WO2012157225A1 - 室温硬化性ポリオルガノシロキサン組成物 - Google Patents

室温硬化性ポリオルガノシロキサン組成物 Download PDF

Info

Publication number
WO2012157225A1
WO2012157225A1 PCT/JP2012/003071 JP2012003071W WO2012157225A1 WO 2012157225 A1 WO2012157225 A1 WO 2012157225A1 JP 2012003071 W JP2012003071 W JP 2012003071W WO 2012157225 A1 WO2012157225 A1 WO 2012157225A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
composition
agent composition
polyorganosiloxane
Prior art date
Application number
PCT/JP2012/003071
Other languages
English (en)
French (fr)
Inventor
幸樹 太田代
勲 飯田
Original Assignee
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47176577&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012157225(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 filed Critical モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority to EP12786117.7A priority Critical patent/EP2708579B1/en
Priority to CN201280004452.6A priority patent/CN103328576B/zh
Priority to JP2012523543A priority patent/JP5265813B2/ja
Priority to KR1020137013338A priority patent/KR101866595B1/ko
Publication of WO2012157225A1 publication Critical patent/WO2012157225A1/ja
Priority to US13/928,820 priority patent/US9034993B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5445Silicon-containing compounds containing nitrogen containing at least one Si-N bond

Definitions

  • the present invention relates to a room temperature curable polyorganosiloxane composition, and in particular, consists of two components, a main agent composition and a crosslinking agent composition, which are cured at room temperature by mixing them in the air and are rubbery elastic bodies. Relates to a polyorganosiloxane composition.
  • Condensation reaction type polyorganosiloxane that cures at room temperature to produce a rubbery elastic body is widely used as an elastic adhesive, coating material, electrical insulating sealing material, and as a building sealing material in the electrical and electronic industries. It is used.
  • one-component type (one-packaging type) polyorganosiloxane which undergoes a curing reaction when it comes into contact with moisture in the air, weighs and mixes the base polymer and the crosslinking agent, catalyst, etc. immediately before use.
  • the curing rate is slow and the deep part curability is poor.
  • the two-component room temperature curable polyorganosiloxane has a high curing rate and excellent deep part curability.
  • This composition is prepared by dividing into a main component composed of a polydiorganosiloxane having a molecular end blocked with a hydroxyl group and / or an alkoxy group and an inorganic filler, and a crosslinking component. And it is used as what is called a multi-packaging type room temperature curable composition preserve
  • the crosslinking component is composed only of a crosslinking agent and a curing catalyst from the viewpoint of storage stability, so that the blending ratio of the crosslinking component to the main component is 1 to 3.
  • the mass was extremely low, and variations in measurement and poor mixing were likely to occur.
  • the mixing ratio of the main ingredient component and the crosslinking component may be set to about 100: 10 or an integer ratio in which the ratio of the crosslinking component is more than that from a practical viewpoint.
  • the crosslinking component is composed only of the crosslinking agent and the curing catalyst.
  • the same polymer as the base polymer (for example, silanol group-terminated polydiorganosiloxane) blended in the main component is used to increase the blending ratio of the crosslinking component. It can be considered that it is also added to a crosslinking component as an extender.
  • a crosslinking component as an extender.
  • the base polymer, the cross-linking agent and the catalyst coexist in the cross-linking component, not only the storage stability of the cross-linking component is deteriorated, but also the base polymer and the cross-linking agent Due to the poor compatibility, there was a problem of separation.
  • the present invention has been made to solve these problems, and in a two-component room temperature curable polyorganosiloxane composition, it does not deteriorate properties such as deep curable property, uniformity of curing, and storage stability.
  • An object of the present invention is to make it possible to appropriately adjust the blending ratio of the main component and the crosslinking component in accordance with the use of an automatic mixing / discharging machine or the like.
  • the room temperature-curable polyorganosiloxane composition of the present invention comprises (A) (a1) a polyorganosiloxane having a hydroxyl group or an alkoxy group at the molecular end, (a2) a main agent composition containing an inorganic filler, and (B) ( b1) an organosilicon compound having three or more hydrolyzable groups bonded to a silicon atom in one molecule, or a partial hydrolyzate thereof, and (b2) a general formula: Wherein R 1 is an alkyl group or an alkoxyalkyl group which may be the same or different from each other, and R 2 and R 3 may be the same or different from each other.
  • the component (a1) is preferably a polyorganosiloxane having a hydroxyl group at the molecular end.
  • the organic compound containing a nitrogen atom can be contained as said (b3) curing catalyst.
  • the general formula: (R 4 O) 3 Si—R 5 —NH—R 6 (wherein R 4 may be the same as or different from each other, an alkyl group or An alkoxyalkyl group, R 5 is an unsubstituted divalent hydrocarbon group, R 6 is a hydrogen atom, a monovalent hydrocarbon group unsubstituted or substituted with a halogen or a cyano group, or an aminoalkyl group And an amino group-containing alkoxysilane represented by formula (1).
  • the main component composition (A) contains 1 to 500 parts by mass of the inorganic filler (a2) with respect to 100 parts by mass of the component (a1), and 100 parts by mass of the component (a1).
  • the component (b2) is 0.5 to 20 parts by mass
  • the (b3) curing catalyst is 0.01 to 10 parts by mass, and with respect to one hydroxyl group or alkoxy group of the component (a1)
  • the (B) crosslinker composition can be blended so that the component (b1) has 2 to 20 alkoxy groups.
  • the (A) main agent composition and the (B) crosslinking agent composition can be blended in a mass ratio of 100: 3 to 100: 20.
  • the blending ratio of the main agent composition and the crosslinking agent composition can be appropriately adjusted according to the use of an automatic mixing / discharging machine or the like.
  • the embodiment of the present invention is a two-component room temperature curable polyorganosiloxane composition obtained by blending (A) a main agent composition and (B) a crosslinking agent composition.
  • the main agent composition contains (a1) a polyorganosiloxane having a hydroxyl group or an alkoxy group at the molecular end, and (a2) an inorganic filler.
  • the cross-linking agent composition includes (b1) an organosilicon compound having three or more hydrolyzable groups as silicon functional groups in one molecule, or a partial hydrolyzate thereof, and (b2) a specific formula It contains a polyorganosiloxane having an alkoxy group at the molecular end represented, and (b3) a curing catalyst.
  • each component which comprises (A) main ingredient composition and (B) crosslinking agent composition is demonstrated.
  • (A1) component polyorganosiloxane having a hydroxyl group or an alkoxy group at the molecular end is usually used as a base polymer of a condensation type silicone rubber that can be cured at room temperature, and has a linear structure.
  • the polydiorganosiloxane having is preferable. From the viewpoint of reaction rate, it is more preferable to use polyorganosiloxane having a hydroxyl group at the molecular end.
  • examples of the organic group directly bonded to the silicon atom other than the hydroxyl group and the alkoxy group include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group; a vinyl group and an allyl group.
  • Examples thereof include an alkyl group substituted with a halogen or cyano group. From the viewpoint of easy synthesis, a methyl group, a vinyl group or a phenyl group is preferred.
  • the methyl group gives the lowest viscosity for the degree of polymerization of the siloxane, in addition to obtaining the raw material intermediate most easily.
  • a polyorganosiloxane having a good balance between the extrusion workability of the composition before curing and the physical properties of the rubber-like elastic body after curing. Accordingly, those in which 85% or more of all organic groups are methyl groups are preferred, and those in which all organic groups other than hydroxyl groups and alkoxy groups are methyl groups are more preferred.
  • a phenyl group is used. When oil resistance is particularly required, a 3,3,3-trifluoropropyl group is added to each organic group. It is desirable to have it as a part.
  • the hydroxyl group or alkoxy group at the molecular terminal in the component (a1) contributes to curing by reaction with the hydrolyzable group or the like of the component (b1) described later.
  • the alkoxy group include a methoxy group, an ethoxy group, and an isopropoxy group. From the viewpoint of reactivity, it preferably has a hydroxyl group or a methoxy group as a terminal group, and particularly preferably has a hydroxyl group.
  • the viscosity of the component (a1) is preferably in the range of 0.1 to 1000 Pa ⁇ s at 23 ° C. If the viscosity is less than 0.1 Pa ⁇ s, the mechanical properties of the rubber-like elastic body after curing are not sufficient, and if it exceeds 1000 Pa ⁇ s, it is difficult to obtain a uniform composition when an inorganic filler described later is blended. Also, the moldability becomes worse.
  • a more preferred viscosity is 0.3 to 100 Pa ⁇ s, and a particularly preferred viscosity is 0.3 to 50 Pa ⁇ s.
  • A2 Inorganic filler (a2) The inorganic filler which is a component is mix
  • Known inorganic fillers can be used, and examples include silica powder, fine mica powder, diatomaceous earth, calcium carbonate, zinc carbonate, iron oxide, titanium oxide, zinc oxide, pulverized quartz, and carbon black. .
  • One kind may be used alone, or two or more kinds may be mixed and used.
  • silica powder such as fumed silica (fumed silica), precipitated silica (wet silica), silica aerogel, ground quartz, and fused silica.
  • the blending amount of the inorganic filler is 1 to 500 parts by mass, more preferably 3 to 200 parts by mass, and particularly preferably 3 to 150 parts by mass with respect to 100 parts by mass of the component (a1).
  • A2 When the blending amount of the inorganic filler is less than 1 part by mass, the mechanical strength of the resulting cured product becomes insufficient, and when the blending amount exceeds 500 parts by mass, mixing becomes difficult and a uniform composition is obtained. I can't get it.
  • (B1) An organosilicon compound having a hydrolyzable group or a partial hydrolyzate thereof
  • (b1) An organosilicon compound having three or more hydrolyzable groups in one molecule as a component, or a partial hydrolyzate thereof,
  • the component (a1) acts as a crosslinking agent, is hydrolyzed by moisture in the air, and easily undergoes a condensation reaction with the hydroxyl group (silanol group) or alkoxy group of the component (a1) to produce a cured product.
  • Examples of the hydrolyzable group possessed by the component (b1) include alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group and a butoxy group; an alkoxyalkoxy group such as a methoxyethoxy group.
  • Examples of the group bonded to the silicon atom other than the hydrolyzable group include a substituted or unsubstituted monovalent hydrocarbon group similar to the organic group directly bonded to the silicon atom in the component (a1). From the viewpoint of ease of synthesis and crosslinking rate, an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 5 carbon atoms and a phenyl group are preferred.
  • such component (b1) include tetraethoxylane, tetramethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, ethyl orthosilicate, propyl orthosilicate, and the like.
  • examples thereof include alkoxysilanes and partial hydrolysates thereof.
  • Preferred is tetraethoxysilane or a partial hydrolyzate of tetramethoxysilane, and more preferred is a hydrolytic condensate having a polymerization degree of 3 to 15. When the degree of polymerization is less than 3, deep curability may be insufficient, and when the degree of polymerization exceeds 15, workability may be deteriorated.
  • the amount of component (b1) is adjusted so that the number of hydrolyzable groups is 2 to 20 per hydroxyl group or alkoxy group in component (a1).
  • the blending amount of the component (b1) is less than this range, the crosslinking is not sufficiently performed and a cured product having sufficient hardness is not obtained, and the storage stability of the crosslinking agent composition is deteriorated.
  • it exceeds this range it is not only economically meaningless, but the balance between the curability of the composition and the mechanical properties after curing may be significantly reduced.
  • the number of hydrolyzable groups in the component (b1) is more preferably 2 to 15 per hydroxyl group or alkoxy group in the component (a1).
  • the component (b2) constituting the (B) crosslinking agent composition together with the component (b1) is the component (b1) in the (B) crosslinking agent composition.
  • R 1 is an alkyl group or an alkoxyalkyl group which may be the same or different from each other.
  • Alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group and hexyl group; alkoxyalkyl groups such as methoxyethyl group are exemplified, but methyl group and ethyl group are preferable, and methyl group is particularly preferable.
  • R 2 and R 3 are each a monovalent hydrocarbon group which may be the same as or different from each other and is unsubstituted or substituted with a halogen or a cyano group.
  • R 2 and R 3 are the same groups as the organic group directly bonded to the silicon atom in the component (a1), but an alkyl group is preferable, and a methyl group is particularly preferable.
  • Y is an oxygen atom (oxo group) or a divalent hydrocarbon group.
  • Examples of the divalent hydrocarbon group include alkylene groups such as a methylene group, an ethylene group, a propylene group, a tetramethylene group, a hexamethylene group, and a methylethylene group, and an oxygen atom (oxo group) or a propylene group is preferable.
  • alkylene groups such as a methylene group, an ethylene group, a propylene group, a tetramethylene group, a hexamethylene group, and a methylethylene group
  • an oxygen atom (oxo group) or a propylene group is preferable.
  • a is 0 or 1
  • b is 0 or 1. From the viewpoint of ease of synthesis, a and b are preferably equal.
  • n represents an integer of 1 to 30.
  • the value of n is more preferably in the range of 1 to 20, and further preferably in the range of 3 to 15.
  • the blending amount of the component (b2) varies depending on ease of handling and composition of the composition, but is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the component (a1). If the blending amount is less than 0.5 parts by mass, there is no effect by blending. Conversely, if the blending amount exceeds 20 parts by mass, the rubber strength of the cured product may decrease.
  • the component (b3) is a curing catalyst for reacting the hydroxyl group or alkoxy group of the component (a1) with the hydrolyzable group of the component (b1) in the presence of moisture.
  • curing catalysts include iron octoate, manganese octoate, zinc octoate, tin naphthate, tin caprylate, tin oleate, carboxylic acid metal salts; dibutyltin diacetate, dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin dioleate, diphenyltin Organotin compounds such as diacetate, dibutyltin oxide, dibutyltin dimethoxide, dibutylbis (triethoxysiloxy) tin, dioctyltin dilaurate; tetraethoxytitanium, tetrapropoxytitanium, te
  • Examples of the organic compound having a nitrogen atom include diethylhydroxylamine, dimethylhydroxylamine, 1,1,3,3-tetramethylguanidine, 1,3-diphenylguanidine, 1,2,3-triphenylguanidine, 1, Guanidine derivatives such as 1,3,3-tetramethyl-2- [3- (trimethylsilyl) propyl] guanidine, and the general formula: (R 4 O) 3 Si—R 5 —NH—R 6
  • An amino group-containing alkoxysilane represented by the formula (also referred to as amino group-substituted alkoxysilane) can be used.
  • R 4 is an alkyl group or an alkoxyalkyl group which may be the same or different from each other.
  • R 4 include the same alkyl groups as methyl group, ethyl group, propyl group, isopropyl group, butyl group, and hexyl group; alkoxyalkyl groups such as methoxyethyl group and the like, similarly to R 1 in the component (b2).
  • R 5 is a divalent hydrocarbon group.
  • R 6 is a hydrogen atom, a monovalent hydrocarbon group which is unsubstituted or substituted with a halogen or a cyano group, or an aminoalkyl group.
  • Examples of the unsubstituted monovalent hydrocarbon group include alkyl groups such as methyl group, ethyl group, propyl group, and butyl group; arylene groups such as phenylene group and tolylene group; alkylene arylenes such as methylenephenylene group and ethylenephenylene group Groups and the like.
  • Examples of aminoalkyl groups include aminoethyl groups and N-aminoethylaminoethyl groups.
  • amino group-containing alkoxysilane represented by the above general formula
  • aminomethyltriethoxysilane ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and N- ( ⁇ -aminoethyl) amino.
  • examples include methyltributoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltriethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -anilinopropyltriethoxysilane Is done.
  • Preferred organic compounds having a nitrogen atom are ⁇ -aminopropyltriethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltriethoxysilane, 1,1,3,3-tetramethyl-2- [ 3- (Trimethylsilyl) propyl] guanidine.
  • the curing catalyst including an organic compound having such a nitrogen atom can be used alone or in combination of two or more.
  • the organic compound having a nitrogen atom not only functions as a curing catalyst for promoting the reaction between the hydroxyl group or alkoxy group of the component (a1) and the hydrolyzable group of the component (b1), but also functions as an adhesion promoter. Also have. Therefore, when the organic compound having a nitrogen atom is used as a curing catalyst, a cured product having excellent adhesion can be obtained.
  • the total amount of component (b3) is 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight, particularly preferably 0.05 to 3 parts by weight per 100 parts by weight of component (a1). . If it is less than 0.01 part by mass, not only will it take a long time to cure, but in particular the curing in the deep part of the rubber layer far from the contact surface with air will be insufficient. When the component (b3) exceeds 10 parts by mass, there is no effect commensurate with the blending amount, which is meaningless and economically disadvantageous. From the viewpoint of improving adhesiveness, the compounding amount of the amino group-containing alkoxysilane in the component (b3) is more preferably 0.1 to 5 parts by mass per 100 parts by mass of the component (a1). When this compounding quantity exceeds 5 mass parts, there exists a possibility that the rubber strength of hardened
  • the room temperature curable polyorganosiloxane composition of the present invention comprises (A) a main agent composition containing the above-described (a1) component and (a2) inorganic filler, and (b1) component and (b2) component which are crosslinking agents. And (b3) prepared separately from (B) a crosslinking agent composition containing a curing catalyst, and stored separately in a state where moisture is blocked.
  • (A) the main agent composition and (B) the cross-linking agent composition are mixed at an appropriate blending ratio and exposed to moisture in the air, so that a condensation reaction occurs and cures and becomes rubbery. A cured product having elasticity is obtained.
  • the blending ratio (mass ratio) of (A) the main agent composition and (B) the crosslinking agent composition is preferably 100: 3 to 100: 20. Further, from the viewpoint of ease of measurement / mixing and ease of handling, it is preferable to blend (A) the main agent composition and (B) the crosslinking agent composition in an integer ratio. When the blending ratio is out of the above range and the mass ratio of the (B) crosslinking agent composition is too low, curing becomes insufficient and a cured product cannot be obtained.
  • a more preferable blending ratio of (A) the main agent composition and (B) the crosslinking agent composition is 100: 5 to 100: 15.
  • the composition of the present invention further includes a pigment, a thixotropy imparting agent, a viscosity modifier for improving extrusion workability, an ultraviolet absorber, a fungicide, a heat resistance improver, a flame retardant, depending on the purpose.
  • Various additives may be added. These additives are usually added and mixed in the (A) main agent composition.
  • the blending ratio of (A) the main agent composition and (B) the crosslinker composition can be appropriately adjusted according to the use of an automatic mixing / discharging machine or the like.
  • part means “part by mass”, and all physical properties such as viscosity are values at 23 ° C. and relative humidity 50%.
  • Example 1 Linear polydimethylsiloxane ( ⁇ , ⁇ -bis-dihydroxypolydimethylsiloxane) having a hydroxyl group at both ends with a viscosity of 3 Pa ⁇ s (number average degree of polymerization 320) (a1) (hydroxyl group content 0.05 mmol / g)
  • a1 hydroxyl group content 0.05 mmol / g
  • silica powder ROX200; trade name of Nippon Aerosil Co., Ltd.
  • polydimethylsiloxane (b2-1) having a polymerization degree of 7 blocked at both ends with a methyldimethoxy group was mixed with a tetraethoxysilane partial hydrolysis condensate (polymerization degree 7, alkoxy group content of 19.2 mmol / g).
  • B1-1) 2 parts, dibutyltin dilaurate (b3-1) 0.05 part, and N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane (b3-3) 1 part are added and mixed.
  • a crosslinking agent composition was prepared.
  • the hardness variation (III) of the cured product and the surface state (IV) of the cured product were examined as follows. Further, in order to know the storage stability of the (B) crosslinking agent composition, the (B) crosslinking agent composition placed in a glass bottle was aged in an oven at 70 ° C. for 5 days. Then, (V) the state of (B) component after aging (uniformity of composition) and (VI) the curability by (B) component after aging were examined. At that time, in the same manner as described above, it was filled in a polystyrene cup having a capacity of 25 ml and allowed to stand in an atmosphere of 23 ° C. and 50% RH for 24 hours to be cured, and then the cured state inside the obtained cured product was observed. .
  • Example 2 the component of the composition shown in Table 1 and Table 2 was mixed like Example 1, and the (B) crosslinking agent composition was prepared.
  • (b2-2) is a polydimethylsiloxane having a polymerization degree of 20 blocked at both ends with methyldimethoxy groups
  • (b2-3) is a polydimethylsiloxane having a polymerization degree of 25 having both ends blocked by methyldimethoxy groups.
  • Dimethylsiloxane (b2-4) is a polydimethylsiloxane having a polymerization degree of 80 blocked at both ends with methyldimethoxy groups, and (b2-5) is a polydimethylsiloxane containing 10 mol% of phenyl groups (viscosity 0.05 Pa ⁇ s), (b2-6) are linear polydimethylsiloxanes having a viscosity of 0.1 Pa ⁇ s, (b2-7) is the same ⁇ , ⁇ -bis-dihydroxypolydimethylsiloxane as (a1), (b2-8) Represents octamethylcyclotetrasiloxane, respectively.
  • the (B) crosslinker composition prepared in Examples 1 to 5 has excellent uniformity of the initial components and excellent storage stability, and even after aging. There is no separation. Then, such (B) crosslinker composition is mixed with (A) main agent composition in an appropriate ratio, and left to stand in the air to cure at normal temperature. A cured product having no variation in thickness can be obtained.
  • the (B) crosslinking agent composition containing aminopropyltriethoxysilane (b3-2) and N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane (b3-3) According to the blended compositions of Examples 1 and 2 and Example 5, cured products having excellent adhesion to substrates such as metals such as Al and resins such as PPS can be obtained.
  • the room temperature curable polyorganosiloxane composition of the present invention comprises two components, (A) a main agent composition and (B) a crosslinker composition, and the blending ratio of these components is adapted to the use of an automatic mixing / discharging machine or the like. It can be adjusted appropriately.
  • the room temperature curable polyorganosiloxane composition of the present invention can be used as an elastic adhesive, a coating material, an electrical insulating sealing material, an architectural sealing material, etc. in the electric / electronic industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

 この室温硬化性ポリオルガノシロキサン組成物は、(A)主剤組成物と(B)架橋剤組成物とを配合してなる2成分型の室温硬化性ポリオルガノシロキサン組成物である。(A)成分は、(a1)分子末端に水酸基またはアルコキシ基を有するポリオルガノシロキサンと、(a2)無機充填剤を含有する。(B)成分は、(b1)1分子中に3個以上の加水分解性基を有する有機ケイ素化合物と、(b2)下式: で表される分子末端にアルコキシ基を有するポリオルガノシロキサンと、(b3)硬化触媒とを含有する。2成分型の室温硬化性ポリオルガノシロキサン組成物において、深部硬化性、硬化の均一性、保存安定性などの特性を悪化させることなく、主成分と架橋成分との配合比率を自動混合吐出機等の使用に合せて適宜調整することができる。

Description

室温硬化性ポリオルガノシロキサン組成物
 本発明は、室温硬化性ポリオルガノシロキサン組成物に係わり、特に、主剤組成物と架橋剤組成物との2成分から成り、空気中で両者を混合することにより室温で硬化してゴム状弾性体を生じるポリオルガノシロキサン組成物に関する。
 室温で硬化しゴム状弾性体を生成する縮合反応型のポリオルガノシロキサン(シリコーン)は、電気・電子工業等における弾性接着剤やコーティング材、電気絶縁シール材として、また建築用シーリング材等として広く用いられている。
 これらの中で、空気中の水分と接触することにより硬化反応が生起する1成分型(1包装型)のポリオルガノシロキサンは、使用直前にベースポリマーと架橋剤や触媒等とを秤量したり混合したりする煩雑さがなく、取り扱いが簡単であるが、硬化速度が遅く、また深部硬化性が悪いという欠点がある。
 これに対して、2成分型の室温硬化性ポリオルガノシロキサンは、硬化速度が速く、深部硬化性にも優れている。この組成物は、分子末端が水酸基および/またはアルコキシ基で閉塞されたポリジオルガノシロキサンと無機充填剤とから成る主剤成分と、架橋成分とに分けて調製される。そして、別々の容器に保存され使用時に混合される、いわゆる多包装型室温硬化性組成物として使用される(例えば、特許文献1,2参照)。
 このような2成分型の室温硬化性ポリオルガノシロキサンでは、保存安定性の点で、架橋成分が架橋剤と硬化触媒のみから構成されているため、主剤成分に対する架橋成分の配合割合が1~3質量%と極めて少なくなり、計量の際のばらつきや混合不良が起こり易かった。
 特に、自動混合吐出機を用いた混合では、実用上の観点から、主剤成分と架橋成分との混合比率を、100:10程度、あるいは架橋成分の比率がそれ以上となる整数比にすることが求められるが、架橋成分を架橋剤と硬化触媒のみから構成した従来の2成分型シリコーンゴムでは、ばらつきのない計量を行うことが難しかった。
 自動混合吐出機を使用して計量・混合を行う場合には、架橋成分の配合比を上げるために、主剤成分に配合されているベースポリマー(例えば、シラノール基末端ポリジオルガノシロキサン)と同じポリマーを、増量剤として架橋成分にも配合することが考えられる。しかし、このような2成分型組成物では、架橋成分中に前記ベースポリマーと架橋剤および触媒が共存するため、架橋成分の保存安定性が悪くなるばかりでなく、前記ベースポリマーと架橋剤との相溶性が悪いため、分離してしまうという問題があった。
特開平07-133430号公報 特開平11-209620号公報
 本発明はこれらの問題を解決するためになされたもので、2成分型の室温硬化性ポリオルガノシロキサン組成物において、深部硬化性、硬化の均一性、保存安定性などの特性を悪化させることなく、主剤成分と架橋成分との配合比率を自動混合吐出機等の使用に合せて適宜調整できるようにすることを目的とする。
 本発明の室温硬化性ポリオルガノシロキサン組成物は、(A)(a1)分子末端に水酸基またはアルコキシ基を有するポリオルガノシロキサンと、(a2)無機充填剤を含む主剤組成物と、(B)(b1)1分子中にケイ素原子に結合した3個以上の加水分解性基を有する有機ケイ素化合物、またはその部分加水分解物と、(b2)一般式:
Figure JPOXMLDOC01-appb-C000001
(式中、Rは互いに同一であっても異なっていてもよい、アルキル基またはアルコキシアルキル基であり、R、Rはいずれも、互いに同一であっても異なっていてもよい、非置換もしくはハロゲンまたはシアノ基で置換された1価の炭化水素基である。また、Yは酸素原子または非置換の2価の炭化水素基である。さらに、aは0または1であり、bは0または1であり、nは1~30の整数である。)で表される分子末端にアルコキシ基を有するポリオルガノシロキサンと、(b3)硬化触媒を含む架橋剤組成物とを配合してなることを特徴とする。
 本発明の室温硬化性ポリオルガノシロキサン組成物において、前記(a1)成分は、分子末端に水酸基を有するポリオルガノシロキサンであることが好ましい。また、前記(b3)硬化触媒として、窒素原子を含有する有機化合物を含有することができる。また、前記(b3)硬化触媒として、一般式:(RO)Si-R-NH-R(式中、Rは互いに同一であっても異なっていてもよい、アルキル基またはアルコキシアルキル基であり、Rは非置換の2価の炭化水素基であり、Rは水素原子、または非置換もしくはハロゲンまたはシアノ基で置換された1価の炭化水素基、またはアミノアルキル基である。)で示されるアミノ基含有アルコキシシランを含有することができる。
 また、前記(A)主剤組成物が、前記(a1)成分100質量部に対して、前記(a2)無機充填剤を1~500質量部の割合で含み、かつ前記(a1)成分100質量部に対して、前記(b2)成分が0.5~20質量部、前記(b3)硬化触媒が0.01~10質量部となり、前記(a1)成分の水酸基またはアルコキシ基1個に対して、前記(b1)成分のアルコキシ基が2~20個となるように、前記(B)架橋剤組成物を配合することができる。さらに、前記(A)主剤組成物と前記(B)架橋剤組成物とを、100:3~100:20の質量比で配合することができる。
 本発明の2成分型の室温硬化性ポリオルガノシロキサン組成物によれば、主剤組成物と架橋剤組成物との配合比率を自動混合吐出機等の使用に合せて適宜調整することができるうえに、深部硬化性、硬化の均一性、保存安定性などの諸特性に優れた組成物を得ることができる。
 以下、本発明の室温硬化性ポリオルガノシロキサン組成物の実施の形態について説明する。
 本発明の実施形態は、(A)主剤組成物と(B)架橋剤組成物とを配合してなる2成分型の室温硬化性ポリオルガノシロキサン組成物である。(A)主剤組成物は、(a1)分子末端に水酸基またはアルコキシ基を有するポリオルガノシロキサンと、(a2)無機充填剤とを含有している。また(B)架橋剤組成物は、(b1)1分子中にケイ素官能基として3個以上の加水分解性基を有する有機ケイ素化合物、またはその部分加水分解物と、(b2)特定の式で表される分子末端にアルコキシ基を有するポリオルガノシロキサンと、(b3)硬化触媒とを含有している。以下、(A)主剤組成物および(B)架橋剤組成物を構成する各成分について説明する。
<(A)主剤組成物>
(a1)成分
 (a1)成分である分子末端に水酸基またはアルコキシ基を有するポリオルガノシロキサンは、通常室温で硬化し得る縮合型シリコーンゴムのベースポリマーとして用いられるものであり、直鎖状の構造を有するポリジオルガノシロキサンが好ましい。反応速度の観点から、分子末端に水酸基を有するポリオルガノシロキサンの使用がより好ましい。
 (a1)成分において、水酸基およびアルコキシ基以外のケイ素原子に直接結合する有機基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基のようなアルキル基;ビニル基、アリル基のようなアルケニル基;フェニル基のようなアリール基、2-フェニルエチル基、2-フェニルプロピル基のようなアラルキル基;クロロメチル基、β-シアノエチル基、3,3,3-トリフルオロプロピル基のようなハロゲンまたはシアノ基で置換されたアルキル基等が例示される。合成が容易なことから、メチル基、ビニル基またはフェニル基が好ましい。
 これらの有機基の中でもメチル基は、原料中間体が最も容易に得られるうえに、シロキサンの重合度の割に最も低い粘度を与える。また、硬化前の組成物の押出し作業性と硬化後のゴム状弾性体の物性とのバランスが良好なポリオルガノシロキサンを提供する。したがって、全有機基の85%以上がメチル基であるものが好ましく、水酸基およびアルコキシ基以外の全ての有機基がメチル基であるものがさらに好ましい。ただし、硬化後のゴム状弾性体が耐寒性や耐熱性を必要とするときはフェニル基を、耐油性を特に必要とするときは3,3,3-トリフルオロプロピル基を、それぞれ有機基の一部として有することが望ましい。
 (a1)成分における分子末端の水酸基またはアルコキシ基は、後述する(b1)成分の加水分解性基等との反応により硬化に寄与するものである。アルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基等が例示される。反応性の点から、末端基として水酸基またはメトキシ基を有することが好ましく、水酸基を有することが特に好ましい。
 (a1)成分の粘度は、23℃において0.1~1000Pa・sの範囲が好ましい。粘度が0.1Pa・s未満では、硬化後のゴム状弾性体の機械的特性が十分でなく、1000Pa・sを超えると、後述する無機充填剤を配合したときに均一な組成物が得にくく、成形性も悪くなる。さらに好ましい粘度は0.3~100Pa・sであり、特に好ましい粘度は0.3~50Pa・sである。
(a2)無機充填剤
 (a2)成分である無機充填剤は、硬化後のゴム状弾性体に機械的強度や硬さを付与する目的で、(A)主剤組成物に配合される。公知の無機充填剤を使用することができ、例えば、シリカ粉末、微粉末マイカ粉、けいそう土、炭酸カルシウム、炭酸亜鉛、酸化鉄、酸化チタン、酸化亜鉛、粉砕石英、カーボンブラック等が挙げられる。1種を単独で用いても2種以上を混合して用いてもよい。特に、煙霧質シリカ(ヒュームドシリカ)、沈澱シリカ(湿式シリカ)、シリカエアロゲル、粉砕石英、溶融シリカのようなシリカ粉末の使用が望ましい。また、ポリジメチルシロキサン、オクタメチルシクロテトラシロキサン、ヘキサメチルジシラザン等の有機ケイ素化合物により、表面処理したシリカ粉末を用いてもよい。
 (a2)無機充填剤の配合量は、(a1)成分100質量部に対して1~500質量部とし、より好ましくは3~200質量部とし、特に好ましくは3~150質量部とする。(a2)無機充填剤の配合量が1質量部未満では、得られる硬化物の機械的強度が不十分になり、配合量が500質量部を超えると、混合が困難となり、均一な組成物が得られない。
<(B)架橋剤組成物>
(b1)加水分解性基を有する有機ケイ素化合物またはその部分加水分解物
 (b1)成分である1分子中に3個以上の加水分解性基を有する有機ケイ素化合物またはその部分加水分解物は、前記した(a1)成分の架橋剤として作用するものあり、空気中の水分によって加水分解し、(a1)成分の水酸基(シラノール基)またはアルコキシ基と容易に縮合反応することにより硬化物を生成する。
 (b1)成分の有する加水分解性基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基等のアルコキシ基;メトキシエトキシ基等のアルコキシアルコキシ基等が例示される。加水分解性基以外のケイ素原子に結合する基としては、前記(a1)成分におけるケイ素原子に直接結合する有機基と同様の、置換または非置換の1価の炭化水素基が挙げられる。合成の容易さと架橋速度の点から、炭素数1~8のアルキル基、炭素数2~5のアルケニル基およびフェニル基が好ましい。
 このような(b1)成分の具体例としては、テトラエトキシラン、テトラメトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、エチルオルソシリケート、プロピルオルソシリケート等のアルコキシシラン、およびその部分加水分解物等が挙げられる。好ましくは、テトラエトキシシランやテトラメトキシシランの部分加水分解物であり、さらに好ましくは、重合度3~15の加水分解縮合物である。重合度が3未満のものは、深部硬化性が不十分となるおそれがあり、重合度が15を超えるものは、作業性が悪くなるおそれがある。
 (b1)成分の配合量は、その加水分解性基の数が、(a1)成分中の水酸基またはアルコキシ基1個当たり2~20個の割合になるように調整する。(b1)成分の配合量がこの範囲より少ないと、架橋が十分に行われず、十分な硬度の硬化物が得られないばかりでなく、架橋剤組成物の保存安定性が悪くなる。一方、この範囲を超えて配合すると、経済的に無意味であるばかりでなく、組成物の硬化性および硬化後の機械的特性のバランスが著しく低下するおそれがある。(b1)成分の加水分解性基の数は、(a1)成分中の水酸基またはアルコキシ基1個当たり2~15個の割合がより好ましい。
(b2)アルコキシ基を有するポリオルガノシロキサン
 本発明において、前記(b1)成分とともに(B)架橋剤組成物を構成する(b2)成分は、(B)架橋剤組成物中での(b1)成分を希釈し、(A)主剤組成物と(B)架橋剤組成物との配合比を、自動混合吐出機等の計量・混合に適した混合比に調整する働きをする成分である。
 (b2)成分としては、一般式:
Figure JPOXMLDOC01-appb-C000002
で表される分子末端にアルコキシ基を有するポリオルガノシロキサンが使用される。
 式中、Rは互いに同一であっても異なっていてもよい、アルキル基またはアルコキシアルキル基である。メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基等のアルキル基;メトキシエチル基等のアルコキシアルキル基が例示されるが、メチル基、エチル基が好ましく、メチル基が特に好ましい。
 R、Rはいずれも、互いに同一であっても異なっていてもよい、非置換もしくはハロゲンまたはシアノ基で置換された1価の炭化水素基である。R、Rとしては、前記(a1)成分におけるケイ素原子に直接結合する有機基と同様の基が例示されるが、アルキル基が好ましく、メチル基が特に好ましい。Yは酸素原子(オキソ基)または2価の炭化水素基である。2価の炭化水素基としては、メチレン基、エチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基、メチルエチレン基等のアルキレン基が例示されるが、酸素原子(オキソ基)またはプロピレン基が好ましい。aは0または1であり、bは0または1である。合成の容易さの点から、aとbは等しいことが好ましい。
 さらに、(b2)成分を示す一般式において、nは1~30の整数を表す。nの値が30を超える場合には、(b1)成分および(b3)成分との相溶性が悪いため、(B)架橋剤組成物が分離してしまい、均一な硬化物が得られない。nの値は、1~20の範囲がより好ましく、3~15の範囲がさらに好ましい。
 (b2)成分の配合量は、ハンドリングの容易さや組成物の構成から変動するが、前記した(a1)成分100質量部に対して0.5~20質量部が好ましい。この配合量が0.5質量部未満では、配合による効果がなく、反対に20質量部を超えると、硬化物のゴム強度が低下することがある。
(b3)硬化触媒
 (b3)成分は、(a1)成分の水酸基またはアルコキシ基と(b1)成分の加水分解性基とが水分の存在下で反応するための硬化触媒である。このような硬化触媒としては、鉄オクトエート、マンガンオクトエート、亜鉛オクトエート、スズナフテート、スズカプリレート、スズオレートのようなカルボン酸金属塩;ジブチルスズジアセテート、ジブチルスズジオクトエート、ジブチルスズジラウレート、ジブチルスズジオレート、ジフェニルスズジアセテート、酸化ジブチルスズ、ジブチルスズジメトキサイド、ジブチルビス(トリエトキシシロキシ)スズ、ジオクチルスズジラウレートのような有機スズ化合物;テトラエトキシチタン、テトラプロポキシチタン、テトラブトキシチタン、1、3-プロポキシチタンビス(エチルアセチルアセテート)のようなアルコキシチタン類;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジイソプロポキシアルミニウムエチルアセトアセテート、トリエトキシアルミニウムなどの有機アルミニウム化合物;ジルコニウムテトラアセチルアセトナート、テトライソプロポキシジルコニウム、テトラブトキシジルコニウム、トリブトキシジルコニウムアセチルアセトネート、トリブトキシジルコニウムステアレートなどの有機ジルコニウム化合物等が挙げられる。微量の存在で大きな触媒能を持つことから、有機スズ化合物およびアルコキシチタン類の使用が好ましい。深部硬化性に優れるため、有機スズ化合物がさらに好ましい。
 また近年では、有機スズ化合物を配合しない環境配慮型の製品開発が期待されており、このような観点から、(b3)硬化触媒として、窒素原子を有する有機化合物を使用することが好ましい。
 窒素原子を有する有機化合物としては、例えば、ジエチルヒドロキシルアミンやジメチルヒドロキシルアミン、1,1,3,3-テトラメチルグアニジン、1,3-ジフェニルグアニジン、1,2,3-トリフェニルグアニジン、1,1,3,3-テトラメチル-2-[3-(トリメチルシリル)プロピル]グアニジンのようなグアニジン誘導体、および一般式:
(RO)Si-R-NH-R
で表されるアミノ基含有アルコキシシラン(アミノ基置換アルコキシシランともいう。)を使用することができる。
 アミノ基含有アルコキシシランを表す前記式において、Rは互いに同一であっても異なっていてもよい、アルキル基またはアルコキシアルキル基である。Rとしては、前記(b2)成分におけるRと同様に、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基等のアルキル基;メトキシエチル基等のアルコキシアルキル基等が挙げられるが、メチル基、エチル基が好ましく、メチル基が特に好ましい。Rは2価の炭化水素基である。メチレン基、エチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基、メチルエチレン基などのアルキレン基が挙げられるが、プロピレン基が好ましい。Rは水素原子、または非置換もしくはハロゲンまたはシアノ基で置換された1価の炭化水素基、またはアミノアルキル基である。非置換の1価の炭化水素基置としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基;フェニレン基、トリレン基等のアリーレン基;メチレンフェニレン基、エチレンフェニレン基等のアルキレンアリーレン基等が挙げられる。アミノアルキル基としては、アミノエチル基、N-アミノエチルアミノエチル基等が例示される。前記一般式で表されるアミノ基含有アルコキシシランとして、具体的には、アミノメチルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)アミノメチルトリブトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アニリノプロピルトリエトキシシラン等が例示される。
 窒素原子を有する有機化合物として好ましいものは、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、1,1,3,3-テトラメチル-2-[3-(トリメチルシリル)プロピル]グアニジンである。
 このような窒素原子を有する有機化合物を含めた(b3)硬化触媒は、1種を単独でも2種以上を混合しても使用することができる。なお、窒素原子を有する有機化合物は、(a1)成分の水酸基またはアルコキシ基と(b1)成分の加水分解性基との反応を促進する硬化触媒として働くだけでなく、接着性付与剤としての機能も有している。したがって、前記窒素原子を有する有機化合物を硬化触媒として使用した場合には、接着性に優れた硬化物が得られる。
 (b3)成分の配合量の合計は、前記(a1)成分100質量部当たり0.01~10質量部、好ましくは0.05~5質量部、特に好ましくは0.05~3質量部とする。0.01質量部未満では、硬化に長い時間がかかるばかりでなく、特に空気との接触面から遠いゴム層の深部における硬化が不十分となる。(b3)成分が10質量部を超える場合には、その配合量に見合う効果がなく、無意味であるばかりか経済的に不利である。なお、接着性向上の観点から、(b3)成分のうちでアミノ基含有アルコキシシランの配合量は、(a1)成分100質量部当たり0.1~5質量部とすることがより好ましい。この配合量が5質量部を超えると、硬化物のゴム強度が低下するおそれがある。接着性の付与においても、安定な硬化性の観点から、有機スズ化合物等の併用が望ましい。
 本発明の室温硬化性ポリオルガノシロキサン組成物は、前記した(a1)成分と(a2)無機充填剤とを含む(A)主剤組成物と、架橋剤である(b1)成分と(b2)成分および(b3)硬化触媒を含む(B)架橋剤組成物とに分けてそれぞれ調製され、湿気を遮断した状態で別々に保存される。そして使用時に、(A)主剤組成物と(B)架橋剤組成物とが適当な配合比率で混合され、かつ空気中の水分に曝されることにより、縮合反応が生起して硬化しゴム状弾性を有する硬化物が得られる。
 本発明の室温硬化性ポリオルガノシロキサン組成物において、(A)主剤組成物と(B)架橋剤組成物との配合比(質量比)は、100:3~100:20とすることが好ましい。また、計量・混合の容易さおよび取扱い易さの観点から、(A)主剤組成物と(B)架橋剤組成物とを、整数の比で配合することが好ましい。配合比が前記範囲を外れて(B)架橋剤組成物の質量比が低すぎる場合には、硬化が不十分となり、硬化物を得ることができない。また、(B)架橋剤組成物の質量比が高すぎる場合には、撹拌混合中に組成物が硬化してしまい、特性の良好な硬化物を得ることができない。(A)主剤組成物と(B)架橋剤組成物とのより好ましい配合比は、100:5~100:15である。
<その他の添加剤>
 本発明の組成物には、さらに目的に応じて、顔料、チクソトロピー性付与剤、押し出し作業性を改良するための粘度調整剤、紫外線吸収剤、防かび剤、耐熱性向上剤、難燃化剤など、各種の添加剤を加えてもよい。これらの添加剤は、通常(A)主剤組成物中に添加され混合される。
 本発明の室温硬化性ポリオルガノシロキサン組成物によれば、(A)主剤組成物と(B)架橋剤組成物との配合比率を自動混合吐出機等の使用に合せて適宜調整することができるうえに、深部硬化性、硬化の均一性、保存安定性などの諸特性に優れた組成物を得ることができる。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明は実施例に限定されるものではない。なお、実施例中、「部」とあるのはいずれも「質量部」を表し、粘度等の物性値は全て23℃、相対湿度50%での値を示す。
実施例1
 粘度3Pa・s(数平均重合度320)の両末端に水酸基を有する直鎖状のポリジメチルシロキサン(α,ω-ビス-ジヒドロキシポリジメチルシロキサン)(a1)(水酸基含量0.05mモル/g)95部に、シラザンにより表面処理されたシリカ粉末(ROX200;日本アエロジル(株)の商品名)(a2)5部を加え、プラネタリーミキサーにより均一に混合した後、100℃、200mmHgで2時間加熱減圧混練を行い、均一な(A)主剤組成物を得た。
 また、両末端がメチルジメトキシ基で封鎖された重合度7のポリジメチルシロキサン(b2-1)6部に、テトラエトキシシラン部分加水分解縮合物(重合度7、アルコキシ基含量19.2mモル/g)(b1-1)2部と、ジブチルスズジラウレート(b3-1)0.05部、およびN-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン(b3-3)1部を加えて混合し、(B)架橋剤組成物を調製した。
 次いで、得られた(B)架橋剤組成物の初期状態(I)を、以下に示すようにして調べた。
(I)(B)成分の初期状態
 得られた(B)架橋剤組成物の混合の状態を観察した。各成分が均一に混合しているものを「均一」、成分の分離や白濁が見られるものを「不均一」、粘度の上昇が見られ流動性がなくなったものを「ゲル化」と評価した。なお、(B)成分調製の初期状態で「ゲル化」が見られたものについては、以後の評価を行わなかった。
 また、前記で得られた(A)主剤組成物と(B)架橋剤組成物とを表1に示す質量比(100:9)で配合し、均一になるまで混合し減圧脱泡した後、容量25mlのポリスチレン製カップ内に充填した。そして、23℃、50%RHの雰囲気に24時間放置して硬化させた後、得られた硬化物内部の硬化状態を観察し、深部硬化性(II)を調べた。
 また、硬化物の硬さのばらつき(III)と硬化物の表面状態(IV)を、それぞれ以下に示すようにして調べた。さらに、(B)架橋剤組成物の保存安定性を知るために、ガラス瓶に入れた(B)架橋剤組成物を、70℃のオーブンにて5日間エージングした。そして、(V)エージング後の(B)成分の状態(組成物の均一性)および(VI)エージング後の(B)成分による硬化性を調べた。その際、前述と同様に、容量25mlのポリスチレン製カップ内に充填し、23℃、50%RHの雰囲気に24時間放置して硬化させた後、得られた硬化物内部の硬化状態を観察した。
(III)硬化物の硬さのばらつき
 (A)主剤組成物200gに対して、(B)架橋剤組成物を表1に示す配合比率になるように容量500mlのディスカップに計量し、直径5mmのガラス棒で1分間激しく撹拌した。その後減圧脱泡したものを、テフロン(登録商標)コーティング30×80×6mmの金型5個にそれぞれ流し入れ、23℃、50%RHで24時間放置して硬化させた。得られた5個の硬化物の硬さをそれぞれ硬度計(タイプE)により測定し、硬さの最大値と最小値との差を求めた。
(IV)硬化物の表面状態
 前記(III)の測定で作製された硬化物の表面状態を観察し、オイルブリードの有無を調べた。そして、オイルブリードのないものを「良好」、オイルブリードが生じているものを「不良」と評価した。
(V)エージング後の(B)成分の状態
 (B)架橋剤組成物を50mlのガラス瓶に30g入れ、密閉後70℃のオーブンに5日間入れた後、状態を観察した。各成分が均一に混合しているものを「均一」、成分の分離や白濁が見られるものを「不均一」と評価した。
(VI)エージング後の硬化性
 70℃で5日間エージングした後の(B)架橋剤組成物を使用し、前記と同様にして硬化物の深部硬化性を調べて評価した。これらの測定結果を表1に示す。
実施例2~5,比較例1~8
 粘度3Pa・sのα,ω-ビス-ジヒドロキシポリジメチルシロキサン(水酸基含量0.05mモル/g)(a1-1)95部に、シラザンにより表面処理されたシリカ粉末(ROX200;日本アエロジル(株)の商品名)(a2)5部を加え、実施例1と同様に混練して(A)主剤組成物を調製した。
 また、表1および表2に示す組成の成分を実施例1と同様にして混合し、(B)架橋剤組成物を調製した。
 なお、表中の(b2-2)は両末端がメチルジメトキシ基で封鎖された重合度20のポリジメチルシロキサン、(b2-3)は両末端がメチルジメトキシ基で封鎖された重合度25のポリジメチルシロキサン、(b2-4)は両末端がメチルジメトキシ基で封鎖された重合度80のポリジメチルシロキサン、(b2-5)はフェニル基を10モル%含有するポリジメチルシロキサン(粘度0.05Pa・s)、(b2-6)は粘度0.1Pa・sの直鎖状ポリジメチルシロキサン、(b2-7)は(a1)と同じα,ω-ビス-ジヒドロキシポリジメチルシロキサン、(b2-8)はオクタメチルシクロテトラシロキサンをそれぞれ示している。
 次いで、得られた(B)架橋剤組成物の初期の状態および保存安定性を、それぞれ実施例1と同様にして調べた。また、(A)主剤組成物と(B)架橋剤組成物とを表1および表2に示す比率で配合し、実施例1と同様に硬化させた後、硬化物の深部硬化性、硬さのばらつき、表面状態をそれぞれ調べた。これらの測定結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 これらの表からわかるように、実施例1~5で調製された(B)架橋剤組成物は、初期の成分の均一性が良好であるうえに、保存安定性に優れており、エージング後も分離することがない。そして、このような(B)架橋剤組成物を(A)主剤組成物と適当な比率で混合し、空気中に放置することにより常温で硬化し、深部硬化性および表面状態が良好で、硬さのばらつきがない硬化物が得られる。
 次に、実施例1,2,5および比較例5~7で得られた組成物について、接着性(VII)を以下に示すようにして調べた。測定結果を表3に示す。
(VII)接着性
 (A)主剤組成物と(B)架橋剤組成物とを表3に示す質量比で混合してなる組成物を、アルミニウム(JIS H4000合格品;1050P)基材とポリフェニレンサルファイド(PPS)基材およびポリブチレンテレフタレート(PBT)基材の上にそれぞれ塗布し、23℃、50%RHで7日間以上放置して硬化させた後、硬化物を基材から剥がして凝集破壊率を調べた。
Figure JPOXMLDOC01-appb-T000003
 表3からわかるように、アミノプロピルトリエトキシシラン(b3-2)やN-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン(b3-3)を含有する(B)架橋剤組成物を配合してなる実施例1~2および実施例5の組成物によれば、Al等の金属ならびにPPS等の樹脂ら基材に対する接着性に優れた硬化物が得られる。
 本発明の室温硬化性ポリオルガノシロキサン組成物は、(A)主剤組成物と(B)架橋剤組成物の2成分から成り、これらの成分の配合比率を自動混合吐出機等の使用に合せて適宜調整することができる。そして、(B)架橋剤組成物の保存安定性が良好で、硬化物が深部硬化性、硬化の均一性などの諸特性に優れているので、シーリング材、ポッティング材、コーティング材、接着剤、現場成形ガスケットなどとして好適である。
 本発明の室温硬化性ポリオルガノシロキサン組成物は、電気・電子工業等における弾性接着剤やコーティング材、電気絶縁シール材として、また建築用シーリング材等として利用することができる。

Claims (6)

  1.  (A)(a1)分子末端に水酸基またはアルコキシ基を有するポリオルガノシロキサンと、(a2)無機充填剤を含む主剤組成物と、
     (B)(b1)1分子中にケイ素原子に結合した3個以上の加水分解性基を有する有機ケイ素化合物、またはその部分加水分解物と、(b2)一般式:
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは互いに同一であっても異なっていてもよい、アルキル基またはアルコキシアルキル基であり、R、Rはいずれも、互いに同一であっても異なっていてもよい、非置換もしくはハロゲンまたはシアノ基で置換された1価の炭化水素基である。また、Yは酸素原子または非置換の2価の炭化水素基である。さらに、aは0または1であり、bは0または1であり、nは1~30の整数である。)で表される分子末端にアルコキシ基を有するポリオルガノシロキサンと、(b3)硬化触媒を含む架橋剤組成物
    とを配合してなることを特徴とする室温硬化性ポリオルガノシロキサン組成物。
  2.  前記(a1)成分は、分子末端に水酸基を有するポリオルガノシロキサンであることを特徴とする請求項1記載の室温硬化性ポリオルガノシロキサン組成物。
  3.  前記(b3)硬化触媒として、窒素原子を含有する有機化合物を含有することを特徴とする請求項1記載の室温硬化性ポリオルガノシロキサン組成物。
  4.  前記(b3)硬化触媒として、一般式:(RO)Si-R-NH-R
    (式中、Rは互いに同一であっても異なっていてもよい、アルキル基またはアルコキシアルキル基であり、Rは非置換の2価の炭化水素基であり、Rは水素原子、または非置換もしくはハロゲンまたはシアノ基で置換された1価の炭化水素基、またはアミノアルキル基である。)で示されるアミノ基含有アルコキシシランを含有することを特徴とする請求項3記載の室温硬化性ポリオルガノシロキサン組成物。
  5.  前記(A)主剤組成物が、前記(a1)成分100質量部に対して、前記(a2)無機充填剤を1~500質量部の割合で含み、かつ前記(a1)成分100質量部に対して、前記(b2)成分が0.5~20質量部、前記(b3)硬化触媒が0.01~10質量部となり、前記(a1)成分の水酸基またはアルコキシ基1個に対して、前記(b1)成分のアルコキシ基が2~20個となるように、前記(B)架橋剤組成物を配合してなることを特徴とする請求項1記載の室温硬化性ポリオルガノシロキサン組成物。
  6.  前記(A)主剤組成物と前記(B)架橋剤組成物とを、100:3~100:20の質量比で配合してなることを特徴とする請求項1記載の室温硬化性ポリオルガノシロキサン組成物。
PCT/JP2012/003071 2011-05-13 2012-05-10 室温硬化性ポリオルガノシロキサン組成物 WO2012157225A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12786117.7A EP2708579B1 (en) 2011-05-13 2012-05-10 Room-temperature-curable polyorganosiloxane composition
CN201280004452.6A CN103328576B (zh) 2011-05-13 2012-05-10 室温固化性聚有机硅氧烷组合物
JP2012523543A JP5265813B2 (ja) 2011-05-13 2012-05-10 室温硬化性ポリオルガノシロキサン組成物
KR1020137013338A KR101866595B1 (ko) 2011-05-13 2012-05-10 실온경화성 폴리오르가노실록산 조성물
US13/928,820 US9034993B2 (en) 2011-05-13 2013-06-27 Room temperature-curable polyorganosiloxane composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-108407 2011-05-13
JP2011108407 2011-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/928,820 Continuation US9034993B2 (en) 2011-05-13 2013-06-27 Room temperature-curable polyorganosiloxane composition

Publications (1)

Publication Number Publication Date
WO2012157225A1 true WO2012157225A1 (ja) 2012-11-22

Family

ID=47176577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003071 WO2012157225A1 (ja) 2011-05-13 2012-05-10 室温硬化性ポリオルガノシロキサン組成物

Country Status (6)

Country Link
US (1) US9034993B2 (ja)
EP (1) EP2708579B1 (ja)
JP (1) JP5265813B2 (ja)
KR (1) KR101866595B1 (ja)
CN (1) CN103328576B (ja)
WO (1) WO2012157225A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067647A (ja) * 2013-09-27 2015-04-13 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
CN105038689A (zh) * 2015-07-03 2015-11-11 黑龙江省科学院石油化学研究院 一种无溶剂室温交联有机硅压敏胶及其制备方法
JP2020029525A (ja) * 2018-08-23 2020-02-27 株式会社オリジン 塗料組成物、塗装品及び塗装品の製造方法
WO2020203298A1 (ja) * 2019-03-29 2020-10-08 ダウ・東レ株式会社 室温硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
JP6018031B2 (ja) * 2013-09-30 2016-11-02 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物を用いた建築用シーラント、電気電子部品、及び自動車用オイルシール
JP5763284B1 (ja) * 2013-12-24 2015-08-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ポリオルガノシロキサン組成物および電気・電子機器
KR102494877B1 (ko) * 2014-09-19 2023-02-02 고쿠리츠다이가쿠호진 미에다이가쿠 전착액, 메탈 코어 기판 및 메탈 코어 기판의 제조 방법
WO2018162033A1 (de) * 2017-03-06 2018-09-13 Wacker Chemie Ag Vernetzbare massen auf der basis von organosiliciumverbindungen
CN107739590A (zh) * 2017-10-30 2018-02-27 董林妤 一种快速固化太阳能硅胶及其制备方法
KR20210091724A (ko) * 2018-12-13 2021-07-22 헨켈 아이피 앤드 홀딩 게엠베하 고강도 실란-개질된 중합체 접착제 조성물
CN110776664B (zh) * 2019-10-25 2022-06-24 航天特种材料及工艺技术研究所 一种缩合型有机硅树脂气凝胶及其制备方法
CN115029060A (zh) * 2022-05-20 2022-09-09 国能锅炉压力容器检验有限公司 锅炉水冷壁电弧喷涂涂层的高温封孔剂、制备及使用方法
CN117327398A (zh) * 2023-09-22 2024-01-02 深圳市康利邦科技有限公司 一种双组分快固中性脱醇型rtv硅橡胶及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331370A (ja) * 1992-05-28 1993-12-14 Toray Dow Corning Silicone Co Ltd 室温硬化性オルガノポリシロキサン組成物
JPH07133430A (ja) 1993-11-09 1995-05-23 Toshiba Silicone Co Ltd 室温硬化性ポリオルガノシロキサン組成物
JPH11209620A (ja) 1998-01-20 1999-08-03 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2006265529A (ja) * 2005-02-28 2006-10-05 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2008150491A (ja) * 2006-12-18 2008-07-03 Momentive Performance Materials Japan Kk 室温硬化性ポリオルガノシロキサン組成物
JP2009292914A (ja) * 2008-06-04 2009-12-17 Momentive Performance Materials Inc 室温硬化性シリコーンゴム組成物
JP2010084062A (ja) * 2008-10-01 2010-04-15 Momentive Performance Materials Inc 室温硬化性オルガノポリシロキサン組成物
JP2010084063A (ja) * 2008-10-01 2010-04-15 Momentive Performance Materials Inc 室温硬化性オルガノポリシロキサン組成物
JP2010120984A (ja) * 2008-11-17 2010-06-03 Momentive Performance Materials Inc 電子部品封止用難燃性ポリオルガノシロキサン組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534581B1 (en) * 2000-07-20 2003-03-18 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
JP3714861B2 (ja) 2000-09-20 2005-11-09 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
JP4088764B2 (ja) 2002-07-01 2008-05-21 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
US20060089431A1 (en) * 2004-10-25 2006-04-27 Kaneka Corporation Curable composition
WO2007123926A2 (en) * 2006-04-18 2007-11-01 Dow Corning Corporation Metal foil substrates coated with condensation cured silicon resin compositions
DE102007037198A1 (de) 2007-08-07 2009-02-12 Wacker Chemie Ag Vernetzbare Massen auf der Basis von Organosiliciumverbindungen
EP2223968B1 (en) * 2007-12-19 2013-07-31 Momentive Performance Materials Japan LLC Room-temperature-curable polyorganosiloxane composition
JP4984086B2 (ja) * 2008-05-14 2012-07-25 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
JP2011042760A (ja) * 2009-08-24 2011-03-03 Nitto Denko Corp 熱硬化性シリコーン樹脂用組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331370A (ja) * 1992-05-28 1993-12-14 Toray Dow Corning Silicone Co Ltd 室温硬化性オルガノポリシロキサン組成物
JPH07133430A (ja) 1993-11-09 1995-05-23 Toshiba Silicone Co Ltd 室温硬化性ポリオルガノシロキサン組成物
JPH11209620A (ja) 1998-01-20 1999-08-03 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2006265529A (ja) * 2005-02-28 2006-10-05 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2008150491A (ja) * 2006-12-18 2008-07-03 Momentive Performance Materials Japan Kk 室温硬化性ポリオルガノシロキサン組成物
JP2009292914A (ja) * 2008-06-04 2009-12-17 Momentive Performance Materials Inc 室温硬化性シリコーンゴム組成物
JP2010084062A (ja) * 2008-10-01 2010-04-15 Momentive Performance Materials Inc 室温硬化性オルガノポリシロキサン組成物
JP2010084063A (ja) * 2008-10-01 2010-04-15 Momentive Performance Materials Inc 室温硬化性オルガノポリシロキサン組成物
JP2010120984A (ja) * 2008-11-17 2010-06-03 Momentive Performance Materials Inc 電子部品封止用難燃性ポリオルガノシロキサン組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2708579A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067647A (ja) * 2013-09-27 2015-04-13 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
CN105038689A (zh) * 2015-07-03 2015-11-11 黑龙江省科学院石油化学研究院 一种无溶剂室温交联有机硅压敏胶及其制备方法
CN105038689B (zh) * 2015-07-03 2018-05-11 黑龙江省科学院石油化学研究院 一种无溶剂室温交联有机硅压敏胶及其制备方法
JP2020029525A (ja) * 2018-08-23 2020-02-27 株式会社オリジン 塗料組成物、塗装品及び塗装品の製造方法
WO2020203298A1 (ja) * 2019-03-29 2020-10-08 ダウ・東レ株式会社 室温硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物

Also Published As

Publication number Publication date
US20130303676A1 (en) 2013-11-14
EP2708579B1 (en) 2016-04-27
KR20140045294A (ko) 2014-04-16
EP2708579A1 (en) 2014-03-19
JPWO2012157225A1 (ja) 2014-07-31
US9034993B2 (en) 2015-05-19
CN103328576A (zh) 2013-09-25
JP5265813B2 (ja) 2013-08-14
KR101866595B1 (ko) 2018-06-11
EP2708579A4 (en) 2014-11-26
CN103328576B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5265813B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
EP1167455B1 (en) Room temperature rapid-curable silicone composition
JP6314993B2 (ja) 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
JP5398952B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP5068451B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP4912754B2 (ja) 室温硬化性オルガノポリシロキサン組成物
JP5545717B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP2019073670A (ja) 室温硬化性オルガノポリシロキサン組成物及びその製造方法、並びに自動車ロングライフクーラントシール材
US11970580B2 (en) Room-temperature-curable organopolysiloxane composition for oil seal, and automotive part
CN100429261C (zh) 室温固化性有机聚硅氧烷组合物
JP5842831B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び構造体
JP5009042B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP4987218B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP5008913B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
WO2009047580A1 (en) Thixotropic/non-slump room temperature curable organopolysiloxane compositions
JP2010120984A (ja) 電子部品封止用難燃性ポリオルガノシロキサン組成物
JP2017057433A (ja) 金属基材の硫化防止方法、硫化防止性評価方法、及び実装回路基板
JPH0841345A (ja) 室温硬化性ポリオルガノシロキサン組成物
JP2013227560A (ja) 室温硬化性ポリオルガノシロキサン組成物
JP5608909B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP2017095603A (ja) 室温硬化性ポリオルガノシロキサン組成物
JP5545981B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
EP4328261A1 (en) Room-temperature-curable silicone coating composition and article
JP5734567B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP2022190755A (ja) 室温硬化性オルガノポリシロキサン組成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280004452.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012523543

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137013338

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012786117

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE