도시되지는 않았으나, 회수감지수단으로는 압력센서(252) 외에도 수류감지센서, 수위센서, 수량센서 등이 사용될 수 있다.
예를 들어, 회수감지수단으로 수류감지센서가 적용된 경우, 수류감지센서가 배수라인(117)에 설치되도록 하고, 가압라인(250)을 통하여 이온교환기(111)에 용수가 공급되도록 하면, 이온교환기(111)로 공급된 용수의 양이 미리 정해진 양을 초과할 경우 가압라인(250)을 통하여 용수가 배출되기 시작한다.
여기서, 미리 정해진 용수의 공급량은 가압라인(250)을 통하여 용수만 공급되는 경우, 압축공기만 공급되는 경우, 용수와 압축공기가 함께 공급되는 경우가 상이하므로, 배수라인(116)이 이온교환기(111)에 설치되는 위치가 변경될 수 있다.
수류감지센서가 배수라인(116)을 통하여 용수가 배출됨 감지하여 신호를 발하면 회수밸브(121)가 이를 감지하여 회수라인(120)이 개방되도록 할 수 있다.
또는, 수류감지센서를 가압라인(250)에 설치하여 용수가 가압라인(250)을 통해 이온교환기(111)로 유입되는지의 여부를 감지하도록 하면, 용수가 이온교환기(111)로 유입되기 시작한 시점으로부터 미리 정해진 시간이 경과된 경우 이온교환기(111) 내로 충분한 양의 용수가 공급된 것으로 볼 수 있다. 이때 수류감지센서가 이를 감지하여 신호를 발하면 회수밸브(121)가 이를 감지하여 회수라인(120)이 개방되도록 할 수 있다.
또는, 회수감지수단으로 수위센서가 적용된 경우, 이온교환기(111)에 수위센서를 설치하고 이온교환기(111) 내로 공급된 용수의 양이 미리 정해진 양에 도달되면 수위센서가 신호를 발하게 함으로써 회수밸브(121)가 개방되도록 할 수 있다.
또는, 회수감지수단으로 수량센서가 적용된 경우, 가압라인(250)에 수량센서를 설치하여 이온교환기(111)로 유입되는 용수의 양을 측정하게 하고, 유입된 용수의 양이 미리 정해진 양에 도달되면 수량센서가 신호를 발하게 함으로써 회수밸브(121)가 개방되도록 할 수도 있다.
이와 같이, 본 발명의 일 실시 예에 따른 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법에 적용되는 회수감지수단은 다양하게 변경될 수 있다.
한편, 본 발명의 일 실시 예에서는 버퍼탱크(140)가 가압라인(250)을 통해 이온교환기(111)와 연결되어 용수를 공급하도록 구성되었으나, 급수수단(도시되지 않음)이 이온교환기(111)로 일정한 수압의 용수를 공급할 수 있다면 급수수단(도시되지 않음)이 가압라인(250)에 직접 연결될 수도 있다. 이때, 탈수라인(141)은 드레인(118)에 연결되어 탈수호퍼(330)로부터 배출되는 용수가 드레인(118)으로 유입되도록 할 수 있다.
이상에서 본 발명의 실시 예에 따른 방사성 폐수지 이송 및 처리시스템과 그것을 이용한 방사성 폐수지 이송 및 처리방법에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
또한 설명한 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 기재되어 있다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.
또한, 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 상세한 설명에서 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상에서 설명한 실시예들은 그 일 예로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (28)

  1. 이온교환수지를 이용한 방사성 액체의 정화 과정에서 생성된 방사성 폐수지를 처리하는 방사성 폐수지 처리시스템으로서,
    상기 방사성 폐수지가 수용된 이온교환기와 급수라인을 통해 연결되어 상기 이온교환기로 용수를 공급하는 급수수단 또는 버퍼탱크;
    상기 이온교환기로 공급된 상기 용수의 양이 미리 정해진 양에 도달되면 신호를 발하는 회수감지수단;
    상기 이온교환기와 회수라인으로 연결된 호퍼; 및
    상기 회수라인에 설치되고, 상기 회수감지수단의 신호를 수신하면 개방되어 상기 회수라인을 통하여 상기 방사성 폐수지 및 상기 용수의 혼합물이 상기 호퍼로 유동되도록 하는 회수밸브를 포함하고,
    상기 호퍼는,
    미리 정한 형상의 하우징;
    상기 하우징 내에 설치되고, 상기 회수라인으로부터 유입되는 상기 혼합물로부터 상기 방사성 폐수지를 분리하는 하나 이상의 필터; 및
    상기 혼합물로부터 분리된 상기 방사성 폐수지를 상기 하우징의 외부로 배출하는 폐수지 배출수단을 포함하는 방사성 폐수지 처리시스템.
  2. 이온교환수지를 이용한 방사성 액체의 정화 과정에서 생성된 방사성 폐수지를 처리하는 방사성 폐수지 이송 및 처리시스템으로서,
    상기 방사성 폐수지가 수용된 이온교환기와 가압라인을 통해 연결되어 상기 이온교환기로 용수, 압축공기 및 상기 용수와 상기 압축공기 중에서 적어도 하나를 공급하는 가압수단;
    상기 이온교환기와 회수라인으로 연결된 탈수호퍼;
    상기 이온교환기로 공급된 상기 용수, 상기 압축공기 및 상기 용수와 상기 압축공기중에서 적어도 하나의 양이 미리 정해진 양에 도달되면 신호를 발하는 회수감지수단; 및
    상기 회수라인에 설치되고, 상기 회수감지수단의 신호를 수신하면 개방되어 상기 회수라인을 통하여 상기 방사성 폐수지 및 상기 용수의 혼합물이 상기 탈수호퍼로 유동되도록 하는 회수밸브;
    상기 탈수호퍼와 연결이송라인으로 연결된 겸용호퍼; 및
    상기 탈수호퍼 및 상기 버퍼탱크와 이송급수라인으로 연결되고, 상기 용수를 상기 탈수호퍼로 공급하여 상기 혼합물이 상기 연결이송라인을 통하여 상기 겸용호퍼로 이송되도록 하는 이송펌프를 포함하고,
    상기 탈수호퍼 및 상기 겸용호퍼는,
    미리 정한 형상의 하우징; 및
    상기 하우징 내에 설치되고, 상기 하우징 내부로 유입되는 상기 혼합물로부터 상기 방사성 폐수지를 분리하는 필터를 각각 포함하고,
    상기 겸용호퍼는,
    상기 혼합물로부터 분리된 상기 방사성 폐수지를 상기 하우징의 외부로 배출하는 폐수지 배출수단을 포함하는 방사성 폐수지 이송 및 처리시스템.
  3. 이온교환수지를 이용한 방사성 액체의 정화 과정에서 생성된 방사성 폐수지를 처리하는 방사성 폐수지 처리시스템으로서,
    상기 방사성 폐수지가 수용된 이온교환기와 급수라인 또는 가압라인을 통해 연결되어 상기 이온교환기로 용수, 압축공기 및 상기 용수와 상기 압축공기 중에서 적어도 하나를 공급하는 급수수단 또는 가압수단;
    상기 이온교환기로 공급된 상기 용수, 상기 압축공기 및 상기 용수와 상기 압축공기중에서 적어도 하나의 양이 미리 정해진 양에 도달되면 신호를 발하는 회수감지수단;
    상기 이온교환기와 회수라인으로 연결된 호퍼; 및
    상기 회수라인에 설치되고, 상기 회수감지수단의 신호를 수신하면 개방되어 상기 회수라인을 통하여 상기 방사성 폐수지 및 상기 용수의 혼합물이 상기 호퍼로 유동되도록 하는 회수밸브를 포함하고,
    상기 호퍼는,
    미리 정한 형상의 하우징;
    상기 하우징 내에 설치되고, 상기 회수라인으로부터 유입되는 상기 혼합물로부터 상기 방사성 폐수지를 분리하는 하나 이상의 필터; 및
    상기 혼합물로부터 분리된 상기 방사성 폐수지를 상기 하우징의 외부로 배출하는 폐수지 배출수단을 포함하는 방사성 폐수지 처리시스템.
  4. 제 1항, 2항 또는 제 3항에 있어서,
    상기 회수감지수단은,
    상기 급수라인 또는 가압라인에 설치된 압력센서를 포함하고,
    상기 압력센서는 상기 회수라인 내의 압력이 미리 정해진 압력에 도달되면 상기 신호를 발하는 방사성 폐수지 처리시스템.
  5. 제 1항에 있어서,
    상기 회수감지수단은,
    상기 이온교환기에 설치되고 상기 용수가 상기 미리 정해진 양을 초과하여 유입되면 상기 용수가 상기 이온교환기의 외부로 배출되는 배수라인; 및
    상기 배수라인에 설치된 수류감지센서를 포함하고,
    상기 수류감지센서는 상기 배수라인을 통하여 상기 용수가 배출되면 상기 신호를 발하는 방사성 폐수지 처리시스템.
  6. 제 1항,2항 또는 3항에 있어서,
    상기 회수감지수단은,
    상기 급수라인 또는 가압라인에 설치되어 상기 이온교환기로 상기 용수가 유입되는지의 여부를 감지하는 수류감지센서를 포함하고,
    상기 수류감지센서는 상기 용수가 상기 이온교환기로 유입되기 시작한 시점으로부터 미리 정해진 시간이 경과되면 상기 신호를 발하는 방사성 폐수지 처리시스템.
  7. 제 1항, 2항 또는 3항에 있어서,
    상기 회수감지수단은,
    상기 급수라인 또는 가압라인에 설치되어 상기 이온교환기로 상기 용수가 유입되는 양을 감지하는 수량센서를 포함하고,
    상기 수량센서는 상기 급수라인을 통해 유동된 상기 용수의 양이 상기 미리 정해진 양에 도달되면 상기 신호를 발하는 방사성 폐수지 처리시스템.
  8. 제 1항 내지 7항 중 어느 한 항에 있어서,
    상기 호퍼, 상기 탈수호퍼 및 상기 겸용호퍼 중에서 적어도 하나의 호퍼에는, 상기 하우징에 연결되어 상기 하우징 내로 공기를 공급하는 급기라인; 및
    상기 하우징에 연결되어 급기라인을 통해 유입된 상기 공기를 배출하는 배기라인을 더 포함하는 방사성 폐수지 처리시스템.
  9. 제 8항에 있어서,
    상기 급기라인에 설치되어 상기 공기를 가열하는 가열수단을 더 포함하는 방사성 폐수지 처리시스템.
  10. 제 1항 내지 7항 중 어느 한 항에 있어서,
    상기 호퍼, 상기 탈수호퍼 및 상기 겸용호퍼 중에서 적어도 하나의 호퍼에는, 상기 혼합물이 상기 필터에 의해 걸러지는 방향의 반대 방향으로 상기 용수를 분사하도록 상기 하우징에 설치된 역세척라인을 더 포함하는 방사성 폐수지 처리시스템.
  11. 제 10항에 있어서,
    상기 필터는 일측이 개방된 원통 형상으로 형성되고,
    상기 필터의 개방된 부분에는 상기 역세척라인이 연결된 방사성 폐수지 처리시스템.
  12. 제 10항에 있어서,
    상기 호퍼는 방사선을 차폐하는 차폐벽에 의해 형성된 차폐공간 내에 설치된 방사성 폐수지 처리시스템.
  13. 제 1항,2항 또는 3항에 있어서,
    상기 하우징에는 상기 차폐공간 외부로 연결된 폐수지 배출구가 형성되고,
    상기 폐수지 배출수단에는 상기 폐수지 배출구를 개폐하는 배출구 개폐수단이 더 포함된 방사성 폐수지 처리시스템.
  14. 제 13항에 있어서,
    상기 호퍼, 상기 탈수호퍼 및 상기 겸용호퍼 중에서 적어도 하나의 호퍼에는, 상기 혼합물로부터 분리된 상기 방사성 폐수지를 교반하는 교반수단을 더 포함하는 방사성 폐수지 처리시스템.
  15. 제 14항에 있어서,
    상기 호퍼는, 상기 하우징에 설치 또는 이격되어 설치되어 상기 하우징에 진동을 가하는 가진수단을 더 포함하는 방사성 폐수지 처리시스템.
  16. 제 14항에 있어서,
    상기 회수라인에 설치되어 상기 혼합물에 포함된 상기 방사성 폐수지의 양을 측정하는 검사수단을 더 포함하는 방사성 폐수지 처리시스템.
  17. 제 2항 또는 3항에 있어서,
    상기 가압수단은
    상기 가압라인에 연결된 버퍼탱크 또는 급수수단; 및
    상기 가압라인에 설치된 급수펌프를 포함하는 방사성 폐수지 이송 및 처리시스템.
  18. 제 17항에 있어서,
    상기 가압수단은
    상기 가압라인에 연결된 압축공기라인;
    상기 압축공기라인을 통하여 상기 압축공기를 공급하는 압축공기공급수단; 및
    상기 압축공기라인에 설치되어 상기 압축공기라인을 통하여 상기 가압라인으로 공급되는 상기 압축공기의 압력을 조정하는 압력조정밸브를 더 포함하는 방사성 폐수지 이송 및 처리시스템.
  19. 상기 1항 또는 3항에 따른 방사성 폐수지 처리시스템을 이용한 방사성 폐수지 처리방법으로서,
    상기 회수감지수단에 의해 감지된 상기 용수의 양이 미리 정해진 양에 도달될 때까지 상기 이온교환기로 상기 용수가 공급되도록 하는 급수단계;
    상기 급수라인 내의 압력이 상기 미리 정해진 압력에 도달되면 상기 회수밸브가 개방되어 상기 혼합물이 상기 호퍼로 유동되는 회수단계;
    상기 호퍼로 유입된 상기 혼합물이 상기 필터에 의해 상기 방사성 폐수지 및 상기 용수로 분리되는 분리단계; 및
    상기 폐수지 배출수단에 의해 상기 호퍼 내의 방사성 폐수지가 상기 하우징의 외부로 배출되는 배출단계를 포함하는 방사성 폐수지 처리시스템을 이용한 방사성 폐수지 처리방법.
  20. 상기 2항 또는 3항에 따른 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법으로서,
    상기 회수감지수단에 의해 감지된 상기 용수, 상기 압축공기 또는 상기 용수와 상기 압축공기의 양이 미리 정해진 양에 도달될 때까지 상기 이온교환기로 상기 용수가 공급되도록 하는 급수 또는 가압단계;
    상기 회수밸브가 개방되어 상기 혼합물이 상기 탈수호퍼로 유동되는 회수단계;
    상기 탈수호퍼로 유입된 상기 혼합물이 상기 이송펌프에 의해 공급되는 상기 용수에 의해 상기 겸용호퍼로 유동되는 이송단계;
    상기 겸용호퍼로 유입된 상기 혼합물이 상기 필터에 의해 상기 방사성 폐수지 및 상기 용수로 분리되는 분리단계; 및
    상기 폐수지 배출수단에 의해 상기 겸용호퍼 내의 방사성 폐수지가 상기 하우징의 외부로 배출되는 배출단계를 포함하는 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법.
  21. 제 19항에 있어서,
    상기 회수단계 중에는,
    상기 회수라인을 통하여 유동되는 상기 혼합물의 방사선준위를 측정하거나, 상기 혼합물에 포함된 상기 방사성 폐수지의 양을 확인하는 검사단계를 더 포함하는 방사성 폐수지 처리시스템을 이용한 방사성 폐수지 처리방법.
  22. 제 21항에 있어서, 상기 회수단계 이후에는,
    상기 용수가 상기 이온교환기로 공급되는 것을 중단한 후, 상기 회수라인 과 상기 급수라인 또는 가압라인 내에 잔류하는 상기 용수를 배출하는 드레인 단계;를 더 포함하는 방사성 폐수지 처리시스템을 이용한 방사성 폐수지 처리방법.
  23. 제 19항에 있어서,
    상기 회수단계와 상기 이송단계의 사이 또는 상기 분리단계와 상기 배출단계 사이에는,
    상기 방사성 폐수지의 방사선준위가 미리 정해진 수준 이하가 될 때까지 대기하는 대기단계를 더 포함하는 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법.
  24. 제 23항에 있어서,
    상기 대기단계 중에는,
    상기 호퍼, 상기 탈수호퍼 및 상기 겸용호퍼 중에서 적어도 하나의 호퍼에는 상기 혼합물이 수용된 것 내로 공기가 순환되도록 하는 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법.
  25. 제 23항에 있어서,
    상기 회수단계에서 상기 대기단계 사이에는,
    상기 혼합물이 상기 필터에 의해 걸러지는 방향의 반대 방향으로 상기 용수를 분사하는 역 세척 단계;를 더 포함하는 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법.
  26. 제 20항에 있어서,
    상기 이송단계에서는, 상기 혼합물을 교반하는 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법.
  27. 제 19항에 있어서,
    상기 배출단계에서는, 상기 방사성 폐수지를 교반하는 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법.
  28. 제 19항에 있어서,
    상기 배출단계에서는,
    상기 호퍼의 하우징 또는 상기 겸용 호퍼의 하우징에 진동을 가하는 방사성 폐수지 이송 및 처리시스템을 이용한 방사성 폐수지 이송 및 처리방법.
PCT/KR2014/000189 2013-01-23 2014-01-08 방사성 폐수지 이송 및 처리를 위한 시스템과 그것을 이용한 방사성 폐수지 이송 및 처리방법 WO2014115982A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SA515360795A SA515360795B1 (ar) 2013-01-23 2015-07-22 نظام وطريقة لمعالجة راتنج مستنفد نشط إشعاعياً

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130007480A KR101385666B1 (ko) 2013-01-23 2013-01-23 방사성 폐수지 처리시스템 및 그것을 이용한 방사성 폐수지 처리방법
KR10-2013-0007480 2013-01-23
KR1020130007481A KR101385667B1 (ko) 2013-01-23 2013-01-23 방사성 폐수지 이송 및 처리시스템과 그것을 이용한 방사성 폐수지 이송 및 처리방법
KR10-2013-0007481 2013-01-23

Publications (1)

Publication Number Publication Date
WO2014115982A1 true WO2014115982A1 (ko) 2014-07-31

Family

ID=51227744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000189 WO2014115982A1 (ko) 2013-01-23 2014-01-08 방사성 폐수지 이송 및 처리를 위한 시스템과 그것을 이용한 방사성 폐수지 이송 및 처리방법

Country Status (2)

Country Link
SA (1) SA515360795B1 (ko)
WO (1) WO2014115982A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104575647A (zh) * 2015-01-04 2015-04-29 上海核工程研究设计院 一种放射性废树脂屏蔽转运方法及其转运装置
CN107369485A (zh) * 2017-08-04 2017-11-21 成都天翔环境股份有限公司 废树脂转运槽车卸料系统、废料输送系统以及转运槽车
CN112028369A (zh) * 2020-09-23 2020-12-04 中广核工程有限公司 核电厂废树脂超临界水氧化处理进料装置和方法
CN112289476A (zh) * 2020-10-29 2021-01-29 江苏中海华核环保有限公司 一种放射性废树脂锥形干燥装置
CN117672582A (zh) * 2023-08-16 2024-03-08 西南科技大学 核医疗放射性废水深度净化处理系统及应用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140839A (ja) * 1998-11-05 2000-05-23 Japan Organo Co Ltd 復水脱塩装置
JP2000187096A (ja) * 1998-12-24 2000-07-04 Hitachi Ltd 除染廃液の処理方法
JP2004233307A (ja) * 2003-01-31 2004-08-19 Toshiba Plant Systems & Services Corp 放射性汚染水の処理装置および処理方法
JP2011012961A (ja) * 2009-06-30 2011-01-20 Hitachi-Ge Nuclear Energy Ltd 放射性廃棄物の固化処理方法
KR101173832B1 (ko) * 2012-02-09 2012-08-16 배상수 원자력발전소의 폐수지 건조장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140839A (ja) * 1998-11-05 2000-05-23 Japan Organo Co Ltd 復水脱塩装置
JP2000187096A (ja) * 1998-12-24 2000-07-04 Hitachi Ltd 除染廃液の処理方法
JP2004233307A (ja) * 2003-01-31 2004-08-19 Toshiba Plant Systems & Services Corp 放射性汚染水の処理装置および処理方法
JP2011012961A (ja) * 2009-06-30 2011-01-20 Hitachi-Ge Nuclear Energy Ltd 放射性廃棄物の固化処理方法
KR101173832B1 (ko) * 2012-02-09 2012-08-16 배상수 원자력발전소의 폐수지 건조장치

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104575647A (zh) * 2015-01-04 2015-04-29 上海核工程研究设计院 一种放射性废树脂屏蔽转运方法及其转运装置
CN107369485A (zh) * 2017-08-04 2017-11-21 成都天翔环境股份有限公司 废树脂转运槽车卸料系统、废料输送系统以及转运槽车
CN107369485B (zh) * 2017-08-04 2023-07-04 成都天翔环境股份有限公司 废树脂转运槽车卸料系统、废料输送系统以及转运槽车
CN112028369A (zh) * 2020-09-23 2020-12-04 中广核工程有限公司 核电厂废树脂超临界水氧化处理进料装置和方法
CN112289476A (zh) * 2020-10-29 2021-01-29 江苏中海华核环保有限公司 一种放射性废树脂锥形干燥装置
CN117672582A (zh) * 2023-08-16 2024-03-08 西南科技大学 核医疗放射性废水深度净化处理系统及应用方法
CN117672582B (zh) * 2023-08-16 2024-05-17 西南科技大学 核医疗放射性废水深度净化处理系统及应用方法

Also Published As

Publication number Publication date
SA515360795B1 (ar) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2014115982A1 (ko) 방사성 폐수지 이송 및 처리를 위한 시스템과 그것을 이용한 방사성 폐수지 이송 및 처리방법
WO2016114523A1 (en) Dust collecting apparatus
WO2022250379A1 (ko) 상수관망 진단이 접목된 회전 워터젯 방식의 노후관 세척 공법
WO2018143553A1 (ko) 메소코즘 모사 시스템에 장착되는 실험수조
WO2010050699A2 (ko) 동영상 부호화/복호화 장치, 이를 위한 적응적 디블록킹 필터링 장치와 필터링 방법, 및 기록 매체
WO2011111959A2 (ko) 컨테이너 보안 장치
WO2018093064A1 (ko) 선박용 연료유 전환 시스템 및 방법
EP2749078A2 (en) Mobility state enhancements
WO2019103544A1 (ko) 건조기
WO2020175743A1 (ko) 여과기와 커넥팅 구조를 이루는 연속식 열수가압 활성탄 재생장치 및 이를 이용한 연속식 활성탄 재생 방법
EP2567017A2 (en) Clothes treating apparatus
WO2013025019A2 (ko) 중앙식 연속 아스콘 생산장치 및 그 방법
EP3340849A1 (en) Robot cleaner
WO2017159960A1 (ko) 엑스선관모듈의 절연유 교체장치와 절연유 교체방법
WO2015174625A1 (ko) 압축공기용 정화장치
WO2019194327A1 (ko) 웨이퍼 수납용기
WO2019139454A1 (ko) 세탁기
WO2020171419A1 (ko) 증기 배출 유로의 막힘을 방지하는 전기압력밥솥
WO2018147491A1 (ko) 유압식 브레이커, 작동유 모니터링 시스템 및 작동유 모니터링 방법
WO2020122310A1 (ko) 케미컬 공급을 위한 록킹장치 및 이를 구비한 케미컬 자동공급장치
WO2014163331A1 (ko) 카메라를 이용한 엘리베이터 운행 시스템 및 방법
WO2020138617A1 (ko) 3차원 프린팅 구조체 세척장치 및 이를 이용한 3차원 프린팅 구조체 세척방법
WO2021010795A1 (ko) 케미컬 샘플링 장치
WO2022163997A1 (ko) 분체이송시스템과 분체이송방법
WO2023054867A1 (ko) 음식물 처리기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743536

Country of ref document: EP

Kind code of ref document: A1