CN114849759A - 一种具有优异催化性能的复合光催化剂及其制备方法与应用 - Google Patents

一种具有优异催化性能的复合光催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN114849759A
CN114849759A CN202210631185.0A CN202210631185A CN114849759A CN 114849759 A CN114849759 A CN 114849759A CN 202210631185 A CN202210631185 A CN 202210631185A CN 114849759 A CN114849759 A CN 114849759A
Authority
CN
China
Prior art keywords
pdi
cobalt
carboxyl
self
composite photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210631185.0A
Other languages
English (en)
Inventor
徐婧
王周平
宁路方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202210631185.0A priority Critical patent/CN114849759A/zh
Publication of CN114849759A publication Critical patent/CN114849759A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0245Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
    • B01J31/0247Imides, amides or imidates (R-C=NR(OR))
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有优异催化性能的复合光催化剂,所述复合光催化剂具有钴嵌入富氮多孔碳材料与自组装含羧基苝酰亚胺通过π‑π相互作用和氢键作用形成的3D/1D异质结构;所述钴嵌入富氮多孔碳材料与自组装含羧基苝酰亚胺的质量比为1:0.1~10。本发明相比于现有技术中的自组装含羧基苝酰亚胺在降解污染物和杀灭致病菌方面表现出更加优异的光催化性能和回收利用能力,所述的制备方法绿色安全、原料易得、工艺简单,具有较高的应用前景和实用价值。

Description

一种具有优异催化性能的复合光催化剂及其制备方法与应用
技术领域
本发明涉及光催化剂材料技术领域,尤其是涉及一种具有优异催化性能的复合光催化剂及其制备方法与应用。
背景技术
3,4,9,10-苝酰亚胺(PDI)是由π电子共轭体系的中心刚性平面苝核与两端内酰胺组成的,早期研究中通常作为光敏剂以增强主体材料的光吸收能力,近年来发现可以通过自组装法基于π-π堆积和氢键作用使得苝核的分子轨道间发生有效重叠,由PDI单分子有序组装为具有连续能级结构和更大的π电子共轭体系的PDI超分子纳米纤维(SA-PDI)。作为一类新型有机半导体光催化剂,SA-PDI具有光谱响应范围广和光氧化能力强等优点,因而广泛应用于降解污染物、光解水产氧、杀灭致病菌等领域。同时,通过在PDI分子的亚酰胺位引入羧基基团来调控PDI的超分子自组装过程,能够有效改善SA-PDI的分散性、稳定性和能带结构,从而进一步提升其光催化性能。但是,目前SA-PDI还存在着比表面积小、吸附能力弱、对红外光利用率不高、光生电子-空穴对的复合几率高、难以从反应体系中回收再利用等问题,影响其应用前景。因此,开发出具有高比表面积、强吸附能力、全光谱响应、快速的光生载流子分离能力和磁分离功能的PDI基光催化剂意义重大。
钴基金属有机框架材料(Co-MOF)是一类由Co2+和2-甲基咪唑有机配体桥连组成的具有与沸石类似的拓扑结构的材料,具有结晶度高、比表面积大、吸附性能强、反应条件温和、合成方法简便等优点,但其存在着稳定性不高、不耐酸等缺点。Co-MOF分子筛中含有大量的活性Co中心,可以转化为多价Co化合物,有机配体咪唑也可以作为理想的碳源和氮源。因此,通过高温煅烧Co-MOF能够获得钴嵌入富氮多孔碳材料(Co-N-C),其具有较好的稳定性、强磁性、导电性、耐酸性、高比表面积以及三维(3D)多孔结构。如何利用Co-N-C来提高SA-PDI的性能是本领域研究的重点。
发明内容
针对现有技术存在的上述问题,本发明提供了一种具有优异催化性能的复合光催化剂及其制备方法与应用。本发明相比于现有技术中的自组装含羧基苝酰亚胺(SA-PDI)在降解污染物和杀灭致病菌方面表现出更加优异的光催化性能和回收利用能力,所述的制备方法绿色安全、原料易得、工艺简单,具有较高的应用前景和实用价值。
本发明的技术方案如下:
一种具有优异催化性能的复合光催化剂,所述复合光催化剂具有钴嵌入富氮多孔碳材料与自组装含羧基苝酰亚胺通过π-π相互作用和氢键作用形成的3D/1D异质结构;所述钴嵌入富氮多孔碳材料与自组装含羧基苝酰亚胺的质量比为1:0.1~10。
所述钴嵌入富氮多孔碳材料的粒径为300~700nm;所述自组装含羧基苝酰亚胺的直径为10~50nm,长度为200~700nm;所述自组装含羧基苝酰亚胺为自组装端位羧酸直链烷烃取代苝酰亚胺;所述钴嵌入富氮多孔碳材料与自组装含羧基苝酰亚胺的质量比为1:1~9。
复合光催化剂的粒径为300~700nm。
一种所述复合光催化剂的制备方法,所述制备方法为将钴嵌入富氮多孔碳材料通过原位自组装法修饰到自组装含羧基苝酰亚胺上,具体步骤为:
(1)制备钴嵌入富氮多孔碳材料
将钴盐溶液与2-甲基咪唑溶液在20~60℃,50~1500r/min转速下,搅拌混合0.1~10h,静置1~48h后在转速为1000~15000r/min的条件下离心收集沉淀,洗涤、30~80℃干燥1~48h、研磨0.1~5h得到钴基金属有机框架材料,之后再置于氮气气氛中煅烧、冷却、研磨0.1~5h得到钴嵌入富氮多孔碳材料;
所述钴盐溶液中钴盐与2-甲基咪唑溶液中2-甲基咪唑的摩尔比为1:0.1~10;
所述钴盐溶液中钴盐的摩尔浓度为0.01~10mol/L;钴盐为硝酸钴、硫酸钴、氯化钴或乙酸钴;钴盐溶液的溶剂为水、甲醇或乙醇;
所述2-甲基咪唑溶液中2-甲基咪唑的摩尔浓度为0.01~10mol/L;2-甲基咪唑溶液的溶剂为水、甲醇或乙醇。
所述煅烧的具体过程为:先以0.1~12℃/min的速度升温至400~900℃,然后再恒温煅烧1~8h。
(2)制备自组装含羧基苝酰亚胺
将3,4,9,10-苝四羧酸二酐、咪唑和β-氨基丙酸混合后加热至88~150℃,50~1500r/min转速下搅拌回流反应0.5~10h,冷却至室温,再加入乙醇和盐酸,50~1500r/min转速下搅拌反应5~30h,1000~15000r/min转速下离心收集沉淀,洗涤、30~80℃干燥1~48h、研磨0.1~5h得到含羧基苝酰亚胺粗产品;
然后将含羧基苝酰亚胺粗产品超声分散在水中(功率为200~800W,频率为10~50kHz,时间为0.1~5h),加入三乙胺,50~1500r/min转速下搅拌0.1~5h,使得含羧基苝酰亚胺完全溶解,形成含羧基苝酰亚胺溶液,再加入强酸在50~1500r/min转速下搅拌反应0.5~10h,得到自组装含羧基苝酰亚胺分散液;
所述3,4,9,10-四羧酸二酐与β-氨基丙酸的质量比为1:1~5,3,4,9,10-苝四羧酸二酐与咪唑的质量比为1:1~20;
所述3,4,9,10-苝四羧酸二酐与乙醇的质量体积比为1:10~150g/mL,3,4,9,10-苝四羧酸二酐与盐酸的质量体积比为1:10~500g/mL,所述盐酸浓度为0.1~10mol/L。
所述含羧基苝酰亚胺粗产品与水的质量体积比为1:0.1~10mg/mL,含羧基苝酰亚胺粗产品与三乙胺的质量体积比为1:0.1~10mg/μL;
所述含羧基苝酰亚胺粗产品与强酸的质量体积比为1:0.01~1mg/mL,所述强酸为盐酸、硫酸或硝酸,所述强酸的摩尔浓度为0.01~10mol/L。
(3)原位自组装法制备所述复合光催化剂
将步骤(1)制得的钴嵌入富氮多孔碳材料加水超声分散(功率为200~800W,频率为10~50kHz,时间为0.1~5h)得到钴嵌入富氮多孔碳材料分散液,之后加入到步骤(2)制得的自组装含羧基苝酰亚胺分散液中,加热至30~100℃,50~1500r/min转速下搅拌0.1~10h后超声分散(功率为200~800W,频率为10~50kHz,时间为0.1~5h),1000~15000r/min的转速下离心收集沉淀,洗涤、30~80℃干燥1~48h、研磨0.1~5h,得到所述复合光催化剂。
所述钴嵌入富氮多孔碳材料与水的质量体积比为1:0.01~10mg/mL。
一种所述复合光催化剂的应用,用于降解污染物或杀灭致病菌。
本发明有益的技术效果在于:
采用原位自组装法,一方面,以钴基金属有机框架材料为模板,通过高温煅烧法制备钴嵌入富氮多孔碳材料(Co-N-C),其具有较好的稳定性、强磁性、高导电性、耐酸性、高比表面积以及3D多孔结构,是一种理想的助催化剂;另一方面,以端位羧酸直链烷烃取代苝酰亚胺(PDI)为原料,通过超分子自组装法,先使PDI溶解于三乙胺溶液中,再加入酸性溶液使PDI分子之间的π-π作用以及羧酸基团之间的氢键作用形成自组装含羧基苝酰亚胺(SA-PDI),作为主体光催化剂。在Co-N-C与SA-PDI自组装的过程中,两者通过π-π相互作用和氢键作用进行结合,原位形成具有3D/1D异质结构的Co-N-C/SA-PDI复合光催化剂。
本发明以Co-N-C可以作为助催化剂与光催化剂复合构建异质结构,通过拓宽复合光催化体系的光谱响应范围至近红外光区来增强其光吸收能力,同时通过加快异质界面处光生电荷的转移来降低光生电子-空穴对的复合几率,Co-N-C本身的强磁性还可以赋予复合光催化剂良好的磁分离功能,便于回收再利用。
本发明通过与助催化剂Co-N-C复合的手段来提升SA-PDI进行光催化作用的空间和电子结构,Co-N-C作为助催化剂可以全面提升SA-PDI的光吸收能力、吸附性能以及光生载流子的分离和迁移效率,还可以赋予Co-N-C/SA-PDI复合光催化剂良好的磁分离功能,因而制备出具有优异的降解污染物和杀灭致病菌性能的Co-N-C/SA-PDI复合光催化剂。
本发明所述的Co-N-C/SA-PDI复合光催化剂相比于现有技术中的SA-PDI在降解污染物和杀灭致病菌方面表现出更加优异的光催化性能和回收利用能力;本发明所述制备方法绿色安全、原料易得、工艺简单,具有较高的应用前景和实用价值。
本发明采用原位法,在Co-N-C与SA-PDI自组装的过程中,两者通过π-π相互作用和氢键作用进行结合,原位形成具有3D/1D异质结构的Co-N-C/SA-PDI复合光催化剂;在Co-N-C/SA-PDI体系中,Co-N-C能够拓宽SA-PDI的光吸收范围至近红外光区,因而可以产生更多的光生载流子参与反应;Co-N-C的高比表面积和介孔结构能够增强复合催化剂的吸附能力,在催化剂表面提供更多的反应活性位点,其富氮碳骨架和SA-PDI之间的π-π相互作用可以引发电子离域效应、促进层间的电子转移,其结构中嵌入的钴纳米颗粒可以作为电子阱有效提升界面处光生载流子的迁移和分离效率,其本身的强磁性还可以赋予复合材料良好的磁分离功能。因此,与SA-PDI相比,本发明制备的Co-N-C/SA-PDI复合光催化剂具有更大的比表面积、更宽的光谱响应范围、更强的吸附性能、更快的光生电子-空穴对的分离效率以及更高的回收利用能力,对于提高SA-PDI基光催化剂的应用前景和实用价值具有重要的意义;另外原位自组装复合法具有高效、绿色、温和的特点。
附图说明
图1为本发明实施例1-5制备的Co-N-C/SA-PDI复合光催化剂与对比例1制备的SA-PDI光催化剂、对比例2制备的Co-N-C、对比例3制备的类石墨相氮化碳、对比例4制备的Co-N-C和SA-PDI的物理混合材料在可见光下对苯酚的降解性能对比图。
图中:a、为苯酚浓度随时间的变化曲线对比图;b、为降解苯酚的表观速率常数(k)对比图。
图2为实施例3制备的Co-N-C/SA-PDI-70%与对比例1制备的SA-PDI、对比例2制备的Co-N-C对苯酚的吸附性能对比图。
图3为实施例3制备的Co-N-C/SA-PDI-70%与对比例1制备的SA-PDI、对比例2制备的Co-N-C在可见光下抗菌性能对比图。
图4为实施例3制备的Co-N-C/SA-PDI-70%与对比例2制备的Co-N-C的SEM对比图。
图中:a、Co-N-C的SEM图像;b、Co-N-C/SA-PDI-70%的SEM图像。
图5为实施例3制备的Co-N-C/SA-PDI-70%与对比例1制备的SA-PDI、对比例2制备的Co-N-C的TEM对比图。
图中:a、SA-PDI的TEM图像;b、Co-N-C的TEM图像;c、Co-N-C/SA-PDI-70%的TEM图像。
图6为实施例3制备的Co-N-C/SA-PDI-70%与对比例1制备的SA-PDI、对比例2制备的Co-N-C的孔分布曲线图。
图7为实施例3制备的Co-N-C/SA-PDI-70%与对比例1制备的SA-PDI、对比例2制备的Co-N-C的磁滞回线。
图8为实施例1-5制备的Co-N-C/SA-PDI与对比例1制备的SA-PDI、对比例2制备的Co-N-C的XRD对比图。
图9为实施例1-5制备的Co-N-C/SA-PDI与对比例1制备的SA-PDI、对比例2制备的Co-N-C的FTIR对比图。
图10为实施例3制备的Co-N-C/SA-PDI-70%与对比例1制备的SA-PDI、对比例2制备的Co-N-C的拉曼光谱对比图。
图11为实施例3制备的Co-N-C/SA-PDI-70%与对比例1制备的SA-PDI、对比例2制备的Co-N-C的XPS对比图。
图中:a、Co-N-C、SA-PDI和Co-N-C/SA-PDI-70%的XPS全谱;b、Co-N-C、SA-PDI和Co-N-C/SA-PDI-70%的N1s谱;c、Co-N-C、SA-PDI和Co-N-C/SA-PDI-70%的O1s谱;d、Co-N-C和Co-N-C/SA-PDI-70%的Co 2p谱。
图12为实施例1-5制备的Co-N-C/SA-PDI与对比例1制备的SA-PDI、对比例2制备的Co-N-C的DRS对比图。
图13为实施例3制备的Co-N-C/SA-PDI-70%与对比例1制备的SA-PDI、对比例2制备的Co-N-C的光电性能对比图。
图中:a、Co-N-C、SA-PDI和Co-N-C/SA-PDI-70%在光暗交替下的光电流响应图;b、Co-N-C、SA-PDI和Co-N-C/SA-PDI-70%在可见光下的电化学阻抗Nyquist图。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。
本申请实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
一种钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂,所述自组装含羧基苝酰亚胺为自组装端位羧酸直链烷烃取代苝酰亚胺;所述复合光催化剂的制备方法包括如下步骤:
(1)制备钴嵌入富氮多孔碳材料
首先,将2mmol Co(NO3)2·6H2O和12mmol 2-甲基咪唑分别溶解在30mL和10mL的甲醇中,分别形成Co(NO3)2·6H2O溶液和2-甲基咪唑溶液;
再将2-甲基咪唑溶液缓慢地加入到Co(NO3)2·6H2O溶液中,在25℃,500r/min的搅拌速度下,搅拌混合5h,静置24h,然后在转速为8000r/min的条件下离心收集沉淀,用乙醇洗涤沉淀数次,于60℃干燥12h,将干燥产物手工研磨1h,得到的粉末产物即为钴基金属有机框架材料(Co-MOF)。
其次,将Co-MOF置于石英舟中,在管式炉中氮气气氛下以1℃/min的升温速度升温到600℃,再恒温煅烧2h,冷却后将产物研磨1h得到粒径为300~700nm的粉末即为钴嵌入富氮多孔碳材料(Co-N-C)。
(2)制备自组装含羧基苝酰亚胺
称取1.373g 3,4,9,10-苝四羧酸二酐、2.495gβ-氨基丙酸以及18g咪唑,于氩气保护下,将上述混合物加热至140℃,500r/min的转速下搅拌回流反应4h,待产物自然冷却至室温,加入100mL无水乙醇和300mL 2.0mol/L盐酸,500r/min的转速下搅拌15h,8000r/min转速下离心分离沉淀,用水洗涤沉淀至中性,于60℃下干燥20h,将产物研磨1h所得暗红色粉末产物即为含羧基苝酰亚胺粗产品,PDI粗产品。
称取534mg PDI粗产品于200mL水中超声(560W,40kHz)40min,加入834μL三乙胺,500r/min转速下搅拌2h,使PDI粗产品完全溶解,形成暗红色PDI溶液,然后加入27.3mL4.0mol/L盐酸,500r/min转速下搅拌反应1h,得到自组装含羧基苝酰亚胺分散液,SA-PDI分散液;其中,自组装含羧基苝酰亚胺的直径为10~50nm、长度为200~700nm。
(3)原位自组装法制备所述复合光催化剂
称取200mg Co-N-C粉末于20mL水中超声(560W,40kHz)40min,得到Co-N-C分散液,之后加入到SA-PDI分散液中,使得其中所含SA-PDI相对于Co-N-C/SA-PDI的质量分数为50%,60℃,500r/min转速下搅拌1h后超声(560W,40kHz)1h,待混合溶液冷却后,8000r/min转速下离心收集沉淀,用水洗涤沉淀至中性,60℃真空干燥20h,产物手工研磨1h得到粒径为300~700nm的粉末,即为钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂或钴嵌入富氮多孔碳材料/自组装端位羧酸直链烷烃取代苝酰亚胺(Co-N-C/SA-PDI)复合光催化剂。
实施例2-5
实施例2-5与实施例1基本相同,不同仅在于,SA-PDI相对于Co-N-C的质量分数,实施例2-5中SA-PDI相对于Co-N-C/SA-PDI的质量分数分别为60%、70%、80%、90%,其余步骤和原料均于实施例1相同。
实施例6
一种钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂,所述自组装含羧基苝酰亚胺为自组装端位羧酸直链烷烃取代苝酰亚胺;所述复合光催化剂的制备方法包括如下步骤:
(1)制备钴嵌入富氮多孔碳材料
首先,将1mmol CoSO4·7H2O和0.1mmol 2-甲基咪唑分别溶解在100mL和10mL水中,分别形成CoSO4·7H2O溶液和2-甲基咪唑溶液;
再将2-甲基咪唑溶液缓慢地加入到CoSO4·7H2O溶液中,在20℃,50r/min的搅拌速度下,搅拌混合0.1h,静置1h,然后以1000r/min的速度离心收集沉淀,用乙醇洗涤沉淀数次,于30℃干燥1h,产物手工研磨0.1h,得到的粉末产物即为钴基金属有机框架材料(Co-MOF);
其次,将Co-MOF置于石英舟中,在管式炉中氮气气氛下以0.1℃/min的升温速度升温到400℃,再恒温煅烧1h,冷却后将产物研磨0.1h得到粒径为300~700nm的粉末即为钴嵌入富氮多孔碳材料(Co-N-C)。
(2)制备自组装含羧基苝酰亚胺
称取1g 3,4,9,10-苝四羧酸二酐、1gβ-氨基丙酸以及1g咪唑,于氩气保护下,将上述混合物加热至88℃,50r/min的转速下搅拌回流反应0.5h,待产物自然冷却至室温,加入10mL无水乙醇和10mL 0.1mol/L盐酸,50r/min的转速下搅拌5h,1000r/min转速下离心分离沉淀,用水洗涤沉淀至中性,于30℃下干燥1h,将产物研磨0.1h所得暗红色粉末产物即为含羧基苝酰亚胺粗产品,PDI粗产品。
称取100mg PDI粗产品于10mL水中超声(200W,10kHz)0.1h,加入10μL三乙胺,50r/min转速下搅拌0.1h,使PDI粗产品完全溶解,形成暗红色PDI溶液,然后加入1mL 0.01mol/L硫酸,50r/min转速下搅拌反应0.5h,得到自组装含羧基苝酰亚胺分散液,SA-PDI分散液;其中,自组装含羧基苝酰亚胺的直径为10~50nm、长度为200~700nm。
(3)原位自组装法制备所述复合光催化剂
称取200mg Co-N-C粉末于2mL水中超声(200W,10kHz)0.1h,得到Co-N-C分散液,之后加入到SA-PDI分散液中,使得其中所含SA-PDI相对于Co-N-C的质量分数为10%,30℃,50r/min转速下搅拌0.1h后超声(200W,10kHz)0.1h,待混合溶液冷却后,1000r/min转速下离心收集沉淀,用水洗涤沉淀至中性,30℃真空干燥1h,产物手工研磨0.1h得到粒径为300~700nm的粉末,即为钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂或钴嵌入富氮多孔碳材料/自组装端位羧酸直链烷烃取代苝酰亚胺(Co-N-C/SA-PDI)复合光催化剂。
实施例7
一种钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂,所述自组装含羧基苝酰亚胺为自组装端位羧酸直链烷烃取代苝酰亚胺;所述复合光催化剂的制备方法包括如下步骤:
(1)制备钴嵌入富氮多孔碳材料
首先,将100mmol CoCl2·6H2O和1mol 2-甲基咪唑分别溶解在10mL和100mL乙醇中,分别形成CoCl2·6H2O溶液和2-甲基咪唑溶液;
再将2-甲基咪唑溶液缓慢地加入到CoCl2·6H2O溶液中,在60℃,1500r/min的搅拌速度下,搅拌混合10h,静置48h,然后以15000r/min的速度离心收集沉淀,用乙醇洗涤沉淀数次,于80℃干燥48h,产物手工研磨5h,得到的粉末产物即为钴基金属有机框架材料(Co-MOF)。
其次,将Co-MOF置于石英舟中,在管式炉中氮气气氛下以12℃/min的升温速度升温到900℃,再恒温煅烧8h,冷却后将产物研磨5h得到粒径为300~700nm的粉末即为钴嵌入富氮多孔碳材料(Co-N-C)。
(2)制备自组装含羧基苝酰亚胺
称取1g 3,4,9,10-苝四羧酸二酐、5gβ-氨基丙酸以及20g咪唑,于氩气保护下,将上述混合物加热至150℃,1500r/min的转速下搅拌回流反应10h,待产物自然冷却至室温,加入150mL无水乙醇和500mL 10.0mol/L盐酸,1500r/min转速下搅拌30h,15000r/min转速下离心分离沉淀,用水洗涤沉淀至中性,于80℃下干燥48h,将产物研磨5h所得暗红色粉末产物即为含羧基苝酰亚胺粗产品,PDI粗产品。
称取100mg PDI粗产品于1000mL水中超声(800W,50kHz)5h,加入1000μL三乙胺,1500r/min转速下搅拌5h,使PDI粗产品完全溶解,形成暗红色PDI溶液,然后加入100mL10mol/L硝酸,1500r/min转速下搅拌10h,得到自组装含羧基苝酰亚胺分散液,SA-PDI分散液;其中,自组装含羧基苝酰亚胺的直径为10~50nm、长度为200~700nm。
(3)原位自组装法制备所述复合光催化剂
称取200mg Co-N-C粉末于2000mL水中超声(800W,50kHz)5h,得到Co-N-C分散液,之后加入到SA-PDI分散液中,使得其中所含SA-PDI相对于Co-N-C的质量分数为1000%,100℃,1500r/min转速下搅拌10h后超声(800W,50kHz)5h,待混合溶液冷却后,15000r/min转速下离心收集沉淀,用水洗涤沉淀至中性,80℃真空干燥48h,产物手工研磨5h得到粒径为300~700nm的粉末,即为钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂或钴嵌入富氮多孔碳材料/自组装端位羧酸直链烷烃取代苝酰亚胺(Co-N-C/SA-PDI)复合光催化剂。
对比例1
超分子自组装法制备自组装含羧基苝酰亚胺,其制备方法包括如下步骤:
称取1.373g 3,4,9,10-苝四羧酸二酐、2.495gβ-氨基丙酸以及18g咪唑,于氩气保护下,将上述混合物加热至140℃,500r/min转速下搅拌反应4h,待产物自然冷却至室温,加入100mL无水乙醇和300mL 2.0mol/L盐酸,500r/min转速下搅拌15h,8000r/min转速下离心分离沉淀,用水反复洗涤沉淀至中性,于60℃下干燥20h,将产物研磨1h所得暗红色粉末产物即为PDI粗产品。
称取1.20g PDI粗产品于450mL水中超声(560W,40kHz),加入1876.5μL三乙胺,500r/min转速下搅拌2h,使PDI粗产品完全溶解,形成暗红色PDI溶液,然后加入61.425mL4.0mol/L盐酸,500r/min转速下搅拌1h,8000r/min转速下离心分离沉淀,用水洗涤沉淀至中性,于60℃下真空干燥20h,产物手工研磨1h得到直径为10~50nm、长度为200~700nm的粉末产物即为自组装含羧基苝酰亚胺(SA-PDI)。
对比例2
模板法制备钴嵌入富氮多孔碳材料,其制备方法包括如下步骤:
将2mmol Co(NO3)2·6H2O和12mmol 2-甲基咪唑分别溶解在30mL和10mL甲醇中,再将2-甲基咪唑溶液缓慢地加入到Co(NO3)2·6H2O溶液中,在室温500r/min转速下搅拌混合5h,静置24h,8000r/min转速下离心收集沉淀,用乙醇洗涤沉淀数次,于60℃干燥12h,产物手工研磨1h得到的粉末产物即为钴基金属有机框架材料(Co-MOF);
然后将Co-MOF置于石英舟中,在管式炉中氮气气氛下以1℃/min的升温速度升温到600℃,再恒温煅烧2h,将产物手工研磨1h得到粒径为300~700nm的粉末即为钴嵌入富氮多孔碳材料(Co-N-C)。
对比例3
高温缩聚法制备类石墨相氮化碳材料,其制备方法包括如下步骤:
称取10g三聚氰胺于50mL带盖坩埚中,在马弗炉中以2℃/min的升温速度升温到550℃,再恒温煅烧4h,待产物自然冷却后,手工研磨1h得到类石墨相氮化碳(g-C3N4)。
对比例4
分别称取7mg SA-PDI和3mg Co-N-C,两者通过手工研磨1h进样物理混合,得到的产物即为物理混合材料(70%)。
测试例:
针对实施例1-5所得复合光催化剂和对比例1-4获得的产物进行性能测试。
(1)光催化降解污染物性能测试
采用苯酚作为目标降解物,在可见光下考察实施例1-5复合光催化剂及对比例1-3制备的产物的降解活性。可见光采用300W的氙灯为光源加400nm滤光片;取5ppm的苯酚溶液50mL,加入10mg的光催化剂得到混合液,先将混合液超声分散30min,然后在黑暗环境中搅拌60min使得光催化剂和目标污染物间达到吸附平衡;打开氙灯光源开始光催化反应,每隔一定时间取2mL反应溶液,离心去除溶液中的光催化剂,用0.22μm水系滤膜过滤上清液;通过高效液相色谱(HPLC)检测上清液中苯酚的浓度(Waters-C18柱,检测波长270nm,甲醇/水体积比为60:40,流速1mL/min)。
图1为实施例1-5制备的Co-N-C/SA-PDI复合光催化剂与对比例1制备的SA-PDI、对比例2制备的Co-N-C、对比例3制备的g-C3N4、对比例4制备的Co-N-C和SA-PDI的物理混合材料在可见光下对苯酚的降解性能对比图。图中:实施例1-5制备的钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂简称Co-N-C/SA-PDI,以复合光催化剂中SA-PDI量为标准命名,SA-PDI与Co-N-C/SA-PDI的质量比分别为50%、60%、70%、80%、90%的样品分别记为Co-N-C/SA-PDI-50%、Co-N-C/SA-PDI-60%、Co-N-C/SA-PDI-70%、Co-N-C/SA-PDI-80%、Co-N-C/SA-PDI-90%,对比例1制备的自组装含羧基苝酰亚胺简称SA-PDI,对比例2制备的钴嵌入富氮多孔碳材料简称Co-N-C,对比例3制备的类石墨相氮化碳材料简称g-C3N4、对比例4制备的Co-N-C和SA-PDI的物理混合材料简称为物理混合70%。由图1(a)可知,在可见光下,对比例1制备的SA-PDI、对比例3制备的g-C3N4、对比例4制备的物理混合70%与实施例1-5制备的Co-N-C/SA-PDI复合光催化剂均表现出了对苯酚的降解性能,而对比例2制备的Co-N-C基本上没有光催化降解能力。由实施例1-5可知,随着复合光催化剂中SA-PDI的含量从50%增加到90%,复合物的光催化效率整体上呈现先增强后降低的趋势,最佳负载量为70wt%,此时光催化活性最高;在可见光照射100min后能够降解约73%的苯酚污染物。通过拟合准一级动力学方程ln(C/C0)=kt得到光催化降解的表观速率常数k(图1(b)),实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂的表观速率常数k值为0.0131min-1,约为对比例1制备的SA-PDI(k为0.0027min-1)的4.7倍,约为对比例3制备的g-C3N4(k为0.0014min-1)的9.0倍,约为对比例4制备的物理混合70%(k为0.0020min-1)的6.6倍;这一结果表明对比例1制备的SA-PDI与对比例2制备的Co-N-C结合确实可以起到提高SA-PDI光催化降解活性的作用,并且光催化剂性能的提升是Co-N-C和SA-PDI协同作用的结果。另外,相比于物理混合法,通过原位自组装法制备的Co-N-C/SA-PDI-70%复合光催化剂的光催化活性获得了很大的提升,说明Co-N-C和SA-PDI之间通过π-π相互作用和氢键作用形成的3D/1D异质结构更有利于光催化反应的进行。证明相比于对比例1制备的SA-PDI、对比例2制备的Co-N-C、对比例3制备的g-C3N4、对比例4制备的物理混合70%,钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂拥有更为优异的光催化降解污染物性能。
图2为实施例3制备的Co-N-C/SA-PDI-70%与对比例1制备的SA-PDI光催化剂、对比例2制备的Co-N-C对苯酚的吸附性能对比图。如图2可知,对比例1制备的SA-PDI光催化剂、对比例2制备的Co-N-C和实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂对苯酚在60min内基本可以达到吸附平衡,且SA-PDI、Co-N-C/SA-PDI-70%复合光催化剂和Co-N-C对苯酚分别吸附6.8%、10.5%和14.8%的苯酚,这一结果表明Co-N-C的高比表面积和多孔结构可以改善SA-PDI光催化剂的表面性质,提高Co-N-C/SA-PDI复合光催化剂对有机污染物的吸附能力,增强其表面反应活性。证明相比于对比例1制备的SA-PDI,钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂拥有更为优异的吸附性能。
(2)光催化抗菌性能测试
以革兰氏阳性菌金黄色葡萄球菌(S.aureus)作为测试样品光催化抗菌性能的模型细菌。将S.aureus接种在Luria Bertani(LB)液体培养基中,37℃下振荡孵育3h。离心收集细菌细胞,用无菌0.9%NaCl溶液洗涤3次后将细菌细胞重悬于生理盐水中。抗菌实验中取10mg样品材料加到41mL的生理盐水,再加入9mL细菌细胞液,超声30min后进行暗反应30min,光催化抗菌过程使用的光源为500W氙灯(λ>420nm),每隔30min取2mL的菌液,用无菌生理盐水稀释4倍。取100μL稀释液涂布于LB固体培养基上,并在37℃培养12h后,用平板菌落计数法统计不同光照时间后菌液中的菌群数。光控制组不加入光催化剂进行光照,暗控制组加入光催化剂不进行光照,每组实验做三份平行样本。所用实验装置、生理盐水溶液在121℃高压下灭菌20min。
图3为实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂与对比例1制备的SA-PDI、对比例2制备的Co-N-C在可见光下抗菌性能对比图。由图3可知,光控制组中几乎没有S.aureus失活,表明可见光照射对其没有影响;暗控制组中S.aureus的失活率也很低,表明Co-N-C/SA-PDI-70%本身对S.aureus无明显的生物毒性作用;Co-N-C/SA-PDI-70%复合光催化剂的光催化杀菌效率显著高于Co-N-C和SA-PDI,在可见光照2h后能够杀灭88%的细菌,而同一条件下Co-N-C和SA-PDI的杀菌率分别为34%和53%。证明相比于对比例1制备的SA-PDI、对比例2制备的Co-N-C,钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂拥有更为优异的抗菌性能。
本发明采用FEI Inspect F50型场发射扫描电子显微镜拍摄扫描电镜(SEM)图像;图4为实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂与对比例2制备的Co-N-C的SEM对比图。由图4(a)可知,Co-N-C呈现直径为300~700nm的菱形十二面体,颗粒表面粗糙,出现不同程度的凹陷,这一结果表明钴嵌入富氮多孔碳材料具有3D的立体结构;由图4(b)可知,Co-N-C与SA-PDI复合后,Co-N-C/SA-PDI-70%复合光催化剂仍然保持着Co-N-C的3D富氮碳骨架的完整结构。
本发明采用JEOL JEM-2100型透射电子显微镜,电子束加速电压为200kV,拍摄透射电镜(TEM)图像;图5为对比例1制备的SA-PDI、对比例2制备的Co-N-C、实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂的TEM对比图。如图5(a)可知,SA-PDI呈现1D纳米纤维结构,直径为10~50nm,长度为200~700nm;由图5(b)可知,Co-N-C为立体结构,尺寸约为300~700nm,内嵌有直径在10nm左右的Co纳米颗粒,这主要是Co-MOF中的Co2+在高温碳化过程中被还原形成的;图5(c)为实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂,Co-N-C与SA-PDI复合后,能够在Co-N-C边缘及表面观察到SA-PDI纳米纤维,表明两者紧密接触;这一结果表明,本发明用原位法可以将Co-N-C和SA-PDI成功结合为具有3D/1D异质结构的钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂。
采用Micromeritics TriStar II 3020型全自动化学吸附仪在液氮温度下使用N2吸附-脱附方法测定样品的BET比表面积、孔容积和孔分布曲线;图6为实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂与对比例1制备的SA-PDI、对比例2制备的Co-N-C的孔分布曲线图。由图6可知,对比例1制备的SA-PDI的孔径大概在2~5nm范围内,这些孔可能是SA-PDI纳米纤维间的二次堆积孔;实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂保持了对比例2制备的Co-N-C的多孔碳骨架结构,因此具有较高的BET比表面积(120.45m2/g)与丰富的介孔结构(孔容积为0.27cm3/g),孔径大概在2~20nm范围内;这一结果表明Co-N-C/SA-PDI复合光催化剂保持了Co-N-C的高比表面积和丰富的介孔结构,且Co-N-C的3D多孔结构能够有效改善SA-PDI的表面性质,不仅能够提供更多的反应活性位点,还有利于进行电子传输与物质传递过程,从而使更多的光生载流子快速迁移到钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂表面参与反应。
使用磁学测量系统Quantum Design PPMS DynaCool来表征材料的磁性;图7为实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂与对比例1制备的SA-PDI、对比例2制备的Co-N-C的磁滞回线。由图7可知,Co-N-C由于内部结构中含有磁性组分Co颗粒,表现出超顺磁特性,饱和磁化强度为33.52emu/g;SA-PDI没有表现出磁性;而Co-N-C/SA-PDI-70%同样具有较强的磁响应,饱和磁化强度为5.52emu/g,能够通过磁分离快速收集复合材料;这一结果表明这表明Co-N-C本身的强磁性可以赋予钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂良好的磁分离功能,便于材料进行回收再利用。
采用Bruker D2-phaserX射线衍射仪(CuKα,30kV,10mA)研究样品的X射线衍射光谱(XRD);图8为实施例1-5制备的Co-N-C/SA-PDI复合光催化剂与对比例1制备的SA-PDI、对比例2制备的Co-N-C的XRD对比图。由图8可知,Co-N-C表现出位于44.4°和51.6°的衍射峰分别归属于金属Co面心立方结构(111)和(200)晶面的衍射,这是由于在氮气气氛中高温碳化Co-MOF可以使中心Co2+完全还原为金属Co;SA-PDI在10°-27°具有多个尖锐的衍射峰,表明其具有高度结晶性,SA-PDI位于26.2°的峰对应于π-π堆积,其与位于14.3°的峰的强度比大于1,表明其具有有序的π-π堆积结构,有利于光生电子的层间转移;对于Co-N-C/SA-PDI复合光催化剂,随着SA-PDI含量的增加,Co-N-C/SA-PDI复合光催化剂中对应的SA-PDI特征衍射峰逐渐增强、对应于Co-N-C的特征衍射峰逐渐减弱,并且对应于SA-PDI的π-π堆积的峰向低角度发生了偏移,这一结果表明Co-N-C与SA-PDI之间存在π-π相互作用。证明本发明用原位自组装法可以将Co-N-C和SA-PDI通过π-π相互作用成功结合为具有3D/1D异质结构的钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂。
采用Nicolet iS10光谱仪测定样品的红外光谱(FTIR);图9为实施例1-5制备的Co-N-C/SA-PDI复合光催化剂与对比例1制备的SA-PDI、对比例2制备的Co-N-C的FTIR对比图。由图9可知,SA-PDI位于1685cm-1、1648cm-1、1585cm-1、744cm-1处的峰分别归属于C=O伸缩振动、苯环的C=C伸缩振动、O-H的伸缩振动以及-O=CN-的弯曲振动,表明其结构中苯环和羧基取代基的存在;对于Co-N-C/SA-PDI复合光催化剂,随着SA-PDI含量增加,对应于其特征峰的强度逐渐增加,且对应于1685cm-1、1585cm-1处的特征峰位置相比于SA-PDI发生了偏移,表明SA-PDI与Co-N-C之间存在氢键作用。说明本发明用原位自组装法可以将Co-N-C和SA-PDI通过氢键作用成功结合为具有3D/1D异质结构的钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂。
采用DXR2xi显微拉曼成像光谱仪测定样品的拉曼光谱;图10为实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂与对比例1制备的SA-PDI、对比例2制备的Co-N-C的拉曼光谱对比图。由图10可知,Co-N-C中存在位于1341cm-1的D带和1588cm-1处的G带,D带对应于无序碳或缺陷的石墨结构,G带是sp2杂化碳的石墨面内振动的特征;SA-PDI位于1587cm-1的振动峰对应于苝核结构中的C=C/C-C的伸缩振动,其对π-π堆积比较敏感,位于1297cm-1的振动峰对应于平面弯曲中的C-H伸缩振动,其对分子间相互作用的π-π堆积效应不敏感,因此可以通过计算1587cm-1/1297cm-1的强度比值来评价材料的π-π堆积程度;Co-N-C/SA-PDI-70%复合光催化剂的强度比为0.746,高于SA-PDI的强度比(0.710),表明具有共轭π结构的Co-N-C促进了SA-PDI的π-π有序堆积程度,两者之间的π-π堆积作用有利于π电子离域,同时可以引发电子耦合效应,进而促进光生电子的迁移速率;与SA-PDI相比,Co-N-C/SA-PDI-70%复合光催化剂的拉曼位移向短波移动,表明Co-N-C与SA-PDI之间存在π-π相互作用。证明本发明用原位自组装法可以将Co-N-C和SA-PDI通过π-π相互作用成功结合为具有3D/1D异质结构的钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂。
采用EscaLab 250Xi能谱仪测试样品的X射线光电子能谱(XPS);图11为实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂与对比例1制备的SA-PDI、对比例2制备的Co-N-C的XPS对比图。由图11(a)可知,SA-PDI主要含有C、N、O元素,Co-N-C与Co-N-C/SA-PDI-70%复合光催化剂主要含有C、N、O、Co元素。由图11(b)可知,SA-PDI的N1s谱在400.1eV的峰位归属于C-N中的N,Co-N-C在398.5eV、399.1eV、400.0eV、401.0eV处的峰分别对应吡啶N、Co-N、吡咯N与石墨N,Co-N-C/SA-PDI-70%复合光催化剂的N1s谱分为398.6eV、399.2eV、400.2eV、401.1eV四个峰位,分别对应于吡啶N、Co-N、C-N/吡咯N与石墨N,并均向高结合能处移动,表明SA-PDI与Co-N-C之间存在π-π相互作用;由图11(c)可知,SA-PDI的O1s谱显示在531.2eV、532.5eV、533.6eV存在三个峰,分别对应于C=O、C-O-C、吸附H2O中的O,Co-N-C位于530.7eV、531.8eV、533.2eV的峰位归属于Co-O、C-O、吸附H2O中的O,Co-N-C/SA-PDI-70%复合光催化剂分为530.3eV、531.1eV、532.0eV、533.4eV四个峰位,分别归属于Co-O、C=O、C-O-C与吸附H2O中的O,并且其对应于SA-PDI的结合能峰位均向低结合能移动,表明两者之间的π-π相互作用和界面电子转移可以增加O1s电子密度;由图11(d)可知,Co-N-C的Co 2p谱的峰位分为Co 2p1/2Co0(793.6eV)、Co2+(796.5eV)、卫星峰(802.8eV)与Co 2p3/2Co0(778.5eV)、Co2+(780.8eV)、卫星峰(785.5eV),Co-N-C/SA-PDI-70%复合光催化剂的Co 2p谱的峰位分为Co 2p1/2Co0(793.3eV)、Co2+(796.3eV)、卫星峰(802.1eV)与Co 2p3/2Co0(778.2eV)、Co2+(780.6eV)、卫星峰(785.4eV),Co-N-C/SA-PDI-70%复合光催化剂的Co 2p谱的峰位普遍向低结合能移动,表明了Co-N-C与SA-PDI之间存在相互作用,并且内置电场诱导了Co纳米颗粒与SA-PDI之间的界面电子转移。证明本发明用原位自组装法可以将Co-N-C和SA-PDI通过π-π相互作用成功结合为具有3D/1D异质结构的钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂。
采用Shimadzu UV-3600Plus紫外可见分光光度计记录样品的漫反射光谱(DRS),图12为实施例1-5制备的Co-N-C/SA-PDI复合光催化剂与对比例1制备的SA-PDI、对比例2制备的Co-N-C的DRS对比图。由图12可知,对比例1的SA-PDI本身表现出较宽的光吸收范围,几乎覆盖整个可见光区域;对比例2的Co-N-C表现出较宽的光吸收范围,这主要是由于其多孔碳骨架结构有利于入射光在多面体内部发生多次反射和散射;相比于SA-PDI,Co-N-C/SA-PDI复合光催化剂表现出更强的光吸收能力和更宽的光谱响应范围,不但具有可见光响应,还可以利用近红外光,从而能够在光照下产生更多的光生载流子,有利于光催化活性的提升。这一结果证明钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂的光吸收能力得到显著提高。
(3)光电性能测试
利用CHI 660D电化学工作站(Chenhua Instrument)测定光电性能,标准三电极系统包括对电极即铂丝,参比电极即饱和甘汞电极和工作电极,同时将0.1mol/L Na2SO4溶液作为电解质。工作电极制备方法如下:将2mg催化剂粉末分散在含有5%Nafion溶液的1mL超纯水中,将悬浮液涂覆在氧化铟锡(ITO)玻璃表面,室温干燥并在180℃下加热5h。使用具有400nm截止滤光片的300W氙灯作为可见光源。光电流响应测试在0.0V下进行;交流阻抗谱(EIS)光谱在5mV的AC电压下并在0.05Hz至105Hz的范围内记录。
图13为实施例3制备的Co-N-C/SA-PDI-70%复合光催化剂与对比例1制备的SA-PDI、对比例2制备的Co-N-C的光电性能对比图。由图13(a)可知,在可见光下,Co-N-C/SA-PDI-70%具有最强的光电流响应值,分别为SA-PDI与Co-N-C的3.3倍和1.3倍,光电流的增强意味着SA-PDI与Co-N-C结合后,复合材料的光生电子-空穴对的分离效率得到显著改善,这对提高其光催化活性是有利的;由图13(b)可知,EIS图谱的圆弧半径可以反映电极表面的反应速率,较小的圆弧半径意味着电荷转移的电阻较小,在可见光下,Co-N-C/SA-PDI-70%的圆弧半径小于SA-PDI与Co-N-C,这说明复合光催化剂的电荷转移电阻更小、即其具有更高的光生载流子分离和迁移效率。这一结果证明本发明制备的钴嵌入富氮多孔碳材料/自组装含羧基苝酰亚胺复合光催化剂的光生载流子分离和迁移能力显著提升,从而具有更加优异的可见光催化降解污染物和杀灭致病菌性能。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.一种具有优异催化性能的复合光催化剂,其特征在于,所述复合光催化剂具有钴嵌入富氮多孔碳材料与自组装含羧基苝酰亚胺通过π-π相互作用和氢键作用形成的3D/1D异质结构;所述钴嵌入富氮多孔碳材料与自组装含羧基苝酰亚胺的质量比为1:0.1~10。
2.根据权利要求1所述的复合光催化剂,其特征在于,所述钴嵌入富氮多孔碳材料的粒径为300~700nm;所述自组装含羧基苝酰亚胺的直径为10~50nm,长度为200~700nm;所述自组装含羧基苝酰亚胺为自组装端位羧酸直链烷烃取代苝酰亚胺;所述钴嵌入富氮多孔碳材料与自组装含羧基苝酰亚胺的质量比为1:1~9。
3.根据权利要求1所述的复合光催化剂,其特征在于,复合光催化剂的粒径为300~700nm。
4.一种权利要求1所述复合光催化剂的制备方法,其特征在于,所述制备方法为将钴嵌入富氮多孔碳材料通过原位自组装法修饰到自组装含羧基苝酰亚胺上,具体步骤为:
(1)制备钴嵌入富氮多孔碳材料
将钴盐溶液与2-甲基咪唑溶液搅拌混合,静置后离心收集沉淀,洗涤、干燥、研磨得到钴基金属有机框架材料,之后再置于氮气气氛中煅烧、冷却、研磨得到钴嵌入富氮多孔碳材料;
(2)制备自组装含羧基苝酰亚胺
将3,4,9,10-苝四羧酸二酐、咪唑和β-氨基丙酸混合后加热搅拌回流反应,冷却至室温,再加入乙醇和盐酸进行搅拌反应,离心收集沉淀,洗涤、干燥、研磨得到含羧基苝酰亚胺粗产品;
然后将含羧基苝酰亚胺粗产品超声分散在水中,加入三乙胺进行搅拌,使得含羧基苝酰亚胺完全溶解,形成含羧基苝酰亚胺溶液,再加入强酸进行搅拌反应,得到自组装含羧基苝酰亚胺分散液;
(3)原位自组装法制备所述复合光催化剂
将步骤(1)制得的钴嵌入富氮多孔碳材料加水超声分散得到钴嵌入富氮多孔碳材料分散液,之后加入到步骤(2)制得的自组装含羧基苝酰亚胺分散液中,加热搅拌后超声分散,离心收集沉淀,洗涤、干燥、研磨得到所述复合光催化剂。
5.根据权利要求4所述的制备方法,其特征在于,步骤(1)中,所述钴盐溶液中钴盐与2-甲基咪唑溶液中2-甲基咪唑的摩尔比为1:0.1~10;
所述钴盐溶液中钴盐的摩尔浓度为0.01~10mol/L;钴盐为硝酸钴、硫酸钴、氯化钴或乙酸钴;钴盐溶液的溶剂为水、甲醇或乙醇;
所述2-甲基咪唑溶液中2-甲基咪唑的摩尔浓度为0.01~10mol/L;2-甲基咪唑溶液的溶剂为水、甲醇或乙醇。
6.根据权利要求4所述的制备方法,其特征在于,步骤(1)中,所述煅烧的具体过程为:先以0.1~12℃/min的速度升温至400~900℃,然后再恒温煅烧1~8h。
7.根据权利要求4所述的制备方法,其特征在于,步骤(2)中,所述3,4,9,10-四羧酸二酐与β-氨基丙酸的质量比为1:1~5,3,4,9,10-苝四羧酸二酐与咪唑的质量比为1:1~20;
所述3,4,9,10-苝四羧酸二酐与乙醇的质量体积比为1:10~150g/mL,3,4,9,10-苝四羧酸二酐与盐酸的质量体积比为1:10~500g/mL,所述盐酸浓度为0.1~10mol/L。
8.根据权利要求4所述的制备方法,其特征在于,步骤(2)中,所述含羧基苝酰亚胺粗产品与水的质量体积比为1:0.1~10mg/mL,含羧基苝酰亚胺粗产品与三乙胺的质量体积比为1:0.1~10mg/μL;
所述含羧基苝酰亚胺粗产品与强酸的质量体积比为1:0.01~1mg/mL,所述强酸为盐酸、硫酸或硝酸,所述强酸的摩尔浓度为0.01~10mol/L。
9.根据权利要求4所述的制备方法,其特征在于,步骤(3)中,所述钴嵌入富氮多孔碳材料与水的质量体积比为1:0.01~10mg/mL。
10.一种权利要求1所述复合光催化剂的应用,其特征在于,用于降解污染物或杀灭致病菌。
CN202210631185.0A 2022-06-06 2022-06-06 一种具有优异催化性能的复合光催化剂及其制备方法与应用 Pending CN114849759A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210631185.0A CN114849759A (zh) 2022-06-06 2022-06-06 一种具有优异催化性能的复合光催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210631185.0A CN114849759A (zh) 2022-06-06 2022-06-06 一种具有优异催化性能的复合光催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN114849759A true CN114849759A (zh) 2022-08-05

Family

ID=82623768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210631185.0A Pending CN114849759A (zh) 2022-06-06 2022-06-06 一种具有优异催化性能的复合光催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114849759A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115611915A (zh) * 2022-10-13 2023-01-17 上海理工大学 一种苝系金属化合物及其复合材料的制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180099986A1 (en) * 2016-09-16 2018-04-12 The Regents Of The University Of California Controlled Synthesis of Polymeric Perylene Diimide and Applications Thereof
CN107952482A (zh) * 2017-12-04 2018-04-24 清华大学 一种苝酰亚胺超分子纳米纤维光催化剂的制备方法与应用
CN109517186A (zh) * 2018-11-15 2019-03-26 北京化工大学 一种能稳定阴离子自由基的三维苝类金属有机骨架材料及其用于光热转化的使用方法
CN111001439A (zh) * 2019-12-15 2020-04-14 苏州大学 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用
CN111389458A (zh) * 2020-01-16 2020-07-10 江南大学 含羧基苝酰亚胺/氧掺杂氮化碳纳米片异质结光催化剂及其制备方法和应用
CN111495426A (zh) * 2020-05-25 2020-08-07 西南科技大学 一种聚苯胺/苝酰亚胺有机异质结光催化剂、制备方法及其应用
CN112718009A (zh) * 2020-12-23 2021-04-30 南京师范大学 一种pdi/mof异质结光催化剂及其制备方法与使用方法
CN113694963A (zh) * 2021-09-27 2021-11-26 江南大学 钴嵌入富氮多孔碳材料/自组装纳米卟啉复合光催化剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180099986A1 (en) * 2016-09-16 2018-04-12 The Regents Of The University Of California Controlled Synthesis of Polymeric Perylene Diimide and Applications Thereof
CN107952482A (zh) * 2017-12-04 2018-04-24 清华大学 一种苝酰亚胺超分子纳米纤维光催化剂的制备方法与应用
CN109517186A (zh) * 2018-11-15 2019-03-26 北京化工大学 一种能稳定阴离子自由基的三维苝类金属有机骨架材料及其用于光热转化的使用方法
CN111001439A (zh) * 2019-12-15 2020-04-14 苏州大学 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用
CN111389458A (zh) * 2020-01-16 2020-07-10 江南大学 含羧基苝酰亚胺/氧掺杂氮化碳纳米片异质结光催化剂及其制备方法和应用
CN111495426A (zh) * 2020-05-25 2020-08-07 西南科技大学 一种聚苯胺/苝酰亚胺有机异质结光催化剂、制备方法及其应用
CN112718009A (zh) * 2020-12-23 2021-04-30 南京师范大学 一种pdi/mof异质结光催化剂及其制备方法与使用方法
CN113694963A (zh) * 2021-09-27 2021-11-26 江南大学 钴嵌入富氮多孔碳材料/自组装纳米卟啉复合光催化剂及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115611915A (zh) * 2022-10-13 2023-01-17 上海理工大学 一种苝系金属化合物及其复合材料的制备方法与应用

Similar Documents

Publication Publication Date Title
Wang et al. Facile construction of novel organic–inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight
Li et al. Synthesis of a carbon dots modified g-C3N4/SnO2 Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Hu et al. Deposition of CdS nanoparticles on MIL-53 (Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation
Xu et al. Enhanced visible-light photocatalytic H 2-generation activity of carbon/gC 3 N 4 nanocomposites prepared by two-step thermal treatment
Li et al. Photocatalysts based on g-C3N4-encapsulating carbon spheres with high visible light activity for photocatalytic hydrogen evolution
CN111389458B (zh) 含羧基苝酰亚胺/氧掺杂氮化碳纳米片异质结光催化剂及其制备方法和应用
Zhu et al. Based on a dual Z-scheme heterojunction and magnetically separable CoFe2O4/g-C3N4/Bi4Ti3O12 flower-like composite for efficient visible-light photocatalytic degradation of organic pollutants
Shah et al. IL-assisted synthesis of defect-rich polyaniline/NH2-MIL-125 nanohybrids with strengthened interfacial contact for ultra-fast photocatalytic degradation of acetaldehyde under high humidity
CN111266126B (zh) 硫掺杂石墨相氮化碳纳米片负载石墨烯与四氧化三铁复合磁性光催化剂制备方法和应用
Huang et al. Organic-inorganic TCPP/BiOCl hybrids with accelerated interfacial charge separation for boosted photocatalytic performance
CN108339544B (zh) 富勒烯羧基衍生物修饰的光催化剂/超疏水膜复合材料
Yang et al. Enhanced photocatalytic hydrogen peroxide production activity of imine-linked covalent organic frameworks via modification with functional groups
Ning et al. A 3D/0D cobalt-embedded nitrogen-doped porous carbon/supramolecular porphyrin magnetic-separation photocatalyst with highly efficient pollutant degradation and water oxidation performance
Guo et al. ZIF-derived CoFe2O4/Fe2O3 combined with g-C3N4 as high-efficient photocatalysts for enhanced degradation of levofloxacin in the presence of peroxymonosulfate
Qiao et al. Construction of novel Ag/HKUST-1/gC 3 N 4 towards enhanced photocatalytic activity for the degradation of pollutants under visible light
Wan et al. Integrating hollow spherical covalent organic frameworks on NH 2–MIL-101 (Fe) as high performance heterogeneous photocatalysts
Wang et al. Synergistic enhancement of the visible-light photocatalytic activity of hierarchical 3D BiOClxBr1-x/graphene oxide heterojunctions for formaldehyde degradation at room temperature
CN110433849A (zh) 一种氧化石墨烯量子点/氧掺杂多孔氮化碳/氧化石墨烯三元气凝胶光催化剂
Huang et al. One-pot hydrothermal synthesis of TiO2/RCN heterojunction photocatalyst for production of hydrogen and rhodamine B degradation
Wang et al. The Ovs surface defecting of an S-scheme g-C3N4/H2Ti3O7 nanoheterostructures with accelerated spatial charge transfer
Song et al. Porous carbon nitride nanotubes efficiently promote two-electron O2 reduction for photocatalytic H2O2 production
Pang et al. CdBiO2Br nanosheets in situ strong coupling to carbonized polymer dots and improved photocatalytic activity for organic pollutants degradation
CN114849759A (zh) 一种具有优异催化性能的复合光催化剂及其制备方法与应用
Ren et al. Self-assembled perylene diimide modified NH2-UiO-66 (Zr) construct nn heterojunction catalysts for enhanced Cr (VI) photocatalytic reduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220805

RJ01 Rejection of invention patent application after publication