WO2021210421A1 - 室温硬化性オルガノポリシロキサン組成物及び物品 - Google Patents

室温硬化性オルガノポリシロキサン組成物及び物品 Download PDF

Info

Publication number
WO2021210421A1
WO2021210421A1 PCT/JP2021/014274 JP2021014274W WO2021210421A1 WO 2021210421 A1 WO2021210421 A1 WO 2021210421A1 JP 2021014274 W JP2021014274 W JP 2021014274W WO 2021210421 A1 WO2021210421 A1 WO 2021210421A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sio
mass
component
room temperature
Prior art date
Application number
PCT/JP2021/014274
Other languages
English (en)
French (fr)
Inventor
晃嗣 藤原
成紀 安田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020227039111A priority Critical patent/KR20230008080A/ko
Priority to CN202180028484.9A priority patent/CN115427510B/zh
Priority to US17/918,594 priority patent/US20230146278A1/en
Priority to JP2022515307A priority patent/JP7552688B2/ja
Publication of WO2021210421A1 publication Critical patent/WO2021210421A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Definitions

  • the present invention relates to a room temperature curable organopolysiloxane composition that gives a cured product / coating film of high hardness, and is used as a coating material composition, a sealing material composition, etc., particularly for electrical / electronic parts and their substrates.
  • the present invention relates to a room temperature curable organopolysiloxane composition containing an organopolysiloxane resin having a three-dimensional network structure suitable for a coating material (conformal coating material), a sealing material for a liquid crystal display element, and the like.
  • it is a de-alcohol type room temperature curable organopoly which is easy to manufacture, inexpensive, exhibits stable curability even when it does not contain a metal compound as a condensation catalyst, and can form a coating film having high hardness. It relates to a siloxane composition.
  • a room temperature curable (RTV) silicone rubber composition that can be crosslinked and cured at room temperature (23 ° C ⁇ 15 ° C) to give a silicone elastomer (silicone rubber cured product) by moisture in the air is easy to handle. Because of its excellent weather resistance and electrical properties, it is used in various fields such as sealing materials for building materials and adhesives in the electrical and electronic fields. In particular, in the electric and electronic fields, a de-alcohol type RTV silicone rubber composition tends to be used because of its appropriate adhesion and coating to the adherend (resin-based) used.
  • the problem is that the reaction time is long because the organopolysiloxane having a hydroxy group content of 1.62% by mass and the silanol group-blocking dimethylpolysiloxane at both ends are condensed with aqueous ammonia at 20 ° C for 12 hours. be. Further, even if the step of removing ammonia by heating is added, the odor of ammonia remains in the composition, which may cause a problem in actual use.
  • Patent Document 3 also discloses a method for producing a room temperature curable organopolysiloxane composition that gives a cured product having a high hardness and a coating film.
  • (CH 3 ) 3 SiO 1/2 unit / SiO 4/2 unit (molar ratio) 0.75
  • hydroxy bonded to silicon atom Dimethylpolysiloxane having a group content of 1.1% by mass and both ends sealed with silanol groups is subjected to a condensation reaction with tetramethylguanidine for 1 hour at room temperature.
  • Patent Document 2 JP-A-2002-327115 (Patent Document 2), since a highly polar amine compound is used, the compatibility with the organosiloxane composition is poor, and the composition is compatible with the organopolysiloxane. Since it is not directly crosslinked, there is a problem that the amine compound exudes from the composition.
  • Patent Document 4 discloses a room temperature curable organosiloxane composition characterized by simple production and short takt time, and a method for producing the same. It consists of R 3 SiO 1/2 unit and SiO 4/2 unit, and is a de-alcohol type room temperature curable composition containing a titanium catalyst. However, since it contains a titanium catalyst, it is hydrolyzed by moisture and the composition itself is whitened. there's a possibility that.
  • the present invention has been made in view of the above circumstances, and is easy to manufacture and inexpensive in coating materials in the electrical and electronic fields (particularly around liquid crystal and power supply circuit substrates), and does not contain a metal compound which is a condensation catalyst. Even if there is, it is coated or sealed with a de-alcohol type room temperature curable organopolysiloxane composition having a three-dimensional network structure that gives a cured product / coating film (conformal coating film) of high hardness and a cured product of the composition.
  • the purpose is to provide goods.
  • an organopolysiloxane resin having a specific amount of silanol group and having a specific molecular weight and a specific structure in a three-dimensional network structure
  • an organooxy Contains a methyl group-containing hydrolyzable organosilane compound and / or a partially hydrolyzed condensate thereof
  • C a linear diorganopolysiloxane in which both ends of the molecular chain are sealed with silanol groups
  • D an amino group.
  • a room temperature curable organopolysiloxane composition containing a hydrolyzable organosilane and / or a partially hydrolyzed condensate thereof in a specific ratio is easy to produce and inexpensive to produce, and has high hardness even if it does not contain a metal compound.
  • the present invention has been made by finding that a cured product / coating film (conformal coating film) is provided.
  • the present invention provides the following room temperature curable organopolysiloxane composition and articles coated or sealed with the cured product of the composition.
  • Units in each of the above formulas, R is as described above, may be contained in a molar ratio of 0 to 1.0 with respect to 4/2 units of SiO, respectively, and a hydroxy group (silanol) bonded to a silicon atom may be contained.
  • Organopolysiloxane resin having a three-dimensional network structure having 0.005 to 0.15 mol / 100 g and a molecular weight of 2,000 to 10,000: 100 parts by mass, (B);
  • the molar ratio of the component (B) to the silanol group in the component (A) is 0.
  • R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms
  • R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms. It is a hydrogen group, Y is a hydrolyzable group, and m is 0, 1 or 2.
  • C Linear diorganopolysiloxane in which both ends of the molecular chain are sealed with silanol groups: 10 to 100 parts by mass, and (D); containing amino groups other than the above components (A) and (B).
  • Hydrolyzable organosilane and / or a partially hydrolyzed condensate thereof A room temperature curable organopolysiloxane composition containing 0.5 to 5 parts by mass. [2] Further, (E); the composition has a boiling point of 40 to 180 ° C. and contains an organic solvent other than benzene, toluene and xylene in an amount such that the non-volatile content of the composition is 20 to 80% by mass [1]. Room temperature curable organopolysiloxane composition. [3] The room temperature curable organopolysiloxane composition according to [1] or [2], which does not contain a metal-based condensation catalyst.
  • a de-alcohol type room temperature curable organopolysiloxane composition which is easy to manufacture, inexpensive to produce, and which gives a cured product / coating film of high hardness even if it does not contain a metal compound.
  • the component (A) used as the main agent (base polymer) is R 3 SiO 1. It consists of / 2 units (in the formula, R independently represents an unsubstituted or substituted monovalent hydrocarbon group or hydroxy group having 1 to 6 carbon atoms) and 4/2 units of SiO, and R with respect to 4/2 units of SiO.
  • the molar ratio of 3 SiO 1/2 units is 0.5 to 1.5, and R 2 SiO 2/2 units and RSiO 3/2 units (in each of the above formulas, R is as described above) are added to SiO 4 It may be contained in a molar ratio of 0 to 1.0 with respect to 2 units, and has a molecular weight of 0.005 to 0.15 mol / 100 g of a hydroxy group (silanol group) bonded to a silicon atom. It is an organopolysiloxane resin having a three-dimensional network structure of 2,000 to 10,000.
  • the R represents an unsubstituted or substituted monovalent hydrocarbon group or hydroxy group having 1 to 6 carbon atoms
  • examples of the unsubstituted or substituted monovalent hydrocarbon group having 1 to 6 carbon atoms include. , Methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group and other alkyl groups, cyclohexyl group and other cycloalkyl groups, vinyl groups, Examples thereof include an alkenyl group such as an allyl group and a phenyl group, and examples thereof include a chloromethyl group in which a part or all of hydrogen atoms of these groups are replaced with a halogen atom or the like.
  • a hydroxy group, a methyl group, an ethyl group, a propyl group and a phenyl group are preferable, and a hydroxy group, a methyl group and a phenyl group are particularly preferable.
  • the molar ratio of R 3 SiO 1/2 unit to SiO 4/2 unit is in the range of 0.5 to 1.5, preferably 0.6 to 1.3, and particularly preferably 0. It is 65 to 1.2. If the molar ratio is less than 0.5, the reinforcing property of the cured product becomes insufficient, and if it exceeds 1.5, the hardness of the cured product becomes insufficient.
  • the organopolysiloxane resin having a three-dimensional network structure of the component (A) is preferably composed of only R 3 SiO 1/2 unit and SiO 4/2 unit, but R 2 SiO 2/2 with respect to SiO 4/2 unit.
  • the molar ratio of units and the molar ratio of RSiO 3/2 units to SiO 4/2 units may both be contained in the range of 0 to 1.0, and more preferably, the molar ratios are 0.8 or less (0), respectively. ⁇ 0.8).
  • the silanol group contained in the organopolysiloxane resin of the component (A) is 0.005 to 0.15 mol / 100 g (that is, 0.085 to 2.5 in terms of the amount of OH of the hydroxy group bonded to the silicon atom). It is necessary to be 0.01 to 0.13 mol / 100 g (0.17 to 2.2 mass%), more preferably 0.02 to 0.12 mol / 100 g (% by mass). 0.3 to 2.0% by mass).
  • a silanol group is present in an amount of more than 0.15 mol / 100 g, the physical characteristics of the rubber (particularly the hardness) become high and cracks in the composition may occur. Further, if the silanol group is less than 0.005 mol / 100 g, the condensation reaction between the component (A) and the component (C) may not proceed sufficiently, and the desired properties may not be obtained.
  • the organopolysiloxane resin having a three-dimensional network structure of the component (A) has a molecular weight of about 2,000 to 10,000, preferably about 2,500 to 8,000. If the molecular weight is too small, the organopolysiloxane resin has a molecular weight of about 2,000 to 10,000.
  • the cured product (silicone rubber cured product) obtained by curing the composition has poor rubber elasticity and is easily cracked, and if the molecular weight is too large, it becomes difficult to prepare a uniform organopolysiloxane composition.
  • This molecular weight (or degree of polymerization) is usually determined as a polystyrene-equivalent number average molecular weight (or number average degree of polymerization) or the like in gel permeation chromatography (GPC) analysis using toluene, tetrahydrofuran (THF) or the like as a developing solvent.
  • GPC gel permeation chromatography
  • the organopolysiloxane resin of the component (A) is a monofunctional triorganosilane having one hydrolyzable group, together with a tetrafunctional silane having four hydrolyzable groups, or three more hydrolyzed. It is obtained by co-hydrolyzing and condensing in an organic solvent together with a trifunctional organosilane having a sex group and / or a bifunctional diorganosilane having two hydrolyzable groups, and is a substantially volatile component. It is a known material because it does not contain.
  • organic solvent used in the co-hydrolysis reaction it is necessary to dissolve the organopolysiloxane resin which is the component (A), and typical organic solvents are aromatic solvents such as toluene and xylene. Examples thereof include solvents, halogen-based solvents such as chloroform and dichloromethane, and hydrocarbon-based solvents such as cyclohexane, ethylcyclohexane, and isoparaffin.
  • the room temperature curable organopolysiloxane composition of the present invention comprises a hydrolyzable organosilane compound represented by the following general formula (1) and containing an organooxymethyl group such as an alkoxymethyl group bonded to a silicon atom in the molecule. / Or a partially hydrolyzed condensate thereof is contained as a cross-linking agent (hardener).
  • the "partially hydrolyzable condensate" is preferably two or more residual hydrolyzable groups in the molecule, which is produced by partially hydrolyzing and condensing the hydrolyzable organosilane compound. It means an organosiloxane oligomer having 3 or more.
  • R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, and more preferably 1 to 4 carbon atoms
  • R 2 Is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms
  • Y is a hydrolyzable group, m. Is 0, 1 or 2)
  • Hydrogen groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, Alkyl groups such as nonyl group, decyl group and dodecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, pentenyl group and hexenyl group; Aryl groups such as phen
  • Examples of a group in which part or all of the group is substituted with a halogen atom such as F, Cl, Br, or a cyano group for example, a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a 2-cyanoethyl group, or the like. can do.
  • a halogen atom such as F, Cl, Br, or a cyano group
  • Hydrogen groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, Alkyl groups such as nonyl group, decyl group and dodecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, pentenyl group and hexenyl group; Aryl groups such as phen
  • alkyl groups in which some of the hydrogen atoms of these groups are substituted with lower alkoxy groups such as methoxy group and ethoxy group for example, methoxymethyl group, methoxyethyl group, ethoxymethyl group, ethoxyethyl group and the like are exemplified. Can be done.
  • lower alkyl groups having 1 to 4 carbon atoms such as a methyl group and an ethyl group are preferable.
  • Y is a hydrolyzable group, and for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group and the like have 1 to 1 to carbon atoms. 4 alkoxy groups; alkoxyalkoxy groups having 2 to 4 carbon atoms such as methoxyethoxy group, ethoxyethoxy group and methoxypropoxy group; asyloxy having 2 to 8 carbon atoms such as acetoxy group, octanoyloxy group and benzoyloxy group.
  • Alkenyloxy group having 2 to 6 carbon atoms such as vinyloxy group, propenyloxy group, isopropenyloxy group, 1-ethyl-2-methylvinyloxy group; dimethylketooxime group, methylethylketooxime group, diethylketooxym group
  • Ketooxime group having 3 to 7 carbon atoms amino group having 2 to 6 carbon atoms such as dimethylamino group, diethylamino group, butylamino group, cyclohexylamino group; carbon atom such as dimethylaminoxy group and diethylaminoxy group
  • Aminoxy groups of numbers 2 to 6; amide groups having 3 to 8 carbon atoms such as N-methylacetamide group, N-ethylacetamide group, N-methylbenzamide group and the like can be mentioned.
  • an alkoxy group is preferable, and a methoxy group and an ethoxy group are particularly preferable.
  • m is 0, 1 or 2,
  • hydrolyzable organosilane compound containing an organooxymethyl group such as an alkoxymethyl group bonded to a silicon atom in the molecule represented by the above formula (1) and a partially hydrolyzed condensate thereof include. Methoxymethyltrimethoxysilane, ethoxymethyltriethoxysilane, methoxymethylmethyldimethoxysilane, ethoxymethylmethyldiethoxysilane, methoxymethylethyldimethoxysilane, ethoxymethylethyldiethoxysilane, methoxymethylhexyldimethoxysilane, ethoxymethylhexyldiethoxysilane , Methoxymethyloctyldimethoxysilane, ethoxymethyloctyldiethoxysilane, methoxymethylphenyldimethoxysilane, ethoxymethylphenyldiethoxysilane, and partially hydrolyzed condensates thereof.
  • the hydrolyzable organosilane compound containing the organooxymethyl group of the component (B) and / or its partially hydrolyzed condensate is contained in the base polymer of the component (A).
  • the molar ratio of the component (B) to the silanol group in the component (A) is 0.2 to 1, and an amount of 0.4 to 1 is particularly preferable. If the amount of the component (B) is too small, sufficient rubber physical characteristics may not be obtained even if the composition is cured, or the storage stability may be deteriorated. If the amount is too large, the quick curing property may be impaired or economically disadvantageous. Is.
  • the component (C) has a three-dimensional network structure in which a hydrolyzable group derived from the component (B) is introduced into the site of the silanol group in the component (A) by the condensation reaction between the component (A) and the component (B). It is an important component for chemically connecting (linking) the organopolysiloxane resins of the above by a condensation reaction. Specifically, it is a linear diorganopolysiloxane in which both ends of the molecular chain are sealed with a silanol group (or a hydroxydiorganosyloxy group), and the one represented by the following general formula (2) is preferable.
  • R 3 is independently an unsubstituted or alkoxy-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n is an integer of 10 or more.
  • examples of the unsubstituted or alkoxy-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms of R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group.
  • Alkyl groups such as sec-butyl group, tert-butyl group, pentyl group, hexyl group, cycloalkyl group such as cyclohexyl group, alkoxy group such as vinyl group and allyl group, aryl group such as phenyl group and naphthyl group, or these.
  • Alkoxy-substituted monovalent hydrocarbon groups such as alkoxy-substituted alkyl groups such as methoxymethyl group, methoxyethyl group, ethoxymethyl group, and ethoxyethyl group, in which a part or all of the hydrogen atom of the above is substituted with an alkoxy group. Can be done. Of these, a methyl group is preferable.
  • the viscosity of the component (C) is 10,000 mPa ⁇ s or less (usually 30 to 10,000 mPa ⁇ s) at 23 ° C., preferably 50 to 8,000 mPa ⁇ s, and particularly preferably 100 to 6,000 mPa ⁇ s. It is preferably a fluid (liquid material) exhibiting a viscosity of about 10 to 1,000, preferably 30 to 500, and more preferably the value of the number of repeating units n (degree of polymerization) in the above formula (2). Is equivalent to about 50 to 400.
  • the viscosity can usually be measured with a rotational viscometer (for example, BL type, BH type, BS type, cone plate type, etc.).
  • the blending amount of the component (C) is 10 to 100 parts by mass with respect to 100 parts by mass of the component (A), preferably 10 to 80 parts by mass. If the amount of the component (C) is too small, the composition is cured, but the hardness becomes too high, and good rubber properties cannot be obtained. If it is too large, the hardness will decrease, and the physical characteristics intended by the present invention cannot be obtained.
  • the component (D) is a component (adhesion improver) that imparts adhesiveness to the room temperature curable organopolysiloxane composition, and is an amino group-containing hydrolyzable organosilane (so-called amino-functional carbon functional silane or amino-functional). Sexual silane coupling agent) and / or a partially hydrolyzed condensate thereof.
  • amino group-containing hydrolyzable organosilane those represented by the following general formula (3) can be exemplified.
  • R 4 is independently an unsubstituted or alkoxy-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 5 is a divalent hydrocarbon group having 2 to 15 carbon atoms which may contain a nitrogen atom.
  • a is 2 or 3
  • examples of the unsubstituted or alkoxy-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms of R 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group.
  • Alkyl groups such as sec-butyl group, tert-butyl group, pentyl group, hexyl group, cycloalkyl group such as cyclohexyl group, alkoxy group such as vinyl group and allyl group, aryl group such as phenyl group and naphthyl group, or these.
  • Alkoxy-substituted monovalent hydrocarbon groups such as alkoxy-substituted alkyl groups such as methoxymethyl group, methoxyethyl group, ethoxymethyl group, and ethoxyethyl group, in which a part or all of the hydrogen atom of the above is substituted with an alkoxy group. Can be done. Of these, a methyl group and an ethyl group are preferable. R 4 may be the same or different. a is 2 or 3.
  • R 5 is a divalent hydrocarbon group having 2 to 15 carbon atoms, preferably 3 to 12 carbon atoms, which may contain nitrogen atoms.
  • R 5 include those shown in the following (4-1) to (4-11). -CH 2 -CH 2- (4-1) -CH 2 -CH 2- CH 2- (4-2) -CH 2- CH 2- CH 2- CH 2- (4-3) -CH 2 -C 6 H 4 - ( 4-4) -CH 2 -C 6 H 4 -CH 2- (4-5) -CH 2 -CH 2 -C 6 H 4 - (4-6) -CH 2- CH 2- C 6 H 4- CH 2- (4-7) -CH 2- CH 2- C 6 H 4- CH 2- CH 2- (4-8) -CH 2 -CH 2 -NH-CH 2 -CH 2 - (4-9) -CH 2 -CH 2 -NH-CH 2 -CH 2 -CH 2 - (4-10) -CH 2 -C 6 H 4 -CH 2 -NH-CH 2 -CH 2 -CH 2 -
  • the orientation of the alkylene group bonded to the phenylene group may be any of ortho, meta, and para. Of these, (4-2) and (4-10) are preferable, and (4-2) is particularly preferable.
  • an amino group-containing hydrolyzable organosilane having a divalent basic moiety A represented by the following general formula (5) and / or a partially hydrolyzed condensate thereof can also be exemplified.
  • A NB-SiZ 3 (5)
  • the divalent basic site A contains 2 or more, preferably 2 to 5, more preferably 2 to 4 nitrogen atoms in its structure, and has 1 to 15 carbon atoms.
  • the wavy line portion is a binding site with B, and in the following formula (7), the wavy line portion is a binding site with a nitrogen atom. (6) (7)
  • R 6 to R 9 in the above formula (7) represent linear, branched or cyclic alkyl groups, alkenyl groups, and aryl groups having hydrogen atoms or carbon atoms of 1 to 10, respectively, and are, for example, methyl groups.
  • Alkyl groups such as ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group and hexyl group; cyclic alkyl group such as cyclohexyl group; vinyl group, allyl group and the like Alkyl group; aryl group such as phenyl group and trill group can be mentioned.
  • a methyl group, an ethyl group and a phenyl group are preferable, and a methyl group is particularly preferable.
  • R 6 to R 9 may be the same or different.
  • Z is an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, a vinyloxy group, an aryloxy group, a propenoxy group, an isopropenoxy group and the like.
  • Hydrolyzability of 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms such as ketooxym groups such as alkenyloxy group, dimethylketooxym group, diethylketooxym group and methylethylketooxym group, and acyloxy groups such as acetoxy group.
  • a group that is, a group that can be bonded to a silicon atom to form a Si—OC bond
  • an alkyl group such as a methyl group or an ethyl group
  • an alkenyl group such as a vinyl group
  • an aryl group such as a phenyl group, or the like.
  • One or more monovalent groups selected from monovalent hydrocarbon groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, but of the three Zs bonded to the silicon atom. , At least two, preferably three Z are hydrolyzable groups.
  • hydrolyzable silyl group examples include alkoxysilyl groups such as trimethoxysilyl group, methyldimethoxysilyl group, vinyldimethoxysilyl group, phenyldimethoxysilyl group and triethoxysilyl group; triisopropenoxysilyl.
  • Isopropenoxysilyl groups such as groups, methyldiisopropenoxysilyl groups, ethyldiisopropenoxysilyl groups, vinyldiisopropenoxysilyl groups, phenyldiisopropenoxysilyl groups; tris (dimethylketooxime) silyl groups, Examples thereof include a ketooxymsilyl group such as a tris (diethylketooxime) silyl group and a tris (ethylmethylketooxime) silyl group, and a trimethoxysilyl group and a triethoxysilyl group are preferable.
  • B may contain heteroatoms such as oxygen atom and nitrogen atom, and has 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms.
  • an alkylene group such as a methylene group, an ethylene group, a propylene group, a tetramethylene group, a hexamethylene group, an octamethylene group, a decamethylene group and a 2-methylpropylene group; an arylene group such as a phenylene group, and these alkylene groups and an arylene group
  • alkylene group such as a methylene group, an ethylene group, a propylene group, a tetramethylene group, a hexamethylene group, an octamethylene group, a decamethylene group and a 2-methylpropylene group
  • an arylene group such as a phenylene group
  • these alkylene groups and an arylene group examples thereof include the above-mentioned alkylene group in which a bonded group, ketone, ester, amide and the like are interposed, but a methylene group, an ethylene group, a propylene group,
  • amino group-containing hydrolyzable organosilane represented by the above formula (5) include those represented by the following general formulas (8-1) to (8-5). Me, Et, and Ph represent a methyl group, an ethyl group, and a phenyl group, respectively. (8-1) (8-2) (8-3) (8-4) (8-5)
  • examples thereof include trimethoxysilane and triethoxysilane having a terminal aminofunctional group-substituted alkyl group such as a propyl group whose terminal is substituted in the partial structure of the zabicyclo [4,5,0] deca-5-ene. ..
  • N-methyl-substituted guanidyl group-containing trimethoxysilanes eg, ⁇ -
  • formulas (8-1) and (8-2) represented by formulas (8-2)
  • formula (8-2) N-methyl-substituted guanidyl group-containing trialkoxysilanes such as (N, N'-dimethylguanidyl) propyltrimethoxysilane) are preferred.
  • the component (D) may be used alone or in combination of two or more.
  • the amino group-containing hydrolyzable organosilane of the component (D) and / or a partially hydrolyzed condensate thereof is 0.5 to 5 parts by mass, preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the component (A). It is by mass, particularly preferably 0.5 to 2 parts by mass. If it is less than 0.5 parts by mass, the reaction rate between the component (A) and the component (C) becomes low, the desired cured product cannot be obtained, and the adhesiveness may be lowered. If it exceeds 5 parts by mass, there are drawbacks such as a disadvantage in terms of price and a deterioration in storage stability of the composition.
  • the room temperature curable organopolysiloxane composition of the present invention may further contain (E) an organic solvent.
  • the component (E) is used as a solvent for dissolving the component (A).
  • alcohols such as ethanol, isopropanol, butanol, cyclohexanol; ketones such as acetone, ethylmethylketone, methylisobutylketone; ethers such as tetrahydrofuran and furan; cyclohexane, methylcyclohexane, ethylcyclohexane, low boiling point isoparaffin and the like.
  • Hydrocarbons and the like can be mentioned.
  • Aromatic compounds such as benzene, toluene, and xylene are known as general organic solvents, but their use has been avoided in recent years because they are toxic to humans and have an adverse effect on the environment. ..
  • toluene is designated as a deleterious substance in Japan, and its controlled concentration is as low as 20 ppm, and it is known as a compound that should be strictly controlled. Therefore, in the present invention, it is preferable not to contain aromatic compounds such as benzene, toluene and xylene.
  • IsoparC and IsoparE both manufactured by ExxonMobil, which are low boiling point isoparaffins having low odor, excellent solubility, and low environmental load, are preferable, and IsoparE is particularly preferable.
  • the boiling point of the component (E) is preferably in the range of 40 to 180 ° C. If the temperature is lower than 40 ° C., the risk is increased due to high volatility, and the room temperature curable organopolysiloxane composition may be cured faster and workability may be lowered. If the temperature exceeds 180 ° C., the volatility becomes low and the curing may be delayed.
  • the component (E) is preferably added so that the non-volatile content of the room temperature curable organopolysiloxane composition is in the range of 20 to 80% by mass. If it is less than 20% by mass, the amount of volatilization of the component (E) increases, which is disadvantageous in terms of atom economy. If it exceeds 80% by mass, the solubility in the component (A) becomes poor, and it becomes difficult to prepare a room temperature curable organopolysiloxane composition.
  • a filler, an additive, or the like may be added to the room temperature curable organopolysiloxane composition of the present invention as necessary within a range that does not impair the object of the present invention.
  • the filler include pulverized silica, fumes-like silica, calcium carbonate, zinc carbonate, aluminum hydroxide, aluminum hydroxide oxide, alumina, magnesium oxide, wet silica and the like.
  • the additive include known additives such as wetters, polyethers as thixotropy improvers, plasticizers, and non-reactive dimethyl silicone oils.
  • colorants such as pigments and dyes, fluorescent whitening agents, antifungal agents, antibacterial agents, non-reactive phenylsilicone oil as bleed oil, fluorosilicone oil, and organic liquids incompatible with silicone.
  • a surface modifier such as the above may also be added.
  • the room temperature curable organopolysiloxane composition of the present invention can be produced by mixing the above components according to a conventional method, and can be stored in an atmosphere away from moisture, which can be stored at room temperature (23 ° C. ⁇ 15 ° C.). By leaving it in the air, it usually cures in 5 minutes to 1 week in the presence of moisture in the air.
  • the viscosity of the room temperature curable organopolysiloxane composition of the present invention is preferably 10 to 5,000 mPa ⁇ s, particularly 20 to 3,000 mPa ⁇ s at 23 ° C.
  • the room temperature curable organopolysiloxane composition of the present invention is a metal compound having a condensation catalytic action (metal-based condensation catalyst) such as an organic lead compound, an organic tin compound, and an organic titanium compound, which are usually used in a condensation curing type composition. ) Is not contained, the curing reaction proceeds stably and a cured film having high hardness can be formed.
  • metal-based condensation catalyst such as an organic lead compound, an organic tin compound, and an organic titanium compound
  • the room temperature curable organopolysiloxane composition of the present invention is particularly easy to produce and inexpensive, and even if it does not contain a metal compound, a cured product / coating film (conformal coating film) having high hardness can be obtained. be able to.
  • the composition is suitable for use as a coating material composition or a sealing material composition, particularly as a coating material (conformal coating material) for electrical / electronic parts and their substrates, a sealing material for a liquid crystal display element, and the like.
  • an article coated or sealed with a cured product of the room temperature curable organopolysiloxane composition of the present invention examples include automobile parts (in-vehicle parts), automobile oil seals, electric / electronic parts and their substrates, liquid crystal display elements, electric wires / cables, building structures, and civil engineering structures. Things etc. can be mentioned.
  • Me is a methyl group
  • the viscosity is a value measured by a rotational viscometer at 23 ° C.
  • the molecular weight indicates a polystyrene-equivalent number average molecular weight in GPC analysis using toluene as a developing solvent.
  • Example 1 (A) Consists of Me 3 SiO 1/2 unit and SiO 4/2 unit as components, the molar ratio of Me 3 SiO 1/2 unit to SiO 4/2 unit is 0.68, and the molecular weight is about 3, IsoparE (manufactured by Exxon Mobile Co., Ltd., boiling point 115 to 140 ° C., the same applies hereinafter) so that the content is 500, the silanol group content is 0.11 mol / 100 g (1.87% by mass), and the solid content is 60% by mass.
  • IsoparE manufactured by Exxon Mobile Co., Ltd., boiling point 115 to 140 ° C., the same applies hereinafter
  • Example 2 (A) Consists of Me 3 SiO 1/2 unit and SiO 4/2 unit as components, the molar ratio of Me 3 SiO 1/2 unit to SiO 4/2 unit is 0.68, and the molecular weight is about 3, 92 parts by mass of a resinous siloxane copolymer dissolved in IsoparE so that the solid content is 500, the silanol group content is 0.11 mol / 100 g (1.87% by mass), and the solid content is 60% by mass, (B).
  • Component 8 parts by mass of ethoxymethyltriethoxysilane (amount in which the molar ratio of component (B) is 0.59 to silanol group in component (A)), and as component (C), both ends of the molecular chain are hydroxy 30 parts by mass of a dimethylpolysiloxane polymer sealed with a silyl group, having a viscosity at 23 ° C. of 5,000 mPa ⁇ s, and a degree of polymerization of about 389, and 1 part by mass of ⁇ -aminopropyltriethoxysilane as a component (D). Mixing at room temperature for 30 minutes gave composition 2.
  • Example 3 (A) Consists of Me 3 SiO 1/2 unit and SiO 4/2 unit as components, the molar ratio of Me 3 SiO 1/2 unit to SiO 4/2 unit is 0.68, and the molecular weight is about 3, 92 parts by mass of a resinous siloxane copolymer dissolved in IsoparE so that the solid content is 500, the silanol group content is 0.11 mol / 100 g (1.87% by mass), and the solid content is 60% by mass, (B).
  • Component 8 parts by mass of ethoxymethyltriethoxysilane (amount in which the molar ratio of component (B) is 0.59 to silanol group in component (A)), and as component (C), both ends of the molecular chain are hydroxy 30 parts by mass of a dimethylpolysiloxane polymer sealed with a silyl group, having a viscosity at 23 ° C. of 5,000 mPa ⁇ s, and a degree of polymerization of about 389, and 0.3 parts by mass of ⁇ -aminopropyltriethoxysilane as a component (D). The parts were mixed at room temperature for 30 minutes to obtain Composition 3.
  • Example 4 (A) Consists of Me 3 SiO 1/2 unit and SiO 4/2 unit as components, the molar ratio of Me 3 SiO 1/2 unit to SiO 4/2 unit is 0.68, and the molecular weight is about 3, 92 parts by mass of a resinous siloxane polymer dissolved in IsoparE so that the solid content is 500, the silanol group content is 0.11 mol / 100 g (1.87% by mass), and the solid content is 60% by mass, (B).
  • Component 8 parts by mass of ethoxymethyltriethoxysilane (amount in which the molar ratio of the component (B) to the silanol group in the component (A) is 0.59), and the component (C) is hydroxy at both ends of the molecular chain.
  • 0.3 parts by mass of jill) propyltrimethoxysilane was mixed at room temperature for 30 minutes to obtain composition 4.
  • Example 5 (A) Consists of Me 3 SiO 1/2 unit and SiO 4/2 unit as components, the molar ratio of Me 3 SiO 1/2 unit to SiO 4/2 unit is 0.68, and the molecular weight is about 3, 92 parts by mass of a resinous siloxane copolymer dissolved in IsoparE so that the solid content is 500, the silanol group content is 0.11 mol / 100 g (1.87% by mass), and the solid content is 60% by mass, (B).
  • Component 8 parts by mass of ethoxymethyltriethoxysilane (amount in which the molar ratio of component (B) is 0.59 to silanol group in component (A)), and as component (C), both ends of the molecular chain are hydroxy 30 parts by mass of a dimethylpolysiloxane polymer sealed with a silyl group, having a viscosity at 23 ° C. of 5,000 mPa ⁇ s, and a degree of polymerization of about 389, and 0.8 mass by mass of ⁇ -aminopropyltriethoxysilane as a component (D).
  • 0.1 parts by mass of ⁇ - (N, N'-dimethylguanidyl) propyltrimethoxysilane was mixed at room temperature for 30 minutes to obtain Composition 5.
  • Component 10 parts by mass of ethoxymethyltriethoxysilane (amount in which the molar ratio of component (B) to the silanol group in component (A) is 0.74), and as component (C), both ends of the molecular chain are hydroxy.
  • Composition 6 was obtained by mixing 40 parts by mass of a dimethylpolysiloxane polymer which was sealed with a silyl group, had a viscosity at 23 ° C. of 700 mPa ⁇ s, and had a degree of polymerization of about 270 for 30 minutes at room temperature.
  • Component 10 parts by mass of ethoxymethyltriethoxysilane (amount in which the molar ratio of component (B) to the silanol group in component (A) is 0.74), and as component (C), both ends of the molecular chain are hydroxy.
  • Composition 7 was obtained by mixing 40 parts by mass of a dimethylpolysiloxane polymer which was sealed with a silyl group, had a viscosity at 23 ° C. of 5,000 mPa ⁇ s, and had a degree of polymerization of about 389 for 30 minutes at room temperature.
  • ethoxymethyltriethoxysilane As a component, 2 parts by mass of ethoxymethyltriethoxysilane (amount in which the molar ratio of the component (B) to the silanol group in the component (A) is 0.15), and as a component (C), both ends of the molecular chain are hydroxy.
  • D 1 part by mass of ⁇ -aminopropyltriethoxysilane
  • the viscosities of the prepared compositions 1 to 10 were measured in a 23 ° C./50% RH environment.
  • the prepared compositions 1 to 10 were left to cure in a 23 ° C./50% RH environment for 7 days so as to have a thickness of 3 mm, and were cured according to JIS K 6249. The hardness was measured with.
  • compositions 1 to 10 were placed in a sealable container and left to stand in a 23 ° C./50% RH environment for 6 months.
  • the compositions 1 to 10 after 6 months were allowed to stand for 7 days in a 23 ° C./50% RH environment to a thickness of 3 mm to be cured, and the hardness was determined by a type A durometer according to JIS K 6249. The measurement was performed, and if the value was ⁇ 5 as compared with the initial hardness, it was judged to be good, and if it was out of ⁇ 5, it was judged to be defective.
  • compositions 6 and 7 containing no component (D) were allowed to stand for 7 days to have a thickness of 3 mm in a 23 ° C./50% RH environment and cured, but they became viscous and could not be measured. rice field.
  • the composition 8 not containing the component (C) was not cured as a liquid, and was precipitated as a powder when left for a long period of time.
  • the composition 9 in which the molar ratio of the component (B) to the silanol group in the component (A) was out of the range of the present invention showed good curability, but in the storage stability test, the hardness was lowered and the viscosity was also large. It was a result.
  • the composition 10 is a deacetone type room temperature curable organopolysiloxane composition prepared by the method described in Patent Document 4 (Japanese Patent No. 6319168). Although both hardness and storage stability were good, the manufacturing process was complicated because it was necessary to go through three steps for preparation, and the preparation (mixing) time was long, so that it was a simple production as an object of the present invention. It's hard to say how.
  • the compositions 1 to 5 of the examples in which the specific amounts of the components (A) to (D) of the present invention are blended are simple to produce and inexpensive, and further contain a metal compound which is a condensation catalyst. It shows stable curability even if it is not used, and has good hardness and storage stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

(A)シラノール基を特定量有する、特定分子量及び特定構造の三次元網状構造のオルガノポリシロキサン樹脂、(B)オルガノオキシメチル基を含有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物、(C)分子鎖両末端がシラノール基で封鎖された直鎖状ジオルガノポリシロキサン、及び(D)アミノ基含有加水分解性オルガノシラン及び/又はその部分加水分解縮合物を特定割合で含有する室温硬化性オルガノポリシロキサン組成物が、製造が簡便でかつコストが安く、更に縮合触媒である金属化合物非含有であっても高硬度の硬化物・コーティング膜を与える。

Description

室温硬化性オルガノポリシロキサン組成物及び物品
 本発明は、高硬度の硬化物・コーティング膜を与える室温硬化性オルガノポリシロキサン組成物に関するものであり、コーティング材組成物やシール材組成物等としての用途、特に電気・電子部品及びその基板のコーティング材(コンフォーマルコーティング材)、液晶表示素子用シール材等に好適な三次元網状構造のオルガノポリシロキサン樹脂を含有する室温硬化性オルガノポリシロキサン組成物に関するものである。
 特に、製造が簡便でかつコストが安く、更に縮合触媒である金属化合物を非含有でも安定した硬化性を示し、高硬度のコーティング被膜を形成できることを特徴とする脱アルコール型の室温硬化性オルガノポリシロキサン組成物に関するものである。
 大気中の湿気により室温(23℃±15℃)で架橋・硬化してシリコーンエラストマー(シリコーンゴム硬化物)を与えることができる室温硬化性(RTV)シリコーンゴム組成物は、その取り扱いが容易な上、耐候性や電気特性に優れているため、建材用のシーリング材、電気・電子分野での接着剤など様々な分野で使用されている。特に電気・電子分野では、使用される被着体(樹脂系)に対する接着・コーティング適正から、脱アルコールタイプのRTVシリコーンゴム組成物が使用される傾向にある。また、近年急速に需要が伸びてきている液晶周辺や電源回路基板のコーティング材としても同様であり、脱アルコールタイプのRTVシリコーンゴム組成物が使用されている。しかし、このコーティング材はその主目的である、電気・電子回路の絶縁、防湿と言った性能は満足すべきであるが、回路パターンの細密化に伴う配線等の保護を目的とした材料の硬さ改善は不十分であった。これまで、回路パターンなどの保護や防湿を目的としたシリコーンゴムは以下の様な技術が開示されている。
 特開2004-143331号公報(特許文献1)には、透明性が高く、かつ高強度の硬化物・被膜を与える室温硬化性オルガノポリシロキサン組成物が開示されている。ただし、(CH33SiO1/2単位及びSiO4/2からなり、(CH33SiO1/2単位/SiO4/2単位(モル比)=0.74、ケイ素原子に結合したヒドロキシ基含有量が1.62質量%であるオルガノポリシロキサンと両末端シラノール基封鎖ジメチルポリシロキサンを、アンモニア水により20℃で12時間縮合反応を行っているため、反応時間が長いことが問題である。また、加熱によるアンモニア除去工程を加えても、アンモニアの臭気が組成物中に残るため、実使用上問題となる場合がある。
 特開2002-327115号公報(特許文献2)には、防湿性に優れる室温硬化性オルガノポリシロキサン組成物が開示されている。(CH33SiO1/2単位及びSiO4/2単位からなり、(CH33SiO1/2単位/SiO4/2単位(モル比)=0.74と、分子鎖両末端がシラノール基であるオルガノポリシロキサンをトルエンに溶解させ樹脂状のコポリマーとし、加熱条件により室温硬化性オルガノポリシロキサン組成物を調製している。加熱工程のため、製造が簡便ではないことが問題である。
 特開2007-99955号公報(特許文献3)においても、高硬度な硬化物、コーティング膜を与える室温硬化性オルガノポリシロキサン組成物の製造方法が開示されている。(CH33SiO1/2単位及びSiO4/2単位からなり、(CH33SiO1/2単位/SiO4/2単位(モル比)=0.75、ケイ素原子に結合したヒドロキシ基含有量が1.1質量%と両末端がシラノール基で封鎖されたジメチルポリシロキサンをテトラメチルグアニジンにより、室温で1時間縮合反応を行っている。上記特開2002-327115号公報(特許文献2)より製造時間が短縮されているが、極性の高いアミン化合物を使用しているため、オルガノシロキサン組成物に対する相溶性が悪く、またオルガノポリシロキサンと直接架橋しないため、組成物からアミン化合物が滲み出す問題がある。
 特許第6319168号公報(特許文献4)には、製造が簡便で、タクトタイムが短いことを特徴とする室温硬化性オルガノシロキサン組成物及びその製造方法が開示されている。R3SiO1/2単位及びSiO4/2単位からなり、チタン触媒を含有する脱アルコールタイプの室温硬化性組成物としているが、チタン触媒含有のため湿気により加水分解されて組成物自体が白化する可能性がある。ビニルトリイソプロペノキシシラン及びテトラメチルグアニジルプロピルトリメトキシシランを配合した脱アセトンタイプの室温硬化性組成物としても記載があるが、該シランは高価なことに加えて、テトラメチルグアニジルプロピルトリメトキシシランが強塩基性を示すことから電気・電子部品及びその基板に使用されるフラックス成分と反応し、導電性の塩が生成されることで、電気的な性能が低下するおそれがある。
特開2004-143331号公報 特開2002-327115号公報 特開2007-99955号公報 特許第6319168号公報
 本発明は、上記事情に鑑みなされたもので、電気・電子分野(特に液晶周辺や電源回路基板)のコーティング材において、製造が簡便でかつコストが安く、更に縮合触媒である金属化合物非含有であっても高硬度の硬化物・コーティング膜(コンフォーマルコーティング被膜)を与える三次元網状構造を有する脱アルコール型の室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティング又はシールされた物品を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を行った結果、(A)シラノール基を特定量有する、特定分子量及び特定構造の三次元網状構造のオルガノポリシロキサン樹脂、(B)オルガノオキシメチル基を含有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物、(C)分子鎖両末端がシラノール基で封鎖された直鎖状ジオルガノポリシロキサン、及び(D)アミノ基含有加水分解性オルガノシラン及び/又はその部分加水分解縮合物を特定割合で含有する室温硬化性オルガノポリシロキサン組成物が、製造が簡便でかつコストが安く、更に金属化合物非含有であっても高硬度の硬化物・コーティング膜(コンフォーマルコーティング被膜)を与えることを見出し、本発明をなすに至った。
 即ち、本発明は下記の室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティング又はシールされた物品を提供するものである。
[1]
 下記(A)~(D)成分
(A);R3SiO1/2単位(式中、Rは独立に非置換又は置換の炭素原子数1~6の1価炭化水素基又はヒドロキシ基を表す)及びSiO4/2単位からなり、SiO4/2単位に対するR3SiO1/2単位のモル比が0.5~1.5であり、更にR2SiO2/2単位及びRSiO3/2単位(前記各式中、Rは前記のとおり)を、SiO4/2単位に対し、それぞれ0~1.0のモル比で含有していてもよく、かつケイ素原子に結合したヒドロキシ基(シラノール基)を0.005~0.15モル/100g有する、分子量が2,000~10,000である三次元網状構造のオルガノポリシロキサン樹脂:100質量部、
(B);下記一般式(1)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:(A)成分中のシラノール基に対して(B)成分のモル比が0.2~1となる量、
Figure JPOXMLDOC01-appb-C000002
          (1)
(式(1)中、R1は独立に非置換又は置換の炭素原子数1~12の1価炭化水素基であり、R2は非置換又は置換の炭素原子数1~12の1価炭化水素基であり、Yは加水分解性基であり、mは0、1又は2である。)
(C);分子鎖両末端がシラノール基で封鎖された直鎖状ジオルガノポリシロキサン:10~100質量部、及び
(D);上記(A)成分及び(B)成分以外の、アミノ基含有加水分解性オルガノシラン及び/又はその部分加水分解縮合物:0.5~5質量部
を含有する室温硬化性オルガノポリシロキサン組成物。
[2]
 更に、(E);沸点が40~180℃であり、ベンゼン、トルエン及びキシレン以外の有機溶剤を、組成物の不揮発分が20~80質量%となるような量で含むものである[1]に記載の室温硬化性オルガノポリシロキサン組成物。
[3]
 金属系縮合触媒を含まないものである[1]又は[2]に記載の室温硬化性オルガノポリシロキサン組成物。
[4]
 電気・電子部品及び/又はその基板のコーティング用である[1]~[3]のいずれかに記載の室温硬化性オルガノポリシロキサン組成物。
[5]
 液晶表示素子のシール用である[1]~[3]のいずれかに記載の室温硬化性オルガノポリシロキサン組成物。
[6]
 [1]~[5]のいずれかに記載の室温硬化性オルガノポリシロキサン組成物の硬化物でコーティング又はシールされた物品。
 本発明によれば、製造が簡便でかつコストが安く、更に金属化合物非含有であっても高硬度の硬化物・コーティング膜を与える脱アルコール型の室温硬化性オルガノポリシロキサン組成物を提供できる。
 以下、本発明について詳しく説明する。
[(A)成分]
 まず、本発明の三次元網状構造のオルガノポリシロキサン樹脂を含有する縮合反応硬化型の室温硬化性オルガノポリシロキサン組成物において、主剤(ベースポリマー)として用いられる(A)成分は、R3SiO1/2単位(式中、Rは独立に非置換又は置換の炭素原子数1~6の1価炭化水素基又はヒドロキシ基を表す)及びSiO4/2単位からなり、SiO4/2単位に対するR3SiO1/2単位のモル比が0.5~1.5であり、更にR2SiO2/2単位及びRSiO3/2単位(前記各式中、Rは前記のとおり)を、SiO4/2単位に対し、それぞれ0~1.0のモル比で含有していてもよく、かつケイ素原子に結合したヒドロキシ基(シラノール基)を0.005~0.15モル/100g有する、分子量が2,000~10,000である三次元網状構造のオルガノポリシロキサン樹脂である。
 前記Rは、非置換又は置換の炭素原子数1~6の1価炭化水素基又はヒドロキシ基を示し、Rの非置換又は置換の炭素原子数1~6の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基が挙げられ、またこれらの基の水素原子の一部又は全部をハロゲン原子等で置換したクロロメチル基等が挙げられる。これらRとしては、ヒドロキシ基、メチル基、エチル基、プロピル基、フェニル基が好ましく、ヒドロキシ基、メチル基、フェニル基が特に好ましい。
 (A)成分において、SiO4/2単位に対するR3SiO1/2単位のモル比は0.5~1.5の範囲であり、好ましくは0.6~1.3、特に好ましくは0.65~1.2である。このモル比が0.5より小さいと硬化物の補強性が不十分となり、1.5を超えると硬化物の硬度が不十分となる。
 (A)成分の三次元網状構造のオルガノポリシロキサン樹脂としては、R3SiO1/2単位とSiO4/2単位のみからなることが好ましいが、SiO4/2単位に対するR2SiO2/2単位のモル比、SiO4/2単位に対するRSiO3/2単位のモル比がいずれも0~1.0の範囲で含有してもよく、より望ましくは該モル比がそれぞれ0.8以下(0~0.8)である。
 また、該(A)成分のオルガノポリシロキサン樹脂に含まれるシラノール基が0.005~0.15モル/100g(即ち、ケイ素原子に結合したヒドロキシ基のOH量換算で0.085~2.5質量%)であることが必要で、好ましくは0.01~0.13モル/100g(0.17~2.2質量%)であり、より好ましくは0.02~0.12モル/100g(0.3~2.0質量%)である。シラノール基が0.15モル/100gより多く存在すると、ゴム物性(特に硬度)が高値となり組成物のクラック発生が起こり得る。また、シラノール基が0.005モル/100gより少ないと(A)成分と(C)成分との縮合反応が十分進行しない場合があり、目的とする特性が得られない可能性がある
 (A)成分の三次元網状構造のオルガノポリシロキサン樹脂としては、分子量が2,000~10,000、好ましくは2,500~8,000程度のものであり、分子量が小さすぎるとオルガノポリシロキサン組成物を硬化させて得られる硬化物(シリコーンゴム硬化物)がゴム弾性に乏しく割れやすくなり、分子量が大きすぎると均一なオルガノポリシロキサン組成物を調製することが困難となる。この分子量(又は重合度)は、通常、トルエン、テトラヒドロフラン(THF)等を展開溶媒としたゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均分子量(又は数平均重合度)等として求めることができる。
 (A)成分のオルガノポリシロキサン樹脂は、1個の加水分解性基を有する1官能性トリオルガノシランを、4個の加水分解性基を有する4官能性シランと共に、あるいは更に3個の加水分解性基を有する3官能性オルガノシラン及び/又は2個の加水分解性基を有する2官能性ジオルガノシランと共に、有機溶媒中で共加水分解して縮合させることによって得られ、実質的に揮発成分を含まないものであり、公知の材料である。
 ここで、共加水分解反応に用いられる有機溶媒としては、(A)成分であるオルガノポリシロキサン樹脂を溶解させることが必要であり、典型的な有機溶媒としては、トルエン、キシレン等の芳香族系溶媒、クロロホルム、ジクロロメタン等のハロゲン系溶媒、シクロヘキサンやエチルシクロヘキサン、イソパラフィン等の炭化水素系溶媒が挙げられる。
[(B)成分]
 本発明の室温硬化性オルガノポリシロキサン組成物は、下記一般式(1)で示される、分子中にケイ素原子に結合したアルコキシメチル基等のオルガノオキシメチル基を含有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物を架橋剤(硬化剤)として含むことを特徴とする。なお、本発明において「部分加水分解縮合物」とは、該加水分解性オルガノシラン化合物を部分的に加水分解・縮合して生成する、分子中に残存加水分解性基を2個以上、好ましくは3個以上有するオルガノシロキサンオリゴマーを意味する。
Figure JPOXMLDOC01-appb-C000003
          (1)
(式中、R1は独立に非置換又は置換の炭素原子数1~12、好ましくは炭素原子数1~8、より好ましくは炭素原子数1~4の1価炭化水素基であり、R2は非置換又は置換の炭素原子数1~12、好ましくは炭素原子数1~8、より好ましくは炭素原子数1~4の1価炭化水素基であり、Yは加水分解性基であり、mは0、1又は2である。)
 ここで、上記式(1)において、R1で表される非置換又は置換の炭素原子数1~12、好ましくは炭素原子数1~8、より好ましくは炭素原子数1~4の1価炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、アルケニル基等の脂肪族不飽和炭化水素基を除くものであることが好ましく、メチル基、エチル基等のアルキル基がより好ましく、メチル基が特に好ましい。
 次に、上記式(1)において、R2で表される非置換又は置換の炭素原子数1~12、好ましくは炭素原子数1~8、より好ましくは炭素原子数1~4の1価炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基などや、これらの基の水素原子の一部が、メトキシ基、エトキシ基等の低級アルコキシ基で置換されたアルキル基、例えば、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基等を例示することができる。これらの中でも、メチル基、エチル基等の炭素原子数1~4の低級アルキル基が好ましい。
 また、上記式(1)において、Yは加水分解性基であり、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基等の炭素原子数1~4のアルコキシ基;メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基等の炭素原子数2~4のアルコキシアルコキシ基;アセトキシ基、オクタノイルオキシ基、ベンゾイルオキシ基等の炭素原子数2~8のアシロキシ基;ビニロキシ基、プロペニルオキシ基、イソプロペニルオキシ基、1-エチル-2-メチルビニルオキシ基等の炭素原子数2~6のアルケニルオキシ基;ジメチルケトオキシム基、メチルエチルケトオキシム基、ジエチルケトオキシム基等の炭素原子数3~7のケトオキシム基;ジメチルアミノ基、ジエチルアミノ基、ブチルアミノ基、シクロヘキシルアミノ基等の炭素原子数2~6のアミノ基;ジメチルアミノキシ基、ジエチルアミノキシ基等の炭素原子数2~6のアミノキシ基;N-メチルアセトアミド基、N-エチルアセトアミド基、N-メチルベンズアミド基等の炭素原子数3~8のアミド基等が挙げられる。これらの中でも、アルコキシ基が好ましく、メトキシ基、エトキシ基が特に好ましい。
 mは0、1又は2であり、好ましくは0又は1であり、より好ましくは0である。
 上記式(1)で表される、分子中にケイ素原子に結合したアルコキシメチル基等のオルガノオキシメチル基を含有する加水分解性オルガノシラン化合物、及びその部分加水分解縮合物の具体例としては、メトキシメチルトリメトキシシラン、エトキシメチルトリエトキシシラン、メトキシメチルメチルジメトキシシラン、エトキシメチルメチルジエトキシシラン、メトキシメチルエチルジメトキシシラン、エトキシメチルエチルジエトキシシラン、メトキシメチルヘキシルジメトキシシラン、エトキシメチルヘキシルジエトキシシラン、メトキシメチルオクチルジメトキシシラン、エトキシメチルオクチルジエトキシシラン、メトキシメチルフェニルジメトキシシラン、エトキシメチルフェニルジエトキシシラン、及びその部分加水分解縮合物などが挙げられる。
 なお、例えば、上記具体例のメトキシメチルトリメトキシシラン、エトキシメチルトリエトキシシランの構造式を示せば、以下のとおりである。これらの中では、エトキシメチルトリエトキシシランが特に好ましい。
Figure JPOXMLDOC01-appb-C000004
 本発明の室温硬化性オルガノポリシロキサン組成物において、(B)成分のオルガノオキシメチル基を含有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物は、(A)成分のベースポリマー中のシラノール基と縮合反応により架橋構造を形成する架橋剤(硬化剤)として作用するものであって、(B)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物の配合量は、(A)成分中のシラノール基に対して(B)成分のモル比が0.2~1となる量であり、0.4~1となる量が特に好ましい。(B)成分が少なすぎると該組成物を硬化しても十分なゴム物性が得られない、あるいは保存安定性が悪くなる場合があり、多すぎると速硬化性を損なう、又は経済的に不利である。
[(C)成分]
 (C)成分は、前記(A)成分と(B)成分との縮合反応によって(A)成分中のシラノール基の部位に(B)成分由来の加水分解性基が導入された三次元網状構造のオルガノポリシロキサン樹脂同士を縮合反応によって化学的に繋ぐ(連結する)ための重要な成分である。具体的には、分子鎖両末端がシラノール基(又はヒドロキシジオルガノシロキシ基)で封鎖された直鎖状ジオルガノポリシロキサンであり、下記一般式(2)で示されるものが好ましい。
Figure JPOXMLDOC01-appb-C000005
          (2)
(式中、R3は独立に炭素原子数1~10の非置換又はアルコキシ置換1価炭化水素基であり、nは10以上の整数である。)
 上記式(2)において、R3の炭素原子数1~10の非置換又はアルコキシ置換1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、ナフチル基等のアリール基、あるいはこれらの水素原子の一部又は全部をアルコキシ基で置換した、例えば、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基等のアルコキシ置換アルキル基などのアルコキシ置換1価炭化水素基を挙げることができる。これらの中でもメチル基が好ましい。
 この(C)成分の粘度は、23℃で10,000mPa・s以下(通常、30~10,000mPa・s)、好ましくは50~8,000mPa・s、特に好ましくは100~6,000mPa・s程度の粘度を示す流体(液状物)であることが好ましく、通常、上記式(2)における繰り返し単位数n(重合度)の値が約10~1,000、好ましくは30~500、より好ましくは50~400程度に相当するものである。なお、粘度は、通常、回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型等)により測定することができる。
 (C)成分の配合量は、(A)成分100質量部に対して10~100質量部であり、10~80質量部が好ましい。(C)成分が少なすぎると該組成物を硬化するものの高硬度になりすぎてしまい良好なゴム特性が得られない。多すぎると硬度が低下するため、本発明の目的とする物性が得られない。
[(D)成分]
 (D)成分は、室温硬化性オルガノポリシロキサン組成物に接着性を付与させる成分(接着性向上剤)であり、アミノ基含有加水分解性オルガノシラン(いわゆるアミノ官能性カーボンファンクショナルシラン又はアミノ官能性シランカップリング剤)及び/又はその部分加水分解縮合物である。
 アミノ基含有加水分解性オルガノシランとしては、下記一般式(3)で示されるものが例示できる。
Figure JPOXMLDOC01-appb-C000006
          (3)
(式中、R4は独立に炭素原子数1~10の非置換又はアルコキシ置換1価炭化水素基であり、R5は窒素原子を含んでもよい炭素原子数2~15の2価炭化水素基であり、aは2又は3である。)
 上記式(3)において、R4の炭素原子数1~10の非置換又はアルコキシ置換1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、ナフチル基等のアリール基、あるいはこれらの水素原子の一部又は全部をアルコキシ基で置換した、例えば、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基等のアルコキシ置換アルキル基などのアルコキシ置換1価炭化水素基を挙げることができる。これらの中でもメチル基、エチル基が好ましい。R4は同じであっても、異なっていてもよい。
 aは2又は3である。
 また、上記式(3)において、R5は窒素原子を含んでもよい炭素原子数2~15、好ましくは炭素原子数3~12の2価炭化水素基である。R5としては、例えば、下記(4-1)~(4-11)で示されるものが挙げられる。
-CH2-CH2-                   (4-1)
-CH2-CH2-CH2-               (4-2)
-CH2-CH2-CH2-CH2-            (4-3)
-CH2-C64-                  (4-4)
-CH2-C64-CH2-               (4-5)
-CH2-CH2-C64-               (4-6)
-CH2-CH2-C64-CH2-           (4-7)
-CH2-CH2-C64-CH2-CH2-        (4-8)
-CH2-CH2-NH-CH2-CH2-         (4-9)
-CH2-CH2-NH-CH2-CH2-CH2-     (4-10)
-CH2-C64-CH2-NH-CH2-CH2-CH2- (4-11)
 フェニレン基に結合するアルキレン基の配向は、オルト、メタ、パラいずれの場合であってもよい。これらの中で、(4-2)、(4-10)が好ましく、特に好ましくは(4-2)である。
 また、(D)成分としては、下記一般式(5)で示される2価の塩基性部位Aを有するアミノ基含有加水分解性オルガノシラン及び/又はその部分加水分解縮合物も例示できる。
  A=N-B-SiZ3     (5)
 上記式(5)において、2価の塩基性部位Aは、その構造中に窒素原子を2個以上、好ましくは2~5個、より好ましくは2~4個含む炭素原子数1~15の2価炭化水素基を示し、塩基性部位Aを含むA=N-で示される1価の基としては、例えば、下記式(6)で示される1,5,7-トリアザビシクロ[4,4,0]デカ-5-エンの部分構造からなる基などが挙げられ、塩基性部位A、すなわちA=で示される2価の基としては、例えば、下記式(7)で示されるN-置換又は非置換のグアニジル基等の強塩基性を示すものなどが挙げられる。なお、下記式(6)において、波線部は、Bとの結合部位であり、下記式(7)において、波線部は、窒素原子との結合部位である。
Figure JPOXMLDOC01-appb-C000007
          (6)
Figure JPOXMLDOC01-appb-C000008
          (7)
 上記式(7)中のR6~R9はそれぞれ、水素原子又は炭素原子数1~10の直鎖状、分岐状もしくは環状のアルキル基、アルケニル基、アリール基を示し、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等のアルキル基;シクロヘキシル基等の環状アルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基などが挙げられる。これらの中では、メチル基、エチル基、フェニル基が好ましく、特にメチル基が好ましい。また、R6~R9は同じものであっても、異なっていてもよい。
 上記式(5)において、Zは、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基等のアルコキシ基、ビニロキシ基、アリロキシ基、プロペノキシ基、イソプロペノキシ基等のアルケニルオキシ基、ジメチルケトオキシム基、ジエチルケトオキシム基、メチルエチルケトオキシム基等のケトオキシム基、アセトキシ基等のアシルオキシ基などの炭素原子数1~6、好ましくは炭素原子数1~4の加水分解性基(即ち、ケイ素原子に結合してSi-O-C結合を形成し得る基)、あるいは、メチル基、エチル基等のアルキル基、ビニル基等のアルケニル基、フェニル基等のアリール基などの炭素原子数1~6、好ましくは炭素原子数1~4の1価炭化水素基から選ばれる1種又は2種以上の1価の基であるが、ケイ素原子に結合する3個のZのうち、少なくとも2個、好ましくは3個のZは加水分解性基である。
 加水分解性シリル基(-SiZ3)としては、例えば、トリメトキシシリル基、メチルジメトキシシリル基、ビニルジメトキシシリル基、フェニルジメトキシシリル基、トリエトキシシリル基等のアルコキシシリル基;トリイソプロペノキシシリル基、メチルジイソプロペノキシシリル基、エチルジイソプロペノキシシリル基、ビニルジイソプロペノキシシリル基、フェニルジイソプロペノキシシリル基等のイソプロペノキシシリル基;トリス(ジメチルケトオキシム)シリル基、トリス(ジエチルケトオキシム)シリル基、トリス(エチルメチルケトオキシム)シリル基等のケトオキシムシリル基などが挙げられ、好ましくはトリメトキシシリル基、トリエトキシシリル基である。
 上記式(5)において、Bは、酸素原子、窒素原子等のヘテロ原子を含んでもよい、炭素原子数1~10、好ましくは炭素原子数1~6、より好ましくは炭素原子数2~4の、直鎖状、分岐状もしくは環状のアルキレン基、アルケニレン基、アリーレン基等又はこれらが組み合わされた基などの非置換又は置換の2価炭化水素基を示す。例えば、メチレン基、エチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基、2-メチルプロピレン基等のアルキレン基;フェニレン基等のアリーレン基、これらアルキレン基とアリーレン基が結合した基、ケトン、エステル、アミド等が介在した上記アルキレン基などが挙げられるが、好ましくはメチレン基、エチレン基、プロピレン基、アミド結合を介したプロピレン基等であり、特に好ましくはプロピレン基である。
 上記式(5)で示されるアミノ基含有加水分解性オルガノシランの具体例としては、下記一般式(8-1)~(8-5)に示されるもの等を挙げることができる。なお、Me、Et、Phはそれぞれ、メチル基、エチル基、フェニル基を示す。
Figure JPOXMLDOC01-appb-C000009
                  (8-1)
Figure JPOXMLDOC01-appb-C000010
                  (8-2)
Figure JPOXMLDOC01-appb-C000011
                  (8-3)
Figure JPOXMLDOC01-appb-C000012
                      (8-4)
Figure JPOXMLDOC01-appb-C000013
                      (8-5)
 また、上記式(5)で示されるアミノ基含有加水分解性オルガノシランの具体例としては、A=N-で示される1価の基として式(6)で示される1,5,7-トリアザビシクロ[4,4,0]デカ-5-エンの部分構造で末端が置換されたプロピル基等の末端アミノ官能性基置換アルキル基を有するトリメトキシシランやトリエトキシシラン等も挙げることができる。
 これらの中では、式(8-1)、式(8-2)で示される、特には式(8-2)で示される、N-メチル置換のグアニジル基含有トリメトキシシラン(例えば、γ-(N,N’-ジメチルグアニジル)プロピルトリメトキシシラン)等の、N-メチル置換グアニジル基含有トリアルコキシシランが好ましい。
 (D)成分は1種単独で用いても2種以上を併用してもよい。
 この(D)成分のアミノ基含有加水分解性オルガノシラン及び/又はその部分加水分解縮合物は、(A)成分100質量部に対して0.5~5質量部、好ましくは0.5~3質量部、特に好ましくは0.5~2質量部である。0.5質量部未満では、(A)成分と(C)成分の反応率が低くなり、目的とする硬化物が得られず、接着性が低下する場合がある。5質量部を超えると価格的に不利になる場合や、組成物の保存安定性が悪くなるなどの欠点がある。
[(E)成分]
 本発明の室温硬化性オルガノポリシロキサン組成物には、更に(E)有機溶剤を配合することができる。(E)成分は、前記(A)成分を溶解させる溶剤として使用するものである。例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノール等のアルコール類;アセトン、エチルメチルケトン、メチルイソブチルケトン等のケトン類;テトラヒドロフラン、フランなどのエーテル類;シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、低沸点イソパラフィン等の炭化水素類などが挙げられる。一般的な有機溶剤として、ベンゼン、トルエン、キシレン等の芳香族系化合物が知られているが、人に対して毒性を有すること、環境に対し悪影響を及ぼすため、近年では使用が敬遠されている。特にトルエンに関して、日本においては劇物に指定されており、管理濃度は20ppmと低く、厳重に管理されるべき化合物として知られている。よって、本発明においては、ベンゼン、トルエン、キシレン等の芳香族系化合物を含まないことが好ましい。
 これらの中では、低臭気で溶解性に優れ、環境負荷の少ない低沸点イソパラフィンであるIsoparC、IsoparE(いずれもExxon Mobil社製)が好ましく、IsoparEが特に好ましい。
 本発明の室温硬化性オルガノポリシロキサン組成物において、(E)成分の沸点は40~180℃の範囲であることが好ましい。40℃未満では、揮発性が高いため危険性が増し、また室温硬化性オルガノポリシロキサン組成物の硬化が早くなり作業性が低下する可能性がある。180℃を超えると揮発性が低くなることで硬化が遅くなる場合がある。
 また(E)成分は、前記室温硬化性オルガノポリシロキサン組成物の不揮発分が20~80質量%の範囲になるように添加されることが好ましい。20質量%未満では(E)成分の揮発量が多くなりアトムエコノミー的に不利である。80質量%を超えると、前記(A)成分に対する溶解性が悪くなり室温硬化性オルガノポリシロキサン組成物を調製することが難しくなる。
[その他の成分]
 また、本発明の室温硬化性オルガノポリシロキサン組成物には、上記成分以外に、必要に応じて充填剤や添加剤などを本発明の目的を損なわない範囲で配合しても差し支えない。充填剤としては、粉砕シリカ、煙霧状シリカ、炭酸カルシウム、炭酸亜鉛、水酸化アルミニウム、水酸化酸化アルミニウム、アルミナ、酸化マグネシウム、湿式シリカなどが挙げられる。添加剤としては、公知の添加剤、例えば、ウェッターやチキソトロピー向上剤としてのポリエーテル、可塑剤、非反応性ジメチルシリコーンオイルなどが挙げられる。更に、必要に応じて、顔料、染料等の着色剤、蛍光増白剤、防かび剤、抗菌剤、ブリードオイルとしての非反応性フェニルシリコーンオイル、フルオロシリコーンオイル、シリコーンと非相溶の有機液体等の表面改質剤も添加してよい。
 本発明の室温硬化性オルガノポリシロキサン組成物は、常法に従い上記各成分を混合することによって製造し、湿分を避けた雰囲気で保存することができ、これを室温(23℃±15℃)に放置することにより、空気中の水分存在下で通常5分~1週間で硬化する。
 なお、本発明の室温硬化性オルガノポリシロキサン組成物の粘度は、23℃で10~5,000mPa・s、特に20~3,000mPa・sであることが好ましい。
 本発明の室温硬化性オルガノポリシロキサン組成物は、通常、縮合硬化型の組成物に常用される有機鉛化合物、有機スズ化合物、有機チタン化合物等の縮合触媒作用を有する金属化合物(金属系縮合触媒)を含有しなくても、安定的に硬化反応が進行して高硬度の硬化被膜を形成することができる。
 本発明の室温硬化性オルガノポリシロキサン組成物は、特に、製造が簡便でかつコストが安く、更に金属化合物非含有であっても、高硬度の硬化物・コーティング膜(コンフォーマルコーティング被膜)を得ることができる。該組成物は、コーティング材組成物やシール材組成物としての用途、特に電気・電子部品及びその基板のコーティング材(コンフォーマルコーティング材)、液晶表示素子用シール材等に好適である。
 また、本発明によれば、本発明の室温硬化性オルガノポリシロキサン組成物の硬化物でコーティング又はシールされた物品を提供することができる。
 本発明を適用する物品としては、例えば、自動車用部品(車載部品)、自動車用オイルシール、電気・電子用部品及びその基板、液晶表示素子、電線・ケーブル、建築用構造物、土木工事用構造物等が挙げられる。
 以下、本発明を具体的に説明する実施例及び比較例を示すが、本発明は下記の実施例に制限されるものではない。下記の例において、Meはメチル基であり、粘度は23℃における回転粘度計による測定値であり、分子量はトルエンを展開溶媒としたGPC分析におけるポリスチレン換算の数平均分子量を示す。
[実施例1]
 (A)成分としてMe3SiO1/2単位、及びSiO4/2単位からなり、SiO4/2単位に対するMe3SiO1/2単位のモル比が0.68であり、分子量が約3,500でかつ、シラノール基含有量が0.11モル/100g(1.87質量%)であり、固形分が60質量%になるようにIsoparE(Exxon Mobil社製、沸点115~140℃、以下同じ)で溶解させた樹脂状シロキサンコポリマー92質量部、(B)成分としてエトキシメチルトリエトキシシラン10質量部((A)成分中のシラノール基に対して(B)成分のモル比が0.74となる量)、(C)成分として分子鎖両末端がヒドロキシシリル基で封鎖され、23℃における粘度が700mPa・sであり、重合度が約270であるジメチルポリシロキサンポリマー40質量部、(D)成分としてγ-アミノプロピルトリエトキシシラン1質量部を室温(23℃、以下同じ)で30分混合して組成物1を得た。
[実施例2]
 (A)成分としてMe3SiO1/2単位、及びSiO4/2単位からなり、SiO4/2単位に対するMe3SiO1/2単位のモル比が0.68であり、分子量が約3,500でかつ、シラノール基含有量が0.11モル/100g(1.87質量%)であり、固形分が60質量%になるようにIsoparEで溶解させた樹脂状シロキサンコポリマー92質量部、(B)成分としてエトキシメチルトリエトキシシラン8質量部((A)成分中のシラノール基に対して(B)成分のモル比が0.59となる量)、(C)成分として分子鎖両末端がヒドロキシシリル基で封鎖され、23℃における粘度が5,000mPa・sであり、重合度が約389であるジメチルポリシロキサンポリマー30質量部、(D)成分としてγ-アミノプロピルトリエトキシシラン1質量部を室温で30分混合して組成物2を得た。
[実施例3]
 (A)成分としてMe3SiO1/2単位、及びSiO4/2単位からなり、SiO4/2単位に対するMe3SiO1/2単位のモル比が0.68であり、分子量が約3,500でかつ、シラノール基含有量が0.11モル/100g(1.87質量%)であり、固形分が60質量%になるようにIsoparEで溶解させた樹脂状シロキサンコポリマー92質量部、(B)成分としてエトキシメチルトリエトキシシラン8質量部((A)成分中のシラノール基に対して(B)成分のモル比が0.59となる量)、(C)成分として分子鎖両末端がヒドロキシシリル基で封鎖され、23℃における粘度が5,000mPa・sであり、重合度が約389であるジメチルポリシロキサンポリマー30質量部、(D)成分としてγ-アミノプロピルトリエトキシシラン0.3質量部を室温で30分混合して組成物3を得た。
[実施例4]
 (A)成分としてMe3SiO1/2単位、及びSiO4/2単位からなり、SiO4/2単位に対するMe3SiO1/2単位のモル比が0.68であり、分子量が約3,500でかつ、シラノール基含有量が0.11モル/100g(1.87質量%)であり、固形分が60質量%になるようにIsoparEで溶解させた樹脂状シロキサンコポリマー92質量部、(B)成分としてエトキシメチルトリエトキシシラン8質量部((A)成分中のシラノール基に対して(B)成分のモル比が0.59となる量)、(C)成分として分子鎖両末端がヒドロキシシリル基で封鎖され、23℃における粘度が5,000mPa・sであり、重合度が約389であるジメチルポリシロキサンポリマー30質量部、(D)成分としてγ-(N,N’-ジメチルグアニジル)プロピルトリメトキシシラン0.3質量部を室温で30分混合して組成物4を得た。
[実施例5]
 (A)成分としてMe3SiO1/2単位、及びSiO4/2単位からなり、SiO4/2単位に対するMe3SiO1/2単位のモル比が0.68であり、分子量が約3,500でかつ、シラノール基含有量が0.11モル/100g(1.87質量%)であり、固形分が60質量%になるようにIsoparEで溶解させた樹脂状シロキサンコポリマー92質量部、(B)成分としてエトキシメチルトリエトキシシラン8質量部((A)成分中のシラノール基に対して(B)成分のモル比が0.59となる量)、(C)成分として分子鎖両末端がヒドロキシシリル基で封鎖され、23℃における粘度が5,000mPa・sであり、重合度が約389であるジメチルポリシロキサンポリマー30質量部、(D)成分としてγ-アミノプロピルトリエトキシシラン0.8質量部、γ-(N,N’-ジメチルグアニジル)プロピルトリメトキシシラン0.1質量部を室温で30分混合して組成物5を得た。
[比較例1]
 (A)成分としてMe3SiO1/2単位、及びSiO4/2単位からなり、SiO4/2単位に対するMe3SiO1/2単位のモル比が0.68であり、分子量が約3,500でかつ、シラノール基含有量が0.11モル/100g(1.87質量%)であり、固形分が60質量%になるようにIsoparEで溶解させた樹脂状シロキサンコポリマー92質量部、(B)成分としてエトキシメチルトリエトキシシラン10質量部((A)成分中のシラノール基に対して(B)成分のモル比が0.74となる量)、(C)成分として分子鎖両末端がヒドロキシシリル基で封鎖され、23℃における粘度が700mPa・sであり、重合度が約270であるジメチルポリシロキサンポリマー40質量部を室温で30分混合して組成物6を得た。
[比較例2]
 (A)成分としてMe3SiO1/2単位、及びSiO4/2単位からなり、SiO4/2単位に対するMe3SiO1/2単位のモル比が0.68であり、分子量が約3,500でかつ、シラノール基含有量が0.11モル/100g(1.87質量%)であり、固形分が60質量%になるようにIsoparEで溶解させた樹脂状シロキサンコポリマー92質量部、(B)成分としてエトキシメチルトリエトキシシラン10質量部((A)成分中のシラノール基に対して(B)成分のモル比が0.74となる量)、(C)成分として分子鎖両末端がヒドロキシシリル基で封鎖され、23℃における粘度が5,000mPa・sであり、重合度が約389であるジメチルポリシロキサンポリマー40質量部を室温で30分混合して組成物7を得た。
[比較例3]
 (A)成分としてMe3SiO1/2単位、及びSiO4/2単位からなり、SiO4/2単位に対するMe3SiO1/2単位のモル比が0.68であり、分子量が約3,500でかつ、シラノール基含有量が0.11モル/100g(1.87質量%)であり、固形分が60質量%になるようにIsoparEで溶解させた樹脂状シロキサンコポリマー92質量部、(B)成分としてエトキシメチルトリエトキシシラン10質量部((A)成分中のシラノール基に対して(B)成分のモル比が0.74となる量)、(D)成分としてγ-アミノプロピルトリエトキシシラン1質量部を室温で30分混合して組成物8を得た。
[比較例4]
 (A)成分としてMe3SiO1/2単位、及びSiO4/2単位からなり、SiO4/2単位に対するMe3SiO1/2単位のモル比が0.68であり、分子量が約3,500でかつ、シラノール基含有量が0.11モル/100g(1.87質量%)であり、固形分が60質量%になるようにIsoparEで溶解させた樹脂状シロキサンコポリマー92質量部、(B)成分としてエトキシメチルトリエトキシシラン2質量部((A)成分中のシラノール基に対して(B)成分のモル比が0.15となる量)、(C)成分として分子鎖両末端がヒドロキシシリル基で封鎖され、23℃における粘度が5,000mPa・sであり、重合度が約389であるジメチルポリシロキサンポリマー30質量部、(D)成分としてγ-アミノプロピルトリエトキシシラン1質量部を室温で30分混合して組成物9を得た。
[比較例5]
 (A)成分としてMe3SiO1/2単位、及びSiO4/2単位からなり、SiO4/2単位に対するMe3SiO1/2単位のモル比が0.68であり、分子量が約3,500でかつ、シラノール基含有量が0.11モル/100g(1.87質量%)であり、固形分が60質量%になるようにIsoparEで溶解させた樹脂状シロキサンコポリマー92質量部、(B)成分の代わりにビニルトリイソプロペノキシシラン10質量部((A)成分中のシラノール基に対してビニルトリイソプロペノキシシランのモル比が0.72となる量)、(D)成分としてγ-アミノプロピルトリエトキシシラン0.8質量部を室温で30分混合した。次に、(C)成分として分子鎖両末端がヒドロキシシリル基で封鎖され、23℃における粘度が700mPa・sであり、重合度が約270であるジメチルポリシロキサンポリマー60質量部を室温で40分混合した。最後に(D)成分としてγ-(N,N’-ジメチルグアニジル)プロピルトリメトキシシラン1質量部を室温で30分混合して組成物10を得た。
 調製した組成物1~10を用いて、以下の特性を確認した。下記の結果と共に組成物の調製時間を下記表1、2に示す。
・粘度及び初期硬化性
 調製した組成物1~10について、23℃/50%RH環境下での粘度を測定した。また、初期硬化性として、調製した組成物1~10を、23℃/50%RH環境下にて厚さが3mmになるように7日放置して硬化させ、JIS K 6249に従い、タイプAデュロメータにて硬さを測定した。
・保存性
 調製した組成物1~10を密閉可能容器に入れ、23℃/50%RH環境下で6ヶ月放置した。6ヶ月経過した組成物1~10を、23℃/50%RH環境下にて厚さが3mmになるように7日放置して硬化させ、JIS K 6249に従い、タイプAデュロメータにて硬さを測定し、初期硬度と比較して±5の値であれば良好、±5を外れた場合は不良として判断した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 (D)成分を配合しない組成物6及び7は、23℃/50%RH環境下にて厚さが3mmになるように7日放置して硬化させたが、粘稠体となり測定不能であった。
 (C)成分を配合しない組成物8は、液体のままで硬化せず、長期間放置すると粉体となって析出した。
 (A)成分中のシラノール基に対する(B)成分のモル比が本発明の範囲から外れる組成物9は、良好な硬化性を示したが、保存性試験では硬度が低下し、更に粘度も大きくなる結果であった。
 組成物10は、前記特許文献4(特許第6319168号公報)に記載の方法で調製した脱アセトンタイプの室温硬化性オルガノポリシロキサン組成物である。硬さ、保存性共に良好であったが、調製するために三工程を経る必要があるため製造工程が煩雑になるばかりか、調製(混合)時間も長いため本発明の目的とする簡便な製造方法とは言い難い。
 これに対して、本発明の(A)~(D)成分の特定量を配合した実施例の組成物1~5は、製造が簡便でかつコストが安く、更に縮合触媒である金属化合物を含有しなくとも安定した硬化性を示し、硬さ、保存性共に良好である。

Claims (6)

  1.  下記(A)~(D)成分
    (A);R3SiO1/2単位(式中、Rは独立に非置換又は置換の炭素原子数1~6の1価炭化水素基又はヒドロキシ基を表す)及びSiO4/2単位からなり、SiO4/2単位に対するR3SiO1/2単位のモル比が0.5~1.5であり、更にR2SiO2/2単位及びRSiO3/2単位(前記各式中、Rは前記のとおり)を、SiO4/2単位に対し、それぞれ0~1.0のモル比で含有していてもよく、かつケイ素原子に結合したヒドロキシ基(シラノール基)を0.005~0.15モル/100g有する、分子量が2,000~10,000である三次元網状構造のオルガノポリシロキサン樹脂:100質量部、
    (B);下記一般式(1)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:(A)成分中のシラノール基に対して(B)成分のモル比が0.2~1となる量、
    Figure JPOXMLDOC01-appb-C000001
              (1)
    (式(1)中、R1は独立に非置換又は置換の炭素原子数1~12の1価炭化水素基であり、R2は非置換又は置換の炭素原子数1~12の1価炭化水素基であり、Yは加水分解性基であり、mは0、1又は2である。)
    (C);分子鎖両末端がシラノール基で封鎖された直鎖状ジオルガノポリシロキサン:10~100質量部、及び
    (D);上記(A)成分及び(B)成分以外の、アミノ基含有加水分解性オルガノシラン及び/又はその部分加水分解縮合物:0.5~5質量部
    を含有する室温硬化性オルガノポリシロキサン組成物。
  2.  更に、(E);沸点が40~180℃であり、ベンゼン、トルエン及びキシレン以外の有機溶剤を、組成物の不揮発分が20~80質量%となるような量で含むものである請求項1に記載の室温硬化性オルガノポリシロキサン組成物。
  3.  金属系縮合触媒を含まないものである請求項1又は2に記載の室温硬化性オルガノポリシロキサン組成物。
  4.  電気・電子部品及び/又はその基板のコーティング用である請求項1~3のいずれか1項に記載の室温硬化性オルガノポリシロキサン組成物。
  5.  液晶表示素子のシール用である請求項1~3のいずれか1項に記載の室温硬化性オルガノポリシロキサン組成物。
  6.  請求項1~5のいずれか1項に記載の室温硬化性オルガノポリシロキサン組成物の硬化物でコーティング又はシールされた物品。
PCT/JP2021/014274 2020-04-16 2021-04-02 室温硬化性オルガノポリシロキサン組成物及び物品 WO2021210421A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227039111A KR20230008080A (ko) 2020-04-16 2021-04-02 실온 경화성 오르가노폴리실록산 조성물 및 물품
CN202180028484.9A CN115427510B (zh) 2020-04-16 2021-04-02 室温固化性有机聚硅氧烷组合物及物品
US17/918,594 US20230146278A1 (en) 2020-04-16 2021-04-02 Room-temperature-curable organopolysiloxane composition and article
JP2022515307A JP7552688B2 (ja) 2020-04-16 2021-04-02 室温硬化性オルガノポリシロキサン組成物及び物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020073190 2020-04-16
JP2020-073190 2020-04-16

Publications (1)

Publication Number Publication Date
WO2021210421A1 true WO2021210421A1 (ja) 2021-10-21

Family

ID=78084271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014274 WO2021210421A1 (ja) 2020-04-16 2021-04-02 室温硬化性オルガノポリシロキサン組成物及び物品

Country Status (6)

Country Link
US (1) US20230146278A1 (ja)
JP (1) JP7552688B2 (ja)
KR (1) KR20230008080A (ja)
CN (1) CN115427510B (ja)
TW (1) TW202146535A (ja)
WO (1) WO2021210421A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7173302B2 (ja) * 2019-04-10 2022-11-16 信越化学工業株式会社 オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品
US20230279263A1 (en) * 2020-06-24 2023-09-07 Wacker Chemie Ag Moisture-curing conformal coating compositions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536957A (ja) * 2001-08-09 2004-12-09 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング アルコキシ架橋性一成分系湿分硬化性材料
JP2005139452A (ja) * 2003-11-06 2005-06-02 Wacker Chemie Gmbh 湿分硬化エラストマーの弾性を上昇させる方法
JP2007513203A (ja) * 2003-06-26 2007-05-24 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング アルコキシシラン−末端プレポリマー
JP2009513734A (ja) * 2003-07-04 2009-04-02 ワッカー ケミー アクチエンゲゼルシャフト アルコキシシラン末端基を有するプレポリマー
JP2016204612A (ja) * 2015-04-28 2016-12-08 信越化学工業株式会社 縮合反応生成物の製造方法、該縮合反応生成物を含有する室温硬化性オルガノポリシロキサン組成物及びその製造方法
CN106634771A (zh) * 2016-12-23 2017-05-10 广州市白云化工实业有限公司 硅烷改性聚醚密封胶及其制备方法
WO2020189463A1 (ja) * 2019-03-18 2020-09-24 信越化学工業株式会社 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
WO2020209083A1 (ja) * 2019-04-10 2020-10-15 信越化学工業株式会社 オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993171A (ja) 1982-11-17 1984-05-29 三洋電機株式会社 透視構造体のシール構造
DE3323912A1 (de) * 1983-07-02 1985-01-10 Bayer Ag, 5090 Leverkusen Einkomponentige siliconpasten
FR2629828B1 (fr) * 1988-04-07 1991-02-15 Rhone Poulenc Chimie Composition organopolysiloxane a fonction acyloxy durcissable en elastomere autoadherent
JPH0834922A (ja) * 1994-07-22 1996-02-06 Toray Dow Corning Silicone Co Ltd 室温硬化性シリコーンエラストマー組成物
JP2002327115A (ja) 2001-05-02 2002-11-15 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP3846563B2 (ja) * 2002-01-15 2006-11-15 信越化学工業株式会社 硬質保護被膜形成用コーティング剤及び光学物品
DE10211314A1 (de) * 2002-03-14 2003-10-02 Wacker Chemie Gmbh Vernetzbare Massen auf der Basis von Organosiliciumverbindungen
JP4777591B2 (ja) 2002-10-25 2011-09-21 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
CN1775862A (zh) * 2005-09-16 2006-05-24 上海锐朗光电材料有限公司 单组份室温可固化高导电硅橡胶组合物
JP4829583B2 (ja) 2005-10-06 2011-12-07 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物の製造方法
WO2008087741A1 (en) * 2007-01-16 2008-07-24 Mitsui Chemicals, Inc. Hardcoat composition
CN103342816B (zh) * 2013-06-19 2016-08-17 广州慧谷化学有限公司 一种有机硅树脂及可固化有机聚硅氧烷组合物与应用
CN105111747B (zh) * 2015-10-12 2018-06-19 山东大学 一种自催化的脱酮肟型室温硫化硅橡胶及其制备方法
WO2018037682A1 (ja) * 2016-08-26 2018-03-01 信越化学工業株式会社 脱アルコール型室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でシールされた物品
CN107501943A (zh) * 2017-08-31 2017-12-22 贺州钟山县双文碳酸钙新材料有限公司 一种改性碳酸钙在硅橡胶中的应用
JP6828654B2 (ja) * 2017-10-19 2021-02-10 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及びその製造方法、並びに自動車ロングライフクーラントシール材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536957A (ja) * 2001-08-09 2004-12-09 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング アルコキシ架橋性一成分系湿分硬化性材料
JP2007513203A (ja) * 2003-06-26 2007-05-24 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング アルコキシシラン−末端プレポリマー
JP2009513734A (ja) * 2003-07-04 2009-04-02 ワッカー ケミー アクチエンゲゼルシャフト アルコキシシラン末端基を有するプレポリマー
JP2005139452A (ja) * 2003-11-06 2005-06-02 Wacker Chemie Gmbh 湿分硬化エラストマーの弾性を上昇させる方法
JP2016204612A (ja) * 2015-04-28 2016-12-08 信越化学工業株式会社 縮合反応生成物の製造方法、該縮合反応生成物を含有する室温硬化性オルガノポリシロキサン組成物及びその製造方法
CN106634771A (zh) * 2016-12-23 2017-05-10 广州市白云化工实业有限公司 硅烷改性聚醚密封胶及其制备方法
WO2020189463A1 (ja) * 2019-03-18 2020-09-24 信越化学工業株式会社 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
WO2020209083A1 (ja) * 2019-04-10 2020-10-15 信越化学工業株式会社 オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品

Also Published As

Publication number Publication date
KR20230008080A (ko) 2023-01-13
TW202146535A (zh) 2021-12-16
CN115427510A (zh) 2022-12-02
US20230146278A1 (en) 2023-05-11
CN115427510B (zh) 2023-11-28
JPWO2021210421A1 (ja) 2021-10-21
JP7552688B2 (ja) 2024-09-18

Similar Documents

Publication Publication Date Title
US9644124B2 (en) Silicon-containing compound having alkoxysilyl-ethylene group at its terminal, room temperature-curable organopolysiloxane composition, and molded product obtained by curing the composition
JP6092491B1 (ja) 室温硬化性ポリオルガノシロキサン組成物およびその調製方法
WO2012157225A1 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP7173302B2 (ja) オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品
WO2021210421A1 (ja) 室温硬化性オルガノポリシロキサン組成物及び物品
WO2016117206A1 (ja) 室温硬化性オルガノポリシロキサン組成物
JP2019073670A (ja) 室温硬化性オルガノポリシロキサン組成物及びその製造方法、並びに自動車ロングライフクーラントシール材
TWI794401B (zh) 可室溫固化有機聚矽氧烷組成物及電氣/電子設備
JP6319168B2 (ja) 縮合反応生成物の製造方法、該縮合反応生成物を含有する室温硬化性オルガノポリシロキサン組成物の製造方法
JP7353026B2 (ja) 室温硬化性ポリオルガノシロキサン組成物及びその硬化物
JP6418115B2 (ja) 金属基材の硫化防止方法、硫化防止性評価方法、及び実装回路基板
JP6589572B2 (ja) 縮合硬化型室温硬化性シリコーンゴム組成物及び電子回路
JP7353027B2 (ja) 室温硬化性ポリオルガノシロキサン組成物及びその硬化物
JPH0211659A (ja) シーリング用組成物
JP6490367B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP7531793B2 (ja) 湿気硬化性コンフォーマルコーティング組成物
JP2017095603A (ja) 室温硬化性ポリオルガノシロキサン組成物
JP5839463B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP2010144124A (ja) 室温硬化性ポリオルガノシロキサン組成物
JP5608909B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JPH09241510A (ja) 室温硬化性ポリオルガノシロキサン組成物
JP3853073B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
WO2022224885A1 (ja) 室温硬化性シリコーンコーティング剤組成物及び物品
JP5642849B2 (ja) 室温硬化性ポリオルガノシロキサン組成物の調製方法
JP5734567B2 (ja) 室温硬化性ポリオルガノシロキサン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788746

Country of ref document: EP

Kind code of ref document: A1