WO2021120921A1 - 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用 - Google Patents

一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用 Download PDF

Info

Publication number
WO2021120921A1
WO2021120921A1 PCT/CN2020/127395 CN2020127395W WO2021120921A1 WO 2021120921 A1 WO2021120921 A1 WO 2021120921A1 CN 2020127395 W CN2020127395 W CN 2020127395W WO 2021120921 A1 WO2021120921 A1 WO 2021120921A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalytic material
peryleneimide
composite photocatalytic
bismuth
melem
Prior art date
Application number
PCT/CN2020/127395
Other languages
English (en)
French (fr)
Inventor
路建美
李娜君
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/624,186 priority Critical patent/US20220355284A1/en
Publication of WO2021120921A1 publication Critical patent/WO2021120921A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0245Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
    • B01J31/0247Imides, amides or imidates (R-C=NR(OR))
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the field of organic-inorganic nanocomposite materials, and at the same time relates to the field of photocatalytic oxidation, in particular to a peryleneimide-based peryleneimide/bismuth tungstate organic-inorganic composite photocatalytic material, its preparation method and its application in light Catalytic removal of organic pollutants in water applications.
  • Photocatalytic technology can convert low-density solar energy into high-density electrical and chemical energy.
  • the photocatalyst can generate a variety of active free radicals under light conditions to degrade various organic pollutants in the water, and make them photooxidized into non-toxic substances. It has a wide range of applications in the degradation of organic matter.
  • the use of photocatalytic technology can make full use of sunlight at room temperature, has the advantages of low cost and pollution-free, and has a wide range of application prospects in the treatment of organic pollutants in water bodies.
  • photocatalytic materials are mainly divided into two categories: inorganic semiconductors and organic photocatalytic materials.
  • inorganic semiconductor material photocatalysts have the characteristics of good catalytic activity and wide application environment, most of them are metal-based semiconductor materials. These semiconductor materials will not only increase economic costs due to mass production, but also aggravate metal ion pollution.
  • organic photocatalytic materials will become a better choice because of their high chemical stability and abundant reserves.
  • the purpose of the present invention is to provide a composite photocatalytic material (PI@BWO) with two-dimensional bismuth tungstate nanosheets (BWO) supported on the surface of a perylene imide (PI) organic compound (PI@BWO) and a preparation method thereof to construct a visible light-responsive
  • PI@BWO composite photocatalytic material
  • the composite photocatalytic material achieves the purpose of effectively removing organic pollutants in water through photocatalytic reaction.
  • the invention constructs an organic-inorganic composite photocatalytic material.
  • the introduction of an organic photocatalytic material that responds to visible light enables the composite photocatalytic material to have a wider spectral response range; on the other hand, the introduction of an inorganic semiconductor catalyst enables the composite material to be produced More oxidizing active free radicals enhance the photocatalytic degradation performance of the composite material on organic pollutants, so the constructed organic-inorganic composite photocatalytic material has excellent catalytic performance.
  • a preparation method of perylene imide includes the following steps: calcining melamine to obtain melem; then mixing melem, perylene tetracarboxylic dianhydride, and solvent to obtain a mixture, and then putting the mixture in an inert atmosphere through the solvent Thermal reaction to obtain perylene imide.
  • a perylene imide/bismuth tungstate composite photocatalytic material, and its preparation method includes the following steps:
  • step (2) Disperse the peryleneimide of step (1) into an aqueous solution containing a bismuth source and a tungsten source, and obtain a peryleneimide/bismuth tungstate composite photocatalytic material through a hydrothermal reaction.
  • a method for removing organic pollutants from water bodies including the following steps:
  • step (1) Disperse the peryleneimide of step (1) into an aqueous solution containing a bismuth source and a tungsten source, and obtain a peryleneimide/bismuth tungstate composite photocatalytic material through a hydrothermal reaction;
  • the present invention further discloses the application of the peryleneimide/bismuth tungstate composite photocatalytic material in removing organic pollutants in water; or the application of the above peryleneimide in preparing a composite photocatalytic material for removing organic pollutants in water .
  • melem is obtained by high-temperature calcination of melamine.
  • the calcination is carried out in air.
  • the calcination is calcination at 400-450 °C for 3 to 5 hours. More preferably, the heating rate during calcination is It is 4 ⁇ 8 °C/min.
  • the solvothermal reaction is in an inert gas, and the reaction is 72 ⁇ 120 at 180 ⁇ 200 °C h, the inert gas is preferably argon.
  • the solvent is a mixture of DMF and ethylene glycol.
  • the molar ratio of melem and perylenetetracarboxylic dianhydride is 2:3; the volume ratio of DMF and ethylene glycol is 1.
  • cetyltrimethylammonium bromide is used as a template for the hydrothermal reaction.
  • CTL cetyltrimethylammonium bromide
  • PI@BWO perylene imide/bismuth tungstate composite photocatalytic material
  • the bismuth source is bismuth nitrate pentahydrate
  • the tungsten source is sodium tungstate dihydrate
  • the molar ratio of the bismuth source to the tungsten source is 2:1; preferably, bismuth nitrate pentahydrate, sodium tungstate dihydrate, and perylene
  • the mass ratio of imine is 97:33:(25 ⁇ 35), preferably 97:33:30.
  • the melamine is weighed and placed in a porcelain crucible with a lid; then, it is covered and placed in a muffle furnace.
  • the heating rate is set to 4 ⁇ 8 °C/min, and the temperature is 400 ⁇ 450 °C in an air atmosphere. Calcined for 3 ⁇ 5 h.
  • the product After cooling to room temperature, the product is centrifuged and washed with absolute ethanol, and then dried in a vacuum drying oven to obtain melem; then the above-mentioned peryleneimide (PI) is synthesized by solvothermal method First, add melem, perylene tetracarboxylic dianhydride, DMF and ethylene glycol into the grinded reaction flask, and disperse under ultrasound for 1 ⁇ 2 h; then, pass in argon gas for protection and place it at 180 ⁇ Reaction 72 ⁇ 120 in the blast drying oven at 200 °C h.
  • PI peryleneimide
  • the dark red product is suction filtered with a 0.22 ⁇ 0.45 ⁇ m organic phase microporous filter membrane to obtain a filter cake, and the filter cake is washed with DMF, acetone, and absolute ethanol, and then placed in a vacuum drying oven Dry for 12-24 h to obtain peryleneimide.
  • the bismuth source and the tungsten source are used as precursors, and cetyltrimethylammonium bromide (CTAB) is used as the template.
  • CTAB cetyltrimethylammonium bromide
  • Each is taken in a beaker, dissolved in deionized water, and stirred at room temperature for 0.5 ⁇ 1 h, then add the above peryleneimide, continue to stir for 0.5 ⁇ 1 h to obtain a uniformly dispersed suspension, then ultrasonically disperse for 1 ⁇ 2 h, and then transfer to a 50 mL polytetrafluoroethylene-lined autoclave.
  • the organic pollutants in the water body are phenolic pollutants; the light treatment is visible light treatment or simulated visible light treatment.
  • the peryleneimide disclosed in the present invention is an organic photocatalytic material, which has the advantages of stable skeleton, abundant source of raw materials, low cost, and diversified synthesis and modification methods.
  • the peryleneimide/bismuth tungstate composite photocatalytic material (PI@BWO) disclosed in the present invention has a large specific surface area, provides a large number of active sites, and promotes its adsorption of organic pollutants in water. The surface catalyzes the reaction to improve the photocatalytic efficiency.
  • the peryleneimide/bismuth tungstate composite photocatalytic material (PI@BWO) disclosed in the present invention has a wide range of light response and is a good visible light photocatalytic composite material.
  • Figure 1 is a transmission electron micrograph (a), infrared spectrum (b) and nuclear magnetic spectrum (c) of peryleneimide (PI) in Example 1;
  • Figure 2 is a scanning electron micrograph of the peryleneimide/bismuth tungstate composite photocatalytic material (PI@BWO) of Example 3;
  • Figure 3 is a transmission electron microscope photo of the peryleneimide/bismuth tungstate composite photocatalytic material (PI@BWO) of Example 3;
  • Fig. 4 is a diagram showing the effect of the peryleneimide/bismuth tungstate composite photocatalytic material (PI@BWO) in Example 3 in degrading bisphenol A in water.
  • the preparation method of peryleneimide is as follows: calcining melamine to obtain melem; then mixing melem, perylenetetracarboxylic dianhydride, and solvent to obtain a mixture, and then putting the mixture in an inert atmosphere through solvothermal The reaction yields perylene imide.
  • step (2) Disperse the peryleneimide of step (1) into an aqueous solution containing a bismuth source and a tungsten source, and obtain a peryleneimide/bismuth tungstate composite photocatalytic material through a hydrothermal reaction.
  • the invention firstly adopts a high-temperature calcination method to synthesize melem. First, weigh 5 g of melamine and place it in a 25 mL porcelain crucible with a lid; then, place it in the muffle furnace and set the heating rate to 5 °C/min (the room temperature rises to 425 °C), in the air It was calcined at 425 °C for 4 h in the atmosphere. After cooling to room temperature, the pale yellow product was centrifuged and washed with absolute ethanol 3 times, and then dried in a vacuum drying oven at 60 °C for 12 h to obtain melem. Then the solvothermal method was used to synthesize perylene imide.
  • the dark red product is suction filtered with a 0.45 ⁇ m organic phase microporous filter membrane to obtain a filter cake, and washed with DMF, acetone, and absolute ethanol for 3 times, and then dried in a 60 °C vacuum drying cabinet for 24 h, perylene imide is obtained.
  • FIG TEM thereof shown in Figure 1a and IR and NMR testing, infrared spectroscopy can see, there is located an imide ring 1687.6 cm -1 and carbonyl CN stretching vibration peaks at 1363.6 cm -1 may prove perylene imide
  • the present invention uses cetyltrimethylammonium bromide (CTAB) as a template to grow bismuth tungstate nanosheets on the surface of peryleneimide through a hydrothermal method, thereby obtaining peryleneimide/bismuth tungstate composite light Catalytic material (PI@BWO).
  • CTAB cetyltrimethylammonium bromide
  • the heating was stopped.
  • the product was centrifuged and washed with deionized water three times to obtain the peryleneimide/bismuth tungstate nanosheet composite photocatalytic material (PI@BWO). Dry in a blast oven at 60 °C for 24 h.
  • the loading amount of the bismuth tungstate nanosheets in the composite photocatalytic material obtained in this example is too small, and the bismuth tungstate nanosheets are only partly grown on the surface of the perylene imide organic compound.
  • FIG. 1 is a scanning electron micrograph of the peryleneimide/bismuth tungstate composite photocatalytic material (PI@BWO);
  • Figure 3 is a transmission electron micrograph of the photocatalytic material. It can be seen from the figure that the bismuth tungstate nanosheets in the composite photocatalytic material obtained in this embodiment are uniformly supported on the surface of the perylene imide.
  • the reactor was naturally cooled to room temperature, the product was centrifuged and washed with deionized water three times to obtain the peryleneimide/bismuth tungstate composite photocatalytic material (PI@BWO), which was placed at 60 Dry in a blast oven at °C for 24 h.
  • PI@BWO peryleneimide/bismuth tungstate composite photocatalytic material
  • the bismuth tungstate nanosheets are agglomerated, and there are fewer bismuth tungstate nanosheets uniformly supported on the surface of the perylene imide.
  • Photocatalytic degradation experiment of peryleneimide/bismuth tungstate composite photocatalytic material (PI@BWO) on bisphenol A in water Weigh 25 mg of the perylene imide obtained in Example 3 or Example 4 and Example 5 above The amine/bismuth tungstate composite photocatalytic material (PI@BWO) was placed in 50 mL of bisphenol A aqueous solution with a concentration of 10 mg/L, and stirred for 1 h in the dark to achieve the adsorption-desorption equilibrium. After equilibration, the prepared photocatalytic material was irradiated with a cold light source of 300 W xenon lamp, and the degradation experiment was started.
  • Figure 3 is a diagram showing the relationship between the concentration of residual bisphenol A and time obtained by photocatalytic degradation of bisphenol A in water using the peryleneimide/bismuth tungstate composite photocatalytic material (PI@BWO) obtained in Example 3, from the figure It can be seen that under the condition of adding PI@BWO photocatalytic material and applying light, after 180 minutes of light, the removal rate of bisphenol A in the aqueous solution reached more than 99%. Compared with the photocatalytic effect of the peryleneimide/bismuth tungstate composite photocatalytic material (PI@BWO) obtained in Example 2 and Example 4, the composite photocatalytic material obtained in Example 3 has the best effect.
  • Table 1 shows the removal rate of bisphenol A in the aqueous solution after 180 minutes of illumination with different catalysts using the same experimental method described above.
  • BWO is prepared by weighing 97.0 mg of bismuth nitrate pentahydrate and 33.0 mg of sodium tungstate dihydrate, adding 10 mg of cetyltrimethylammonium bromide in 35 mL of deionized water and magnetically stirring and dispersing for 30 min. Then ultrasonic dispersion for 1 h; finally, the mixed solution was transferred to a 50 mL polytetrafluoroethylene-lined autoclave, and reacted in a blast drying oven at 120 °C for 24 h. After the reaction, the heating was stopped.
  • BWO bismuth tungstate photocatalytic material
  • the invention discloses an organic-inorganic composite photocatalytic material with visible light response based on a perylene imide organic compound.
  • the peryleneimide (PI) is prepared by solvothermal method; then, the precursor of bismuth tungstate is uniformly distributed on the surface of the peryleneimide by means of ultrasonic dispersion; further, the perylene imide (PI) is prepared by hydrothermal method.
  • a new type of organic-inorganic composite photocatalytic material is obtained by growing bismuth tungstate nanosheets on the surface of amine.
  • the combination of organic photocatalytic materials and inorganic two-dimensional nanosheets can not only accelerate the electron-hole separation, thereby improving the photocatalytic efficiency, but the introduction of nanosheets can also provide a large specific surface area and abundant Active sites to promote the adsorption of organic pollutants and surface catalysis by the composite photocatalyst.
  • the present invention constructs an organic-inorganic hybrid photocatalytic material composed of a perylene imide organic compound with visible light response and two-dimensional bismuth tungstate nanosheets.
  • This design is not only conducive to photo-generated electron-air
  • the separation and migration of hole pairs also improves the adsorption capacity of small molecules of organic pollutants, and also provides a large number of surface catalytic active sites.
  • the above-prepared peryleneimide/bismuth tungstate organic-inorganic nanocomposite photocatalytic material (PI@BWO) showed effective degradation of bisphenol A in water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用;煅烧三聚氰胺,得到蜜勒胺;然后将蜜勒胺、苝四甲酸二酐、溶剂混合,得到混合物,再将混合物于惰性气氛中,通过溶剂热反应,得到苝酰亚胺;将苝酰亚胺分散至含有铋源和钨源的水溶液中,通过水热反应,得到苝酰亚胺/钨酸铋复合光催化材料。通过构建有机-无机复合光催化材料,一方面对可见光响应的有机光催化材料的引入可使复合光催化材料具有更宽的光谱响应范围;另一方面无机半导体催化剂的引入使复合材料能产生更具氧化性的活性自由基,增强复合材料对有机污染物的光催化降解性能,因此构建的有机-无机复合光催化材料具有优异的催化性能。

Description

一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用 技术领域
本发明属于有机-无机纳米复合材料领域,同时涉及光催化氧化领域,具体涉及一种基于苝酰亚胺的苝酰亚胺/钨酸铋有机无机复合光催化材料、其制备方法及其在光催化去除水体有机污染物中的应用。
背景技术
随着工业生产的发展,人类直接或间接地向环境排放超过其自净能力的有害物质,使我们的生存环境受到了严重恶化,环境污染成为越来越亟待解决的问题。光催化作为一种新型的清洁技术,为环境治理提供了新思路和新途径。光催化技术可以将低密度的太阳能转化为高密度的电能、化学能。同时,光催化剂可以在光照条件下产生多种具有活性的自由基用以降解水中的各种有机污染物,使之光氧化为无毒物质,在有机物降解方面有着广泛的应用。利用光催化技术可以实现在室温条件下充分利用太阳光,具有低成本、无污染的优点,在水体中有机污染物治理方面有广泛的应用前景。
目前,光催化材料主要分为无机半导体及有机光催化材料两大类。无机半导体材料光催化剂虽然具有催化活性好、适用环境广泛等特点,但大部分都是金属系半导体材料,这些半导体材料不仅会因为大量生产而增加经济成本,还会加剧金属离子污染。相比较而言,有机光催化材料因为其化学稳定性高和丰富的储量将会成为更好的选择。
技术解决方案
本发明的目的是提供一种二维钨酸铋纳米片(BWO)负载于苝酰亚胺(PI)有机化合物表面上的复合光催化材料(PI@BWO)及其制备方法,构建可见光响应的复合光催化材料,通过光催化反应实现水体中有机污染物有效去除的目的。本发明构建有机-无机复合光催化材料,一方面对可见光响应的有机光催化材料的引入可使复合光催化材料具有更宽的光谱响应范围;另一方面无机半导体催化剂的引入使复合材料能产生更具氧化性的活性自由基,增强复合材料对有机污染物的光催化降解性能,因此构建的有机-无机复合光催化材料具有优异的催化性能。
为达到上述目的,本发明采用如下具体技术方案:
一种苝酰亚胺,其制备方法包括以下步骤:煅烧三聚氰胺,得到蜜勒胺;然后将蜜勒胺、苝四甲酸二酐、溶剂混合,得到混合物,再将混合物于惰性气氛中,通过溶剂热反应,得到苝酰亚胺。
一种苝酰亚胺/钨酸铋复合光催化材料,其制备方法包括以下步骤:
(1)煅烧三聚氰胺,得到蜜勒胺;然后将蜜勒胺、苝四甲酸二酐、溶剂混合,得到混合物,再将混合物于惰性气氛中,通过溶剂热反应,得到苝酰亚胺;
(2)将步骤(1)的苝酰亚胺分散至含有铋源和钨源的水溶液中,通过水热反应,得到苝酰亚胺/钨酸铋复合光催化材料。
一种去除水体有机污染物的方法,包括以下步骤:
(1)煅烧三聚氰胺,得到蜜勒胺;然后将蜜勒胺、苝四甲酸二酐、溶剂混合,得到混合物,再将混合物于惰性气氛中,通过溶剂热反应,得到苝酰亚胺;
(2)将步骤(1)的苝酰亚胺分散至含有铋源和钨源的水溶液中,通过水热反应,得到苝酰亚胺/钨酸铋复合光催化材料;
(3)将苝酰亚胺/钨酸铋复合光催化材料加入含有有机污染物的水中,光照处理,实现水中有机污染物的去除。
本发明进一步公开了所述苝酰亚胺/钨酸铋复合光催化材料在去除水体有机污染物中的应用;或者上述苝酰亚胺在制备去除水体有机污染物用复合光催化材料中的应用。
本发明中,通过高温煅烧三聚氰胺的方法获得蜜勒胺,所述煅烧在空气中进行,优选的,煅烧为400~450 ℃的条件下煅烧3~5 h,进一步优选的,煅烧时的升温速率为4~8 ℃/min。
本发明中,溶剂热反应为惰性气体中,180~200 ℃下反应72~120 h,优选惰性气体为氩气。
本发明中,溶剂为DMF和乙二醇的混合物,优选的,蜜勒胺和苝四甲酸二酐的摩尔比为2∶3;DMF和乙二醇的体积比为1。
本发明中,水热反应以十六烷基三甲基溴化铵(CTAB)为模板剂,水热反应结束后,在苝酰亚胺表面生长钨酸铋纳米片,从而得到苝酰亚胺/钨酸铋复合光催化材料(PI@BWO),即苝酰亚胺/钨酸铋复合光催化材料;水热反应为120~180 ℃反应12~24 h。
本发明中,铋源为五水合硝酸铋,钨源为二水合钨酸钠,铋源和钨源的摩尔比为2∶1;优选的,五水合硝酸铋、二水合钨酸钠、苝酰亚胺的质量比为97∶33∶(25~35),最好为97∶33∶30。
本发明中,称取三聚氰胺置于带盖的瓷坩埚中;然后,将其盖好置于马弗炉设置升温速率为4~8 ℃/min,在空气氛围下于400~450 ℃的条件下煅烧3~5 h,待冷却至室温后,对产物进行离心分离并用无水乙醇洗涤,然后在真空干燥箱中干燥,得到蜜勒胺;再采用溶剂热法合成上述苝酰亚胺(PI),首先,在磨口反应瓶中加入蜜勒胺、苝四甲酸二酐以及DMF和乙二醇,超声下分散1~2 h;然后,通入氩气进行保护,并将其置于180~200 ℃的鼓风干燥箱中下反应72~120 h,反应结束冷却至室温后,暗红色的产物用0.22~0.45 μm的有机相微孔滤膜抽滤得到滤饼,并用DMF、丙酮、无水乙醇分别洗涤滤饼,然后在真空干燥箱中干燥12~24 h,得到苝酰亚胺。
本发明中,以铋源和钨源为前驱体,以十六烷基三甲基溴化铵(CTAB)为模板剂,各取于烧杯中,加入去离子水溶解,室温搅拌0.5~1 h,再加入上述苝酰亚胺,继续搅拌0.5~1 h,得到均匀分散的悬浮液,接着超声分散1~2 h,再转移至50 mL聚四氟乙烯内衬的高压反应釜中,于120~180 ℃的鼓风干燥箱中反应12~24 h;反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行离心分离并用去离子水洗涤,得到苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)。
本发明中,水体有机污染物为酚类污染物;光照处理为可见光处理或者模拟可见光处理。
有益效果
本发明的优点:
1. 本发明公开的苝酰亚胺为有机光催化材料,具有骨架稳定,原材料来源丰富,成本低廉,合成及修饰手段多样化等优点。
2. 本发明公开的苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)具有较大的比表面积,提供了大量的活性位点,进而促进其对水体中有机污染物的吸附以及表面催化反应,提高光催化效率。
3. 本发明公开的苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)具有广泛的光响应范围,是一种良好的可见光光催化复合材料。
附图说明
图1为实施例一的苝酰亚胺(PI)的透射电镜照片(a)、红外图谱(b)以及核磁图谱(c);
图2为实施例三的苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)的扫描电镜照片;
图3为实施例三的苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)的透射电镜照片;
图4为实施例三的苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)降解水体中双酚A的效果图。
本发明的实施方式
本发明中,苝酰亚胺的制备方法如下:煅烧三聚氰胺,得到蜜勒胺;然后将蜜勒胺、苝四甲酸二酐、溶剂混合,得到混合物,再将混合物于惰性气氛中,通过溶剂热反应,得到苝酰亚胺。
苝酰亚胺/钨酸铋复合光催化材料的制备方法如下:
(1)煅烧三聚氰胺,得到蜜勒胺;然后将蜜勒胺、苝四甲酸二酐、溶剂混合,得到混合物,再将混合物于惰性气氛中,通过溶剂热反应,得到苝酰亚胺;
(2)将步骤(1)的苝酰亚胺分散至含有铋源和钨源的水溶液中,通过水热反应,得到苝酰亚胺/钨酸铋复合光催化材料。
实施例一
本发明首先采用高温煅烧的方法合成蜜勒胺。首先,称取5 g的三聚氰胺置于带盖的25 mL瓷坩埚中;然后,将其盖好置于马弗炉中设置升温速率为5 ℃/min(室温升至425 ℃),在空气氛围下于425 ℃的条件下煅烧4 h,待冷却至室温后,对淡黄色产物进行离心分离并用无水乙醇洗涤3次,然后在60 ℃真空干燥箱中干燥12 h,得到蜜勒胺。再采用溶剂热的方法合成苝酰亚胺。首先,称取88.1 mg蜜勒胺以及235.8 mg苝四甲酸二酐于10 mL磨口反应瓶中,再加入10 mL DMF/EG(体积比为1∶1)混合溶剂,超声分散1 h;然后,通入氩气进行保护,检查气密性后将其置于200 ℃的鼓风干燥箱中下反应120 h。反应结束冷却至室温后,暗红色的产物用0.45 μm的有机相微孔滤膜抽滤得到滤饼,并用DMF、丙酮、无水乙醇分别洗涤3次,然后在60 ℃真空干燥箱中干燥24 h,得到苝酰亚胺。其透射电镜图如图1a所示,并测试红外与核磁,红外光谱可以看出,位于1687.6 cm -1酰亚胺环羰基以及1363.6 cm -1的C-N伸缩振动特征峰的出现可以证明苝酰亚胺的成功合成,另外,固体 13C核磁谱图可以看出180.2 ppm对应酰亚胺环C=O,165.6以及162.7 ppm分别对应庚嗪结构的C-N 3和C=N,110~140 ppm对应于苝结构中Ar-C,由此可进一步证明苝酰亚胺的结构。
实施例二
苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)的制备,具体步骤如下:
本发明通过水热法,以十六烷基三甲基溴化铵(CTAB)为模板剂,在苝酰亚胺表面生长钨酸铋纳米片,从而得到苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)。首先,称取48.5 mg五水合硝酸铋和16.5 mg二水合钨酸钠,加入溶有5 mg十六烷基三甲基溴化铵的35 mL去离子水中磁力搅拌分散30 min;然后,再称取30 mg苝酰亚胺(实施例一制备)于上述混合溶液中,继续搅拌30 min,得到均匀分散的暗红色悬浮液,接着再超声分散1 h;最后,将混合溶液转移至50 mL聚四氟乙烯内衬的高压反应釜中,于120 ℃的鼓风干燥箱中反应24 h。反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行离心分离并用去离子水洗涤3次,得到苝酰亚胺/钨酸铋纳米片复合光催化材料(PI@BWO),置于60 ℃鼓风烘箱中干燥24 h。该实施例所得复合光催化材料中钨酸铋纳米片负载量过小,苝酰亚胺有机化合物表面仅有局部位置长有钨酸铋纳米片。
实施例三
首先,称取97.0 mg五水合硝酸铋和33.0 mg二水合钨酸钠,加入溶有10 mg十六烷基三甲基溴化铵的35 mL去离子水中磁力搅拌分散30 min;然后,再称取30 mg苝酰亚胺于上述混合溶液中,继续搅拌30 min,得到均匀分散的暗红色悬浮液,接着再超声分散1 h;最后,将混合溶液转移至50 mL聚四氟乙烯内衬的高压反应釜中,于120 ℃的鼓风干燥箱中反应24 h。反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行离心分离并用去离子水洗涤3次,得到苝酰亚胺/钨酸铋复合光催化材料(PI@BWO),置于60 ℃鼓风烘箱中干燥24 h。附图2为苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)的扫描电镜照片;附图3为其透射电镜照片。从图中可以看出该实施例所得复合光催化材料中钨酸铋纳米片均匀地负载在苝酰亚胺表面。
实施例四
首先,称取145.5 mg五水合硝酸铋和49.5 mg二水合钨酸钠,加入溶有15 mg十六烷基三甲基溴化铵的35 mL去离子水中磁力搅拌分散30 min;然后,再称取30 mg苝酰亚胺于上述混合溶液中,继续搅拌30 min,得到均匀分散的暗红色悬浮液,接着再超声分散1 h;最后,将混合溶液转移至50 mL聚四氟乙烯内衬的高压反应釜中,于120 ℃的鼓风干燥箱中反应24 h。反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行离心分离并用去离子水洗涤3次,得到苝酰亚胺/钨酸铋复合光催化材料(PI@BWO),置于60 ℃鼓风烘箱中干燥24 h。该实施例所得复合光催化材料中钨酸铋纳米片存在团聚的现象,均匀负载在苝酰亚胺表面的钨酸铋纳米片较少。
实施例五
苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)对水体中双酚A的光催化降解实验:称取25 mg上述实施例三或者实施例四、实施例五中所得苝酰亚胺/钨酸铋复合光催化材料(PI@BWO),置于50 mL浓度为10 mg/L的双酚A水溶液中,先避光搅拌1 h,以达到吸附-解吸平衡。平衡后,使用300 W氙灯冷光源照射所制备光催化材料,开始降解实验,每隔30 min取样1 mL,采用高效液相色谱法,用紫外光检测器测试水样在280 nm波长下的信号强度,计算得到相应水样中双酚A的浓度,参照标准曲线,得到相对应水样中双酚A的残余浓度。附图3为利用实施例三所得苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)进行光催化降解水体中双酚A得到的残留双酚A浓度和时间的关系图,从图中可以看出,在加入PI@BWO光催化材料且施加光照的条件下,光照180分钟后,水溶液中双酚A的去除率达到99 %以上。相较于实施例二以及实施例四所得苝酰亚胺/钨酸铋复合光催化材料(PI@BWO)光催化效果,实施例三所得复合光催化材料的效果最佳。表1为不同催化剂采用上述同样的实验方法,光照180分钟后,水溶液中双酚A的去除率。
Figure 930992dest_path_image001
BWO的制备方法为,称取97.0 mg五水合硝酸铋和33.0 mg二水合钨酸钠,加入溶有10 mg十六烷基三甲基溴化铵的35 mL去离子水中磁力搅拌分散30 min,接着再超声分散1 h;最后,将混合溶液转移至50 mL聚四氟乙烯内衬的高压反应釜中,于120 ℃的鼓风干燥箱中反应24 h。反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行离心分离并用去离子水洗涤3次,得到钨酸铋光催化材料(BWO),置于60 ℃鼓风烘箱中干燥24 h。
本发明公开了一种基于苝酰亚胺有机化合物的具有可见光响应的有机-无机复合光催化材料。首先,通过溶剂热法制备苝酰亚胺(PI);然后,通过超声分散的方式使钨酸铋的前驱体均匀分布在苝酰亚胺的表面;进一步地,通过水热法在苝酰亚胺表面生长钨酸铋纳米片,得到一种新型有机无机复合光催化材料。利用该材料进行催化反应时,有机光催化材料与无机二维纳米片的结合不仅可以加速电子-空穴分离,进而提高光催化效率,而且纳米片的引入还可以提供大的比表面积和丰富的活性位点以促进复合光催化剂对有机污染物吸附和表面催化。
综上所述,本发明构建了一种具有可见光响应的苝酰亚胺有机化合物和二维钨酸铋纳米片复合的有机-无机杂化光催化材料,这一设计不仅有利于光生电子-空穴对的分离、迁移,也提高了对有机污染物小分子的吸附能力,同时还提供了大量的表面催化活性位点。在催化性能方面,上述制备的苝酰亚胺/钨酸铋有机-无机纳米复合光催化材料(PI@BWO)表现出对水体中双酚A的有效降解。

Claims (10)

  1. 一种苝酰亚胺,其特征在于,所述苝酰亚胺的制备方法包括以下步骤:煅烧三聚氰胺,得到蜜勒胺;然后将蜜勒胺、苝四甲酸二酐、溶剂混合,得到混合物,再将混合物于惰性气氛中,通过溶剂热反应,得到苝酰亚胺。
  2. 根据权利要求1所述苝酰亚胺,其特征在于,所述煅烧在空气中进行,煅烧为400~450 ℃的条件下煅烧3~5 h;溶剂热反应为惰性气体中,180~200 ℃下反应72~120 h。
  3. 根据权利要求1所述苝酰亚胺,其特征在于,溶剂为DMF和乙二醇的混合物,蜜勒胺和苝四甲酸二酐的摩尔比为2∶3。
  4. 一种苝酰亚胺/钨酸铋复合光催化材料,其特征在于,所述苝酰亚胺/钨酸铋复合光催化材料的制备方法包括以下步骤:
    (1)煅烧三聚氰胺,得到蜜勒胺;然后将蜜勒胺、苝四甲酸二酐、溶剂混合,得到混合物,再将混合物于惰性气氛中,通过溶剂热反应,得到苝酰亚胺;
    (2)将步骤(1)的苝酰亚胺分散至含有铋源和钨源的水溶液中,通过水热反应,得到苝酰亚胺/钨酸铋复合光催化材料。
  5. 根据权利要求4所述苝酰亚胺/钨酸铋复合光催化材料,其特征在于,所述煅烧在空气中进行,煅烧为400~450 ℃的条件下煅烧3~5 h;溶剂热反应为惰性气体中,180~200 ℃下反应72~120 h。
  6. 根据权利要求4所述苝酰亚胺/钨酸铋复合光催化材料,其特征在于,溶剂为DMF和乙二醇的混合物,蜜勒胺和苝四甲酸二酐的摩尔比为2∶3。
  7. 根据权利要求4所述苝酰亚胺/钨酸铋复合光催化材料,其特征在于,水热反应以十六烷基三甲基溴化铵为模板剂;水热反应为120~180 ℃反应12~24 h。
  8. 根据权利要求4所述苝酰亚胺/钨酸铋复合光催化材料,其特征在于,铋源为五水合硝酸铋,钨源为二水合钨酸钠,铋源和钨源的摩尔比为2∶1。
  9. 权利要求4苝酰亚胺/钨酸铋复合光催化材料在去除水体有机污染物中的应用。
  10. 权利要求1所述苝酰亚胺在制备去除水体有机污染物用复合光催化材料中的应用。
PCT/CN2020/127395 2019-12-15 2020-11-08 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用 WO2021120921A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/624,186 US20220355284A1 (en) 2019-12-15 2020-11-08 Perylene imide and composite photocatalytic material thereof, preparation method therefor and application thereof in removing organic pollutants from water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911287975.6A CN111001439B (zh) 2019-12-15 2019-12-15 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用
CN201911287975.6 2019-12-15

Publications (1)

Publication Number Publication Date
WO2021120921A1 true WO2021120921A1 (zh) 2021-06-24

Family

ID=70115253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127395 WO2021120921A1 (zh) 2019-12-15 2020-11-08 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用

Country Status (3)

Country Link
US (1) US20220355284A1 (zh)
CN (1) CN111001439B (zh)
WO (1) WO2021120921A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113649077A (zh) * 2021-08-02 2021-11-16 青海大学 一种复合光催化材料硫化锡/硫掺杂聚酰亚胺及制备方法
CN113649069A (zh) * 2021-08-02 2021-11-16 青海大学 一种光催化材料硫掺杂聚酰亚胺空心球及其制备方法
CN114247452A (zh) * 2022-01-10 2022-03-29 山东农业大学 一种铋-硫化铋-钨酸铋复合光催化剂及其制备方法和应用
CN115254168A (zh) * 2022-08-10 2022-11-01 江西省生态环境科学研究与规划院 一种复合光催化材料及其制备方法与应用
CN115521458A (zh) * 2022-09-21 2022-12-27 浙江工商大学 一种含苝酰亚胺结构单体的聚酰亚胺材料及其制备和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001439B (zh) * 2019-12-15 2021-11-05 苏州大学 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用
CN111495426A (zh) * 2020-05-25 2020-08-07 西南科技大学 一种聚苯胺/苝酰亚胺有机异质结光催化剂、制备方法及其应用
CN113828353B (zh) * 2020-06-08 2023-07-11 万华化学集团股份有限公司 一种可循环使用的用于废聚氨酯回收的催化剂及制备方法
CN111604090B (zh) * 2020-06-26 2023-06-09 枣庄学院 一种pi修饰钨酸铋混晶复合材料及其制备方法和应用
CN114073982A (zh) * 2020-08-13 2022-02-22 新疆大学 一种在太阳光光照下具有优异光催化性能的氧化锌与苝酰亚胺复合光催化材料的合成方法
CN112354558A (zh) * 2020-10-22 2021-02-12 盐城工学院 一种PDINH@TiO2光催化剂及其制备方法和应用
CN112791747B (zh) * 2021-01-05 2022-12-23 黑龙江大学 一种超薄二维磷酸调控的金属酞菁/苝酰亚胺复合光催化剂的制备方法及应用
CN113398989B (zh) * 2021-06-08 2022-10-21 浙江工商大学 基于pdinh与氧化钨的有机-无机复合材料及其制备方法和应用
CN113457710A (zh) * 2021-07-02 2021-10-01 南京师范大学 PDI/g-C3N4/Bi2WO6复合光催化剂及制备方法和应用
CN114907550B (zh) * 2022-04-18 2023-05-02 苏州大学 兼具快速吸附与高效降解污染物的苝基胶束及其制备方法
CN114849759A (zh) * 2022-06-06 2022-08-05 江南大学 一种具有优异催化性能的复合光催化剂及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147849A (ja) * 2010-01-19 2011-08-04 Tokyo Institute Of Technology p−n接合型粒子、及びその製造方法、並びに有機光触媒
CN105218547A (zh) * 2015-09-23 2016-01-06 南京大学 一种利用一步法制备苝酰亚胺纳米纤维的方法
CN106008971A (zh) * 2016-05-23 2016-10-12 华南师范大学 荧光探针聚酰亚胺的制备方法
CN107115890A (zh) * 2017-06-23 2017-09-01 安徽大学 一种苝酰亚胺纳米带/银纳米粒子复合催化剂的制备方法
CN108568314A (zh) * 2018-03-30 2018-09-25 华中科技大学 一种可见光响应型g-C3N4/PDI光催化剂、其制备方法和应用
CN108579806A (zh) * 2018-03-29 2018-09-28 清华大学 一种苝酰亚胺-尿素聚合物的制备方法及其应用
CN111001439A (zh) * 2019-12-15 2020-04-14 苏州大学 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147849A (ja) * 2010-01-19 2011-08-04 Tokyo Institute Of Technology p−n接合型粒子、及びその製造方法、並びに有機光触媒
CN105218547A (zh) * 2015-09-23 2016-01-06 南京大学 一种利用一步法制备苝酰亚胺纳米纤维的方法
CN106008971A (zh) * 2016-05-23 2016-10-12 华南师范大学 荧光探针聚酰亚胺的制备方法
CN107115890A (zh) * 2017-06-23 2017-09-01 安徽大学 一种苝酰亚胺纳米带/银纳米粒子复合催化剂的制备方法
CN108579806A (zh) * 2018-03-29 2018-09-28 清华大学 一种苝酰亚胺-尿素聚合物的制备方法及其应用
CN108568314A (zh) * 2018-03-30 2018-09-25 华中科技大学 一种可见光响应型g-C3N4/PDI光催化剂、其制备方法和应用
CN111001439A (zh) * 2019-12-15 2020-04-14 苏州大学 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, KAI ET AL.: "Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO6 for efficient visible-light-driven photocatalysis", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 232, 19 March 2018 (2018-03-19), XP085394632, ISSN: 0926--337, DOI: 10.1016/j.apcatb.2018.03.059 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113649077A (zh) * 2021-08-02 2021-11-16 青海大学 一种复合光催化材料硫化锡/硫掺杂聚酰亚胺及制备方法
CN113649069A (zh) * 2021-08-02 2021-11-16 青海大学 一种光催化材料硫掺杂聚酰亚胺空心球及其制备方法
CN114247452A (zh) * 2022-01-10 2022-03-29 山东农业大学 一种铋-硫化铋-钨酸铋复合光催化剂及其制备方法和应用
CN115254168A (zh) * 2022-08-10 2022-11-01 江西省生态环境科学研究与规划院 一种复合光催化材料及其制备方法与应用
CN115254168B (zh) * 2022-08-10 2023-09-12 江西省生态环境科学研究与规划院 一种复合光催化材料及其制备方法与应用
CN115521458A (zh) * 2022-09-21 2022-12-27 浙江工商大学 一种含苝酰亚胺结构单体的聚酰亚胺材料及其制备和应用
CN115521458B (zh) * 2022-09-21 2023-06-16 浙江工商大学 一种含苝酰亚胺结构单体的聚酰亚胺材料及其制备和应用

Also Published As

Publication number Publication date
CN111001439A (zh) 2020-04-14
US20220355284A1 (en) 2022-11-10
CN111001439B (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2021120921A1 (zh) 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用
CN112169819B (zh) 一种g-C3N4/(101)-(001)-TiO2复合材料的制备方法和应用
CN106582765B (zh) 一种一步合成制备的钠掺杂石墨相氮化碳及其应用
CN105195197B (zh) 一种大比表面积‑可见光响应TiO2催化剂及其制备方法
CN108067281B (zh) 多孔g-C3N4光催化剂及其制备方法和应用
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
CN108772093A (zh) 一种高可见光活性石墨相氮化碳纳米片及其制备方法
CN113275041B (zh) 一种cof-316/cat-1复合材料的制备及光催化二氧化碳还原
CN113457711B (zh) 一种石墨相氮化碳负载镁单原子复合材料及其制备方法、光催化制备过氧化氢的方法
WO2017219382A1 (zh) 一种双层ZnO空心球光催化材料及其制备方法
CN109317137B (zh) 一种水滑石与钼酸铋异质结复合光催化剂及其制备方法和应用
CN106944074B (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN104525266A (zh) 一种金属有机骨架材料光催化剂的制备方法与应用
CN105964250B (zh) 一种具有可见光响应的Ag10Si4O13光催化剂及其制备方法和应用
CN105854863A (zh) 一种C/ZnO/TiO2复合纳米光催化材料的制备方法
CN113731451B (zh) 用于去除废水中四环素的三元复合催化材料及其制备方法
CN113828345A (zh) 一种氯化钠辅助合成氮化碳光催化剂的制备方法与应用
CN113578313B (zh) 一种锰掺杂软铋矿光催化剂及其制备方法和在同步降解六价铬和有机污染物中的应用
CN113893840B (zh) 一种复合光催化剂、制备方法及在染料废水中的应用
CN112742436B (zh) 一种用于光催化产过氧化氢的氮化碳基同质结、其制备方法及应用
CN111393663B (zh) 一种苝酰亚胺基配位聚合物、制备方法及其应用
CN112354559A (zh) 一种二维受体分子/多级孔TiO2复合光催化剂及其制备方法和光催化应用
CN115025783B (zh) 一种多铌氧簇/zif-67衍生物复合材料的合成方法及应用
CN116832837A (zh) 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用
CN110227458A (zh) 一种铜掺杂介孔二氧化钛的复合材料及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901633

Country of ref document: EP

Kind code of ref document: A1