WO2021147295A1 - 电池用粘合剂、锂离子电池负极片以及锂离子电池 - Google Patents

电池用粘合剂、锂离子电池负极片以及锂离子电池 Download PDF

Info

Publication number
WO2021147295A1
WO2021147295A1 PCT/CN2020/106529 CN2020106529W WO2021147295A1 WO 2021147295 A1 WO2021147295 A1 WO 2021147295A1 CN 2020106529 W CN2020106529 W CN 2020106529W WO 2021147295 A1 WO2021147295 A1 WO 2021147295A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
acrylate
hydrophilic
methacrylate
binder
Prior art date
Application number
PCT/CN2020/106529
Other languages
English (en)
French (fr)
Inventor
潘中来
张晓正
陶伟
Original Assignee
眉山茵地乐科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眉山茵地乐科技有限公司 filed Critical 眉山茵地乐科技有限公司
Priority to EP20915776.7A priority Critical patent/EP4095213A4/en
Priority to US17/794,258 priority patent/US20230068865A1/en
Priority to JP2022544430A priority patent/JP7480310B2/ja
Priority to KR1020227028830A priority patent/KR20220131535A/ko
Publication of WO2021147295A1 publication Critical patent/WO2021147295A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • C08F220/48Acrylonitrile with nitrogen-containing monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/18Homopolymers or copolymers of nitriles
    • C09D133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/18Homopolymers or copolymers of nitriles
    • C09J133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/24Homopolymers or copolymers of amides or imides
    • C09J133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a binder for a battery, a negative electrode sheet of a lithium ion battery and a lithium ion battery, and belongs to the technical field of lithium ion batteries.
  • lithium-ion batteries As the most ideal mobile power source, lithium-ion batteries have the incomparable advantages of high energy density, small size, long life, and no pollution. They are widely used in electric vehicles, aerospace, communications, and various portable electrical appliances.
  • Lithium-ion batteries are mainly composed of electrode sheets (including positive electrode sheets and negative electrode sheets), separators, and electrolyte.
  • the electrode sheets are all composed of electrode active material powder, binder, conductive agent and current collector.
  • the electrode active material, conductive agent, and binder solution are usually mixed and ground uniformly to form a slurry, and then coated on the copper foil or aluminum foil as the current collector, and then dried and rolled. Wait for the process to get. It can be seen that the adhesive plays a key role in the preparation of the electrode sheet.
  • the water-based adhesive has the advantages of safety, pollution-free, no need to recycle solvents, simple operation, etc., making it the first choice for electrode adhesives for lithium-ion batteries.
  • commonly used water-based adhesives are SBR (styrene butadiene rubber emulsion), LA132, LA133 and so on.
  • the SBR water-based binder uses water as the dispersion medium of the negative electrode active material powder, which is environmentally friendly, non-polluting, and harmful to production operators.
  • SBR is used as a binder for the anode active material powder of lithium-ion batteries, and the overall performance of the battery can no longer meet the application requirements of increasing battery quality.
  • the technical problem solved by the present invention is to provide a battery adhesive with strong adhesion.
  • the battery binder of the present invention contains a water-soluble polymer with both hydrophilic and hydrophobic units; and in the polymer, the low- and medium-molecular-weight polymer accounts for less than 5 wt% of the total polymer.
  • the molecular weight of the molecular weight polymer is less than or equal to 100,000.
  • the weight percentage of hydrophilic units and hydrophobic units in the polymer is 30-70%:70-30%.
  • the weight percentage of the hydrophilic unit and the hydrophobic unit is 40-60%:60-40%.
  • the low- and medium-molecular-weight polymer accounts for less than 2% of the total polymer. In a specific embodiment, the low to medium molecular weight polymer accounts for less than 1% of the total polymer.
  • the low molecular weight polymer accounts for less than 0.5 wt% of the total polymer, and the molecular weight of the low molecular weight polymer is less than or equal to 50,000.
  • the hydrophilic unit contains a carboxyl group or a sulfonic acid group.
  • the hydrophobic unit is introduced by a lipophilic monomer
  • the hydrophilic unit is introduced by a hydrophilic monomer
  • R 2 is selected from -CN, -C 6 H 5 , -COOCH 3 , -COOCH 2 CH 3 , -COOCH 2 CH 2 CH 2 CH 3 , -COOC(CH 3 ) 3 , -COOCH 2 CH(CH 2 CH 3 )CH 2 CH 2 CH 2 CH 3 , -COOC 12 H 25 , -COO(CH 2 ) 17 CH 3 ⁇ COOCH 2 CH 2 OH, ⁇ OCOCH 3 or
  • the lipophilic monomer is acrylonitrile, methacrylonitrile, styrene, methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate Ester, cyclohexyl acrylate, isobornyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, vinyl acetate, methacrylonitrile, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, At least one of 2-ethylhexyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and glycidyl methacrylate Species; the hydrophilic monomers include acrylic acid, acrylate, methacrylate, methacryl
  • hydrophilic monomers also include acrylamide, N-methacrylamide, N-ethylacrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, 2 -At least one of methacrylamide, N-methylolacrylamide, N-hydroxyethyl acrylamide, and N-hydroxypropyl acrylamide.
  • the lipophilic monomers are acrylonitrile and butyl acrylate, and the hydrophilic monomers are acrylic acid, N-vinylpyrrolidone and acrylamide.
  • the lipophilic monomers are methacrylonitrile, methyl acrylate and hydroxypropyl acrylate, and the hydrophilic monomers are methacrylic acid and N-methacrylamide.
  • the lipophilic monomer is 2-ethylhexyl acrylate, cyclohexyl methacrylate and ethyl methacrylate
  • the hydrophilic monomer is 2-acrylamide-2-methyl Propanesulfonic acid, N,N-diethylacrylamide and itaconate.
  • the lipophilic monomers are ethyl acrylate, vinyl acetate and hydroxyethyl methacrylate
  • the hydrophilic monomers are acrylate, 2-methacrylamide and vinyl sulfonic acid. Salt.
  • the lipophilic monomer is styrene, 2-ethylhexyl methacrylate and hydroxypropyl methacrylate, and the hydrophilic monomer is maleic acid, N-vinylpyrrolidone and N-hydroxypropyl acryl.
  • the lipophilic monomers are 2-ethylhexyl acrylate, ethyl acrylate and isobornyl methacrylate, and the hydrophilic monomers are acrylic acid, methacrylic acid, and N-hydroxyethyl. Acrylic and acrylic acid.
  • the weight percentage of hydrophilic monomers and lipophilic monomers is 30-70%:70-30%. In some embodiments, the weight percentage of hydrophilic monomers and lipophilic monomers is 40-60%:60-40%.
  • the binder for batteries further includes a solvent
  • the solvent is an organic solvent or water.
  • the solvent is water.
  • the pH value of the adhesive whose solvent is water is 6-12; in some embodiments, the pH value of the adhesive whose solvent is water is 6.5-9.
  • the battery binder further contains additives, and the additives include at least one of a dispersant, a leveling wetting agent, a defoaming agent, and a softening agent.
  • the present invention also provides a method for preparing a battery binder whose solvent is water.
  • the preparation method of the adhesive for batteries includes the following steps: heating the hydrophilic monomer, lipophilic monomer and water to the reaction temperature in a protective atmosphere, adding an initiator to initiate the reaction, and obtaining a solid-liquid mixture, and then taking Precipitate and neutralize to obtain a binder for batteries.
  • the present invention also provides the application of the battery binder of the present invention in the preparation of the negative electrode sheet of the lithium ion battery.
  • the present invention also provides the application of the battery binder of the present invention in the preparation of lithium ion battery pole pieces.
  • the adhesive for batteries of the present invention has high adhesive force and can be used in the preparation of lithium ion battery pole pieces to improve battery performance.
  • the invention also provides a lithium ion battery negative electrode sheet.
  • the lithium ion battery negative electrode sheet of the present invention includes a negative electrode active material and a binder, wherein the binder is the battery binder of the present invention.
  • the invention also provides a lithium ion battery.
  • the lithium ion battery of the present invention includes a positive electrode, a negative electrode and an electrolyte, wherein the negative electrode is the negative electrode sheet of the lithium ion battery of the present invention.
  • the present invention also provides a battery pack, which includes a plurality of batteries according to the present invention.
  • the present invention has the following beneficial effects:
  • the adhesive of the present invention has strong adhesive force, simple preparation method and low cost. Compared with the conventional negative electrode sheet binder of 2.5 to 5%, when the binder of the present invention is used at 1.5 to 2%, it is not only It can show higher adhesion and increase the proportion of active material (negative electrode material), thereby increasing the energy density of the battery.
  • Figure 1 shows the molecular weight test results of the adhesives of Example 1 and Comparative Example 1 of the present invention.
  • Figure 2 shows the cycle performance of batteries prepared using the binders of Example 1 and Comparative Examples 1 and 2 of the present invention.
  • Figure 3 shows the low-temperature discharge results of batteries prepared using the binders of Example 1 and Comparative Examples 1 and 2 of the present invention.
  • the hydrophilic monomers exist in the form of acid or salt in water, but when they exist in the form of acid, their hydrophilicity is low. If the monomers of the polymerization reaction are copolymerized in the water phase with a composition of low hydrophilicity, the reaction product will precipitate out due to insufficient hydrophilicity, forming a mixture of water, residual monomers and precipitates.
  • the polymerization reaction is terminated, which will greatly reduce the formation of low- and medium-molecular-weight polymers, and further separate the precipitate by physical means, leaving unreacted monomers and a small amount of low- and medium-molecular-weight polymers in the reaction system (water In phase), the precipitate is a high-molecular-weight polymer, and the content of low- and medium-molecular-weight polymer in the precipitate is relatively low.
  • the polymer can be directly dissolved in organic solvents such as NMP and used as a binder, or it can be neutralized or hydrolyzed by adding alkali After improving the hydrophilicity of the copolymer, the copolymer is uniformly dispersed in the water phase to obtain an aqueous adhesive.
  • the mechanical properties such as cohesion and adhesion of the obtained adhesive are significantly improved, so that the adhesive prepared by the precipitation has better bonding performance, and further reduces the adhesive The dosage can improve battery performance.
  • the battery binder of the present invention includes a polymer with both a hydrophilic unit and a hydrophobic unit; and in the polymer, the low- and medium-molecular-weight polymer accounts for less than 5 wt% of the total polymer.
  • the molecular weight of low-molecular-weight polymers is less than or equal to 100,000.
  • the battery binder of the present invention includes a polymer with both a hydrophilic unit and a hydrophobic unit; and in the polymer, a medium-low molecular weight polymer accounts for less than 5 wt% of the total polymer.
  • the medium-low molecular weight polymer The molecular weight is less than or equal to 100,000.
  • control the medium and low molecular weight polymers to account for 0.5wt%, 0.8wt%, 1wt%, 1.5wt%, 2wt%, 2.5wt%, 3wt%, 3.5wt%, 4wt%, 4.5 of the total polymer wt%, 5wt%, etc.
  • the weight percentage of hydrophilic units and hydrophobic units in the polymer is 30-70%:70-30%.
  • the weight percentages of hydrophilic units and hydrophobic units in the polymer are 30%: 70%, 35%: 65%, 40%: 60%, 42%: 58%, 45%: 55%, 47%. %: 53%, 50%: 50%, 51%: 49%, 55%: 45%, 58%: 42%, 60%: 40%, etc.
  • the weight percentage of the hydrophilic unit and the hydrophobic unit is 40-60%:60-40%.
  • the low to medium molecular weight polymer accounts for less than 2% of the total polymer. In a specific embodiment, the low-to-medium molecular weight polymer accounts for less than 1% of the total polymer.
  • the low-molecular-weight polymer accounts for less than 0.5 wt% of the total polymer, and the molecular weight of the low-molecular-weight polymer is ⁇ 50,000.
  • the low molecular weight polymer is controlled to account for 0.1 wt%, 0.2 wt%, 0.3 wt%, 0.4 wt%, 0.5 wt%, etc. of the total polymer.
  • the molecular weights mentioned in the present invention are all weight average molecular weights (Mw).
  • the medium and low molecular weight polymers of the present invention are polymers with a molecular weight of ⁇ 100,000.
  • the low-molecular-weight polymer of the present invention is a polymer with a molecular weight of less than 50,000.
  • the polymer is an amphiphilic copolymer, and the hydrophilic unit contains a carboxyl group or a sulfonic acid group.
  • the hydrophobic unit of the polymer is introduced by a lipophilic monomer, and the hydrophilic unit is introduced by a hydrophilic monomer, and the hydrophilic monomer contains a carboxyl group or a sulfonic acid group.
  • the amphiphilic polymer of the present invention can be obtained by copolymerizing a lipophilic monomer and a hydrophilic monomer.
  • R 1 is selected from -H or -CH 3 ;
  • R 2 is selected from ⁇ CN, ⁇ C 6 H 5 , ⁇ COOCH 3 , ⁇ COOCH 2 CH 3 , ⁇ COOCH 2 CH 2 CH 2 CH 3 , -COOC(CH 3 ) 3 , ⁇ COOCH 2 CH(CH 2 CH 3 )CH 2 CH 2 CH 2 CH 3 ⁇ -COOC 12 H 25 ⁇ -COO(CH 2 ) 17 CH 3 ⁇ COOCH 2 CH 2 OH, ⁇ COOCH 3 CHCH 2 OH, ⁇ COOCH 2 CHOHCH 3 , ⁇ OCOCH 3 or
  • R 3 is selected from -H, -CH 3 or -COOM 1 ;
  • M 1 includes H, Li, Na, K, Ca, Zn or Mg;
  • R 4 is selected from -H, -CH 3 or -COOM 2 ;
  • M 2 includes H, Li, Na, K, Ca, Zn or Mg;
  • R 5 is selected from ⁇ COOM 3 , ⁇ CH 2 COOM 3 , ⁇ COO(CH 2 ) 6 SO 3 M 3 , ⁇ CONH 2 , ⁇ CONHCH 3 , ⁇ CONHCH 2 CH 3 , ⁇ CON(CH 3 ) 2 , ⁇ CON(CH 2 CH 3 ) 2 , ⁇ CH2CHCONHCH 2 OH, ⁇ CH 2 CHCONHCH 2 CH 2 OH, ⁇ CONHC(CH 3 ) 2 CH 2 SO 3 H , -CH 2 SO 3 M or M 3 includes H, Li, Na, K, Ca, Zn, or Mg.
  • R 2 is selected from -CN, -C 6 H 5 , -COOCH 3 , -COOCH 2 CH 3 , -COOCH 2 CH 2 CH 2 CH 3 , -COOC(CH 3 ) 3 , -COOCH 2 CH(CH 2 CH 3 )CH 2 CH 2 CH 2 CH 3 , -COOC 12 H 25 , -COO(CH 2 ) 17 CH 3 ⁇ COOCH 2 CH 2 OH, ⁇ OCOCH 3 or
  • the lipophilic monomer includes acrylonitrile, methacrylonitrile, styrene, methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate , Cyclohexyl acrylate, isobornyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, vinyl acetate, methacrylonitrile, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methyl methacrylate At least one of 2-ethylhexyl acrylate, cyclohexyl methacrylate, isobornyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and glycidyl methacrylate .
  • the hydrophilic monomers include acrylic acid, acrylate, methacrylic acid, methacrylate, allyloxy hydroxypropyl sulfonic acid, allyloxy hydroxypropyl sulfonate, vinyl sulfonic acid, vinyl Sulfonate, 2-acrylamide-2-methylpropanesulfonic acid, propylene sulfonic acid, propylene sulfonate, methacrylic acid, methacrylic acid salt, N-vinylpyrrolidone, itaconic acid, coat At least one of konate, maleic acid, and maleate.
  • hydrophilic unit contains a carboxyl group or a sulfonic acid group, it is necessary to ensure that at least one hydrophilic monomer contains a carboxyhusulphonic acid group.
  • Monomers containing carboxyl or sulfonic acid groups can be adjusted for hydrophilicity to ensure that the polymer precipitates in water and becomes a salt form after adding lye, thereby enhancing the hydrophilicity and dissolving in water.
  • the hydrophilic monomer also includes acrylamide, N-methacrylamide, N-ethylacrylamide, N,N-dimethylacrylamide, N,N- At least one of diethylacrylamide, 2-methacrylamide, N-methylolacrylamide, N-hydroxyethyl acrylamide, and N-hydroxypropyl acrylamide.
  • the introduction of these amide hydrophilic monomers can provide other functions.
  • the polymer in the adhesive of the present invention is formed by copolymerizing at least one hydrophilic monomer and at least one lipophilic monomer.
  • the polymer is formed by copolymerizing a lipophilic monomer and a hydrophilic monomer.
  • the lipophilic monomer is acrylonitrile, and the hydrophilic monomer is acrylic acid.
  • the lipophilic monomer is methacrylonitrile, and the hydrophilic monomer is methacrylic acid.
  • the lipophilic monomer is hydroxyethyl acrylate, and the hydrophilic monomer is vinyl sulfonate.
  • the lipophilic monomer is cyclohexyl methacrylate, and the hydrophilic monomer is methacrylate.
  • the lipophilic monomer is vinyl acetate, and the hydrophilic monomer is methacrylic acid.
  • the lipophilic monomer is glycidyl methacrylate, and the hydrophilic monomer is itaconic acid.
  • the lipophilic monomer is 2-ethylhexyl acrylate, and the hydrophilic monomer is maleic acid.
  • the lipophilic monomer is hydroxyethyl methacrylate, and the hydrophilic monomer is vinyl sulfonic acid.
  • the lipophilic monomer is methacrylonitrile, and the hydrophilic monomer is 2-acrylamide-2-methylpropanesulfonic acid.
  • the lipophilic monomer is styrene, and the hydrophilic monomer is propylene sulfonic acid.
  • the lipophilic monomer is methyl acrylate, and the hydrophilic monomer is allyloxy hydroxypropyl sulfonic acid.
  • the lipophilic monomer is tert-butyl acrylate, and the hydrophilic monomer is methacrylic acid salt.
  • the polymer in the adhesive of the present invention is formed by copolymerizing a lipophilic monomer and a plurality of hydrophilic monomers.
  • the lipophilic monomer is acrylonitrile
  • the hydrophilic monomer is acrylic acid and methacrylic acid.
  • the lipophilic monomer is acrylonitrile
  • the hydrophilic monomer is acrylic acid and acrylamide.
  • the lipophilic monomer is methacrylonitrile
  • the hydrophilic monomer is acrylate, methacrylic acid, and N-methacrylamide.
  • the lipophilic monomer is styrene, and the hydrophilic monomer is acrylic acid, acrylate, methacrylic acid, methacrylate, and acrylamide.
  • the lipophilic monomer is methyl acrylate, and the hydrophilic monomer is vinylsulfonic acid, 2-acrylamide-2-methylpropanesulfonic acid, and itaconic acid.
  • the lipophilic monomer is and the hydrophilic monomer is.
  • the lipophilic monomer is n-butyl methacrylate, and the hydrophilic monomer is acrylic acid, acrylate and acrylamide.
  • the lipophilic monomer is tert-butyl acrylate, and the hydrophilic monomer is N,N-dimethylacrylamide, 2-methacrylamide, and maleic acid.
  • the lipophilic monomer is acrylonitrile, and the hydrophilic monomer is acrylate, methacrylic acid, methacrylate, acrylamide, N-methacrylamide, and N-ethylacrylamide.
  • the polymer in the adhesive of the present invention is copolymerized with a variety of lipophilic monomers and a hydrophilic monomer.
  • the lipophilic monomer is acrylonitrile, methacrylonitrile, styrene and methyl acrylate
  • the hydrophilic monomer is acrylic acid.
  • the lipophilic monomer is styrene, methyl acrylate, ethyl acrylate, and t-butyl acrylate
  • the hydrophilic monomer is methacrylic acid.
  • the lipophilic monomer is vinyl acetate, methacrylonitrile, methyl methacrylate, and ethyl methacrylate, and the hydrophilic monomer is allyloxy hydroxypropyl sulfonic acid.
  • the lipophilic monomer is cyclohexyl methacrylate, isobornyl methacrylate, and glycidyl methacrylate, and the hydrophilic monomer is maleic acid.
  • the lipophilic monomer is styrene, methyl acrylate, and hydroxypropyl acrylate, and the hydrophilic monomer is itaconic acid.
  • the lipophilic monomer is, and the hydrophilic monomer is allyloxy hydroxypropyl sulfonic acid.
  • the lipophilic monomer is hydroxypropyl acrylate, vinyl acetate, methacrylonitrile and methyl methacrylate, and the hydrophilic monomer is vinyl sulfonic acid.
  • the lipophilic monomer is styrene, methacrylonitrile, methyl methacrylate, and isobornyl methacrylate, and the hydrophilic monomer is propylene sulfonic acid.
  • the polymer in the adhesive of the present invention is copolymerized by a variety of lipophilic monomers and a variety of hydrophilic monomers.
  • the lipophilic monomers are acrylonitrile and butyl acrylate
  • the hydrophilic monomers are acrylic acid, N-vinylpyrrolidone and acrylamide.
  • the lipophilic monomers are methacrylonitrile, methyl acrylate and hydroxypropyl acrylate
  • the hydrophilic monomers are methacrylic acid and N-methacrylamide.
  • the lipophilic monomer is 2-ethylhexyl acrylate, cyclohexyl methacrylate and ethyl methacrylate
  • the hydrophilic monomer is 2-acrylamide-2-methyl Propanesulfonic acid, N,N-diethylacrylamide and itaconate.
  • the lipophilic monomers are ethyl acrylate, vinyl acetate and hydroxyethyl methacrylate
  • the hydrophilic monomers are acrylate, 2-methacrylamide and vinyl sulfonic acid. Salt.
  • the lipophilic monomer is styrene, 2-ethylhexyl methacrylate and hydroxypropyl methacrylate, and the hydrophilic monomer is maleic acid, N-vinylpyrrolidone and N-hydroxypropyl acryl.
  • the lipophilic monomers are 2-ethylhexyl acrylate, ethyl acrylate and isobornyl methacrylate, and the hydrophilic monomers are acrylic acid, methacrylic acid, and N-hydroxyethyl. Acrylic and acrylic acid.
  • the weight percentage of hydrophilic monomers and lipophilic monomers is 30-70%:70-30%.
  • the weight percentage of hydrophilic monomer and lipophilic monomer is 40-60%:60-40%.
  • the weight percentage of hydrophilic monomer and lipophilic monomer is 40%:60%; as another specific embodiment, the weight percentage of hydrophilic monomer and lipophilic monomer As another specific embodiment, the weight percentage of the hydrophilic monomer and lipophilic monomer is 50%:50%; as another specific embodiment, the hydrophilic monomer The weight percentage of lipophilic monomer is 55%:45%; as another specific embodiment, the weight percentage of hydrophilic monomer and lipophilic monomer is 60%:40%, etc.
  • the adhesive for the battery of the present invention as a product, can be solid, and can be used after adding a solvent to make it a glue during use, or can be a liquid product for direct use.
  • the binder for batteries further includes a solvent
  • the solvent is an organic solvent or water.
  • Organic solvents commonly used in this field are suitable for the present invention, such as NMP and the like.
  • the solvent is water. Adhesives that use water as solvent have the advantages of being safe, pollution-free, no need to recycle solvents, and simple operation.
  • the pH of the adhesive is 6-12.
  • the pH value is 6-12, the polymer mostly exists in the form of ionic polymer, which can increase its hydrophilic ability, so that it can be dissolved in water well.
  • the pH value can be adjusted by conventional methods.
  • lye is added to adjust the pH value.
  • the lye is an alkali metal hydroxide, such as sodium hydroxide solution, potassium hydroxide solution, etc., or sodium carbonate, Alkaline solutions such as ammonia or organic amines.
  • sodium hydroxide solution is used to adjust the pH.
  • the pH of the adhesive is 6.5-9.
  • the binder for batteries of the present invention is composed only of polymer and water, and there are no other additives in the binder.
  • the binder for a battery further contains an additive, and the additive includes at least one of a dispersant, a leveling wetting agent, a defoaming agent, and a softening agent.
  • the amount of these additives is the conventional amount in the field, for example, the additive content is less than 5% of the total weight of the water-based adhesive. In some specific embodiments, the content of the additives is 3% or less, 1% or less, 0.5% or less, 0.1% or less, 0% or the like of the total weight of the adhesive.
  • the dispersant can be an anionic dispersant such as oleate, sulfonate, carboxylate, etc., or a cationic dispersant such as ammonium salt, quaternary ammonium salt, pyridine salt, etc., or non-ionic dispersant.
  • Agents such as polyethers, acetylene glycols, CMC, etc., can also be supramolecular dispersants such as phosphate ester type high molecular polymers.
  • the leveling and wetting agent is a high boiling point solvent such as alcohols, ketones, esters or multifunctional high boiling point solvent mixtures, which can be long-chain resins such as acrylics, fluorocarbon resins, etc., or silicones Such as diphenyl polysiloxane, methyl phenyl polysiloxane and so on.
  • the defoaming agent can be organic small molecule alcohols or ethers such as ethanol, isopropanol, butanol, etc., or can be silicones, polyethers, such as polydimethylsiloxane, pentaerythritol ether, and the like.
  • Softeners are water-soluble organic solvents such as ethanol, propylene glycol, butylene glycol, glycerin, dimethyl sulfoxide, etc., with a freezing point of less than 100°C, or water-based polymers or emulsions with a glass transition temperature (Tg) of less than 100°C .
  • Tg glass transition temperature
  • the binder for the battery of the present invention can be prepared by a conventional method.
  • the hydrophilic monomer can exist in the form of acid or salt in water, but when it exists in the form of acid, its hydrophilic ability is low. Therefore, the adhesive for batteries of the present invention can be prepared by the following method: the monomers of the polymerization reaction are copolymerized in the water phase in the composition and form of low hydrophilicity, and the reaction product is in the form of precipitation due to insufficient hydrophilicity of the copolymer.
  • a water-dispersed slurry is formed, and the precipitate can be physically separated, and the copolymer precipitate is neutralized or hydrolyzed by adding alkali to improve the hydrophilicity of the copolymer, and the copolymer is uniformly dispersed in the water phase to obtain the battery binder.
  • carboxylic acid or sulfonic acid groups remain in the monomers of the polymerization reaction.
  • the precipitate is taken out and alkali is added to neutralize the carboxylic acid or sulfonic acid in the polymer to the corresponding carboxylic acid. Salt or sulfonate to improve its hydrophilicity, and then disperse it in the water phase.
  • the method can greatly reduce the content of residual monomers and low-molecular-weight polymers, so that the adhesive meets the requirement of less than 5% of low- and medium-molecular-weight polymers, thereby improving the cohesion and adhesion of the copolymer and other mechanical properties.
  • the following method is adopted to prepare the adhesive for batteries: add hydrophilic monomer, lipophilic monomer and water into the reaction vessel, and after heating to the reaction temperature under protective atmosphere, add The initiator initiates the reaction. After the reaction is completed, a solid-liquid mixture is obtained, the precipitate is taken, and the alkaline solution is added to neutralize the pH to 6-12 to obtain a battery adhesive, which is a transparent viscous liquid. Drying removes the moisture of the adhesive, and a solid adhesive product can be obtained.
  • reaction temperature can be selected according to different types of polymerized monomers, which can be determined by those skilled in the art through the types of monomers, types of initiators, and process conditions.
  • the additives can be added during the synthesis process, during or after neutralization by adding the lye.
  • the protective atmosphere in the present invention is an atmosphere that does not participate in the reaction, such as nitrogen, helium, neon, argon, krypton, or xenon.
  • the binder for the battery of the present invention can be used in the preparation of the battery to play a binding role, for example, in the preparation of the negative electrode sheet, the preparation of the positive electrode sheet or the preparation of the separator.
  • the battery binder is used in the preparation of lithium-ion battery pole pieces, and has high adhesion and can improve the performance of the battery.
  • the invention also provides a lithium ion battery negative electrode sheet.
  • the lithium ion battery negative electrode sheet of the present invention includes a negative electrode active material and a binder, wherein the binder is the battery binder of the present invention.
  • the negative electrode sheet of the present invention can be obtained by coating a negative electrode coating slurry on a current collector and drying it, wherein the negative electrode coating slurry includes a negative electrode active material, a conductive agent, a binder, a solvent, and the like.
  • the 90° peeling force of the negative electrode coating is ⁇ 160N/m; preferably the 90° peeling force of the negative electrode coating is 160-220N/m; more preferably the negative electrode coating
  • the 90° peeling force of the layer is 180-200 N/m.
  • the amount of the binder used in the present invention refers to the weight ratio of the solid component content of the binder to the negative electrode material and the conductive agent material in the negative electrode.
  • the negative electrode material is other than the solvent in the negative electrode coating slurry. Components, including negative active materials, conductive agents, binders, etc.
  • test method of 90° peel force in the present invention refers to ASTM D3330 of the American Society for Testing and Materials.
  • the invention also provides a lithium ion battery.
  • the lithium ion battery of the present invention includes a positive electrode, a negative electrode and an electrolyte, wherein the negative electrode is the negative electrode sheet of the lithium ion battery of the present invention.
  • the present invention also provides a battery pack, which includes a plurality of batteries according to the present invention.
  • the battery pack may include a battery module composed of multiple batteries.
  • the batteries can be connected in series or in parallel. In particular, connect them in series.
  • the hydrophilic monomers acrylic acid (AA), N-vinylpyrrolidone (NVP), acrylamide (AM) and the lipophilic monomers acrylonitrile (AN) and butyl acrylate (BA) are used in the water phase. Copolymerization to prepare a water-based binder for lithium-ion batteries.
  • the preparation method is as follows: add 5 parts of acrylamide, 8 parts of N-vinylpyrrolidone and 566 parts of distilled water into the reaction vessel, stir to dissolve, rotate at 300r/min; blow in nitrogen to drive oxygen for 30min; heat to 70°C, then add 38 parts of acrylic acid, 45 parts of acrylonitrile and 4 parts of butyl acrylate, until the temperature is constant at 70°C; then add 0.05 part of ammonium persulfate to initiate the reaction, after 9 hours of reaction, remove the precipitate, add lye to neutralize the pH to 6.5-9, The prepared transparent water-based binder for lithium ion batteries.
  • the hydrophilic monomers methacrylic acid, N-methacrylamide, and lipophilic monomers methacrylonitrile, methyl acrylate and hydroxypropyl acrylate are copolymerized in the water phase to prepare the water-based lithium ion battery. Adhesive.
  • the preparation method is as follows: add 7 parts of N-methacrylamide and 400 parts of distilled water into the reaction vessel, stir to dissolve; blow in nitrogen to drive oxygen for 30 minutes; heat to 65°C, then add 23 parts of methacrylic acid and 18 parts of acrylic acid Methyl ester, 31 parts of hydroxypropyl acrylate and 21 parts of methacrylonitrile, until the temperature rises to 65°C; then add ammonium persulfate initiator to initiate the reaction, after 22 hours of reaction, remove the precipitate, add lye to neutralize the pH to 6.5 ⁇ 9.
  • the molecular weight and molecular weight distribution were measured using the method of Example 1. Small molecules below 50,000 accounted for 0.4 wt%, low molecules below 100,000 accounted for 5 wt%, and polymers with a molecular weight above 500,000 accounted for 60 wt%.
  • the hydrophilic monomer 2-acrylamide-2-methylpropanesulfonic acid, N,N-diethylacrylamide, itaconic acid salt and the lipophilic monomer 2-ethylhexyl acrylate, Cyclohexyl methacrylate and ethyl methacrylate were copolymerized in the water phase to prepare an aqueous binder for lithium ion batteries.
  • the preparation method is as follows: add 18 parts of 2-acrylamide-2-methylpropanesulfonic acid, 22 parts of N,N-diethylacrylamide, 5 parts of itaconic acid and 400 parts of distilled water into the reaction vessel, stir to dissolve ; Then add 20 parts of 2-ethylhexyl acrylate, 12 parts of cyclohexyl methacrylate, 22 parts of ethyl methacrylate, blow in nitrogen to drive oxygen for 30 minutes; heat to 75 °C, add potassium persulfate initiator to initiate the reaction After 18 hours of reaction, the precipitate is taken out, and lye is added to neutralize the pH to 6.5-9 to prepare the water-based binder for lithium ion batteries with the above composition.
  • the molecular weight and molecular weight distribution were measured using the method of Example 1.
  • the small molecules below 50,000 accounted for 0.2% by weight, the low molecules below 100,000 accounted for 2% by weight, and the macromolecules above 500,000 accounted for 61% by weight.
  • hydrophilic monomers acrylate, 2-methacrylamide, vinyl sulfonate, and lipophilic monomers ethyl acrylate, vinyl acetate, and methacrylic acid-hydroxyethyl are copolymerized in the water phase.
  • a water-based binder for lithium-ion batteries was prepared.
  • the preparation method is: add 31 parts of acrylate, 12 parts of 2-methacrylamide, 12 parts of vinyl sulfonate and 400 parts of distilled water into the reaction vessel, stir and dissolve; then add 31 parts of ethyl acrylate and 9 parts of acetic acid Vinyl ester and 5 parts of methacrylic acid-hydroxyethyl, bubbling in nitrogen to drive oxygen for 30min; heating to 60°C, adding ammonium persulfate initiator to initiate the reaction, after reacting for 20h, take out the precipitate, add lye to neutralize the pH to 6.5 ⁇ 9.
  • the molecular weight and molecular weight distribution were measured using the method of Example 1. Small molecules below 50,000 accounted for 0.5 wt%, low molecules below 100,000 accounted for 1 wt%, and polymers with a molecular weight above 500,000 accounted for 70 wt%.
  • the hydrophilic monomer maleic acid, N-vinylpyrrolidone, N-hydroxypropyl acryl and the lipophilic monomer styrene, 2-ethylhexyl methacrylate, and hydroxypropyl methacrylate The ester is copolymerized in the water phase to prepare a water-based binder for lithium ion batteries.
  • the preparation method is as follows: add 3 parts of N-hydroxypropyl acryloyl and 400 parts of distilled water into the reaction vessel, stir to dissolve; then add 31 parts of maleic acid, 10 parts of propylene sulfonic acid, 18 parts of N-vinylpyrrolidone, 13 parts Parts of styrene, 12 parts of 2-ethylhexyl methacrylate and 13 parts of hydroxypropyl methacrylate, blow in nitrogen to drive oxygen for 30 minutes; heat to 55°C, add potassium persulfate initiator to initiate the reaction, take out after 25 hours of reaction The precipitate is added with lye to neutralize the pH to 6.5-9 to prepare the aqueous binder for lithium ion batteries with the above composition.
  • the molecular weight and molecular weight distribution were measured using the method of Example 1. Small molecules below 50,000 accounted for 0.6wt%, low molecules below 100,000 accounted for 1.4wt%, and polymers with a molecular weight of more than 500,000 accounted for 65wt% .
  • the hydrophilic monomers acrylic acid, methacrylic acid, N-hydroxyethyl acryl, propylene sulfonic acid and lipophilic monomers 2-ethylhexyl acrylate, ethyl acrylate, isobornyl methacrylate Copolymerization in the water phase to prepare a water-based binder for lithium ion batteries.
  • the preparation method is: add 8 parts of N-hydroxyethyl acryloyl, 9 parts of propylene sulfonic acid and 400 parts of distilled water into the reaction vessel, stir to dissolve; then add 13 parts of acrylic acid, 15 parts of methacrylic acid, and 30 parts of acrylic acid 2- Ethylhexyl, 15 parts of ethyl acrylate and 10 parts of isobornyl methacrylate, blow in nitrogen to drive oxygen for 30 minutes; heat to 67°C, add ammonium persulfate initiator to initiate the reaction, take out the precipitate after 23 hours of reaction, and add alkali
  • the pH of the liquid is neutralized to 6.5-9 to prepare an aqueous binder for lithium ion batteries with the above composition.
  • the molecular weight and molecular weight distribution were determined using the method of Example 1. Small molecules below 50,000 accounted for 0.2wt%, low molecules below 100,000 accounted for 4.5wt%, and polymers with a molecular weight above 500,000 accounted for 63wt% .
  • the preparation method is: add 28 parts of 2-acrylamide-2-methylpropanesulfonic acid, 32 parts of N,N-diethylacrylamide, 10 parts of itaconic acid and 400 parts of distilled water into the reaction vessel, stir to dissolve ; Then add 10 parts of 2-ethylhexyl acrylate, 12 parts of cyclohexyl methacrylate and 8 parts of ethyl methacrylate, blow in nitrogen to drive oxygen for 30min; heat to 73°C, add ammonium persulfate initiator to initiate the reaction After reacting for 19 hours, the precipitate is taken out, and lye is added to neutralize the pH to 6.5-9 to prepare the water-based binder for lithium ion batteries with the above composition.
  • the molecular weight and molecular weight distribution were determined using the method of Example 1. Small molecules below 50,000 accounted for 0.3wt%, low molecules below 100,000 accounted for 3.3wt%, and polymers with a molecular weight of more than 500,000 accounted for 66wt% .
  • the hydrophilic monomers acrylic acid (AA), N-vinylpyrrolidone (NVP), acrylamide (AM) and the lipophilic monomers acrylonitrile (AN) and butyl acrylate (BA) are in the water phase. Copolymerization to prepare a water-based binder for lithium-ion batteries.
  • the preparation method is as follows: add 5 parts of acrylamide, 8 parts of N-vinylpyrrolidone and 566 parts of distilled water into the reaction vessel, stir to dissolve at a speed of 300r/min; add 38 parts of acrylic acid, add lye to adjust the pH, and then pass in Purge oxygen with nitrogen for 30 minutes; after heating to 70°C, add 45 parts of acrylonitrile and 4 parts of butyl acrylate until the temperature is constant at 70°C; then add 0.21 part of ammonium persulfate to initiate the reaction, and add 0.21 part of ammonium persulfate every 3h The conversion is promoted, after 24 hours of reaction, lye is added to neutralize the pH to 6.5-9, and the water-based binder for lithium ion batteries with the above composition is prepared.
  • the molecular weight and molecular weight distribution were determined using the method of Example 1. The results are shown in Figure 1. Small molecules with a molecular weight of less than 50,000 accounted for 5wt%, low molecules with a molecular weight of less than 100,000 accounted for 10wt%, and high molecular weights with a molecular weight of 50w or more Molecules account for 39%.
  • the adhesive of Comparative Example 3 is the product prepared in Example 4 of Patent ZL01108511.8.
  • the hydrophilic monomers acrylic acid, N-vinylpyrrolidone, N-hydroxyethyl acryloyl and lipophilic monomers acrylonitrile and hydroxypropyl acrylate were copolymerized in the water phase to prepare a water-based adhesive for lithium ion batteries. mixture.
  • the preparation method is as follows: add 22 parts of N-hydroxyethyl acryloyl and 300 parts of distilled water to the reaction vessel, stir to dissolve; add 30 parts of acrylic acid and 15 parts of N-vinylpyrrolidone, and then blow in nitrogen to drive oxygen for a certain period of time; heating After reaching 66°C, add 25 parts of acrylonitrile and 8 parts of hydroxypropyl acrylate; then add a certain amount of potassium persulfate to initiate the reaction, take out the precipitate after 13 hours of reaction, add lye to neutralize the pH to 6.5-9, and prepare the above components Water-based binder for lithium-ion batteries.
  • the molecular weight and molecular weight distribution were determined using the method of Example 1. Small molecules below 50,000 accounted for 3.1wt%, low molecules below 100,000 accounted for 8.4wt%, and polymers with a molecular weight above 500,000 accounted for 48wt% .
  • the hydrophilic monomer 2-acrylamide-2-methylpropanesulfonic acid, acrylic acid and the lipophilic monomer 2-ethylhexyl acrylate and cyclohexyl methacrylate were copolymerized in the water phase.
  • Water-based binder for lithium ion batteries were used.
  • the preparation method is as follows: add 150 parts of distilled water, 15 parts of 2-acrylamide-2-methylpropanesulfonic acid and 5 parts of acrylic acid into the reaction vessel, add lye to adjust the pH; then add 50 parts of 2-ethylhexyl acrylate And 30 parts of cyclohexyl methacrylate, and then bubbling in nitrogen to drive oxygen for a certain period of time; after heating to 75°C, adding a certain amount of ammonium persulfate to initiate the reaction, and reacting for 17 hours to obtain the water-based binder for lithium ion batteries with the above composition.
  • the adhesive is an emulsion and needs to be used with CMC, and its performance is similar to SBR.
  • the negative pole piece was prepared, and the 90° peeling force was measured.
  • the specific methods and results are as follows:
  • Pole piece adhesion test The specific method refers to the ASTM ⁇ D3330 test method, equipment and tools: YISIDA mechanical tester (DS2-50N); 3M tape: (Scotch 600/25mm width). The specific results are shown in Table 2.
  • the preparation method of the negative pole piece is the same as that of Test Example 1.
  • the electrode prepared above and the above separator were used to prepare a battery with a specification of 406379.
  • LiPF6 lithium hexafluorophosphate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Secondary Cells (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

公开了一种电池用粘合剂、锂离子电池负极片以及锂离子电池。该粘合剂,包含同时带有亲水单元和疏水单元的聚合物;且该聚合物中,中低分子量聚合物占聚合物总量的5wt%以下,所述中低分子量聚合物的分子量≤10万。该粘合剂,其粘合力强,制备方法简单成本低,与现有的负极片粘合剂用量2.5~5%相比,粘合剂用量1.5~2%时,不仅能体现出更高的粘接力,还能提升活性材料的比例,从而增加电池的能量密度。

Description

电池用粘合剂、锂离子电池负极片以及锂离子电池 技术领域
本发明涉及电池用粘合剂、锂离子电池负极片以及锂离子电池,属于锂离子电池技术领域。
背景技术
作为最理想的移动电源,锂离子电池具有能量密度高、体积小、寿命长、无污染等其他电池不可比拟的优点,广泛应用于电动车、航天航空、通讯以及各种便携式的电器中。
锂离子电池主要由电极片(包括正极片和负极片)、隔膜和电解液等组成;而电极片均是由电极活性材料粉末、粘合剂、导电剂以及集流体组成。在制备锂离子电池电极片时,通常是把电极活性材料、导电剂和粘合剂溶液混合研磨均匀成为浆料后,再涂布于作为集流体的铜箔、铝箔上,经干燥、碾压等工艺处理即得。可见,粘合剂在电极片的制备中具有关键的作用。
而水性粘合剂具有安全无污染,且无需回收溶剂、操作简单等优点,成为了锂离子电池电极粘合剂的首选。目前,常用的水性粘合剂为SBR(丁苯橡胶乳液)、LA132、LA133等。
SBR水性粘合剂以水为负极活性材料粉末的分散介质,对环境友好、无污染,对生产操作人员物危害。但是,SBR由于材料组份化学性能的限制,SBR作为锂离子电池负极活性材料粉末的粘合剂,其电池的综合性能已无法满足日益提高的电池品质的应用要求。
中国专利申请ZL01108511.8和ZL01108524.X均为本申请发明人的早期研究,公开了作为锂离子电池负极活性材料粉末的粘合剂,采用这些粘合剂制作的锂离子电池具有优良的性能。但是,该粘合剂由于粘合力有限,在用量比较少时,粘接力稍差,该粘结剂一般使用量为3~4%(比例以固体计),当用量降低时,电极片不能满足较高的成品率要求。
发明内容
针对以上缺陷,本发明解决的技术问题是提供一种粘合力较强的电池用粘合剂。
本发明电池用粘合剂,包含同时带有亲水单元和疏水单元的水溶性的聚合物;且 该聚合物中,中低分子量聚合物占聚合物总量的5wt%以下,所述中低分子量聚合物的分子量≤10万。
作为一种实施方式,聚合物中亲水单元和疏水单元的重量百分比为30~70%:70~30%。作为一种具体的实施方式,亲水单元和疏水单元的重量百分比为40~60%:60~40%。
作为一种实施方式,中低分子量聚合物占聚合物总量的2%以下。在一个具体的实施例中,中低分子量聚合物占聚合物总量的1%以下。
作为优选方案,低分子量聚合物占聚合物总量的0.5wt%以下,所述低分子量聚合物的分子量≤5万。
作为一种实施方式,亲水单元中含有羧基或磺酸基。
作为一种实施方式,所述疏水单元由亲油性单体引入,所述亲水单元由亲水性单体引入。
作为一种实施方式,亲油性单体的结构式为CH 2=CR 1R 2,其中,R 1选自─H或─CH 3;R 2选自─CN、─C 6H 5、─COOCH 3、─COOCH 2CH 3、─COOCH 2CH 2CH 2CH 3、-COOC(CH 3) 3、─COOCH 2CH(CH 2CH 3)CH 2CH 2CH 2CH 3、-COOC 12H 25、-COO(CH 2) 17CH 3
Figure PCTCN2020106529-appb-000001
─COOCH 2CH 2OH、─COOCH 3CHCH 2OH、─COOCH 2CHOHCH 3、─OCOCH 3
Figure PCTCN2020106529-appb-000002
亲水性单体的结构式为:CHR 3=CR 4R 5,其中,R 3选自─H、─CH 3或─COOM 1;M 1包括H、Li、Na、K、Ca、Zn或Mg;R 4选自─H、─CH 3或─COOM 2;M 2包括H、Li、Na、K、Ca、Zn或Mg;R 5选自─COOM 3、─CH 2COOM 3、─COO(CH 2) 6SO 3M 3、─CONH 2、─CONHCH 3
Figure PCTCN2020106529-appb-000003
─CONHCH 2CH 3、─CON(CH 3) 2、─CON(CH 2CH 3) 2、─CH2CHCONHCH 2OH、─CH 2CHCONHCH 2CH 2OH、─CONHC(CH 3) 2CH 2SO 3H、-CH 2SO 3M或
Figure PCTCN2020106529-appb-000004
M 3包括H、Li、Na、K、Ca、Zn或Mg。
作为一种实施方式,R 2选自─CN、─C 6H 5、─COOCH 3、─COOCH 2CH 3、─COOCH 2CH 2CH 2CH 3、-COOC(CH 3) 3、─COOCH 2CH(CH 2CH 3)CH 2CH 2CH 2CH 3、-COOC 12H 25、-COO(CH 2) 17CH 3
Figure PCTCN2020106529-appb-000005
─COOCH 2CH 2OH、─OCOCH 3
Figure PCTCN2020106529-appb-000006
作为一种具体的实施方式,所述亲油性单体为丙烯腈、甲基丙烯腈、苯乙烯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丁酯、丙烯酸叔丁酯、丙烯酸2-乙基己酯、丙烯酸环己基酯、丙烯酸异冰片酯、丙烯酸羟乙酯、丙烯酸羟丙酯、乙酸乙烯酯、甲基丙烯腈、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸环己基酯、甲基丙烯酸异冰片酯、甲基丙烯酸-羟乙酯、甲基丙烯酸羟丙酯、甲基丙烯酸环氧丙酯中的至少一种;所述亲水性单体包括丙烯酸、丙烯酸盐、甲基丙烯酸、甲基丙烯酸盐、烯丙氧基羟丙基磺酸、烯丙氧基羟丙基磺酸盐、乙烯基磺酸、乙烯基磺酸盐、2-丙烯酰胺-2-甲基丙磺酸、丙烯磺酸、丙烯磺酸盐、甲基丙烯磺酸、甲基丙烯磺酸盐、N-乙烯基吡咯烷酮、衣康酸、衣康酸盐、马来酸、马来酸盐中的至少一种。
进一步的,所述亲水性单体还包括丙烯酰胺、N-甲基丙烯酰胺、N-乙基丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-二乙基丙烯酰胺、2-甲基丙烯酰胺、N-羟甲基丙烯酰胺、N-羟乙基丙烯酰、N-羟丙基丙烯酰中的至少一种。
在一个具体实施例中,所述亲油性单体为丙烯腈和丙烯酸丁酯,亲水性单体为丙烯酸、N-乙烯基吡咯烷酮和丙烯酰胺。在一个具体实施例中,所述亲油性单体为甲基丙烯腈、丙烯酸甲酯和丙烯酸羟丙酯,亲水性单体为甲基丙烯酸和N-甲基丙烯酰胺。在一个具体实施例中,所述亲油性单体为丙烯酸2-乙基己酯、甲基丙烯酸环己基酯和甲基丙烯酸乙酯,亲水性单体为2-丙烯酰胺-2-甲基丙磺酸、N,N-二乙基丙烯酰胺和衣康酸盐。在一个具体实施例中,所述亲油性单体为丙烯酸乙酯、乙酸乙烯酯和甲基丙烯酸-羟乙酯,亲水性单体为丙烯酸盐、2-甲基丙烯酰胺和乙烯基磺酸盐。在一个具体实施例中,所述亲油性单体为苯乙烯、甲基丙烯酸2-乙基己酯和甲基丙烯酸羟丙酯,亲水性单体为马来酸、N-乙烯基吡咯烷酮和N-羟丙基丙烯酰。在一个具体实施例中,所述亲油性单体为丙烯酸2-乙基己酯、丙烯酸乙酯和甲基丙烯酸异冰片酯,亲水性单 体为丙烯酸、甲基丙烯酸、N-羟乙基丙烯酰和丙烯磺酸。
进一步,亲水性单体、亲油性单体的重量百分比为30~70%:70~30%。在一些实施例中,亲水性单体、亲油性单体的重量百分比为40~60%:60~40%。
作为一种实施方式,该电池用粘合剂中还包含溶剂,所述溶剂为有机溶剂或水。
作为一种具体实施方式,所述溶剂为水。
进一步的,溶剂为水的粘合剂的pH值为6~12;在一些具体实施方式中,溶剂为水的粘合剂的pH值为6.5~9。
作为一种实施方式,该电池用粘合剂中还包含添加剂,所述添加剂包括分散剂、流平润湿剂、消泡剂、增柔剂中的至少一种。
本发明还提供溶剂为水的电池用粘合剂的制备方法。
电池用粘合剂的制备方法,包括如下步骤:将亲水性单体、亲油性单体和水在保护气氛下,加热至反应温度后,加入引发剂引发反应,得到固液混合物,然后取沉淀,中和,得到电池用粘合剂。
本发明还提供本发明所述电池用粘合剂在制备锂离子电池负极片中的应用。
本发明还提供本发明所述的电池用粘合剂在制备锂离子电池极片中的应用。
本发明电池用粘合剂,其粘合力高,可应用在锂离子电池极片的制备中,提高电池的性能。
本发明还提供一种锂离子电池负极片。
本发明所述锂离子电池负极片,包括负极活性材料和粘合剂,其中,所述粘合剂为本发明所述电池用粘合剂。
本发明还提供一种锂离子电池。
本发明锂离子电池,包括正极、负极和电解液,其中,所述负极为本发明所述的锂离子电池负极片。
本发明还提供一种电池组,包括若干个本发明所述的电池。
与现有技术相比,本发明具有如下有益效果:
本发明的粘合剂,其粘合力强,制备方法简单成本低,与现有的负极片粘合剂用量2.5~5%相比,本发明的粘合剂用量1.5~2%时,不仅能体现出更高的粘接力,还能提升活性材料(负极材料)的比例,从而增加电池的能量密度。
附图说明
图1为本发明实施例1和对比例1的粘合剂的分子量测试结果。
图2为采用本发明实施例1和对比例1、2的粘合剂制备的电池的循环性能。
图3为采用本发明实施例1和对比例1、2的粘合剂制备的电池的低温放电结果。
具体实施方式
现有电池用水性粘合剂,虽然也是含有亲水单元和疏水单元的两亲性共聚物,多是采用直接聚合方法进行生产,聚合反应后直接得到粘合剂产品,该产品为水乳液或溶液。而本领域公知,聚合后如果存在残留单体的话,将会在后续电池生产时产生环境污染和从业人员职业健康问题。因此,现有的聚合反应均是极大限度的将单体完全聚合。而随着聚合反应的进行,单体聚合消耗后浓度降低,由于聚合物分子链长短与单体浓度呈正比,在聚合反应的后期,不可避免的将会生成一些中低分子量链段。而在反应完成后,这些中低分子量链段在工业生产上无法分离,将会留在聚合物中,对粘合剂性能产生影响,影响其粘结性能以及采用该粘合剂制备的电池的性能。
而本发明发明人研究后发现,可根据pH值的不同,亲水性单体在水中以酸或盐的形式存在,而以酸的形式存在时,其亲水能力较低。如果将聚合反应的单体以低亲水能力组成在水相中共聚,反应产物将会因亲水能力不足,析出沉淀,形成水、残留单体和沉淀物的混合物。此时终止聚合反应,将极大程度的降低中低分子量聚合物的形成,而进一步的通过物理方式分离出沉淀,将未反应的单体以及少量的中低分子量聚合物留在反应体系(水相)中,该沉淀为高分子量聚合物,沉淀中的中低分子量聚合物含量较低,该聚合物可直接溶解在NMP等有机溶剂中作为粘合剂使用,也可以加碱中和或水解,提高共聚物亲水能力后,共聚物均匀分散于水相中得到水性粘合剂。
而所得粘合剂由于中低分子量聚合物含量的降低,其内聚力和粘合力等力学性能显著提高,使得采用该沉淀制备得到的粘合剂具有较好的粘结性能,进一步降低粘合剂的用量,提高电池性能。
基于此,本发明的电池用粘合剂,包含同时带有亲水单元和疏水单元的聚合物;且该聚合物中,中低分子量聚合物占聚合物总量的5wt%以下,所述中低分子量聚合物的分子量≤10万。当中低分子量聚合物的含量较低时,粘合剂的粘合性能以及使用该粘合剂制备的电池性能较佳。
本发明电池用粘合剂,包含同时带有亲水单元和疏水单元的聚合物;且该聚合物中,中低分子量聚合物占聚合物总量的5wt%以下,所述中低分子量聚合物的分子量 ≤10万。
作为一些实施方式,控制中低分子量聚合物占聚合物总量的0.5wt%、0.8wt%、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%、4.5wt%、5wt%等。
作为一种实施方式,聚合物中亲水单元和疏水单元的重量百分比为30~70%:70~30%。
作为具体的实施例,聚合物中亲水单元和疏水单元的重量百分比为30%:70%、35%:65%、40%:60%、42%:58%、45%:55%、47%:53%、50%:50%、51%:49%、55%:45%、58%:42%、60%:40%等。
作为一种实施方式,亲水单元和疏水单元的重量百分比为40~60%:60~40%。
在一个实施方式中,中低分子量聚合物占聚合物总量的2%以下。在具体的实施方式中,中低分子量聚合物占聚合物总量的1%以下。
作为优选方案,在控制中低分子量聚合物的同时,还需控制分子量5万以下的低分子聚合物的含量。作为一种实施方式,低分子量聚合物占聚合物总量的0.5wt%以下,所述低分子量聚合物的分子量≤5万。
作为一些具体的实施方式,控制低分子量聚合物占聚合物总量的0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%等。
本发明所述的分子量均为重均分子量(Mw)。本发明的分子量均采用凝胶色谱法测定,测试设备型号:Waters Alliance E2695。测试条件:色谱柱Waters StyRagel HR 3、4、5(水)三柱串联;流动相Buffer pH=7.2,3mol/L的NaCl溶液;标准品聚丙烯酸钠PAA,CAS号9003-04-7,分子量2800;11500;193800;392600;585400;750000;804700;1310000;2250000(应用以上9个不同分子量的标准样品做标准曲线),购自American Polymer Standards Corporation,温度0.6ml/min。采用不同的色谱柱以及标准品测定的分子量会有不同,误差最多不超过20%。
本发明所述的中低分子量聚合物为分子量≤10万的聚合物。
本发明所述的低分子聚合物为分子量≤5万的聚合物。
由于具有疏水单元和亲水单元,该聚合物为两亲性共聚物,所述亲水单元中含有羧基或磺酸基。优选的,聚合物的疏水单元由亲油性单体引入,亲水单元由亲水性单体引入,所述亲水性单体中包含有羧基或磺酸基。可以由亲油性单体和亲水性单体共 聚得到本发明的两亲性聚合物。
作为一些具体的实施方式,亲油性单体的结构式为CH 2=CR 1R 2,其中,
R 1选自─H或─CH 3
R 2选自─CN、─C 6H 5、─COOCH 3、─COOCH 2CH 3、─COOCH 2CH 2CH 2CH 3、-COOC(CH 3) 3、─COOCH 2CH(CH 2CH 3)CH 2CH 2CH 2CH 3、-COOC 12H 25、-COO(CH 2) 17CH 3
Figure PCTCN2020106529-appb-000007
─COOCH 2CH 2OH、─COOCH 3CHCH 2OH、─COOCH 2CHOHCH 3、─OCOCH 3
Figure PCTCN2020106529-appb-000008
亲水性单体的结构式为:CHR 3=CR 4R 5,其中,
R 3选自─H、─CH 3或─COOM 1;M 1包括H、Li、Na、K、Ca、Zn或Mg;
R 4选自─H、─CH 3或─COOM 2;M 2包括H、Li、Na、K、Ca、Zn或Mg;
R 5选自─COOM 3、─CH 2COOM 3、─COO(CH 2) 6SO 3M 3、─CONH 2、─CONHCH 3
Figure PCTCN2020106529-appb-000009
─CONHCH 2CH 3、─CON(CH 3) 2、─CON(CH 2CH 3) 2、─CH2CHCONHCH 2OH、─CH 2CHCONHCH 2CH 2OH、─CONHC(CH 3) 2CH 2SO 3H、-CH 2SO 3M或
Figure PCTCN2020106529-appb-000010
M 3包括H、Li、Na、K、Ca、Zn或Mg。
在一些实施例中,R 2选自─CN、─C 6H 5、─COOCH 3、─COOCH 2CH 3、─COOCH 2CH 2CH 2CH 3、-COOC(CH 3) 3、─COOCH 2CH(CH 2CH 3)CH 2CH 2CH 2CH 3、-COOC 12H 25、-COO(CH 2) 17CH 3
Figure PCTCN2020106529-appb-000011
─COOCH 2CH 2OH、─OCOCH 3
Figure PCTCN2020106529-appb-000012
在具体的实施例中,所述亲油性单体包括丙烯腈、甲基丙烯腈、苯乙烯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丁酯、丙烯酸叔丁酯、丙烯酸2-乙基己酯、丙烯酸环己基酯、丙烯酸异冰片酯、丙烯酸羟乙酯、丙烯酸羟丙酯、乙酸乙烯酯、甲基丙烯腈、 甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸环己基酯、甲基丙烯酸异冰片酯、甲基丙烯酸-羟乙酯、甲基丙烯酸羟丙酯、甲基丙烯酸环氧丙酯中的至少一种。
所述亲水性单体包括丙烯酸、丙烯酸盐、甲基丙烯酸、甲基丙烯酸盐、烯丙氧基羟丙基磺酸、烯丙氧基羟丙基磺酸盐、乙烯基磺酸、乙烯基磺酸盐、2-丙烯酰胺-2-甲基丙磺酸、丙烯磺酸、丙烯磺酸盐、甲基丙烯磺酸、甲基丙烯磺酸盐、N-乙烯基吡咯烷酮、衣康酸、衣康酸盐、马来酸、马来酸盐中的至少一种。
由于亲水单元中含有羧基或磺酸基,因此,需保证至少一种亲水性单体含有羧基胡磺酸基。含羧基或磺酸基的单体可以进行亲水能力调整,保证该聚合物在水中沉淀,而在加入碱液后变为盐的形式,从而提高亲水能力使其溶解在水中。
在本发明一个具体的实施方式中,所述亲水性单体还包括丙烯酰胺、N-甲基丙烯酰胺、N-乙基丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-二乙基丙烯酰胺、2-甲基丙烯酰胺、N-羟甲基丙烯酰胺、N-羟乙基丙烯酰、N-羟丙基丙烯酰中的至少一种。引入这些酰胺类亲水单体,可以提供其他功能。
本发明粘合剂中的聚合物,由至少一种亲水性单体和至少一种亲油性单体共聚而成。作为一种实施方式,该聚合物由一种亲油性单体和一种亲水性单体共聚而成。在本发明的一个具体实施例中,亲油性单体为丙烯腈,亲水性单体为丙烯酸。在一个具体实施例中,亲油性单体为甲基丙烯腈,亲水性单体为甲基丙烯酸。在一个具体实施例中,亲油性单体为丙烯酸羟乙酯,亲水性单体为乙烯基磺酸盐。在一个具体实施例中,亲油性单体为甲基丙烯酸环己基酯,亲水性单体为甲基丙烯酸盐。在一个具体实施例中,亲油性单体为乙酸乙烯酯,亲水性单体为甲基丙烯磺酸。在一个具体实施例中,亲油性单体为甲基丙烯酸环氧丙酯,亲水性单体为衣康酸。在一个具体实施例中,亲油性单体为丙烯酸2-乙基己酯,亲水性单体为马来酸。在一个具体实施例中,亲油性单体为甲基丙烯酸-羟乙酯,亲水性单体为乙烯基磺酸。在一个具体实施例中,亲油性单体为甲基丙烯腈,亲水性单体为2-丙烯酰胺-2-甲基丙磺酸。在一个具体实施例中,亲油性单体为苯乙烯,亲水性单体为丙烯磺酸。在一个具体实施例中,亲油性单体为丙烯酸甲酯,亲水性单体为烯丙氧基羟丙基磺酸。在一个具体实施例中,亲油性单体为丙烯酸叔丁酯,亲水性单体为甲基丙烯磺酸盐。
作为另一种实施方式,本发明粘合剂中的聚合物,由一种亲油性单体和多种亲水 性单体共聚而成。在一个具体实施例中,亲油性单体为丙烯腈,亲水性单体为丙烯酸和甲基丙烯酸。在一个具体实施例中,亲油性单体为丙烯腈,亲水性单体为丙烯酸和丙烯酰胺。在一个具体实施例中,亲油性单体为甲基丙烯腈,亲水性单体为丙烯酸盐、甲基丙烯酸和N-甲基丙烯酰胺。在一个具体实施例中,亲油性单体为苯乙烯,亲水性单体为丙烯酸、丙烯酸盐、甲基丙烯酸、甲基丙烯酸盐和丙烯酰胺。在一个具体实施例中,亲油性单体为丙烯酸甲酯,亲水性单体为乙烯基磺酸、2-丙烯酰胺-2-甲基丙磺酸和衣康酸。在一个具体实施例中,亲油性单体为,亲水性单体为。在一个具体实施例中,亲油性单体为甲基丙烯酸正丁酯,亲水性单体为丙烯酸、丙烯酸盐和丙烯酰胺。在一个具体实施例中,亲油性单体为丙烯酸叔丁酯,亲水性单体为N,N-二甲基丙烯酰胺、2-甲基丙烯酰胺和马来酸。在一个具体实施例中,亲油性单体为丙烯腈,亲水性单体为丙烯酸盐、甲基丙烯酸、甲基丙烯酸盐、丙烯酰胺、N-甲基丙烯酰胺和N-乙基丙烯酰胺。
作为另一种实施方式,本发明粘合剂中的聚合物,由多种亲油性单体和一种亲水性单体共聚而成。在一个具体实施例中,亲油性单体为丙烯腈、甲基丙烯腈、苯乙烯和丙烯酸甲酯,亲水性单体为丙烯酸。在一个具体实施例中,亲油性单体为苯乙烯、丙烯酸甲酯、丙烯酸乙酯和丙烯酸叔丁酯,亲水性单体为甲基丙烯酸。在一个具体实施例中,亲油性单体为乙酸乙烯酯、甲基丙烯腈、甲基丙烯酸甲酯和甲基丙烯酸乙酯,亲水性单体为烯丙氧基羟丙基磺酸。在一个具体实施例中,亲油性单体为甲基丙烯酸环己基酯、甲基丙烯酸异冰片酯、和甲基丙烯酸环氧丙酯,亲水性单体为马来酸。在一个具体实施例中,亲油性单体为苯乙烯、丙烯酸甲酯和丙烯酸羟丙酯,亲水性单体为衣康酸。在一个具体实施例中,亲油性单体为,亲水性单体为烯丙氧基羟丙基磺酸。在一个具体实施例中,亲油性单体为丙烯酸羟丙酯、乙酸乙烯酯、甲基丙烯腈和甲基丙烯酸甲酯,亲水性单体为乙烯基磺酸。在一个具体实施例中,亲油性单体为苯乙烯、甲基丙烯腈、甲基丙烯酸甲酯和甲基丙烯酸异冰片酯,亲水性单体为丙烯磺酸。
作为另一种实施方式,本发明粘合剂中的聚合物,由多种亲油性单体和多种亲水性单体共聚而成。在一个具体实施例中,所述亲油性单体为丙烯腈和丙烯酸丁酯,亲水性单体为丙烯酸、N-乙烯基吡咯烷酮和丙烯酰胺。在一个具体实施例中,所述亲油性单体为甲基丙烯腈、丙烯酸甲酯和丙烯酸羟丙酯,亲水性单体为甲基丙烯酸和N-甲基丙烯酰胺。在一个具体实施例中,所述亲油性单体为丙烯酸2-乙基己酯、甲基丙 烯酸环己基酯和甲基丙烯酸乙酯,亲水性单体为2-丙烯酰胺-2-甲基丙磺酸、N,N-二乙基丙烯酰胺和衣康酸盐。在一个具体实施例中,所述亲油性单体为丙烯酸乙酯、乙酸乙烯酯和甲基丙烯酸-羟乙酯,亲水性单体为丙烯酸盐、2-甲基丙烯酰胺和乙烯基磺酸盐。在一个具体实施例中,所述亲油性单体为苯乙烯、甲基丙烯酸2-乙基己酯和甲基丙烯酸羟丙酯,亲水性单体为马来酸、N-乙烯基吡咯烷酮和N-羟丙基丙烯酰。在一个具体实施例中,所述亲油性单体为丙烯酸2-乙基己酯、丙烯酸乙酯和甲基丙烯酸异冰片酯,亲水性单体为丙烯酸、甲基丙烯酸、N-羟乙基丙烯酰和丙烯磺酸。
作为一个实施方式,亲水性单体、亲油性单体的重量百分比为30~70%:70~30%。作为一个具体的实施方式,亲水性单体、亲油性单体的重量百分比为40~60%:60~40%。
作为一种具体的实施方式,亲水性单体、亲油性单体的重量百分比为40%:60%;作为另一种具体的实施方式,亲水性单体、亲油性单体的重量百分比为45%:55%;作为另一种具体的实施方式,亲水性单体、亲油性单体的重量百分比为50%:50%;作为另一种具体的实施方式,亲水性单体、亲油性单体的重量百分比为55%:45%;作为另一种具体的实施方式,亲水性单体、亲油性单体的重量百分比为60%:40%等。
本发明电池用粘合剂,作为产品,可以为固体,在使用时加入溶剂使其成为胶水后使用,也可以为液体产品,直接使用。
作为一种实施方式,所述电池用粘合剂中还包含溶剂,所述溶剂为有机溶剂或水。
本领域常用的有机溶剂均适用于本发明,比如NMP等。
作为优选的实施方案,所述溶剂为水。以水为溶剂的粘合剂,具有安全无污染,且无需回收溶剂、操作简单等优点。
作为一种实施方式,所述粘合剂的pH值为6~12。在pH值为6~12时,聚合物多以离子聚合物的形式存在,可以增加其亲水能力,从而很好的溶解在水中。可以采用常规方法进行调节pH值,作为具体实施方式,加入碱液调节pH值,所述碱液为碱金属氢氧化物,比如氢氧化钠溶液、氢氧化钾溶液等,也可以为碳酸钠、氨水或者有机胺等碱性溶液。在一个具体的实施例中,采用氢氧化钠溶液调节pH值。在一个具体的实施方式中,所述粘合剂的pH值为6.5~9。
作为一种实施方式,本发明电池用粘合剂,仅由聚合物和水组成,该粘合剂中没有其他添加剂。
作为另一种实施方式,电池用粘合剂中还包含添加剂,所述添加剂包括分散剂、流平润湿剂、消泡剂、增柔剂中的至少一种。
这些添加剂的量为本领域的常规用量,比如,添加剂含量为水型粘合剂总重量的5%以下。在一些具体的实施方式中,添加剂的含量为粘合剂总重量的3%以下,1%以下,0.5%以下,0.1%以下,0%等等。
其中,分散剂可以为阴离子型分散剂如油酸盐、磺酸盐、羧酸盐等,也可为阳离子型分散剂如铵盐、季铵盐、吡啶盐等,也可为非离子型分散剂如聚醚类、炔二醇类、CMC等,也可为超分子分散剂如磷酸酯型的高分子聚合物。通过添加分散剂,可以在制备成涂覆浆料时,提高其分散性能。
所述流平润湿剂为高沸点溶剂如醇类、酮类、酯类或多官能团的高沸点溶剂混合物,可为长链树脂型如丙烯酸类、氟碳树脂类等,也可为有机硅类如二苯基聚硅氧烷、甲基苯基聚硅氧烷等。通过这些流平润湿剂,可以提高浆料的平滑性,便于使用。
消泡剂可为有机小分子醇或醚如乙醇、异丙醇、丁醇等,也可为有机硅类、聚醚类、如聚二甲基硅氧烷、季戊四醇醚等。
增柔剂为凝固点小于100℃的与水互溶的有机溶剂如乙醇、丙二醇、丁二醇、甘油、二甲基亚砜等,或玻璃化转变温度(Tg)小于100℃的水性聚合物或乳液。增柔剂能够能增加粘合剂膜层的柔韧性。
本发明电池用粘合剂可采用常规方法制备得到。作为其中一种实施方式,可根据pH值的不同,亲水性单体在水中可以以酸或者盐的形式存在,而以酸的形式存在时,其亲水能力较低。因此,本发明电池用粘合剂,可以采用如下方法制备得到:将聚合反应的单体以低亲水能力组成和形式于水相中共聚,反应产物因共聚物亲水能力不足,以沉淀形式形成水分散浆料,能通过物理方式分离出沉淀,共聚物沉淀加碱中和或水解,提高共聚物亲水能力后,共聚物均匀分散于水相中得到所述电池用粘合剂。
比如,在聚合时,聚合反应的单体中保留羧酸或者磺酸等基团,聚合后,将沉淀取出,加入碱,即可将聚合物中的羧酸或磺酸中和为相应的羧酸盐或磺酸盐,提高其亲水能力,然后将其分散于水相中即可。
该方法可以极大地减少残余单体以及低分子量聚合物的含量,使得粘合剂满足中低分子量聚合物小于5%的要求,从而提高共聚物的内聚力和粘合力等力学性能。
作为本发明一个具体的实施方式,采用如下方法制备得到电池用粘合剂:在反应 容器中加入亲水性单体、亲油性单体和水,在保护气氛下,加热至反应温度后,加入引发剂引发反应,反应完成后,得到固液混合物,取沉淀,加入碱液中和至pH 6~12,得到电池用粘合剂,该粘合剂为透明状粘性液体。干燥将该粘合剂的水分去除,可以得到粘合剂固体产品。
其中,所述的反应温度根据聚合单体的种类不同而有不同选择,本领域技术人员可以通过单体种类、引发剂种类和工艺条件等进行确定。
如果需要在粘合剂中添加添加剂,可在合成过程中、加入碱液中和时或者中和之后,加入添加剂。
本发明所述的保护气氛为不参与反应的气氛,比如氮气、氦气、氖气、氩气、氪气或氙气等气氛。
本发明电池用粘合剂,可用在电池制备中,起粘合作用,比如,用在负极片的制备、正极片的制备或者隔膜的制备。作为其中一个技术方案,该电池用粘合剂用于制备锂离子电池极片中,其粘合力高,可提高电池的性能。
本发明还提供一种锂离子电池负极片。
本发明所述锂离子电池负极片,包括负极活性材料和粘合剂,其中,所述粘合剂为本发明所述电池用粘合剂。
本发明的负极片,可以由负极涂覆浆料涂覆在集流体上干燥而得,其中,负极涂覆浆料包括了负极活性材料、导电剂、粘合剂、溶剂等。
当粘合剂在负极中用量小于等于2%时,该负极涂层的90°剥离力≥160N/m;优选该负极涂层的90°剥离力为160~220N/m;更优选该负极涂层的90°剥离力为180~200N/m。本发明所述粘合剂的用量是指在负极中,粘合剂固体组分含量与负极材料和导电剂材料的重量占比,所述负极材料为负极涂覆浆料中除溶剂以外的其它组分,包括负极活性材料、导电剂、粘合剂等。
本发明中的90°剥离力的测试方法参照美国材料与试验协会标准ASTM D3330。
本发明还提供一种锂离子电池。
本发明锂离子电池,包括正极、负极和电解液,其中,所述负极为本发明所述的锂离子电池负极片。
本发明还提供一种电池组,包括若干个本发明所述的电池。电池组可包含由多个电池组成的电池模块。电池可以串联或并联连接。特别地,将它们串联连接。
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例中以亲水性单体丙烯酸(AA)、N-乙烯基吡咯烷酮(NVP)、丙烯酰胺(AM)及亲油性单体丙烯腈(AN)和丙烯酸丁酯(BA)在水相中共聚制备出锂离子电池用水性粘合剂。
其制法为:在反应容器中加入5份丙烯酰胺、8份N-乙烯基吡咯烷酮和566份蒸馏水,搅拌溶解,转速为300r/min;通入氮气驱氧30min;加热至70℃,然后加入38份丙烯酸、45份丙烯腈和4份丙烯酸丁酯,至温度恒温于70℃;然后加入0.05份过硫酸铵引发反应,反应9h后取出沉淀物,加入碱液中和pH至6.5~9,制得的透明的锂离子电池用水性粘合剂。
采用凝胶色谱法(GPC法)测定该锂离子电池用水性粘合剂的分子量及分子量分布,测试设备型号:Waters Alliance E2695。测试条件:色谱柱Waters StyRagel HR 3、4、5(水)三柱串联;流动相Buffer PH=7.2 3M NaCl标准品PAA温度0.6ml/min。测试结果如图1所示,其分子量5万以下的小分子占0.2wt%,分子量为10万以下的低分子占0.8wt%,而分子量为50万以上的高分子占73wt%。
实施例2
本实施例中以亲水性单体甲基丙烯酸、N-甲基丙烯酰胺及亲油性单体甲基丙烯腈、丙烯酸甲酯和丙烯酸羟丙酯在水相中共聚制备出锂离子电池用水性粘合剂。
其制法为:在反应容器中加入7份N-甲基丙烯酰胺和400份蒸馏水,搅拌溶解后;通入氮气驱氧30min;加热至65℃,然后加入23份甲基丙烯酸、18份丙烯酸甲酯、31份丙烯酸羟丙酯和21份甲基丙烯腈,至温度回升至65℃;然后加入过硫酸铵引发剂引发反应,反应22h后取出沉淀物,加入碱液中和pH至6.5~9,制得上述成分的锂离子电池用水性粘合剂。
采用实施例1的方法测定其分子量及分子量分布,其5万以下的小分子占0.4wt%,分子量为10万以下的低分子占5wt%,而分子量为50万以上的高分子占60wt%。
实施例3
本实施例中以亲水性单体2-丙烯酰胺-2-甲基丙磺酸、N,N-二乙基丙烯酰胺、衣康酸盐及亲油性单体丙烯酸2-乙基己酯、甲基丙烯酸环己基酯、甲基丙烯酸乙酯在水 相中共聚制备出锂离子电池用水性粘合剂。
其制法为:在反应容器中加入18份2-丙烯酰胺-2-甲基丙磺酸、22份N,N-二乙基丙烯酰胺、5份衣康酸盐和400份蒸馏水,搅拌溶解;然后加入20份丙烯酸2-乙基己酯、12份甲基丙烯酸环己基酯、22份甲基丙烯酸乙酯,通入氮气驱氧30min;加热至75℃,加入过硫酸钾引发剂引发反应,反应18h后取出沉淀物,加入碱液中和pH至6.5~9,制得上述成分的锂离子电池用水性粘合剂。
采用实施例1的方法测定其分子量及分子量分布,其5万以下的小分子占0.2wt%,分子量为10万以下的低分子占2wt%,而分子量为50万以上的高分子占61wt%。
实施例4
本实施例中以亲水性单体丙烯酸盐、2-甲基丙烯酰胺、乙烯基磺酸盐及亲油性单体丙烯酸乙酯、乙酸乙烯酯、甲基丙烯酸-羟乙酯在水相中共聚制备出锂离子电池用水性粘合剂。
其制法为:在反应容器中加入31份丙烯酸盐、12份2-甲基丙烯酰胺、12份乙烯基磺酸盐和400份蒸馏水,搅拌溶解;然后加入31份丙烯酸乙酯、9份乙酸乙烯酯和5份甲基丙烯酸-羟乙酯,通入氮气驱氧30min;加热至60℃,加入过硫酸铵引发剂引发反应,反应20h后取出沉淀物,加入碱液中和pH至6.5~9,制得上述成分的锂离子电池用水性粘合剂。
采用实施例1的方法测定其分子量及分子量分布,其5万以下的小分子占0.5wt%,分子量为10万以下的低分子占1wt%,而分子量为50万以上的高分子占70wt%。
实施例5
本实施例中以亲水性单体马来酸、N-乙烯基吡咯烷酮、N-羟丙基丙烯酰及亲油性单体苯乙烯、甲基丙烯酸2-乙基己酯、甲基丙烯酸羟丙酯在水相中共聚制备出锂离子电池用水性粘合剂。
其制法为:在反应容器中加入3份N-羟丙基丙烯酰和400份蒸馏水,搅拌溶解;然后加入31份马来酸和10份丙烯磺酸、18份N-乙烯基吡咯烷酮、13份苯乙烯、12份甲基丙烯酸2-乙基己酯和13份甲基丙烯酸羟丙酯,通入氮气驱氧30min;加热至55℃,加入过硫酸钾引发剂引发反应,反应25h后取出沉淀物,加入碱液中和pH至6.5~9,制得上述成分的锂离子电池用水性粘合剂。
采用实施例1的方法测定其分子量及分子量分布,其5万以下的小分子占0.6wt%, 分子量为10万以下的低分子占1.4wt%,而分子量为50万以上的高分子占65wt%。
实施例6
本实施例中以亲水性单体丙烯酸、甲基丙烯酸、N-羟乙基丙烯酰、丙烯磺酸及亲油性单体丙烯酸2-乙基己酯、丙烯酸乙酯、甲基丙烯酸异冰片酯在水相中共聚制备出锂离子电池用水性粘合剂。
其制法为:在反应容器中加入8份N-羟乙基丙烯酰和9份丙烯磺酸和400份蒸馏水,搅拌溶解;然后加入13份丙烯酸、15份甲基丙烯酸、30份丙烯酸2-乙基己酯、15份丙烯酸乙酯和10份甲基丙烯酸异冰片酯,通入氮气驱氧30min;加热至67℃,加入过硫酸铵引发剂引发反应,反应23h后取出沉淀物,加入碱液中和pH至6.5~9,制得上述成分的锂离子电池用水性粘合剂。
采用实施例1的方法测定其分子量及分子量分布,其5万以下的小分子占0.2wt%,分子量为10万以下的低分子占4.5wt%,而分子量为50万以上的高分子占63wt%。
实施例7
本实施例中以亲水性单体28份2-丙烯酰胺-2-甲基丙磺酸、32份N,N-二乙基丙烯酰胺、10份衣康酸盐及亲油性单体10份丙烯酸2-乙基己酯、12份甲基丙烯酸环己基酯、8份甲基丙烯酸乙酯在水相中共聚制备出锂离子电池用水性粘合剂。
其制法为:在反应容器中加入28份2-丙烯酰胺-2-甲基丙磺酸、32份N,N-二乙基丙烯酰胺和10份衣康酸盐和400份蒸馏水,搅拌溶解;然后加入10份丙烯酸2-乙基己酯、12份甲基丙烯酸环己基酯和8份甲基丙烯酸乙酯,通入氮气驱氧30min;加热至73℃,加入过硫酸铵引发剂引发反应,反应19h后取出沉淀物,加入碱液中和pH至6.5~9,制得上述成分的锂离子电池用水性粘合剂。
采用实施例1的方法测定其分子量及分子量分布,其5万以下的小分子占0.3wt%,分子量为10万以下的低分子占3.3wt%,而分子量为50万以上的高分子占66wt%。
对比例1
本对比例中以亲水性单体丙烯酸(AA)、N-乙烯基吡咯烷酮(NVP)、丙烯酰胺(AM)及亲油性单体丙烯腈(AN)和丙烯酸丁酯(BA)在水相中共聚制备出锂离子电池用水性粘合剂。
其制法为:在反应容器中加入5份丙烯酰胺、8份N-乙烯基吡咯烷酮和566份蒸馏水,搅拌溶解,转速为300r/min;加入38份丙烯酸,加入碱液调整pH,然后通入 氮气驱氧30min;加热至70℃后,加入45份丙烯腈和4份丙烯酸丁酯,至温度恒温于70℃;然后加入0.21份过硫酸铵引发反应,每隔3h补加0.21份过硫酸铵促进转化,反应24h后,加入碱液中和pH至6.5~9,制得上述成分的锂离子电池用水性粘合剂。
采用实施例1的方法测定其分子量及分子量分布,其结果见图1,其分子量5万以下的小分子占5wt%,分子量为10万以下的低分子占10wt%,而分子量为50w以上的高分子占39%。
对比例2
对比例2的粘合剂是由CMC(羧甲基纤维素钠)和SBR(丁苯橡胶)组成,CMC:SBR=1:2(比例以固体重量计)
对比例3
对比例3的粘合剂选用专利ZL01108511.8中实施例四制备得到的产品。
对比例4
本对比例中以亲水性单体丙烯酸、N-乙烯基吡咯烷酮、N-羟乙基丙烯酰及亲油性单体丙烯腈、丙烯酸羟丙酯在水相中共聚制备出锂离子电池用水性粘合剂。
其制法为:在反应容器中加入22份N-羟乙基丙烯酰和300份蒸馏水,搅拌溶解;加入30份丙烯酸和15份N-乙烯基吡咯烷酮,然后通入氮气驱氧一定时间;加热至66℃后,加入25份丙烯腈和8份丙烯酸羟丙酯;然后加入一定量过硫酸钾引发反应,反应13h后取出沉淀物,加入碱液中和pH至6.5~9,制得上述成分的锂离子电池用水性粘合剂。
采用实施例1的方法测定其分子量及分子量分布,其5万以下的小分子占3.1wt%,分子量为10万以下的低分子占8.4wt%,而分子量为50万以上的高分子占48wt%。
对比例5
本对比例中以亲水性单体2-丙烯酰胺-2-甲基丙磺酸、丙烯酸及亲油性单体丙烯酸2-乙基己酯、甲基丙烯酸环己基酯在水相中共聚制备出锂离子电池用水性粘合剂。
其制法为:在反应容器中加入150份蒸馏水、15份2-丙烯酰胺-2-甲基丙磺酸和5份丙烯酸,加入碱液调节pH;再加入50份丙烯酸2-乙基己酯和30份甲基丙烯酸环己基酯,然后通入氮气驱氧一定时间;加热至75℃后加入一定量过硫酸铵引发反应,反应17h即制得上述成分的锂离子电池用水性粘合剂。
该粘合剂为乳液,需配合CMC使用,其性能类似SBR。
试验例1 90°剥离力测定
采用上述实施例和对比例的粘合剂,制备成负极极片,测定其90°剥离力,具体方法和结果如下:
将用作负极活性材料的人造石墨(江西紫宸公司型号为8C的产品)、粘合剂(分别为实施例1~7、对比例1~6的粘合剂)、导电炭黑(super-p)按表1的配比添加到去离子水中,从而制备一种负极混合物浆料。将该负极混合物浆料涂覆于厚度为12μm铜(Cu)箔集电体上,然后干燥、辊压。形成面密度为20mg/cm 2,压实密度1.65g/cm 3负极极片。
表1.
项目/材料 负极活性材料(%) 导电炭黑(%) 粘合剂(%)
实施例1~7 96 2 2
对比例1 96 2 2
对比例2、5 95 2 3
对比例3、4 96 2 2
注:以上比例为各种组份固体的重量比例。
极片粘接力测试:具体方法参照ASTM~D3330测试方法,设备及工具:YISIDA力学测试仪(DS2-50N);3M胶带:(Scotch 600/25mm宽)。具体结果见表2。
表2
Figure PCTCN2020106529-appb-000013
Figure PCTCN2020106529-appb-000014
试验例2电池性能测试
采用上述实施例1、2、4和对比例1、2、3的粘合剂,制备成电池,测定其性能:
1、负极极片的制备
负极极片制备方法同试验例1。
2、正极极片的制备
将用作正极活性材料的锂钴氧化物94%(重量比)、用作导电材料的炭黑(super-p)2%,和用作粘合剂的聚偏1,1-二氟乙烯(PVdF)4%添加到N-甲基-2-吡咯烷酮(NMP)溶剂中,从而制备一种正极混合物浆料。将该正极混合物浆料涂覆在18微米厚度的铝箔集电体上,干燥、辊压,形成面密度为39mg/cm 2,压实密度4.1g/cm 3的正极极片。
3、电池卷绕及电解液注入
使用上述制备的电极以及如上隔膜来制备规格为406379的电池。所述电池通过对正极、隔膜和负极卷绕制成,电池使用铝塑复合进行包装。向该组装的电池中注入溶有1摩尔/升的六氟磷酸锂(LiPF6)的电解质(碳酸亚乙酯(EC)/碳酸甲乙酯(EMC)=1/2(体积比),抽真空密封,得准备进入激活状态的电池。
4、电池化成
将上述得到电芯放在45℃环境中静置20h,然后再通过95℃热压1min对电芯进行整形。将电芯直接放在化成设备上,不需夹具夹压,在30±2℃环境中对电芯进行化成,化成电流为1C(“C”为电芯理论容量),化成时间为100min,化成截止电位为4.35V。然后置于充放电测试机中依次进行充电/放电/充电,截止电位为3.8V,然后对电芯进行除气和切掉气袋操作,得到电池。在此过程中,只需8分钟的热冷压,不需其他夹具对每个电池进行夹住化成,整个化成分容时间为270min。
5、电池性能测试:
5.1、循环性能
1C倍率的电流充至4.35V,并以4.35V恒压;然后采用1C倍率的电流对电池进行放电,截止电压为3.0V,完成一个循环。其结果见图2。
从图2中可以看出,本发明实施例1的产品,循环性能较好。
5.2、低温放电测试
常温条件下,将电芯按0.2C倍率的电流充至4.35V,并以4.35V恒压;然后将电芯置于不同温度下,搁置16小时,进行1.0C倍率电流进行对应温度下的放电,截止电压为3.0V。详见图3和表3。
表3
Figure PCTCN2020106529-appb-000015
从以上电池性能测试结果可以明显看出,采用本发明的粘结剂制备得到的电池性能较好。

Claims (21)

  1. 电池用粘合剂,其特征在于:包含同时带有亲水单元和疏水单元的聚合物;且该聚合物中,中低分子量聚合物占聚合物总量的5wt%以下,所述中低分子量聚合物的分子量≤10万。
  2. 根据权利要求1所述的电池用粘合剂,其特征在于:聚合物中亲水单元和疏水单元的重量百分比为30~70%:70~30%;优选亲水单元和疏水单元的重量百分比为40~60%:60~40%。
  3. 根据权利要求1或2所述的电池用粘合剂,其特征在于:中低分子量聚合物占聚合物总量的2wt%以下;优选中低分子量聚合物占聚合物总量的1wt%以下。
  4. 根据权利要求1~3任一项所述的电池用粘合剂,其特征在于:低分子量聚合物占聚合物总量的0.5wt%以下,所述低分子量聚合物的分子量≤5万。
  5. 根据权利要求1~4任一项所述的电池用粘合剂,其特征在于:所述亲水单元中含有羧基或磺酸基。
  6. 根据权利要求1~5任一项所述的电池用粘合剂,其特征在于:所述疏水单元由亲油性单体引入,所述亲水单元由亲水性单体引入。
  7. 根据权利要求6所述的电池用粘合剂,其特征在于:
    亲油性单体的结构式为:CH 2=CR 1R 2,其中,
    R 1选自─H或─CH 3
    R 2选自─CN、─C 6H 5、─COOCH 3、─COOCH 2CH 3、─COOCH 2CH 2CH 2CH 3、-COOC(CH 3) 3、─COOCH 2CH(CH 2CH 3)CH 2CH 2CH 2CH 3、-COOC 12H 25、-COO(CH 2) 17CH 3
    Figure PCTCN2020106529-appb-100001
    ─COOCH 2CH 2OH、─COOCH 3CHCH 2OH、─COOCH 2CHOHCH 3、─OCOCH 3
    Figure PCTCN2020106529-appb-100002
    亲水性单体的结构式为:CHR 3=CR 4R 5,其中,
    R 3选自─H、─CH 3或─COOM 1;M 1包括H、Li、Na、K、Ca、Zn或Mg;
    R 4选自─H、─CH 3或─COOM 2;M 2包括H、Li、Na、K、Ca、Zn或Mg;
    R 5选自─COOM 3、─CH 2COOM 3、─COO(CH 2) 6SO 3M 3、─CONH 2、─CONHCH 3
    Figure PCTCN2020106529-appb-100003
    ─CONHCH 2CH 3、─CON(CH 3) 2、─CON(CH 2CH 3) 2、─CH2CHCONHCH 2OH、─CH 2CHCONHCH 2CH 2OH、─CONHC(CH 3) 2CH 2SO 3H、-CH 2SO 3M或
    Figure PCTCN2020106529-appb-100004
    M 3包括H、Li、Na、K、Ca、Zn或Mg。
  8. 根据权利要求7所述的电池用粘合剂,其特征在于:
    R 2选自─CN、─C 6H 5、─COOCH 3、─COOCH 2CH 3、─COOCH 2CH 2CH 2CH 3、-COOC(CH 3) 3、─COOCH 2CH(CH 2CH 3)CH 2CH 2CH 2CH 3、-COOC 12H 25、-COO(CH 2) 17CH 3
    Figure PCTCN2020106529-appb-100005
    ─COOCH 2CH 2OH、─OCOCH 3
    Figure PCTCN2020106529-appb-100006
  9. 根据权利要求7所述的电池用粘合剂,其特征在于:所述亲油性单体包括丙烯腈、甲基丙烯腈、苯乙烯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丁酯、丙烯酸叔丁酯、丙烯酸2-乙基己酯、丙烯酸环己基酯、丙烯酸异冰片酯、丙烯酸羟乙酯、丙烯酸羟丙酯、乙酸乙烯酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸环己基酯、甲基丙烯酸异冰片酯、甲基丙烯酸-羟乙酯、甲基丙烯酸羟丙酯、甲基丙烯酸环氧丙酯中的至少一种;
    所述亲水性单体包括丙烯酸、丙烯酸盐、甲基丙烯酸、甲基丙烯酸盐、烯丙氧基羟丙基磺酸、烯丙氧基羟丙基磺酸盐、乙烯基磺酸、乙烯基磺酸盐、2-丙烯酰胺-2-甲基丙磺酸、丙烯磺酸、丙烯磺酸盐、甲基丙烯磺酸、甲基丙烯磺酸盐、N-乙烯基吡咯烷酮、衣康酸、衣康酸盐、马来酸、马来酸盐中的至少一种。
  10. 根据权利要求9所述的电池用粘合剂,其特征在于:所述亲水性单体还包括丙烯酰胺、N-甲基丙烯酰胺、N-乙基丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-二乙基丙烯酰胺、2-甲基丙烯酰胺、N-羟甲基丙烯酰胺、N-羟乙基丙烯酰、N-羟丙基丙烯酰中的至少一种。
  11. 根据权利要求8所述的电池用粘合剂,其特征在于:所述亲油性单体为丙烯腈和丙烯酸丁酯,亲水性单体为丙烯酸、N-乙烯基吡咯烷酮和丙烯酰胺;
    或者所述亲油性单体为甲基丙烯腈、丙烯酸甲酯和丙烯酸羟丙酯,亲水性单体为甲基丙烯酸和N-甲基丙烯酰胺;
    或者所述亲油性单体为丙烯酸2-乙基己酯、甲基丙烯酸环己基酯和甲基丙烯酸乙酯,亲水性单体为2-丙烯酰胺-2-甲基丙磺酸、N,N-二乙基丙烯酰胺和衣康酸盐;
    或者所述亲油性单体为丙烯酸乙酯、乙酸乙烯酯和甲基丙烯酸-羟乙酯,亲水性单体为丙烯酸盐、2-甲基丙烯酰胺和乙烯基磺酸盐;
    或者所述亲油性单体为苯乙烯、甲基丙烯酸2-乙基己酯和甲基丙烯酸羟丙酯,亲水性单体为马来酸、N-乙烯基吡咯烷酮和N-羟丙基丙烯酰;
    或者所述亲油性单体为丙烯酸2-乙基己酯、丙烯酸乙酯和甲基丙烯酸异冰片酯,亲水性单体为丙烯酸、甲基丙烯酸、N-羟乙基丙烯酰和丙烯磺酸。
  12. 根据权利要求1~11任一项所述的电池用粘合剂,其特征在于:亲水性单体、亲油性单体的重量百分比为30~70%:70~30%:优选亲水性单体、亲油性单体的重量百分比为40~60%:60~40%。
  13. 根据权利要求1~12任一项所述的电池用粘合剂,其特征在于:所述电池用粘合剂中还包含溶剂,所述溶剂为有机溶剂或水。
  14. 根据权利要求13所述的电池用粘合剂,其特征在于:所述溶剂为水。
  15. 根据权利要求14所述的电池用粘合剂,其特征在于:pH值为6~12,优选pH值为6.5~9。
  16. 根据权利要求13~15任一项所述的电池用粘合剂,其特征在于:所述电池用粘合剂中还包含添加剂,所述添加剂包括分散剂、流平润湿剂、消泡剂、增柔剂中的至少一种。
  17. 权利要求16所述的电池用粘合剂的制备方法,其特征在于,包括如下步骤:将亲水性单体、亲油性单体和水在保护气氛下,加热至反应温度后,加入引发剂引发反应,得到固液混合物,然后取沉淀,中和,得到水性粘合剂。
  18. 权利要求1~17任一项所述的电池用粘合剂在制备锂离子电池极片中的应用。
  19. 一种锂离子电池负极片,包括负极活性材料和粘合剂,其特征在于:所述粘合剂为权利要求1~17任一项所述的电池用粘合剂。
  20. 一种锂离子电池,包括正极、负极和电解液,其特征在于,所述负极为权利要求19所述的锂离子电池负极片。
  21. 一种电池组,包括若干个电池,所述电池为权利要求20所述的锂离子电池。
PCT/CN2020/106529 2020-01-21 2020-08-03 电池用粘合剂、锂离子电池负极片以及锂离子电池 WO2021147295A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20915776.7A EP4095213A4 (en) 2020-01-21 2020-08-03 BATTERY ADHESIVE, LITHIUM-ION BATTERY NEGATIVE ELECTRODE PLATE AND LITHIUM-ION BATTERY
US17/794,258 US20230068865A1 (en) 2020-01-21 2020-08-03 Battery binder, lithium-ion battery negative electrode plate and lithium-ion battery
JP2022544430A JP7480310B2 (ja) 2020-01-21 2020-08-03 バッテリー用接着剤、バッテリー用水性接着剤及びリチウムイオンバッテリー負極シート
KR1020227028830A KR20220131535A (ko) 2020-01-21 2020-08-03 전지용 바인더, 리튬 이온 전지의 음극판 및 리튬 이온 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010069004.0 2020-01-21
CN202010069004 2020-01-21
CN202010542779.5A CN111500228B (zh) 2020-01-21 2020-06-15 电池用粘合剂、锂离子电池负极片以及锂离子电池
CN202010542779.5 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021147295A1 true WO2021147295A1 (zh) 2021-07-29

Family

ID=71872163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106529 WO2021147295A1 (zh) 2020-01-21 2020-08-03 电池用粘合剂、锂离子电池负极片以及锂离子电池

Country Status (7)

Country Link
US (1) US20230068865A1 (zh)
EP (1) EP4095213A4 (zh)
JP (1) JP7480310B2 (zh)
KR (1) KR20220131535A (zh)
CN (3) CN112680147B (zh)
TW (1) TWI746131B (zh)
WO (1) WO2021147295A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015062A1 (en) * 2021-08-06 2023-02-09 Ppg Industries Ohio, Inc. Negative electrode slurry compositions for lithium ion electrical storage devices
WO2023059953A1 (en) * 2021-10-06 2023-04-13 Ppg Industries Ohio, Inc. Negative electrode waterborne slurry compositions for lithium ion electrical storage devices

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4330299A1 (en) * 2021-04-29 2024-03-06 Trinseo Europe GmbH High heat acrylic copolymers containing a functional comonomer as binders for batteries
CN116487585A (zh) * 2022-01-13 2023-07-25 宁德时代新能源科技股份有限公司 负极极片及其制备方法、二次电池、电池模块、电池包和用电装置
CN115172667B (zh) * 2022-09-07 2022-11-18 中创新航科技股份有限公司 一种电池负极片及其制备方法、应用其的锂离子电池
KR102660592B1 (ko) * 2022-11-15 2024-04-26 주식회사 한솔케미칼 공중합체를 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
CN117720869A (zh) * 2024-02-07 2024-03-19 深圳市研一新材料有限责任公司 一种水溶型粘结剂、电池极片及其应用
CN117777899A (zh) * 2024-02-22 2024-03-29 江苏一特新材料有限责任公司 一种钠电池高耐碱性正极粘结剂的制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101457131A (zh) * 2009-01-12 2009-06-17 成都茵地乐电源科技有限公司 一种锂离子电池电极材料用水性粘合剂及其制备方法
JP2015106488A (ja) * 2013-11-29 2015-06-08 Jsr株式会社 蓄電デバイス負極用スラリーおよび蓄電デバイス負極、蓄電デバイス正極用スラリーおよび蓄電デバイス正極、ならびに蓄電デバイス
CN105247716A (zh) * 2013-05-15 2016-01-13 日本瑞翁株式会社 锂离子二次电池正极用粘结材料组合物、锂离子二次电池正极用浆料组合物及其制造方法、锂离子二次电池用正极的制造方法及锂离子二次电池
CN107325225A (zh) * 2016-04-29 2017-11-07 成都中科来方能源科技股份有限公司 锂离子电池负极水性粘合剂及其制备方法
CN109957360A (zh) * 2017-12-22 2019-07-02 宁德时代新能源科技股份有限公司 一种水性粘结剂及二次电池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1195036C (zh) * 2001-06-08 2005-03-30 成都茵地乐电源科技有限公司 锂离子二次电池电极材料水性粘合剂及其制备方法
CN1209433C (zh) * 2001-06-12 2005-07-06 成都茵地乐电源科技有限公司 锂离子电池水性粘合剂制备方法
KR101161145B1 (ko) * 2010-01-20 2012-06-29 주식회사 엘지화학 접착력과 사이클 특성이 우수한 이차전지용 바인더
EP2660908B1 (en) 2010-12-28 2017-04-26 Zeon Corporation Electrode binder composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
CN102746813A (zh) * 2012-07-03 2012-10-24 张倩 锂离子电池用水性粘合剂的制备方法
JP6061563B2 (ja) * 2012-08-29 2017-01-18 株式会社日本触媒 二次電池用水系電極バインダー
CN105018001B (zh) * 2014-04-28 2016-08-31 成都中科来方能源科技有限公司 锂离子电池用水性粘合剂及正负极片和涂覆隔膜
CN104356979B (zh) * 2014-10-28 2017-02-15 深圳市贝特瑞新能源材料股份有限公司 用于锂离子电池电极材料的聚丙烯酸酯类水性粘结剂、制备方法及锂离子电池极片
JP2016189252A (ja) 2015-03-30 2016-11-04 株式会社クラレ リチウムイオン二次電池電極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
CN107534150B (zh) * 2015-04-22 2022-04-15 东亚合成株式会社 非水电解质二次电池电极用粘合剂及其用途
JP2017069162A (ja) 2015-10-02 2017-04-06 株式会社クラレ 非水電解質二次電池用バインダー組成物、並びにそれを用いた非水電解質二次電池用スラリー組成物、非水電解質二次電池負極、及び非水電解質二次電池
CN105336960B (zh) * 2015-10-15 2018-04-27 哈尔滨工业大学 一种用于锂离子电池电极材料的离子聚合物型水性粘结剂的制备方法
CN105514488B (zh) * 2016-01-19 2018-11-02 宁德新能源科技有限公司 一种粘结剂及其锂离子电池
CN105576284A (zh) * 2016-02-18 2016-05-11 福建蓝海黑石科技有限公司 一种锂离子电池负极水性粘合剂及其制备方法
EP3451420B1 (en) * 2016-04-28 2021-10-27 Toppan Printing Co., Ltd. Nonaqueous electrolyte secondary battery negative electrode, binder for nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery
CN106220779B (zh) * 2016-08-17 2018-08-31 四川茵地乐科技有限公司 丙烯腈共聚物粘合剂及其在锂离子电池中的应用
CN106833448B (zh) * 2017-02-08 2019-02-15 北京蓝海黑石科技有限公司 一种锂离子电池正极水性粘合剂及其制备方法
CN110710035B (zh) 2017-06-19 2023-04-28 日本瑞翁株式会社 电化学元件电极用粘结剂组合物、电化学元件电极用组合物、电化学元件用电极、以及电化学元件
CN107384261A (zh) * 2017-07-21 2017-11-24 中国乐凯集团有限公司 一种锂离子电池隔膜耐热层用水性粘合剂、制备方法及其应用
CN108172837A (zh) * 2018-01-24 2018-06-15 广州鹏辉能源科技股份有限公司 锂离子电池负极材料、锂离子电池负极片及其制备方法和锂离子电池
JP7192223B2 (ja) 2018-03-15 2022-12-20 昭和電工マテリアルズ株式会社 電極用バインダー、電極合剤、エネルギーデバイス用電極及びエネルギーデバイス
CN108598486B (zh) * 2018-05-10 2021-08-24 李强 锂离子电池水性粘合剂及其制备方法
CN111139002B (zh) * 2019-12-30 2021-10-08 宣城研一新能源科技有限公司 锂离子电池水溶型粘接剂及其制备方法、电极极片及电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101457131A (zh) * 2009-01-12 2009-06-17 成都茵地乐电源科技有限公司 一种锂离子电池电极材料用水性粘合剂及其制备方法
CN105247716A (zh) * 2013-05-15 2016-01-13 日本瑞翁株式会社 锂离子二次电池正极用粘结材料组合物、锂离子二次电池正极用浆料组合物及其制造方法、锂离子二次电池用正极的制造方法及锂离子二次电池
JP2015106488A (ja) * 2013-11-29 2015-06-08 Jsr株式会社 蓄電デバイス負極用スラリーおよび蓄電デバイス負極、蓄電デバイス正極用スラリーおよび蓄電デバイス正極、ならびに蓄電デバイス
CN107325225A (zh) * 2016-04-29 2017-11-07 成都中科来方能源科技股份有限公司 锂离子电池负极水性粘合剂及其制备方法
CN109957360A (zh) * 2017-12-22 2019-07-02 宁德时代新能源科技股份有限公司 一种水性粘结剂及二次电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAS , no. 9003-04-7

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015062A1 (en) * 2021-08-06 2023-02-09 Ppg Industries Ohio, Inc. Negative electrode slurry compositions for lithium ion electrical storage devices
WO2023059953A1 (en) * 2021-10-06 2023-04-13 Ppg Industries Ohio, Inc. Negative electrode waterborne slurry compositions for lithium ion electrical storage devices

Also Published As

Publication number Publication date
JP2023511924A (ja) 2023-03-23
TW202128926A (zh) 2021-08-01
JP7480310B2 (ja) 2024-05-09
CN112662348A (zh) 2021-04-16
EP4095213A4 (en) 2023-07-19
KR20220131535A (ko) 2022-09-28
TWI746131B (zh) 2021-11-11
CN111500228A (zh) 2020-08-07
CN112680147B (zh) 2023-01-20
CN112680147A (zh) 2021-04-20
CN111500228B (zh) 2021-03-16
EP4095213A1 (en) 2022-11-30
US20230068865A1 (en) 2023-03-02
CN112662348B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2021147295A1 (zh) 电池用粘合剂、锂离子电池负极片以及锂离子电池
CN111139002B (zh) 锂离子电池水溶型粘接剂及其制备方法、电极极片及电池
CN108417836B (zh) 一种锂离子电池的电极粘结剂及其制备方法
US20190225792A1 (en) Multi-functionally Modified Polymer Binder for Lithium Ion Batteries and Use Thereof in Electrochemical Energy Storage Devices
CN111635478B (zh) 一种低阻抗粘结剂及其制备方法和用途
CN107710470B (zh) 锂离子二次电池的负极用粘合剂、负极用浆料组合物及负极以及锂离子二次电池
WO2009115004A1 (zh) 锂离子电池用水性粘合剂、制备方法及锂离子电池正极片
WO2018000578A1 (zh) 多元功能化改性聚乙烯醇基锂离子电池水性粘结剂及在电化学储能器件中的应用
WO2022194172A1 (zh) 一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池
CN112279982B (zh) 一种硅基负极用粘结剂及含有该粘结剂的锂离子电池
CN112279981A (zh) 一种含有软相区和硬相区的聚合物粘结剂及其制备方法和应用
CN114335546B (zh) 一种电池电极用粘结剂以及电池电极
CN111384397A (zh) 一种硅基锂离子电池负极用复合粘结剂及其制备方法、硅基锂离子电池
CN115572557A (zh) 一种粘结剂及包括该粘结剂的电池
JP7298592B2 (ja) リチウムイオン二次電池用スラリー組成物およびリチウムイオン二次電池用電極
CN112457805B (zh) 一种粘合剂及其制备方法,及硅碳负极材料和锂电池
CN113563531B (zh) 接枝共聚物水性粘合剂及制备方法和在硅炭负极中的应用
JP7207311B2 (ja) 電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子
CN114142039B (zh) 一种粘结剂及包括该粘结剂的锂离子电池
CN114316119B (zh) 一种粘结剂及包括该粘结剂的电池
CN112382756B (zh) 一种具有嵌段结构侧链的负极粘结剂材料及其制备方法
CN111916740B (zh) 一种聚不饱和羧酸基可控交联型粘结剂及含有该粘结剂的锂离子电池
TWI710581B (zh) 羧甲基纖維素接枝共聚物及其用途
CN118027859A (zh) 一种锂离子电池负极粘结剂的制备方法及其应用
CN117229453A (zh) 一种共聚物、粘结剂、电池负极和锂电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544430

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227028830

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020915776

Country of ref document: EP

Effective date: 20220822