WO2020244280A1 - 一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用 - Google Patents

一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用 Download PDF

Info

Publication number
WO2020244280A1
WO2020244280A1 PCT/CN2020/080550 CN2020080550W WO2020244280A1 WO 2020244280 A1 WO2020244280 A1 WO 2020244280A1 CN 2020080550 W CN2020080550 W CN 2020080550W WO 2020244280 A1 WO2020244280 A1 WO 2020244280A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
active agent
catalyst
substrate
ammonia
Prior art date
Application number
PCT/CN2020/080550
Other languages
English (en)
French (fr)
Inventor
康毅进
付先彪
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Publication of WO2020244280A1 publication Critical patent/WO2020244280A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/27Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/067Inorganic compound e.g. ITO, silica or titania
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the technical field of catalysts, and specifically relates to a nano copper catalyst, a preparation method thereof, and application in the synthesis of acetic acid or ammonia.
  • Ammonia is not only an essential raw material for the manufacture of fertilizers, medicines, inorganic and organic nitrogen compounds, but also an ideal carbon-free fuel containing 17.5% by weight of hydrogen.
  • Most of the industrial synthesis of ammonia in the world is through the Haber-Bosch process, which has harsh reaction conditions (usually 500 degrees Celsius and 200 atmospheres), and the energy required for this process accounts for 1 to 2 of the global annual energy supply. %, the current energy supply is highly dependent on fossil energy, so the result of high energy consumption is about 1% of global carbon dioxide emissions.
  • the Haber process requires hydrogen as a raw material to synthesize ammonia, and hydrogen is obtained from the water gas process. This process generates a lot of carbon dioxide emissions.
  • the electrochemical synthesis of ammonia breaks through the chemical thermodynamic limitations of the Haber process and can be carried out under normal temperature and pressure, which not only reduces energy consumption, but also helps alleviate the problem of excessive carbon dioxide emissions; more importantly, electrochemical synthesis of ammonia uses water as a proton source to avoid Environmental pollution during the hydrogen production process.
  • the electroreduction of nitrogen to synthesize ammonia has made some progress, but the ammonia production rate and current efficiency are extremely low, usually 0.1-30 ⁇ g mg -1 cat h -1 and 0.1-10%, which limit its potential applications.
  • the extremely low solubility of nitrogen in water is the source of low ammonia production rate and current efficiency.
  • the purpose of the present invention is to provide a nano copper catalyst and a preparation method thereof, so as to avoid the problems of high energy consumption, high pollution and low efficiency of electrochemical nitrogen reduction for ammonia synthesis in the traditional Haber method for ammonia synthesis.
  • the technical solution adopted by the present invention is to provide a nano-copper catalyst.
  • the catalyst catalyst in the present invention includes a substrate and an active agent supported on the substrate, and the loading amount of the active agent on the substrate is 0.1-3.0 mg/cm 2 ;
  • the active agent is a copper nanomaterial that exposes 50% to 99% of ⁇ 111 ⁇ crystal faces.
  • the present invention can also be improved as follows.
  • the substrate is carbon paper, carbon cloth, silicon oxide film or aluminum oxide film.
  • the active agent is copper nanosheets, copper nanopolyhedrons or copper nanowires exposing ⁇ 111 ⁇ crystal planes.
  • the copper nano polyhedron is at least one of copper nano regular tetrahedron, copper nano regular octahedron and copper nano regular icosahedron.
  • the loading amount of the active agent on the substrate is 1.0 mg/cm 2 .
  • the catalyst in the present invention is prepared through the following steps:
  • the preparation method of the active agent used in step (1) is: copper nitrate, ascorbic acid, hexamethylenetetramine and cetyltrimethylammonium bromide according to 1:0.1 ⁇ 0.5:0.1 ⁇ 0.5:0.5 ⁇ 1 Dissolve in deionized water with a molar ratio of, and stir to form a homogeneous solution. Place the solution in an oil bath at 70 ⁇ 100°C for 1 ⁇ 5h. After cooling, wash with ethanol/water mixture, centrifuge, take the precipitate and dry , Get the active agent.
  • the conductive adhesive used in step (2) is Nafion, and its mass ratio to the active agent is 4:1.
  • the catalyst of the present invention has a selectivity of about 48% when catalytically converting carbon monoxide or carbon dioxide to acetic acid (salt); while catalytically converting nitrate (salt) to ammonia, the yield and selectivity are both close to 100%, so the The catalyst in the invention can be used as an efficient catalyst for the synthesis of acetic acid or ammonia.
  • the catalyst of the present invention has a regular appearance, the base surface of the nanosheet is copper ⁇ 111 ⁇ , the structure is clear, the cost is low, and the efficiency and selectivity of electroreduction of nitrate are high.
  • the catalyst can efficiently convert nitrate to ammonia under normal temperature and pressure, which not only breaks through the mass transfer limitation of raw materials in the electroreduction of nitrogen to synthesize ammonia, but also reduces the energy consumption of traditional synthetic ammonia and alleviates the environmental problem of nitrate. It is also a nitrogen cycle. Provides a way to regulate.
  • Figure 1 shows the structural characterization of copper nanosheets
  • Figure 2 shows the structural characterization of copper nanocubes
  • Figure 3 is a schematic diagram of the route for the synthesis of ammonia via the nitrate route
  • Figure 4 shows the test results of ammonia synthesis from the nitrate pathway.
  • a nano-copper catalyst includes a carbon paper substrate and copper nanosheets loaded on the carbon paper.
  • the loading amount of the copper nanosheets on the carbon paper is about 1.0 mg/cm 2 .
  • the catalyst is prepared by the following method:
  • the slurry is uniformly coated on the surface of the carbon paper and dried with a nitrogen stream to obtain the catalyst.
  • a nano-copper catalyst includes a carbon cloth substrate and copper nanocubes loaded on the carbon cloth.
  • the loading amount of the copper nanocubes on the carbon paper is about 3.0 mg/cm 2 .
  • the catalyst is prepared by the following method:
  • (1) Cleaning the copper nanocubes prepare a cleaning agent with ethanol and deionized water.
  • the volume ratio of ethanol to deionized water in the prepared cleaning agent is 1:1; then the prepared copper nanocubes are immersed in the cleaning agent, Ultrasonic cleaning at a frequency of 8 ⁇ 10 4 Hz for 5 minutes, then drying for use;
  • the slurry is uniformly coated on the surface of the carbon paper and dried with a nitrogen stream to obtain the catalyst.
  • a nano copper catalyst includes a carbon paper substrate and copper nanowires loaded on the carbon paper.
  • the loading amount of the copper nanowires on the carbon paper is about 0.5 mg/cm 2 .
  • the catalyst is prepared by the following method:
  • the slurry is uniformly coated on the surface of the carbon paper and dried with a nitrogen stream to obtain the catalyst.
  • the catalyst prepared in Example 1 was used to test the nitrate reduction performance of the catalyst.
  • the test path is shown in Figure 3.
  • the test conditions are normal temperature and pressure, and the voltage is -0.1 ⁇ -1.0V (vs RHE).
  • the test results are shown in Figure 4, where (a) is the electrochemical data, and the test conditions: 0.1M potassium hydroxide solution (dotted line), 0.1M potassium hydroxide solution plus 10mM potassium nitrate solution (solid line), scanning speed 20 Milliampere per second, the inset is the 1 H NMR spectrum calibrated by K 15 NO 3 (98atom% 15 N); (b) is the current density; it can be seen from (a) and (b) that the use of the present invention
  • the catalyst can convert nitrate at a lower potential, and the higher the current, the faster the conversion rate.
  • (c) is the ammonia synthesis rate;
  • (d) is the Faraday efficiency (ie yield); from (c) and (d), it can be seen that at -0.15V versus RHE, the output of the catalyst with copper nanosheets as the active agent
  • the ammonia rate is 390.1 ⁇ g mg -1 Cu h -1 , and the yield is close to 100%, indicating that the catalyst of the present invention can efficiently convert nitrate into ammonia, and has low energy consumption, no pollution, and meets the requirements of green chemical industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用,催化剂包括基底以及负载于基底上的活性剂,活性剂为高比例暴露{111}晶面的铜纳米片、铜纳米多面体或铜纳米线等,其在基底上的负载量为0.1~3.0mg/cm 2。本发明中的活性剂在空气中稳定存在,其具有选择性催化一氧化碳和二氧化碳至乙酸(盐)的性能,产率高达48%,即具有工业化价值;暴露{111}晶面的铜纳米材料具有高效催化各类硝酸盐至氨的性能,产率和选择性均可达近乎100%。采用本发明中的催化剂可有效避免传统哈伯法合成氨的高能耗、高污染以及传统电化学氮气还原合成氨的低效率等问题。

Description

一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用 技术领域
本发明属于催化剂技术领域,具体涉及一种纳米铜催化剂及其制备方法和在合成乙酸或氨中的应用。
背景技术
在当前化石能源有限储量的前提下,全球都在为寻找新能源而努力,最有前景的是以氢为能源载体的氢能源体系。但是,氢能源体系无法像石油能源体系一样为人类社会提供除能源以外的化工产品。科学家们致力于从环境中大量可得的小分子(例如氢、氧、水、一氧化碳、二氧化碳)出发,合成高价值的多碳化合物,从而满足日常化工产品的需求。但是该合成路径具有反应速率低下、高价值产物生成难度高、产物选择性差带来的工业生产成本高昂等问题。因此,发明高效、高选择性的催化剂是氢能源体系下化工升级主要目标。
氨不仅是制造肥料、药品、无机和有机氮化合物的必需原料,而且含有17.5w.t%氢的理想无碳燃料。世界上大多数的工业合成氨都是通过哈伯(Haber-Bosch)过程,其反应条件苛刻(通常为500摄氏度和200个大气压),该过程所需能耗占全球年度能源供应量的1~2%,现阶段的能源供给高度依赖于化石能源,因此高能耗带来的结果是产生全球约1%的二氧化碳排放。哈伯法合成氨需要氢气做原料,而氢气是由水煤气法得到的,该过程又会产生大量二氧化碳排放量。大量的氨释放到环境中,通过硝化过程(NH 4 +→NO 2 -→NO 3 -)最终转化为硝酸根,该过程可能导致不均衡的氮循环和硝酸根污染。因此,必须开发一种有效且干净的合成氨方法来减轻环境问题。
电化学合成氨突破了哈伯法的化学热力学限制,可在常温常压下进行,不仅降低了能耗,而且有利于缓解二氧化碳过度排放问题;更重要的是电化学合 成氨以水作为质子源,避免了产氢过程中的环境污染。目前电还原氮气合成氨已取得一定研究进展,但是产氨率和电流效率极低,通常为0.1~30μg mg -1 cat h -1和0.1~10%,限制了其潜在的应用。氮气在水中的溶解度极低是低产氨率和电流效率的根源,具体表现是亨利定律常数仅为K H=6.24×10 -4mol L -1atm -1。在氮循环中寻找和活化水溶性且易获得的含氮物种来电化学合成氨是一个巨大的挑战。
发明内容
本发明的目的在于提供一种纳米铜催化剂及其制备方法,以避免传统哈伯法合成氨的高能耗、高污染以及电化学氮气还原合成氨的低效率等问题。
为了达到上述目的,本发明所采用的技术方案是:提供一种纳米铜催化剂,本发明中的催化剂催化剂包括基底以及负载于基底上的活性剂,活性剂在基底上的负载量为0.1~3.0mg/cm 2;活性剂为暴露50%~99%{111}晶面的铜纳米材料。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,基底为碳纸、碳布、氧化硅薄膜或氧化铝薄膜。
进一步,活性剂为暴露{111}晶面的铜纳米片、铜纳米多面体或铜纳米线。
进一步,铜纳米多面体为铜纳米正四面体、铜纳米正八面体和铜纳米正二十面体中的至少一种。
进一步,活性剂在基底上的负载量为1.0mg/cm 2
本发明中的催化剂经过以下步骤制得:
(1)用乙醇和去离子水配制清洗剂,所述清洗剂中乙醇与去离子水的体积比为5~90:10~95;然后将活性剂浸入清洗剂中,以4×10 4Hz~8×10 4Hz的频率超声清洗5~10min,再烘干备用;
(2)将清洗后的活性剂与导电粘结剂按1:19~9:1的质量比混合,再加入乙醇, 充分搅拌分散后得到浆料;
(3)将浆料均匀涂覆在碳纸表面并用氮气流吹干,得催化剂。
步骤(1)中所用活性剂的制备方法为:将硝酸铜、抗坏血酸、六亚甲基四胺和十六烷基三甲基溴化铵按照1:0.1~0.5:0.1~0.5:0.5~1的摩尔比溶于去离子水中,搅拌形成均一溶液,将该溶液置于70~100℃的油浴中保温反应1~5h,冷却后用乙醇/水混合液洗涤、离心,取沉淀物并干燥,得活性剂。
步骤(2)中所用导电粘结剂为Nafion,其与活性剂的质量比为4:1。
本发明中的催化剂在催化转化一氧化碳或二氧化碳至乙酸(盐)时,有48%左右的选择性;而在催化转化硝酸(盐)至氨时,产率和选择性均接近100%,因此本发明中的催化剂可作为合成乙酸或氨的高效催化剂。
本发明的有益效果是:本发明的催化剂,形貌规整,纳米片的基面为铜{111},结构明确,成本低廉,电还原硝酸盐的效率和选择性高。该催化剂可在常温常压下高效的转化硝酸盐为氨,不仅突破了电还原氮气合成氨中的原料传质限制,而且降低了传统合成氨的能耗和缓解了硝酸盐环境问题,也为氮循环提供了一种调节途径。
附图说明
图1为铜纳米片的结构表征;
图2为铜纳米立方体的结构表征;
图3为经由硝酸盐路径合成氨的路线示意图;
图4为由硝酸盐路径合成氨的测试结果。
具体实施方式
下面结合实施例对本发明的具体实施方式做详细的说明。
实施例一
一种纳米铜催化剂,该催化剂包括碳纸基底以及负载于碳纸上的铜纳米片,铜纳米片在碳纸上的负载量为1.0mg/cm 2左右。催化剂通过以下方法制得:
(1)合成铜纳米片:将硝酸铜、抗坏血酸、六亚甲基四胺和十六烷基三甲基溴化铵按照1:0.1:0.5:0.5的摩尔比溶于去离子水中,搅拌形成均一溶液,将该溶液置于100℃的油浴中保温反应2h,冷却后加入乙醇和水的混合液进行洗涤离心,取沉淀物并干燥,得活性剂,该活性剂为铜纳米片;
(2)清洗铜纳米片:用乙醇和去离子水配制清洗剂,所配制的清洗剂中乙醇与去离子水的体积比为1:9;然后将活性剂浸入清洗剂中,以6×10 4Hz的频率超声清洗8min,再烘干备用;
(3)配制浆料:向清洗干净后的活性剂中添加浓度为10%的Nafion导电粘结剂,所添加的Nafion与活性剂的质量比为4:1,再加入适量乙醇,充分搅拌分散后得到浆料;
(4)制备催化剂:将浆料均匀涂覆在碳纸表面并用氮气流吹干得到催化剂。
实施例二
一种纳米铜催化剂,该催化剂包括碳布基底以及负载于碳布上的铜纳米立方体,铜纳米立方体在碳纸上的负载量为3.0mg/cm 2左右。催化剂通过以下方法制得:
(1)清洗铜纳米立方体:用乙醇和去离子水配制清洗剂,所配制的清洗剂中乙醇与去离子水的体积比为1:1;然后将制得的铜纳米立方体浸入清洗剂中,以8×10 4Hz的频率超声清洗5min,再烘干备用;
(2)配制浆料:向清洗干净后的活性剂中添加浓度为10%的Nafion导电粘结剂,所添加的Nafion与活性剂的质量比为1:1,再加入适量乙醇,充分搅拌分散后得到浆料;
(3)制备催化剂:将浆料均匀涂覆在碳纸表面并用氮气流吹干得到催化剂。
实施例三
一种纳米铜催化剂,该催化剂包括碳纸基底以及负载于碳纸上的铜纳米线,铜纳米线在碳纸上的负载量为0.5mg/cm 2左右。催化剂通过以下方法制得:
(2)清洗铜纳米线:用乙醇和去离子水配制清洗剂,所配制的清洗剂中乙醇与去离子水的体积比为4:1;然后将制得的铜纳米线浸入清洗剂中,以4×10 4Hz的频率超声清洗10min,再烘干备用;
(3)配制浆料:向清洗干净后的活性剂中添加浓度为10%的Nafion导电粘结剂,所添加的Nafion与活性剂的质量比为1:4,再加入适量乙醇,充分搅拌分散后得到浆料;
(4)制备催化剂:将浆料均匀涂覆在碳纸表面并用氮气流吹干得到催化剂。
结果分析
取实施例一中合成的铜纳米片,对其结构进行分析,结果如图1所示,其中,a)TEM,b)HRTEM,c)XRD;取实施例二中合成的铜纳米立方体,对其结构进行分析,结果如图2所示,其中,a)TEM,b)HRTEM,c)XRD。从图1和图2可以看出铜纳米材料的形貌规整,结构明确。
用实施例一制备出的催化剂测试该催化剂对硝酸盐的还原性能,测试路径如图3所示,测试条件为常温常压,电压为-0.1~-1.0V(vs RHE)。测试结果如图4所示,其中,(a)为电化学数据,测试条件:0.1M氢氧化钾溶液(虚线),0.1M氢氧化钾溶液加10mM硝酸钾溶液(实线),扫描速度20毫安每秒,插图为K 15NO 3(98atom% 15N)标定的 1H核磁共振谱图;(b)为电流密度;从(a)和(b)可以看出,采用本发明中的催化剂可以在更低的电位下转化硝酸盐,而且电流越大转换速率越快。(c)为合成氨速率;(d)为法拉第效率(即产率);从(c)和(d)可以 看出,在-0.15V versus RHE时,以铜纳米片做活性剂的催化剂的产氨率为390.1μg mg -1 Cu h -1,产率接近100%,表明采用本发明中的催化剂可以高效的将硝酸盐转化为氨,并且能耗低、无污染,符合绿色化工的要求。
虽然结合实施例对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (10)

  1. 一种纳米铜催化剂,其特征在于:所述催化剂包括基底以及负载于所述基底上的活性剂,所述活性剂在基底上的负载量为0.1~3.0mg/cm 2;所述活性剂为暴露50%~99%{111}晶面的铜纳米材料。
  2. 根据权利要求1所述的催化剂,其特征在于:所述基底为碳纸、碳布、氧化硅薄膜或氧化铝薄膜。
  3. 根据权利要求1所述的催化剂,其特征在于:所述活性剂为暴露{111}晶面的铜纳米片、铜纳米多面体或铜纳米线。
  4. 根据权利要求3所述的催化剂,其特征在于:所述铜纳米多面体为铜纳米正四面体、铜纳米立方体、铜纳米正八面体和铜纳米正二十面体中的至少一种。
  5. 根据权利要求1所述的催化剂,其特征在于:所述活性剂在基底上的负载量为1.0mg/cm 2
  6. 制备如权利要求1~5任一项所述催化剂的方法,其特征在于,包括以下步骤:
    (1)用乙醇和去离子水配制清洗剂,所述清洗剂中乙醇与去离子水的体积比为5~90:10~95;然后将活性剂浸入清洗剂中,以4×10 4Hz~8×10 4Hz的频率超声清洗5~10min,再烘干备用;
    (2)以m(活性剂):m(导电粘结剂)=1:19~9:1的质量比将清洗后的活性剂与导电粘结剂按混合,再加入乙醇,充分搅拌分散后得到浆料;
    (3)将浆料均匀涂覆在基底表面并用氮气流吹干,得催化剂。
  7. 根据权利要求6所述的方法,其特征在于,所述活性剂的制备方法为:将硝酸铜、抗坏血酸、六亚甲基四胺和十六烷基三甲基溴化铵溶于去离子水中,搅拌形成均一溶液,将该溶液置于70~100℃的油浴中保温反应1~5h,冷却后用乙醇/水混合液洗涤、离心,取沉淀物并干燥,得活性剂。
  8. 根据权利要求7所述的方法,其特征在于:所述硝酸铜、抗坏血酸、六亚甲基四胺和十六烷基三甲基溴化铵的摩尔为1:0.1~0.5:0.1~0.5:0.5~1。
  9. 根据权利要求6所述的方法,其特征在于:所述导电粘结剂为Nafion,其与所述活性剂的质量比为4:1。
  10. 如权利要求1~5任一项所述的催化剂在合成乙酸或氨中的应用。
PCT/CN2020/080550 2019-04-08 2020-03-22 一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用 WO2020244280A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910274598 2019-04-08
CN201910482607.0 2019-06-04
CN201910482607.0A CN110075843B (zh) 2019-04-08 2019-06-04 一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用

Publications (1)

Publication Number Publication Date
WO2020244280A1 true WO2020244280A1 (zh) 2020-12-10

Family

ID=67423502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080550 WO2020244280A1 (zh) 2019-04-08 2020-03-22 一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用

Country Status (3)

Country Link
US (2) US20200385878A1 (zh)
CN (1) CN110075843B (zh)
WO (1) WO2020244280A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151855A (zh) * 2021-04-28 2021-07-23 北京化工大学 一种富含孪晶界的铜纳米电极及其制备和应用
CN115318306A (zh) * 2022-02-22 2022-11-11 哈尔滨工业大学 一种富Cu2S纳米晶修饰的Cu纳米片及其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075843B (zh) * 2019-04-08 2020-03-24 电子科技大学 一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用
CN110479255B (zh) * 2019-09-17 2020-09-01 山东大学 一种用于氮还原合成氨的铑催化剂及其制备方法与应用
CN110972590B (zh) * 2019-10-12 2021-04-20 浙江大学 一种利用低温等离子技术实现土壤推进式原位固氮的方法及装置
CN111250076B (zh) * 2020-03-25 2022-08-02 电子科技大学 一种纳米铋催化剂及其制备方法和应用
CN111661854B (zh) * 2020-05-08 2021-04-20 浙江大学 一种基于低温等离子体催化固氮的氮氧化物吸收利用系统
CN113036167A (zh) * 2021-02-08 2021-06-25 电子科技大学 一种纳米PtBi2催化剂的制法及其在小分子氧化中的应用
CN113235127A (zh) * 2021-04-21 2021-08-10 北京航天动力研究所 一种三明治结构的碳夹层铜纳米片电催化剂、制备方法、电极及应用
CN113737205B (zh) * 2021-09-27 2023-03-10 中南大学 一种(亚)硝酸根电化学还原直接制备氨气的方法
CN114686917B (zh) * 2022-04-11 2024-04-26 天津大学 一种电催化硝酸盐还原合成氨催化剂、其制备方法及用途
CN115595618B (zh) * 2022-10-27 2023-05-16 深圳大学 一种铜基单原子合金电催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498198A (zh) * 2013-10-24 2014-01-08 南京信息工程大学 一种正五棱柱状铜微米线的制备方法
CN104569097A (zh) * 2014-12-17 2015-04-29 浙江理工大学 铜纳米线石墨烯复合物修饰电极的制备方法及其应用
CN105817616A (zh) * 2016-05-30 2016-08-03 李�浩 一种负载于基材的铜纳米薄膜及其制备方法和应用
WO2016175409A1 (ko) * 2015-04-30 2016-11-03 한국에너지기술연구원 금속/세라믹 복합 나노구조체의 제조방법, 이의 방법으로 제조된 금속/세라믹 복합 나노구조체, 및 이를 포함하는 촉매
CN110075843A (zh) * 2019-04-08 2019-08-02 电子科技大学 一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102458652B (zh) * 2009-05-05 2014-12-24 技术研究及发展基金有限公司 用于从水去除硝酸盐的活性炭布负载的双金属Pd-Cu催化剂
CN102451709A (zh) * 2010-11-02 2012-05-16 张文龙 一种催化还原去除水中硝酸盐新型催化剂的制备方法
CN102544532B (zh) * 2012-03-06 2014-09-17 杭州电子科技大学 一种纳米线网络结构催化剂及其制备方法
KR101404597B1 (ko) * 2012-04-05 2014-06-09 한국과학기술원 질산성 질소의 환원 분해를 위한 마그헤마이트 담체의 구리-팔라듐 이중금속 촉매
CN102787347B (zh) * 2012-09-04 2015-10-21 上海师范大学 一种超长铜纳米线和铜纳米线导电薄膜的制备方法
KR101547100B1 (ko) * 2014-02-12 2015-08-25 한국과학기술원 질산성 질소의 제거효율과 질소 선택도가 높은 이중금속 촉매의 제조방법 및 그 촉매
CN106111201B (zh) * 2016-06-23 2018-08-28 北京化工大学常州先进材料研究院 一种用于电化学合成氨的催化剂及其制备方法
WO2018232515A1 (en) * 2017-06-21 2018-12-27 The Governing Council Of The University Of Toronto NET-REACTION INTERFACE CATALYSTS FOR ELECTROCHEMICAL CO2 REDUCTION WITH ENHANCED SELECTIVITY

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498198A (zh) * 2013-10-24 2014-01-08 南京信息工程大学 一种正五棱柱状铜微米线的制备方法
CN104569097A (zh) * 2014-12-17 2015-04-29 浙江理工大学 铜纳米线石墨烯复合物修饰电极的制备方法及其应用
WO2016175409A1 (ko) * 2015-04-30 2016-11-03 한국에너지기술연구원 금속/세라믹 복합 나노구조체의 제조방법, 이의 방법으로 제조된 금속/세라믹 복합 나노구조체, 및 이를 포함하는 촉매
CN105817616A (zh) * 2016-05-30 2016-08-03 李�浩 一种负载于基材的铜纳米薄膜及其制备方法和应用
CN110075843A (zh) * 2019-04-08 2019-08-02 电子科技大学 一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151855A (zh) * 2021-04-28 2021-07-23 北京化工大学 一种富含孪晶界的铜纳米电极及其制备和应用
CN113151855B (zh) * 2021-04-28 2022-11-25 北京化工大学 一种富含孪晶界的铜纳米电极及其制备和应用
CN115318306A (zh) * 2022-02-22 2022-11-11 哈尔滨工业大学 一种富Cu2S纳米晶修饰的Cu纳米片及其制备方法和应用

Also Published As

Publication number Publication date
CN110075843B (zh) 2020-03-24
CN110075843A (zh) 2019-08-02
US20230111342A1 (en) 2023-04-13
US20200385878A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2020244280A1 (zh) 一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用
Liang et al. A two-dimensional MXene-supported metal–organic framework for highly selective ambient electrocatalytic nitrogen reduction
CN108660473B (zh) 一种基于MXene与过渡金属碳化物复合纳米结构的电解海水制氢催化剂及其合成方法
CN102218544B (zh) 一种金属纳米颗粒的制备方法及应用
CN109126782B (zh) 一种用于电化学合成氨的多孔PdRu合金催化剂及其制备方法
CN106694006A (zh) 一种氧化还原固定方法制备高分散碳化钼/碳复合电催化剂
Chen et al. Size-dependent electrochemical nitrogen reduction catalyzed by monodisperse Au nanoparticles
CN106040264A (zh) 一种微米二硫化钼析氢电催化材料、制备方法及其应用
CN110172711A (zh) 铜基三维自支撑电催化材料及其制备方法和应用
CN106669763A (zh) 一种氮掺杂碳包覆纳米花状MoSe2复合材料及制备与应用
CN114685805B (zh) 一种室温下直接合成电催化二氧化碳还原的mof材料的制备方法
CN108147472A (zh) 一种空心硫化钴微球催化剂的制备方法
CN106622381A (zh) 一种Fe‑MOF催化剂的新型制备方法及其在脱硫方面的应用
CN109126786B (zh) 一种结构可控的电化学合成氨花状金催化剂及其制备方法
CN110201683A (zh) 一种钒掺杂硫化亚铁的制备方法及电催化氮气还原应用
CN106784900A (zh) 铂基纳米颗粒包覆二氧化锡覆盖的碳纳米管及其制备方法
CN104600327A (zh) 一种碳载纳米铂合金催化剂的制备方法
CN110124694A (zh) 一种超薄纳米片状钒掺杂硫化镍纳米粉体的制备及电催化氮还原应用
CN108232213A (zh) 一种氮掺杂石墨烯-碳纳米管-四氧化三钴杂化材料及其制备方法
CN105903491B (zh) 一种有机硫转化催化剂的制备方法及其应用
CN109950563A (zh) 一种金属活性位高分散的非贵金属氧还原反应催化剂及其制备方法
Hou et al. FeNi 3 nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate
CN113042086A (zh) 一种氨基功能化碳纳米管负载NiAuPd纳米催化剂的原位制备方法及应用
CN111514904A (zh) 一种用于二氧化碳电化学还原的催化剂及其制备方法
Zhao et al. A two-dimensional MXene-supported CuRu catalyst for efficient electrochemical nitrate reduction to ammonia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20817699

Country of ref document: EP

Kind code of ref document: A1