CN102458652B - 用于从水去除硝酸盐的活性炭布负载的双金属Pd-Cu催化剂 - Google Patents

用于从水去除硝酸盐的活性炭布负载的双金属Pd-Cu催化剂 Download PDF

Info

Publication number
CN102458652B
CN102458652B CN201080030999.4A CN201080030999A CN102458652B CN 102458652 B CN102458652 B CN 102458652B CN 201080030999 A CN201080030999 A CN 201080030999A CN 102458652 B CN102458652 B CN 102458652B
Authority
CN
China
Prior art keywords
nanocatalyst
bimetallic
nitrate
nitrogen
cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080030999.4A
Other languages
English (en)
Other versions
CN102458652A (zh
Inventor
M·舍因塔奇
U·马塔托夫-梅伊塔尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technion Research and Development Foundation Ltd
Original Assignee
Technion Research and Development Foundation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technion Research and Development Foundation Ltd filed Critical Technion Research and Development Foundation Ltd
Publication of CN102458652A publication Critical patent/CN102458652A/zh
Application granted granted Critical
Publication of CN102458652B publication Critical patent/CN102458652B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种活性炭布负载的双金属Pd-Cu纳米催化剂,所述纳米催化剂包含约1%重量Pd和约0.35-0.45%重量Cu,并且具有约8-10m2/m2的表面Cu/Pd金属比。所述纳米催化剂能够以对氮的高选择性从废水去除硝酸盐和/或亚硝酸盐。

Description

用于从水去除硝酸盐的活性炭布负载的双金属Pd-Cu催化剂
发明领域
本发明涉及用于处理水的催化剂,特别涉及用于从废水流去除硝酸盐和亚硝酸盐离子的双金属氢化催化剂。
发明背景
很多工业设备(例如,铀的浓缩、化肥和炸药、硝基有机化合物和药物的生产)的废水为含有硝酸盐的废物。使用氮肥和用生活废水灌溉是很多发达和发展中国家地下水的主要硝酸盐污染源。硝酸盐是在地下水污染物中最成问题和广泛分布的之一。硝酸盐对人的毒性是由于身体将硝酸盐还原成亚硝酸盐,亚硝酸盐涉及临床青紫症(蓝婴综合征),并且为致癌的亚硝胺的前体。高硝酸盐水平的慢性消耗也可引起其它健康问题,例如,一些癌症和致畸效应。由于硝酸盐离子的有害作用,欧洲和美国法规已将饮水中硝酸盐和亚硝酸盐的最大可接受浓度分别确定为50mg/l和0.1mg/l。世界卫生组织(WHO)建议硝酸盐、亚硝酸盐和铵的最大浓度分别为45mg/l、0.1mg/l和0.5mg/l。
大多数硝酸盐可溶于含水介质,因此,硝酸盐离子容易分布到地下水源。标准水处理做法,如沉降、过滤、氯化或用石灰调节pH,不影响水中的硝酸盐浓度。来自污染地下水的硝酸盐可通过可用于硝酸盐分离的物理化学方法去除,如离子交换、反渗透和电渗析。在这些方法中,硝酸盐浓缩于二级废水流中,二级废水流必须处理,因此导致高处理成本。
解决硝酸盐问题的流行的可行方法是生物脱硝。然而,微生物脱硝方法慢,有时不完全,并且不容易处理。另外,通过直接生物脱硝,水与微生物培养物紧密混合,并且必须作为能源提供有机化合物,以驱动脱硝反应。残余有机物可导致其它水质问题。
可用各种化合物进行硝酸盐的化学还原,主要为氢、铁、甲酸和铝。硝酸盐的化学还原的主要缺点是产生另外的废物,这些废物必须用以下处理去除。
硝酸盐的催化氢化被视作为从污染水去除硝酸盐的有前途的技术。氢化方法可通过以下连续和平行的化学反应式1a、1b和1c描述:
NO3 -+H2→NO2 -+H2O                    (1a)
2NO2 -+3H2→(NO,N2O)→N2+2H2O+2OH-   (1b)
NO2-+3H2→NH4 +-+2OH-                 (1c)
这些反应式显示,硝酸盐经历氢化成亚硝酸盐,然后成为气态氮(目标产物)和溶解氨(不期望的副产物)。
通过催化氢化用选择性氮生成去除或还原亚硝酸盐污染和/或硝酸盐污染水的亚硝酸盐和/或硝酸盐内容物的连续可执行方法首先公开于US 4,990,266。在US 4,990,266的分案US 5,122,496中公开一种催化剂,所述催化剂由用金属组分浸渍的多孔无机载体材料制成,载体材料如粉末状氧化铝或二氧化硅,所述金属组分选自钯、铑、钯和铑的混合物以及钯和铜族金属(优选Cu)的混合物。然而,使用粉末状催化剂受固定床中高压降和受悬浮粉末催化剂分离难度限制。另外,在水中还原硝酸盐需要很活性的催化剂,因为反应必须在地下水的温度(例如,25℃)进行。另外,高选择性对避免产生亚硝酸盐和由亚硝酸盐氢化的过度还原产生铵离子是必需的。
最近,为了污染水的催化脱硝,已研究数种催化剂和载体。大多数氢化催化剂(负载的贵金属和过渡金属)主要使亚硝酸盐还原成氨。用Pd和Pt催化剂观察到两种产物(气态氮和溶解NH4 +)。只有负载的Pd显示高亚硝酸盐还原活性,并且少量形成氨。已发现它为硝酸盐氢化的不良催化剂,已发现通过将金属促进剂(Cu、Sn、In或Zn)加入到Pd而加速[Horold等,1993;Pintar等,1998;Vorlop和Prusse,1999]。双金属催化剂的效率取决于两种金属之比[Kapoor和Viraraghavan,1997]和催化剂制备程序[Vorlop和Prusse,1999;Prusse等,1997;Batista等,1997]。对Pd∶Cu比率为4∶1的负载于粉末状氧化铝(25μm尺寸的颗粒)上的Pd:Cu催化剂观察到最高活性。对其中铜由Pd层涂覆的双金属催化剂样品得到最高反应选择性[Batista等,1997]。也对由溶胶-凝胶程序制备的具有单峰中孔隙率(孔半径3nm)的Pd-Cu球形双金属催化剂报道了类似性能[Strukul等,1996]。得到的反应选择性低至60-75%,这可能是由于这些材料的不适合的结构性质[Matatov-Meytal等,2000]。
为了制备和优化用于此方法的催化剂,付出了相当大的努力。已显示,虽然单一贵金属(Pd、Pt)只对亚硝酸盐氢化具有活性,但具有金属促进剂(Cu、Sn、In)的很多负载的贵金属显示令人满意的转化溶解的硝酸盐离子的性能[Prusse和Vorlop,2001]。Horold和Vorlop[Horold和Vorlop,1993;US 5,122,496]提出的Pd-Cu催化剂仍被认为是此方法的最佳催化剂。
已知在硝酸盐氢化中双金属催化剂的活性和选择性高度依赖于制备方法、贵金属促进的方式、金属-促进剂比和操作条件[Matatov-Meytal和Sheintuch,2005]。载体材料的选择也是重要的,已提出数种材料作为Pd-Cu催化剂的载体:二氧化硅和氧化铝[Vorlop和Prusse,1999;Pintar等,1998]、氧化锆[Gavagnin等,2002]、二氧化钛[Gao等,2003]、聚合物[Kralic和Biffis,2001]、粒状活性炭[Yoshinaga等,2002;Lemaignen等,2002]和其它材料[Daganello等,2000],且发现极大影响催化剂的活性和对反应产物的选择性。目前越来越多地关注使用新结构的载体,如块料、泡沫、薄膜和纤维布[Matatov-Meytal和Sheintuch,2005],作为双金属催化剂的载体。从薄的μm尺寸纤维织成的布减小扩散距离,并在固定床和其中一种或多种已溶解物类必须与有限溶解度的气态化合物反应的多相反应器中产生低压降。另外,在流型中发生快速波动(通常在环保应用中遇到)时,相对于块料优选布型催化剂。
最近,本发明的发明人已研究一些新的基于Pd的催化布用于加氢脱氯[Shindler等,2001]和用于亚硝酸盐和硝酸盐氢化[Matatov-Meytal等,2003;Matatov-Meytal和Sheintuch,2005,2009;Matatov-Meytal,2005]。在此方面,对活性炭布给予特别关注,已证明活性炭布具有作为催化载体的极大潜力,尤其对于昂贵的贵金属,因为可实现高金属负载和分散。
虽然已付出很多努力来开发用于从硝酸盐污染水流直接去除硝酸盐和亚硝酸盐成氮的催化剂,但尚未生产出具有足够的硝酸盐去除效率和对产氮的选择性两者的稳定催化剂。阻止催化氢化用作有效水脱硝技术的主要原因是调节现有催化剂的活性和它们避免亚硝酸盐和铵生成的选择性的难度。因此,仍需要使硝酸盐和同时使亚硝酸盐转化成氮气的催化剂。
发明概述
现已发现,根据本发明,通过改变催化剂的组成和表面Cu/Pd金属比,可得到以对氮的较高选择性从废水去除硝酸盐的改进的双金属Pd-Cu催化剂。
本发明因此涉及一种活性炭布负载的双金属Pd-Cu纳米催化剂,所述纳米催化剂包含约1%Pd和约0.35-0.45%Cu,并且具有约8-10m2/m2的表面Cu/Pd金属比。
本发明进一步涉及用硝酸盐选择性还原成氮的废水脱硝的方法,所述方法包括使废水与本发明的活性炭布负载的双金属Pd-Cu纳米催化剂接触。
附图简述
图1显示连续流系统中实验硝酸盐氢化装置的示意图。
发明详述
如本申请的背景部分中所述,已付出很多努力来开发从硝酸盐污染的水流直接去除硝酸盐和亚硝酸盐成氮的催化剂。然而,仍需要提供稳定并且能使硝酸盐和同时使亚硝酸盐转化成氮气,避免生成亚硝酸盐和铵的催化剂。
本发明的活性炭布负载的双金属Pd-Cu纳米催化剂包含约1%重量Pd和约0.35-0.45%重量Cu,并且具有约8-10m2/m2的表面Cu/Pd金属比。
在一个优选的实施方案中,双金属Pd-Cu纳米催化剂包含1%重量Pd和0.35%重量Cu。在另一个优选的实施方案中,双金属Pd-Cu纳米催化剂包含1%重量Pd和0.45%重量Cu。
为了具有活性和选择性,必须优化负载的金属纳米颗粒的表面的尺寸和负载的金属颗粒中连接的PdCu与游离Pd的表面比,即表面Cu/Pd,m2/m2。根据本发明,表面Cu/Pd金属比为约8-10m2/m2,更优选接近8m2/m2
在本发明的更优选实施方案中,双金属Pd-Cu纳米催化剂包含约1%重量Pd和约0.355%重量Cu,并且具有约8m2/m2的表面Cu/Pd金属比。
本发明的纳米催化剂能够选择性地以氮的形式从废水去除硝酸盐和/或亚硝酸盐。在一个实施方案中,纳米催化剂使废水中的硝酸盐转化成至少约96%氮,例如,96-99%,优选98.4%至98.9%范围。在脱硝方法中,硝酸盐同时转化成小于0.2%亚硝酸盐和小于1.4%氨。
通过本文公开的其制备的具体方法,得到本发明的双金属Pd-Cu纳米催化剂的特殊特征,所述方法包含以下步骤:
(i)用硝酸钯(II)含水溶液初始湿润浸渍活性炭布(ACC),干燥,煅烧,并在流动氢下还原样品,因此,得到单金属Pd/ACC催化布;并且
(ii)在步骤(i)的Pd/ACC布上溅射沉积甲酸铜的溶液,并干燥。
在步骤(i)中的浸渍后,使固体经浸渍布留在室温约6小时,在70℃在约12小时期间干燥,在流动氮下在约300℃煅烧,并在流动氢下在约200℃还原。在步骤(ii)中,使甲酸铜溶液溅射在步骤(i)中得到的单金属Pd/ACC催化布上,使固体双金属催化布留在室温约12小时,在100℃在约12小时期间干燥,在流动氮下在约300℃煅烧,洗涤,并在氮下在约90℃干燥过夜。
本发明进一步涉及用硝酸盐选择性还原成氮的废水脱硝的方法,所述方法包含使废水与本发明的双金属Pd-Cu纳米催化剂接触。
图1显示以下实验中所用连续流系统中的实验硝酸盐氢化装置的示意图。在图中,1-进料罐,2-氢气瓶,3-液体泵,4-阻尼和热/交换器容器,5-液体流量计,6-气体质量-流量控制器,7-回压调节器;8-压热器,9-惰性固定床,10-径向流反应器,11-减压器,12-具有孔的气体-液体分离器,13-液体样品口。
现在通过以下非限制实施例说明本发明。
实施例
实验程序
实施例1.制备单金属Pd织造纤维布
可通过不同方法,在碳质载体上沉积贵金属,如Pd、Pt、Ir。以下我们描述将Pd(本发明的双金属催化剂Pd-Cu的第一金属组分)沉积于织造纤维布上的三种不同方法。
1.1方法1
用来自基本纤维的10-12cm长线织成的织造纤维玻璃布(GFC)作为催化剂载体(GFC YO212,购自Fothergil Engineered Fabrics,UK)布。通过不同方法,使Pd-Cu沉积(ofmponentsited)于碳质载体(为(tentialas)催化载体[14])上。基本纤维(铝硼硅质盐(alumoborosilicalite),具有约55%二氧化硅)的基本特征如下:7-9μm直径,BET比表面积(BETssa)2-10m2/g。在HCl含水溶液中预处理低表面积GFC,浸出非二氧化硅组分,随后BET ssa成为30-100m2/g。这些GFC也通过Al2O3(AFC)或SnO2(SFC)薄层改性,这些氧化物使纤维表面变粗糙,并对GFC产生较高孔隙率。
使用适合浓度的H2PdCl4(来自盐酸中的PdCl2(Fluka)的溶液),通过离子交换方法,使Pd结合到GFC、AFC或SFC上。然后,将GFC首先在80℃干燥过夜,并在450℃在空气中煅烧4小时。洗涤经煅烧的样品,以去除氯离子,氯离子源于煅烧期间H2PdCl4的分解。用AgNO3/HNO3检测在冲洗水中氯离子的最终浓度。在120℃干燥3小时后,将样品在流动氢下在180℃还原1-1.5小时。
1.2方法2
用从活性炭纤维ACF-15织成的活性炭布(ACC,购自NipponKynotTM)作为催化剂载体。ACF-15的基本特征如下:9-10μm直径,BET ssa 1540m2/g;微孔体积和平均孔径分别报告为0.605ml/g和1.61nm。将该市售ACC用水彻底清洗,以去除碳尘,然后在空气中在70℃干燥。用HNO3的含水溶液(4.5%重量)处理8小时,然后用蒸馏水清洗,随后用另外的水冲洗,并在空气中干燥。
使用适合浓度的H2PdCl4(四氯钯(II)酸二氢,来自PdCl2(纯,Fluka)在盐酸中的溶液),通过湿浸渍方法使Pd沉积于ACC上,浸渍终止于相当于0.25-5.0%重量范围的Pd负载的残余H2PdCl4浓度。浸渍后,将ACC首先在80℃加热过夜,以去除溶剂,然后在350℃在流动氮中煅烧4小时。洗涤经煅烧的样品,以去除氯离子,氯离子源自浸渍溶液或源自煅烧期间H2PdCl4的分解。用AgNO3/HNO3检测在冲洗水中氯离子的最终浓度。在120℃干燥3小时后,将样品在流动氢下在200℃还原1-1.5小时。
1.3方法3
将ACC载体(与以上方法2中所用相同)用水彻底清洗,以去除碳尘,然后在空气中在80℃干燥。用适合浓度的硝酸钯(II)(Pd(NO3)2,Fluka)的含水溶液,通过初始湿润浸渍ACC制备Pd/ACC。溶液的体积为0.85ml/g ACC,这代表相对于ACC的孔体积过量10%。浸渍后,将固体留在室温6小时,在70℃在12小时期间干燥,在流动氮中在300℃煅烧5小时。然后,在流动氢下在200℃还原样品1-2小时。
实施例2.制备双金属Pd:Cu织造纤维布
必须只通过提供双金属颗粒形成的方法,使铜沉积于根据以上实施例1制备的负载的贵金属Pd上。以下我们描述Cu(作为第二金属组分)选择性沉积于实施例1的Pd/ACC(作为第一负载金属)上的两种方法。
2.1方法1
将所给量的所选Pd/布(通过方法1.1-1.3制备)置于旋转鼓上,并在流动氮下浸入甲酸铜(Cu(HCO2)2,试剂级Aldrich)的溶液。甲酸铜在Pd颗粒的表面催化分解,甚至在室温下,在金属Pd表面产生金属Cu。通过改变甲酸铜的沉积时间或浓度,可改变金属Pd表面上的Cu金属负载。关于铜离子在溶液中的存在,有规律地在λmax=778nm分光光度监测溶液。然后,从液体分离布,在氮下在90℃干燥过夜。
2.2方法2
在所选的Pd/布上溅射所需浓度的甲酸铜(Cu(HCO2)2,试剂级Aldrich)的溶液。通过铜盐在溶液中相对于Pd/布的孔体积的浓度,可改变金属Pd表面上的Cu负载。溅射后,将湿固体留在室温12小时,在流动氮中在100℃在12小时期间干燥。然后,用去离子水彻底洗涤Pd-Cu布,以去除铜离子(通过在λmax=778nm分光光度控制冲洗水中铜离子的浓度)。然后,将布在氮下在90℃干燥过夜。
实施例3单金属和双金属织造纤维布的表征
在-196℃,通过ASAP 2010(Accelerated Surface Area andPorosimetry System(加速表面积和孔隙率计系统),微晶学),用N2吸附-解吸由BET方法测量单金属和双金属织造纤维催化剂的比表面积。通过分批平衡pH漂移方法,测定在0电荷点的pH值(pzc,即,在载体的总表面为电中性的pH值)。为了测定经制备的样品中的金属含量,使样品溶于浓HNO3,并通过电感耦合等离子发射光谱(ICP-ES,Perkin-Elmer Optima 3000DV)仪器分析。制备的样品用高分辨扫描电子显微镜(HRSEM)和CO-化学吸附表征。利用场发射枪高分辨数字扫描电子显微镜HR SEM LEO 982(Zeiss-Leica协作)和使用具有用于微分析的X射线检测器的JEOL 5400显微镜的SEM/EDS(NoranInstrument Co.),进行制备的催化布上金属颗粒的表面观察。从HRSEM得到的各粒径di的值用公式2计算平均微晶尺寸ds(nm):
公式(2) d s = Σn i Σn i d i 3 d i 2
其中ni为具有直径di的颗粒的数目。
根据公式3和4,在CO部分以线形化学吸附并且部分以桥形化学吸附的假设下,从CO化学吸附结果估计暴露于金属颗粒表面的Pd原子的比表面积值(SPd m2/g cat.)和钯的分散值DPd。CO-化学吸附测量在“ASAP 2010Chemi”微晶学装置上进行。样品在真空(10-6托)下在150℃干燥30分钟,在100℃(10℃分钟-1)还原1小时,抽空,随后在室温在50-300托CO压力范围取得CO等温线。在测量前,将抽空后的样品在H2流中在100℃(10℃分钟-1)还原1小时,以避免β-PdH生成。在室温在50-300托CO压力范围取得CO等温线。
公式(3) D Pd = V CO M Pd X Pd - CO 22414 f Pd
公式(4) S Pd = 2.7 × 10 15 V CO X Pd - CO P Pd
其中MPd为Pd的原子量(106.4g/mol),fPd为Pd的重量分数(mPd/mcat);常数22414是指摩尔密度(cm3/mol),PPd为钯原子的表面密度(1.27×1015原子/cm2),XPd-CO为Pd-CO化学吸附化学计量,等于1.25。
表1显示根据以上方法1.2和1.3制备的Pd负载的颗粒的平均粒径、可得的金属Pd表面和Pd分散(金属颗粒表面上暴露的Pd原子与Pd原子总数之比)。
表1.Pd/ACC催化剂的特征
误差±3%(考虑样品称量、反应试验和分析的误差)。
表2显示通过不同制备顺序(例如,制备顺序3-2是指用Pd沉积方法1.3和Cu沉积方法2.2得到的PdCu/ACC)得到的PdCu/ACC样品中Pd-Cu负载的颗粒的平均粒径、可得的金属Pd表面和Pd分散。Cu在Pd/ACC上的选择性沉积(表2)导致平均粒径ds增加,这又导致钯分散(DPd)降低,表明表面Pd原子的存在,甚至在高Cu覆盖率。另外,Cu在Pd/ACC上的较高沉积伴随Pd原子的表面(SPd)减小。
表2.Cu-Pd催化剂样品的特征
实施例4.硝酸盐催化氢化
在根据图1构造的实验室规模试验装置中进行硝酸盐氢化试验(run),以测量制备的催化剂的活性和选择性。在一般试验中,在进入催化反应器10(自制管形筒,其中催化布可螺旋形缠绕在中心圆柱芯周围)之前,将硝酸盐(来自NaNO3)在蒸馏水或自来水中的溶液送入气体/水饱和器/压热器8,其中H2在压力下溶于进料溶液。
在流反应器中各氢化试验的最初结果为在反应器出口作为时间函数的反应剂/产物分布曲线。催化性能由硝酸盐转化率(XNO3)和对氮、亚硝酸盐或铵离子的选择性(Si)表征,如公式5-7中定义:
公式(5)XNO3=(1-CNO3/C°NO3)
公式(6)Si=Ci/(C°NO3-CNO3)
公式(7)SN2=1-SNO2-SNH4 +
其中C0 NO3和CNO3分别为硝酸盐的测量的流入和流出摩尔浓度,Ci和Si分别为亚硝酸盐和铵离子的流出物浓度和对它们的选择性。
用液相离子色谱(761Compact IC,Methrom instrument)利用电导率检测(阴离子分析柱METROSEPA SUPP 4(4×250mm),流动相为碳酸盐/碳酸氢盐流出物和硫酸再生剂)监测硝酸盐和亚硝酸盐离子的浓度。铵离子浓度用奈斯勒试剂在λmax=500nm分光光度测量。
根据公式8,从硝酸盐转化-接触时间依赖性计算总硝酸盐消失(转化)速率r(mmol NO3 -/s g催化剂):
公式(8)r=(C0 NO3*XNO3)F/Wcat
实施例5.PdCu纳米颗粒的表面结构对硝酸盐催化氢化的影响
为了更好地理解在Pd-Cu/ACC催化剂上催化硝酸盐氢化的化学,发明人(Matatov-Meytal和Sheintuch,2005)以前已进行了一些初步实验,在方法中涉及的不同分子、离子和原子物类用文献数据(亚硝酸盐和硝酸盐吸附常数数值和Pd和Pd-Cu负载的颗粒上亚硝酸盐和硝酸盐还原的速率常数)和现代量子计算机化学工具(Efremenko等,2006)研究。此研究表明:
(a)Pd-Cu催化剂的ACC载体提供比GFC、AFC和SFC更高的硝酸盐去除活性和更高的对氮选择性;
(b)Pd单独和Cu单独不适合在催化氢化期间使硝酸盐分解;
(c)通过只加入0.28%重量Cu(对于2%重量Pd),Pd-Cu/ACC中的Pd变得对还原硝酸盐具有活性,并且Cu/Pd比的变化对活性具有显著作用;
(d)载体上的金属负载对Pd-Cu/ACC催化剂的硝酸盐去除活性具有大的影响,并且应当是催化剂改良/优化的原因;
(e)对KPd NO2/KPdCu NO3报告的吸附常数值为约0.6×10-3mmol-1/0.08×10-3mmol-1~8(25℃);
(f)在研究范围(25℃),kPd NO2/kPdCu NO3比(其中kPd NO2为在Pd催化剂上亚硝酸盐还原(去除)的速率常数(h-1g cat-1),kPdCu NO3(h-1 g cat-1)为在Pd-Cu催化剂上硝酸盐历程(fate)的速率常数)负载在不同载体上接近于0.98/0.13~8。
实施例6.流反应器中PdCu双金属负载的纳米颗粒的表面结构对硝酸盐催化氢化的影响
对由顺序3-2(方法1.3和2.2.)制备的具有不同Cu含量的1%重量Pd-Cu/ACC催化剂检验PdCu双金属负载的纳米颗粒的表面组成对脱硝效率的影响。
表3显示在25℃在1%重量Pd-Cu/ACC催化剂上硝酸盐氢化的稳态性能数据(在至少6小时实验时间后)。在这些条件下,研究的Pd-Cu/ACC催化剂的活性很高,并且Cu/Pd比率变化对通过局部极值的活性和选择性具有显著影响。
已发现,脱硝转化速率通过局部极值(在SPdCu/SPd约8),同时SPdCu/SPd接近8,亚硝酸盐和铵离子的产率为最小限度。
在硝酸盐分解中,此方法导致只含有9%表面Pd金属和90%表面Cu-Pd活性剂的催化布1%Pd-0.35%Cu/ACC的显著改进,特别是对于低贵金属含量、较高活性/贵金属重量和较高经过(through)亚硝酸盐和铵的选择性。
表3.金属表面组成对Pd-Cu/ACC催化剂的硝酸盐氢化性能的影响
a表面比计算为(SPd/ACC Pd-SPdCu/ACC Pd)/SPdCu/ACC Pd
b反应条件:流动实验,蒸馏水中的硝酸盐浓度-(1.82mmol/l),25℃,反应体积(VR)0.0281;Wcat 2.2g,pH 6.5,氢压力6bar;液体流速F0.3l/h,反应时间6h。
这些研究的结论是,要具有活性(硝酸盐至亚硝酸盐还原步骤)和选择性(亚硝酸盐至氮还原步骤),必须关于连接的PdCu与游离金属Pd的表面比(即表面Cu/Pd m2/m2)优化负载的金属颗粒的表面,因此,表面Cu/Pd必须基本接近于KPd NO2/KPdCu NO3比,其中KPd NO2为Pd催化剂的亚硝酸盐吸附常数,KPdCu NO3为Pd-Cu催化剂的硝酸盐吸附常数,因此,如果表面Cu/Pd金属比接近于~8m2/m2,表面有利于对氮的高选择性转化。
参考文献
Batista J.,Pintar A.,Ceh M.,Kinetics of the catalytic liquid-phasehydrogenation of aqueous nitrate solution(硝酸盐含水溶液的催化液相氢化的动力学),Catal.Lett.43(1997)9.
Daganello F.,Liotta L.F.,Macaluso A.,Venezia A.M.,Daganello G.,Appl.Catal.B 24(2000)265.
Gao W.,Guan N.,Chen J.,Guan X.,Jin R.,Zeng H.,Liu Z.,ZhangF.,Appl.Catal.B46(2003)341.
Gavagnin R.,Biasetto L.,Pinna F.,Strukul G.,Appl.Catal.B38(2002)91.
Horold S.和Vorlop K.D.,Catal.Today(1993),21.
Horold S.,Vorlop K.D.,Tacke T.,Sell M.,Development of catalystsfor a selective nitrate and nitrite removal from drinking water(从饮用水选择性去除硝酸盐和亚硝酸盐的催化剂的开发),Catal.Today 17(1993)21.
Kapoor A.和Viraraghavan T.,Nitrate removal from drinkingwater(从饮用水去除硝酸盐),J.Environ.Eng.4(1997)371.
Kralic M.和Biffis A.,J.Mol.Catal.A 177(2001)113.
Lemaignen L.,Tong C.,Begon V.,Burch R.,Chadwick D.,Catal.Today 75(2002)43.
Matatov-Meital Y.,Barelko V.,Yuranov I.,Sheintuch M.,Clothcatalysts in water denitrification I.Pd on glass fibers(水脱硝中的布催化剂I.玻璃纤维上的Pd),Applied Catalysis B:Environmental27(2000)127-135.
Matatov-Meytal Yu.,Barelko V.,Yuranov I.,Kiwi-Minsker L.,Renken A.,Sheintuch M.,Appl.Catal.B31(2001)233.
Matatov-Meytal Y.,Shindler Y.,Sheintuch M.,Appl.Catal.B45(2003)127.
Matatov-Meytal U.和Sheintuch M.:Proceedings of the FirstInternational Symposium on Carbon for Catalysis-CarboCat(第一届催化用碳-CarboCat国际专题讨论会公报),Lausanne,Switzerland,18-20July 2004.
Matatov-Meital Y.和Sheintuch M.,Activated carbon cloth-supportedpd-cu catalyst:Application for continuous water denitrfication(活性炭布负载的pd-cu催化剂:连续水脱硝应用),Catalysis Today,102-103(2005)121-127.
Matatov-Meytal U.,Ind.Eng.Chem.Res.,44(2005)9575.
Matatov-Meytal U.,和M.Sheintuch,Catal.Comm.,10(2009)1137-1141.
Pintar A.,Batista J.,Levec J.,Potential of mono-and bimetalliccatalysts for liquid-phase hydrogenation of aqueous nitrate solution(单和双金属催化剂用于硝酸盐含水溶液的液相氢化的潜力),Water Sci.Technol.37(1998)177.
Pintar A.,Setinc M.,Levec J.,Kajiuchi T.,J.Catal.174(1998)72.
Prusse M.,Horold S.,Vorlop K.D.,Effect of the preparationconditions on catalytic properties of bimetallic catalyst for nitrate removalfrom water(制备条件对双金属催化剂用于从水去除硝酸盐的催化性质的影响),Chem.Ing.Technol.69(1997)93.
Prusse M.和Vorlop K.D.,J.Mol.Catal.A173(2001)313.
Shindler Y,Matatov-Meytal Yu.,Sheintuch M.,WetHydrodechlorination of p-Chlorophenol using Pd Supported on ActivatedCarbon Cloths(使用活性炭布上负载的Pd的对氯苯酚的湿法加氢脱氯),Ind.Eng.Chem.Res.,40(2001)3301.
Strukul G.,Pinna F.,Marella M.,Maregalli L.,Tomaselli M,Sol-gelPd catalysts for nitrate/nitrite removal from drinking water(用于从饮用水去除硝酸盐/亚硝酸盐的溶胶-凝胶Pd催化剂),Catal.Today 27(1996)209.
Vorlop K.D.和Prusse M.,Catalytic removing nitrate from water(从水催化去除硝酸盐),Catal.Sci.Ser.1(1999)195.
Yoshinaga Y.,Akita T.,MikamiI.,Okura T.,J.Catal.207(2002)37.

Claims (14)

1.一种活性炭布负载的双金属Pd-Cu纳米催化剂,所述纳米催化剂包含1%重量Pd和0.35-0.45%重量Cu,并且连接的PdCu与游离Pd的表面比为8-10m2/m2
2.权利要求1的双金属Pd-Cu纳米催化剂,所述纳米催化剂包含1%重量Pd和0.35%重量Cu。
3.权利要求1的双金属Pd-Cu纳米催化剂,所述纳米催化剂包含1%重量Pd和0.45%重量Cu。
4.权利要求1至3中任一项的双金属Pd-Cu纳米催化剂,其中所述表面比为8m2/m2
5.权利要求1至3中任一项的双金属Pd-Cu纳米催化剂,所述纳米催化剂选择性以氮的形式从废水去除硝酸盐和/或亚硝酸盐。
6.权利要求5的双金属Pd-Cu纳米催化剂,所述纳米催化剂使废水中的硝酸盐转化成至少96%摩尔氮。
7.权利要求6的双金属Pd-Cu纳米催化剂,所述纳米催化剂使废水中的硝酸盐转化成96-99%摩尔范围的氮。
8.权利要求7的双金属Pd-Cu纳米催化剂,其中所述纳米催化剂使废水中的硝酸盐转化成98.4%摩尔的氮。
9.权利要求7的双金属Pd-Cu纳米催化剂,其中所述纳米催化剂使废水中的硝酸盐转化成98.9%摩尔的氮。
10.权利要求6至9中任一项的双金属Pd-Cu纳米催化剂,其中硝酸盐同时转化成小于0.2%摩尔亚硝酸盐和小于1.4%摩尔氨。
11.一种制备权利要求1至10中任一项的双金属Pd-Cu纳米催化剂的方法,所述方法包含以下步骤:
i用硝酸钯(II)水溶液初始湿润浸渍活性炭布(ACC),干燥,煅烧,并在流动氢下还原样品,因此得到单金属Pd/ACC固体浸渍的催化布;并且
ii在步骤i的Pd/ACC布上溅射沉积甲酸铜溶液,并干燥。
12.权利要求11的方法,其中在步骤i的浸渍后,使固体经浸渍布留在室温6小时,在70℃在12小时期间干燥,在流动氮下在300℃煅烧,并在流动氢下在200℃还原。
13.权利要求11或12的方法,其中在步骤ii中,使甲酸铜溶液溅射在步骤i中得到的单金属Pd/ACC催化布上,使固体双金属催化布留在室温12小时,在100℃在12小时期间干燥,在流动氮下在300℃煅烧,洗涤,并在氮下在90℃干燥过夜。
14.一种用硝酸盐选择性还原成氮使硝酸盐污染的水或废水脱硝的方法,所述方法包含使所述硝酸盐污染的水或废水与权利要求1至10中任一项的双金属Pd-Cu纳米催化剂接触。
CN201080030999.4A 2009-05-05 2010-05-04 用于从水去除硝酸盐的活性炭布负载的双金属Pd-Cu催化剂 Expired - Fee Related CN102458652B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17553709P 2009-05-05 2009-05-05
US61/175,537 2009-05-05
PCT/IL2010/000360 WO2010128505A1 (en) 2009-05-05 2010-05-04 ACTIVATED CARBON CLOTH-SUPPORTED BIMETALLIC Pd-Cu CATALYSTS FOR NITRATE REMOVAL FROM WATER.

Publications (2)

Publication Number Publication Date
CN102458652A CN102458652A (zh) 2012-05-16
CN102458652B true CN102458652B (zh) 2014-12-24

Family

ID=42668120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080030999.4A Expired - Fee Related CN102458652B (zh) 2009-05-05 2010-05-04 用于从水去除硝酸盐的活性炭布负载的双金属Pd-Cu催化剂

Country Status (5)

Country Link
US (1) US8980104B2 (zh)
EP (1) EP2429700A1 (zh)
CN (1) CN102458652B (zh)
IL (1) IL216130A (zh)
WO (1) WO2010128505A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533220A (zh) * 2020-04-03 2020-08-14 同济大学 一种利用电催化析氢和催化加氢作用高效去除水体中硝酸盐的新型脱氮系统及其应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566332B2 (en) 2012-03-06 2023-01-31 Board Of Trustees Of Michigan State University Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds
WO2013186789A1 (en) * 2012-06-11 2013-12-19 Reliance Industries Limited A catalyst composition and a process for selective hydrogenation of methyl acetylene and propadiene
US20180065873A1 (en) * 2015-04-02 2018-03-08 Welltodo Ltd. Processes for treating selenate in water
US9844767B2 (en) * 2015-08-28 2017-12-19 Korea Institute Of Science And Technology Catalyst filter comprising nano metallic catalyst sprayed on the surface of support
CN107777826B (zh) * 2016-08-27 2020-10-27 中国石油化工股份有限公司 一种高硝酸盐废水的深度处理系统和方法
CN106492836B (zh) * 2016-10-24 2019-02-12 陕西师范大学 原位一锅制备活性炭负载纳米Pd/Cu催化剂的方法
CN109317199B (zh) * 2017-07-31 2021-12-21 中国石油化工股份有限公司 硝酸根化学还原催化剂及其制备方法
CN109317197B (zh) * 2017-07-31 2021-08-10 中国石油化工股份有限公司 一种污水脱氮催化剂的制备方法
CN109317208B (zh) * 2017-07-31 2021-08-10 中国石油化工股份有限公司 一种硝态氮脱氮催化剂的制备方法
CN109317198B (zh) * 2017-07-31 2021-08-10 中国石油化工股份有限公司 应用于化学还原污水硝酸盐的高效催化剂的制备方法
CA3092887C (en) * 2018-06-21 2023-08-01 Heraeus Deutschland GmbH & Co. KG Precious metal catalyst briquettes, process for the manufacture and for the incineration thereof
CN114797895A (zh) * 2019-03-25 2022-07-29 河北地质大学 一种复合催化剂及其制备方法和应用
CN110075843B (zh) * 2019-04-08 2020-03-24 电子科技大学 一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用
CA3166935A1 (en) * 2020-02-12 2021-08-19 Lars GRABOW Inhibition-free low-temperature engine exhaust oxidation catalyst
CN111606495A (zh) * 2020-04-20 2020-09-01 西安建筑科技大学 一种去除水中硝酸盐的两级催化反硝化装置与方法
CN113233536B (zh) * 2021-03-31 2022-05-17 浙江工业大学 一种利用乙二胺树脂基零价钯纳米复合材料定向还原水体中亚硝酸根的方法
CN114100628A (zh) * 2021-10-22 2022-03-01 浙江树人学院(浙江树人大学) 一种钯-铁/碳基纳米复合材料及制备方法与应用
CN114177906B (zh) * 2021-11-09 2023-11-07 南京大学 一种高效稳定的光催化反硝化材料及其制备方法
WO2023149559A1 (ja) * 2022-02-04 2023-08-10 エヌ・イーケムキャット株式会社 水素化反応用触媒およびその製造方法、ならびに水素化有機化合物の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279122A (zh) * 2000-08-04 2001-01-10 中山大学 处理氮氧化物/一氧化碳混合气体的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3830850A1 (de) 1988-09-10 1990-03-22 Gutec Gmbh Verfahren zur entfernung des nitrit- und/oder nitratgehaltes in wasser
JP4649281B2 (ja) * 2005-07-12 2011-03-09 日揮触媒化成株式会社 硝酸性窒素含有水の処理方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279122A (zh) * 2000-08-04 2001-01-10 中山大学 处理氮氧化物/一氧化碳混合气体的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
#64257 *
acute *
cation".《Catalysis Today》.2005,第102-103卷第121-127页. *
JP特开2007-21289A 2007.02.01 *
N. Barrabe &amp *
s et al.."Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor The effect of copper nanoparticles".《Applied Catalysis B: Environmental》.2005,第62卷第77-85页. *
Uri Matatov-Meytal et al.."Activated carbon cloth-supported Pd–Cu catalyst:Application for continuous water denitri&amp *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533220A (zh) * 2020-04-03 2020-08-14 同济大学 一种利用电催化析氢和催化加氢作用高效去除水体中硝酸盐的新型脱氮系统及其应用

Also Published As

Publication number Publication date
US20120111802A1 (en) 2012-05-10
IL216130A0 (en) 2012-01-31
WO2010128505A1 (en) 2010-11-11
IL216130A (en) 2015-10-29
CN102458652A (zh) 2012-05-16
EP2429700A1 (en) 2012-03-21
US8980104B2 (en) 2015-03-17

Similar Documents

Publication Publication Date Title
CN102458652B (zh) 用于从水去除硝酸盐的活性炭布负载的双金属Pd-Cu催化剂
Sudarsanam et al. Heterostructured copper–ceria and iron–ceria nanorods: role of morphology, redox, and acid properties in catalytic diesel soot combustion
Yu et al. Ag supported on CeO2 with different morphologies for the catalytic oxidation of HCHO
Xue et al. Iron mesh-supported vertically aligned Co-Fe layered double oxide as a novel monolithic catalyst for catalytic oxidation of toluene
Tan et al. Support morphology-dependent catalytic activity of Pd/CeO2 for formaldehyde oxidation
Hou et al. Rare earth oxides and their supported noble metals in application of environmental catalysis
Ma et al. Heterogeneous catalysis by metals
Chen et al. Catalytic oxidation of dichloromethane over Pt/CeO2–Al2O3 catalysts
Peng et al. Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures
Restivo et al. Metal assessment for the catalytic reduction of bromate in water under hydrogen
Zhang et al. Size-dependent hydrogenation selectivity of nitrate on Pd− Cu/TiO2 catalysts
Gašparovičová et al. Supported Pd–Cu catalysts in the water phase reduction of nitrates: Functional resin versus alumina
Ma et al. Electrochemical reduction of nitrate in a catalytic carbon membrane nano-reactor
Constantinou et al. Catalytic removal of nitrates from waters
Yuranova et al. Nanostructured catalysts for the continuous reduction of nitrates and bromates in water
Zhang et al. Insight into the size effect of Pd nanoparticles on the catalytic reduction of nitrite in water over Pd/C catalysts
Soares et al. Kinetic modeling of nitrate reduction catalyzed by Pd–Cu supported on carbon nanotubes
Ma et al. Improving the surface properties of CeO2 by dissolution of Ce3+ to enhance the performance for catalytic wet air oxidation of phenol
Pizarro et al. Enhancement of Pd-based catalysts for the removal of nitrite and nitrate from water
Zhang et al. Ni-Cu bimetallic catalytic membranes for continuous nitrophenol conversion
Xu et al. Catalytic hydrogenation of aqueous nitrate over Pd− Cu/ZrO2 catalysts
Yun et al. Catalytic reduction of nitrate in secondary effluent of wastewater treatment plants by Fe0 and Pd–Cu/γ–Al2O3
Li et al. Remarkably efficient Pt/CeO2–Al2O3 catalyst for catalytic hydrodeiodination of monoiodoacetic acid: Synergistic effect of Al2O3 and CeO2
Mousavi et al. Modeling and optimization of NH3-SCR performance of MnOx/γ-alumina nanocatalysts by response surface methodology
Papavasiliou et al. A hyperbranched polymer synthetic strategy for the efficient fixation of metal species within nanoporous structures: Application in automotive catalysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141224

Termination date: 20190504