WO2021156934A1 - 制御弁、基板処理装置及び半導体装置の製造方法 - Google Patents

制御弁、基板処理装置及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2021156934A1
WO2021156934A1 PCT/JP2020/004116 JP2020004116W WO2021156934A1 WO 2021156934 A1 WO2021156934 A1 WO 2021156934A1 JP 2020004116 W JP2020004116 W JP 2020004116W WO 2021156934 A1 WO2021156934 A1 WO 2021156934A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
gate valve
gate
butterfly
valve plate
Prior art date
Application number
PCT/JP2020/004116
Other languages
English (en)
French (fr)
Inventor
大野 幹雄
谷山 智志
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2020/004116 priority Critical patent/WO2021156934A1/ja
Priority to JP2021575126A priority patent/JPWO2021156934A1/ja
Priority to KR1020227020913A priority patent/KR20220104007A/ko
Priority to CN202080078188.5A priority patent/CN114729701A/zh
Priority to TW109141092A priority patent/TWI763142B/zh
Publication of WO2021156934A1 publication Critical patent/WO2021156934A1/ja
Priority to US17/847,585 priority patent/US20220325801A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • F16K1/223Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves with a plurality of valve members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • F16K1/226Shaping or arrangements of the sealing
    • F16K1/2261Shaping or arrangements of the sealing the sealing being arranged on the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/44Details of seats or valve members of double-seat valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/0209Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor the valve having a particular passage, e.g. provided with a filter, throttle or safety device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/314Forms or constructions of slides; Attachment of the slide to the spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/32Means for additional adjustment of the rate of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • F16K31/54Mechanical actuating means with toothed gearing with pinion and rack
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • F16K51/02Other details not peculiar to particular types of valves or cut-off apparatus specially adapted for high-vacuum installations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces

Definitions

  • the technology of the present disclosure relates to a method for manufacturing a control valve, a substrate processing device, and a semiconductor device.
  • two or more types of film-forming gas may be alternately flowed onto the substrate one by one and reacted with atoms on the substrate to deposit a single layer of film.
  • the reaction chamber pressure during film formation differs for each film formation gas supply event, and the pressure adjustment thereof is mainly performed by the conductance adjustment function (APC (Auto Pressure Control)) of the exhaust main valve.
  • APC Automatic Pressure Control
  • the number of devices equipped with a high conductance exhaust system (hereinafter referred to as "200A exhaust system") is increasing for the purpose of improving the exhaust speed and gas replacement efficiency.
  • the purpose of the present disclosure is to provide a control valve technology with good controllability, which corresponds to a large flow rate exhaust from the reaction chamber.
  • a gate valve having a movable gate valve plate, and a butterfly valve provided on the gate valve plate and having a diameter smaller than that of a valve opening opened and closed by the gate valve plate and which can be fully closed.
  • a technique having a control valve configured to be able to drive the gate valve plate and the butterfly valve of the gate valve independently of each other.
  • A is a cross-sectional view showing a closed state of a gate valve in the control valve according to the embodiment of the present disclosure.
  • B is a cross-sectional view showing an open state of a gate valve in the control valve according to the embodiment of the present disclosure.
  • C is a cross-sectional view showing a closed state of a gate valve and a fully open state of a butterfly valve in the control valve according to the embodiment of the present disclosure.
  • the substrate processing apparatus 100 has a reaction furnace 10 having a processing chamber 20 for processing a substrate 30 as an example of a semiconductor device, a reserve chamber 22 for storing a boat 26 holding the substrate 30, and processing. It has a gas introduction line 40 for introducing gas into the chamber 20, an exhaust system 50 for discharging the gas in the processing chamber 20, and a main control unit 70 for controlling the operation of the substrate processing apparatus 100.
  • a processing chamber 20 including a reaction tube 12 and a furnace opening flange 14 is formed in the reaction furnace 10.
  • the reaction tube 12 is formed in a tubular shape having an axis in the vertical direction.
  • the furnace mouth flange 14 is connected to the lower part of the reaction tube 12 with an airtight member 12A interposed therebetween, and is formed in a tubular shape having an axis in the vertical direction.
  • an inner tube 16 is supported inside the reaction tube 12 in the same core as the reaction tube 12.
  • a heater 18 is provided on the outer periphery of the reaction tube 12 so as to be concentric with the axis of the reaction tube 12 and at a distance from the outer surface of the reaction tube 12.
  • the heater 18 has a function of receiving a signal from the main control unit 70, which will be described later, to generate heat and heating the reaction tube 12.
  • the reaction furnace 10 has a reaction tube 12, a furnace opening flange 14, an inner tube 16, a heater 18, and a processing chamber 20. Further, the substrate 30 is arranged in the processing chamber 20.
  • the spare chamber 22 is composed of a transport housing 24.
  • the transport housing 24 communicates with the lower part of the furnace opening flange 14.
  • a boat 26 on which the substrate 30 is placed and the substrate 30 is transported to the processing chamber 20 and inserted is stored inside the transport housing 24 .
  • the furnace palate 28 is provided so as to be movable in the vertical direction, and when it reaches the upper end, the transport housing 24 is airtightly closed.
  • the boat 26 is placed on the furnace palate 28 and introduced into the reactor 10 as the furnace palate 28 moves.
  • a second gas introduction line 44 having the same configuration as the gas introduction line 40 described later is communicated with the lower part of the transport housing 24.
  • the gas introduction line 40 is formed between a gas introduction pipe 40A communicating a gas supply source and a furnace opening flange 14 (not shown) and a gas introduction pipe between the gas supply source and the furnace opening flange 14. It has a flow controller 42 provided.
  • the flow rate controller 42 has a function of opening and closing a valve (not shown) provided inside to control the amount of gas introduced by a signal from the main control unit 70 described later.
  • the second gas introduction line 44 has the same configuration as the gas introduction line 40 except that the gas supply unit and the lower part of the transport housing 24 are communicated with each other.
  • the gas used here is an inert gas, and specifically nitrogen is used.
  • the main control unit 70 is a computer that controls the overall operation of the board processing device 100, and although not shown, has a CPU, ROM, RAM, storage, input unit, display unit, communication interface, and the like, each of which is a bus. It has a built-in computer connected to.
  • the communication interface can acquire pressure information from the pressure sensor group 62, which will be described later, and transmit the target pressure value to the valve controller 53.
  • the main control unit 70 executes a board processing program for performing various processes in the board processing device 100 based on the input information from the input unit. For example, the main control unit 70 executes a process recipe which is one of the substrate processing programs to control the substrate processing process which is one process of manufacturing the semiconductor device.
  • the main control unit 70 controls the opening and closing of the gate valve 56 and the butterfly valve 58 of the exhaust system 50 through the valve controller 53, adjusts the opening degree of the butterfly valve 58, and controls the pressure in the processing chamber 20. do.
  • the opening command calculation unit 72 corresponds to, for example, an APC controller.
  • the exhaust system 50 includes a large-diameter pipe 52A as a first pipe for discharging gas from the processing chamber 20, and a pressure sensor provided in the pipe 52A to detect the pressure in the processing chamber 20. It has an exhaust line 52 including at least a group 62 and a control valve 55 provided in the middle of the pipe 52A.
  • the pipe 52A is a large-diameter pipe that communicates from the processing chamber 20 to the vacuum pump 60, and constitutes a vacuum exhaust flow path.
  • the diameter of the pipe 52A is 200 mm (200 ⁇ ) as an example.
  • the nominal diameter of the pipe 52A is, for example, 200A.
  • the end of the exhaust line 52 which is the end opposite to the processing chamber 20, is connected to the suction side of the vacuum pump 60.
  • the exhaust line 52 is configured to exhaust the gas in the processing chamber 20 by the suction operation of the vacuum pump 60 when the control valve 55 is in the open state.
  • the vacuum pump 60 has an ultimate vacuum degree of about 10 Pa, is constantly operated, and maintains a vacuum on the downstream side of the exhaust line 52.
  • the vacuum pump 60 and the valve controller 53 may be included in the exhaust system 50.
  • the control valve 55 includes a gate valve 56 and a butterfly valve 58 nested in the gate valve 56.
  • the gate valve plate 57 and the butterfly valve 58 of the gate valve 56 are configured to be driveable independently of each other.
  • the gate valve 56 and the butterfly valve 58 are electrically connected to the valve controller 53, and an opening / closing operation is performed based on a signal from the valve controller 53.
  • the control valve 55 can change the conductance of the exhaust line 52 as the vacuum exhaust flow path, and in the variable range, the conductance is substantially 0, that is, fully closed, and the vacuum exhaust flow path can be shut off.
  • the gate valve 56 includes a valve housing 76, a movable gate valve plate 57, a rod 78 as an example of a driving member, a gate valve actuator 80, and a gate valve seal ring 82.
  • the valve housing 76 includes two valve openings 76A and 76B and a gate valve seat 76C which are arranged so as to face each other in the flow path direction, and linearly flows the flow path of the controlled fluid between the two valve openings 76A and 76B. It is a member to be formed.
  • the controlled fluid is, for example, a gas used for substrate processing in the processing chamber 20 and purging in the processing chamber 20.
  • the valve openings 76A and 76B are, for example, circular openings with flanges provided concentrically and opposite to each other in the center of the flow path, and the flanges are formed so as to be connectable to a pipe 52A having a nominal diameter of 200A. Further, the valve openings 76A and 76B have an inner diameter corresponding to the inner diameter of the pipe 52A having a nominal diameter of 200A, for example.
  • the valve housing 76 can move between the position where the gate valve plate 57 is closed (FIG. 4 (A)) and the retracted position (FIG. 4 (B)) when the gate valve plate 57 is fully open in the direction orthogonal to the flow path. As such, its size is set.
  • the end of the valve housing 76 is closed by a lid member 77.
  • the flow path formed in the valve housing 76 maintains an area equal to or larger than, for example, the cross-sectional area of the pipe 52A having a nominal diameter of 200A.
  • the gate valve plate (valve body) 57 retracts out of the flow path and opens, for example, the valve opening 76A, and protrudes into the flow path and contacts the gate valve seat 76C to seal, for example, the valve opening 76A. It is a member that moves straight to and from the closed position.
  • the gate valve plate 57 is formed larger than the valve opening 76A and closes the valve opening 76A at the closing position.
  • One or more rods 78 are arranged on the gate valve plate 57 so that they can move or expand and contract together with the gate valve plate 57 in the moving direction of the gate valve plate 57.
  • the rod 78 extends through the lid member 77 in parallel with the moving direction.
  • the penetrating portion is sealed with a linear feedthrough 94 described later.
  • the rod 78 may need to receive a part or all of the load in the flow path direction applied to the gate valve plate 57 and transmit it to the linear feedthrough 94 or the gate valve actuator 80.
  • the rod 78 has the required strength and rigidity (second moment of area).
  • the drive member is not limited to the rod 78, and may be any one as long as the gate valve plate 57 can be moved to open and close the gate valve 56. Therefore, the driving member may be, for example, an arm or a ball screw (not shown).
  • the gate valve actuator 80 is a drive source that drives the rod 78 in the moving direction of the gate valve plate 57.
  • the gate valve actuator 80 is fixed to the lid member 77, allows displacement only in the moving direction of the rod 78, and may need to withstand a load in other directions (for example, in the flow path direction).
  • a cylinder device, a rack and pinion, or a linear motor is used as the gate valve actuator 80.
  • the gate valve seal ring 82 is an O-ring made of, for example, an elastomer, which is arranged on the surface of the gate valve seat 76C or the gate valve plate 57 facing the gate valve seat 76C and has elasticity.
  • the gate valve seat 76C is provided, for example, on the upstream side of the gate valve plate 57, that is, on the valve opening 76A side.
  • the gate valve seal ring 82 is mounted on the upstream surface of the gate valve plate 57 and moves together with the gate valve plate 57 when the gate valve 56 is opened and closed.
  • the gate valve seal ring 82 is fitted into an annular groove (not shown) formed on the upstream surface of the gate valve plate 57.
  • the gate valve 56 can be shut off with a sufficiently low leak amount in a state where there is a pressure difference of 1 atm or more between the valve openings 76A and 76B.
  • a predetermined sealing action for pressing the gate valve plate against the gate valve seat 76C may be required.
  • the allowable pressure difference is a different value for each of the sealing action, the unsealing action for releasing the pressing, and the driving of the gate valve plate 57 at an arbitrary opening degree, in addition to the maintained state of being fully closed or shut off. Can be specified in.
  • the gate valve seat 76C may be provided on the downstream side of the gate valve plate 57, for example, in applications where there is no concern that the pressure will be higher on the downstream side or the backflow leak from the downstream side is tolerant. ..
  • the gate valve seal ring 82 is provided on the surface of the gate valve seat 76C or the gate valve plate 57 facing the gate valve seat 76C, that is, on the downstream side surface.
  • the gate valve 56 is not limited to those in which the facing surfaces of the gate valve seat 76C and the gate valve seat 76C in the gate valve plate 57 are formed parallel to the moving direction of the gate valve plate 57, respectively.
  • the gate valve seat 76C and the facing surface of the gate valve plate 57 with the gate valve seat 76C are inclined with respect to the moving direction of the gate valve plate 57 and arranged parallel to each other. You may. In this case, a wedge effect occurs when the gate valve 55 is closed, and the airtightness between the gate valve plate 57 and the gate valve seat 76C is improved.
  • the downstream side (valve opening 76B side) of the gate valve plate 57 may be similarly configured.
  • a single-action type gate valve in which the gate valve seat 76 is formed in a unique shape so as to face the gate valve plate 57 in the moving direction of the gate valve plate 57 may be used.
  • the gate valve has a structure in which the amount of crushing of the seal ring 82 cannot be directly controlled, the control accuracy of the minute opening (flow rate) is lower than that of other types of valves having the same diameter.
  • a large driving force is required to slide the valve body under a large pressure, the driving speed is slow, and the responsiveness is poor.
  • the butterfly valve 58 is an APC valve provided on the gate valve plate 57 and having a smaller diameter than the valve opening 76A opened and closed by the gate valve plate 57 and being fully closed.
  • the butterfly valve 58 includes a butterfly valve chamber 86, a butterfly valve plate 59, a shaft 88, and a butterfly valve actuator 90.
  • the butterfly valve chamber 86 is formed so as to penetrate between both sides of the gate valve plate 57 and communicate the two valve openings 76A and 76B, and has a butterfly valve seat 86A.
  • the butterfly valve chamber 86 is a cylindrical through hole formed in the gate valve plate 57.
  • the butterfly valve seat 86A is provided on the inner peripheral surface of the butterfly valve chamber 86.
  • the opening in the butterfly valve seat 86A has an area equal to or smaller than, for example, the flow path cross-sectional area of a pipe (not shown) having a nominal diameter of 100A.
  • the diameter of the pipe of 100A is about 100 mm (100 ⁇ ).
  • the butterfly valve plate 59 has a shape corresponding to the butterfly valve seat 86A, and is provided in the butterfly valve chamber 86 so as to be rotatably supported around the movement direction of the gate valve plate 57.
  • the butterfly valve plate 59 is formed in a disk shape, for example, and a shaft 88 having an axis passing through the center of the circle is connected to the butterfly valve plate 59.
  • the shaft 88 penetrates the gate valve plate 57 and extends in the moving direction of the gate valve plate 57 so as to be rotatable around the axis of the shaft 88.
  • the butterfly valve plate 59 also rotates, whereby the butterfly valve 58 opens and closes.
  • the shaft 88 of the present embodiment extends through the lid member 77.
  • the two valve openings 76A and 76B are separated from each other at a distance wider than the size of the butterfly valve plate 59, for example.
  • the size of the butterfly valve plate 59 is a size including the butterfly valve seal ring 92, for example, a diameter. This makes it possible to open the gate valve 56 while maintaining the butterfly valve plate 59 fully open.
  • the butterfly valve actuator 90 is a drive source that rotationally drives the shaft 88 around the shaft of the shaft 88, and for example, a pulse motor or a servomotor is used to realize an arbitrary opening degree of the butterfly valve 58.
  • the butterfly valve actuator 90 of this example is provided by being fixed to the lid member 77 outside the valve housing 76.
  • the butterfly valve 58 has a butterfly valve seal ring 92.
  • the butterfly valve seal ring 92 is an elastic member that is arranged on the outer periphery of the butterfly valve plate 59 and abuts on the butterfly valve seat 86A, and is, for example, an O-ring.
  • the butterfly valve seat 86A can be sealed by the butterfly valve seal ring 92.
  • the butterfly valve 58 can shut off between both sides of the gate valve plate 57 with a sufficiently low leak amount in a state where there is a pressure difference of 1 atm or more. In addition, it can be driven freely regardless of the pressure difference, and its operation is faster than that of a gate valve. That is, in general, the larger the diameter of the butterfly valve, the worse the sealing property (the amount of leakage increases). However, by selecting the butterfly valve 58 having a diameter sufficiently smaller than that of the gate valve 56, the amount of leakage can be gated. It can be as much as or less than the valve 56.
  • the control accuracy at a minute opening is high.
  • the opening degree of the control valve 55 obtained by opening only the butterfly valve 58 is at most about 25%.
  • the gate valve 56 is opened when the opening degree is relatively large (the flow rate of the conductance or the controlled fluid is large), and the opening degree is relatively small (the flow rate of the conductance or the controlled fluid is large).
  • the gate valve 58 is closed at the time of (small) or when the pressure is adjusted under predetermined conditions, and the flow rate adjustment or pressure adjustment is performed by the butterfly valve 58.
  • the main control unit 70 controls the butterfly valve plate 59 to an opening degree less than a predetermined value.
  • the control valve 55 further includes a linear motion feedthrough 94 and a linear motion rotary feedthrough 96.
  • the linear feedthrough 94 makes it possible to connect the rod 78 to the gate valve actuator 80 provided outside the valve housing 76 in a state where the inside and outside of the valve housing 76 are isolated.
  • the linear rotation feedthrough 96 makes it possible to connect the shaft 88 to the butterfly valve actuator 90 provided outside the valve housing 76 in a state where the inside and outside of the valve housing 76 are isolated.
  • the linear motion feedthrough 94 and the linear motion rotary feedthrough 96 for example, well-known bellows, O-ring seals, and magnetic fluid seals can be used.
  • the linear motion feedthrough 94 and the linear motion rotary feedthrough 96 may be provided in the form of a piggyback in which one is mounted on the other.
  • the pressure sensor group 62 is provided so as to communicate with the processing chamber 20 side from the mounting position of the gate valve 56 by a pipe 62A.
  • the pressure sensor group 62 is electrically connected to the main control unit 70 and has a function of transmitting pressure information of the processing chamber 20.
  • the pressure sensor group 62 includes an atmospheric pressure sensor 64, a first vacuum sensor 66, and a second vacuum sensor 68, which will be described later.
  • the atmospheric pressure sensor 64, the first vacuum sensor 66, and the second vacuum sensor 68 are provided in order from the side closer to the processing chamber 20 to the side farther from the processing chamber 20, and are connected to the pipe 52A by the pipe 62A, respectively.
  • the atmospheric pressure sensor 64, the first vacuum sensor 66, and the second vacuum sensor 68 are examples of pressure sensors, respectively.
  • the atmospheric pressure sensor 64 is provided at a position closest to the processing chamber 20 in the pressure sensor group 62, and has a function of detecting the pressure in a region close to the atmospheric pressure.
  • the first vacuum sensor 66 is provided at a position sandwiched between the atmospheric pressure sensor 64 and the second vacuum sensor 68, which will be described later, and has a pressure in a region close to the atmospheric pressure to a high vacuum region (10). It has a function as a wide area pressure sensor that detects pressures up to -1 to 10-5 Pa). Further, the pipe 62A connecting the first vacuum sensor 66 and the pipe 52A has a valve 66A that opens when the pressure inside the pipe 52A is reduced toward the pressure in the high vacuum region while communicating with the atmospheric pressure sensor 64. It is provided.
  • the second vacuum sensor 68 is provided at the position farthest from the processing chamber 20 in the pressure sensor group 62, and has a function as a pressure sensor for detecting the pressure in the high vacuum region.
  • the atmospheric pressure sensor 64, the first vacuum sensor 66, and the second vacuum sensor 68 are electrically connected to the main control unit 70 and the valve controller 53, respectively.
  • Target opening corresponds to the conductance of the entire control valve 55 of the embodiment, so that the deviation of the target pressure P T and the actual pressure P R becomes zero, is constantly updated by the method of the feedback control and the like.
  • the upper limit of the pressure change rate is specified, even if the target pressure that changes at a speed exceeding the rate is input, the target pressure is internally corrected so as to be within the rate.
  • the opening command calculation unit 72 assigns an opening to the gate valve 56 and the butterfly valve 58 according to the input target opening, and outputs the opening command to the gate valve actuator 80 and the butterfly valve actuator 90, respectively.
  • the opening command can be given, for example, as a relative opening when the fully open of each valve is 100%.
  • FIGS. 4A and 4B In the control valve 55 according to the present embodiment, the rod 78 is moved or expanded and contracted in the axial direction by driving the gate valve actuator 80 by a command from the valve controller 53.
  • the gate valve plate 57 attached to the rod 78 can be moved straight in the axial direction of the rod 78.
  • the gate valve 56 can be opened and closed.
  • FIG. 4A shows a closed state of the gate valve 56. In the closed state, the valve opening 76A is sealed when the gate valve seal ring 82 comes into contact with the gate valve seat 76C.
  • FIG. 4B shows the open state of the gate valve 56, specifically, the fully open state. When the gate valve plate 57 is completely retracted from the valve opening 76A, the gate valve 56 is fully opened.
  • the shaft 88 is rotated by driving the butterfly valve actuator 90 by a command from the main control unit 70, and the butterfly valve plate 59 attached to the shaft 88 is rotated around the shaft of the shaft 88. Can be rotated with.
  • a butterfly valve seal ring 92 is attached to the butterfly valve plate 59, and as shown in FIGS. 4A and 4B, when the butterfly valve 58 is closed, it is formed on the inner circumference of the butterfly valve chamber 86. When the butterfly valve seal ring 92 comes into contact with the entire circumference of the provided butterfly valve seat 86A, the butterfly valve seat 86A is sealed.
  • the rotation angle of the butterfly valve plate 59 in the butterfly valve 58 can be controlled by the butterfly valve actuator 90.
  • the fully closed position is when the butterfly valve plate 59 is perpendicular to the flow of the controlled fluid
  • the fully open position is when the butterfly valve plate 59 is rotated 90 degrees from there and is parallel to the flow of the controlled fluid. (Fig. 4 (C)).
  • the valve conductance can be changed, and the pressure in the processing chamber 20 shown in FIGS. 1 to 3 can be adjusted. Therefore, according to the control valve 55 of this example, in the region where only the butterfly valve 58 operates, excellent responsiveness of opening / closing operation and minute opening control accuracy can be obtained as in the case of a general small-diameter butterfly valve. In addition, a sealing property comparable to that of a general large-diameter gate valve can be obtained.
  • the shaft 88 attached to the butterfly valve plate 59 can move or expand and contract at the same time as the rod 78 of the gate valve 56. Therefore, when the gate valve 56 is opened, the butterfly valve plate 59 also moves to the retracted position of the valve housing 76 at the same time as the gate valve plate 57, and conductance equivalent to that of a general gate valve corresponding to the pipe 52A of 200A can be obtained.
  • the gate valve 56 corresponding to the pipe 52A of 200A and the butterfly valve 58 corresponding to 100A it is possible to realize a large flow rate exhaust and a highly accurate pressure adjustment at the same time.
  • a branch system (not shown) corresponding to 100A becomes unnecessary, and the exhaust system can be configured only by the pipe 52A of 200A. Therefore, space saving of the device component layout can be realized.
  • the pipe volume can be reduced, the gas replacement efficiency as the controlled fluid can be improved, and the component cost can be reduced.
  • the piping heating range can be reduced, and the risk of particles due to non-uniform heating can be reduced.
  • the valve controller 53 adjusts the opening degree of the control valve 55 with the gate valve 56 based on the information of the target pressure PT and the actual pressure PR from the pressure sensor group 62. By appropriately allocating to the butterfly valve 58, the pressure of the processing chamber 20 is controlled and purged.
  • FIG. 6 is a graph showing an example of allocation of opening degree by the opening degree command calculation unit 72 (FIG. 3).
  • the horizontal axis is the set conductance (or the set flow rate)
  • the vertical axis is the opening degree of each valve.
  • the vertical axis in the upper figure of FIG. 6 is the opening degree of the gate valve 56
  • the vertical axis in the lower figure of FIG. 6 is the opening degree of the butterfly valve 58.
  • C T is a transition conductance, which corresponds to the conductance of the butterfly valve 58 fully open.
  • each valve can be expressed as an opening that is approximately linear with respect to the set conductance.
  • setting conductance of 0 ⁇ C T is a region suitable for the control of the minute flow rate, during which the gate valve 56 is a gate valve plate 57 is pressed against the gate valve seat 76C, the sealed state (FIG. 3 (A)) ..
  • This example can be applied to the case where the gate valve 56 can be fully opened while the butterfly valve 58 is fully opened.
  • seal gate valve 56 may be performed at any angle between the setting conductance 0 ⁇ C T.
  • the sealing of the gate valve 56 is not performed simultaneously with the below C T, can be performed by delaying after a predetermined time has elapsed. As a result, frequent sealing operations can be suppressed.
  • FIG. 7 is a graph showing another example of the allocation of the opening degree by the opening degree command calculation unit 72.
  • This example can also be applied to a configuration in which the gate valve 56 cannot be fully opened while the butterfly valve 58 is fully opened. Indicated by a white arrow, the left region of the transition conductance C T in the horizontal axis, the scale of the horizontal axis is enlarged than the right C T.
  • C 3 corresponds to the maximum opening degree may be opened gate valve 56 without closing the butterfly valve 58, the C 3 or more opening, the opening degree of the butterfly valve 58 is smaller than its fully-opened opening degree O p Is maintained at.
  • Op is the maximum opening degree of the butterfly valve 58 that can freely open and close the gate valve 56 without mechanical interference.
  • opening command calculation unit 72 (FIG. 3) performs the opening control with hysteresis. Specifically, when the set opening increases beyond the C T while maintaining the opening degree of the butterfly valve 58 to 100% until it reaches the C 2, increasing the degree of opening of the gate valve 56. When setting conductance further increases beyond C 2 is the opening of the butterfly valve 58 is controlled so as to approach the more O p approaches the C 3. When setting the conductance increases beyond the C 3 is the degree of opening of the butterfly valve 58 is maintained in the O p, it increases the degree of opening of the gate valve 56.
  • FIG. 8 is a graph showing an example in which the example of FIG. 7 is modified to be more suitable for high-speed opening and closing. Opening of the butterfly valve 58 in this example, not exceeding O p over all settings conductance.
  • Opening degree of the butterfly valve 58 is a conductance when the O p and C t1
  • when setting the conductance reaches C t1 increases is released sealing gate valve 56, thereafter, substantially with respect to the set flow rate
  • the gate valve 56 opens with a linear opening.
  • the minute flow rate control region is reduced and the accuracy is deteriorated, it is not necessary to wait for the actual operation of the gate valve 56 and the butterfly valve 58, so that they can be performed completely in parallel.
  • the valve controller 53 selects one of the two modes according to the situation or the instruction of the main control unit 70. Can be applied. For example, in the high pressure (that is, low vacuum) region where the differential pressure of the control valve 55 is large, the minute flow rate control priority mode is selected, and in the low pressure (that is, high vacuum) region, the response speed priority mode is selected. Alternatively, the transition between both modes may be made continuously according to the pressure of the processing chamber 20 in the reactor 10.
  • a control example of the butterfly valve 58 in that case is shown by a broken line in FIG.
  • the set conductance (predetermined value) at which the gate valve 56 starts to open can be arbitrarily set at least between C t1 and Ct.
  • the predetermined processing step is a case where a substrate processing step, which is one step of a manufacturing process of a semiconductor device, is carried out.
  • the method for manufacturing this semiconductor device is a gate valve 56 having a movable gate valve plate 57, and a valve opening 76A, 76B provided on the gate valve plate 57 and opened and closed by the gate valve plate 57, and having a smaller diameter and the entire diameter.
  • the gate valve 56 is closed when the pressure is small or when the pressure is adjusted, and the butterfly valve 58 adjusts the flow rate or adjusts the pressure.
  • a control valve 55 is prepared in the substrate processing apparatus 100.
  • the process recipe is expanded into a memory or the like (not shown), and a control instruction is given from the automatic control unit 71 in the main control unit 70 to the opening command calculation unit 72 as needed, and a process controller or transfer (not shown) is given.
  • An operation instruction is given to the system controller.
  • the substrate processing step carried out in this manner includes at least a carry-in step, a film forming step, and a carry-out step.
  • the main control unit 70 starts the transfer process of the substrate 30 to the boat 26 to the substrate transfer mechanism (not shown). This transfer process is performed until the loading (wafer charging) of all the planned substrates 30 into the boat 26 is completed.
  • the processing chamber 20 is evacuated by a vacuum exhaust device such as a control valve 55 and a vacuum pump 60 so that a predetermined film forming pressure (processing pressure) is obtained while following the instructions from the main control unit 70 as described above. It is exhausted. Further, the processing chamber 20 is heated by the heater 18 so as to reach a predetermined temperature while following an instruction from a temperature control unit (not shown). Subsequently, the boat 26 and the substrate 30 are started to rotate by a rotation mechanism (not shown).
  • a vacuum exhaust device such as a control valve 55 and a vacuum pump 60 so that a predetermined film forming pressure (processing pressure) is obtained while following the instructions from the main control unit 70 as described above. It is exhausted. Further, the processing chamber 20 is heated by the heater 18 so as to reach a predetermined temperature while following an instruction from a temperature control unit (not shown). Subsequently, the boat 26 and the substrate 30 are started to rotate by a rotation mechanism (not shown).
  • a predetermined gas for example, film formation
  • a predetermined process for example, film formation
  • the boat 26 holding the processed substrate 30 is cooled extremely effectively by the clean air blown from the clean unit. Then, for example, when cooled to 150 ° C. or lower, the processed substrate 30 is removed from the boat 26 (wafer discharge), transferred to a pod (not shown), and then the new unprocessed substrate 30 is transferred to the boat 26. The loading is done.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Lift Valve (AREA)

Abstract

制御弁は、可動式のゲート弁プレートを有するゲート弁と、ゲート弁プレートに設けられ、ゲート弁プレートにより開閉される弁開口よりも小口径でかつ全閉可能なバタフライ弁と、を備え、ゲート弁のゲート弁プレートとバタフライ弁とを、互いに独立して駆動可能に構成されている。

Description

制御弁、基板処理装置及び半導体装置の製造方法
 本開示の技術は、制御弁、基板処理装置及び半導体装置の製造方法に関する。
 半導体装置製造における薄膜形成プロセスでは、2種類以上の成膜ガスを1種類ずつ基板上に交互に流し、基板上の原子と反応させて単層ずつ膜を堆積させることがある。このとき成膜中の反応室圧力は、成膜ガス供給イベント毎に異なり、それらの圧力調整は主に排気主弁のコンダクタンス調整機能(APC(Auto Pressure Control))により調圧している。
特開2003-183837号公報 特開2010-67788号公報 特開2009-259894号公報 特開平11-300193号公報 国際公開第2017/022366号
 昨今の成膜シーケンスにおいては、排気速度やガス置換効率を改善する等の目的で、高コンダクタンス排気系(以下、「200A排気系」と称する。)を具備する装置が増加している。
 しかしながら、従来の200Aの調整弁では、微小な弁開度での調圧が難しい等、制御性が十分ではなかった
 本開示は、反応室からの大流量排気に対応し、制御性の良い制御弁の技術を提供することを目的とする。
 本開示によれば、可動式のゲート弁プレートを有するゲート弁と、前記ゲート弁プレートに設けられ、前記ゲート弁プレートにより開閉される弁開口よりも小口径でかつ全閉可能なバタフライ弁と、を備え、前記ゲート弁の前記ゲート弁プレートと前記バタフライ弁とを、互いに独立して駆動可能に構成された制御弁を有する技術が提供される。
 本開示によれば、反応室からの大流量排気に対応し、制御性の良い制御弁を提供することができる。
本開示の一実施形態に係る基板処理装置の全体構成を示す概略図である。 本開示の一実施形態に係る排気系を示す正面図である。 本開示の一実施形態に係る排気系を示すブロック図である。 (A)は、本開示の一実施形態に係る制御弁において、ゲート弁の閉状態を示す断面図である。(B)は、本開示の一実施形態に係る制御弁において、ゲート弁の開状態を示す断面図である。(C)は、本開示の一実施形態に係る制御弁において、ゲート弁の閉状態かつバタフライ弁の全開状態を示す断面図である。 本開示の一実施形態に係る制御弁の変形例を示す断面図である。排気系の動作における減圧状態を示すグラフである。 本開示の一実施形態に係る排気系の動作における開度指令算出部による開度の割り当ての例を示すグラフである。 本開示の一実施形態に係る排気系の動作における開度指令算出部による開度の割り当ての他の例を示すグラフである。 図7の例を更に高速開閉に適するように変更した例を示すグラフである。
 以下、本実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一又は等価な構成要素及び部分には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また、図面の上方向を上方又は上部、下方向を下方又は下部として説明する。また、本実施形態において記載する圧力は、すべて気圧を意味する。
<基板処理装置の全体構成>
 図1に示すように、基板処理装置100は、半導体装置の一例としての基板30を処理する処理室20を有する反応炉10と、基板30を保持するボート26を格納する予備室22と、処理室20にガスを導入するガス導入ライン40と、処理室20のガスを排出する排気系50と、基板処理装置100の動作を制御する主制御部70と、を有する。
 〔反応炉〕
 反応炉10内には、図1に示すように、反応管12と、炉口フランジ14と、を含む処理室20が形成されている。反応管12は、上下方向に軸を有する筒状に形成されている。炉口フランジ14は、反応管12の下部に気密部材12Aを挟んで連結され、上下方向に軸を有する筒状に形成されている。また、反応炉10において、反応管12の内部には、反応管12と同芯に内管16が支持されている。また、反応管12の外周には、反応管12の軸と同芯、かつ、反応管12の外面と間隔を有してヒータ18が設けられている。ヒータ18は、後述する主制御部70からの信号を得て発熱し、反応管12を加熱する機能を有する。このように、反応炉10は、反応管12と、炉口フランジ14と、内管16と、ヒータ18と、処理室20と、を有している。また、処理室20には、基板30が配置される。
 〔予備室〕
 予備室22は、図1に示すように、搬送筐体24によって構成されている。搬送筐体24は、炉口フランジ14の下部に連通されている。搬送筐体24の内部には、基板30を載置して、基板30を処理室20に搬送して挿入するボート26が格納される。炉口蓋28は、上下方向に移動可能に設けられ、上端に達したときに搬送筐体24を気密に閉塞する。ボート26は、炉口蓋28の上に載置され、炉口蓋28の移動に合わせて、反応炉10内に導入される。また、搬送筐体24の下部には、後述するガス導入ライン40と同様の構成を有する第2ガス導入ライン44が連通されている。これにより、予備室22内を、基板30に自然酸化膜等が形成されにくい雰囲気で満たすことができる
 〔ガス導入ライン〕
 ガス導入ライン40は、図1に示すように、図示しないガス供給源と炉口フランジ14とを連通するガス導入管40Aと、ガス導入管の、ガス供給源と炉口フランジ14との間に設けられた流量制御器42と、を有する。流量制御器42は、後述する主制御部70からの信号によって、内部に設けられた図示しない弁を開閉してガスの導入量を制御する機能を有する。また、第2ガス導入ライン44は、ガス供給部と搬送筐体24の下部とを連通する点を除いて、ガス導入ライン40と同様の構成を有する。なお、ここで用いられるガスは不活性ガスであり、具体的には窒素が用いられる。
 〔主制御部〕
 主制御部70は、基板処理装置100の全体の動作を制御するコントコーラであり、図示しないが、CPU、ROM、RAM、ストレージ、入力部、表示部、通信インターフェイス等を有し、それぞれがバスに接続されたコンピュータを内蔵している。通信インターフェイスは、後述する圧力センサ群62から圧力情報を取得し、弁制御器53に目標圧力値を伝達することができる。主制御部70では、入力部からの入力情報に基づいて、基板処理装置100における各種処理を行うための基板処理プログラムが実行される。
例えば、主制御部70は、基板処理プログラムの一つであるプロセスレシピを実行して、半導体装置を製造する一つの工程である基板処理工程の制御を行う。このとき、主制御部70は、弁制御器53を通じて、排気系50のゲート弁56及びバタフライ弁58の開閉を制御すると共に、バタフライ弁58の開度を調整し、処理室20の圧力を制御する。開度指令算出部72は、例えばAPCコントローラに相当する。
<要部の構成>
 〔排気系〕
 排気系50は、図1から図3に示すように、処理室20からガスを排出する第1配管としての大口径の配管52Aと、配管52Aに設けられ処理室20の圧力を検出する圧力センサ群62と、配管52Aの途中に設けられた制御弁55と、を少なくとも備えた排気ライン52を有する。図1から図4に示すように、配管52Aは、処理室20から真空ポンプ60までを連通する大口径の配管であり、真空排気流路を構成する。本実施形態では、配管52Aの口径は、一例として200mm(200φ)である。つまり、配管52Aの呼び径は、例えば200Aである。排気ライン52の処理室20と反対側の端部となる流末部は、真空ポンプ60の吸引側に接続されている。排気ライン52は、制御弁55が開状態のとき、真空ポンプ60の吸引動作により、処理室20のガスを排気するように構成されている。真空ポンプ60は、10Pa程度の到達真空度を有し、常時運転され、排気ライン52の下流側を真空に維持する。なお、真空ポンプ60や弁制御器53を排気系50に含むようにしてもよい。
 〔制御弁〕
 図4(A)~(C)に示すように、制御弁55は、ゲート弁56と、ゲート弁56の中に入れ子状に設けられたバタフライ弁58と、を備えている。ゲート弁56のゲート弁プレート57とバタフライ弁58とは、互いに独立して駆動可能に構成されている。ゲート弁56及びバタフライ弁58は、弁制御器53と電気的に接続され、弁制御器53からの信号に基づいて開閉動作が行われる。この制御弁55は、真空排気流路としての排気ライン52のコンダクタンスを可変させ、その可変範囲においてコンダクタンスを実質的に0、つまり全閉として、真空排気流路を遮断することができる。
 ゲート弁56は、バルブハウジング76と、可動式のゲート弁プレート57と、駆動部材の一例としてのロッド78と、ゲート弁アクチュエータ80と、ゲート弁シールリング82と、を有している。バルブハウジング76は、流路方向に対向配置される2つの弁開口76A,76Bと、ゲート弁座76Cとを備え、2つの弁開口76A,76Bの間に被制御流体の流路を直線的に形成する部材である。被制御流体は、例えば処理室20での基板処理や処理室20内のパージに使用されるガスである。弁開口76A,76Bは例えば、流路の中心に同心かつ互いに反対向きに設けられたフランジ付きの円形開口であり、フランジは200Aの呼び径の配管52Aに接続可能に形成される。また、弁開口76A,76Bは、例えば200Aの呼び径の配管52Aの内径に対応する内径を有している。バルブハウジング76は、流路に直交する方向において、ゲート弁プレート57が閉状態(図4(A))の位置と全開状態の退避位置(図4(B))との間で移動可能となるように、その大きさが設定されている。バルブハウジング76の端部は、蓋部材77により閉塞されている。バルブハウジング76内に形成される流路は、例えば200Aの呼び径の配管52Aの断面積と等しいかそれ以上の面積を維持している。
 ゲート弁プレート(弁体)57は、流路の外へ退避すると共に例えば弁開口76Aを開放する開放位置と、流路内に突出すると共にゲート弁座76Cに接触し例えば弁開口76Aをシールする閉塞位置との間を直進移動する部材である。ゲート弁プレート57は、弁開口76Aよりも大きく形成され、閉塞位置において、弁開口76Aを閉塞する。
 ロッド78は、ゲート弁プレート57に1本以上配設され、ゲート弁プレート57と共にゲート弁プレート57の移動方向に移動又は伸縮可能とされている。本実施形態では、ロッド78は移動方向と平行に蓋部材77を貫通して伸びている。貫通部は、後述する直動フィードスルー94でシールされる。またロッド78は、ゲート弁プレート57に掛かる流路方向の荷重の一部又は全部を受け止め、直動フィードスルー94或いはゲート弁アクチュエータ80まで伝達する必要がある場合がある。その場合、ロッド78は必要とされる強度と剛性(断面2次モーメント)を有する。なお、駆動部材はロッド78に限られず、ゲート弁プレート57を移動させてゲート弁56を開閉可能とするものであればよい。したがって、駆動部材は、例えばアームやボールねじ(図示せず)であってもよい。
 ゲート弁アクチュエータ80は、ロッド78をゲート弁プレート57の移動方向に駆動する駆動源である。ゲート弁アクチュエータ80は、蓋部材77に固定され、ロッド78に対してその移動方向にのみ変位を許容し、それ以外方向(例えば流路方向)の荷重に耐える必要がある場合がある。ゲート弁アクチュエータ80として、例えばシリンダ装置やラック・アンド・ピニオン、リニアモータが用いられる。
 ゲート弁シールリング82は、ゲート弁座76C又はゲート弁プレート57におけるゲート弁座76Cとの対向面に配置され、弾力性を有する、例えばエラストマー製のOリングである。ゲート弁座76Cは、例えばゲート弁プレート57の上流側、つまり弁開口76A側に設けられている。図示の例では、ゲート弁シールリング82は、ゲート弁プレート57の上流側の面に装着され、ゲート弁56の開閉時にゲート弁プレート57と共に移動するようになっている。例えば、ゲート弁シールリング82は、ゲート弁プレート57の上流側の面に形成された環状の溝(図示せず)に嵌めこまれる。
 このようにして、ゲート弁56は弁開口76A,76Bの間に1気圧以上の圧力差がある状態で、それらの間を十分低いリーク量で遮断することができる。なおゲート弁56が遮断(シール)状態となるには、ゲート弁プレートをゲート弁座76Cに押し当てるための所定のシールアクションを必要とする場合がある。また、許容される圧力差は、全閉又は遮断の維持状態の他に、シールアクション、押し当てを解除するアンシールアクション、任意の開度におけるゲート弁プレート57の駆動のそれぞれに対して、異なる値に規定されうる。なお、例えば下流側の方が高圧になる心配がないか、下流側からの逆流リークに対して寛容な用途では、ゲート弁座76Cが、ゲート弁プレート57の下流側に設けられていてもよい。この場合、ゲート弁シールリング82は、このゲート弁座76C又はゲート弁プレート57における該ゲート弁座76Cとの対向面、つまり下流側の面に設けられる。
 なおゲート弁56は、ゲート弁座76Cと、ゲート弁プレート57におけるゲート弁座76Cとの対向面とは、ゲート弁プレート57の移動方向に対してそれぞれ平行に形成されるものに限定されない。図5に示す例のように、ゲート弁座76Cと、ゲート弁プレート57におけるゲート弁座76Cとの対向面とが、ゲート弁プレート57の移動方向に対して傾斜しかつ互いに平行に配置されていてもよい。この場合、ゲート弁55を閉状態にしたときにくさび効果が生じ、ゲート弁プレート57とゲート弁座76Cとの気密性が向上する。さらにゲート弁プレート57の下流側(弁開口76B側)も同様に構成してもよい。また、ゲート弁座76が、ゲート弁プレート57の移動方向において、ゲート弁プレート57と対面するように独特の形状に形成されたシングルアクション式のゲート弁が用いられてもよい。一般的にゲート弁は、シールリング82の潰し量を直接的に制御できない構造のため、同口径の他の種類の弁と比較して、微小開度(流量)の制御精度が低い。また大きな圧力の掛かった弁体をスライドさせるために大きな駆動力を必要とし、駆動速度が遅く、応答性が悪い。
 バタフライ弁58は、ゲート弁プレート57に設けられ、ゲート弁プレート57により開閉される弁開口76Aよりも小口径でかつ全閉可能に構成されたAPC弁である。このバタフライ弁58は、バタフライ弁室86と、バタフライ弁プレート59と、シャフト88と、バタフライ弁アクチュエータ90と、を有している。
 バタフライ弁室86は、ゲート弁プレート57の両面の間を貫通して2つの弁開口76A,76Bを連通させるように形成され、バタフライ弁座86Aを有している。一例として、バタフライ弁室86はゲート弁プレート57に形成された円筒状の貫通孔である。
 バタフライ弁座86Aは、バタフライ弁室86の内周面に設けられている。バタフライ弁座86Aにおける開口は、例えば100Aの呼び径の配管(図示せず)の流路断面積と同等かそれ以下の面積を有している。100Aの配管の口径は、約100mm(100φ)である。
 バタフライ弁プレート59は、バタフライ弁座86Aに対応する形状を有し、ゲート弁プレート57の移動方向を軸としてその周りで回転可能に軸支されてバタフライ弁室86内に設けられる。具体的には、バタフライ弁プレート59は例えば円板状に形成され、その円の中心を通る軸を有するシャフト88が接続されている。シャフト88は、ゲート弁プレート57を貫通してゲート弁プレート57の移動方向に延び、シャフト88の軸の周りで回転可能とされている。このシャフト88の回転に伴い、バタフライ弁プレート59も回転し、これによってバタフライ弁58が開閉するようになっている。本実施形態のシャフト88は、ロッド78と同様、蓋部材77を貫通して延びる。
 バルブハウジング76の流路方向において、2つの弁開口76A,76Bは、例えばバタフライ弁プレート59の大きさより広い間隔で互いに離間している。このバタフライ弁プレート59の大きさとは、バタフライ弁シールリング92を含む大きさであり、例えば直径である。これにより、バタフライ弁プレート59が全開を維持したまま、ゲート弁56を開くことが可能となっている。
 バタフライ弁アクチュエータ90は、シャフト88を該シャフト88の軸の周りで回動駆動する駆動源であり、バタフライ弁58の任意の開度を実現するために、例えばパルスモータ又はサーボモータが用いられる。本例のバタフライ弁アクチュエータ90は、バルブハウジング76の外で、蓋部材77に固定して設けられる。
 また、バタフライ弁58は、バタフライ弁シールリング92を有している。このバタフライ弁シールリング92は、バタフライ弁プレート59の外周に配置され、バタフライ弁座86Aに当接する弾力性を有する部材であり、例えばOリングである。このバタフライ弁シールリング92によってバタフライ弁座86Aをシール可能とされている。
 このようにして、バタフライ弁58は、ゲート弁プレート57の両側の間に1気圧以上の圧力差がある状態で、十分に低いリーク量で、それらの間を遮断できる。また圧力差に関わらずに自由に駆動でき、その動作はゲート弁よりも高速である。すなわち、一般的にバタフライ弁は口径が大きいほどシール性が悪化する(リーク量が増える)傾向があるが、ゲート弁56よりも十分小さな口径のバタフライ弁58を選ぶことで、そのリーク量をゲート弁56と同程度かそれ以下とすることができる。またバタフライ弁プレート59の位置がバタフライ弁室86内で固定されシールリング92の潰し量が比較的安定しているので、微小開度における制御精度が高い。ただし、バタフライ弁58のみを開いて得られる制御弁55の開度は、高々25%程度である。
 制御弁55は、開度を比較的大きくする(コンダクタンス又は被制御流体の流量が大きい)際にゲート弁56が開状態とされ、開度を比較的小さくする(コンダクタンス又は被制御流体の流量が小さい)際若しくは所定条件での圧力調整の際にゲート弁58が閉状態とされ、バタフライ弁58により流量調整若しくは調圧が行われる。ゲート弁56を全開にするときには、主制御部70は、バタフライ弁プレート59を所定未満の開度に制御する。
 制御弁55は、直動フィードスルー94と、直動回転フィードスルー96と、を更に備えている。直動フィードスルー94は、バルブハウジング76の内外を隔絶した状態で、ロッド78を、バルブハウジング76の外に設けられたゲート弁アクチュエータ80に接続することを可能にする。直動回転フィードスルー96は、バルブハウジング76の内外を隔絶した状態で、シャフト88を、バルブハウジング76の外に設けられたバタフライ弁アクチュエータ90に接続することを可能にする。直動フィードスルー94や直動回転フィードスルー96には、例えば周知のベローズ、Oリングシール、磁性流体シールが用いられうる。直動フィードスルー94と直動回転フィードスルー96は、その一方が他方に搭載されるピギーバックの様態で設けられうる。
 〔圧力センサ群〕
 圧力センサ群62は、図1に示すように、ゲート弁56の取付け位置より処理室20側に配管62Aによって連通されて設けられている。圧力センサ群62は、主制御部70と電気的に接続され、処理室20の圧力情報を送信する機能を有する。また、圧力センサ群62は、図2に示すように、後述する大気圧センサ64と、第1真空センサ66と、第2真空センサ68とで構成されている。大気圧センサ64、第1真空センサ66、第2真空センサ68は、処理室20に近い側から遠い側に順に設けられ、それぞれ配管62Aにより配管52Aに接続されている。ここで、大気圧センサ64、第1真空センサ66、第2真空センサ68は、それぞれ圧力センサの一例である。
  (大気圧センサ)
 大気圧センサ64は、図2に示すように、圧力センサ群62において処理室20に最も近い位置に設けられ、大気圧に近い領域の圧力を検知する機能を有する。
  (第1真空センサ)
 第1真空センサ66は、図2に示すように、大気圧センサ64と、後述する第2真空センサ68とに挟まれた位置に設けられ、大気圧に近い領域の圧力から高真空域(10-1~10-5Pa)の圧力までを検知する広域圧力センサとしての機能を有する。また、第1真空センサ66と配管52Aとを接続する配管62Aには、大気圧センサ64と連通しつつ、配管52A内が高真空域の圧力に向けて減圧されると開となる弁66Aが設けられている。
  (第2真空センサ)
 第2真空センサ68は、図2に示すように、圧力センサ群62において処理室20から最も遠い位置に設けられ、高真空域の圧力を検知する圧力センサとしての機能を有する。
 これら、大気圧センサ64、第1真空センサ66、第2真空センサ68は、それぞれ主制御部70及び弁制御器53と電気的に接続される。
 図3に示すように、弁制御器53は、自動制御部71が、主制御部70から与えられた処理室20の目標圧力Pと、圧力センサ群62で測定された実圧力Pとの入力を受けて、開度指令算出部72に目標開度を出力する。目標開度は、本実施形態例の制御弁55全体のコンダクタンスに相当し、目標圧力Pと実圧力Pの偏差が0になるように、フィードバック制御等の手法により常時更新される。なお圧力変化レートの上限が規定されている場合、当該レートを超える速さで変化する目標圧力が入力されたとしても、レート内に収まるよう目標圧力が内部的に修正される。開度指令算出部72は、入力された目標開度に応じて、ゲート弁56とバタフライ弁58に開度を割り当てて、開度指令としてゲート弁アクチュエータ80とバタフライ弁アクチュエータ90にそれぞれ出力する。開度指令は例えば、各弁の全開を100%としたときの相対的な開度として与えられ得る。
<要部の作用>
 ここで、本実施形態の要部である制御弁55の作用、排気系50の作用、及び半導体装置の製造方法について説明する。
 〔制御弁の作用〕
 図4(A)、(B)に示すように、本実施形態に係る制御弁55では、弁制御器53からの指令によるゲート弁アクチュエータ80の駆動により、ロッド78を軸方向に移動又は伸縮させ、該ロッド78に取り付けられたゲート弁プレート57をロッド78の軸方向に直進移動させることができる。これにより、ゲート弁56を開閉することができる。図4(A)はゲート弁56の閉状態を示している。閉状態においては、ゲート弁シールリング82がゲート弁座76Cに接触することで、弁開口76Aがシールされる。図4(B)はゲート弁56の開状態、具体的には全開状態を示している。ゲート弁プレート57が弁開口76Aから完全に退避することで、ゲート弁56が全開状態となる。
 図4(C)に示すように、主制御部70からの指令によるバタフライ弁アクチュエータ90の駆動により、シャフト88を回転させ、該シャフト88に取り付けられたバタフライ弁プレート59をシャフト88の軸の周りで回転させることができる。バタフライ弁プレート59にはバタフライ弁シールリング92が取り付けられており、図4(A)、(B)に示すように、バタフライ弁58が閉状態とされたとき、バタフライ弁室86の内周に設けられたバタフライ弁座86Aの全周にバタフライ弁シールリング92が接触することで、該バタフライ弁座86Aがシールされる。
 バタフライ弁58におけるバタフライ弁プレート59の回転角度はバタフライ弁アクチュエータ90により制御可能である。被制御流体の流れに対してバタフライ弁プレート59が垂直になる状態が全閉の位置となり、そこから90度回転してバタフライ弁プレート59が被制御流体の流れに平行となる状態が全開の位置となる(図4(C))。全開位置から角度を可変させることで、バルブコンダクタンスを可変させることができ、図1から図3に示す処理室20内の圧力調整が可能である。従って本例の制御弁55によれば、バタフライ弁58のみが作動する領域において、一般の小口径バタフライ弁と同様に優れた開閉動作の応答性や微小開度制御精度が得られる。また一般の大口径ゲート弁とそん色ないシール性が得られる。
 バタフライ弁プレート59に取り付けられたシャフト88は、ゲート弁56のロッド78と同時に移動又は伸縮可能である。したがって、ゲート弁56を開くときには、バタフライ弁プレート59もゲート弁プレート57と同時にバルブハウジング76の退避位置に移動し、200Aの配管52Aに対応する一般のゲート弁と同等のコンダクタンスが得られる。
 また、200Aの配管52Aに対応するゲート弁56と、100Aに相当するバタフライ弁58を一体構造とすることで、大流量排気と高精度な圧力調整を同時に実現することができる。また、100Aに相当する分岐系統(図示せず)が不要となり、200Aの配管52Aのみで排気系統を構成することができる。したがって、装置部品レイアウトの省スペース化を実現できる。また、分岐配管がないことで、配管容積が減少し、被制御流体としてのガスの置換効率が向上させることができると共に、部品コストを低減できる。更には、配管加熱が必要なプロセスにおいて、配管加熱範囲を縮小でき、加熱不均一によるパーティクルリスクを低減できる。
 〔排気系の作用〕
 図3において、本実施形態の排気系50は、弁制御器53が、目標圧力PTと圧力センサ群62からの実圧力PRの情報に基づき、制御弁55の開度の調整をゲート弁56とバタフライ弁58とに適切に割り当てることで、処理室20の圧力制御やパージを行う。
 図6は、開度指令算出部72(図3)による開度の割り当ての例を示すグラフである。この例は、横軸が設定コンダクタンス(又は設定流量)、縦軸が各弁の開度である。具体的には、図6の上図の縦軸がゲート弁56の開度であり、図6の下図の縦軸がバタフライ弁58の開度である。横軸が0~Cの微小流量領域では、ゲート弁56は全閉し、バタフライ弁58のみが作動する。ここで、Cは遷移コンダクタンスであり、全開のバタフライ弁58のコンダクタンスに相当する。設定コンダクタンスがこのCを超えると、バタフライ弁58が全開を維持したまま、ゲート弁56が作動する。各弁の作動は、設定コンダクタンスに対してほぼ線形の開度として表現できる。設定コンダクタンスが0~Cの間が微小流量の制御に適した領域であり、この間ゲート弁56はゲート弁プレート57がゲート弁座76Cに押圧され、シール状態となる(図3(A))。この例は、バタフライ弁58が全開のままゲート弁56を全開にできる構成の場合に適用できる。なおゲート弁56のシールは、設定コンダクタンスが0~Cの間の任意の開度で行ってもよい。また設定流量がCを下回って減少する際は、ゲート弁56のシールはCを下回るのと同時に行うのではなく、所定時間経過後に遅らせて実行することができる。これにより頻繁なシール動作を抑制できる。
 図7は、開度指令算出部72による開度の割り当ての他の例を示すグラフである。この例は、バタフライ弁58が全開のままゲート弁56を全開にできない構成の場合にも適用できる。白抜き矢印で示される、横軸における遷移コンダクタンスCの左側の領域は、Cの右側よりも横軸の縮尺が拡大されている。Cは、バタフライ弁58を閉じずにゲート弁56を開けることができる最大開度に対応し、C以上の開度において、バタフライ弁58の開度はその全開開度よりも小さいOに維持される。ここでOは、ゲート弁56を機械的な干渉なく自由に開閉できるバタフライ弁58の最大開度である。CとCの間では、開度指令算出部72(図3)は、ヒステリシスを有する開度制御を行う。具体的には、設定開度がCを超えて増加する際は、Cに到達するまでバタフライ弁58の開度を100%に維持したまま、ゲート弁56の開度を増加させる。設定コンダクタンスがCを超えて更に増加する際は、バタフライ弁58の開度はCに近づくほどOに近づくように制御する。設定コンダクタンスがCを超えて増加する際は、バタフライ弁58の開度はOに維持され、ゲート弁56の開度を増加させる。設定コンダクタンスがCを下回って減少する際は、バタフライ弁58の開度はCに近づくほど100%に近づくように制御され、それと同時にゲート弁56の開度は設定コンダクタンスに対してほぼ線形に、0に向かって減少する。このような制御によれば、CとCの間で、バタフライ弁58の過度な作動を抑制し、バタフライ弁シールリング92(図4)の寿命を延ばすことができ、制御弁55をCを超える大流量領域から設定流量を急速に全閉にする際に、バタフライ弁58の全開動作が早まり、全閉を高速に行うことができる。なお、設定流量がCTからC以上に増加するときには、バタフライ弁58の開度がOに下がるまで、ゲート弁56の実際の開度が上述の最大開度を超えないようにするための、ゲート弁56に対するインターロックが設けられることが望ましい。
 図8は、図7の例を更に高速開閉に適するように変更した例を示すグラフである。この例ではバタフライ弁58の開度は、全ての設定コンダクタンスに亘ってOを超えない。バタフライ弁58の開度がOのときのコンダクタンスをCt1とすると、設定コンダクタンスが増加してCt1に達すると、ゲート弁56のシールが解除され、それ以降は、設定流量に対してほぼ線形の開度でゲート弁56が開く。この例では微小流量制御領域が縮小し精度が悪化するものの、ゲート弁56とバタフライ弁58の実際の作動を待つ必要が無いので、それらを完全に並行して行うことができる。特に、全閉からC付近にかけて開閉動作が更に高速化する。図7の例を微小流量制御優先モード、図8の例を応答速度優先モードと呼ぶと、弁制御器53は、状況に応じて或いは主制御部70の指示に応じて両モードの一方を選択して適用することができる。例えば、制御弁55での差圧の大きくなる高圧力(つまり低真空)領域では、微小流量制御優先モードを選択し、低圧力(つまり高真空)領域では、応答速度優先モードを選択する。あるいは反応炉10における処理室20の圧力に応じて、両モード間を連続的に遷移するようにしてもよい。その場合のバタフライ弁58の制御例を図8に破線で示す。ゲート弁56が開き始める設定コンダクタンス(所定値)は、少なくともCt1からCtの間で任意に設定できる。
<基板処理工程>
 次に、本実施形態に係る基板処理装置100を用いて実施する、所定の処理工程を有する基板処理方法、つまり半導体装置の製造方法について説明する。ここで、所定の処理工程は、半導体装置の製造工程の一工程である基板処理工程を実施する場合を例に挙げる。
 この半導体装置の製造方法は、可動式のゲート弁プレート57を有するゲート弁56と、ゲート弁プレート57に設けられ、ゲート弁プレート57により開閉される弁開口76A,76Bよりも小口径でかつ全閉可能なバタフライ弁58と、を備え、ゲート弁56のゲート弁プレート57とバタフライ弁58とを、互いに独立して駆動可能に構成された制御弁55を準備する工程と、基板処理装置100の反応室としての処理室20に半導体装置の基板30を搬入する工程と、処理室20から排出する被制御流体の流量が大きい際にゲート弁56を開状態とする工程と、被制御流体の流量が小さい際若しくは圧力調整の際にゲート弁56が閉状態とされ、バタフライ弁58により流量調整若しくは調圧を行う工程と、を有する。
 基板処理工程の実施にあたって、まず基板処理装置100に制御弁55を準備する。次に、プロセスレシピが、図示しないメモリ等に展開され、必要に応じて主制御部70における自動制御部71から開度指令算出部72へ制御指示が与えられると共に、図示しないプロセス系コントローラや搬送系コントローラへ動作指示が与えられる。このようにして実施される基板処理工程は、搬入工程と、成膜工程と、搬出工程と、を少なくとも有する。
(移載工程)
 主制御部70は、図示しない基板移載機構にボート26への基板30の移載処理を開始する。この移載処理は、予定された全ての基板30のボート26への装填(ウエハチャージ)が完了するまで行われる。
(搬入工程)
 所定枚数の基板30がボート26に装填されると、ボート26は、図示しないボートエレベータによって上昇されて、反応炉10内に形成される処理室20に装入(ボートロード)される。ボート26が完全に装入されると、炉口蓋28は、反応炉10の炉口フランジ14の下端を気密に閉塞する。
(成膜工程)
 次に、処理室20は、上述のように主制御部70からの指示に従いつつ、所定の成膜圧力(処理圧力)となるように、制御弁55及び真空ポンプ60等の真空排気装置によって真空排気される。また処理室20は、図示しない温度制御部からの指示に従いつつ、所定の温度となるようにヒータ18によって加熱される。続いて、図示しない回転機構によるボート26および基板30の回転を開始する。そして、所定の圧力、所定の温度に維持された状態で、ボート26に保持された複数枚の基板30に所定のガス(処理ガス)を供給して、基板30に所定の処理(例えば成膜処理)がなされる。なお、次の搬出工程前に、処理温度(所定の温度)から温度を降下させる場合がある。
(搬出工程)
 ボート26に載置された基板30に対する成膜工程が完了すると、回転機構によるボート26および基板30の回転を停止させ、処理室20を窒素雰囲気に置換し(窒素置換工程)、大気圧復帰させる。そして、炉口蓋28を下降させて炉口フランジ14の下端を開口させると共に、処理済の基板30を保持したボート26を反応炉10の外部に搬出(ボートアンロード)する。
(回収工程)
 そして、処理済の基板30を保持したボート26は、クリーンユニットから吹出されるクリーンエアによって極めて効果的に冷却される。そして、例えば150℃以下に冷却されると、ボート26から処理済の基板30を脱装(ウエハディスチャージ)して図示しないポッドに移載した後に、新たな未処理基板30のボート26への移載が行われる。
[他の実施形態]
 以上、本開示の実施形態の一例について説明したが、本開示の実施形態は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。

Claims (15)

  1.  可動式のゲート弁プレートを有するゲート弁と、
     前記ゲート弁プレートに設けられ、前記ゲート弁プレートにより開閉される弁開口よりも小口径でかつ全閉可能なバタフライ弁と、を備え、
     前記ゲート弁の前記ゲート弁プレートと前記バタフライ弁とを、互いに独立して駆動可能に構成された制御弁。
  2.  前記制御弁は、設定コンダクタンス又は流量が所定値より大きい際に前記ゲート弁が開状態とされ、
     前記設定コンダクタンス又は流量が前記所定値より小さい際に前記ゲート弁が閉状態とされ、前記バタフライ弁によりコンダクタンス又は流量が調整される請求項1に記載の制御弁。
  3.  前記ゲート弁は、
     流路方向に対向配置される2つの前記弁開口と、ゲート弁座とを備え、前記2つの弁開口の間に被制御流体の流路を直線的に形成するバルブハウジングと、
     前記流路の外へ退避すると共に前記弁開口を開放する開放位置と、前記流路内に突出すると共に前記ゲート弁座に接触し前記弁開口をシールする閉塞位置との間を移動する前記ゲート弁プレートと、を有する請求項1に記載の制御弁。
  4.  前記ゲート弁は、
     前記ゲート弁プレートに配設され、前記ゲート弁プレートと共に前記ゲート弁プレートの移動方向に移動又は伸縮可能な駆動部材と、
     前記駆動部材を前記ゲート弁プレートの移動方向に駆動するゲート弁アクチュエータと、
     前記ゲート弁座又は前記ゲート弁プレートにおける前記ゲート弁座との対向面に配置され弾力性を有するゲート弁シールリングと、を有する請求項3に記載の制御弁。
  5.  前記バタフライ弁は、
     前記ゲート弁プレートに前記2つの弁開口を連通させるように貫通して設けられ、バタフライ弁座を有するバタフライ弁室と、
     前記バタフライ弁座に対応する形状を有し、前記ゲート弁プレートの移動方向を軸としてその周りで回転可能に軸支されるバタフライ弁プレートと、
     前記バタフライ弁プレートに接続され、前記ゲート弁プレートの移動方向に延び、前記軸の周りで回転可能なシャフトと、
     前記シャフトを前記軸の周りで回動駆動するバタフライ弁アクチュエータと、を有する請求項4に記載の制御弁。
  6.  前記ゲート弁座は、前記ゲート弁プレートの上流側に設けられ、
     前記ゲート弁シールリングは、該ゲート弁座又は前記ゲート弁プレートにおける該ゲート弁座との対向面に設けられる請求項4に記載の制御弁。
  7.  前記バタフライ弁は、前記バタフライ弁プレートの外周に配置され、前記バタフライ弁座に当接する弾力性のバタフライ弁シールリングを有し、前記バタフライ弁シールリングによって前記バタフライ弁座をシール可能とされている請求項5に記載の制御弁。
  8.  前記弁開口は円形であり、前記バルブハウジングは、前記弁開口以上の断面積を有する前記流路を形成する請求項3に記載の制御弁。
  9.  前記バルブハウジングの流路方向において、前記2つの弁開口は、前記バタフライ弁プレートの大きさより広い間隔で互いに離間している請求項5に記載の制御弁。
  10.  前記ゲート弁を全開にするときには、前記バタフライ弁プレートを所定未満の開度にするよう制御する弁制御器を更に備えた請求項7に記載の制御弁。
  11.  前記ゲート弁座と前記ゲート弁プレートにおける前記ゲート弁座との前記対向面とは、前記ゲート弁プレートの移動方向に対して傾斜しかつ互いに平行に配置される請求項4に記載の制御弁。
  12.  前記バルブハウジングの内外を隔絶した状態で、前記駆動部材を、前記バルブハウジングの外に設けられた前記ゲート弁アクチュエータに接続する、直動フィードスルーと、
     前記バルブハウジングの内外を隔絶した状態で、前記シャフトを、前記バルブハウジングの外に設けられた前記バタフライ弁アクチュエータに接続する、直動回転フィードスルーと、を更に備えた請求項5に記載の制御弁。
  13.  前記弁開口は、200Aの呼び径の配管の断面積以上の面積を有し、
     前記バタフライ弁座における開口は、100Aの呼び径の配管の断面積以下の面積を有し、
     基板処理装置の反応室からの真空排気流路において使用される請求項5に記載の制御弁。
  14.  基板を処理する処理室と、
     前記処理室内の圧力を検出するセンサと、
     前記処理室と、排気ポンプとの間に設けられ、前記圧力に応じて制御される制御弁と、を備え、
     制御弁は、
     可動式のゲート弁プレートを有するゲート弁と、
     前記ゲート弁プレートに設けられ、前記ゲート弁プレートにより開閉される弁開口よりも小口径でかつ全閉可能なバタフライ弁と、を備え、
     前記ゲート弁の前記ゲート弁プレートと前記バタフライ弁とを、互いに独立して駆動可能に構成された基板処理装置。
  15.  基板処理装置の反応室に基板を搬入する工程と、
     互いに独立して駆動可能に構成された可動式のゲート弁プレートを有するゲート弁と、前記ゲート弁プレートに設けられ、前記ゲート弁プレートにより開閉される弁開口よりも小口径でかつ全閉可能なバタフライ弁と、を有する制御弁を制御して、反応室が所定の圧力になるように排気する工程と、
     前記反応室内の前記基板を処理する工程と、
     を有する半導体装置の製造方法。
PCT/JP2020/004116 2020-02-04 2020-02-04 制御弁、基板処理装置及び半導体装置の製造方法 WO2021156934A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2020/004116 WO2021156934A1 (ja) 2020-02-04 2020-02-04 制御弁、基板処理装置及び半導体装置の製造方法
JP2021575126A JPWO2021156934A1 (ja) 2020-02-04 2020-02-04
KR1020227020913A KR20220104007A (ko) 2020-02-04 2020-02-04 제어 밸브, 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
CN202080078188.5A CN114729701A (zh) 2020-02-04 2020-02-04 控制阀、基板处理装置及半导体器件的制造方法
TW109141092A TWI763142B (zh) 2020-02-04 2020-11-24 控制閥、基板處理裝置及半導體裝置的製造方法
US17/847,585 US20220325801A1 (en) 2020-02-04 2022-06-23 Control valve, substrate processing apparatus, method of manufacturing semiconductor device, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/004116 WO2021156934A1 (ja) 2020-02-04 2020-02-04 制御弁、基板処理装置及び半導体装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/847,585 Continuation US20220325801A1 (en) 2020-02-04 2022-06-23 Control valve, substrate processing apparatus, method of manufacturing semiconductor device, and recording medium

Publications (1)

Publication Number Publication Date
WO2021156934A1 true WO2021156934A1 (ja) 2021-08-12

Family

ID=77199841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004116 WO2021156934A1 (ja) 2020-02-04 2020-02-04 制御弁、基板処理装置及び半導体装置の製造方法

Country Status (6)

Country Link
US (1) US20220325801A1 (ja)
JP (1) JPWO2021156934A1 (ja)
KR (1) KR20220104007A (ja)
CN (1) CN114729701A (ja)
TW (1) TWI763142B (ja)
WO (1) WO2021156934A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117189885B (zh) * 2023-11-06 2024-01-09 德阳市东方恒运电机有限公司 一种具有保护装置的蝶阀

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032951A (ja) * 1999-07-19 2001-02-06 Kubota Corp 仕切弁
US20050150559A1 (en) * 2004-01-12 2005-07-14 Kwon Hyuk J. Apparatus and method for controlling exhaust pressure in semiconductor manufacturing
JP2016176544A (ja) * 2015-03-20 2016-10-06 株式会社水道技術開発機構 弁装置
WO2017022366A1 (ja) * 2015-08-04 2017-02-09 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521889B2 (ja) 1998-04-23 2010-08-11 株式会社日立国際電気 基板処理装置
JP3062839U (ja) * 1999-01-27 1999-10-15 ビーエフ工業株式会社 バタフライ弁
JP2003183837A (ja) 2001-12-12 2003-07-03 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2004182460A (ja) * 2002-12-06 2004-07-02 Seiko Epson Corp 粒体移送用真空バルブおよびこれを設置した真空室
JP4666205B2 (ja) * 2004-12-14 2011-04-06 株式会社安川電機 ゲートバルブおよびそれを備えた真空チャンバ
JP4631597B2 (ja) * 2005-08-19 2011-02-16 株式会社安川電機 光触媒被覆ゲートバルブおよびこれを備えた真空処理装置
TWI381470B (zh) * 2007-05-08 2013-01-01 Tokyo Electron Ltd And a treatment device provided with the valve
DE102007034927A1 (de) * 2007-07-24 2009-02-05 Vat Holding Ag Verfahren zur Steuerung oder Regelung eines Vakuumventils
JP4961381B2 (ja) 2008-04-14 2012-06-27 株式会社日立国際電気 基板処理装置、基板処理方法及び半導体装置の製造方法
JP5226438B2 (ja) 2008-09-10 2013-07-03 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び基板処理方法
TWI486533B (zh) * 2010-09-16 2015-06-01 Tyco Valves & Controls Lp 閘閥之改良套筒密封件
JP2018123856A (ja) * 2017-01-30 2018-08-09 大豊工業株式会社 バルブ装置
KR101962332B1 (ko) * 2017-12-29 2019-03-26 동아대학교 산학협력단 버터플라이밸브 통합형 게이트밸브 및 그 작동 방법
CN108253146B (zh) * 2018-02-09 2023-09-19 浙江理工大学 闸-蝶式复合阀
JP7178178B2 (ja) * 2018-03-22 2022-11-25 Ntn株式会社 シールリング

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032951A (ja) * 1999-07-19 2001-02-06 Kubota Corp 仕切弁
US20050150559A1 (en) * 2004-01-12 2005-07-14 Kwon Hyuk J. Apparatus and method for controlling exhaust pressure in semiconductor manufacturing
JP2016176544A (ja) * 2015-03-20 2016-10-06 株式会社水道技術開発機構 弁装置
WO2017022366A1 (ja) * 2015-08-04 2017-02-09 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体

Also Published As

Publication number Publication date
JPWO2021156934A1 (ja) 2021-08-12
KR20220104007A (ko) 2022-07-25
US20220325801A1 (en) 2022-10-13
TW202136574A (zh) 2021-10-01
TWI763142B (zh) 2022-05-01
CN114729701A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US20170016114A1 (en) Plasma atomic layer deposition system and method
US20100326637A1 (en) Load-lock apparatus and substrate cooling method
US7695231B2 (en) Vacuum pumping system, driving method thereof, apparatus having the same, and method of transferring substrate using the same
KR100653720B1 (ko) 열처리 설비 및 이의 구동방법
JP5208948B2 (ja) 真空処理システム
JP2011174540A (ja) 真空排気用のボールバルブ及び真空排気装置
KR20230130596A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
WO2021156934A1 (ja) 制御弁、基板処理装置及び半導体装置の製造方法
US6698718B2 (en) Rotary valve
JP2012023164A (ja) プラズマ処理装置
US9263313B2 (en) Plasma processing apparatus and plasma processing method
JP7138238B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP7055173B2 (ja) 基板処理装置、半導体装置の製造方法及び基板処理プログラム
US11749555B2 (en) Semiconductor processing system
JP2008232210A (ja) 圧力制御バルブおよび該圧力制御バルブを備えた処理装置
JP6718755B2 (ja) 真空処理装置およびその運転方法
US20040020600A1 (en) Semiconductor device manufacturing equipment having gate providing multiple seals between adjacent chambers
JP4483040B2 (ja) 熱処理装置
JPH11186355A (ja) ロードロック機構、基板処理装置および基板処理方法
US20220293399A1 (en) Substrate processing apparatus and method of controlling the same
JPH04350929A (ja) スパッタ装置
TWI739846B (zh) 用於連續牽引處理的閘閥
KR20240066911A (ko) 기판 처리 장치 및 기판 처리 방법
KR20040096317A (ko) 배기 가스 처리 시스템
JP2022112466A (ja) 基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575126

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227020913

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917353

Country of ref document: EP

Kind code of ref document: A1