WO2007099808A1 - スルホン酸エステル化合物およびその利用 - Google Patents

スルホン酸エステル化合物およびその利用 Download PDF

Info

Publication number
WO2007099808A1
WO2007099808A1 PCT/JP2007/053009 JP2007053009W WO2007099808A1 WO 2007099808 A1 WO2007099808 A1 WO 2007099808A1 JP 2007053009 W JP2007053009 W JP 2007053009W WO 2007099808 A1 WO2007099808 A1 WO 2007099808A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituted
unsubstituted
sulfonic acid
Prior art date
Application number
PCT/JP2007/053009
Other languages
English (en)
French (fr)
Inventor
Takuji Yoshimoto
Naoki Nakaie
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to JP2008502710A priority Critical patent/JP5136795B2/ja
Publication of WO2007099808A1 publication Critical patent/WO2007099808A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/72Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/75Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing singly-bound oxygen atoms bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/72Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/73Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered

Definitions

  • the present invention relates to a sulfonate ester compound and use thereof. More specifically, the sulfonate ester compound capable of forming a cyclic complex in a molecule, and the compound as an electron accepting substance. It relates to utilization and utilization as a thermal acid generator.
  • an organic EL (hereinafter abbreviated as PLED) element using a polymer light emitting material is a poly-phosphorus-based material (Patent Document 1: Japanese Patent Laid-Open No. 3-273087, Non-Patent Document 2: Nature, UK, 1992 357, p. 477-479) and polythiophene-based materials (Non-patent Document 3: Applied Physics Letters, USA, 1998, 72, p. 2660-2662) It has been reported that the same effect as an OLED device can be obtained by using the thin film as a hole transport layer.
  • Patent Document 5 WO2005-000832
  • Patent Document 5 WO2005-000832
  • sulfonic acid compounds generally have low solubility in organic solvents
  • the solvent to be used is limited, and it is necessary to use a high-polarity organic solvent with high dissolving power such as N, N-dimethylacetamide or N-methylpyrrolidone in a high ratio.
  • An organic solution containing a high-polarity organic solvent in a high ratio may damage a part of the ink-jet coating apparatus or an organic structure such as an insulating film and a partition formed on the substrate.
  • sulfonic acid ester compounds are known as materials that generate strong organic acids by external stimuli such as caloric heat and chemical action, which have high solubility in various organic solvents.
  • cyclohexyl ester of sulfonic acid has been reported (Non-patent Document 4: Chemische Be richte, Germany, 1957, 90 ⁇ , p. 585-592), and in recent years, this sulfonic acid ester has attracted much attention as a thermal acid proliferating agent (Patent Document 5: JP-A-7-134416, Non-Patent Document 5: Functional Materials, Japan, 2004, 24 ⁇ , p. 72-82).
  • Patent Document 1 Japanese Patent Laid-Open No. 3-273087
  • Patent Document 2 JP 2002-151272 A
  • Patent Document 3 International Publication No. 2004Z043117 Pamphlet
  • Patent Document 4 International Publication No. 2005Z043962 Pamphlet
  • Patent Document 5 Pamphlet of International Publication No. 2005Z000832
  • Non-Patent Document 1 Applied 'Physics' Letters, USA, 1996, 69 ⁇ , p. 2160-2162
  • Non-Patent Document 2 Neacher, UK, 1992, No. 357, p. 477-479
  • Non-Patent Document 3 Applied 'Physics' Letters, USA, 1998, 72 ⁇ , p. 2660—
  • Non-Patent Document 4 Chemitsche 'Berichte, Germany, 1957, 90 ⁇ , p. 585-592
  • Non-Patent Document 5 Functional Materials, Japan, 2004, 24 ⁇ , p. 72-82
  • the present invention has been made in view of such circumstances, and has high stability and high solubility in a wide range of organic solvents, so that it is easy to form a uniform solution. It is an object of the present invention to provide a sulfonic acid ester compound suitable as an electron-accepting substance or a thermal acid generator that can realize excellent device characteristics when applied to an OLED device.
  • a sulfonate ester compound having an atom capable of coordinating with a sulfur atom in the ester substituent depends on the coordination of the atom.
  • the formation of a cyclic complex increases the electron density of the sulfur atom in the sulfonate ester, thereby preventing side reactions caused by water and basic substances during the synthesis of the compound, as well as preventing thermal decomposition and increasing stability.
  • a sulfonate ester compound represented by the formula (1) 1.
  • ⁇ ⁇ represents a substituted or unsubstituted monovalent hydrocarbon group
  • X represents a substituted or unsubstituted monovalent hydrocarbon group
  • Y represents a divalent hydrocarbon group
  • Y represents 0, S, or a substituted or unsubstituted divalent amino group
  • Z represents a hydrogen atom or any monovalent hydrocarbon group.
  • Ri to R 4 each independently represent a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group, or a halogen atom.
  • a and Z are as defined above.
  • X represents a substituted or unsubstituted divalent hydrocarbon group
  • Y represents o, s, or a substituted or unsubstituted divalent amino group
  • Z represents a hydrogen atom or any monovalent hydrocarbon group
  • X ′ represents 0, S or NH
  • B represents a substituted or unsubstituted hydrocarbon group, 1, 3, 5-triazine group, or a substituted or unsubstituted formula (5) or (6)
  • W 1 and w 2 are each independently o, s, s (o) group, s (o 2) group
  • N N, Si, P, or P (O) group to which an unsubstituted or substituted group is bonded.
  • Q represents the number of bonds to ⁇ ⁇ ⁇ ', r is an integer that satisfies l ⁇ q, r is the number of repeating units, 1 ⁇ r is an integer, and m is an integer that is greater than or equal to 0 N 1 is an integer greater than or equal to 1 , and n 2 is an integer greater than or equal to 1. Note that n + m satisfies the number of substitutions allowed by A ′ in formula (3), and n 2 + m satisfies the number of substitutions allowed in formula (4). ))
  • W is a substituted or unsubstituted trivalent hydrocarbon group
  • A is a substituted or unsubstituted divalent aromatic ring group or a single bond
  • X is a substituted or unsubstituted divalent hydrocarbon group.
  • Y represents 0, S, or a substituted or unsubstituted divalent amino group
  • Z represents a hydrogen atom or any monovalent hydrocarbon group, s is 2 to: L00000 T is an integer from 1 to 100000, u is an integer from 1 to: L00000, and t + u is from 2 to: L00000.
  • R 5 to R 7 each independently represents a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group, or a halogen atom.
  • a ", X, Y, Z, s, t and u is the same as above.
  • An electron-accepting substance comprising a sulfonate compound of 4,
  • An acid generator comprising a sulfonic acid ester compound of any one of 1 to 8,
  • a charge transporting thin film comprising the sulfonate compound of any one of 1 to 8,
  • a method for producing a charge transporting thin film characterized in that 11 charge transporting varnish is applied on a substrate and heated,
  • Organic-electrical luminescence device comprising 12 or 13 charge transporting thin film, 16. Formula (11)
  • A represents a substituted or unsubstituted monovalent hydrocarbon group.
  • a sulfonic acid compound represented by formula (12) is reacted with a base.
  • V + represents sodium ion, potassium ion, pyridinium ion or quaternary ammonium ion.
  • X represents a substituted or unsubstituted divalent hydrocarbon group
  • Y represents o, s, or a substituted or unsubstituted divalent amino group
  • Z represents a hydrogen atom or a substituted or unsubstituted group. Indicates a monovalent hydrocarbon group.
  • the sulfonic acid ester compound of the present invention exhibits high solubility in a wide range of organic solvents including a low polarity solvent that is highly stable to heat and water. Even if the ratio of the highly polar solvent is lowered, the charge transporting varnish can be prepared. As described above, the sulfonic acid ester compound of the present invention has a wider range of applicable solvents when used as a charge transporting varnish than conventional sulfonic acid compounds, so that it is easier to produce an amorphous solid thin film having high flatness. become.
  • the thin film obtained from the sulfonate ester compound of the present invention exhibits high charge transportability, when used as a hole injection layer or a hole transport layer, the driving voltage of the organic EL device is reduced. Can do. By utilizing the high flatness and high charge transport property of this thin film, it can be applied to a positive hole transport layer of a solar cell, a fuel cell electrode, a capacitor electrode protective film, and an antistatic film.
  • the sulfonic acid ester compound of the present invention also has a function as a thermal acid generator and a cation conductive material, it can be applied to a resist auxiliary material, an ion conductive membrane, and a solid electrolyte.
  • the first sulfonate ester compound according to the present invention is represented by the following formula (1).
  • A represents a substituted or unsubstituted monovalent hydrocarbon group. Specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, i -Butyl, t-butyl, n-xyl, n-octyl, 2-ethylhexyl, decyl
  • An alkyl group such as a thiol group; a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group; a bicycloalkyl group such as a bicyclohexyl group; a bur group, a 1-probe group, a 2-probel group, Alkenyl groups such as isopropyl group, 1-methyl-2-propyl group, 1 or 2 or 3-butene group, hexyl group; phenol group, xylyl group, toly
  • examples of the halogen atom include fluorine, chlorine, bromine and iodine atoms.
  • organooxy group examples include an alkoxy group, an alkoxy group, an aryloxy group, and the like, and examples of the alkyl group, alkenyl group, and aryl group include the same substituents as exemplified above. .
  • organoamino group examples include alkylamino groups such as methylamino group, ethylamino group, propylamino group, butylamino group, pentylamino group, hexylamino group, heptylamino group, octylamino group, nonylamino group, decylamino group, laurylamino group and the like.
  • Dialkylamino groups such as dimethylamino group, jetylamino group, dipropylamino group, dibutylamino group, dipentylamino group, dihexylamino group, diheptylamino group, dioctylamino group, di-noramino group, didecylamino group, etc .; cyclohexylamino group, etc.
  • organosilyl group examples include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, a hexyldimethylsilyl group, and an octyl group.
  • examples thereof include a dimethylsilyl group and a decyldimethylsilyl group.
  • organothio group examples include methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group.
  • alkylthio groups such as a group, nonylthio group, decylthio group, and laurylthio group.
  • acyl group examples include a formyl group, a acetyl group, a propionyl group, a butyryl group, an isoptyryl group, a valeryl group, an isovaleryl group, and a benzoyl group.
  • the number of carbon atoms in the monovalent hydrocarbon group, organooxy group, organoamino group, organoamino group, organosilyl group, organothio group, and acyl group is not particularly limited, but generally 1 to 20 carbon atoms, preferably Is 1-8.
  • fluorine sulfonic acid group, substituted or unsubstituted organooxy group, alkyl group, and organosilyl group are more preferable.
  • non-substituted means that a hydrogen atom is bonded.
  • substituents may include a portion in which the substituents are connected to each other and are cyclic.
  • A a substituted or unsubstituted phenyl group, in which a substituted or unsubstituted aromatic ring group is preferred, A naphthyl group, anthracenyl group and the like are preferable, and a substituted or unsubstituted phenyl group and naphthyl group are most preferable.
  • X represents a substituted or unsubstituted divalent hydrocarbon group.
  • Examples include alkyleneoxy carbon number 1-2 alkylene group, carbon number 1-2 alkylenethio carbon number 1-2 alkylene group, carbon number 1-2 alkylene carbocarbon number 1-2 alkylene group, and the like. It is easy to form a cyclic complex such as the following formula with the S atom in the acid ester, and is preferably a group.
  • a substituent the thing similar to the above is mentioned.
  • the sulfonate ester compound (1) can form a 5-membered ring or a 6-membered ring complex.
  • Group, A trimethylene group, a methyleneoxymethylene group, a methylenethiomethylene group and the like are preferable.
  • Y is not particularly limited as long as it is a group capable of forming a cyclic complex with the S atom of the sulfonate ester compound, but 0, S, or a substituted or unsubstituted divalent amino group. Is preferable, and O is particularly preferable.
  • a 2 represents a divalent hydrocarbon group which may have a substituent.
  • Ri to R 4 are each independently a hydrogen atom, a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group, or a hydrogen atom.
  • C1-C6 alkyl groups such as methyl, ethyl, propyl and butyl are preferred .
  • Specific examples of other monovalent hydrocarbon groups are as described above.
  • Z is not particularly limited as long as Z is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group.
  • the monovalent hydrocarbon group are as described above.
  • a methyl group, an ethyl group, and an n-propyl group are mentioned.
  • a 2 is a divalent hydrocarbon group which may have a substituent, for example, an alkylene group (methylene group, ethylene group, trimethylene which may have a substituent). Group), an arylene group (a phenylene group, a naphthylene group, a biphenylene group, etc.) which may have a substituent.
  • Substituents include hydroxyl groups, amino groups, silanol groups, thiol groups, carboxyl groups, sulfonate ester groups, phosphate groups, phosphate ester groups, ester groups, thioester groups, amide groups, nitro groups, monovalent carbonization.
  • Examples thereof include those substituted with a hydrogen group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group, a sulfone group, a halogen atom, and the like.
  • the method for producing the compound represented by the formula (1) includes the following methods, but is not limited thereto.
  • the sulfonic acid compound represented by the formula (11) is reacted with a base to be derivatized into the sulfonic acid compound represented by the formula (12). Is reacted with a halogenated reagent to derive a sulfohalide compound represented by formula (13), and this sulfohalide compound is reacted with an alcohol compound represented by formula (14) to form the formula.
  • the sulfonic acid ester compound of (1) can be obtained.
  • the sulfonic acid compound represented by the formula (11) may be a commercially available product, and if necessary, a known method (New Experimental Chemistry Course 14 Synthesis and Reaction of Organic Compounds III, p. 1773- 1784) and the like.
  • V + represents a sodium ion, a potassium ion, a pyridinium ion or a quaternary ammonium ion
  • W represents a halogen atom.
  • the base used in the step of reacting the sulfonic acid compound represented by formula (11) with a base to derive the sulfonate compound represented by formula (12) is hydrogen.
  • Ability to include various bases such as sodium hydride, potassium hydride, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, pyridine, pyrimidine, triethylamine, etc.
  • pyridine pyrimidine, triethylamine and the like are preferred.
  • pyridine is most suitable.
  • the amount of the base used is not limited as long as it is 1 mol or more with respect to the sulfonic acid compound (11), but 1 to 5 mol is preferable.
  • reaction solvent water that can dissolve the sulfonic acid compound (11) is preferred, N-methylpyrrolidone (NMP), dimethylimidazolidinone (DMI), acetic anhydride, methanol, ethanol, Isopropanol, pyridine and the like are preferred.
  • the reaction temperature is not particularly limited, but 0 to 150 ° C is preferred.
  • the pure sulfonate compound can be obtained by purification using conventional methods such as distilling off the solvent under reduced pressure, liquid separation extraction, reprecipitation, and recrystallization.
  • a halogenating reagent examples include halogen reagents such as chloride, phosphorus oxychloride and phosphorus (V) chloride.
  • the salt strength is preferred.
  • the amount of rogenation reagent used is not limited as long as it is 1 mol or more relative to the sulfonate compound, but the mass ratio is 2 to LO amount relative to the sulfonate compound. It is preferable to use it.
  • a solvent-free solvent that can include, for example, chloroformate, dichloroethane, carbon tetrachloride, hexane, heptane and the like, which are preferably solvents that do not react with halogenated reagents, is preferable.
  • a halogenated reagent in an amount that is equal to or greater than a homogeneous solution at the end of the reaction.
  • the reaction temperature is preferably 20 to 100 ° C., which can be about 0 to 150 ° C., and the boiling point or less of the halogenating reagent used is preferred.
  • a base may be used in combination.
  • Examples of the base that can be used include sodium hydride, pyridine, triethylamine, diisopropylpropylamine, and the like.
  • Sodium hydride, pyridine, and triethylamine are preferable.
  • the amount of the base used is preferably 1 mole to the amount of the solvent relative to the sulfonyl halide compound (13).
  • reaction solvent various organic solvents can be used, and tetrahydrofuran, dichloroethane, and pyridine are preferable.
  • the reaction temperature is not particularly limited, but 0 to 80 ° C is preferable.
  • pure sulfonate ester compound can be obtained by post-treatment and purification using conventional methods such as vacuum concentration, liquid separation extraction, water washing, reprecipitation, recrystallization, chromatography, etc.
  • the obtained pure sulfonic acid ester compound can be converted into a high purity sulfonic acid compound by heat treatment.
  • the second sulfonic acid ester compound according to the present invention is represented by the following formula (3) or (4). [0031] [Chemical 17]
  • Equation (3) in (4), A 'is, (SO H) m, chi' location in and (SO-X-Y-Z ) ! 1
  • —Y—Z may be substituted with a substituent other than n.
  • substituents include the same groups as those described above for the substituted or unsubstituted monovalent hydrocarbon group.
  • a ′ include the same hydrocarbon group that is polyvalent by removing the hydrogen atom of A and converting the bond to a bond, and is preferably the same as the hydrocarbon group. is there.
  • X ′ is preferably a force indicating 0, S or NH, particularly O.
  • the two: ⁇ in formula (3) may be the same or different.
  • is a substituted or unsubstituted hydrocarbon group, 1, 3, 5 triazine group, or a substituted or unsubstituted group represented by the following formula (5) or (6).
  • w 1 and w 2 are each independently o, s, s (o) group, s (o 2) group, or N, Si, P, P to which an unsubstituted or substituted group is bonded. (O represents a group.)
  • B is a divalent or higher-valent unsubstituted or substituted containing one or more aromatic rings.
  • hydrocarbon groups, divalent or trivalent 1,3,5-triazine groups, or substituted or unsubstituted divalent diphenylsulfone groups are preferred, especially divalent or trivalent substituted or unsubstituted benzil.
  • divalent substituted or unsubstituted p-xylylene group divalent or trivalent substituted or unsubstituted naphthyl group, divalent or trivalent 1, 3, 5-triazine group, divalent substituted or unsubstituted diphenyl -Lusulfone group, divalent to tetravalent perfluorobiphenyl group, divalent substituted or unsubstituted 2,2-bis ((hydroxypropoxy) phenol) propyl group, substituted or unsubstituted polyvinyl A benzyl group is preferred.
  • m represents the number of sulfonic acid groups bonded to W, and a force of 0 to 4 which is an integer of 0 or more is preferred.
  • the solubility of the compound represented by the formulas (3) and (4) is increased in a solvent. In consideration of this, 0 or 2 is preferable, and 1 or 2 is preferable in consideration of enhancing the electron accepting property of the compound.
  • q indicates the number of bonds with B and is not particularly limited as long as l is an integer satisfying l ⁇ q, but 2 ⁇ q is preferable.
  • r represents the number of repeating units, and is not particularly limited as long as it is an integer satisfying l ⁇ r, but preferably 2 ⁇ r.
  • n 1 is an integer of 1 or more, preferably an integer of 1 to 4
  • n 2 is an integer of 1 or more, preferably an integer of 1 to 4, but 1 is optimal for all.
  • R ⁇ + m satisfies the number of substitutions allowed by A 'in equation (3)
  • n 2 + m satisfies the number of substitutions allowed in equation (4).
  • Examples of the method for producing the sulfonate ester compound represented by the formulas (3) and (4) include the following methods.
  • the sulfonic acid ester compound (15) or (16) produced by using the above-described production method can be obtained by reacting the (H) group of the above-described B (crosslinking) reagent.
  • the reaction method is not particularly limited, and for example, a general nucleophilic substitution reaction can be used.
  • Examples of such a reagent include hydrocarbon compounds substituted with a halogen atom, a hydroxyl group, an amino group, an aldehyde group, a carboxyl group, an ester group, or an alkoxy group.
  • a compound containing one or more aromatic rings is preferable from the viewpoint of improving heat resistance, charge transporting property, solubility in organic solvents, and the like.
  • the compound acts as a crosslinking reagent.
  • a compound having a structure may also be used.
  • the amount of the reagent used is lZq with respect to the compound of the formula (15). Double moles are preferred.
  • Examples of the reagent to be reacted with the sulfonic acid ester compound (15) or (16): ⁇ H group include benzaldehyde, benzoic acid, benzoic acid ester, 1 naphthaldehyde, 2 -naphthaldehyde, 2 , 4, 6 Trimethoxy 1, 3, 5 Triazine, bis (4 fluorophenyl) sulfone, bis (4-fluoro-3-phenyl) sulfone, perfluorobiol, 2, 2 bis (4-glycol) And silidroxyphenol) propane and polychlorinated benzene.
  • the catalyst examples include lithium, potassium, lithium hydride, sodium hydride, t-butoxylithium, t-butoxysodium, t-butoxypotassium, lithium-diisopropinoleamide, n-butyllithium, sbutyllithium, t- Butyl lithium, lithium hexamethyl disilazide, sodium hexamethyl disilazide, potassium hexamethyl disilazide, Lithium hydroxide, sodium hydroxide, potassium hydroxide, barium hydroxide, barium oxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, calcium carbonate, sodium hydrogen carbonate, triethylamine, diisopropylethylamine, tetra Bases such as methylethylenediamine, triethylenediamine, pyridine, dimethylaminopyridine, imidazole; hydrochloric acid, sulfuric acid, diphosphorus pentoxide, aluminum chloride (111), boron tri
  • the reaction solvent is preferably an aprotic polar organic solvent.
  • DMF dimethyl methacrylate
  • DMAc dimethyl methacrylate
  • DMI dimethyl methacrylate
  • DMSO dimethyl methacrylate
  • THF dioxane
  • dioxane dioxane
  • DMI and NMP which are solvents with high solubility of sulfonic acid compounds and low thermal decomposability, are preferred. It is.
  • the reaction temperature is usually a force that is possible up to the boiling point of the solvent used, as well as a ⁇ 50 ° C. force.
  • reaction time is usually from 0.1 to: LOO time.
  • the reaction solvent can be purified by distillation, and if it has a sulfonic acid group, it can be purified by protonation of sulfonate using cation exchange resin, extraction with a solvent such as methanol, or reprecipitation. it can.
  • the third sulfonate ester compound according to the present invention is represented by the following formula (7) or (8).
  • W represents a substituted or unsubstituted trivalent hydrocarbon group, and is bonded to an A "or S atom. And at least one bond other than this bond, that is, at least two bonds related to polymer chain formation.
  • ethylene one CH CH one
  • acetylene one C ⁇ C
  • propylene in which at least one hydrogen is replaced by an A "or S atom.
  • each hydrogen may be further substituted with a monovalent hydrocarbon group.
  • Preferable examples include sulfonate ester compounds represented by the following formula (9) or (10).
  • R 5 to R 7 each independently represent a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group, or a halogen atom.
  • Specific examples of the monovalent hydrocarbon group include those described above.
  • the divalent hydrocarbon group include one bonded to hydrogen in the monovalent hydrocarbon group represented by A above. The ability to convert one bond to a bond and make it divalent. An aromatic group or a single bond is preferred. In the case of a single bond, W and S atoms are directly bonded.
  • s is from 2 to: LOOOOO, preferably ⁇ is an integer from 20 to 5000.
  • t is 1 to: LOOOOO, preferably an integer of 20 to 5000,
  • u is an integer of 1 to: LOOOOO, preferably an integer of 1 to 5000,
  • t + u is 2 to: LOOOOO, preferably 20-5000.
  • Examples of the method for producing the compound represented by the formula (7) or the formula (8) include the following methods.
  • a sulfonic acid ester compound (20) is synthesized from a sulfonic acid compound compound (17) containing a polymerizable functional group (W 2) by the same method as described above. Further, it is subjected to a polymerization reaction to induce a compound represented by the formula (7). At that time, some sulfonic acid esters may become free sulfonic acid, resulting in a compound represented by the formula (8).
  • the sulfonic acid ester compound represented by the above formulas (1) to (10) has an acid acceptability because sulfonic acid is generated by heat treatment and the sulfonic acid compound exhibits electron accepting property. It can be suitably used as a generator or an electron-accepting substance precursor.
  • sulfonic acid ester compounds are highly soluble in a wide range of solvents, including low-polar solvents, it is possible to prepare solution properties using a wide variety of solvents and have high coating properties. . Therefore, it is preferable to apply in the state of sulfonic acid ester and generate sulfonic acid when drying or baking the coating film.
  • the temperature at which sulfonic acid is generated is preferably 40 to 300 ° C. because it is stable at room temperature and preferably equal to or lower than the firing temperature. Furthermore, considering the high stability in the varnish and the ease of desorption during firing, 80 to 230 ° C is preferred, and 120 to 180 ° C is more preferred.
  • the sulfonate ester compounds represented by the above formulas (1) to (10) can themselves be used as an electron accepting substance.
  • a sulfonic acid group when m is 1 or more, a sulfonic acid group is present and itself exhibits a strong electron accepting property, so that it can be suitably used as an electron accepting substance. .
  • the sulfonate ester compounds represented by the above formulas (4) and (7) to (10) can be used as a high molecular weight substance.
  • the molecular weight is not particularly limited, but if the molecular weight is increased while maintaining high solubility, it can be expected to suppress mobility in the film and stabilize the coating film during film formation. However, if the molecular weight is too large, there may be a decrease in solubility or aggregation.
  • the number average molecular weight is preferably 5000 to 100,000, and more preferably 20000 to 50,000! /.
  • the sulfonate ester compound represented by the above formulas (1) to (10) is dissolved or dispersed in a solvent together with a charge transporting substance which is a main body of the charge transport mechanism, thereby providing a charge transporting property.
  • a charge transporting substance which is a main body of the charge transport mechanism, thereby providing a charge transporting property.
  • ⁇ ⁇ ⁇ Can be varnished the charge-accepting substance is used for improving the charge transporting ability and film formation uniformity, and is synonymous with the charge-accepting dopant substance.
  • the charge transport property is synonymous with conductivity, and in the present invention, is synonymous with hole transport property.
  • a charge transporting varnish may have a charge transporting property even if the solid film obtained from the varnish itself has a charge transporting property.
  • the charge transporting material is not particularly limited as long as it is a charge transporting oligomer or polymer that dissolves or uniformly disperses in a solvent. Oligomers with a combination of units are desirable.
  • the conjugated unit is not particularly limited as long as it is an atom capable of transporting an electric charge, an aromatic ring, or a conjugated group, but is preferably a substituted or unsubstituted divalent to tetravalent aryl group.
  • Thiophene group furan group, pyrrole group, ethylene group, beylene group, phenylene group, naphthalene group, oxadiazole group, quinoline group, silole group, silicon atom, pyridine group, phenylene resin -Len group, fluorene group, strong rubazole group, triarylamine group, metal- or metal-free phthalocyanine group, metal or metal-free porphyrin group, and the like.
  • substituents are independently hydrogen, hydroxyl group, halogen group, amino group, silanol group, thiol group, carboxyl group, sulfonic acid group, phosphate group, phosphate ester group, ester group, and thioester group.
  • the carbon number in the monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, organogano group, and acyl group is not particularly limited. Generally, the number of carbon atoms is 1 to 20, preferably 1 to 8.
  • Preferred substituents include fluorine, sulfonic acid groups, substituted or unsubstituted organooxy groups, alkyl groups, and organosilyl groups.
  • the conjugated chain formed by connecting conjugated units may include a cyclic portion.
  • the number average molecular weight of the charge transporting substance is desirably 5000 or less, considering the increase in solubility, and desirably has a molecular weight of 200 or more for the purpose of low volatility and expression of charge transporting properties. . Very few substances with high solubility in at least one solvent The number average molecular weight may be 500,000 to 500,000 if it is a substance that shows high solubility in at least one kind of solvent!
  • charge transport material in particular, oligourine derivatives described in JP-A-2002-151272 are preferably used. That is, the oligoaniline derivative represented by the formula (21) is preferable.
  • examples of the monovalent hydrocarbon group, organooxy group, and acyl group are the same as those described above.
  • R 8 represents a hydrogen atom, a monovalent hydrocarbon group, or an organooxy group
  • R 9 and R 11 each independently represent a hydrogen atom or a monovalent hydrocarbon group
  • D 1 and D 2 each independently represents the following formula (22) or (23)
  • R u to R lQ each independently represents hydrogen, a hydroxyl group, a monovalent hydrocarbon group, an organooxy group, an acyl group, or a sulfonic acid group, and s' And t 'are each independently an integer greater than or equal to 1, satisfying ⁇ + ⁇ 20. )
  • the charge transporting property of the resulting charge transporting thin film is improved by extending the ⁇ -conjugated system in the molecule as much as possible, in particular, the oligo-line derivative represented by the formula (24) Alternatively, it is preferable to use a quinonedimine derivative which is an acid complex.
  • the substituents having the same sign may be the same or different at the same time.
  • R 8 is a hydrogen atom and R 1Q is a phenyl group, that is, it is preferable that both ends of the oligoline derivative of the formula (24) are sealed with a phenyl group. ,.
  • charge transport materials may be used alone or in combination of two or more.
  • Specific examples of the compound represented by the above formula (21) include phenyltetralin, phenyl pentaline, tetralin (aline tetramer), octaline (aline octamer), and the like. And an organic solvent soluble oligoaniline derivative.
  • the method for synthesizing other charge transporting substances is not particularly limited, but for example, literature, Bulletin of Chemical Society of Japan, 1994 67th, p. 1749-1752, Synthetic Metals, USA, 1997, 84th, p. 119-120. This is described! , Heterocycles, 1987, Vol. 26, p. 939-942, and the oligothiophene synthesis described in Heterocycles; 1987, Vol. 26, p. 1793-1796 Law.
  • the varnish is completely dissolved by the high-solubility solvent, and the varnish is dispersed and uniformly dispersed! /.
  • Examples of the highly soluble solvent include, but are not limited to, water, methanol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, N, N, Examples thereof include dimethyl imidazolidinone, dimethyl sulfoxide, black mouth form, toluene, and methanol.
  • the charge transporting varnish of the present invention may contain at least one high-viscosity organic solvent having a viscosity of 10 to 200 mPa's at 20 ° C and a boiling point of 50 to 300 ° C at normal pressure. desirable. Furthermore, the charge transporting varnish preferably contains an organic solvent having a viscosity of 50 to 150111? & '5 at 20 ° and a boiling point of 150 to 250 ° C at normal pressure.
  • the high-viscosity organic solvent is not particularly limited.
  • cyclohexanol ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene.
  • examples include glycol, 1,3 butanediol, 1,4 butanediol, propylene glycol, hexylene dallicol and the like.
  • the addition ratio of the high-viscosity organic solvent to the whole solvent used in the varnish of the present invention is preferably within a range in which the solid does not precipitate. It can be 80 mass%.
  • Solvents used for the varnish for the purpose of improving wettability to the substrate, adjusting the surface tension of the solvent, adjusting the polarity, adjusting the boiling point, etc. Mixing at a ratio of 1 to 90% by mass, preferably 1 to 50% by mass with respect to the whole.
  • Such a solvent examples include, but are not particularly limited to, for example, butyl cereal sorb, diethylene glycol jetino ether, dipropylene glycol monomono methinoate ethere
  • a charge transporting coating film can be formed on a substrate by applying the charge transporting varnish described above onto the substrate and evaporating the solvent.
  • the varnish application method is not particularly limited, and examples thereof include a dipping method, a spin coat method, a spray method, an ink jet method, a transfer printing method, a roll coating method, and a brush coating method. Even uniform film formation is possible.
  • the solvent evaporation method is not particularly limited, but a hot plate or an oven is used. It is possible to obtain a film having a uniform film formation surface by performing evaporation in an appropriate atmosphere, that is, in the atmosphere, an inert gas such as nitrogen, or in a vacuum.
  • the firing temperature is not particularly limited as long as the solvent can be evaporated, but 40 to 250 ° C is preferable. In order to develop a higher uniform film forming property and to allow the reaction to proceed on the base material, two or more temperature changes may be applied.
  • the thickness of the charge transporting thin film obtained by the coating and evaporation operation is not particularly limited, but is preferably 5 to 200 nm when used as a charge injection layer in an organic EL device.
  • Methods for changing the film thickness include methods such as changing the solid content concentration in the varnish and changing the amount of solution on the substrate during coating.
  • the production method and materials used for the OLED element using the charge transporting varnish of the present invention include, but are not limited to, the following methods and materials.
  • the electrode substrate to be used is preferably cleaned beforehand by washing with a detergent, alcohol, pure water or the like, and the anode substrate is preferably subjected to surface treatment such as ozone treatment or oxygen plasma treatment immediately before use.
  • surface treatment such as ozone treatment or oxygen plasma treatment immediately before use.
  • the anode material is mainly composed of an organic material, the surface treatment may not be performed.
  • the hole transporting varnish is used in an OLED element, for example, the following method may be employed.
  • a hole transporting thin film is formed on the electrode by the above film manufacturing method using the hole transporting varnish for the anode substrate.
  • This is introduced into a vacuum deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode metal are sequentially deposited to form an OLED element.
  • a carrier block layer may be provided between arbitrary layers in order to control the light emitting region.
  • anode material examples include transparent electrodes represented by indium stannate (ITO) and indium zinc oxide (IZO), and those subjected to planarization are preferable.
  • ITO indium stannate
  • IZO indium zinc oxide
  • Polythiophene derivatives having a high charge transport property and polyarines can also be used.
  • the materials used to form the hole transport layer are (triphenylamine) dimer derivative (TPD), (a-naphthyldiphenylamine) dimer ( ⁇ NPD), [(triphenylamine) dimer] spiro-dimer (Spiro-TAD) ) And other triarylamines, 4, 4, 4 “—Tris [3— Methylphenol (phenyl) amino] triphenylamine (m—MTD ATA), 4, 4, 4, 4 ”tris [1-Naphthyl (phenol) amino] triphenylamine (1-TNATA), etc.
  • Eulphenolate) aluminum (III) BAlq
  • 4,4, -bis (2,2 diphenyl) biphenyl DPVBi
  • the light-emitting layer may be formed by co-evaporation of an electron transport material or a hole transport material and a light-emitting dopant.
  • Examples of the electron transport material include Alq, BAlq, DPVBi, (2— (4 biphenyl) —5— (4 t
  • Butylphenol 1,3,4-oxadiazole
  • TA Z triazole derivative
  • BCP bathocuproine
  • silole derivative silole derivative
  • Luminescent dopants include quinacridone, rubrene, coumarin 540, 4 (disyanmethylene) 2-methyl 6- (p dimethylaminostyryl) 4H pyran (DCM), tris (2-phenylpyridine) iridium (III) (Ir ( ppy)), (1, 10—Phenant mouth ring)
  • Examples of the material for forming the carrier block layer include PBD, TAZ, and BCP.
  • Examples of the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), and alumina (A
  • LiF lithium fluoride
  • MgF magnesium fluoride
  • SrF strontium fluoride
  • Liq Lithium quinonolide
  • Li (acac) lithium acetylacetate complex
  • Li (acac) lithium acetate
  • lithium benzoate lithium acetate
  • cathode material examples include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
  • An electron transporting thin film is produced on the cathode substrate using the electron transporting varnish, After introducing into an air evaporation apparatus and forming an electron transport layer, a light emitting layer, a hole transport layer, and a hole injection layer using the same materials as described above, an anode material is formed by a method such as sputtering. OLED element.
  • the method for producing a PLED element using the charge transporting varnish of the present invention is not limited to, for example, the following methods.
  • the charge transport property of the present invention can be obtained by forming a light emitting charge transporting polymer layer instead of performing vacuum deposition operation of the hole transport layer, light emitting layer, electron transport layer, and electron injection layer.
  • a PLED device including a charge transporting thin film formed of varnish can be fabricated.
  • the hole transporting varnish is applied to the anode substrate by the above-described method to produce a hole transporting thin film on the electrode, and a light emitting charge transporting polymer layer is formed thereon. Furthermore, a cathode electrode is deposited to form a PLED element.
  • the electron transporting varnish is used for the cathode substrate, an electron transporting thin film is formed on the electrode by the above-described method, a light emitting charge transporting polymer layer is formed thereon, and an anode electrode is sputtered. , Vapor deposition, spin coating, etc. to make a PLED element.
  • the same materials as those exemplified for the OLED element can be used, and the same cleaning treatment and surface treatment can be performed.
  • a solvent is added to a light emitting charge transporting polymer material or a material obtained by adding a light emitting dopant to the light emitting charge transporting polymer material, and dissolved or uniformly dispersed.
  • An example is a method in which a film is formed by evaporation of a solvent after being applied to an electrode substrate on which a hole transporting thin film is formed.
  • Examples include polythiophene derivatives such as 3-alkylthiophene (PAT), polybutacarbazole (PVCz), and the like.
  • PAT 3-alkylthiophene
  • PVCz polybutacarbazole
  • Examples of the solvent include toluene, xylene, black mouth form, and the like.
  • dissolution or uniform dispersion method dissolution or homogeneity is achieved by a method such as stirring, heating and stirring, or ultrasonic dispersion. And a method of dispersing in the above.
  • the application method is not particularly limited, and examples thereof include a dipping method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating method.
  • the coating should be performed under an inert gas such as nitrogen or argon.
  • Examples of the solvent evaporation method include a method of heating in an oven or a hot plate under an inert gas or in a vacuum.
  • NSO-2 Naphthalenedisulfonic acid compound oligomer 2
  • THF dehydrated tetrahydrofuran
  • PGME dehydrated propylene glycol monomethyl ether
  • reaction mixture was filtered through celite, washed sequentially with dichloroethane and PGME, and CG-50 (manufactured by Aldrich) and water were added to the combined filtrate to adjust the pH to 7, followed by celite filtration again.
  • 1,3-Benzenedisulfonic acid dichloride (manufactured by Aldrich) was dissolved in 998 mg of dehydrated THF (20 mL) in a nitrogen atmosphere. To this solution, 0.58 mL of glycidol and 351 mg of 60% sodium hydride were successively added in a water bath (20 ° C), and the mixture was stirred for 2.5 hours. The reaction mixture was filtered through celite and washed with dichloroethane. The combined filtrate was concentrated to dryness under reduced pressure. Dichloroethane was added to the residue, silica gel filtration (silica gel 8 g), and dichloroethane washing were performed.
  • the crude product of sulfonic acid chloride (28) was obtained from sulfonic acid pyridine salt (27) lOlmg by the method described in Example 3.
  • dehydrated pyridine 1. OmL in water bath (15 ° C) and dispersed uniformly with ultrasound, then dehydrated in water bath (15 ° C) n — 0.2 mL of butanol was added and stirred at room temperature for 4 hours. The reaction was followed by TLC, but only a few low-polarity points derived from the target were generated. This fact suggests that n-butyl ester (33) is difficult to synthesize in high yield due to low reactivity or high degradability.
  • the reaction system was concentrated to dryness under reduced pressure, azeotroped once with 1,2-dichloroethane, and then filtered through silica gel (silica gel 8 g, solvent and washing solution: 1,2 dichloroethane).
  • the filtrate was concentrated to dryness under reduced pressure to obtain 22.77 g of a crude purified product of sulfonate ester compound as a monomer.
  • TG-DTA was measured for the sulfonic acid ester compounds obtained in Examples 1 to 4 and Comparative Example 1. Table 1 shows the evaluation results. The measuring equipment and conditions are as follows.
  • Measuring device Thermal analyzer system WS002, manufactured by Mac Science Co., Ltd.
  • Example 5 The varnish obtained in Example 5 was spin-coated on an ITO substrate that had been subjected to ozone cleaning for 40 minutes until immediately before, and then baked to form a 22 nm-thick charge transporting thin film (hole transporting thin film). .
  • the obtained charge transporting thin film was an amorphous solid.
  • Example 5 The varnish obtained in Example 5 was spin coated on an ITO substrate that had been subjected to ozone cleaning for 40 minutes until immediately before, and then baked to form a charge transporting thin film (hole transporting thin film) having a thickness of 67 nm. .
  • the obtained charge transporting thin film was an amorphous solid.
  • (+) To a mixture of 10-camphorsulfonic acid (206 mg) and PTAlOOmg, add DMAcl. 87 ml under a nitrogen atmosphere and dissolve, add cyclohexanol (5.53 ml) and stir at room temperature. A transparent varnish was obtained (solid content 4.2% by weight). A charge transporting thin film (hole transporting thin film) having a thickness of 12 nm was obtained by the method described in Example 6 using the obtained varnish. The obtained charge transporting thin film was an amorphous solid.
  • Table 3 shows the viscosity of the varnish used in Examples 6 to 8 and Comparative Examples 6 to 8, firing conditions at the time of thin film preparation, film thickness of the thin film, and ionic potential (hereinafter abbreviated as I). Show.
  • the varnish viscosity, film thickness, and I value were measured by the following apparatus.
  • E type viscometer (ELD-50, manufactured by Tokyo Keiki Co., Ltd.), Measurement temperature: 20 ° C
  • the sulfonic acid ester compounds (29) and (35) can function as a good charge-accepting substance by heat treatment after the coating film.
  • the substrate on which the hole-transporting thin film was formed by the method of Example 6 was introduced into a vacuum deposition apparatus, and a-NPD, Alq, LiF, and Al were sequentially deposited to obtain an OLED element.
  • Each film thickness is 4
  • Onm 60 nm, 0.5 nm, and lOOnm were set, and the vapor deposition operation was performed after reaching a pressure of 8 ⁇ 10—'Pa or less.
  • the deposition rate was 0.3 to 0.4 nmZs, excluding LiF, and LiF was 0.02 to 0.04 nmZs.
  • the transfer operation between the vapor deposition operations was performed in a vacuum.
  • Example 8 An ITO substrate on which a hole-transporting thin film was formed by the method of Example 8 was introduced into a vacuum deposition apparatus, and a-NPD, Alq, LiF, and Al were sequentially deposited under the same conditions as in Example 9 to form an OLED element.
  • a-NPD, Alq, LiF, and Al were sequentially deposited under the same conditions as in Example 9 to form an OLED element.
  • the ITO glass substrate was cleaned with ozone for 40 minutes and then introduced into a vacuum deposition apparatus, and a-NPD, Alq, LiF, and Al were sequentially deposited under the same conditions as in Example 9 to obtain an OLED element.
  • EL measurement system Emission quantum efficiency measurement device (EL1003, manufactured by Precise Gauge)
  • Voltmeter (voltage source): Programmable DC voltage Z current source (R6145, manufactured by Advantest)
  • the OLED device (Example 9) comprising the hole transporting thin film prepared from the varnish obtained in Example 6 is compared with the OLED device not including this hole transporting thin film. It can be seen that the driving voltage is reduced, and the current efficiency and the maximum luminance are equal or higher.
  • the OLED device of Example 9 is a sulfonic acid ester as defined in the present invention as a dopant.
  • 5 SSA is used instead of the tellurium compound, the driving voltage is decreased and the maximum luminance is increased as compared with the device of Comparative Example 12. Note that the uniformity of the light emitting surface of the OLED device fabricated in Example 9 was good, and no dark spots were observed.
  • the OLED element of Example 10 shows good current efficiency together with the OLED element of Example 9.
  • the sulfonic acid ester compound described in Example 4 effectively functions as an electron-accepting substance for the hole injection layer after film formation.

Abstract

 式(1)で表されるスルホン酸エステル化合物は、高安定性を有するとともに、広範囲の有機溶媒に対して高溶解性を有しているため、均一溶液を形成し易く、OLED素子に適用した場合に優れた素子特性の実現を可能にするものであり、電子受容性物質または熱酸発生剤として好適である。 (式中、Aは置換または非置換の一価炭化水素基を示し、Xは置換または非置換の二価炭化水素基を示し、YはO、S、または置換もしくは非置換の2価アミノ基を示し、Zは水素原子または置換もしくは非置換の一価炭化水素基を示す。)

Description

明 細 書
スルホン酸エステルイ匕合物およびその利用
技術分野
[0001] 本発明は、スルホン酸エステルイ匕合物およびその利用に関し、さらに詳述すると、 分子内で環状錯体を形成し得るスルホン酸エステルイ匕合物、並びにこの化合物の電 子受容性物質としての利用および熱酸発生剤としての利用に関する。
背景技術
[0002] 低分子有機 EL (以下、 OLEDと略す)素子では、正孔注入層として銅フタロシア- ン (CuPC)層を設けることによって、駆動電圧の低下や発光効率向上等の初期特性 向上、さらには寿命特性向上を実現し得ることが報告されている (非特許文献 1 :アブ ライド'フィジックス 'レターズ(Applied Physics Letters)、米国、 1996年、 69卷、 p. 2160— 2162)。
一方、高分子発光材料を用いた有機 EL (以下、 PLEDと略す)素子では、ポリア- リン系材料 (特許文献 1:特開平 3— 273087、非特許文献 2 :ネイチヤー (Nature)、 英国、 1992年、第 357卷、 p. 477— 479)や、ポリチォフェン系材料 (非特許文献 3 :ァプライド 'フィジックス 'レターズ(Applied Physics Letters)、米国、 1998年、 72卷、 p. 2660— 2662)力らなる薄膜を、正孔輸送層として用いることで、 OLED素 子と同様の効果が得られることが報告されている。
[0003] 近年、低分子オリゴァ-リン系材料やオリゴチォフェン系材料を有機溶媒に溶解さ せた均一系溶液力もなる電荷輸送性ワニスが見出され、このワニス力 得られる正孔 注入層を有機 EL素子中に挿入することで、下地基板の平坦化効果や、優れた EL素 子特性が得られることが報告されて ヽる(特許文献 2:特開 2002— 151272号公報、 特許文献 3: WO2004 -043117,特許文献 4: WO2005— 043962)。
さらに、電子受容性物質として 1, 4一べンゾジォキサンスルホン酸ィ匕合物(特許文 献 5 :WO2005— 000832)を使用することで、 OLED素子の駆動電圧を低下し得る ことも報告されている。
[0004] しかし、スルホン酸ィ匕合物は、一般に有機溶媒に対する溶解性が低 、ため、有機 溶液を調製する場合に使用溶媒が限定されやすぐ N, N—ジメチルァセトアミドゃ、 N—メチルピロリドン等の溶解力の高い高極性有機溶媒を、高比率で用いる必要が ある。高極性有機溶媒を高比率で含む有機溶液は、インクジヱッド塗布装置の一部 や、基板上に形成される絶縁膜および隔壁等の有機構造物にダメージを与える場合 がある。
し力も、スルホン酸ィ匕合物は、高極性であるためにシリカゲルカラムクロマトグラフィ 一による精製、分液抽出、および水洗等の操作による塩類の除去が困難である。
[0005] 一方、スルホン酸エステルイ匕合物は、種々の有機溶媒に対する溶解性が高ぐカロ 熱やィ匕学的作用等の外的刺激により有機強酸が発生する材料として知られている。 加熱によりスルホン酸が発生する化合物の具体例として、スルホン酸シクロへキシ ルエステル等が報告されており(非特許文献 4:ケミツシェ ·ベリヒテ(Chemische Be richte)、ドイツ、 1957年、 90卷、 p. 585— 592)、近年、このスルホン酸エステルは 、熱酸増殖剤と 、う概念にぉ 、ても注目されて 、る(特許文献 5:特開平 7— 134416 、非特許文献 5 :機能材料、 日本、 2004年、 24卷、 p. 72— 82)。
しかし、特に、芳香族ジスルホン酸等の電子欠乏性の芳香環に置換するスルホン 酸エステルでは、わずかな熱や、水、塩基性物質等との反応による分解が生じ易ぐ 安定性の高 、スルホン酸エステルイ匕合物の創出が望まれて ヽる。
[0006] 特許文献 1 :特開平 3— 273087号公報
特許文献 2:特開 2002— 151272号公報
特許文献 3:国際公開第 2004Z043117号パンフレット
特許文献 4 :国際公開第 2005Z043962号パンフレット
特許文献 5:国際公開第 2005Z000832号パンフレット
非特許文献 1 :アプライド 'フィジックス 'レターズ、米国、 1996年、 69卷、 p. 2160- 2162
非特許文献 2 :ネイチヤー、英国、 1992年、第 357卷、 p. 477-479
非特許文献 3 :アプライド 'フィジックス 'レターズ、米国、 1998年、 72卷、 p. 2660—
2662
非特許文献 4 :ケミツシェ 'ベリヒテ、ドイツ、 1957年、 90卷、 p. 585 - 592 非特許文献 5 :機能材料、 日本、 2004年、 24卷、 p. 72-82
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、このような事情に鑑みてなされたものであり、高安定性を有するとともに、 広範囲の有機溶媒に対して高溶解性を有しているため、均一溶液を形成し易ぐ OL ED素子に適用した場合に優れた素子特性の実現を可能にする、電子受容性物質 または熱酸発生剤として好適なスルホン酸エステルイ匕合物を提供することを目的とす る。
課題を解決するための手段
[0008] 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、エステル置換基 に硫黄原子と配位し得る原子を有するスルホン酸エステルイ匕合物が、当該原子の配 位による環状錯体の形成により、スルホン酸エステル中の硫黄原子の電子密度が向 上するために当該化合物合成時の水や塩基性物質による副反応を阻害するとともに 、熱分解反応を阻害して高い安定性を示し、通常困難であるスルホン酸エステルイ匕 合物の合成および精製を容易〖こすること、およびこのスルホン酸エステルイ匕合物が 広範囲の低極性溶剤に対して高溶解性を示すことを見出した。さら〖こ、このスルホン 酸エステルイ匕合物を薄膜に成膜後、加熱等の外的刺激を加えることで、良好な電子 受容性物質として作用し、高電荷輸送性を発揮し得ることを見出すとともに、この薄 膜を OLED素子の正孔注入層として用いた場合に、素子の低駆動電圧を可能にす ることを見出し、本発明を完成した。
[0009] すなわち、本発明は、
1. 式(1)で表されることを特徴とするスルホン酸エステルイ匕合物。
[化 1]
(1)
Figure imgf000004_0001
(式中、 Αは置換または非置換の一価炭化水素基を示し、 Xは置換または非置換の 二価炭化水素基を示し、 Yは 0、 S、または置換もしくは非置換の 2価アミノ基を示し、 Zは水素原子または任意の一価炭化水素基を示す。 )
2. 式(2)で表される 1のスルホン酸エステル化合物、
[化 2]
Figure imgf000005_0001
(式中、 Ri〜R4は、それぞれ独立して、水素原子、非置換もしくは置換の一価炭化水 素基、またはハロゲン原子を示す。 A、 Zは前記と同じ。 )
3. 前記 Aが、置換または非置換の芳香環である 1または 2のスルホン酸エステルイ匕 合物、
4. 式(3)または式 (4)で表されることを特徴とするスルホン酸エステルイ匕合物、 [化 3]
Figure imgf000005_0002
(3) (4)
(式中、 は(SO H) m、 X' および(SO— X— Y— Z) nで置換された炭化水素
3 3
基を示し、 Xは置換または非置換の二価炭化水素基を示し、 Yは o、 s、または置換 もしくは非置換の 2価アミノ基を示し、 Zは水素原子または任意の一価炭化水素基を 示し、 X' は、 0、 Sまたは NHを示し、 Bは、置換もしくは非置換の炭化水素基、 1, 3 , 5—トリアジン基、または置換もしくは非置換の式(5)もしくは(6)
Figure imgf000006_0001
で示される基 (式中、 W1および w2は、それぞれ独立して、 o、 s、 s(o)基、 s(o 2 )基
、または非置換もしくは置換基が結合した N、 Si、 P、 P (O)基を示す。)を表し、 qは、 Β^Χ' との結合数を示し、 l≤qを満たす整数であり、 rは繰り返し単位数を示し、 1≤ rを満たす整数であり、 mは 0以上の整数であり、 n1は 1以上の整数であり、 n2は 1以上 の整数である。なお、 n +mは式(3)において A' が許容する置換数以下を満たし、 n2+mは式 (4)にお 、て の許容する置換数以下を満たす。 ) )
5. 式(7)または式 (8)で表されること特徴とするスルホン酸エステルイ匕合物、
[化 5]
Figure imgf000006_0002
(7) (8)
(式中、 Wは、置換または非置換の 3価炭化水素基を示し、 A"は、置換もしくは非置 換の 2価芳香環基または単結合を示し、 Xは、置換または非置換の二価炭化水素基 を示し、 Yは、 0、 S、または置換もしくは非置換の 2価アミノ基を示し、 Zは、水素原子 または任意の一価炭化水素基を示す。 sは、 2〜: L00000の整数を示す。 tは、 1〜1 00000の整数を示し、 uは、 1〜: L00000の整数を示し、 t+uは、 2〜: L00000を満 たす。)
6. 式(9)または式(10)で表される 5のスルホン酸エステル化合物、
Figure imgf000007_0001
(9) (10)
(式中、 R5〜R7は、それぞれ独立して、水素原子、非置換もしくは置換の一価炭化水 素基、またはハロゲン原子を示す。 A"、 X、 Y、 Z、 s、 tおよび uは、前記と同じ。 )
7. 数平均分子量力 5000〜1000000である 5または 6のスノレホン酸エステノレィ匕 合物、
8. 前記 m力 ^である 4のスルホン酸エステル化合物、
9. 4のスルホン酸エステル化合物からなる電子受容性物質、
10. 1〜8のいずれかのスルホン酸エステル化合物からなる酸発生剤、
11. 1〜8の!、ずれかのスルホン酸エステル化合物を含む電荷輸送性ワニス、
12. 1〜8のいずれかのスルホン酸エステル化合物を含む電荷輸送性薄膜、
13. 11の電荷輸送性ワニスから得られる電荷輸送性薄膜、
14. 11の電荷輸送性ワニスを基材上に塗布し、加熱することを特徴とする電荷輸 送性薄膜の製造方法、
15. 12または 13の電荷輸送性薄膜を備える有機エレクト口ルミネッセンス素子、 16. 式(11)
[化 7]
Figure imgf000007_0002
(式中、 Aは置換または非置換の一価炭化水素基を示す。 )
で表されるスルホン酸化合物を、塩基と反応させて式(12)
o W A s————
Figure imgf000008_0001
(式中、 Aは前記と同じ。 V+は、ナトリウムイオン、カリウムイオン、ピリジ-ゥムイオンま たは第 4級アンモ-ゥムイオンを示す。 )
で表されるスルホン酸塩化合物に誘導し、このスルホン酸塩ィ匕合物をノヽロゲンィ匕試 薬と反応させて式 (13)
[化 9]
0 (13)
(式中、 Aは前記と同じ。 Wはハロゲン原子を示す。 )
で表されるスルホ-ルハライド化合物に誘導し、このスルホ-ルハライド化合物を式(
14)
[化 10]
HO—— X— Y—— Z (14)
(式中、 Xは置換または非置換の二価炭化水素基を示し、 Yは o、 s、または置換もし くは非置換の 2価アミノ基を示し、 Zは水素原子または置換もしくは非置換の一価炭 化水素基を示す。 )
で表されるアルコールィ匕合物と反応させることを特徴とする、式(1)
[化 11]
Figure imgf000008_0002
(式中、 Α、 X、 Υ、および Ζは前記と同じ。 ) で表されるスルホン酸エステルイ匕合物の製造方法
を提供する。
発明の効果
[0010] 本発明のスルホン酸エステル化合物は、熱や水に対して安定性が高ぐ低極性溶 剤を含む広範囲の有機溶剤に対して高溶解性を示すため、低極性溶媒を用いたり、 高極性溶媒の比率を低下させたりしても電荷輸送性ワニスを調製することができる。 このように、本発明のスルホン酸エステル化合物は、従来のスルホン酸化合物よりも 電荷輸送性ワニスとする場合の適用溶媒が広いため、高平坦性を有する非晶質固 体薄膜の作製がより簡便になる。
また、本発明のスルホン酸エステルイ匕合物から得られた薄膜は、高電荷輸送性を 示すため、正孔注入層または正孔輸送層として使用した場合に有機 EL素子の駆動 電圧を低下させることができる。この薄膜の高平坦性および高電荷輸送性を利用し て、太陽電池の正孔輸送層、燃料電池用電極、コンデンサ電極保護膜、帯電防止 膜への応用も可能である。
さらに、本発明のスルホン酸エステルイ匕合物は、熱酸発生剤や陽イオン伝導性物 質としての機能をも有するため、レジスト補助材料、イオン伝導膜、固体電解質への 応用も可能である。
発明を実施するための最良の形態
[0011] 以下、本発明についてさらに詳しく説明する。
本発明に係る第 1のスルホン酸エステルイ匕合物は、下記式(1)で表される。
[0012] [化 12]
Figure imgf000009_0001
式(1)において、 Aは置換または非置換の一価炭化水素基を示し、その具体例とし ては、メチル基、ェチル基、 n—プロピル基、 i—プロピル基、 n—ブチル基、 iーブチ ル基、 t ブチル基、 n キシル基、 n—ォクチル基、 2—ェチルへキシル基、デシ ル基等のアルキル基;シクロペンチル基、シクロへキシル基等のシクロアルキル基;ビ シクロへキシル基等のビシクロアルキル基;ビュル基、 1—プロべ-ル基、 2—プロべ -ル基、イソプロべ-ル基、 1ーメチルー 2—プロべ-ル基、 1または 2または 3—ブテ -ル基、へキセ -ル基等のアルケ-ル基;フエ-ル基、キシリル基、トリル基、ビフエ- ル基、ナフチル基等の芳香環基 (ァリール基);ベンジル基、フエ-ルェチル基、フエ -ルシクロへキシル基等のァラルキル基や、これらの基の水素原子の一部または全 部がさらに、水酸基、アミノ基、シラノール基、チオール基、カルボキシル基、スルホン 酸エステル基、リン酸基、リン酸エステル基、エステル基、チォエステル基、アミド基、 ニトロ基、一価炭化水素基、オルガノォキシ基、オルガノアミノ基、オルガノシリル基、 オルガノチォ基、ァシル基、スルホン基、ハロゲン原子等で置換されたものが挙げら れる。
[0014] ここで、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素原子が挙げられる。
オルガノォキシ基の具体例としては、アルコキシ基、ァルケ-ルォキシ基、ァリール ォキシ基などが挙げられ、これらのアルキル基、アルケニル基およびァリール基として は、上記で例示した置換基と同様のものが挙げられる。
オルガノアミノ基の具体例としては、メチルァミノ基、ェチルァミノ基、プロピルアミノ 基、ブチルァミノ基、ペンチルァミノ基、へキシルァミノ基、ヘプチルァミノ基、ォクチ ルァミノ基、ノニルァミノ基、デシルァミノ基、ラウリルアミノ基等のアルキルアミノ基;ジ メチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジペンチル アミノ基、ジへキシルァミノ基、ジヘプチルァミノ基、ジォクチルァミノ基、ジノ-ルアミ ノ基、ジデシルァミノ基等のジアルキルアミノ基;シクロへキシルァミノ基等のジシクロ アルキルアミノ基;モルホリノ基などが挙げられる。
[0015] オルガノシリル基の具体例としては、トリメチルシリル基、トリェチルシリル基、トリプロ ビルシリル基、トリブチルシリル基、トリペンチルシリル基、トリへキシルシリル基、ペン チルジメチルシリル基、へキシルジメチルシリル基、ォクチルジメチルシリル基、デシ ルジメチルシリル基などが挙げられる。
オルガノチォ基の具体例としては、メチルチオ基、ェチルチオ基、プロピルチオ基、 ブチルチオ基、ペンチルチオ基、へキシルチオ基、へプチルチオ基、ォクチルチオ 基、ノニルチオ基、デシルチオ基、ラウリルチオ基などのアルキルチオ基が挙げられ る。
[0016] ァシル基の具体例としては、ホルミル基、ァセチル基、プロピオニル基、ブチリル基 、イソプチリル基、バレリル基、イソバレリル基、ベンゾィル基等が挙げられる。
なお、一価炭化水素基、オルガノォキシ基、オルガノアミノ基、オルガノアミノ基、ォ ルガノシリル基、オルガノチォ基およびァシル基における炭素数は、特に限定される ものではないが、一般に炭素数 1〜20、好ましくは 1〜8である。
上述の各置換基の中でも、フッ素、スルホン酸基、置換もしくは非置換のオルガノォ キシ基、アルキル基、オルガノシリル基がより好ましい。
なお、非置換とは水素原子が結合していることを意味する。また、以上の置換基に ぉ 、て、置換基同士が連結されて環状である部分を含んで 、てもよ 、。
[0017] 本発明のスルホン酸エステル化合物を電子受容性物質に応用することを考慮する と、 Aとしては、特に、置換または非置換の芳香環基が好ましぐ置換または非置換の フエニル基、ナフチル基、アントラセニル基等が好適であり、置換または非置換のフエ -ル基、ナフチル基が最適である。
[0018] 式(1)において、 Xは置換または非置換の二価炭化水素基を示し、その具体例とし ては、置換または非置換の炭素数 1〜5のアルキレン基、炭素数 1〜2アルキレンォ キシ炭素数 1〜2アルキレン基、炭素数 1〜2アルキレンチォ炭素数 1〜2アルキレン 基、炭素数 1〜2アルキレンカルボ-ル炭素数 1〜2アルキレン基等が挙げられるが、 Yがスルホン酸エステルにおける S原子と、下記式のような環状錯体を形成し易!、基 であることが好ましい。なお、置換基としては、上記と同様のものが挙げられる。
[0019] [化 13]
Figure imgf000011_0001
(式中、 A、 X、 Y、および Ζは上記と同じ。 )
特に主鎖の構成原子数が 2または 3であると、スルホン酸エステルイ匕合物(1)が、 5 員環または 6員環錯体を形成し得ることから、 Xは、置換または非置換のエチレン基、 トリメチレン基、メチレンォキシメチレン基、メチレンチオメチレン基等が好適である。 式(1)において、 Yは、スルホン酸エステルイ匕合物の S原子と環状錯体を形成し得 る基であれば特に限定はないが、 0、 S、または置換もしくは非置換の 2価ァミノ基が 好適であり、特に Oが好ましい。
ここで、 2価の置換アミノ基としては、 N (CH ) N (C H )― N (C H )—
3 2 5 3 7 等が挙げられる。
[0021] 特に、環状錯体の形成を容易にするという点から、 Xが置換または非置換のェチレ ン基、 Yが Oである下記式(2)で示される化合物や、下記式(2' )で表される化合物 が好適である。
[0022] [化 14]
Figure imgf000012_0001
[0023] [化 15]
Figure imgf000012_0002
(式中、 A2は、置換基を有していてもよい二価炭化水素基を表す。 )
式(2)および(2' )にお 、て、 Ri〜R4は、それぞれ独立して、水素原子、非置換も しくは置換の一価炭化水素基、またはハロゲン原子である力 中でも水素原子;メチ ル基、ェチル基、プロピル基、ブチル基などの炭素数 1〜6のアルキル基が好ましい 。なお、その他の一価炭化水素基の具体例は、上述のとおりである。
式(1)、 (2)および (2' )において、 Zは、水素原子または置換もしくは非置換の一 価炭化水素基であれば、特に制限はない。一価炭化水素基の具体例は上述のとお りである。好ましくは、メチル基、ェチル基、 n—プロピル基が挙げられる。
式(2' )において、 A2は、置換基を有していてもよい二価炭化水素基であり、例え ば、置換基を有していてもよいアルキレン基 (メチレン基、エチレン基、トリメチレン基 等)、置換基を有していてもよいァリーレン基 (フエ-レン基、ナフチレン基、ビフエ- レン基等)等が挙げられる。置換基としては、水酸基、アミノ基、シラノール基、チォー ル基、カルボキシル基、スルホン酸エステル基、リン酸基、リン酸エステル基、エステ ル基、チォエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノォキシ基、ォ ルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル基、スルホン基、ハロゲン 原子等で置換されたものが挙げられる。
[0025] 式(1)で示される化合物の製造法としては、下記の方法が挙げられる力 これに制 限されるものではない。
すなわち、式(11)で表されるスルホン酸ィ匕合物を、塩基と反応させて式(12)で表 されるスルホン酸塩ィ匕合物に誘導し、このスルホン酸塩ィ匕合物をハロゲンィ匕試薬と反 応させて式( 13)で表されるスルホ-ルハライド化合物に誘導し、このスルホ-ルハラ イド化合物を式(14)で表されるアルコールィ匕合物と反応させて式(1)のスルホン酸 エステルイ匕合物を得ることができる。なお、式(11)で示されるスルホン酸化合物は、 市販品を用いてもよぐまた必要に応じて既知の方法 (新実験化学講座 14 有機化 合物の合成と反応 III、 p. 1773〜1784)等を用いて合成することができる。
[0026] [化 16] A A
o=s=o 驢, o=s=o
OH O V*
(11) (12)
Figure imgf000014_0001
(式中、 A、 X、 Y、および Zは上記と同じ。 V+は、ナトリウムイオン、カリウムイオン、ピリ ジ -ゥムイオンまたは第 4級アンモ-ゥムイオンを示し、 Wはハロゲン原子を示す。 ) [0027] 式(11)で表されるスルホン酸ィ匕合物を、塩基と反応させて式(12)で表されるスル ホン酸塩ィ匕合物に誘導する工程で用いられる塩基としては、水素化ナトリウム、水素 化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、ピリジン、ピリミジン、ト リエチルァミンなどの各種塩基が挙げられる力 スルホン酸塩ィ匕合物(11)の有機溶 媒に対する溶解性を向上させ、かつ次工程の反応に影響を及ぼさない塩基として、 ピリジン、ピリミジン、トリェチルァミン等のァミンが好ましぐ特に、ピリジンが最適であ る。
塩基の使用量は、スルホン酸ィ匕合物(11)に対して 1倍モル以上であれば限定され ないが、 1〜5倍モルが好適である。
反応溶媒としては、スルホン酸ィ匕合物(11)を溶解し得るものが好ましぐ水、 N—メ チルピロリドン(NMP)、ジメチルイミダゾリジノン(DMI)、無水酢酸、メタノール、エタ ノール、イソプロパノール、ピリジン等が好適である。
反応温度は特に限定されな 、が、 0〜150°Cが好ま 、。
反応終了後、溶媒の減圧留去、分液抽出操作、再沈殿、再結晶等の常法を用いて 精製し、純粋なスルホン酸塩ィ匕合物を得ることができる。
[0028] 式( 12)で表されるスルホン酸塩ィ匕合物を、ハロゲン化試薬と反応させて式( 13)で 表されるスルホ-ルノヽライドィ匕合物に誘導する工程で用いられるハロゲンィ匕試薬とし ては、塩ィ匕チォニル、ォキシ塩化リン、塩化リン (V)等のハロゲンィ匕試薬が挙げられ る力 塩ィ匕チォ-ルが好適である。
ノ、ロゲン化試薬の使用量は、スルホン酸塩ィ匕合物に対して 1倍モル以上であれば 限定されないが、スルホン酸塩ィ匕合物に対して質量比で 2〜: LO倍量用いることが好 ましい。
反応溶媒としては、ハロゲンィ匕試薬と反応しない溶媒が好ましぐクロ口ホルム、ジク ロロエタン、四塩化炭素、へキサン、ヘプタン等を挙げることができる力 無溶媒が好 適である。なお、無溶媒で反応を行う場合、反応終了時には均一系溶液となる量以 上でハロゲンィ匕試薬を用いることが好まし 、。
反応温度は 0〜150°C程度とすることができる力 20〜100°C、かつ、使用するハ ロゲン化試薬の沸点以下が好まし 、。
反応終了後、一般的には、減圧濃縮などにより得た粗生成物を次工程に用いる。
[0029] 式(13)で表されるスルホニルハライド化合物を、式(14)で表されるアルコール化 合物と反応させる工程においては、塩基を併用することもできる。
使用可能な塩基としては、水素化ナトリウム、ピリジン、トリェチルァミン、ジイソプロ ピルェチルァミン等が挙げられる力 水素化ナトリウム、ピリジン、トリェチルァミンが好 適である。
塩基の使用量は、スルホニルハライド化合物(13)に対して 1倍モル〜溶媒量用い ることが好適である。
反応溶媒としては、各種有機溶媒を用いることができるが、テトラヒドロフラン、ジクロ ロェタン、ピリジンが好適である。
反応温度は特に限定されな 、が、 0〜80°Cが好適である。
反応終了後、減圧濃縮、分液抽出、水洗、再沈殿、再結晶、クロマトグラフィー等の 常法を用いて後処理、精製し、純粋なスルホン酸エステルイ匕合物を得ることができる なお、得られた純粋なスルホン酸エステルイ匕合物に熱処理などを施すことで、高純 度のスルホン酸ィ匕合物に導くこともできる。
[0030] 本発明に係る第 2のスルホン酸エステルイ匕合物は、下記式(3)または (4)で表され る。 [0031] [化 17]
Figure imgf000016_0001
(3) (4)
[0032] 式(3)、(4)において、 A' は、 (SO H) m, Χ' および(SO—X—Y—Z) !!1で置
3 3
換された炭化水素基を示し、この炭化水素基は、(SO H) m、 Χ' および (SO—X
3 3
—Y—Z) n以外の置換基で置換されていてもよい。このような置換基としては、上記 置換または非置換の一価炭化水素基で説明した置換基と同様の基が挙げられる。 A ' の具体例としては、上記 Aの水素原子を取り外して当該結合を結合手に変換し、 多価とした同様の炭化水素基が挙げられ、好ま 、炭化水素基にっ 、ても同様であ る。
X' は、 0、 Sまたは NHを示す力 特に Oが好適である。式(3)における 2つの:^ は、互いに同一でも異なっていてもよい。
なお、 X、 Υ、 Ζについては上記と同様である。
[0033] また、 Βは、置換もしくは非置換の炭化水素基、 1, 3, 5 トリアジン基、または置換 もしくは非置換の下記式(5)もしくは(6)で示される基である。
[化 18]
Figure imgf000016_0002
(式中、 w1および w2は、それぞれ独立して、 o、 s、 s (o)基、 s(o 2 )基、または非置 換もしくは置換基が結合した N、 Si、 P、 P (O)基を示す。 )
上記式 (3) , (4)の化合物の耐久性向上および電荷輸送性向上を図ることを考慮 すると、 Bとしては、一つ以上の芳香環を含んでいる 2価以上の非置換もしくは置換 の炭化水素基、 2価もしくは 3価の 1, 3, 5—トリアジン基、置換もしくは非置換の 2価 のジフエ-ルスルホン基が好ましぐ特に、 2価もしくは 3価の置換もしくは非置換ベン ジル基、 2価の置換もしくは非置換 p—キシリレン基、 2価もしくは 3価の置換もしくは 非置換ナフチル基、 2価もしくは 3価の 1, 3, 5—トリアジン基、 2価の置換もしくは非 置換ジフエ-ルスルホン基、 2〜4価のパーフルォロビフエ-ル基、 2価の置換もしく は非置換 2, 2 -ビス((ヒドロキシプロポキシ)フエ-ル)プロピル基、置換もしくは非置 換ポリビニルベンジル基が好適である。
[0035] mは、 W に結合したスルホン酸基数を示し、 0以上の整数である力 0〜4が好ま しぐ式 (3)、 (4)で表される化合物の溶媒に対する溶解性を高めることを考慮すると 0〜2が好ましぐ当該化合物の電子受容性を高めることを考慮すると、 1または 2が 好ましい。
qは、 Bと との結合数を示し、 l≤qを満たす整数であれば特に限定はないが、 2 ≤qであることが好ましい。
rは、繰り返し単位の数を示し、 l≤rを満たす整数であれば特に限定はないが、 2 ≤rであることが好ましい。
n1は 1以上の整数、好ましくは 1〜4の整数であり、 n2は 1以上の整数、好ましくは 1 〜4の整数であるが、いずれも 1が最適である。なお、 r^+mは式(3)において A' が 許容する置換数以下を満たし、 n2+mは式 (4)にお 、て の許容する置換数以下 を満たす。
[0036] 式(3)、(4)で表されるスルホン酸エステルイ匕合物の製造方法としては、例えば、以 下の方法を挙げることができる。
すなわち、上述した製法などを用いて製造したスルホン酸エステル化合物(15)ま たは(16)の^ H基に対し、上述の Bを与える (架橋)試薬を作用させて得ることがで きる。この際、反応の方法は、特に限定されるものではなぐ例えば、一般的な求核 置換反応を用いることができる。
[0037] [化 19]
Figure imgf000018_0001
[0038] このような試薬としては、ハロゲン原子、水酸基、アミノ基、アルデヒド基、カルボキシ ル基、エステル基、またはアルコキシ基で置換された炭化水素化合物等が挙げられ るが、上述の Bの説明で述べたとおり、耐熱性、電荷輸送性、または有機溶剤に対す る溶解性等を向上させるという点から、一つ以上の芳香環を含んでいる化合物が好 ましい。
また、ハロゲン原子、水酸基、アミノ基、アルデヒド基、カルボキシル基、エステル基 、アルコキシ基等の置換基を 2個以上含む炭化水素化合物等を用いると、当該化合 物が架橋試薬として作用するため、架橋構造を有する化合物とすることもできる。 q個 以上の反応性置換基 (架橋部)を有する試薬を用いて、式(15)の化合物を q量ィ匕す る際、試薬の使用量は、式(15)の化合物に対して lZq倍モルが好適である。
[0039] スルホン酸エステルイ匕合物(15)または(16)の:^ H基と反応させる試薬の具体例 としては、ベンズアルデヒド、安息香酸、安息香酸エステル、 1 ナフトアルデヒド、 2 —ナフトアルデヒド、 2, 4, 6 トリメトキシ一 1, 3, 5 トリァジン、ビス(4 フルオロフ ェ -ル)スルホン、ビス(4—フルオロー 3— -トロフエ-ル)スルホン、パーフルォロビ フエ-ル、 2, 2 ビス(4ーグリシジロキシフエ-ル)プロパン、ポリ塩化ビュルべンジ ル等が挙げられる。
[0040] スルホン酸エステル化合物(15)または(16)と上記試薬とを反応させる場合、触媒 を用いることちでさる。
触媒としては、例えば、リチウム、カリウム、水素化リチウム、水素化ナトリウム、 t—ブ トキシリチウム、 t ブトキシナトリウム、 t ブトキシカリウム、リチウムージイソプロピノレ アミド、 n—ブチルリチウム、 s ブチルリチウム、 t—ブチルリチウム、リチウムへキサメ チルジシラジド、ナトリウムへキサメチルジシラジド、カリウムへキサメチルジシラジド、 水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、酸化バリウム、 炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム、炭酸水 素ナトリウム、トリエチルァミン、ジイソプロピルェチルァミン、テトラメチルエチレンジァ ミン、トリエチレンジァミン、ピリジン、ジメチルァミノピリジン、イミダゾール等の塩基;塩 酸、硫酸、五酸化二リン、塩ィ匕アルミニウム(111)、三フッ化ホウ素ジェチルエーテル錯 体、二塩ィ匕ェチルアルミニウム、塩化ジェチルアルミニウム等の脱水縮合剤などを用 いることができ、中でも、水素化ナトリウム、炭酸ナトリウム、炭酸カリウムを用いること が好適である。これらの触媒の使用量は特に制限はないが、式(15)または式(16) の化合物に対して 1. 0〜1. 5倍モル用いることが好ましい。
[0041] 反応溶媒は、非プロトン性極性有機溶媒が好ましぐ例えば、 DMF、 DMAc、 NM
P、 DMI、 DMSO、 THF、ジォキサン等が好適である。スルホン酸基を複数個有す る化合物は有機溶媒に対する溶解性が低いため、この場合には、スルホン酸ィ匕合物 の溶解能が高ぐ熱分解性の低い溶媒である DMI、 NMPが好適である。
反応温度は、通常、—50°C力も使用する溶媒の沸点まで可能である力 0〜140
°Cの範囲が好ましい。反応時間は、通常、 0. 1〜: LOO時間である。
反応終了後、反応溶媒の留去、スルホン酸基を有する場合は陽イオン交換榭脂〖こ よるスルホン酸塩のプロトン化、メタノール等の溶媒による抽出操作、再沈殿操作等 により、精製することができる。
[0042] 本発明に係る第 3のスルホン酸エステルイ匕合物は、下記式(7)または(8)で表され る。
[0043] [化 20]
Figure imgf000019_0001
(7) (8)
[0044] 式中 Wは、置換または非置換の 3価炭化水素基を示し、 A"または S原子との結合 を少なくとも 1つ有し、この結合以外の結合、すなわち高分子鎖形成に係る結合手を 少なくとも 2つ有して 、れば特に限定されな!、。
その具体例としては、少なくとも 1つの水素が、 A"または S原子に置換されたェチレ ン(一 CH CH一)、ビ-レン(一 CH = CH )、アセチレン(一 C≡C )、プロピレン
2 2
(一 CH CH CH—)、イソプロピレン(一 CH CH (CH )一)、ビュルエチレン( CH
2 2 2 2 3
CH (CH = CH )—)、メトキシエチレン(一 CH CH (OCH )一)、エトキシエチレン(
2 2 2 3
CH CH (OCH CH )—)、 (メチルァミノ)エチレン( CH CH (NHCH )—)、 (
2 2 3 2 3 ジメチルァミノ)エチレン(― CH CH (N (CH ) ) -) ,アクリル酸メチルエステル誘導
2 3 2
体( CH CH (C (O) OCH )一)、メタクリル酸メチルエステル誘導体( CH C (CH
2 3 2
) (C (O) OCH )—)、フエ二レン(一 C H—)、ビフヱ二レン(一 C H— C H—)など
3 3 6 4 6 4 6 4 が挙げられ、それぞれの水素はさらに 1価炭化水素基と置換されていてもよい。 好ましくは、下記式(9)または(10)で示されるスルホン酸エステルイ匕合物が挙げら れる。
[0045] [化 21]
Figure imgf000020_0001
(9) (10)
[0046] 上記式中、 R5〜R7は、それぞれ独立して、水素原子、非置換もしくは置換の一価炭 化水素基、またはハロゲン原子を示す。一価炭化水素基との具体例としては、上述と 同様のものが挙げられる。
[0047] A"は、 2価の炭化水素基または単結合であり、 2価の炭化水素基の具体例としては 、上記 Aで示した一価炭化水素基において、水素と結合している一つの結合部分を 結合手に変換して 2価としたものが挙げられる力 特に、置換もしくは非置換の 2価芳 香環基または単結合が好適である。なお、単結合の場合、 Wと S原子は直接結合す る。
sは、 2〜: LOOOOO、好まし <は 20〜5000の整数である。 tは、 1〜: LOOOOO、好まし くは 20〜5000の整数であり、 uは、 1〜: LOOOOOの整数、好ましくは、 1〜5000の整 数、力つ、 t+uは 2〜: LOOOOO、好ましくは 20〜5000を満たす。
X、 Υ、 Ζについては上記式(1)に記載した内容と同様である。
[0048] 式(7)または式 (8)で示される化合物の製造法としては、下記の方法が挙げられる 力 これに制限されるものではない。
まず上記と同様の方法により、重合性官能基 (W )を含むスルホン酸ィ匕合物(17) からスルホン酸エステルイ匕合物(20)を合成する。さらに重合反応に供し、式(7)で示 される化合物へと誘導する。その際、一部のスルホン酸エステルが遊離のスルホン酸 となって、式 (8)で示される化合物となる場合がある。
[0049] [化 22]
0 o
Figure imgf000021_0001
W, w,
(17) (18)
A" A"
HO— X— Y— Z (10)
0: =S= :0 O: ; s=o
W I
(19)
Figure imgf000021_0002
(7) [0050] 上記式(1)〜(10)で表されるスルホン酸エステルイ匕合物は、加熱処理などによりス ルホン酸が生じること、およびこのスルホン酸化合物が電子受容性を示すことから、 酸発生剤や電子受容性物質前駆体として好適に用いることができる。
スルホン酸エステルイ匕合物は低極性溶媒を含む広範囲の溶媒に対して高溶解性 を示すため、多種多様な溶媒を使用して溶液の物性を調製することが可能であり、塗 布特性が高い。そのためスルホン酸エステルの状態で塗布し、塗膜の乾燥時または 焼成時にスルホン酸を発生させることが好まし 、。
スルホン酸エステル力 スルホン酸が発生する温度は、室温で安定、かつ、焼成温 度以下であることが好ましいため、 40〜300°Cが良い。さらにワニス内での高い安定 性と焼成時の脱離の容易性を考慮すると、 80〜230°Cが好ましぐ 120〜180°Cが より好まし 、。
[0051] 上記式(1)〜(10)で表されるスルホン酸エステルイヒ合物はそれ自体電子受容性 物質として用いることができる。特に式(3) , (4)の化合物において、 mが 1以上の場 合、スルホン酸基が存在してそれ自身強い電子受容性を示すことから、電子受容性 物質として好適に用いることができる。
上記式 (4)および(7)〜(10)で表されるスルホン酸エステルイヒ合物は、高分子量 物質として使用することが可能である。分子量は特に限定されないが、高溶解性を維 持しつつ分子量を増大させると、膜内での移動性の抑制、成膜時の塗膜の安定ィ匕が 期待出来るため、高分子量である事が望ましいが、分子量が大きすぎると溶解性の 低下や凝集が生じる場合がある。具体的な範囲としては数平均分子量で 5000〜 10 0000であると好ましく、 20000〜50000であるとさらに好まし!/、。
[0052] 上記式(1)〜(10)で表されるスルホン酸エステルイ匕合物は、電荷輸送機構の本体 である電荷輸送性物質と一緒に溶剤に溶解または分散させることで、電荷輸送性ヮ ニスとすることができる。ここで、電荷受容性物質は、電荷輸送能および成膜均一性 を向上させるために用いられるものであり、電荷受容性ドーパント物質と同義である。 なお、電荷輸送性とは、導電性と同義であり、本発明においては正孔輸送性と同義 である。電荷輸送性ワニスは、そのもの自体に電荷輸送性があってもよぐワニスから 得られる固体膜に電荷輸送性があってもょ 、。 電荷輸送性物質は、溶剤によって溶解または均一に分散する電荷輸送性オリゴマ 一またはポリマーであれば特に限定されな 、が、一種類の連続した共役単位を持つ オリゴマーである力、相異なる連続した共役単位の組み合わせを持つオリゴマーが 望ましい。
[0053] ここで、共役単位は、電荷を輸送できる原子、芳香環、共役基であれば特に限定さ れるものではないが、好ましくは、置換もしくは非置換の 2〜4価のァ-リン基、チオフ ェン基、フラン基、ピロール基、ェチ-レン基、ビ-レン基、フエ-レン基、ナフタレン 基、ォキサジァゾール基、キノリン基、シロール基、シリコン原子、ピリジン基、フエ-レ ンビ-レン基、フルオレン基、力ルバゾール基、トリアリールアミン基、金属—もしくは 無金属 フタロシアニン基、および金属 もしくは無金属 ポルフィリン基等が挙げ られる。
置換基の具体例としては、それぞれ独立して水素、水酸基、ハロゲン基、アミノ基、 シラノール基、チオール基、カルボキシル基、スルホン酸基、リン酸基、リン酸エステ ル基、エステル基、チォエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノ ォキシ基、オルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル基、スルホン 基等が挙げられ、これらの官能基は、さらにいずれかの官能基で置換されていてもよ い。
上記一価炭化水素基、オルガノォキシ基、オルガノアミノ基、オルガノシリル基、ォ ルガノチォ基、およびァシル基などにおける炭素数は特に限定されるものではな ヽ 力 一般に炭素数 1〜20、好ましくは 1〜8である。
[0054] なお、一価炭化水素基、オルガノォキシ基、オルガノアミノ基、オルガノシリル基、ォ ルガノチォ基、ァシル基の具体例は、上述のとおりである。
好ましい置換基として、フッ素、スルホン酸基、置換もしくは非置換のオルガノォキ シ基、アルキル基、オルガノシリル基が挙げられる。なお、共役単位が連結して形成 される共役鎖は、環状である部分を含んでいてもよい。
[0055] 電荷輸送性物質の数平均分子量は、溶解性を高めることを考慮すると、 5000以下 であることが望ましぐ低揮発性および電荷輸送性発現のために分子量 200以上で あることが望ましい。少なくとも一種類の溶剤に対して高溶解性を示す物質がよぐ少 なくとも一種類の溶剤に対して高溶解性を示す物質であるならば、数平均分子量 50 00〜500000であってもよ!/ヽ。
[0056] 電荷輸送物質としては、特に、特開 2002— 151272号公報に記載のオリゴァユリ ン誘導体が好適に用いられる。すなわち、式(21)で表されるオリゴァニリン誘導体が 好適である。なお、以下における一価炭化水素基、オルガノォキシ基およびァシル 基としては、先に述べた基と同様のものが挙げられる。
[0057] [化 23]
Figure imgf000024_0002
(式中、 R8は、水素原子、一価炭化水素基、またはオルガノォキシ基を示し、 R9およ び R11は、それぞれ独立して水素原子または一価炭化水素基を示し、 D1および D2は 、それぞれ独立して下記式(22)または(23)
[0058] [化 24]
Figure imgf000024_0001
[0059] で表される 2価の基であり、 Ru〜RlQは、それぞれ独立して水素、水酸基、一価炭化 水素基、オルガノォキシ基、ァシル基、またはスルホン酸基を示し、 s' および t' は それぞれ独立に 1以上の整数で、^ + ≤ 20を満足する。)
[0060] さらに、分子内の π共役系をなるベく拡張させた方が、得られる電荷輸送性薄膜の 電荷輸送性が向上することから、特に、式 (24)で示されるオリゴァ-リン誘導体、ま たはその酸ィ匕体であるキノンジィミン誘導体を用いることが好ましい。なお、式(24)の 2つのベンゼン環において、同一の符号を付した置換基は、同時に同一でも、異なつ ていてもよい。
[0061] [化 25] 十 R1U (24)
(式中、 R8〜R14、s' および 1 は、上記と同じ意味を示す。)
[0062] 式(21)および(24)において、 + は、良好な電荷輸送性を発揮させるという 点から、 4以上であることが好ましぐ溶媒に対する溶解性を確保するという点から、 1 6以下であることが好まし 、。
さらに、 R8が水素原子、かつ、 R1Qがフエニル基である場合、すなわち、式(24)のォ リゴァ-リン誘導体の両末端がフエ-ル基で封止されて 、ることが好まし 、。
これらの電荷輸送物質は 1種類のみを使用してもよぐ 2種類以上の物質を組み合 わせて使用してもよい。
上記式(21)で示される化合物の具体例としては、フエ-ルテトラァ-リン、フエニル ペンタァ-リン、テトラァ-リン(ァ-リン 4量体)、ォクタァ-リン(ァ-リン 8量体)等の 有機溶媒な可溶なオリゴァニリン誘導体が挙げられる。
[0063] さらに、その他の電荷輸送性物質の合成法としては、特に限定されないが、例えば 文献、ブレティン'ォブ'ケミカル'ソサエティ'ォブ 'ジャパン(Bulletin of Chemical Soc iety of Japan)、 1994年、第 67卷、 p. 1749— 1752、シンセティック'メタルズ(Synth etic Metals)、米国、 1997年、第 84卷、 p. 119— 120【こ記載されて!ヽるオリゴァニリ ン合成法や、例えば文献、ヘテロサイクルズ(Heterocycles)、 1987年、第 26卷、 p. 939— 942、ヘテロサイクルズ(Heterocycles;)、 1987年、第 26卷、 p. 1793— 1796 に記載されているオリゴチォフェン合成法などが挙げられる。
[0064] 本発明の電荷輸送性ワニスにおいて、電荷輸送性物質および電荷受容性物質を 良好に溶解し得る高溶解性溶剤を、ワニスに使用する溶剤全体に対して 5〜: L00重 量%の割合で使用してもよい。この場合、高溶解性溶剤によって、ワニスは完全に溶 解して 、る力、均一に分散して 、る状態となって 、ることが好まし!/、。
高溶解性溶剤としては、特に限定されるものではなぐ例えば、水、メタノール、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N—メチルピロリドン、 N, N, ジメチルイミダゾリジノン、ジメチルスルホキシド、クロ口ホルム、トルエン、メタノール 等が挙げられる。
[0065] また、本発明の電荷輸送性ワニスは、 20°Cで 10〜200mPa'sの粘度を有し、常圧 で沸点 50〜300°Cの高粘度有機溶剤を、少なくとも一種類含有することが望ましい。 さらに、電荷輸送性ワニスは、 20°〇で50〜150111?& ' 5の粘度、常圧で沸点 150〜2 50°Cの有機溶剤を含有することが好適である。
高粘度有機溶剤としては、特に限定されるものではなぐ例えば、シクロへキサノー ル、エチレングリコール、エチレングリコールジクリシジルエーテル、 1, 3—オタチレン グリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ト リプロピレングリコール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、プロピレング リコール、へキシレンダリコール等が挙げられる。
[0066] 本発明のワニスに用いられる溶剤全体に対する高粘度有機溶剤の添加割合は、固 体が析出しない範囲内であることが好ましぐ固体が析出しない限りにおいて、添カロ 割合は、 5〜80質量%とすることができる。
なお、基板に対する濡れ性の向上、溶剤の表面張力の調整、極性の調整、沸点の 調整等の目的で、焼成時に膜の平坦性を付与し得るその他の溶剤を、該ワニスに使 用する溶剤全体に対して 1〜90質量%、好ましくは 1〜50質量%の割合で混合する ことちでさる。
このような溶剤としては、特に限定されるものではなぐ例えば、ブチルセ口ソルブ、 ジエチレングリコールジェチノレエーテル、ジプロピレングリコーノレモノメチノレエーテノレ
、ェチルカルビトール、ジアセトンアルコール、 γ ブチロラタトン、乳酸ェチル等が 挙げられる。
[0067] 以上で説明した電荷輸送性ワニスを基材上に塗布し、溶剤を蒸発させることによつ て基材上に電荷輸送性塗膜を形成させることができる。
ワニスの塗布方法としては、特に限定されるものではないが、ディップ法、スピンコ ート法、スプレー法、インクジェット法、転写印刷法、ロールコート法、刷毛塗り等が挙 げられ、 、ずれにぉ ヽても均一な成膜が可能である。
[0068] 溶剤の蒸発法としても特に限定されるものではないが、ホットプレートやオーブンを 用いて、適切な雰囲気下、すなわち、大気、窒素等の不活性ガス、真空中等で蒸発 を行 、、均一な成膜面を有する膜を得ることが可能である。
焼成温度は、溶剤を蒸発させることができれば特に限定されないが、 40〜250°C が好ましい。より高い均一成膜性を発現させるため、また基材上で反応を進行させる ために、 2段階以上の温度変化をつけてもよい。
塗布および蒸発操作によって得られる電荷輸送性薄膜の膜厚は、特に限定されな いが、有機 EL素子内で電荷注入層として用いる場合、 5〜200nmであることが望ま しい。膜厚を変化させる方法としては、ワニス中の固形分濃度の変化や塗布時の基 板上溶液量変化等の方法がある。
[0069] 本発明の電荷輸送性ワニスを使用する OLED素子の作製方法、使用材料としては 、以下の方法および材料を挙げることができる力 これらに限定されるものではない。 使用する電極基板は、洗剤、アルコール、純水等による液体洗浄を行って予め浄 化しておき、陽極基板では、使用直前にオゾン処理、酸素 プラズマ処理等の表面 処理を行うことが好ましい。ただし陽極材料が有機物を主成分とする場合、表面処理 は行わなくともよい。
[0070] 正孔輸送性ワニスを OLED素子に使用する場合、例えば、以下の方法を採用すれ ばよい。
すなわち、陽極基板に対して当該正孔輸送性ワニスを用いて上記の膜作製方法に より、電極上に正孔輸送性薄膜を作製する。これを真空蒸着装置内に導入し、正孔 輸送層、発光層、電子輸送層、電子注入層、陰極金属を順次蒸着して OLED素子と する。この際、発光領域をコントロールするために任意の層間にキャリアブロック層を 設けてもよい。
[0071] 陽極材料としては、インジウム錫酸ィ匕物(ITO)、インジウム亜鉛酸化物(IZO)に代 表される透明電極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性 を有するポリチォフェン誘導体や、ポリア-リン類を用いることもできる。
正孔輸送層を形成する材料としては、(トリフエ-ルァミン)ダイマー誘導体 (TPD)、 ( a—ナフチルジフエ-ルァミン)ダイマー( α NPD)、 [ (トリフエ-ルァミン)ダイマ 一]スピロダイマー(Spiro— TAD)等のトリアリールアミン類、 4, 4,, 4"—トリス [3— メチルフエ-ル(フエ-ル)ァミノ]トリフエ-ルァミン(m—MTD ATA)、 4, 4,, 4"ート リス [1—ナフチル(フエ-ル)ァミノ]トリフエ-ルァミン(1— TNATA)等のスターバー ストアミン類、 5, 5"—ビス— {4— [ビス(4—メチルフエ-ル)ァミノ]フエ-ル} 2, 2, : 5' , 2"ターチォフェン(BMA— 3T)等のオリゴチォフェン類を挙げることができる。 発光層を形成する材料としては、トリス(8—キノリノラート)アルミニウム (III) (Alq )、
3 ビス(8 キノリノラート)亜鉛 (II) (Znq )、ビス(2—メチル 8 キノリノラート)(p フ
2
ェユルフェノラート)アルミニウム(III) (BAlq)、 4, 4,—ビス(2, 2 ジフエ-ルビ-ル )ビフエ-ル (DPVBi)等が挙げられる。なお、電子輸送材料または正孔輸送材料と、 発光性ドーパントとを共蒸着することによって発光層を形成してもよい。
[0072] 電子輸送材料としては、 Alq、 BAlq、 DPVBi、(2— (4 ビフエ-ル)—5— (4 t
3
ブチルフエ-ル) 1, 3, 4 ォキサジァゾール)(PBD)、トリァゾール誘導体 (TA Z)、バソクプロイン (BCP)、シロール誘導体等が挙げられる。
発光性ドーパントとしては、キナクリドン、ルブレン、クマリン 540、 4 (ジシァノメチ レン) 2—メチル 6— (p ジメチルアミノスチリル) 4H ピラン(DCM)、トリス( 2—フエ-ルビリジン)イリジウム(III) (Ir (ppy) )、 (1, 10—フエナント口リン)一トリス(
3
4, 4, 4 トリフルオロー 1 (2 チェ-ル) ブタン—1, 3 ジオナート)ユーロピウ ム(III) (Eu (TTA) phen)等が挙げられる。
3
キャリアブロック層を形成する材料としては、 PBD、 TAZ、および BCPが挙げられる [0073] 電子注入層としては、酸化リチウム (Li O)、酸化マグネシウム(MgO)、アルミナ (A
2
1 0 )、フッ化リチウム(LiF)、フッ化マグネシウム(MgF )、フッ化ストロンチウム(SrF
2 3 2 2
)、リチウムキノンノリド (Liq)、リチウムァセチルァセトナート錯体 (Li (acac) )、酢酸リ チウム、安息香酸リチウム等が挙げられる。
陰極材料としては、アルミニウム、マグネシウム—銀合金、アルミニウム—リチウム合 金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
[0074] 本発明の電荷輸送性ワニスを OLED素子に使用する場合、例えば、以下の方法を 採用すればよい。
陰極基板上に当該電子輸送性ワニスを用いて電子輸送性薄膜を作製し、これを真 空蒸着装置内に導入し、上記と同様の材料を用いて電子輸送層、発光層、正孔輸 送層、正孔注入層を形成した後、陽極材料をスパッタリング等の方法により成膜して OLED素子とする。
[0075] 本発明の電荷輸送性ワニスを用いた PLED素子の作製方法は、例えば、以下の方 法が挙げられる力 これに限られるものではない。
上記 OLED素子作製において、正孔輸送層、発光層、電子輸送層、電子注入層 の真空蒸着操作を行う代わりに、発光性電荷輸送性高分子層を形成することにより、 本発明の電荷輸送性ワニスによって形成される電荷輸送性薄膜を含む PLED素子 を作製することができる。
具体的には、陽極基板に対して当該正孔輸送性ワニスを上記の方法により塗布し て電極上に正孔輸送性薄膜を作製し、その上部に発光性電荷輸送性高分子層を形 成し、さらに、陰極電極を蒸着して PLED素子とする。
あるいは、陰極基板に対して当該電子輸送性ワニスを用い、上記の方法により電極 上に電子輸送性薄膜を作製し、その上部に発光性電荷輸送性高分子層を形成し、 さらに陽極電極をスパッタリング、蒸着、スピンコート等で作製して PLED素子とする。
[0076] 陰極および陽極材料としては、上記 OLED素子で例示したものと同様の物質が使 用でき、同様の洗浄処理、表面処理を行うことができる。
発光性電荷輸送性高分子層の形成法としては、発光性電荷輸送性高分子材料、 またはこれに発光性ドーパントを加えた材料に対して溶剤をカ卩え、溶解または均一に 分散させ、正孔輸送性薄膜を形成した電極基板に塗布した後に、溶剤の蒸発により 成膜する方法が挙げられる。
発光性電荷輸送性高分子材料としては、ポリ(9, 9ージアルキルフルオレン) (PD
AF)等のポリフルオレン誘導体、ポリ(2—メトキシー5—(2, 一ェチルへキソキシ)一
1, 4 フエ-レンビ-レン)(MEH— PPV)等のポリフエ-レンビ-レン誘導体、ポリ(
3—アルキルチオフェン)(PAT)などのポリチォフェン誘導体、ポリビュルカルバゾー ル (PVCz)等を挙げることができる。
[0077] 溶剤としては、トルエン、キシレン、クロ口ホルム等を挙げることができ、溶解または 均一分散法としては、攪拌、加熱攪拌、超音波分散等の方法により溶解または均一 に分散する方法が挙げられる。
塗布方法としては、特に限定されるものではないが、ディップ法、スピンコート法、転 写印刷法、ロールコート法、刷毛塗り等が挙げられる。塗布は、窒素、アルゴン等の 不活性ガス下で行うことが望ま ヽ。
溶剤の蒸発法としては不活性ガス下または真空中で、オーブンまたはホットプレー トで加熱する方法を挙げることができる。
実施例
[0078] 以下、合成例、実施例および比較例を挙げて、本発明をより具体的に説明するが、 本発明は下記の実施例に限定されるものではない。
[合成例 1]
下記反応式に従い、ナフタレンジスルホン酸ィ匕合物オリゴマー 2 (以下、 NSO— 2と 略す)を合成した。
[0079] [化 26]
Figure imgf000030_0001
NSO- 2
[0080] よく乾燥させた 1 ナフトール—3, 6 ジスルホン酸ナトリウム (東京化成工業 (株) 製) 934mgに、窒素雰囲気下で、パーフルォロビフエ-ル 450mg、 60%水素化ナト リウム 166mg、および無水 N, N ジメチルイミダゾリジノン 50mlを順次加え、反応系 を窒素置換した後、 80°Cで 43時間攪拌した。
室温まで放冷後、水を加えて反応を停止させ、減圧下、濃縮乾固した。残渣にメタ ノール 5mlをカ卩え、得られた懸濁液をジェチルエーテル 100mlに攪拌しながら加え た。室温で 1時間攪拌後、析出した固体を濾取し、濾物にメタノール 25mlを力卩ぇ超 音波で懸濁させた。不溶の固体を濾過によって除去し、濾液を減圧下濃縮乾固した 。残渣にメタノール—水(1 : 2) 12mlをカ卩ぇ溶解し、陽イオン交換榭脂ダウエックス 65 0C (Hタイプ)約 2mlを加え 10分間攪拌した後に濾過し、濾液を陽イオン交換榭脂ダ ゥェッタス 650C (Hタイプ約 40ml、留出溶媒:メタノール一水( 1: 2) )を用 ヽたカラム クロマトグラフィーにより精製した。
[0081] pHl以下の分画を減圧下で濃縮乾固し、イソプロパノールで一回共沸した後、残 渣にイソプロパノール 2mlをカ卩え、得られた溶液をジェチルエーテル 50ml中に攪拌 しながら加えた。室温で 1時間攪拌後、上澄み液を除去し、残渣を減圧下で乾固して 984mgの黄色粉末を得た (収率 81%)。
この黄色粉末を MALDI— TOF - MSにより分析した結果、 NSO— 2由来と考えら れるメインピークが検出された。
MS (MALDI-TOF-MS-): m/z 901 (M— H)—
[0082] [実施例 1]
[化 27]
(25)
Figure imgf000031_0001
1, 3—ベンゼンジスルホン酸ジクロリド(アルドリッチ製) 998mgに、窒素雰囲気下、 脱水テトラヒドロフラン(以下、 THFという) 20mLをカ卩えてこれを溶解させた。この溶 液中に、氷浴下で脱水プロピレングリコールモノメチルエーテル(以下、 PGMEという ) 0. 85mL、 60%水素化ナトリウム 325mgを順次カ卩え、そのまま 15分間攪拌した。 室温まで昇温して 40分間攪拌し、さらに 60%水素化ナトリウム 526mgをカ卩え、室温 で 30分間攪拌した。反応混合物をセライト濾過し、ジクロロェタン、 PGMEで順次洗 浄し、合わせた濾液に CG— 50 (アルドリッチ製)および水をカ卩えて pH7とし、再度セ ライト濾過を行った。
濾液を濃縮した後ジクロロェタンをカ卩え、シリカゲル濾過(シリカゲル 18g)し、ジクロ ロェタン洗浄を行った後に、合わせた濾液を濃縮乾固し、残渣をへキサンで 3回洗浄 した後、減圧下で乾固して式(25)で示されるスルホン酸エステルイ匕合物 936mg (無 色油状物、収率 68%)を得た。 H-NMR(300MHz, CDC1 ) δ (ppm): 1.35 (6H, d), 3.19 (6H, s), 3.3—3.5 (4H, m), 4.8
3
3 (2H, ddt), 7.72 (1H, dd), 8.16 (2H, dd), 8.50 (1H, dd).
Rf value (1,2— dichloroethane(DCE)): 0.13—0.36.
[0084] [実施例 2]
[化 28]
Figure imgf000032_0001
[0085] 1, 3—ベンゼンジスルホン酸ジクロリド(アルドリッチ製) 998mgに、窒素雰囲気下、 脱水 THF20mLをカ卩えてこれを溶解させた。この溶液中に、水浴(20°C)下、グリシド ール 0. 58mL、 60%水素化ナトリウム 351mgを順次加え、そのまま 2. 5時間攪拌し た。反応混合物をセライト濾過し、ジクロロェタンで洗浄した後、合わせた濾液を減圧 下で濃縮乾固した。残渣にジクロロェタンをカ卩え、シリカゲル濾過(シリカゲル 8g)し、 ジクロロエタン洗净を行った。合わせた濾液を減圧下濃縮乾固し、残渣をへキサンで 3回洗浄した後減圧下乾固して式(26)で示されるスルホン酸エステルイ匕合物 472m g (無色油状物、収率 37%)を得た。
Rf value (DCE): 0.22-0.54; (DCE:EtOAc=10:l): 0.50-0.67
[0086] [実施例 3]
合成例 1で得られた NSO— 2 2. 664gに、窒素雰囲気下、無水酢酸 11. 7mLを 加え、超音波で均一に分散させた後、水浴(20°C)下、脱水ピリジン 4. 8mLを加え、 室温で 26時間攪拌した。その後、反応系内にジェチルエーテル 80mLを加え、超音 波で均一に分散させた後吸引濾過し、濾物を減圧下乾固して式 (27)で示されるス ルホン酸ピリジン塩 2. 977g (白色粉末、収率 83%)を得た。
[0087] [化 29]
Figure imgf000032_0002
[0088] 得られたスルホン酸ピリジン塩 1. 506gに、窒素雰囲気下、塩化チォ -ル 7. 5mL を加えて 80°Cで 8時間攪拌した。反応混合物を減圧下で濃縮乾固して式(28)で表 されるスルホン酸塩化物の粗生成物 (褐色粉末)を得た。
[0089] [化 30]
Figure imgf000033_0001
[0090] 得られた褐色粉末に、水浴(20°C)下、脱水ピリジン 15mL、脱水 PGME3mLを順 次加え、室温で 2時間攪拌した。反応混合物を減圧下で濃縮乾固した後、ジクロロェ タンで 2回共沸し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル 50g、ジクロ 口エタン→ジクロロェタン:酢酸ェチル 10: 1)で精製し、 Rf値(ジクロロェタン:酢酸ェ チル 10 : 1) 0. 4〜0. 5付近のフラクションを減圧下で濃縮乾固して式(29)で表され るスルホン酸エステルイ匕合物 712mg (橙色油状物、収率 48%)を得た。
MS (ESI+, in MeOH— 0.02M NH OAc): 1207 [M+NH ]+
4 3
[0091] [化 31]
Figure imgf000033_0002
[0092] [比較例 1]
[化 32]
Figure imgf000033_0003
[0093] 1, 3—ベンゼンジスルホン酸ジクロリド(アルドリッチ製) 1. 003gに、窒素雰囲気下 、ピリジン 10mLをカ卩えて溶解させた後、水浴(20°C)下、シクロへキサノール 0. 90m Lを加え、室温で 20時間攪拌した。反応混合物をジェチルエーテル 50mL中に注カロ し、不溶の固体を吸引濾過によって除去した。濾液を減圧下濃縮乾固し、トルエン共 沸を 1回行った後に、シリカゲル濾過(シリカゲル 20g)し、ジクロロェタン洗浄を行つ た。合わせた濾液を減圧下で濃縮乾固して式(30)で示されるスルホン酸エステルイ匕 合物 529mg (無色油状物、収率 36%)を得た。
NMR(300MHz, CDC1 ) δ (ppm): 1.2—1.9 (20H, m), 4.63 (2H, dddd), 7.75 (1H, d
3
d), 8.16 (2H, dd), 8.45 (1H, dd).
Rf value (DCE): 0.5-0.6
[0094] [比較例 2]
[化 33]
Figure imgf000034_0001
[0095] 実施例 3に記載の方法でスルホン酸ピリジン塩(27) 260mgからスルホン酸塩化物
(28)の粗生成物を得た。得られたスルホン酸塩ィ匕物(28)に対し、水浴(15°C)下で 脱水ピリジン 2. 5mLを加え、超音波で均一に分散させた後、水浴(15°C)下で脱水 シクロへキサノール 0. 5mLをカ卩え、室温で 7時間攪拌した。反応混合物をジェチル エーテル 15mL中に注カ卩し、不溶の固体を減圧濾過で除去し、濾液を減圧下で乾 固し、トルエン共沸を 2回行って式(31)で示されるスルホン酸エステル化合物を含む 油状物 326mgを得た。
MS (ESI+, in MeOH— 0.02M NH OAc): 1247 [M+NH ]+, 1165 [M— C H +NH ]+, 1083
4 3 6 10 3
[M-2C H +NH ]+.
6 10 3
上記 MS分析値より、反応中または精製操作中に、シクロへキシル基の脱離が生じ 、最終物中に遊離のスルホン酸が含まれることが分力つた。また得られた油状物は、 酢酸ェチルおよび水による分液洗净処理やシリカゲル精製処理によって分解が生じ
、これ以上の精製を行うことはできな力つた。これらの事実より、シクロへキシル基の脱 離性が PGME基と比較して高ぐ精製が困難であることがわかる。
[0096] [比較例 3]
[化 34]
Figure imgf000035_0001
[0097] 実施例 3に記載の方法でスルホン酸ピリジン塩(27) 25 lmgからスルホン酸塩化物
(28)の粗生成物を得た。得られたスルホン酸塩ィ匕物(28)に、水浴(15°C)下、脱水 ピリジン 2. OmLを加え、超音波で均一に分散させた後、水浴(15°C)下、脱水イソブ タノール 0. 5mLを加え、室温で 20時間攪拌した。反応混合物をジェチルエーテル 1 2. 5mL中に注加し、不溶の固体を減圧濾過で除去し、濾液を減圧下で乾固し、トル ェン共沸を 1回行って式(32)で示されるスルホン酸エステル化合物を含む油状物 8 4mgを得た。
得られた油状物はトルエンおよび水による分液洗浄処理やシリカゲル精製処理に よって分解が生じ、これ以上の精製を行うことはできな力つた。これらの事実より、イソ ブチルエステルは分解性が高ぐ精製が困難であることが分かる。
[0098] [比較例 4]
[化 35]
Figure imgf000035_0002
実施例 3に記載の方法でスルホン酸ピリジン塩(27) lOlmgからスルホン酸塩化物 (28)の粗生成物を得た。得られたスルホン酸塩ィ匕物(28)に、水浴(15°C)下で脱水 ピリジン 1. OmLを加え、超音波で均一に分散させた後、水浴(15°C)下で脱水 n— ブタノール 0. 2mLをカ卩え、室温で 4時間攪拌した。 TLCにより反応を追跡したが目 的物由来の低極性点はわずかに発生するにとどまった。この事実より n—ブチルエス テル (33)は、反応性が低いか分解性が高いために、収率よく合成を行うことが困難 であることが分力ゝる。
[0100] [比較例 5]
[化 36]
Figure imgf000036_0001
[0101] 実施例 3に記載の方法でスルホン酸ピリジン塩(27) lOOmgからスルホン酸塩化物
(28)の粗生成物を得た。得られたスルホン酸塩ィ匕物(28)に、水浴(15°C)下で脱水 ピリジン 1. OmLをカ卩え、超音波で均一に分散させた後、水浴(15°C)下で脱水シクロ ヘプタノール 0. 2mLをカ卩え、室温で 4時間攪拌した。 TLCにより反応を追跡したが 目的物由来の低極性点はわずかに発生するにとどまった。この事実よりシクロへプチ ルエステル(34)は反応性が低いか分解性が高いために、収率よく合成を行うことが 困難であることが分力る。
[0102] [実施例 4]
[化 37]
Figure imgf000036_0002
4—スチレンスルホン酸ナトリウム 50. OOg (アルドリッチ社製)に、純水 250mLをカロ えて溶解し、陽イオン交換榭脂ダウエックス 650C (Hタイプ,以下 650Cと略す) 25m 1をカロえ 5分間攪拌し、分取した上澄液に、 650C25mlを加えて 5分間攪拌し、さらに 分取した上澄液に、 650Cを 50mlをカ卩えて 5分間攪拌し、最終的に分取した上澄液 を、 650C (500ml、留出溶媒:水)を用いたカラムクロマトグラフィーにより精製した。 イオン交換されて得られた 4—スチレンスルホン酸の水溶液に対し、メタノール 100 mLおよびピリジン 27mLを順次カ卩え、 10分間攪拌した後、減圧下濃縮乾固し、メタノ ールを用いて 1回共沸操作を行った後にメタノール 58mLをカ卩えて溶解し、得られた 溶液をジェチルエーテル 1. 16L中に攪拌しながら滴下した。室温で 15分間攪拌し た後、上澄液を除去し、残渣を減圧下乾固して 4 スチレンスルホン酸ピリジン塩 50 . 20g (白色粉末,収率 85%)を得た。
[0104] 上記の方法により得られた 4 スチレンスルホン酸ピリジン塩粗精製物 38. 41gに 対し、塩化チォニル 115mLをカ卩え、 12分間加熱還流し、室温まで放冷後、減圧下 濃縮乾固した。得られた淡黄色油状物に対して無水ピリジン 4mLを加え溶解した後 、無水 PGME1. OmLを加え、超音波およびガラス棒粉砕により懸濁させ、室温で 3 0分間攪拌した。反応系を減圧下濃縮乾固し、 1, 2—ジクロロェタンで 1回共沸した 後、シリカゲル濾過した (シリカゲル 8g,溶媒および洗浄液: 1, 2 ジクロロェタン)。 濾液を減圧下濃縮乾固し、モノマーであるスルホン酸エステルイ匕合物の粗精製物 22 . 77gを得た。得られたモノマー粗精製物を、シリカゲルカラムクロマトグラフィー (溶 媒:ジクロロエタン→ジクロ口エタン:酢酸ェチル = 20 : 1→10: 1)により精製し、スル ホン酸エステル化合物モノマー 11. 98g (無色液体,収率 32%)を得た。
[0105] 上記の方法により得られたスルホン酸エステル化合物モノマー 9. 31gに対し、窒素 雰囲気下、無水酢酸ェチル 37mLを加えて溶解し、窒素パブリングにより脱気した後 、 AIBN23. 5mgの無水酢酸ェチル 0. 38mL溶液を窒素雰囲気下で加え、 80°Cで 6時間攪拌した。室温まで放冷後、約 30mLになるまで減圧濃縮し、メタノール 200m Lに攪拌しながら注加した。室温で 20分間攪拌した後、吸引濾過し、濾物を減圧乾 燥して式(35)で表されるポリスチレンスルホン酸エステルイ匕合物 5. Olg (白色粉末, 収率 54%)を得た。
NMR(300MHz, CDC1 ) δ (ppm): 1.1—1.9 (6H, br), 3.1—3.3 (3H, br), 3.3—3.6 (2H
3
, br), 4.6-4.9 (1H, br), 6.4—6.9 (2H, br), 7.5-7.9 (2H, br). GPC: Mn (数平均分子量) 26408; Mw (重量平均分子量) 71420 ; Mz (Z平均分子量) 2 35146
[0106] 上記実施例 1〜4および比較例 1で得られたスルホン酸エステル化合物にっ ヽて、 TG— DTAを測定した。評価結果を表 1に示す。なお、測定装置および条件は以下 のとおりである。
測定装置:熱分析装置システム WS002、(株)マックサイエンス製
昇温速度: 5°CZ分
[0107] [表 1]
Figure imgf000038_0001
[0108] また、実施例 1〜4で得られた各スルホン酸エステルイ匕合物および NSO— 2の各種 溶媒に対する溶解性を、以下の手法により評価した。結果を表 2に示す。
〈溶解性評価法〉
各サンプルに対して質量比 20倍量の各溶媒を加え、室温攪拌、加熱攪拌、または 超音波振動を加えて溶解を試みた。加熱攪拌したものについては室温まで冷却した 後観察を行った。表中〇は完全に溶解しており固体析出あるいは固体の残存が全く 無いことを示し、表中 Xは固体析出あるいは固体残存があることを示している。
[0109] [表 2]
Figure imgf000038_0002
[0110] 表 2〖こ示されるよう〖こ、実施例 1〜4で得られたスルホン酸エステルイ匕合物は、遊離 のスルホン酸を有する NSO— 2と比較して、種々の有機溶媒に対して高い溶解性を 示すことが分かる。
[0111] [実施例 5]
実施例 3で得られたスルホン酸エステル化合物(29) 136mgと、ブレティン'ォブ 'ケ ミカル'ソサエティ'ォブ 'ジャパン(Bulletin of Chemical Society of Japan)、 1994年、 第 67卷、 p. 1749— 1752に記載されている方法に準じて合成した、下記式で示さ れるフエ-ルテトラァ-リン(PTA) 50mgとの混合物に対し、ジメチルァセトアミド(D MAc) l. 44mlを、窒素雰囲気下で加えて溶解し、さらに窒素雰囲気下でシクロへキ サノール 4. 28mlをカ卩えて室温で攪拌し、緑色透明のワニスを得た(固形分 3. 3質 量%)。得られたワニスは、 25°Cまで冷却しても固体析出が見られな力つた。
[0112] [化 38]
Figure imgf000039_0001
[0113] [実施例 6]
実施例 5で得られたワニスを、直前まで 40分間オゾン洗浄を行った ITO基板上にス ピンコートし、その後、焼成して膜厚 22nmの電荷輸送性薄膜 (正孔輸送性薄膜)を 形成した。得られた電荷輸送性薄膜は非晶質固体であった。
[0114] [実施例 7]
実施例 5で得られたワニスを、直前まで 40分間オゾン洗浄を行った ITO基板上にス ピンコートし、その後、焼成して膜厚 67nmの電荷輸送性薄膜 (正孔輸送性薄膜)を 形成した。得られた電荷輸送性薄膜は非晶質固体であった。
[0115] [実施例 8]
実施例 4で得られたスルホン酸エステルイ匕合物(35) 116mgと、上記に示した PTA 50mgとの混合物に対し、ジメチルァセトアミド(DMAc) 2. 40mlを窒素雰囲気下で 加えて溶解し、さらに窒素雰囲気下でシクロへキサノール 2. 40mlをカ卩えて室温で攪 拌し、緑色透明のワニスを得た(固形分 3. 5質量%)。得られたワニスは、 0°Cまで冷 却しても固体析出が見られなカゝつた。
得られたワニスを、直前まで 40分間オゾン洗浄を行った ITO基板上にスピンコート し、その後、焼成して膜厚 36nmの電荷輸送性薄膜 (正孔輸送性薄膜)を形成した。 得られた電荷輸送性薄膜は非晶質固体であった。
[0116] [比較例 6]
(+ )— 10—カンフアスルホン酸 206mgと、 PTAlOOmgとの混合物に、 DMAcl. 87mlを、窒素雰囲気下で加えて溶解し、さらにシクロへキサノール 5. 53mlをカ卩えて 室温で攪拌し、緑色透明のワニスを得た(固形分 4. 2質量%)。得られたワニスを用 い、実施例 6に記載の方法によって膜厚 12nmの電荷輸送性薄膜 (正孔輸送性薄膜 )を得た。得られた電荷輸送性薄膜は非晶質固体であった。
[0117] [比較例 7]
比較例 6と同様にして、膜厚 24nmの電荷輸送性薄膜 (正孔輸送性薄膜)を得た。 得られた電荷輸送性薄膜は非晶質固体であった。
[0118] [比較例 8]
PTA1. OOOgに、 5—スノレホサジチノレ酸ニ水禾ロ物 2. 298g、および N, N—ジメチ ルァセトアミド (DMAc) 17. 50gを窒素雰囲気下でカ卩えて溶解し、得られた溶液に シクロへキサノール 52. 50gをカ卩えて撹拌し、ワニスを調製した(固形分 4. 1質量0 /0) 得られたワニスをスピンコート法により 40分間オゾン洗浄を行った ITOガラス基板上 に塗布した後、空気中 180°Cで 2時間焼成し、膜厚 21nmの電荷輸送性薄膜 (正孔 輸送性薄膜)を得た。
[0119] 上記実施例 6〜8および比較例 6〜8で使用したワニスの粘度、薄膜作製時の焼成 条件、薄膜の膜厚、イオンィ匕ポテンシャル (以下 Iと略す)値を表 3に併せて示す。
P
なお、ワニス粘度、膜厚、 I値は下記装置により測定した。
P
[1]粘度
E型粘度計 (ELD— 50、東京計器社製)、測定温度: 20°C
[2]膜厚
表面形状測定装置 (DEKTAK3ST、日本真空技術社製)により測定した。
[3]1値
P
光電子分光装置 (AC— 2、理研計器 (株)製)により測定した。 [0120] [表 3]
Figure imgf000041_0001
[0121] 表 3〖こ示されるよう〖こ、実施例 6〜8で得られた薄膜の I値は充分に高い値を示して
Ρ
おり、スルホン酸エステル化合物(29) , (35)は塗膜後の加熱処理によって良好な電 荷受容性物質として機能することがわ力る。
[0122] [実施例 9]
実施例 6の方法で正孔輸送性薄膜を形成した ΙΤΟ基板を真空蒸着装置内に導入 し、 a— NPD、 Alq、 LiF、 Alを順次蒸着し、 OLED素子を得た。膜厚はそれぞれ 4
3
Onm、 60nm、 0. 5nm、 lOOnmとし、それぞれ 8 X 10— 'Pa以下の圧力となつてから 蒸着操作を行った。蒸着レートは LiFを除いて 0. 3〜0. 4nmZsとし、 LiFについて は 0. 02〜0. 04nmZsとした。蒸着操作間の移動操作は真空中で行った。
[0123] [実施例 10]
実施例 8の方法で正孔輸送性薄膜を形成した ITO基板を真空蒸着装置内に導入 し、実施例 9と同条件で、 a— NPD、 Alq、 LiF、 Alを順次蒸着し、 OLED素子を得
3
た。
[0124] [比較例 9]
ITOガラス基板を 40分間オゾン洗浄した後、真空蒸着装置内に導入し、実施例 9と 同条件で、 a— NPD、 Alq、 LiF、 Alを順次蒸着し、 OLED素子を得た。
3
[0125] [比較例 10]
比較例 6の方法で正孔輸送性薄膜を形成した ITO基板を真空蒸着装置内に導入 し、実施例 9と同条件で、 a— NPD、 Alq、 LiF、 Alを順次蒸着し、 OLED素子を得
3
た。
[0126] [比較例 11] 比較例 7の方法で正孔輸送性薄膜を形成した ITO基板を真空蒸着装置内に導入 し、実施例 9と同条件で、 a— NPD、 Alq、 LiF、 Alを順次蒸着し、 OLED素子を得
3
た。
[0127] [比較例 12]
比較例 8の方法で正孔輸送性薄膜を形成した ITO基板を真空蒸着装置内に導入 し、実施例 9と同条件で、 a— NPD、 Alq、 LiF、 Alを順次蒸着し、 OLED素子を得
3
た。
[0128] 上記実施例 9, 10、比較例 9〜 12で得られた OLED素子の特性を、下記装置を用 いて測定した。結果を表 4に示す。
[1]EL測定システム:発光量子効率測定装置 (EL1003、プレサイスゲージ製)
[2]電圧計(電圧発生源):プログラマブル直流電圧 Z電流源 (R6145、アドバンテス ト製)
[3]電流計:デジタルマルチメータ (R6581D、アドバンテスト製)
[4]輝度計: LS— 110 (ミノルタ製)
[0129] [表 4]
Figure imgf000042_0001
4に示されるように、実施例 6で得られたワニスから作製された正孔輸送性薄膜を 備える OLED素子 (実施例 9)は、この正孔輸送性薄膜を含まない OLED素子と比較 して駆動電圧が低下し、電流効率および最高輝度は同等以上であることがわかる。 また実施例 9の OLED素子は、ドーパントとして本発明に規定されるスルホン酸エス テル化合物ではなく 5 SSAを用 ヽて 、る比較例 12の素子と比べても、駆動電圧が 低下し最高輝度が上昇していることがわかる。なお、実施例 9で作製した OLED素子 の発光面の均一性は良好であり、ダークスポットは認められな力つた。
実施例 10の OLED素子は、実施例 9の OLED素子とともに良好な電流効率を示し ていることがわかる。すなわち実施例 4記載のスルホン酸エステルイ匕合物が、成膜後 、ホール注入層用電子受容性物質としてとして有効に機能して 、ることがわ力る。
[実施例 11]
実施例 3で得られたスルホン酸エステルイ匕合物(29) 24. 5mgと、特許文献 4に記 載の方法により合成した電荷輸送性ホスト物質 BBD19. Omgとの混合物に、トルェ ン 3. 24mlを加え、室温で攪拌して赤橙色透明のワニスを得た(固形分濃度 1. 5質 量%)。得られたワニスは、 25°Cまで冷却しても固体析出が見られな力つた。この 結果より、当該スルホン酸エステル化合物は、 BBDのような低極性溶媒に対して溶 解性の高!、電荷輸送性ホスト物質と併用することで、トルエンのような低極性溶媒の みを用いても、固体析出させずに電荷輸送性ワニスを調製可能であることが分かる。

Claims

請求の範囲 [1] 式(1)で表されることを特徴とするスルホン酸エステルイ匕合物。
[化 1]
Figure imgf000044_0001
(式中、 Aは置換または非置換の一価炭化水素基を示し、 Xは置換または非置換の 二価炭化水素基を示し、 Yは 0、 S、または置換もしくは非置換の 2価アミノ基を示し、 Zは水素原子または置換もしくは非置換の一価炭化水素基を示す。 )
[2] 式(2)で表される請求項 1記載のスルホン酸エステルイ匕合物。
[化 2]
A
0=S:
O O—
(2)
Figure imgf000044_0002
(式中、 Ri〜R4は、それぞれ独立して、水素原子、非置換もしくは置換の一価炭化水 素基、またはハロゲン原子を示す。 A、 Zは前記と同じ。 )
[3] 前記 Aが、置換または非置換の芳香環である請求項 1または 2記載のスルホン酸ェ ステル化合物。
[4] 式(3)または式 (4)で表されることを特徴とするスルホン酸エステルイ匕合物。
[化 3]
Figure imgf000045_0001
(3) (4)
(式中、 A' は(SO H) m、X' および(SO— X— Y— Z) !!1で置換された炭化水素
3 3
基を示し、 Xは置換または非置換の二価炭化水素基を示し、 Yは o、 s、または置換 もしくは非置換の 2価アミノ基を示し、 Zは水素原子または任意の一価炭化水素基を 示し、 X' は、 0、 Sまたは NHを示し、 Bは、置換もしくは非置換の炭化水素基、 1, 3 , 5—トリアジン基、または置換もしくは非置換の式(5)もしくは(6)
[化 4]
Figure imgf000045_0002
で示される基 (式中、 w1および w2は、それぞれ独立して、 o、 s、 s(o)基、 s(o 2 )基
、または非置換もしくは置換基が結合した N、 Si、 P、 P (O)基を示す。)を表し、 qは、 Β^Χ' との結合数を示し、 l≤qを満たす整数であり、 rは繰り返し単位数を示し、 1≤ rを満たす整数であり、 mは 0以上の整数であり、 n1は 1以上の整数であり、 n2は 1以上 の整数である。なお、 n +mは式(3)において A' が許容する置換数以下を満たし、 n2+mは式 (4)において の許容する置換数以下を満たす。 )
[5] 式(7)または式 (8)で表されること特徴とするスルホン酸エステルイ匕合物。
[化 5]
Figure imgf000046_0001
(7) (8)
(式中、 Wは、置換または非置換の 3価炭化水素基を示し、 A"は、置換もしくは非置 換の 2価芳香環基または単結合を示し、 Xは、置換または非置換の二価炭化水素基 を示し、 Yは、 0、 S、または置換もしくは非置換の 2価アミノ基を示し、 Zは、水素原子 または任意の一価炭化水素基を示す。 sは、 2〜: L00000の整数を示す。 tは、 1〜1 00000の整数を示し、 uは、 1〜: L00000の整数を示し、 t+uは、 2〜: L00000を満 たす。)
[6] 式(9)または式(10)で表される請求項 5記載のスルホン酸エステルイ匕合物。
[化 6]
Figure imgf000046_0002
(9) (10)
(式中、 R5〜R7は、それぞれ独立して、水素原子、非置換もしくは置換の一価炭化水 素基、またはハロゲン原子を示す。 A"、 X、 Y、 Z、 s、 tおよび uは、前記と同じ。 )
[7] 数平均分子量が、 5000〜 1000000である請求項 5または 6記載のスルホン酸エス テル化合物。
[8] 前記 m力 Oである請求項 4記載のスルホン酸エステルイ匕合物。
[9] 請求項 4記載のスルホン酸エステル化合物からなる電子受容性物質。
[10] 請求項 1〜8の 、ずれか 1項記載のスルホン酸エステルイ匕合物からなる酸発生剤。
[11] 請求項 1〜8のいずれか 1項記載のスルホン酸エステル化合物を含む電荷輸送性 ワニス。
[12] 請求項 1〜8の!ヽずれか 1項記載のスルホン酸エステル化合物を含む電荷輸送性 薄膜。
[13] 請求項 11記載の電荷輸送性ワニスから得られる電荷輸送性薄膜。
[14] 請求項 11記載の電荷輸送性ワニスを基材上に塗布し、加熱することを特徴とする 電荷輸送性薄膜の製造方法。
[15] 請求項 12または 13記載の電荷輸送性薄膜を備える有機エレクト口ルミネッセンス 素子。
[16] 式(11)
[化 7]
Figure imgf000047_0001
(式中、 Aは置換または非置換の一価炭化水素基を示す。 )
で表されるスルホン酸化合物を、塩基と反応させて式(12)
[化 8]
Figure imgf000047_0002
(式中、 Aは前記と同じ。 V+は、ナトリウムイオン、カリウムイオン、ピリジ-ゥムイオンま たは第 4級アンモ-ゥムイオンを示す。 )
で表されるスルホン酸塩化合物に誘導し、このスルホン酸塩ィ匕合物をノヽロゲンィ匕試 薬と反応させて式 (13)
[化 9] 0 0 (13)
W A s————
(式中、 Aは前記と同じ。 Wはハロゲン原子を示す。 )
で表されるスルホ-ルハライド化合物に誘導し、このスルホ-ルハライド化合物を式(
14)
[化 10]
HO—— X—— Y—— Z (14)
(式中、 Xは置換または非置換の二価炭化水素基を示し、 Yは o、 s、または置換もし くは非置換の 2価アミノ基を示し、 Zは水素原子または置換もしくは非置換の一価炭 化水素基を示す。 )
で表されるアルコールィ匕合物と反応させることを特徴とする、式(1)
[化 11]
Figure imgf000048_0001
(式中、 A、 X、 Y、および Ζは前記と同じ。 )
で表されるスルホン酸エステルイ匕合物の製造方法。
PCT/JP2007/053009 2006-02-23 2007-02-20 スルホン酸エステル化合物およびその利用 WO2007099808A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008502710A JP5136795B2 (ja) 2006-02-23 2007-02-20 スルホン酸エステル化合物からなる電子受容性物質前駆体およびその利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006046760 2006-02-23
JP2006-046760 2006-02-23

Publications (1)

Publication Number Publication Date
WO2007099808A1 true WO2007099808A1 (ja) 2007-09-07

Family

ID=38458920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053009 WO2007099808A1 (ja) 2006-02-23 2007-02-20 スルホン酸エステル化合物およびその利用

Country Status (3)

Country Link
JP (1) JP5136795B2 (ja)
TW (1) TW200800870A (ja)
WO (1) WO2007099808A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949378B1 (ko) 2007-12-31 2010-03-25 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
JP2013545834A (ja) * 2010-10-15 2013-12-26 シーメンス インダストリー インコーポレイテッド カチオン交換膜を製造するためのモノマー溶液の製造方法
JP2014141455A (ja) * 2012-11-30 2014-08-07 Rohm & Haas Electronic Materials Llc 低温適用のためのイオン性熱酸発生剤
WO2015050253A1 (ja) 2013-10-04 2015-04-09 日産化学工業株式会社 アニリン誘導体およびその利用
WO2015053320A1 (ja) 2013-10-09 2015-04-16 日産化学工業株式会社 アリールスルホン酸化合物及びその利用並びにアリールスルホン酸化合物の製造方法
US9508935B2 (en) 2012-04-02 2016-11-29 Seiko Epson Corporation Function layer ink, method for manufacturing light-emitting element, light-emitting device, and electronic apparatus
WO2017150412A1 (ja) 2016-03-03 2017-09-08 日産化学工業株式会社 電荷輸送性ワニス
WO2017164158A1 (ja) 2016-03-24 2017-09-28 日産化学工業株式会社 アリールアミン誘導体とその利用
WO2017217455A1 (ja) * 2016-06-16 2017-12-21 日産化学工業株式会社 スルホン酸エステル化合物及びその利用
WO2017217457A1 (ja) * 2016-06-16 2017-12-21 日産化学工業株式会社 スルホン酸エステル化合物及びその利用
JP2018014513A (ja) * 2012-03-02 2018-01-25 日産化学工業株式会社 電荷輸送性ワニス
WO2018147204A1 (ja) 2017-02-07 2018-08-16 日産化学工業株式会社 電荷輸送性ワニス
WO2018186340A1 (ja) 2017-04-05 2018-10-11 日産化学株式会社 電荷輸送性ワニス
WO2019124415A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 電荷輸送性ワニス
WO2019124412A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 スルホン酸エステル化合物及びその利用
WO2019124413A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 電荷輸送性ワニス及び電荷輸送性薄膜
WO2020218316A1 (ja) 2019-04-26 2020-10-29 日産化学株式会社 アリールスルホン酸エステル化合物の製造方法
CN112778838A (zh) * 2020-12-07 2021-05-11 广东绿展科技有限公司 无机纳米材料印刷油墨及其制备方法
JP7171115B1 (ja) * 2021-03-09 2022-11-15 学校法人中部大学 シラン含有縮合環ジペプチド化合物及びその製造方法、並びにそれを用いたポリペプチド化合物の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001060A (ja) * 1998-04-15 2000-01-07 Fuji Photo Film Co Ltd 輻射線感応性平版印刷版
JP2000310852A (ja) * 1999-04-28 2000-11-07 Fuji Photo Film Co Ltd ポジ型平版印刷用材料
US20020068241A1 (en) * 2000-10-03 2002-06-06 Hidekazu Oohashi Lithographic printing plate precursor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001060A (ja) * 1998-04-15 2000-01-07 Fuji Photo Film Co Ltd 輻射線感応性平版印刷版
JP2000310852A (ja) * 1999-04-28 2000-11-07 Fuji Photo Film Co Ltd ポジ型平版印刷用材料
US20020068241A1 (en) * 2000-10-03 2002-06-06 Hidekazu Oohashi Lithographic printing plate precursor

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949378B1 (ko) 2007-12-31 2010-03-25 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
JP2013545834A (ja) * 2010-10-15 2013-12-26 シーメンス インダストリー インコーポレイテッド カチオン交換膜を製造するためのモノマー溶液の製造方法
JP2018014513A (ja) * 2012-03-02 2018-01-25 日産化学工業株式会社 電荷輸送性ワニス
US9508935B2 (en) 2012-04-02 2016-11-29 Seiko Epson Corporation Function layer ink, method for manufacturing light-emitting element, light-emitting device, and electronic apparatus
JP2014141455A (ja) * 2012-11-30 2014-08-07 Rohm & Haas Electronic Materials Llc 低温適用のためのイオン性熱酸発生剤
WO2015050253A1 (ja) 2013-10-04 2015-04-09 日産化学工業株式会社 アニリン誘導体およびその利用
WO2015053320A1 (ja) 2013-10-09 2015-04-16 日産化学工業株式会社 アリールスルホン酸化合物及びその利用並びにアリールスルホン酸化合物の製造方法
WO2017150412A1 (ja) 2016-03-03 2017-09-08 日産化学工業株式会社 電荷輸送性ワニス
WO2017164158A1 (ja) 2016-03-24 2017-09-28 日産化学工業株式会社 アリールアミン誘導体とその利用
US10513491B2 (en) 2016-06-16 2019-12-24 Nissan Chemical Corporation Sulfonic acid ester compound and use therefor
US10847725B2 (en) 2016-06-16 2020-11-24 Nissan Chemical Corporation Sulfonic acid ester compound and use therefor
JPWO2017217455A1 (ja) * 2016-06-16 2018-08-16 日産化学株式会社 スルホン酸エステル化合物及びその利用
KR102392403B1 (ko) 2016-06-16 2022-04-29 닛산 가가쿠 가부시키가이샤 설폰산에스터 화합물 및 그 이용
JPWO2017217457A1 (ja) * 2016-06-16 2018-09-27 日産化学株式会社 スルホン酸エステル化合物及びその利用
KR102392357B1 (ko) 2016-06-16 2022-04-29 닛산 가가쿠 가부시키가이샤 설폰산에스터 화합물 및 그 이용
KR20190018499A (ko) * 2016-06-16 2019-02-22 닛산 가가쿠 가부시키가이샤 설폰산에스터 화합물 및 그 이용
KR20190018498A (ko) * 2016-06-16 2019-02-22 닛산 가가쿠 가부시키가이샤 설폰산에스터 화합물 및 그 이용
CN109415309A (zh) * 2016-06-16 2019-03-01 日产化学株式会社 磺酸酯化合物及其利用
CN109415310A (zh) * 2016-06-16 2019-03-01 日产化学株式会社 磺酸酯化合物及其利用
CN109415310B (zh) * 2016-06-16 2022-03-01 日产化学株式会社 磺酸酯化合物及其利用
CN109415309B (zh) * 2016-06-16 2022-02-25 日产化学株式会社 磺酸酯化合物及其利用
TWI746578B (zh) * 2016-06-16 2021-11-21 日商日產化學工業股份有限公司 磺酸酯化合物及其利用
WO2017217455A1 (ja) * 2016-06-16 2017-12-21 日産化学工業株式会社 スルホン酸エステル化合物及びその利用
WO2017217457A1 (ja) * 2016-06-16 2017-12-21 日産化学工業株式会社 スルホン酸エステル化合物及びその利用
WO2018147204A1 (ja) 2017-02-07 2018-08-16 日産化学工業株式会社 電荷輸送性ワニス
WO2018186340A1 (ja) 2017-04-05 2018-10-11 日産化学株式会社 電荷輸送性ワニス
WO2019124412A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 スルホン酸エステル化合物及びその利用
TWI784107B (zh) * 2017-12-20 2022-11-21 日商日產化學股份有限公司 電荷輸送性清漆以及電荷輸送性薄膜
JPWO2019124412A1 (ja) * 2017-12-20 2020-12-24 日産化学株式会社 スルホン酸エステル化合物及びその利用
JPWO2019124413A1 (ja) * 2017-12-20 2021-01-14 日産化学株式会社 電荷輸送性ワニス及び電荷輸送性薄膜
US20210078934A1 (en) * 2017-12-20 2021-03-18 Nissan Chemical Corporation Charge-transporting varnish
JP7310609B2 (ja) 2017-12-20 2023-07-19 日産化学株式会社 電荷輸送性ワニス
WO2019124413A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 電荷輸送性ワニス及び電荷輸送性薄膜
TWI808111B (zh) * 2017-12-20 2023-07-11 日商日產化學股份有限公司 電荷輸送性塗料、電荷輸送性薄膜以及有機電致發光元件
CN111511717A (zh) * 2017-12-20 2020-08-07 日产化学株式会社 磺酸酯化合物及其应用
WO2019124415A1 (ja) * 2017-12-20 2019-06-27 日産化学株式会社 電荷輸送性ワニス
CN111492497A (zh) * 2017-12-20 2020-08-04 日产化学株式会社 电荷传输性清漆和电荷传输性薄膜
CN111492497B (zh) * 2017-12-20 2023-05-26 日产化学株式会社 电荷传输性清漆和电荷传输性薄膜
JP7234937B2 (ja) 2017-12-20 2023-03-08 日産化学株式会社 スルホン酸エステル化合物及びその利用
JPWO2019124415A1 (ja) * 2017-12-20 2020-12-24 日産化学株式会社 電荷輸送性ワニス
WO2020218316A1 (ja) 2019-04-26 2020-10-29 日産化学株式会社 アリールスルホン酸エステル化合物の製造方法
KR20220004096A (ko) 2019-04-26 2022-01-11 닛산 가가쿠 가부시키가이샤 아릴술폰산 에스테르 화합물의 제조 방법
CN112778838A (zh) * 2020-12-07 2021-05-11 广东绿展科技有限公司 无机纳米材料印刷油墨及其制备方法
JP7171115B1 (ja) * 2021-03-09 2022-11-15 学校法人中部大学 シラン含有縮合環ジペプチド化合物及びその製造方法、並びにそれを用いたポリペプチド化合物の製造方法

Also Published As

Publication number Publication date
TW200800870A (en) 2008-01-01
JPWO2007099808A1 (ja) 2009-07-16
JP5136795B2 (ja) 2013-02-06

Similar Documents

Publication Publication Date Title
WO2007099808A1 (ja) スルホン酸エステル化合物およびその利用
KR101241253B1 (ko) 아릴술폰산 화합물 및 전자 수용성 물질로서의 이용
JP5262717B2 (ja) 電荷輸送性ワニス
JP5446267B2 (ja) オリゴアニリン化合物およびその利用
EP2620427B1 (en) Arylsulfonic Acid Compound And Use Thereof As Electron-Acceptor Material
JP4596165B2 (ja) 1,4−ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用
JP4591681B2 (ja) 電荷輸送性ワニス
JP5196175B2 (ja) 電荷輸送性ワニス
JP2013163710A (ja) ポリイミド前駆体、ポリイミド、電荷輸送性組成物、及びポリイミド前駆体の製造方法
JP5217231B2 (ja) オリゴアニリン化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714535

Country of ref document: EP

Kind code of ref document: A1