WO2020218316A1 - アリールスルホン酸エステル化合物の製造方法 - Google Patents

アリールスルホン酸エステル化合物の製造方法 Download PDF

Info

Publication number
WO2020218316A1
WO2020218316A1 PCT/JP2020/017276 JP2020017276W WO2020218316A1 WO 2020218316 A1 WO2020218316 A1 WO 2020218316A1 JP 2020017276 W JP2020017276 W JP 2020017276W WO 2020218316 A1 WO2020218316 A1 WO 2020218316A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfonic acid
aryl sulfonic
formula
producing
acid ester
Prior art date
Application number
PCT/JP2020/017276
Other languages
English (en)
French (fr)
Inventor
近藤 光正
淳平 島田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020217037518A priority Critical patent/KR20220004096A/ko
Priority to JP2021516147A priority patent/JP7484901B2/ja
Priority to CN202080030544.6A priority patent/CN113748103A/zh
Priority to EP20795185.6A priority patent/EP3960730A4/en
Publication of WO2020218316A1 publication Critical patent/WO2020218316A1/ja
Priority to JP2024073304A priority patent/JP2024097071A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/28Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/72Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/75Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing singly-bound oxygen atoms bound to the carbon skeleton

Definitions

  • the present invention relates to a method for producing an aryl sulfonic acid ester compound.
  • organic electroluminescence (hereinafter referred to as organic EL) elements are expected to be put into practical use in fields such as displays and lighting, and various developments related to materials and element structures are expected for the purpose of low voltage drive, high brightness, long life, etc. Has been made.
  • a plurality of functional thin films are used in this organic EL element, and one of them, the hole injection layer, is responsible for the transfer of electric charge between the anode and the hole transport layer or the light emitting layer, and is low in the organic EL element. It plays an important role in achieving voltage drive and high brightness.
  • the aryl sulfonic acid ester compound is prepared by acid chlorideating a pyridinium salt or a sodium salt of an aryl sulfonic acid compound with thionyl chloride in a solvent such as DMF (first step) and then pyridine. It is produced by esterification (second step) in a base such as.
  • first step the methods of Patent Documents 1 and 2 using a salt as a starting material are not suitable for mass production because an extra step of converting aryl sulfonic acid into a salt is required, and therefore aryl sulfonic acid.
  • a method of directly converting acid chloride into an acid chloride is desired, but this method is difficult to control due to the rapid generation of acid gas, and there is a problem in terms of safety.
  • the scale becomes larger, a large mass is generated during the reaction. May become difficult to stir. Further, since it is concentrated to dryness in order to distill off excess thionyl chloride after the reaction, there is a problem that the desired product cannot be obtained with good reproducibility, and it is not suitable for mass production. Also, in the esterification of the second step, the larger the scale, the lower the reproducibility in terms of reaction time, yield, etc.
  • the present invention has been made in view of such circumstances, and is a method for producing an aryl sulfonic acid ester compound, which is safe, has high reproducibility such as reaction time and yield, and can obtain a target product in a high yield.
  • the purpose is to provide.
  • A represents a (n + 1) -valent aromatic group having 6 to 20 carbon atoms
  • B represents a q-valent aromatic group having 6 to 20 carbon atoms substituted with a halogen atom
  • n represents an aromatic group having 6 to 20 carbon atoms.
  • A is an integer representing the number of sulfo groups bonded to A and satisfying 1 ⁇ n ⁇ 4
  • q is an integer indicating the number of bonds between B and an oxygen atom and satisfying 1 ⁇ q.
  • the aryl sulfonic acid compound represented by is reacted with a halogenating reagent in the presence of an N, N-dimethylformamide catalyst, and the following formula (2) (In the formula, X represents a halogen atom, and A, B, n and q have the same meanings as described above.)
  • a 1,2-dimethoxyethane solution or a diethylene glycol diethyl ether solution of the aryl sulfonic acid compound is added dropwise to the halogenating reagent to halogenate the sulfo group.
  • the arylsulfonic acid halide obtained in the first step is subjected to the following formula (3) in an organic solvent.
  • R each independently represents an alkyl group having 1 to 10 carbon atoms which may contain a hetero atom, but two Rs may be bonded to form a ring structure together with a nitrogen atom.
  • a method for producing an aryl sulfonic acid ester compound which comprises a second step of synthesizing an aryl sulfonic acid ester compound represented by. 2.
  • X represents a halogen atom
  • A represents a (n + 1) -valent aromatic group having 6 to 20 carbon atoms
  • B represents a q-valent aromatic group having 6 to 20 carbon atoms substituted with a halogen atom. It represents an aromatic group, where n represents the number of sulfo groups bonded to A and is an integer satisfying 1 ⁇ n ⁇ 4, and q is an integer representing the number of bonds between B and an oxygen atom and satisfying 1 ⁇ q. is there.
  • the arylsulfonic acid halide represented by the following formula (3) in an organic solvent.
  • R each independently represents an alkyl group having 1 to 10 carbon atoms which may contain a hetero atom, but two Rs may be bonded to form a ring structure together with a nitrogen atom. .
  • R represents an alkyl group having 1 to 10 carbon atoms which may contain a hetero atom, but two Rs may be bonded to form a ring structure together with a nitrogen atom. .
  • D 1 represents a substituted or unsubstituted divalent hydrocarbon group
  • D 2 represents a single bond, O, S, or a substituted or unsubstituted divalent amino group
  • D 3 is a substituted.
  • a method for producing an aryl sulfonic acid ester compound which comprises a step of synthesizing an aryl sulfonic acid ester compound represented by. 3. 3. The method for producing an aryl sulfonic acid ester compound of 1 or 2 in which the base represented by the formula (3) is N, N-dimethyl-4-aminopyridine or 4-morpholinopyridine. 4.
  • Method for producing ester compounds 16.
  • A represents a (n + 1) -valent aromatic group having 6 to 20 carbon atoms
  • B represents a q-valent aromatic group having 6 to 20 carbon atoms substituted with a halogen atom
  • n represents an aromatic group having 6 to 20 carbon atoms.
  • A is an integer representing the number of sulfo groups bonded to A and satisfying 1 ⁇ n ⁇ 4
  • q is an integer indicating the number of bonds between B and an oxygen atom and satisfying 1 ⁇ q.
  • the aryl sulfonic acid halide comprises a step of dropping a 1,2-dimethoxyethane solution or a diethylene glycol diethyl ether solution of the aryl sulfonic acid compound into the halogenating reagent to halogenate the sulfo group.
  • Manufacturing method 17.
  • the method for producing an aryl sulfonic acid ester compound of the present invention is excellent in safety because gas generation during production of an acid halide can be appropriately controlled, and only has high reproducibility such as reaction time and yield in the esterification reaction. However, the reaction rate is high, and the yield of the target product is also good. Further, the production method of the present invention has an advantage that steps such as concentration to dryness after the halogenation reaction and the esterification reaction can be simplified. The production method of the present invention having such characteristics is useful not only as a synthesis method on a laboratory scale but also as an industrial production method for mass production.
  • A represents a (n + 1) -valent aromatic group having 6 to 20 carbon atoms
  • B represents a q-valent aromatic group having 6 to 20 carbon atoms substituted with a halogen atom
  • n Indicates the number of sulfo groups bonded to A and is an integer satisfying 1 ⁇ n ⁇ 4
  • q indicates the number of bonds between B and an oxygen atom and is an integer satisfying 1 ⁇ q
  • X is a halogen atom.
  • Examples of the aromatic group having 6 to 20 carbon atoms of A include a benzene ring, a naphthalene ring, an anthracene ring, a biphenyl ring and the like, but a naphthalene ring and an anthracene ring are preferable, and a naphthalene ring is more preferable.
  • A may be substituted with a substituent other than the sulfo group such as a halogen atom, a cyano group and a nitro group.
  • Examples of the aromatic group having 6 to 20 carbon atoms of B include a benzene ring, a naphthalene ring, an anthracene ring, and a biphenyl ring, but a benzene ring, a naphthalene ring, and a biphenyl ring are preferable, and a biphenyl ring is more preferable.
  • Examples of the halogen atom contained in B include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.
  • B may be substituted with a substituent other than the halogen atom such as a cyano group, a nitro group and a perfluoroallyl group.
  • B is an aromatic group having 6 to 20 carbon atoms (having a perfluoro structure) in which at least one, preferably two or more, and even more preferably all hydrogen atoms are substituted with fluorine atoms.
  • 4-trifluoromethyl-2,3,5,6-tetrafluorophenyl group, 4-cyano-2,3,5,6-tetrafluorophenyl group, 4-nitro-2,3,5,6- Tetrafluorophenyl group, 3,4-dicyano-2,5,6-trifluorophenyl group, 4-perfluoroallyl-2,3,5,6-tetrafluorophenyl group, perfluorobiphenyldiyl group are preferable, and per.
  • Fluorobiphenyl-4,4'-diyl group, 4-trifluoromethyl-2,3,5,6-tetrafluorophenyl group are more preferable.
  • n represents the number of sulfo groups bonded to A and is an integer satisfying 1 ⁇ n ⁇ 4, but an integer of 2 to 4 is preferable, 2 or 3 is more preferable, and 2 is even more preferable.
  • q indicates the number of bonds between B and an oxygen atom, and is an integer satisfying 1 ⁇ q, but an integer of 1 to 4 is preferable, 1 or 2 is more preferable, and 2 is even more preferable.
  • the halogen atom of X include those exemplified in B above, but chlorine atom and bromine atom are preferable, and chlorine atom is more preferable.
  • Examples of suitable A- (SO 3 H) n groups in the present invention include, but are not limited to, groups represented by the following formulas (A1) and (A2). Among these, (A1) is preferable.
  • examples of B suitable in the present invention include those represented by the following formulas (B1) to (B6), but are not limited thereto. Among these, (B1) is preferable.
  • aryl sulfonic acid compound represented by the above formula (1) which is the raw material of the first step of the production method of the present invention, include those represented by the following formulas, but are limited thereto. is not.
  • the amount of DME or DEGDEE used to prepare a DME solution or a DEGDEE solution of an aryl sulfonic acid compound is determined by the aryl sulfonic acid compound.
  • the amount to be dissolved is not particularly limited, but considering the balance between the solubility of the aryl sulfonic acid compound and the amount of dropping, 0.1 to 10 is preferable with respect to 1 aryl sulfonic acid in terms of mass ratio. ⁇ 7 is more preferable, and 1 to 3 is even more preferable.
  • halogenating reagent a conventionally known reagent can be appropriately selected and used, and examples thereof include thionyl chloride, oxalyl chloride, phosphoryl chloride, sulfuryl chloride, phosphorus trichloride, phosphorus pentachloride, and the like.
  • Thionyl chloride is preferable in consideration of safety, workability, price and the like.
  • the amount of the halogenating reagent used is not limited as long as it is equal to or more than the theoretical amount at which all the sulfo groups of the aryl sulfonic acid compound are halogenated.
  • the aryl sulfonic acid compound is usually compared with the aryl sulfonic acid compound in terms of reaction rate, yield and purity of the sulfonic acid compound after crystallization, workability, reproducibility, and cost. It is usually used at about 1 to 10 times by mass, the lower limit is preferably 1.5 times by mass, and the upper limit is preferably 5 times by mass, more preferably 3.5 times by mass.
  • the DME solution or the DEGDEE solution of the aryl sulfonic acid compound may be added dropwise to the halogenating reagent itself, or the DME solution or the DEGDEE solution may be added dropwise to the mixture of the halogenating reagent and the organic solvent.
  • the organic solvent used is not particularly limited as long as it is an organic solvent that does not affect the reaction, but DME or DEGDEE used for dissolving the aryl sulfonic acid compound is preferable.
  • a catalyst such as DMF is added for the purpose of accelerating the reaction and improving the conversion rate.
  • the amount of DMF used as a catalyst is not particularly limited, but if it is too small, the progress of the reaction will be slowed down, while if it is too large, impurities derived from DMF will be generated. Therefore, considering the balance between these, aryl With respect to 1 mol of the sulfo group contained in the sulfonic acid, 0.025 mol or more is preferable, 0.025 to 0.25 mol is more preferable, and 0.075 to 0.125 mol is even more preferable.
  • the molar equivalent to 1 mol of aryl sulfonic acid (hereinafter referred to as eq) can be appropriately set according to the number of sulfo groups contained in the aryl sulfonic acid.
  • the aryl sulfonic acid has four sulfo groups.
  • 0.1 eq or higher is preferable, 0.1 to 1 eq is more preferable, and 0.3 to 0.5 eq is even more preferable.
  • a catalyst such as DMF may be added to the DME solution or DEGDEE solution of the aryl sulfonic acid to be dropped, added to the halogenating reagent, or added to both of them, but the reaction rate and gas It is preferable to add it to the halogenating reagent from the viewpoints of ease of generation control, simplification of operation, and the like.
  • the reaction temperature is not particularly limited as long as the reaction proceeds, but is preferably about 30 to 85 ° C., preferably about 50 to 85 ° C., considering that the reaction proceeds rapidly and the generation of acid gas is appropriately regulated. 85 ° C is more preferred, and 60-80 ° C is even more preferred. It is preferable to heat the halogenating reagent to the above temperature range when the DME solution or DEGDEE solution of the aryl sulfonic acid compound is added dropwise.
  • the reaction time is appropriately set in consideration of the type and amount of the catalyst used, the reaction temperature, and the like, but is usually about 1 to 48 hours.
  • a poor solvent is added to precipitate an aryl sulfonic acid halide, which is filtered off, washed, dried and the like to obtain the desired product.
  • the halogenating reagent remaining in the reaction solution is easily and surely removed as compared with the method of isolating by concentrating the reaction solution by adding a poor solvent to the reaction solution to precipitate an aryl sulfonic acid halide.
  • the target product can be obtained with good reproducibility.
  • the poor solvent is not particularly limited as long as the target aryl sulfonic acid halide is precipitated and there is no adverse effect such as accelerating the decomposition of the aryl sulfonic acid halide, and the solvent is not particularly limited.
  • aliphatic hydrocarbons pentane, n-hexane, n-heptane, n-octane, n-decane, decalin, etc.
  • aromatic hydrocarbons benzene, nitrobenzene, toluene, o-xylene, m-).
  • Xylene, p-xylene, mecitylene, etc. ethers (diethyl ether, diisopropyl ether, t-butylmethyl ether, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethylene glycol diethyl Ether, etc.), ketones (acetone, methylethyl ketone, methylisobutylketone, di-n-butylketone, cyclohexanone, etc.), nitriles (acetritale, propionitrile, butyronitrile, etc.) are preferable, and toluene, n-heptane, acetonitrile are more preferable. ..
  • Second Step In the second step of the method for producing an aryl sulfonic acid ester compound according to the present invention, the aryl sulfonic acid halide obtained in the first step as described above is subjected to the following formula (3) in an organic solvent.
  • This is a step of synthesizing an arylsulfonic acid ester compound represented by the following formula (5) by reacting with an alcohol compound represented by the following formula (4) at 15 ° C. or lower in the presence of a base represented by.
  • R each independently represents an alkyl group having 1 to 10 carbon atoms which may contain a hetero atom, but two Rs are bonded to form a ring structure together with a nitrogen atom. May be good.
  • the alkyl group having 1 to 10 carbon atoms of R may be linear, branched or cyclic, and may be, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-.
  • Straight or branched alkyl groups with 1-10 carbon atoms such as butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl groups; cyclopropyl, cyclobutyl, cyclopentyl, Examples thereof include cyclic alkyl groups having 3 to 20 carbon atoms such as cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclobutyl, and bicyclopentyl groups.
  • hetero atom an oxygen atom, a sulfur atom, a nitrogen atom and the like can be mentioned.
  • R an alkyl group having 1 to 5 carbon atoms which may contain a hetero atom or an alkylene group having 2 to 5 carbon atoms formed by bonding R to each other is preferable, and methyl and ethyl are preferable.
  • Tetramethylene, pentamethylene, and 3-oxapentamethylene groups are preferable, and two Rs are all methyl groups, two Rs are both ethyl groups, and two Rs are more preferably 3-oxapentamethylene groups.
  • the base represented by the formula (3) examples include N, N-dimethyl-4-aminopyridine (hereinafter abbreviated as DMAP), N, N-diethyl-4-aminopyridine, and 4-morpho.
  • DMAP N-dimethyl-4-aminopyridine
  • 4MP 4-morpho.
  • DMAP is optimal in consideration of increasing the reaction rate and esterifying all sulfonic acid halide groups to increase the yield of the target product. ..
  • the amount of the base represented by the formula (3) is not particularly limited, but if it is too small, the progress of the reaction will be slowed down, while if it is too large, the decomposition of the arylsulfonic acid halogen compound or the target substance will proceed. Therefore, considering that the reaction rate is increased and all the sulfonic acid halide groups are esterified to increase the yield of the target product, 1.1 mol or more is obtained with respect to 1 mol of the sulfonic acid halide group contained in the aryl sulfonic acid halide. Preferably, 1.1 to 1.5 mol is more preferable, and 1.1 to 1.3 mol is even more preferable.
  • the molar equivalent (eq) with respect to 1 mol of the aryl sulfonic acid halide can be appropriately set according to the number of sulfonic acid halide groups contained in the aryl sulfonic acid halide.
  • the aryl sulfonic acid halide has four sulfonic acids. When it has a halide group, it is preferably 4.4 eq or more, more preferably 4.4 to 6.0 eq, and even more preferably 4.4 to 5.2 eq.
  • D 1 represents a substituted or unsubstituted divalent hydrocarbon group
  • D 2 represents a single bond, O, S, or a substituted or unsubstituted divalent amino group
  • D 3 is , Substituted or unsubstituted monovalent hydrocarbon group, but may be a hydrogen atom when D 2 is a single bond.
  • Examples of the substituted or unsubstituted divalent hydrocarbon group of D 1 include a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, 1 to 2 alkyleneoxycarbon groups having 1 to 2 alkylene groups and 1 carbon number.
  • alkylenethio The alkylene group having 1 to 2 carbon atoms, the alkylene carbonyl group having 1 to 2 carbon atoms, and some or all of the hydrogen atoms of these groups are further hydroxyl groups, amino groups, silanol groups, Thiol group, carboxyl group, sulfonic acid ester group, phosphoric acid group, phosphoric acid ester group, ester group, thioester group, amide group, nitro group, monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, Examples thereof include those substituted with an organothio group, an acyl group, a sulfone group, a halogen atom and the like.
  • an alkylene group having 1 to 5 carbon atoms is preferable.
  • the alkylene group having 1 to 5 carbon atoms include methylene, ethylene, propylene, trimethylene, tetramethylene and pentamethylene groups, and methylene, ethylene, propylene and trimethylene groups are preferable.
  • D 2 is a single bond, O, S, or a substituted or unsubstituted divalent amino group, with O being preferred in the present invention.
  • divalent substituted amino group include -N (CH 3 )-, -N (C 2 H 5 )-, -N (C 3 H 7 )-and the like.
  • D 3 represents a substituted or unsubstituted monovalent hydrocarbon group, which may be a hydrogen atom if D 2 is a single bond.
  • Substituentally substituted or unsubstituted monovalent hydrocarbon groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-hexyl, n-octyl, 2-ethylhexyl and decyl.
  • Alkyl groups such as groups; cycloalkyl groups such as cyclopentyl and cyclohexyl groups; bicycloalkyl groups such as bicyclohexyl groups; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl-2-propenyl, 1-butenyl, Alkenyl groups such as 2-butenyl, 3-butenyl, hexenyl groups; aromatic ring groups (aryl groups) such as phenyl, xsilyl, trill, biphenyl, naphthyl groups; aralkyl groups such as benzyl, phenylethyl, phenylcyclohexyl groups and these.
  • aryl groups such as phenyl, xsilyl, trill, biphenyl, naphthyl groups
  • aralkyl groups such as benzyl, phenylethyl, phenylcyclohexyl groups and
  • a part or all of the hydrogen atom of the group of the group is further substituted with the above-mentioned substituent.
  • substituents methyl, ethyl, n-propyl, n-butyl and phenyl groups are preferred.
  • the alcohol compound represented by the formula (4) has a structure represented by the following formula (D') in which the D 1 , D 2 and D 3 are combined, and is represented by the following formula (4'). Alcohol compounds are preferred.
  • R 1 and R 2 independently represent a hydrogen atom, a linear or branched monovalent aliphatic hydrocarbon group, and R 3 is a linear. Represents a morphic or branched monovalent aliphatic hydrocarbon group or an alkoxy group. However, the total number of carbon atoms of R 1 , R 2 and R 3 is 2 or more. The total number of carbon atoms of R 1 , R 2 and R 3 is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • the linear or branched monovalent aliphatic hydrocarbon group is not particularly limited, but is limited to methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl and n-hexyl.
  • the alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms, and specifically, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy and phenoxy.
  • the group etc. can be mentioned.
  • R 1 a methyl group is more preferable.
  • a hydrogen atom is preferable as R 2 .
  • R 3 an alkoxy group is preferable, methoxy, ethoxy, n-propoxy, n-butoxy and phenoxy groups are more preferable, and ethoxy, n-butoxy and phenoxy groups are even more preferable.
  • alcohol compound represented by the formula (4) examples include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, n.
  • -Alcohols such as hexanol, cyclohexanol, n-heptanol, cycloheptanol, n-octanol, 2-ethyl-1-hexanol, n-nonanol, 3-nonanol, 2-butyl-1-octanol; propylene glycol monoethyl
  • examples thereof include, but are not limited to, ethers, propylene glycol monopropyl ethers, propylene glycol monobutyl ethers, propylene glycol monophenyl ethers, ethylene glycol monobutyl ethers, ethylene glycol monohexyl ethers and other glycol monoethers.
  • 2-ethyl-1-hexanol, 2-butyl-1-octanol, 1-octanol, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol monophenyl ether, ethylene glycol mono Butyl ether and ethylene glycol monohexyl ether are preferable.
  • the amount of the alcohol compound used is not particularly limited, but is preferably 2 to 10 and 3 to 7 in terms of mass ratio with respect to the aryl sulfonic acid halide 1 from the viewpoint of reaction rate and base solubility. More preferably, 3.5 to 6 is even more preferable.
  • the amount of the alcohol compound in the solution or slurry of the aryl sulfonic acid halide and the alcohol compound is preferably 2 to 10 and more preferably 3 to 6 with respect to the aryl sulfonic acid halide 1 in terms of mass ratio.
  • the aryl sulfonic acid ester compound represented by the above formula (5) for example, the aryl sulfonic acid ester compound represented by the following formula (5') can be mentioned, but is limited thereto. It's not a thing.
  • the arylsulfonic acid halide represented by the formula (2) is represented by the formula (4) at 15 ° C. or lower in the presence of the base represented by the formula (3) in an organic solvent.
  • the aryl sulfonic acid ester compound represented by the formula (5) is preferably given by reacting with the alcohol compound, the operation is not particularly limited, and the aryl sulfonic acid halide represented by the formula (2) is not particularly limited.
  • a mixed solution or slurry with either or both of the alcohol compound and the organic solvent represented by the formula (4) with either one or both of the alcohol compound and the organic solvent represented by the formula (4).
  • a mixed solution with the base represented by the formula (3) may be added dropwise, but the stability, reaction rate, base solubility of the arylsulfonic acid halide represented by the formula (2) and the target compound, Considering workability, ease of temperature control during reaction, etc., a solution or slurry of an arylsulfonic acid halide represented by the formula (2) and an alcohol compound represented by the formula (4) is contained in the formula ( It is desirable to drop a mixed solution of the alcohol compound represented by 4), the organic solvent and the base represented by the formula (3), or the mixed solution of the organic solvent and the base represented by the formula (3).
  • the alcohol compound represented by the formula (4) is used in both the composition to be dropped (for example, the composition in the dropping funnel) and the composition to be dropped (for example, the composition in the reaction flask).
  • the composition to be dropped for example, the composition in the dropping funnel
  • the composition to be dropped for example, the composition in the reaction flask
  • the organic solvent is not particularly limited as long as it does not adversely affect the reaction.
  • Specific examples thereof include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), Aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mecitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, etc.) , P-dichlorobenzene, etc.), ethers (diethyl ether, diisopropyl ether, t-butylmethyl ether,
  • Ketones acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butyl ketone, cyclohexanone, etc.
  • amides N, N-dimethylformamide, N, N-dimethylacetamide, etc.
  • lactam and lactones N-methyl) -2-Pyrrolidone, ⁇ -butyrolactone, etc.
  • ureas N, N-dimethylimidazolidinone, tetramethylurea, etc.
  • sulfoxides dimethylsulfoxide, sulfolane, etc.
  • nitriles acetritale, propionitrile, butyronitrile, etc.
  • an alcohol compound represented by the formula (4) can also be used. That is, in the present invention, the alcohol compound represented by the formula (4) can function as both a raw material compound and an organic solvent.
  • the solvent may be used alone or in combination of two or more.
  • ethers diethyl ether, diisopropyl ether, t-butylmethyl ether, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethylene glycol diethyl ether, etc.
  • ketones Acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butyl ketone, cyclohexanone, etc.
  • nitriles nitrile, propionitrile, butyronitrile, etc.
  • lactams N-methyl-2-pyrrolidone, etc.
  • acetonitrile, pro Pionitrile, tetrahydrofuran and N-methyl-2-pyrrolidone hereinafter abbreviated as NMP
  • the amount of the organic solvent used does not affect the reaction and is not particularly limited as long as it dissolves the base when the mixed solution containing the base represented by the formula (3) is added dropwise. If the amount is too large, the reaction will be slow, and if the amount is too small, the reaction will not be completed. Therefore, the mass ratio is usually 1 to 10 with respect to the arylsulfonic acid halide 1, preferably 2 to 10, and more preferably 2 to 7. Preferably, 2 to 6 are even more preferred, and 2 to 4 are even more preferred.
  • the alcohol compounds 1 and 2 corresponding to the target ester are added to the arylsulfonic acid halide 1 in terms of mass ratio. In addition to that, the base can be dissolved.
  • Examples of the A- (SO 3- D 1- D 2- D 3 ) n groups suitable in the present invention include groups represented by the following formulas (A3) and (A4), but are not limited thereto. Absent. Among these, (A3) is preferable.
  • A- (SO 3- D 1- D 2- D 3 ) n groups include, but are limited to, the groups represented by the following formulas (A3') and (A4'). It is not something that is done. Among these, (A3') is preferable. (In the formula, R 1 , R 2 and R 3 have the same meanings as described above.)
  • B suitable for the second step of the present invention is the same as that suitable for the first step.
  • aryl sulfonic acid ester compound obtained by the production method of the present invention include, but are not limited to, those shown below.
  • aryl sulfonic acid ester compound obtained by the production method of the present invention include, but are not limited to, those shown below.
  • the amount of water in the reaction system of the second step is preferably 10 mol% or less, more preferably 8 mol% or less, still more preferably 7 mol% or less, from the viewpoint of allowing the reaction to proceed satisfactorily.
  • the lower limit is not particularly limited, but is usually about 1 mol%. Therefore, it is preferable to use a dehydrated reagent as the reagent used in the second step, and it is particularly preferable to use an organic solvent having a water content of less than 50 ppm.
  • a mixed solution of an alcohol compound used for esterification, a base represented by the formula (3) and an organic solvent containing NMP or acetonitrile is used, and an arylsulfonic acid halide is used for esterification.
  • examples thereof include, but are not limited to, a method of adding to a liquid in which the alcohol compound is dissolved or suspended by a dropping method.
  • the amount of NMP or acetonitrile added is usually 1 to 10 with respect to the aryl sulfonic acid halide 1 in terms of mass ratio, preferably 2 to 10, more preferably 2 to 7, and 2 to 6. Even more preferable, 2 to 4 are even more preferable.
  • the reaction temperature in the second step is set to 15 ° C. or lower, preferably ⁇ 30 to 12 ° C., more preferably ⁇ 25 to 10 ° C. from the viewpoint of optimizing the reaction time and suppressing side reactions.
  • ⁇ 20 to 10 ° C. is even more preferable
  • ⁇ 15 to 0 ° C. is even more preferable
  • ⁇ 15 to ⁇ 5 ° C. is particularly preferable.
  • the reaction time is appropriately determined in consideration of the amount of base used, reaction temperature, etc., but is usually about 1 to 48 hours. If the reaction is left for a long time after the reaction is completed (completion), side-reactants may increase. Therefore, it is preferable to perform post-treatment immediately after the reaction is completed.
  • the reaction solution is filtered, and the filtrate is washed with a solvent such as ethyl acetate, an aqueous solution of hydrochloric acid, an aqueous solution of ammonium chloride, or the like to obtain the desired product.
  • the cleaning step is also preferably performed at a low temperature, the temperature is usually 10 ° C. or lower, and the lower limit thereof is not particularly limited unless the solution freezes. There is no such thing, but it is usually around -10 ° C.
  • esterification by the method of the second step using the aryl sulfonic acid halide obtained in the first step was mentioned, but the method of the second step in the present invention is other than the method of the first step. It can be applied to the esterification of the aryl sulfonic acid halide produced by the above method, and the raw material thereof is not limited to the halide obtained in the first step.
  • the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
  • the devices used are as follows. Further, in Examples and Comparative Examples, the mass ratio is the mass with respect to 1 part by mass of the aryl sulfonic acid X or X-2 described later, or the aryl sulfonic acid X-Cl or X-Cl-2, which is the starting material of each step. Means ratio.
  • PGEE propylene glycol monoethyl ether
  • DMF N, N-dimethylformamide
  • NMP N-methyl-2-pyrrolidone
  • MeCN acetonitrile
  • DME 1,2-dimethoxyethane
  • DMAc N, N-dimethylacetamide
  • THF tetrahydrofuranDMAP: N, N-Dimethylaminopyridine
  • 4MP 4-morpholinopyridine
  • NMI N-methylimidazole Et 3
  • N triethylamine Py: pyridine
  • NEM N-ethylmorpholine
  • DEGDEE diethylene glycol diethyl ether
  • SOCl 2 thionyl chloride
  • the peak area was calculated for each peak appearing in the chromatogram obtained by the HPLC measurement of the reaction solution, and the peak area was calculated based on the relationship with the retention time shown in Tables 1 and 2. The ratio of products contained in the reaction solution was determined.
  • Example 1-1 by dropping the DME solution of aryl sulfonic acid X into the DMF solution of thionyl chloride, it is possible to adjust the amount of acid gas generated without poor stirring, and the aryl sulfonic acid X-Cl It was confirmed that the product can be manufactured safely and efficiently.
  • the obtained solution was concentrated under reduced pressure to 462 g (7.7 mass times) at 25 ° C., and ethyl acetate (82 g, 1.3 mass times) was added to adjust the total amount to 540 g (9 mass times).
  • the solution was cooled to 3 ° C., and isopropanol (1,500 g, 25% by mass) was added dropwise at 3 ° C. to 5 ° C. over 1 hour with stirring, followed by stirring at 3 ° C. for 23 hours.
  • this solution was concentrated under reduced pressure to 900 g (15 mass times) at 25 ° C., and isopropanol (1,200 g, 20 mass times) was added.
  • Example 2 Under a nitrogen atmosphere, 600 mg of dehydrated PGEE (3 mass times) was added to 200 mg of aryl sulfonic acid X-Cl, and at ⁇ 10 ° C., DMAP 113 mg (4.5 eq), dehydrated NMP 500 mg (2.5 mass times), and PGEE 200 mg (1 mass times). The mixed solution (by mass) was added dropwise over about 1 minute and stirred for 23 hours. At that time, a part of the reaction solution was sampled at the reaction time shown in the table and analyzed by HPLC.
  • Example 3 Arylsulfonic acid X-PGEE was synthesized and analyzed by HPLC in the same manner as in Example 2 except that the base was changed to 4MP.
  • Table 3 shows the results of Examples 2 to 3 and Comparative Examples 1 to 10.
  • Table 4 shows the results of Comparative Examples 2-1 to 2-4. The results of Examples 2 and 3 are also shown in Table 4.
  • Example 4 Arylsulfonic acid X-PGEE was synthesized by the same procedure as in Example 2 except that the amount of the base used was changed to the amount shown in Table 5. At that time, a part of the reaction solution was sampled at the reaction time shown in the table and analyzed by HPLC.
  • Table 5 shows the results of Examples 4 to 5. The results of Example 2 are also shown in Table 5.
  • Example 6 Arylsulfonic acid X-PGEE was synthesized in the same manner as in Example 2 except that the conditions regarding the reaction temperature and / or the conditions regarding the solvent were changed to the conditions shown in Table 6. At that time, a part of the reaction solution was sampled at the reaction time shown in the table and analyzed by HPLC.
  • Table 6 shows the results of Examples 6 to 13. The results of Example 2 are also shown in Table 6.
  • Example 14 to 40 Arylsulfonic acid X-PGEE was synthesized and analyzed by HPLC in the same manner as in Example 2 except that the conditions regarding the solvent were changed to the conditions shown in Table 7. The results are shown in Table 7. The results of Example 2 are also shown in Table 7.
  • aryl sulfonic acid X-Cl-2 The following formula aryl sulfonic acid X-2 is synthesized according to the method described in International Publication No. 2009/09632, and then sulfonyl according to the following procedure. A halide compound (arylsulfonic acid X-Cl-2) was synthesized.
  • a solution prepared by dissolving 22.4 g of aryl sulfonic acid X-2 in 20.2 g (0.9 mass times) of DEGDEE at 40 ° C. under a nitrogen atmosphere was placed in a 500 mL four-necked flask with 33.8 g (1.) thionyl chloride.
  • aryl sulfonic acid X-Cl-2 and 15 g of dehydrated PGEE (6% by mass) were added to a 100 mL four-necked flask, and the mixture was cooled to 2 ° C. After cooling, a mixed solution of 1.2 g (2.3 eq) of DMAP, 6.3 g (2.5 mass times) of dehydrated NMP, and 2.5 g (1 mass times) of dehydrated PGEE was applied at 2 ° C to 7 ° C for 11 minutes. The mixture was added dropwise and stirred at 2 ° C. for 3 hours.
  • the obtained solution was concentrated under reduced pressure to 7.7 g (3 mass times) at 25 ° C., and isopropanol (25 g, 10 mass times) was added dropwise with stirring. After the dropping, the mixture was cooled to 1 ° C. and then stirred at 1 ° C. for 2 hours. Then, the precipitate was filtered, and the filtrate was washed twice with 2.5 g (1 mass times) of diisopropyl ether. The obtained crystals were vacuum dried under reduced pressure at 25 ° C. for 3 hours to obtain 3.4 g of aryl sulfonic acid X-PGEE-2 (yield: 78.9%, LC area: 98.0%), and one substitution. Body (0.4%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

式(1) (Aは芳香族基、Bはハロゲン原子で置換された芳香族基、nは1≦n≦4を満たす整数、qは1≦qを満たす整数。) のアリールスルホン酸を、DMF触媒の存在下でハロゲン化試薬と反応させて式(2) (式中、Xはハロゲン原子、A、B、n、qは、前記と同じ) のハロゲン化物を製造する際に、アリールスルホン酸のDME溶液またはジエチレングリコールジエチルエーテル溶液をハロゲン化試薬中に滴下する第1工程と、得られたハロゲン化物を、有機溶媒中、式(3) (Rは、独立に、ヘテロ原子を含んでいてもよいアルキル基を表すが、2つのRが結合して環構造を形成してもよい。) の塩基の存在下、15℃以下でアルコールと反応させる第2工程を備えるアリールスルホン酸エステル化合物の製造方法を提供する。

Description

アリールスルホン酸エステル化合物の製造方法
 本発明は、アリールスルホン酸エステル化合物の製造方法に関する。
 有機エレクトロルミネッセンス(以下、有機ELという)素子は、ディスプレイや照明といった分野での実用化が期待されており、低電圧駆動、高輝度、高寿命等を目的とし、材料や素子構造に関する様々な開発がなされている。
 この有機EL素子では複数の機能性薄膜が用いられるが、その中の1つである正孔注入層は、陽極と正孔輸送層または発光層との電荷の授受を担い、有機EL素子の低電圧駆動および高輝度を達成するために重要な役割を果たす。
 近年、低分子オリゴアニリン系材料やオリゴチオフェン系材料を有機溶媒に溶解させた均一系溶液からなる電荷輸送性ワニスが見出され、このワニスから得られる正孔注入層を有機EL素子中に挿入することで、下地基板の平坦化効果や、優れた有機EL素子特性が得られることが報告されている。
 これら低分子オリゴアニリン系材料の電子受容性物質として、本出願人は、アリールスルホン酸エステル化合物が好適であることを既に報告している(特許文献1,2参照)。
 ところで、前記特許文献1,2において、アリールスルホン酸エステル化合物は、アリールスルホン酸化合物のピリジニウム塩やナトリウム塩を、DMF等の溶媒中で塩化チオニルで酸クロライド化(第1工程)した後、ピリジン等の塩基中でエステル化(第2工程)して製造されている。
 しかし、第1工程については、出発原料として塩を用いる特許文献1,2の方法では、アリールスルホン酸を塩にする工程が余分に必要となることから量産には不向きであるため、アリールスルホン酸を直接酸クロライド化する手法が望まれるが、この手法では急激な酸性ガスが発生するためその制御が難しく、安全性の面で課題があり、更にスケールが大きくなった場合、反応中に大きな塊が発生し、撹拌が困難になることがあった。さらに反応後に過剰の塩化チオニルを留去するために濃縮乾固することから、再現性よく目的物を得ることができない等の課題もあり、量産には不向きであった。
 また、第2工程のエステル化にあたっても、スケールが大きくなると反応時間や収率等の点で再現性が低く、特に、エステル化部位が増えると原料である酸クロライドや生成物であるエステル化物の分解が多くなるため、目的物を高収率で得ることは困難であるうえ、濃縮乾固等の工程が必要であり、目的物を高収率で効率的に得るために改善の余地があった。
 このような観点から、量産に対応し得る新たなアリールスルホン酸エステルの製造方法が望まれている。
国際公開第2007/099808号 国際公開第2017/217457号
 本発明は、このような事情に鑑みてなされたものであり、安全で、反応時間や収率等の再現性が高く、さらに高収率で目的物が得られるアリールスルホン酸エステル化合物の製造方法を提供することを目的とする。
 本発明者らは、前記目的を達成するために鋭意検討を重ねた結果、アリールスルホン酸化合物の1,2-ジメトキシエタン溶液またはジエチレングリコールジエチルエーテル溶液をハロゲン化試薬中に滴下してアリールスルホン酸ハロゲン化物を製造し、さらにこのスルホン酸ハロゲン化物を、特定の塩基を用いて低温下でエステル化することで、前記課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 下記式(1)
Figure JPOXMLDOC01-appb-C000014
(式中、Aは、炭素数6~20の(n+1)価の芳香族基を表し、Bは、ハロゲン原子で置換されたq価の炭素数6~20の芳香族基を表し、nは、Aに結合するスルホ基数を表し、1≦n≦4を満たす整数であり、qは、Bと酸素原子との結合数を示し、1≦qを満たす整数である。)
で表されるアリールスルホン酸化合物を、N,N-ジメチルホルムアミド触媒の存在下でハロゲン化試薬と反応させて下記式(2)
Figure JPOXMLDOC01-appb-C000015
(式中、Xはハロゲン原子を表し、A、B、nおよびqは、前記と同じ意味を表す。)
で表されるアリールスルホン酸ハロゲン化物を製造する際に、前記アリールスルホン酸化合物の1,2-ジメトキシエタン溶液またはジエチレングリコールジエチルエーテル溶液を前記ハロゲン化試薬中に滴下して、前記スルホ基をハロゲン化して前記アリールスルホン酸ハロゲン化物を合成する第1工程と、
 前記第1工程で得られたアリールスルホン酸ハロゲン化物を、有機溶媒中、下記式(3)
Figure JPOXMLDOC01-appb-C000016
(式中、Rは、それぞれ独立して、ヘテロ原子を含んでいてもよい炭素数1~10のアルキル基を表すが、2つのRが結合して窒素原子とともに環構造を形成してもよい。)
で表される塩基の存在下、15℃以下で下記式(4)
Figure JPOXMLDOC01-appb-C000017
(式中、D1は、置換または非置換の二価炭化水素基を示し、D2は、単結合、O、S、または置換もしくは非置換の2価アミノ基を示し、D3は、置換もしくは非置換の一価炭化水素基を示すが、D2が単結合である場合は水素原子であってもよい。)
で表されるアルコール化合物と反応させて下記式(5)
Figure JPOXMLDOC01-appb-C000018
(式中、A、B、D1、D2、D3、nおよびqは、前記と同じ意味を表す。)
で表されるアリールスルホン酸エステル化合物を合成する第2工程を備えることを特徴とするアリールスルホン酸エステル化合物の製造方法、
2. 下記式(2)
Figure JPOXMLDOC01-appb-C000019
(式中、Xは、ハロゲン原子を表し、Aは、炭素数6~20の(n+1)価の芳香族基を表し、Bは、ハロゲン原子で置換されたq価の炭素数6~20の芳香族基を表し、nは、Aに結合するスルホ基数を表し、1≦n≦4を満たす整数であり、qは、Bと酸素原子との結合数を示し、1≦qを満たす整数である。)
で表されるアリールスルホン酸ハロゲン化物を、有機溶媒中、下記式(3)
Figure JPOXMLDOC01-appb-C000020
(式中、Rは、それぞれ独立して、ヘテロ原子を含んでいてもよい炭素数1~10のアルキル基を表すが、2つのRが結合して窒素原子とともに環構造を形成してもよい。)
で表される塩基の存在下、15℃以下で下記式(4)
Figure JPOXMLDOC01-appb-C000021
(式中、D1は、置換または非置換の二価炭化水素基を示し、D2は、単結合、O、S、または置換もしくは非置換の2価アミノ基を示し、D3は、置換もしくは非置換の一価炭化水素基を示すが、D2が単結合である場合は水素原子であってもよい。)
で表されるアルコール化合物と反応させ下記式(5)
Figure JPOXMLDOC01-appb-C000022
(式中、A、B、D1、D2、D3、nおよびqは、前記と同じ意味を表す。)
で表されるアリールスルホン酸エステル化合物を合成する工程を備えることを特徴とするアリールスルホン酸エステル化合物の製造方法、
3. 前記式(3)で表される塩基が、N,N-ジメチル-4-アミノピリジンまたは4-モルフォリノピリジンである1または2のアリールスルホン酸エステル化合物の製造方法、
4. 前記アリールスルホン酸ハロゲン化物と前記アルコール化合物との反応が、-30~10℃で行われる1~3のいずれかのアリールスルホン酸エステル化合物の製造方法、
5. 前記アリールスルホン酸ハロゲン化物と前記アルコール化合物との反応が、-20~10℃で行われる4のアリールスルホン酸エステル化合物の製造方法、
6. 前記式(3)で表される塩基が、前記アリールスルホン酸ハロゲン化物が有するスルホン酸ハライド基1molに対し、1.1mol以上用いられる1~5のいずれかのアリールスルホン酸エステル化合物の製造方法、
7. 前記Bが、その少なくとも1つの水素原子がフッ素原子で置換されたq価の炭素数6~20の芳香族基である1~6のいずれかのアリールスルホン酸エステル化合物の製造方法、
8. 前記Bが、その全ての水素原子がフッ素原子で置換されたq価の炭素数6~20の芳香族基である7のアリールスルホン酸エステル化合物の製造方法、
9. 前記qが、2である1~8のいずれかのアリールスルホン酸エステル化合物の製造方法、
10. 前記Bが、下記式(B1)で表される2価の基である9のアリールスルホン酸エステル化合物の製造方法、
Figure JPOXMLDOC01-appb-C000023
11. 前記qが、1である1~8のいずれかのアリールスルホン酸エステル化合物の製造方法、
12. 前記Bが、下記式(B2)~(B6)のいずれかで表される2価の基である11のアリールスルホン酸エステル化合物の製造方法、
Figure JPOXMLDOC01-appb-C000024
13. 前記Aが、ベンゼン環またはナフタレン環である1~12のいずれかのアリールスルホン酸エステル化合物の製造方法、
14. 前記ハロゲン化試薬が、塩化チオニルである1、3~13のいずれかのアリールスルホン酸エステル化合物の製造方法、
15. 前記第1工程において、アリールスルホン酸ハロゲン化物を合成した後、得られた反応液に貧溶媒を加えてアリールスルホン酸ハロゲン化物を析出させる操作を含む1、3~14のいずれかのアリールスルホン酸エステル化合物の製造方法、
16. 下記式(1)
Figure JPOXMLDOC01-appb-C000025
(式中、Aは、炭素数6~20の(n+1)価の芳香族基を表し、Bは、ハロゲン原子で置換されたq価の炭素数6~20の芳香族基を表し、nは、Aに結合するスルホ基数を表し、1≦n≦4を満たす整数であり、qは、Bと酸素原子との結合数を示し、1≦qを満たす整数である。)
で表されるアリールスルホン酸化合物を、N,N-ジメチルホルムアミド触媒の存在下でハロゲン化試薬と反応させて下記式(2)
Figure JPOXMLDOC01-appb-C000026
(式中、Xはハロゲン原子を表し、A、B、nおよびqは、前記と同じ意味を表す。)
で表されるアリールスルホン酸ハロゲン化物を製造する方法であって、
 前記アリールスルホン酸化合物の1,2-ジメトキシエタン溶液またはジエチレングリコールジエチルエーテル溶液を前記ハロゲン化試薬中に滴下して、前記スルホ基をハロゲン化する工程を備えることを特徴とする前記アリールスルホン酸ハロゲン化物の製造方法、
17. アリールスルホン酸ハロゲン化物を合成した後、得られた反応液に貧溶媒を加えてアリールスルホン酸ハロゲン化物を析出させる操作を含む16のアリールスルホン酸ハロゲン化物の製造方法
を提供する。
 本発明のアリールスルホン酸エステル化合物の製造方法は、酸ハロゲン化物製造時のガス発生を適切に制御できるため安全性に優れ、また、エステル化反応における反応時間や収率等の再現性が高いだけでなく、反応速度が速く、かつ、目的物の収率も良好である。
 さらに、本発明の製造方法は、ハロゲン化反応後およびエステル化反応後の濃縮乾固等の工程を簡略化できるという利点も有する。
 このような特徴を有する本発明の製造方法は、ラボスケールでの合成方法としてだけでなく、量産化を目的とした工業的製法としても有用である。
 以下、本発明についてさらに詳しく説明する。
(1)第1工程
 本発明に係るアリールスルホン酸エステル化合物の製造方法の第1工程は、上述のとおり、下記式(1)表されるアリールスルホン酸化合物を、N,N-ジメチルホルムアミド(以下、DMFと略記する。)触媒の存在下でハロゲン化試薬と反応させて下記式(2)で表されるアリールスルホン酸ハロゲン化物を製造する際に、アリールスルホン酸化合物の1,2-ジメトキシエタン(以下、DMEとも略記する。)溶液またはジエチレングリコールジエチルエーテル(以下、DEGDEEとも略記する。)溶液をハロゲン化試薬中に滴下して、スルホ基をハロゲン化する工程である。
Figure JPOXMLDOC01-appb-C000027
 前記各式において、Aは、炭素数6~20の(n+1)価の芳香族基を表し、Bは、ハロゲン原子で置換されたq価の炭素数6~20の芳香族基を表し、nは、Aに結合するスルホ基数を表し、1≦n≦4を満たす整数であり、qは、Bと酸素原子との結合数を示し、1≦qを満たす整数であり、Xは、ハロゲン原子を表す。
 Aの炭素数6~20の芳香族基としては、ベンゼン環、ナフタレン環、アントラセン環、ビフェニル環等が挙げられるが、ナフタレン環、アントラセン環が好ましく、ナフタレン環がより好ましい。なお、Aは、ハロゲン原子、シアノ基、ニトロ基等のスルホ基以外の置換基で置換されていてもよい。
 Bの炭素数6~20の芳香族基としては、ベンゼン環、ナフタレン環、アントラセン環、ビフェニル環等が挙げられるが、ベンゼン環、ナフタレン環、ビフェニル環が好ましくビフェニル環がより好ましい。
 Bが有するハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられるが、フッ素原子が好ましい。なお、Bは、シアノ基、ニトロ基、パーフルオロアリル基等のハロゲン原子以外の置換基で置換されていてもよい。
 Bは、その少なくとも1つ、好ましくは2つ以上、より一層好ましくは全ての水素原子がフッ素原子で置換された(パーフルオロ構造を有する)炭素数6~20の芳香族基である。中でも、4-トリフルオロメチル-2,3,5,6-テトラフルオロフェニル基、4-シアノ-2,3,5,6-テトラフルオロフェニル基、4-ニトロ-2,3,5,6-テトラフルオロフェニル基、3,4-ジシアノ―2,5,6-トリフルオロフェニル基、4-パーフルオロアリル-2,3,5,6-テトラフルオロフェニル基、パーフルオロビフェニルジイル基が好ましく、パーフルオロビフェニル-4,4’-ジイル基、4-トリフルオロメチル-2,3,5,6-テトラフルオロフェニル基がより好ましい。
 また、nは、Aに結合するスルホ基数を表し、1≦n≦4を満たす整数であるが、2~4の整数が好ましく、2または3がより好ましく、2がより一層好ましい。
 qは、Bと酸素原子との結合数を示し、1≦qを満たす整数であるが、1~4の整数が好ましく、1または2がより好ましく、2がより一層好ましい。
 Xのハロゲン原子としては、前記Bで例示したものが挙げられるが、塩素原子、臭素原子が好ましく、塩素原子がより好ましい。
 本発明において好適なA-(SO3H)n基としては下記式(A1)および(A2)で表される基が挙げられるが、これらに限定されるものではない。これらの中でも、(A1)が好ましい。
Figure JPOXMLDOC01-appb-C000028
 また、本発明において好適なBは、下記式(B1)~(B6)で表されるものが挙げられるが、これらに限定されるものではない。これらの中でも、(B1)が好適である。
Figure JPOXMLDOC01-appb-C000029
 本発明の製造方法の第1工程の原料である前記式(1)で表されるアリールスルホン酸化合物の具体例としては、下記式で表されるものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000030
 第1工程において、アリールスルホン酸化合物のDME溶液の調製に用いられるDME 第1工程において、アリールスルホン酸化合物のDME溶液またはDEGDEE溶液の調製に用いられるDMEまたはDEGDEEの量は、アリールスルホン酸化合物が溶解する量であれば特に制限はないが、アリールスルホン酸化合物の溶解性と滴下量とのバランスを考慮すると、質量比で、アリールスルホン酸1に対して、0.1~10が好ましく、1~7がより好ましく、1~3がより一層好ましい。
 ハロゲン化試薬としては、従来公知のものから適宜選択して用いることができ、例えば、塩化チオニル、塩化オキサリル、塩化ホスホリル、塩化スルフリル、三塩化リン、五塩化リン等が挙げられるが、反応性、安全性、作業性、価格等を考慮すると、塩化チオニルが好ましい。
 ハロゲン化試薬の使用量は、アリールスルホン酸化合物が有する全てのスルホ基がハロゲン化される理論量以上であれば制限はないが、少なすぎると反応の進行が遅くなったり、触媒として使用するDMF由来の不純物が残存したりする場合があるため、反応速度、結晶化後のスルホン酸化合物の収率や純度、作業性、再現性、コストの点から、通常、アリールスルホン酸化合物に対して、通常1~10質倍程度で用いられ、その下限値は、好ましくは1.5質量倍であり、その上限値は、好ましくは5質量倍、より好ましくは3.5質量倍である。
 本発明では、ハロゲン化試薬そのものにアリールスルホン酸化合物のDME溶液またはDEGDEE溶液を滴下しても、ハロゲン化試薬と有機溶媒との混合物に前記DME溶液または前記DEGDEE溶液を滴下してもよい。この場合、用いられる有機溶媒としては、反応に影響しない有機溶媒であれば特に制限はないが、アリールスルホン酸化合物の溶解に用いられるDMEまたはDEGDEEが好ましい。
 本発明の製造方法の第1工程では、反応加速、転化率向上を目的にDMF等の触媒を添加する。触媒として用いられるDMFの使用量は、特に限定されるものではないが、少なすぎると反応の進行が遅くなる一方、多すぎるとDMF由来の不純物が生成するため、これらのバランスを考慮すると、アリールスルホン酸が有するスルホ基1molに対し、0.025mol以上が好ましく、0.025~0.25molがより好ましく、0.075~0.125molがより一層好ましい。アリールスルホン酸1molに対するモル当量(以下、eqと表記する)は、アリールスルホン酸が有するスルホ基の数に応じて適宜設定することができ、例えば、アリールスルホン酸が4つのスルホ基を有するものである場合、0.1eq以上が好ましく、0.1~1eqがより好ましく、0.3~0.5eqがより一層好ましい。
 DMF等の触媒は、滴下されるアリールスルホン酸のDME溶液中またはDEGDEE溶液中に添加しても、ハロゲン化試薬中に添加しても、その双方に添加してもよいが、反応速度、ガス発生制御のしやすさ、操作の簡便化等の点から、ハロゲン化試薬中に添加することが好ましい。
 反応温度は、反応が進行する限り特に制限されるものではないが、反応を速やかに進行させるとともに、酸性ガスの発生を適度に調節することを考慮すると、30~85℃程度が好ましく、50~85℃がより好ましく、60~80℃がより一層好ましい。
 なお、アリールスルホン酸化合物のDME溶液またはDEGDEE溶液の滴下時に、ハロゲン化試薬を前記温度範囲に加熱しておくことが好適である。
 反応時間は、用いる触媒の種類や量、反応温度等を考慮して適宜設定されるが、通常、1~48時間程度である。
 反応終了後は、貧溶媒を加えてアリールスルホン酸ハロゲン化物を析出させ、これをろ別し、洗浄、乾燥等をして目的物を得ることができる。本発明では、反応液に貧溶媒を加えてアリールスルホン酸ハロゲン化物を析出させることにより、反応液の濃縮により単離する方法に比べて、反応液に残存するハロゲン化試薬を容易かつ確実に除去することができるともに、再現性よく目的物を得ることができる。
 貧溶媒としては、目的のアリールスルホン酸ハロゲン化物が沈殿し、かつ当該アリールスルホン酸ハロゲン化物の分解を促進する等の悪影響がないものであれば特に限定されず、例えば、脂肪族炭化水素類(ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、デカリン等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチレングリコールジエチルエーテル等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが挙げられ、これらの溶媒は単独で用いても、2種以上混合して用いてもよい。これらの中でも、脂肪族炭化水素類(ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、デカリン等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチレングリコールジエチルエーテル等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)が好ましく、トルエン、n-ヘプタン、アセトニトリルがより好ましい。
(2)第2工程
 本発明に係るアリールスルホン酸エステル化合物の製造方法の第2工程は、上述のとおり第1工程で得られたアリールスルホン酸ハロゲン化物を、有機溶媒中、下記式(3)で表される塩基の存在下、15℃以下で下記式(4)で表されるアルコール化合物と反応させて下記式(5)で表されるアリールスルホン酸エステル化合物を合成する工程である。
Figure JPOXMLDOC01-appb-C000031
 式(3)において、Rは、それぞれ独立して、ヘテロ原子を含んでいてもよい炭素数1~10のアルキル基を表すが、2つのRが結合して窒素原子とともに環構造を形成してもよい。
 Rの炭素数1~10のアルキル基は、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル基等の炭素数1~10の直鎖または分岐鎖状アルキル基;シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、ビシクロブチル、ビシクロペンチル基等の炭素数3~20の環状アルキル基などが挙げられる。
 また、ヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。
 これらの中でも、Rとしては、ヘテロ原子を含有していてもよい、炭素数1~5のアルキル基またはR同士が結合して形成される炭素数2~5のアルキレン基が好ましく、メチル、エチル、テトラメチレン、ペンタメチレン、3-オキサペンタメチレン基が好ましく、2つのRがいずれもメチル基、2つのRがいずれもエチル基、2つのRが結合した3-オキサペンタメチレン基がより好ましい。
 前記式(3)で表される塩基の具体例としては、N,N-ジメチル-4-アミノピリジン(以下、DMAPと略記する。)、N,N-ジエチル-4-アミノピリジン、4-モルフォリノピリジン(以下、4MPと略記する。)等が挙げられるが、反応速度を高めるとともに、全てのスルホン酸ハライド基をエステル化して目的物の収率を高めることを考慮すると、DMAPが最適である。
 式(3)で表される塩基の使用量は、特に限定されるものではないが、少なすぎると反応の進行が遅くなる一方、多すぎるとアリールスルホン酸ハロゲン化合物や目的物の分解が進行するため、反応速度を高めるとともに、全てのスルホン酸ハライド基をエステル化して目的物の収率を高めることを考慮すると、アリールスルホン酸ハロゲン化物が有するスルホン酸ハライド基1molに対し、1.1mol以上が好ましく、1.1~1.5molがより好ましく、1.1~1.3molがより一層好ましい。当該アリールスルホン酸ハロゲン化物1molに対するモル当量(eq)は、アリールスルホン酸ハロゲン化物が有するスルホン酸ハライド基の数に応じて適宜設定することができ、例えば、アリールスルホン酸ハロゲン化物が4つのスルホン酸ハライド基を有するものである場合、4.4eq以上が好ましく、4.4~6.0eqがより好ましく、4.4~5.2eqがより一層好ましい。
Figure JPOXMLDOC01-appb-C000032
 式(4)において、D1は、置換または非置換の二価炭化水素基を示し、D2は、単結合、O、S、または置換もしくは非置換の2価アミノ基を示し、D3は、置換もしくは非置換の一価炭化水素基を示すが、D2が単結合である場合は水素原子であってもよい。
 D1の置換または非置換の二価炭化水素基としては、例えば、置換または非置換の炭素数1~5のアルキレン基、炭素数1~2アルキレンオキシ炭素数1~2アルキレン基、炭素数1~2アルキレンチオ炭素数1~2アルキレン基、炭素数1~2アルキレンカルボニル炭素数1~2アルキレン基や、これらの基の水素原子の一部または全部がさらに、水酸基、アミノ基、シラノール基、チオール基、カルボキシル基、スルホン酸エステル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホン基、ハロゲン原子等で置換されたものが挙げられる。本発明では、炭素数1~5のアルキレン基が好ましい。炭素数1~5のアルキレン基としては、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレンおよびペンタメチレン基が挙げられ、メチレン、エチレン、プロピレンおよびトリメチレン基が好ましい。
 D2は、単結合、O、S、または置換もしくは非置換の2価アミノ基であるが、本発明ではOが好ましい。ここで、2価の置換アミノ基としては、-N(CH3)-、-N(C25)-、-N(C37)-等が挙げられる。
 D3は、置換もしくは非置換の一価炭化水素基を示すが、D2が単結合である場合は水素原子であってもよい。置換もしくは非置換の一価炭化水素基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、t-ブチル、n-ヘキシル、n-オクチル、2-エチルヘキシル、デシル基等のアルキル基;シクロペンチル、シクロヘキシル基等のシクロアルキル基;ビシクロヘキシル基等のビシクロアルキル基;ビニル、1-プロペニル、2-プロペニル、イソプロペニル、1-メチル-2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、ヘキセニル基等のアルケニル基;フェニル、キシリル、トリル、ビフェニル、ナフチル基等の芳香環基(アリール基);ベンジル、フェニルエチル、フェニルシクロヘキシル基等のアラルキル基や、これらの基の水素原子の一部または全部がさらに、上述した置換基で置換されたものが挙げられる。本発明では、メチル、エチル、n-プロピル、n-ブチルおよびフェニル基が好ましい。
 また、式(4)で表されるアルコール化合物は、前記D1、D2およびD3が一緒になって下記式(D’)で表される構造を有する、下記式(4’)で表されるアルコール化合物が好ましい。
Figure JPOXMLDOC01-appb-C000033
 式(D’)および式(4’)中、R1およびR2は、それぞれ独立に、水素原子、直鎖状若しくは分岐状の一価脂肪族炭化水素基を表し、R3は、直鎖状もしくは分岐状の一価脂肪族炭化水素基またはアルコキシ基を表す。ただし、R1、R2およびR3の炭素数の合計は2以上である。R1、R2およびR3の炭素数の合計は、特に限定されないが、20以下が好ましく、10以下がより好ましい。
 前記直鎖状若しくは分岐状の一価脂肪族炭化水素基としては、特に限定されないが、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、t-ブチル、n-ヘキシル、n-オクチル、2-エチルヘキシル、デシル基等の炭素数1~18のアルキル基;ビニル、1-プロペニル、2-プロペニル、イソプロペニル、1-メチル-2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、ヘキセニル基等の炭素数2~18のアルケニル基等が挙げられる。
 アルコキシ基としては、炭素数1~10のアルコキシ基が好ましく、具体的には、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、s-ブトキシ、t-ブトキシ、n-ペントキシおよびフェノキシ基等が挙げられる。
 R1としては、メチル基がより好ましい。R2としては、水素原子が好ましい。R3としては、アルコキシ基が好ましく、メトキシ、エトキシ、n-プロポキシ、n-ブトキシおよびフェノキシ基がより好ましく、エトキシ、n-ブトキシおよびフェノキシ基がより一層好ましい。
 式(4)で表されるアルコール化合物の具体例としては、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、n-ヘキサノール、シクロヘキサノール、n-ヘプタノール、シクロヘプタノール、n-オクタノール、2-エチル-1-ヘキサノール、n-ノナノール、3-ノナノール、2-ブチル-1-オクタノール等のアルコール類;プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル等のグリコールモノエーテル類などが挙げられるが、これらに限定されるものではない。
 これらの中でも、2-エチル-1-ヘキサノール、2-ブチル-1-オクタノール、1-オクタノール、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテルが好ましい。
 アルコール化合物の使用量は、特に限定されるものではないが、反応速度や塩基の溶解性の観点から、質量比で、アリールスルホン酸ハロゲン化物1に対し、2~10が好ましく、3~7がより好ましく、3.5~6がより一層好ましい。
 また、アリールスルホン酸ハロゲン化物とアルコール化合物の溶液またはスラリー中のアルコール化合物の量は、質量比で、アリールスルホン酸ハロゲン化物1に対し、2~10が好ましく、3~6がより好ましい。
Figure JPOXMLDOC01-appb-C000034
(式中、A、B、D1、D2、D3、nおよびqは、前記と同じ意味を表す。)
 また、前記式(5)で表されるアリールスルホン酸エステル化合物の好ましい態様としては、例えば、下記式(5’)で表されるアリールスルホン酸エステル化合物を挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000035
(式中、A、B、R1、R2、R3、nおよびqは、前記と同じ意味を表す。)
 第2工程の反応は、式(2)で表されるアリールスルホン酸ハロゲン化物を、有機溶媒中、式(3)で表される塩基の存在下、15℃以下で式(4)で表されるアルコール化合物と反応させて式(5)で表されるアリールスルホン酸エステル化合物を好適に与える限り、その操作は特に限定されるものではなく、式(2)で表されるアリールスルホン酸ハロゲン化物と、式(4)で表されるアルコール化合物および有機溶媒のいずれか一方または両方との混合溶液またはスラリー中に、式(4)で表されるアルコール化合物および有機溶媒のいずれか一方または両方と、式(3)で表される塩基との混合溶液を滴下してもよいが、式(2)で表されるアリールスルホン酸ハロゲン化物や目的物の安定性、反応速度、塩基の溶解性、作業性、反応時の温度管理の容易性等を考慮すると、式(2)で表されるアリールスルホン酸ハロゲン化物と式(4)で表されるアルコール化合物との溶液またはスラリー中に、式(4)で表されるアルコール化合物と有機溶媒と式(3)で表される塩基との混合溶液あるいは有機溶媒と式(3)で表される塩基との混合溶液を滴下することが望ましい。この場合において、滴下させる組成物(例えば、滴下ロート内の組成物)とその滴下を受ける組成物(例えば、反応フラスコ内の組成物)のいずれにも式(4)で表されるアルコール化合物を含める場合、高収率で目的のエステル体を得る観点から、そのエステル体に対応するアルコール化合物のみを用いる必要がある。
 前記有機溶媒としては、反応に悪影響を及ぼさないものであれば特に制限はない。その具体例としては、脂肪族炭化水素類(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、ハロゲン化脂肪族炭化水素類(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチレングリコールジエチルエーテル等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ラクタムおよびラクトン類(N-メチル-2-ピロリドン、γ-ブチロラクトン等)、尿素類(N,N-ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド類(ジメチルスルホキシド、スルホラン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが挙げられる。
 また、第2工程の反応で用い得る有機溶媒としては、上述の有機溶媒のほか、式(4)で表されるアルコール化合物も用い得る。つまり、本発明においては、式(4)で表されるアルコール化合物は、原料化合物と有機溶媒の両方として機能し得る。
 なお、溶媒は単独で用いても、2種以上を混合して用いてもよい。
 これらの中でも、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチレングリコールジエチルエーテル等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)、ラクタム類(N-メチル-2-ピロリドン等)が好ましく、アセトニトリル、プロピオニトリル、テトラヒドロフラン、N-メチル-2-ピロリドン(以下、NMPと略記する)がより好ましい。
 前記有機溶媒の使用量は、反応に影響せず、前記式(3)で表される塩基を含む混合溶液を滴下する場合は当該塩基を溶解する量であれば特に限定されるものではないが、多すぎると反応が遅くなり、少なすぎると反応が完結しないことから、質量比で、アリールスルホン酸ハロゲン化物1に対し、通常1~10であり、2~10が好ましく、2~7がより好ましく、2~6がより一層好ましく、2~4が更に好ましい。
 また、前記式(3)で表される塩基を溶解できない量の有機溶媒を用いる場合は、質量比で、アリールスルホン酸ハロゲン化物1に対し、目的のエステル体に対応するアルコール化合物1~2をそこへ加えて当該塩基を溶解させ得る。
 本発明において好適なA-(SO3-D1-D2-D3n基としては下記式(A3)および(A4)で表される基が挙げられるが、これらに限定されるものではない。これらの中でも、(A3)が好ましい。
Figure JPOXMLDOC01-appb-C000036
(式中、D1、D2およびD3は、前記と同じ意味を表す。)
 また、A-(SO3-D1-D2-D3n基のより好ましい態様としては、下記式(A3’)および(A4’)で表される基が挙げられるが、これらに限定されるものではない。これらの中でも、(A3’)が好ましい。
Figure JPOXMLDOC01-appb-C000037
(式中、R1、R2およびR3は、前記と同じ意味を表す。)
 また、本発明の第2工程において好適なBは、第1工程で好適なものと同様である。
 本発明の製造方法で得られるアリールスルホン酸エステル化合物の好適な態様としては、以下に示すものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000038
(式中、D1、D2およびD3は、前記と同じ意味を表す。)
 また、本発明の製造方法で得られるアリールスルホン酸エステル化合物のより好適な態様としては、以下に示すものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000039
(式中、R1、R2およびR3は、前記と同じ意味を表す。)
 第2工程の反応系中の水分量は、反応を良好に進行させるという観点から、10mol%以下が好ましく、8mol%以下がより好ましく、7mol%以下がより一層好ましい。なお下限値は特に限定されないが、通常、1mol%程度である。
 したがって、第2工程で用いられる試薬は、脱水されたものを用いることが好ましく、特に有機溶媒は含有水分量が50ppm未満のものを用いることが好ましい。
 第2工程の好適な態様としては、エステル化に用いられるアルコール化合物、式(3)で表される塩基およびNMPあるいはアセトニトリルを含む有機溶媒の混合溶液を、アリールスルホン酸ハロゲン化物をエステル化に用いられるアルコール化合物に溶解または懸濁させた液中に滴下法にて添加する手法が挙げられるが、これに限定されるものではない。
 なお、この場合、NMPあるいはアセトニトリルの添加量は、質量比で、アリールスルホン酸ハロゲン化物1に対し、通常1~10であり、2~10が好ましく、2~7がより好ましく、2~6がより一層好ましく、2~4が更に好ましい。
 本発明では、反応時間を適切にするとともに副反応を抑制するという点から、第2工程の反応温度が15℃以下とされるが、-30~12℃が好ましく、-25~10℃がより好ましく、-20~10℃がより一層好ましく、-15~0℃がさらに好ましく、-15~-5℃が特に好ましい。
 反応時間は、用いる塩基の量、反応温度等を考慮して適宜決定されるが、通常、1~48時間程度である。反応終了(完結)後に長時間放置しておくと、副反応物が増加することがあるため、反応終了後は速やかに後処理することが好ましい。反応が終了したか否かは、例えば液体クロマトグラフィーを用いた反応追跡で確認できるが、この方法に限定されない。
 反応終了後は、反応液をろ過し、ろ物を酢酸エチル等の溶媒で洗浄、塩酸水溶液、塩化アンモニウム水溶液等による洗浄等を行って目的物を得ることができる。なお、目的物の分解を抑制する観点から、洗浄工程も低温下で行うことが好ましく、その温度は、通常10℃以下であり、その下限値は、溶液が凍結しない限り特に限定されるものではないが、通常-10℃程度である。
 本発明の製造方法で好適に得られるアリールスルホン酸エステル化合物の具体例としては、以下に示すものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000040
 なお、前記説明では、第1工程で得られたアリールスルホン酸ハロゲン化物を用いた第2工程の方法によるエステル化について言及したが、本発明における第2工程の方法は、第1工程の方法以外の方法で製造されたアリールスルホン酸ハロゲン化物のエステル化に適用できるものであり、その原料は、第1工程で得られたハロゲン化物に限定されるものではない。
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した装置は以下のとおりである。また、実施例および比較例において、質量倍は、各工程の出発物質である後述のアリールスルホン酸XもしくはX-2、またはアリールスルホン酸X-ClもしくはX-Cl-2の1質量部に対する質量比を意味する。
PGEE:プロピレングリコールモノエチルエーテル
DMF:N,N-ジメチルホルムアミド
NMP:N-メチル-2-ピロリドン
MeCN:アセトニトリル
DME:1,2-ジメトキシエタン
DMAc:N,N-ジメチルアセトアミド
THF:テトラヒドロフラン
DMAP:N,N-ジメチルアミノピリジン
4MP:4-モルフォリノピリジン
NMI:N-メチルイミダゾール
Et3N:トリエチルアミン
Py:ピリジン
NEM:N-エチルモルフォリン
DEGDEE:ジエチレングリコールジエチルエーテル
SOCl2:塩化チオニル
1H-NMR]
装置:Varian社製、フーリエ変感型超伝導核磁気共鳴装置(FT-NMR)「INOVA-400」400MHz
溶媒:DMSO-d6、CDCl3
内標準物質:テトラメチルシラン(TMS)
[LC-MS]
装置:Q-Exactive(Thermo製)
モード:APCI-APPI
カラム:XBridge C18,2.1mm×150mm,5μm
流速:0.22mL/min
温度:45℃
[HPLC]
<HPLC分析液の調製>
 後述のアリールスルホン酸X-PGEEの合成工程で得た反応液およびその原材料であるアリールスルホン酸X-ClのHPLC分析では、CH3CNを用いて未反応の酸クロライドをアミド体としたものを用いて分析を行った。
Figure JPOXMLDOC01-appb-C000041
<分析条件>
装置:(株)島津製作所製、液体クロマトグラフ「Prоminence-i」
カラム:Poroshell 120 EC-C18 2.7μm、3.0×50mm(Agilent)
オーブン:40℃
検出波長:254nm
流速:0.8mL/分
溶離液:グラジエント
(A)水:(B)アセトニトリル
グラジエント条件;0-5分(B40A60→B100)、5-15分(B100)、
15-20分(B100→B40A60)、20-30分(B40A60)
サンプル注入量:2μL
データ採取時間:20分
 下記式(P)で表される化合物の構造とHPLCの保持時間との関係を表1および表2に記す。ここで、下記式(P)のR1~R4に関し、表中の「Cl」は、未反応のClがn-Bu2N化されたものであることを示し、「A」は、下記式(Q)で表される基であることを示す。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
(式中、*は結合手を示す。)
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
 後述の実施例および比較例では、反応液のHPLC測定により得られたクロマトグラムに現れた各ピークについてピーク面積を算出し、表1および表2に示した保持時間との関係に基づいて、当該反応液に含まれる生成物の比率を求めた。
[実施例1-1] アリールスルホン酸X-Clの合成
 下記の手順に従い、スルホニルハライド化合物(アリールスルホン酸X-Cl)を合成した。
Figure JPOXMLDOC01-appb-C000046
 窒素雰囲気下、1L四つ口フラスコに塩化チオニル245g(3質量倍)、DMF 2.6g(0.4eq)を加え、73℃にて1時間撹拌した。40℃にて、DME 232g(2.9質量倍)にアリールスルホン酸X 30gを加え溶解した。さらにアリールスルホン酸X 30g、アリールスルホン酸X 20gを分割して加え溶解後、滴下漏斗に移し替え、1,2-ジメトキシエタン8g(0.1質量倍)で洗浄した。この溶液を73℃にて塩化チオニル、DMFの混合溶液に4時間かけて滴下し、19時間撹拌した。この際、反応終了まで酸性ガスが発生するため、還流管の上部より水酸化ナトリウム水溶液へ通じて系外に放出した。また、この際、塊は発生せず、撹拌も良好であった。また、滴下途中でアリールスルホン酸X-Clが析出した。19時間後の反応液をHPLC分析したところ、アリールスルホン酸X-Cl(98.0%)、3置換体(0.3%)であった。
 反応の終結を確認後、n-ヘプタン240g(3質量倍)を73℃から60℃にて1時間かけて滴下した。滴下終了後、25℃まで2時間かけて冷却し、2時間撹拌した。析出したアリールスルホン酸X-Clを窒素加圧ろ過し、質量比4:1のn-ヘプタン:1,2-ジメトキシエタン溶液160g(2質量倍)でろ取物を3回洗浄した。この後、n-ヘプタン80g(1質量倍)でろ取物を2回洗浄した。得られた結晶を60℃にて減圧乾燥を行い、アリールスルホン酸X-Clを80.6g得た(収率:93.1%、LC area:98.0%)。1H-NMRの測定結果を以下に示す。
1H-NMR(400MHz、CDCl3):δ7.49(s、2H)、8.39、8.42(d、J=0.03Hz,2H)、8.64(s、2H)、8.78、8.81(d、J=0.03Hz,2H)、8.87、8.88(d,J=0.01Hz,2H)
 実施例1-1では、塩化チオニルのDMF溶液にアリールスルホン酸XのDME溶液を滴下することで、撹拌不良がなく、酸性ガスの発生量を調整することが可能となり、アリールスルホン酸X-Clを安全かつ効率よく製造できることが確認された。
[実施例1-2] アリールスルホン酸X-PGEEの合成
Figure JPOXMLDOC01-appb-C000047
 窒素雰囲気下、500mL四つ口フラスコにアリールスルホン酸X-Cl 60.0g、脱水PGEE 180g(3質量倍)を加え、-3℃まで冷却した。冷却後、DMAP 29.0g(3.9eq)、脱水NMP 128.6g(2.1質量倍)、脱水PGEE 51.4g(0.9質量倍)の混合溶液を-3℃から-0.6℃で45分かけて滴下した。その後、DMAP(4.8g、0.6eq)、脱水NMP 21.4g(0.4質量倍)、脱水PGEE 8.6g(0.1質量倍)の混合溶液を-1.7℃から-1.1℃で3時間かけて滴下し、-4.8℃で21時間撹拌した。21時間後の反応液をHPLC分析したところ、アリールスルホン酸X-PGEE(96.2%)、3置換体(3.3%)、原料+中間体(0.02%)であった。その後、反応液をろ過し、4℃に冷却した酢酸エチル120g(2質量倍)でろ取物を2回洗浄した。得られたろ液を5.5℃まで昇温し、4℃に冷却した酢酸エチル360g(6質量倍)を加え撹拌した。5℃から8℃にて、5℃に冷却した15質量%塩化アンモニウム水溶液600g(10質量倍)を滴下し、5℃にて10分撹拌を続けた後3分静置した。水層を除去した後に撹拌を再開し、5℃に冷却した15質量%塩化アンモニウム水溶液600g(10質量倍)を再度5℃から5.5℃にて、滴下し、5℃にて10分撹拌を続けた後5分静置した。水層を除去した後に撹拌を再開し、5℃に冷却した15質量%塩化アンモニウム水溶液300g(5質量倍)を5℃にて滴下し、5℃にて10分撹拌を続けた後7分静置した。水層を除去した後、ジイソプロピルエーテル270g(4.5質量倍)を加えた。95mm桐山漏斗に酢酸エチル:ジイソプロピルエーテル=2:1(質量比)の溶液720g(12質量倍)で懸濁した中性シリカゲル60N 240g(4質量倍)を充填し、分液後の溶液をろ過した。ろ過後、さらに質量比2:1の酢酸エチル:ジイソプロピルエーテル溶液1,880g(31質量倍)でろ過し、ろ過器上のシリカゲルを洗浄した。得られた溶液を25℃で462g(7.7質量倍)まで減圧濃縮し、酢酸エチル(82g、1.3質量倍)を加え、全量を540g(9質量倍)に調整した。この溶液を3℃まで冷却し、撹拌しながらイソプロパノール(1,500g、25質量倍)を3℃から5℃にて1時間かけて滴下後、3℃にて23時間撹拌した。アリールスルホン酸X-PGEE析出を確認後、この溶液を25℃で900g(15質量倍)まで減圧濃縮し、イソプロパノール(1,200g、20質量倍)を加えた。再度溶液を25℃で900g(15質量倍)まで減圧濃縮し、イソプロパノール1,200g(20質量倍)を加えた。析出物をろ過し、ろ取物をジイソプロピルエーテル120g(2質量倍)で2回洗浄した。得られた結晶を25℃、5hPaで12時間、40℃、5hPaで5時間減圧乾燥し、アリールスルホン酸X-PGEEを72.2g得た(収率:94.2%、LC area:99.4%)。1H-NMRおよびLC/MSの測定結果を以下に示す。
1H-NMR(400MHz、CDCl3):δ0.92-0.97(m、12H)、1.34 and 1.40(a pair of d、J=6.5Hz,12H)、3,32-3,52(m、16H)、4.80-4.87(m、4H)、7.37(s、2H)、8.22(d、J=8.5Hz,2H)、8.45(s,2H)、8.61(d,J=8.5Hz,2H)、8.69(s,2H)
LC/MS(ESI+) m/z; 1264[M+NH4+
[実施例2]
 窒素雰囲気下、アリールスルホン酸X-Cl 200mgに脱水PGEE600mg(3質量倍)を加え、-10℃にてDMAP 113mg(4.5eq)、脱水NMP 500mg(2.5質量倍)、PGEE 200mg(1質量倍)の混合溶液を約1分かけて滴下し、23時間撹拌した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
[実施例3]
 塩基を4MPに変更した以外は、実施例2と同様の操作でアリールスルホン酸X-PGEEの合成およびHPLCによる分析を実施した。
[比較例1]
 窒素雰囲気下、アリールスルホン酸X-Cl 200mgに0℃にて脱水クロロホルム1.66g(8.3質量倍)、脱水ピリジン720mg(3.6質量倍)を5分かけて滴下、脱水PGEE 260mg(1.3質量倍)を3分かけて滴下した後、25℃まで昇温し、23時間撹拌した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
[比較例2]
 窒素雰囲気下、アリールスルホン酸X-Cl 200mgに-10℃にて脱水クロロホルム1.66g(8.3質量倍)を加えた。-10℃にて脱水ピリジン720mg(3.6質量倍)を1分かけて滴下し、脱水PGEE 260mg(1.3質量倍)を3分かけて滴下し、23時間撹拌した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
[比較例3]
 窒素雰囲気下、アリールスルホン酸X-Cl 200mgに-10℃にて脱水ピリジン720mg(3.6質量倍)を2分かけて滴下し、脱水PGEE 260mg(1.3質量倍)を3分かけて滴下し、23時間撹拌した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
[比較例4]
 窒素雰囲気下、アリールスルホン酸X-Cl 200mgに-10℃にて脱水ピリジン720mg(3.6質量倍)を2分かけて滴下し、脱水PGEE 800mg(4質量倍)を3分かけて滴下し、23時間撹拌した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
[比較例5]
 窒素雰囲気下、アリールスルホン酸X-Cl 200mgに-10℃にて脱水ピリジン200mg(1質量倍)を1分かけて滴下し、脱水PGEE 260mg(1.3質量倍)を3分かけて滴下し、23時間撹拌した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
[比較例6]
 窒素雰囲気下、アリールスルホン酸X-Cl 200mgに脱水PGEE 800mg(4質量倍)を加え、-10℃にて脱水ピリジン 700mg(3.5質量倍)を1分かけて滴下し、4時間撹拌した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
[比較例7]
 窒素雰囲気下、アリールスルホン酸X-Cl 200mgに脱水PGEE 800mg(4質量倍)を加え、0℃にて脱水ピリジン700mg(43.6eq)を1分かけて滴下し、23時間撹拌した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
[比較例8]
 窒素雰囲気下、アリールスルホン酸X-Cl 10gに脱水PGEE 30g(3質量倍)を加え、1℃から4.5℃でDMAP 5.63g(4.5eq)、脱水PGEE 35g(3.5質量倍)の混合溶液を1時間かけて滴下し、4.5℃にて25時間撹拌した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
[比較例9]
 窒素雰囲気下、アリールスルホン酸X-Cl 200mgに脱水PGEE 600mg(3質量倍)を加え、-10℃にてDMAP 113mg(4.5eq)、脱水PGEE 700mg(3.5質量倍)の混合溶液を1分かけて滴下し、42時間撹拌した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
[比較例10]
 窒素雰囲気下、脱水PGEE 84g(8.4質量倍)に4℃に冷却した。4℃にてアリールスルホン酸X-Cl 2gを加え、5分撹拌し、48質量%水酸化ナトリウム水溶液0.68gを加え5分撹拌した。2℃から4℃にてこの操作を5回繰り返した後、48質量%水酸化ナトリウム水溶液0.34gを加え、42時間撹拌した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。その後、析出物をろ過し、ろ取物を水20g(2質量倍)で2回洗浄した。得られた結晶を25℃、5hPaで7時間減圧乾燥し、アリールスルホン酸X-PGEEを0.78g得た(収率:6%、LC area:87.5%)
 実施例2~3および比較例1~10の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000048
*1 比較例1~4において、Pyの3.6質量倍は、塩基として45eqに相当
*2 比較例5において、Pyの1質量倍は、塩基として12eqに相当
*3 比較例6~7において、Pyの43.6eqは、溶媒として3.5質量倍に相当
[比較例2-1~2-4]
 塩基を表4に示した化合物に変更した以外は、実施例2と同様の操作でアリールスルホン酸X-PGEEを合成した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
 比較例2-1~2-4の結果を表4に示す。なお、表4には、実施例2および3の結果も併記した。
Figure JPOXMLDOC01-appb-T000049
[実施例4、5]
 塩基の使用量を表5に示した量に変更した以外は、実施例2と同様の操作でアリールスルホン酸X-PGEEを合成した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
 実施例4~5の結果を表5に示す。なお、表5には、実施例2の結果も併記した。
Figure JPOXMLDOC01-appb-T000050
[実施例6~13]
 反応温度に関する条件および/または溶媒に関する条件を表6に示した条件に変更した以外は、実施例2と同様の操作でアリールスルホン酸X-PGEEを合成した。その際、表に記載の反応時間の時点で一部反応液をサンプリングし、HPLCにて分析した。
 実施例6~13の結果を表6に示す。なお、表6には、実施例2の結果も併記した。
Figure JPOXMLDOC01-appb-T000051
[実施例14~40]
 溶媒に関する条件を表7に示した条件に変更した以外は、実施例2と同様の操作でアリールスルホン酸X-PGEEの合成およびHPLCによる分析を実施した。結果を表7に示す。なお、表7には、実施例2の結果も併記した。
Figure JPOXMLDOC01-appb-T000052
[実施例41-1] アリールスルホン酸X-Cl-2の合成
 国際公開第2009/096352号の記載の方法に従って、下記式アリールスルホン酸X-2を合成し、その後、下記の手順に従い、スルホニルハライド化合物(アリールスルホン酸X-Cl-2)を合成した。
Figure JPOXMLDOC01-appb-C000053
 窒素雰囲気下、40℃にて、DEGDEE 20.2g(0.9質量倍)にアリールスルホン酸X-2 22.4gを溶解させた溶液を500mL四つ口フラスコに塩化チオニル33.8g(1.5質量倍)、DMF 0.32g(0.1eq)を加え、75℃にて1時間撹拌した混合溶液に30分かけて滴下し、使用した滴下ロートをDEGDEE 11.37g(0.5質量倍)で洗いこみ、75℃で4時間撹拌した。この際、反応終了まで酸性ガスが発生するため、還流管の上部より水酸化ナトリウム水溶液へ通じて系外に放出した。また、この際、塊は発生せず、撹拌も良好であった。また、滴下途中でアリールスルホン酸X-Cl-2が析出した。3時間後の反応液をHPLC分析したところ、アリールスルホン酸X-Cl-2(98.0%)、1置換体(0.3%)であった。
 反応の終結を確認後、n-ヘプタン224g(3質量倍)を73℃から60℃にて1時間かけて滴下した。滴下終了後、25℃まで1時間かけて冷却し、10時間撹拌した。析出したアリールスルホン酸X-Cl-2を窒素加圧ろ過し、n-ヘプタン44.8g(2質量倍)でろ取物を3回洗浄した。得られた結晶を50℃にて減圧乾燥を行い、アリールスルホン酸X-Cl-2を20.5g得た(収率:85%、LC area:98.4%、1置換体0.2%)。
[実施例41-2] アリールスルホン酸X-PGEE-2の合成
Figure JPOXMLDOC01-appb-C000054
 窒素雰囲気下、100mL四つ口フラスコにアリールスルホン酸X-Cl-2 2.5g、脱水PGEE 15g(6質量倍)を加え、2℃まで冷却した。冷却後、DMAP 1.2g(2.3eq)、脱水NMP 6.3g(2.5質量倍)、脱水PGEE 2.5g(1質量倍)の混合溶液を2℃から7℃で11分かけて滴下し、2℃で3時間撹拌した。3時間後の反応液をHPLC分析したところ、アリールスルホン酸X-PGEE-2(93.8%)、1置換体(2.0%)、原料(0%)であった。その後、4℃に冷却した酢酸エチル23g(9.2質量倍)を加え撹拌した。5℃から8℃にて、5℃に冷却した1M塩酸12.53gを滴下し、5℃にて10分撹拌を続けた後5分静置した。水層を除去した後に撹拌を再開し、5℃に冷却した15質量%塩化アンモニウム水溶液12.5g(5質量倍)を再度5℃から7℃にて、滴下し、5℃にて10分撹拌を続けた後5分静置した。水層を除去した後に撹拌を再開し、5℃に冷却した15質量%塩化アンモニウム水溶液12.6g(5質量倍)を5℃にて滴下し、5℃にて10分撹拌を続けた後5分静置した。水層を除去した後、ジイソプロピルエーテル11.25g(4.5質量倍)を加えた。40mm桐山漏斗に酢酸エチル:ジイソプロピルエーテル=2:1(質量比)の溶液30g(12質量倍)で懸濁した中性シリカゲル60N 10g(4質量倍)を充填し、分液後の溶液をろ過した。ろ過後、さらに質量比2:1の酢酸エチル:ジイソプロピルエーテル溶液47.5g(19質量倍)でろ過し、ろ過器上のシリカゲルを洗浄した。得られた溶液を25℃で7.7g(3質量倍)まで減圧濃縮し、撹拌しながらイソプロパノール(25g、10質量倍)を滴下した。滴下後1℃まで冷却した後、1℃にて2時間撹拌した。その後析出物をろ過し、ろ取物をジイソプロピルエーテル2.5g(1質量倍)で2回洗浄した。得られた結晶を25℃にて3時間減圧真空乾燥し、アリールスルホン酸X-PGEE-2を3.4g得た(収率:78.9%、LC area:98.0%)、1置換体(0.4%)。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR(400MHz、CDCl3):δ0.88-0.96(m、6H)、1.31、1.33、1.38、1.40(each s、6H)、3,23-3,51(m、8H)、4.74-4.90(m、2H)、7.24(d,J=1.2Hz,1H)、8.20(d、J=9.0、1.8Hz,1H)、8.43(s,1H)、8.55(d,J=9.0Hz,1H)、8.67(d,J=1.8Hz,1H)
LC/MS(ESI+) m/z 693.1043[M+H]+

Claims (17)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは、炭素数6~20の(n+1)価の芳香族基を表し、Bは、ハロゲン原子で置換されたq価の炭素数6~20の芳香族基を表し、nは、Aに結合するスルホ基数を表し、1≦n≦4を満たす整数であり、qは、Bと酸素原子との結合数を示し、1≦qを満たす整数である。)
    で表されるアリールスルホン酸化合物を、N,N-ジメチルホルムアミド触媒の存在下でハロゲン化試薬と反応させて下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは、ハロゲン原子を表し、A、B、nおよびqは、前記と同じ意味を表す。)
    で表されるアリールスルホン酸ハロゲン化物を製造する際に、前記アリールスルホン酸化合物の1,2-ジメトキシエタン溶液またはジエチレングリコールジエチルエーテル溶液を前記ハロゲン化試薬中に滴下して、前記スルホ基をハロゲン化して前記アリールスルホン酸ハロゲン化物を合成する第1工程と、
     前記第1工程で得られたアリールスルホン酸ハロゲン化物を、有機溶媒中、下記式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、それぞれ独立して、ヘテロ原子を含んでいてもよい炭素数1~10のアルキル基を表すが、2つのRが結合して窒素原子とともに環構造を形成してもよい。)
    で表される塩基の存在下、15℃以下で下記式(4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、D1は、置換または非置換の二価炭化水素基を示し、D2は、単結合、O、S、または置換もしくは非置換の2価アミノ基を示し、D3は、置換もしくは非置換の一価炭化水素基を示すが、D2が単結合である場合は水素原子であってもよい。)
    で表されるアルコール化合物と反応させて下記式(5)
    Figure JPOXMLDOC01-appb-C000005
    (式中、A、B、D1、D2、D3、nおよびqは、前記と同じ意味を表す。)
    で表されるアリールスルホン酸エステル化合物を合成する第2工程を備えることを特徴とするアリールスルホン酸エステル化合物の製造方法。
  2.  下記式(2)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Xは、ハロゲン原子を表し、Aは、炭素数6~20の(n+1)価の芳香族基を表し、Bは、ハロゲン原子で置換されたq価の炭素数6~20の芳香族基を表し、nは、Aに結合するスルホ基数を表し、1≦n≦4を満たす整数であり、qは、Bと酸素原子との結合数を示し、1≦qを満たす整数である。)
    で表されるアリールスルホン酸ハロゲン化物を、有機溶媒中、下記式(3)
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rは、それぞれ独立して、ヘテロ原子を含んでいてもよい炭素数1~10のアルキル基を表すが、2つのRが結合して窒素原子とともに環構造を形成してもよい。)
    で表される塩基の存在下、15℃以下で下記式(4)
    Figure JPOXMLDOC01-appb-C000008
    (式中、D1は、置換または非置換の二価炭化水素基を示し、D2は、単結合、O、S、または置換もしくは非置換の2価アミノ基を示し、D3は、置換もしくは非置換の一価炭化水素基を示すが、D2が単結合である場合は水素原子であってもよい。)
    で表されるアルコール化合物と反応させ下記式(5)
    Figure JPOXMLDOC01-appb-C000009
    (式中、A、B、D1、D2、D3、nおよびqは、前記と同じ意味を表す。)
    で表されるアリールスルホン酸エステル化合物を合成する工程を備えることを特徴とするアリールスルホン酸エステル化合物の製造方法。
  3.  前記式(3)で表される塩基が、N,N-ジメチル-4-アミノピリジンまたは4-モルフォリノピリジンである請求項1または2記載のアリールスルホン酸エステル化合物の製造方法。
  4.  前記アリールスルホン酸ハロゲン化物と前記アルコール化合物との反応が、-30~10℃で行われる請求項1~3のいずれか1項記載のアリールスルホン酸エステル化合物の製造方法。
  5.  前記アリールスルホン酸ハロゲン化物と前記アルコール化合物との反応が、-20~10℃で行われる請求項4記載のアリールスルホン酸エステル化合物の製造方法。
  6.  前記式(3)で表される塩基が、前記アリールスルホン酸ハロゲン化物が有するスルホン酸ハライド基1molに対し、1.1mol以上用いられる請求項1~5のいずれか1項記載のアリールスルホン酸エステル化合物の製造方法。
  7.  前記Bが、その少なくとも1つの水素原子がフッ素原子で置換されたq価の炭素数6~20の芳香族基である請求項1~6のいずれか1項記載のアリールスルホン酸エステル化合物の製造方法。
  8.  前記Bが、その全ての水素原子がフッ素原子で置換されたq価の炭素数6~20の芳香族基である請求項7記載のアリールスルホン酸エステル化合物の製造方法。
  9.  前記qが、2である請求項1~8のいずれか1項記載のアリールスルホン酸エステル化合物の製造方法。
  10.  前記Bが、下記式(B1)で表される2価の基である請求項9記載のアリールスルホン酸エステル化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000010
  11.  前記qが、1である請求項1~8のいずれか1項記載のアリールスルホン酸エステル化合物の製造方法。
  12.  前記Bが、下記式(B2)~(B6)のいずれかで表される2価の基である請求項11記載のアリールスルホン酸エステル化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000011
  13.  前記Aが、ベンゼン環またはナフタレン環である請求項1~12のいずれか1項記載のアリールスルホン酸エステル化合物の製造方法。
  14.  前記ハロゲン化試薬が、塩化チオニルである請求項1、3~13のいずれか1項記載のアリールスルホン酸エステル化合物の製造方法。
  15.  前記第1工程において、アリールスルホン酸ハロゲン化物を合成した後、得られた反応液に貧溶媒を加えてアリールスルホン酸ハロゲン化物を析出させる操作を含む請求項1、3~14のいずれか1項記載のアリールスルホン酸エステル化合物の製造方法。
  16.  下記式(1)
    Figure JPOXMLDOC01-appb-C000012
    (式中、Aは、炭素数6~20の(n+1)価の芳香族基を表し、Bは、ハロゲン原子で置換されたq価の炭素数6~20の芳香族基を表し、nは、Aに結合するスルホ基数を表し、1≦n≦4を満たす整数であり、qは、Bと酸素原子との結合数を示し、1≦qを満たす整数である。)
    で表されるアリールスルホン酸化合物を、N,N-ジメチルホルムアミド触媒の存在下でハロゲン化試薬と反応させて下記式(2)
    Figure JPOXMLDOC01-appb-C000013
    (式中、Xはハロゲン原子を表し、A、B、nおよびqは、前記と同じ意味を表す。)
    で表されるアリールスルホン酸ハロゲン化物を製造する方法であって、
     前記アリールスルホン酸化合物の1,2-ジメトキシエタン溶液またはジエチレングリコールジエチルエーテル溶液を前記ハロゲン化試薬中に滴下して、前記スルホ基をハロゲン化する工程を備えることを特徴とする前記アリールスルホン酸ハロゲン化物の製造方法。
  17.  アリールスルホン酸ハロゲン化物を合成した後、得られた反応液に貧溶媒を加えてアリールスルホン酸ハロゲン化物を析出させる操作を含む請求項16記載のアリールスルホン酸ハロゲン化物の製造方法。
PCT/JP2020/017276 2019-04-26 2020-04-22 アリールスルホン酸エステル化合物の製造方法 WO2020218316A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217037518A KR20220004096A (ko) 2019-04-26 2020-04-22 아릴술폰산 에스테르 화합물의 제조 방법
JP2021516147A JP7484901B2 (ja) 2019-04-26 2020-04-22 アリールスルホン酸エステル化合物の製造方法
CN202080030544.6A CN113748103A (zh) 2019-04-26 2020-04-22 芳基磺酸酯化合物的制造方法
EP20795185.6A EP3960730A4 (en) 2019-04-26 2020-04-22 PROCESS FOR PREPARING AN ARYLSULPHONIC ACID ESTER COMPOUND
JP2024073304A JP2024097071A (ja) 2019-04-26 2024-04-30 アリールスルホン酸エステル化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019085954 2019-04-26
JP2019-085954 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020218316A1 true WO2020218316A1 (ja) 2020-10-29

Family

ID=72942181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017276 WO2020218316A1 (ja) 2019-04-26 2020-04-22 アリールスルホン酸エステル化合物の製造方法

Country Status (6)

Country Link
EP (1) EP3960730A4 (ja)
JP (2) JP7484901B2 (ja)
KR (1) KR20220004096A (ja)
CN (1) CN113748103A (ja)
TW (1) TW202106663A (ja)
WO (1) WO2020218316A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105838A (zh) * 2021-11-19 2022-03-01 北京大学深圳研究生院 一种柔性热电材料及其制备方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3434315A1 (de) * 1984-09-19 1986-03-27 Basf Ag, 6700 Ludwigshafen Herbizide diphenylether, verfahren zu ihrer herstellung und ihre verwendung zur bekaempfung unerwuenschten pflanzenwuchses
JP2000026401A (ja) * 1998-06-18 2000-01-25 F Hoffmann La Roche Ag 3―アリ―ルサルファヒドロキサム酸の製造方法
JP2000502330A (ja) * 1995-12-08 2000-02-29 アグロン・ファーマシュウティカルズ・インコーポレーテッド メタロプロテイナーゼ阻害薬、それらを含有する薬剤組成物および薬剤としてのそれらの使用、ならびにそれらの製造に有用な方法および中間体
JP2003510304A (ja) * 1999-09-29 2003-03-18 ノボ ノルディスク アクティーゼルスカブ 新規芳香族化合物
WO2007099808A1 (ja) 2006-02-23 2007-09-07 Nissan Chemical Industries, Ltd. スルホン酸エステル化合物およびその利用
WO2009096352A1 (ja) 2008-01-29 2009-08-06 Nissan Chemical Industries, Ltd. アリールスルホン酸化合物および電子受容性物質としての利用
JP2010189431A (ja) * 2002-03-19 2010-09-02 Ono Pharmaceut Co Ltd カルボン酸化合物およびその化合物を有効成分として含有する薬剤
US20110171133A1 (en) * 2008-05-14 2011-07-14 Bertha Louise Frederike Van Eck-Smit Radiolabelled mmp selective compounds
CN102731527A (zh) * 2012-07-12 2012-10-17 浙江医药股份有限公司新昌制药厂 一种西罗莫司42-醚衍生物的合成方法
WO2017217455A1 (ja) * 2016-06-16 2017-12-21 日産化学工業株式会社 スルホン酸エステル化合物及びその利用
WO2017217457A1 (ja) 2016-06-16 2017-12-21 日産化学工業株式会社 スルホン酸エステル化合物及びその利用
CN108069954A (zh) * 2017-03-03 2018-05-25 上海华汇拓医药科技有限公司 含no供体的喹唑啉酮化合物
JP2018526448A (ja) * 2015-09-07 2018-09-13 浙江華海薬業股▲フン▼有限公司 一酸化窒素を放出可能なプロドラッグ分子
WO2018200425A1 (en) * 2017-04-24 2018-11-01 Cocrystal Pharma, Inc. Pyrrolopyrimidine derivatives useful as inhibitors of influenza virus replication
WO2019124412A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 スルホン酸エステル化合物及びその利用
WO2019124413A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 電荷輸送性ワニス及び電荷輸送性薄膜
WO2019124415A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 電荷輸送性ワニス

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3434315A1 (de) * 1984-09-19 1986-03-27 Basf Ag, 6700 Ludwigshafen Herbizide diphenylether, verfahren zu ihrer herstellung und ihre verwendung zur bekaempfung unerwuenschten pflanzenwuchses
JP2000502330A (ja) * 1995-12-08 2000-02-29 アグロン・ファーマシュウティカルズ・インコーポレーテッド メタロプロテイナーゼ阻害薬、それらを含有する薬剤組成物および薬剤としてのそれらの使用、ならびにそれらの製造に有用な方法および中間体
JP2000026401A (ja) * 1998-06-18 2000-01-25 F Hoffmann La Roche Ag 3―アリ―ルサルファヒドロキサム酸の製造方法
JP2003510304A (ja) * 1999-09-29 2003-03-18 ノボ ノルディスク アクティーゼルスカブ 新規芳香族化合物
JP2010189431A (ja) * 2002-03-19 2010-09-02 Ono Pharmaceut Co Ltd カルボン酸化合物およびその化合物を有効成分として含有する薬剤
WO2007099808A1 (ja) 2006-02-23 2007-09-07 Nissan Chemical Industries, Ltd. スルホン酸エステル化合物およびその利用
WO2009096352A1 (ja) 2008-01-29 2009-08-06 Nissan Chemical Industries, Ltd. アリールスルホン酸化合物および電子受容性物質としての利用
US20110171133A1 (en) * 2008-05-14 2011-07-14 Bertha Louise Frederike Van Eck-Smit Radiolabelled mmp selective compounds
CN102731527A (zh) * 2012-07-12 2012-10-17 浙江医药股份有限公司新昌制药厂 一种西罗莫司42-醚衍生物的合成方法
JP2018526448A (ja) * 2015-09-07 2018-09-13 浙江華海薬業股▲フン▼有限公司 一酸化窒素を放出可能なプロドラッグ分子
WO2017217455A1 (ja) * 2016-06-16 2017-12-21 日産化学工業株式会社 スルホン酸エステル化合物及びその利用
WO2017217457A1 (ja) 2016-06-16 2017-12-21 日産化学工業株式会社 スルホン酸エステル化合物及びその利用
CN108069954A (zh) * 2017-03-03 2018-05-25 上海华汇拓医药科技有限公司 含no供体的喹唑啉酮化合物
WO2018200425A1 (en) * 2017-04-24 2018-11-01 Cocrystal Pharma, Inc. Pyrrolopyrimidine derivatives useful as inhibitors of influenza virus replication
WO2019124412A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 スルホン酸エステル化合物及びその利用
WO2019124413A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 電荷輸送性ワニス及び電荷輸送性薄膜
WO2019124415A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 電荷輸送性ワニス

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAVERIAT, L. ET AL.: "Synthesis, surface tension properties and antibacterial activities of amphiphilic D-galactopyranose derivatives", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 62, 2013, pages 177 - 186, XP055758901 *
See also references of EP3960730A4
TERUZO ASAHARA (ED.): "YOZAI HANDBOOK [Solvent Handbook]", 30 November 1984, KODANSHA CO., LTD. , JP , ISBN: 4-06-129882-8, article ASAHARA, TEREZOU ET AL.: "1,2-Dimethoxyethane, Monoglyme, Ethylene glycol dimethyl ether", pages: 485 - 490, 494, XP009532019 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105838A (zh) * 2021-11-19 2022-03-01 北京大学深圳研究生院 一种柔性热电材料及其制备方法

Also Published As

Publication number Publication date
JP7484901B2 (ja) 2024-05-16
JP2024097071A (ja) 2024-07-17
JPWO2020218316A1 (ja) 2020-10-29
EP3960730A1 (en) 2022-03-02
EP3960730A4 (en) 2023-02-08
CN113748103A (zh) 2021-12-03
KR20220004096A (ko) 2022-01-11
TW202106663A (zh) 2021-02-16

Similar Documents

Publication Publication Date Title
JP2024097071A (ja) アリールスルホン酸エステル化合物の製造方法
JP4588407B2 (ja) 環式ジスルホン酸エステルの製造方法
JP4528123B2 (ja) ナプロキセンのニトロオキシ誘導体の製造法
CA3058686C (en) Method for preparing 2-aryl malonamide and applications thereof
WO2010013620A1 (ja) 無水フタル酸誘導体の製造方法
US6379590B1 (en) Method for making unsymmetrically substituted fluorenyl compounds for nonlinear optical applications
JP5432605B2 (ja) エステル基を有する芳香族カルボン酸二無水物の製造方法
CN108689874A (zh) 一种制备2-芳基丙二酰胺的方法及其应用
WO2020250920A1 (ja) エステル基含有酸二無水物誘導体の製造方法
CN112028735A (zh) 弯曲芳香族化合物及其制备方法
JP4517235B2 (ja) β,γ−不飽和ホスフィン酸エステルの製造方法
RU2111960C1 (ru) Способ получения натриевой соли 1-амино-1-цианамидо-2,2-дицианэтилена
CN114835646B (zh) 一种咪唑三氟甲硫基试剂及其合成应用
JP2008297228A (ja) ハイドロキノン誘導体の製造方法
CN102875372B (zh) 双醋瑞因的新合成方法
CN109232249B (zh) 一种多取代苯甲酸酯的制备方法
WO2015178261A1 (ja) カルボン酸無水物の製造方法
JPH1036326A (ja) 3−エチニルアニリン化合物の酸付加塩及び3−エチニルアニリン化合物の精製方法
CN108473431B (zh) 2-氨基烟酸苄酯衍生物的制造方法
JP2001122847A (ja) ビナフチル誘導体の製造方法
KR100502390B1 (ko) 세팔로스포린산 유도체의 제조방법
WO2014002969A1 (ja) ナフトビスチアジアゾールの製造方法
JP2021155351A (ja) フェナントロリン誘導体の結晶およびその製造方法
CN116514867A (zh) 一种单膦化合物及其制备方法
KR101354175B1 (ko) 2-(3,3-디메톡시)프로파노에이트기로부터 메틸 (e)-2-(3-메톡시)아크릴레이트기의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217037518

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020795185

Country of ref document: EP

Effective date: 20211126