WO2017164158A1 - アリールアミン誘導体とその利用 - Google Patents

アリールアミン誘導体とその利用 Download PDF

Info

Publication number
WO2017164158A1
WO2017164158A1 PCT/JP2017/011169 JP2017011169W WO2017164158A1 WO 2017164158 A1 WO2017164158 A1 WO 2017164158A1 JP 2017011169 W JP2017011169 W JP 2017011169W WO 2017164158 A1 WO2017164158 A1 WO 2017164158A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
bis
layer
Prior art date
Application number
PCT/JP2017/011169
Other languages
English (en)
French (fr)
Inventor
直樹 大谷
誠弥 寺井
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to US16/087,747 priority Critical patent/US20190084920A1/en
Priority to KR1020187030140A priority patent/KR102372197B1/ko
Priority to CN201780019241.2A priority patent/CN108884016B/zh
Priority to EP17770200.8A priority patent/EP3434666A4/en
Priority to JP2018507325A priority patent/JP6763425B2/ja
Publication of WO2017164158A1 publication Critical patent/WO2017164158A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/56Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/06Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms
    • C07C209/10Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms with formation of amino groups bound to carbon atoms of six-membered aromatic rings or from amines having nitrogen atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene

Definitions

  • the present invention relates to an arylamine derivative and its use.
  • organic EL organic electroluminescence
  • a charge transporting thin film made of an organic compound is used as a light emitting layer or a charge injection layer.
  • the hole injection layer is responsible for charge transfer between the anode and the hole transport layer or the light emitting layer, and plays an important function to achieve low voltage driving and high luminance of the organic EL element.
  • the method of forming the hole injection layer is roughly divided into a dry process typified by vapor deposition and a wet process typified by spin coating. Compared with these processes, the wet process is flatter in a larger area. A highly efficient thin film can be produced efficiently. Therefore, at the present time when the area of the organic EL display is being increased, a hole injection layer that can be formed by a wet process is desired.
  • the present inventors are applicable to various wet processes and have a charge transport property that provides a thin film that can realize excellent EL element characteristics when applied to a hole injection layer of an organic EL element.
  • Compounds having good solubility in materials and organic solvents used therefor have been developed (see, for example, Patent Documents 1 to 4).
  • the hole transport layer and the hole injection layer are required to be prepared by a wet process.
  • the underlying hole transport layer and the hole injection / transport layer include Although the solvent resistance used in the composition for forming a light emitting layer is required, the materials of Patent Documents 1 to 4 have room for improvement in this respect.
  • the present invention has been made in view of the above circumstances, and provides an organic solvent that exhibits good solubility in organic solvents and provides a thin film having solvent resistance, and also exhibits good characteristics when applied as a hole transport layer. It is an object to provide an arylamine derivative that provides an EL element.
  • a given arylamine derivative having a crosslinkable group-containing aryl group has excellent solubility in an organic solvent, and converts it into an organic solvent.
  • the varnish prepared by dissolving is heated to thermally crosslink the arylamine derivative, a thin film excellent in solvent resistance can be obtained, and when the thin film is applied to a hole transport layer of an organic EL device, it is good
  • the present invention has been completed by finding that an element exhibiting excellent luminous efficiency can be obtained.
  • Ar 2 independently represents at least one aryl group selected from the formulas (2) to (4)
  • Z 1 represents a halogen atom, a nitro group, a cyano group A group, an amino group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 4
  • Ar 3 represents a hydrogen atom or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 2
  • R 1 to R 39 each independently represents a hydrogen atom, a halogen atom, A nitro group, a cyano group, an amino group, an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 2 , and a carbon number which may be substituted with Z 3 alkyl group of 1 to 20, an alkenyl group or an alkynyl group having 2 to 20 carbon atoms carbon atoms
  • arylamine derivative wherein R is a perfluoroalkyl group and R 1 to R 39 are all hydrogen atoms; 3. 1 or 2 arylamine derivatives in which the bridging group is a vinyl group, 4). Any one of arylamine derivatives 1 to 3, wherein Ar 1 is a 4-vinylphenyl group; 5.
  • a charge transporting varnish comprising a charge transporting material comprising any of the arylamine derivatives 1 to 4 and an organic solvent, 6).
  • a charge transporting thin film prepared from 5 charge transporting varnishes; 7).
  • 6 or 7 charge transporting thin film for a hole transporting layer of an organic electroluminescence device 9.
  • An organic electroluminescence device comprising 6 or 7 charge transporting thin films; 10.
  • Organic electroluminescence device composed, 11.
  • a step of applying a hole injection layer forming varnish on the anode and drying it to form a hole injection layer; and a charge transporting varnish of any one of 1 to 5 on the hole injection layer Applying and heating this to thermally crosslink the crosslinkable group of the arylamine derivative represented by the formula (1) to form a hole transport layer, and a method for producing an organic electroluminescence device, 12
  • the manufacturing method of 11 organic electroluminescent elements including the process of apply
  • the arylamine derivative of the present invention is easily soluble in an organic solvent, and it can be easily dissolved in an organic solvent to prepare a charge transporting varnish.
  • the thin film prepared from the charge transporting varnish of the present invention exhibits high solvent resistance by cross-linking and curing in the arylamine derivative, so that it can be used for manufacturing a coating type device in which other functional layers are laminated by a coating method. Is suitable.
  • the light emitting layer can be easily formed by a coating method.
  • the thin film produced from the charge transportable varnish of the present invention exhibits high charge transportability, it can be suitably used as a thin film for electronic devices including organic EL elements.
  • the charge transporting varnish of the present invention can produce a thin film with excellent charge transportability with good reproducibility even when using various wet processes that can be formed into a large area, such as a spin coating method and a slit coating method, It can sufficiently cope with recent progress in the field of organic EL elements.
  • the arylamine derivative according to the present invention is represented by the formula (1).
  • R independently represents a fluorine atom-containing alkyl group having 1 to 5 carbon atoms
  • Ar 1 independently represents a carbon having a bridging group and optionally substituted with Z 1.
  • Ar 2 independently represents at least one aryl group selected from formulas (2) to (4)
  • Z 1 represents a halogen atom, a nitro group, or a cyano group
  • Ar 1 is preferably the same as each other
  • Ar 2 is preferably the same as each other, but is not limited thereto.
  • the groups represented by formulas (2) to (4) are preferably the following groups from the viewpoint of ease of synthesis, but are not limited thereto.
  • Ar 3 represents a hydrogen atom or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 2
  • R 1 to R 39 independently represent a hydrogen atom, a halogen atom, a nitro A group, a cyano group, an amino group, an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 2 , and an optionally substituted carbon atom with 1 Z 3
  • Y 1 to Y 5 is each independently an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2 , or a
  • fluorine atom-containing alkyl group having 1 to 5 carbon atoms include fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2,2 -Pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 1,1,2,2,3,3,3-heptafluoropropyl group 4,4,4-trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 1,1, Examples include 2,2,3,3,4,4,4-nonafluorobutyl groups.
  • aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group. Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • the crosslinking group possessed by the aryl group having 6 to 20 carbon atoms is not particularly limited as long as it is a group that can react with each other to form a crosslinked structure, but in the present invention, a vinyl group, an epoxy group, or an oxetane is used.
  • acryloyl group (meth) acryloyl group, (meth) acryloyloxy group, cyclobutenyl group and the like are preferable, and among these, vinyl group is more preferable.
  • the bridging group having a cyclic structure such as an epoxy group or a cyclobutenyl group may be condensed with an aryl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic.
  • heteroaryl group having 2 to 20 carbon atoms examples include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, Examples include 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, and the like.
  • alkenyl group having 2 to 20 carbon atoms include ethenyl group, n-1-propenyl group, n-2-propenyl group, 1-methylethenyl group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, n- Examples thereof include a 1-pentenyl group, an n-1-decenyl group, and an n-1-eicosenyl group.
  • alkynyl group having 2 to 20 carbon atoms examples include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1-butynyl group, n-2-butynyl group, and n-3-butynyl.
  • R is preferably a perfluoroalkyl group, and more preferably a trifluoromethyl group.
  • Ar 1 includes 2-vinylphenyl group, 3-vinylphenyl group, 4-vinylphenyl group, 2-oxiranylphenyl group, 3-oxiranylphenyl group, 4-oxiranylphenyl group, 2-glycidyl A phenyl group, 3-glycidylphenyl group, 4-glycidylphenyl group, benzocyclobutenyl group and the like are preferable, and 4-vinylphenyl group is more preferable.
  • Ar 3 is preferably a hydrogen atom or a phenyl group, and more preferably a phenyl group.
  • R 1 to R 39 are preferably hydrogen atoms. Therefore, as Ar 2 , groups represented by the following formulas (10) to (12) are preferable, and groups represented by the formulas (13) to (15) are more preferable.
  • R is a perfluoroalkyl group
  • Ar 1 is a 4-vinylphenyl group
  • Ar 2 is any group of the formulas (10) to (12).
  • R 2 is preferably a perfluoroalkyl group
  • Ar 1 is a 4-vinylphenyl group
  • Ar 2 is any group of the formulas (13) to (15)
  • both R are trifluoromethyl groups.
  • the group, Ar 1 is a 4-vinylphenyl group
  • Ar 2 is any group of the formulas (13) to (15).
  • the arylamine derivative represented by the above formula (1) includes a diamine compound represented by the formula (5) and an aryl compound represented by the formula (6) or the formula (7), as shown in the following scheme: Are reacted in the presence of a catalyst to obtain a compound represented by formula (8) or formula (9), and then the compound represented by formula (8) or formula (9) and formula (7) or It can be produced by reacting an aryl compound represented by the formula (6).
  • Examples of the halogen atom are the same as described above.
  • Examples of pseudohalogen groups include (fluoro) alkylsulfonyloxy groups such as methanesulfonyloxy group, trifluoromethanesulfonyloxy group, and nonafluorobutanesulfonyloxy group; aromatic sulfonyloxy groups such as benzenesulfonyloxy group and toluenesulfonyloxy group Is mentioned.
  • the charging ratio of the diamine compound represented by the formula (5) and the aryl compound represented by the formula (6) or the formula (7), the diamine compound represented by the formula (9), the formula (7) or The charge ratio of the aryl compound represented by the formula (6) is preferably about 2 to 2.4 for the diamine compound 1 with respect to the diamine compound 1 in terms of substance amount (mol).
  • Examples of the catalyst used in the above reaction include copper catalysts such as copper chloride, copper bromide, copper iodide; Pd (PPh 3 ) 4 (tetrakis (triphenylphosphine) palladium), Pd (PPh 3 ) 2 Cl 2 (bis (triphenylphosphine) dichloropalladium), Pd (dba) 2 (bis (dibenzylideneacetone) palladium), Pd 2 (dba) 3 (tris (dibenzylideneacetone) dipalladium), Pd (Pt Examples thereof include palladium catalysts such as —Bu 3 ) 2 (bis (tri (t-butylphosphine)) palladium) and Pd (OAc) 2 (palladium acetate).
  • copper catalysts such as copper chloride, copper bromide, copper iodide
  • Pd (PPh 3 ) 4 tetrakis (triphenylphosphine) palladium
  • These catalysts may be used alone or in combination of two or more. These catalysts may be used together with a known appropriate ligand.
  • ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-t-butylphosphine.
  • the amount of the catalyst used can be about 0.2 mol with respect to 1 mol of the aryl compound represented by formula (6) or (7), but about 0.15 mol is preferable.
  • the amount used can be 0.1 to 5 equivalents relative to the metal complex to be used, but 1 to 2 equivalents is preferred.
  • the above reactions are carried out in a solvent.
  • a solvent the type is not particularly limited as long as it does not adversely affect the reaction.
  • Specific examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatic Group hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene
  • the reaction temperature may be appropriately set in the range from the melting point to the boiling point of the solvent to be used.
  • the desired arylamine derivative can be obtained by post-treatment according to a conventional method.
  • the charge transporting varnish of the present invention contains a charge transporting substance comprising an arylamine derivative represented by the formula (1) and an organic solvent.
  • the organic solvent used for preparing the charge transporting varnish is not particularly limited as long as it can dissolve or disperse the arylamine derivative represented by the formula (1).
  • the solid content concentration of the charge transporting varnish of the present invention is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but is usually 0.1 to 10.0. It is about mass%, preferably 0.5 to 5.0 mass%, more preferably 1.0 to 3.0 mass%.
  • solid content means components other than the organic solvent which comprises a varnish.
  • the arylamine derivative and the organic solvent can be mixed in any order as long as the solid content is uniformly dissolved or dispersed in the solvent.
  • varnish preparation is usually performed in an inert gas atmosphere at normal temperature and pressure, but in an air atmosphere (in the presence of oxygen) unless the compounds in the varnish are decomposed or the composition changes significantly. It may be performed while heating.
  • the charge transporting varnish described above can be suitably used as a varnish for forming a charge transporting thin film such as an organic EL element.
  • the charge transporting thin film can be produced by applying the charge transporting varnish of the present invention on a base and baking it.
  • the charge transporting varnish of the present invention is preferably used as a varnish for forming a hole transport layer laminated on the hole injection layer.
  • the coating method of the varnish is not particularly limited, and examples thereof include a dipping method, a spin coating method, a transfer printing method, a roll coating method, a brush coating, an ink jet method, a spray method, and a slit coating method. Accordingly, it is preferable to adjust the viscosity and surface tension of the varnish.
  • the firing atmosphere is not particularly limited, and a thin film having a uniform film formation surface and a high charge transport property not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum.
  • the firing temperature is appropriately set within a range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability imparted to the obtained thin film, the type and boiling point of the solvent, and the like.
  • the crosslinking reaction of the arylamine derivative represented by the formula (1) by the crosslinking group sufficiently proceeds to form a strong crosslinked structure, it is preferably about 180 to 250 ° C., preferably about 190 to 240 ° C. More preferred.
  • a temperature change of two or more steps may be applied, and the heating may be performed using an appropriate device such as a hot plate or an oven. .
  • the thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 200 nm when used as a hole transporting layer of an organic EL device.
  • a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish and changing the amount of the solution on the substrate during coating.
  • the organic EL device of the present invention has a pair of electrodes, and has a hole transport layer or a hole injection transport layer made of the above-described charge transport thin film of the present invention between these electrodes.
  • this hole transport layer when the light emitting layer laminated
  • Typical examples of the organic EL element include (a) to (f) below, but are not limited thereto.
  • an electron blocking layer or the like can be provided between the light emitting layer and the anode, and a hole (hole) blocking layer or the like can be provided between the light emitting layer and the cathode.
  • the hole injection layer, the hole transport layer, or the hole injection transport layer may have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer, or the electron injection transport layer is a hole. It may have a function as a block layer or the like.
  • A Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • b Anode / hole injection layer / hole transport layer / light emission layer / electron injection transport layer / Cathode
  • c anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • d anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode
  • e anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode
  • f anode / hole injection transport layer / light emitting layer / cathode
  • “Hole injection layer”, “hole transport layer” and “hole injection transport layer” are layers formed between a light emitting layer and an anode, and transport holes from the anode to the light emitting layer.
  • a hole injection transport layer In the case where only one layer of a hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transport layer”, and between the light emitting layer and the anode,
  • the layer close to the anode is a “hole injection layer”, and the other layers are “hole transport layers”.
  • the hole injection (transport) layer a thin film that is excellent not only in accepting holes from the anode but also injecting holes into the hole transport (light emitting) layer is used.
  • Electrode injection layer “Electron injection layer”, “electron transport layer” and “electron injection transport layer” are layers formed between a light emitting layer and a cathode, and have a function of transporting electrons from the cathode to the light emitting layer.
  • the layer of the electron transporting material is disposed between the light emitting layer and the cathode.
  • the layer close to the cathode is an “electron injection layer” and the other layers are “electron transport layers”.
  • the “light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is employed.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • Examples of materials used and methods for producing an organic EL device using the charge transporting varnish of the present invention include the following, but are not limited thereto.
  • the electrode substrate to be used is preferably cleaned in advance by liquid cleaning with a detergent, alcohol, pure water or the like.
  • the anode substrate is subjected to surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use. It is preferable.
  • the surface treatment may not be performed.
  • the example of the manufacturing method of the organic EL element which has a positive hole transport layer which consists of a thin film obtained from the charge transportable varnish of this invention is as follows. First, a hole injection layer is formed on the anode substrate, and the charge transporting varnish of the present invention is applied onto the hole injection layer by the method described above and baked to form a hole transport layer. On this, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order.
  • the hole injection layer, the light emitting layer, the electron transport layer, and the electron injection layer may be formed by any one of a vapor deposition method and a coating method (wet process) depending on the characteristics of the material used.
  • anode material examples include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metal anodes typified by aluminum, alloys thereof, and the like. What performed the chemical conversion process is preferable. Polythiophene derivatives and polyaniline derivatives having high charge transporting properties can also be used. Other metals constituting the metal anode include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, cadmium.
  • Materials for forming the light emitting layer include tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), bis (2-methyl-8-quinolinolato)- 4- (p-phenylphenolate) aluminum (III) (BAlq), 4,4′-bis (2,2-diphenylvinyl) biphenyl, 9,10-di (naphthalen-2-yl) anthracene, 2-t -Butyl-9,10-di (naphthalen-2-yl) anthracene, 2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9-di (4- Methylphenyl) fluorene, 2-methyl-9,10-bis (naphthalen-2-yl) anthracene, 2- (9,9-spirobifluoren-2-yl) -9,9-spir
  • luminescent dopants examples include 3- (2-benzothiazolyl) -7- (diethylamino) coumarin, 2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-10-.
  • Materials for forming the electron transport layer include 8-hydroxyquinolinolate-lithium, 2,2 ′, 2 ′′-(1,3,5-benztolyl) -tris (1-phenyl-1-H-benzimidazole) ), 2- (4-biphenyl) 5- (4-t-butylphenyl) -1,3,4-oxadiazole, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 4, 7-diphenyl-1,10-phenanthroline, bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum, 1,3-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazo-5-yl] benzene, 6,6′-bis [5- (biphenyl-4-yl) -1,3,4-oxadiazo-2-yl] -2,2′- Bipyridine, 3- ( -Biphenyl
  • Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride ( MgF 2 ), cesium fluoride (CsF), strontium fluoride (SrF 2 ), molybdenum trioxide (MoO 3 ), aluminum, Li (acac), lithium acetate, lithium benzoate and the like.
  • Examples of the cathode material include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
  • Materials for forming the hole injection layer include copper phthalocyanine, titanium oxide phthalocyanine, platinum phthalocyanine, pyrazino [2,3-f] [1,10] phenanthroline-2,3-dicarbonitrile, N, N, N ′.
  • N′-tetrakis (4-methoxyphenyl) benzidine 2,7-bis [N, N-bis (4-methoxy-phenyl) amino] -9,9-spirobifluorene, 2,2′-bis [N , N-bis (4-methoxy-phenyl) amino] -9,9-spirobifluorene, N, N′-diphenyl-N, N′-di [4- (N, N-ditolylamino) phenyl] benzidine, N , N′-diphenyl-N, N′-di [4- (N, N-diphenylamino) phenyl] benzidine, N 4 , N 4 ′ -(biphenyl-4,4′-diyl) bis (N 4 , N 4 ', N 4' - birds E sulfonyl-biphenyl-4,4'-diamine) N 1, N 1 '- ( biphenyl
  • 2010/058777 International Publication No. 2010/058776, International Publication No. 2013/042623, International Publication No. Examples thereof include charge transport materials described in 2013/129249, International Publication No. 2014/115865, International Publication No. 2014/12917, International Publication No. 2014/141998, and International Publication No. 2014/132934.
  • aniline derivatives and thiophene derivatives disclosed in International Publication No. 2005/043962, International Publication No. 2013/042623, International Publication No. 2014/141998, and the like are preferable, aniline derivatives are more preferable, and the following formula (H1 ) To (H2) are more preferable.
  • the molecular weight of the charge transporting material constituting the hole injection layer is preferably 200 to 2,000, but considering the conductivity, the lower limit is preferably 300 or more, more preferably 400 or more.
  • the upper limit is preferably 1,500 or less, and more preferably 1,000 or less.
  • the aniline derivative represented by the formula (H1) may be an oxidized aniline derivative (quinonediimine derivative) having a quinonediimine structure represented by the following formula in its molecule.
  • Examples of the method for oxidizing an aniline derivative into a quinonediimine derivative include the methods described in International Publication Nos. 2008/010474 and 2014/119882.
  • R 40 to R 45 each independently represents a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 3
  • a alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2 Represents an NHY 1 , —NY 2 Y 3 , —OY 4 , or —SY 5 group, and Y 1 to Y 5 each independently represents an alkyl having 1 to 20 carbon atoms which may be substituted with Z 3.
  • Z 2 and Z 3 are the same meaning as above
  • the stands, k and l are each independently an integer of 1-5.
  • R 46 to R 49 are each independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, or Z 3 .
  • R 54 to R 57 are each independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, or Z 3 .
  • a group, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an acyl group having 1 to 20 carbon atoms, which may be substituted with Z 2 , R 58 and R 59 are each represented by Independently, phenyl group, naphthyl group, anthryl group, pyridyl group, pyrimidinyl group, pyridazinyl group, pyrazinyl group, furanyl group, pyrrolyl group, pyrazolyl group, imidazolyl group, thienyl group (this These groups may be bonded to each other to form a ring, and may be a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, having 1 to 20 carbon atoms.
  • Z 2 and Z 3 represent the same meaning as described above.
  • a halogen atom an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryl group having 2 to 20 carbon atoms
  • the heteroaryl group include those similar to the above.
  • Specific examples of the aralkyl group having 7 to 20 carbon atoms include benzyl group, phenylethyl group, phenylpropyl group, naphthylmethyl group, naphthylethyl group, naphthylpropyl group and the like.
  • haloalkyl group having 1 to 20 carbon atoms examples include those obtained by substituting at least one hydrogen atom of the alkyl group having 1 to 20 carbon atoms with a halogen atom. Among them, a fluoroalkyl group is preferable, and perfluoro An alkyl group is more preferred.
  • fluoromethyl group examples thereof include fluoromethyl group, difluoromethyl group, trifluoromethyl group, pentafluoroethyl group, 2,2,2-trifluoroethyl group, heptafluoropropyl group, 2,2,3,3,3- Pentafluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,2-trifluoro-1- (trifluoromethyl) ethyl group, nonafluorobutyl group, 4,4,4-trifluoro Butyl group, undecafluoropentyl group, 2,2,3,3,4,4,5,5,5-nonafluoropentyl group, 2,2,3,3,4,4,5,5-octafluoro Pentyl group, tridecafluorohexyl group, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl group, 2,2,3,3,4,4,4 5,5,6,6-Decafluo Hexyl group
  • alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, c-propoxy group, n-butoxy group, i-butoxy group, s-butoxy group, t-butoxy group, n-pentoxy group, n-hexoxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, n-tridecyloxy group, n-tetradecyloxy group, n-pentadecyloxy group, n-hexadecyloxy group, n-heptadecyloxy group, n-octadecyloxy group, n-nonadecyloxy group, n-eicosa Nyl
  • thioalkoxy (alkylthio) group having 1 to 20 carbon atoms include methylthio group, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, s-butylthio group, t-butylthio group.
  • n-pentylthio group n-hexylthio group, n-heptylthio group, n-octylthio group, n-nonylthio group, n-decylthio group, n-undecylthio group, n-dodecylthio group, n-tridecylthio group, n-tetra
  • acyl group having 1 to 20 carbon atoms include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • R 40 to R 45 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms that may be substituted with Z 3 , or 6 to C carbon atoms that may be substituted with Z 2.
  • aryl groups —NHY 1 , —NY 2 Y 3 , —OY 4 , or —SY 5 are preferable, and in this case, Y 1 to Y 5 are each a group having 1 to 3 carbon atoms that may be substituted with Z 3 10 alkyl groups or aryl groups having 6 to 10 carbon atoms which may be substituted with Z 2 are preferred, and alkyl groups having 1 to 6 carbon atoms which may be substituted with Z 3 or substituted with Z 2. More preferred are phenyl groups, and even more preferred are alkyl groups having 1 to 6 carbon atoms or phenyl groups.
  • R 40 to R 45 are more preferably a hydrogen atom, a fluorine atom, a methyl group, a phenyl group or a diphenylamino group (—NY 2 Y 3 wherein Y 2 and Y 3 are phenyl groups), and R 42 to R 45.
  • R 40 and R 41 are more preferably a hydrogen atom or a diphenylamino group at the same time.
  • Z 3 is preferably a halogen atom or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 4 , more preferably a fluorine atom or a phenyl group.
  • Z 2 is preferably a halogen atom or an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 4 ,
  • a fluorine atom or an alkyl group having 1 to 6 carbon atoms is more preferable, and it is even more preferable that it is not present (that is, an unsubstituted group).
  • Z 4 is preferably a halogen atom, more preferably a fluorine atom, and even more preferably not (ie, an unsubstituted group).
  • k and l are preferably k + 1 ⁇ 8 and more preferably k + 1 ⁇ 5 from the viewpoint of enhancing the solubility of the aniline derivative represented by the formula (H1).
  • R 46 to R 49 are preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, A hydrogen atom is more preferable.
  • both R 50 and R 52 are preferably hydrogen atoms.
  • R 50 and R 52 are both hydrogen atoms
  • R 51 and R 53 are each independently a phenyl group
  • this phenyl group is a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, phosphoric acid, Group, sulfonic acid group, carboxyl group, alkoxy group having 1 to 20 carbon atoms, thioalkoxy group having 1 to 20 carbon atoms, alkyl group having 1 to 20 carbon atoms, haloalkyl group having 1 to 20 carbon atoms, 2 to 2 carbon atoms (It may be substituted with an alkenyl group having 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an acyl group having 1 to 20 carbon atoms.) Or a group represented by the above formula (H3)
  • m is preferably 2 to 4 in view of availability of the compound, ease of production, cost, etc., and 2 or 3 is more preferable in consideration of enhancing solubility in a solvent. Considering the balance of availability, ease of production, production cost, solubility in a solvent, transparency of the resulting thin film, etc., 2 is optimal.
  • R 54 to R 57 are preferably a hydrogen atom, a fluorine atom, a sulfonic acid group, an alkyl group having 1 to 8 carbon atoms, a —OY 4 group, a —SiY 6 Y 7 Y 8 group, Atoms are more preferred.
  • the aniline derivatives represented by the formulas (H1) and (H2) may be commercially available products or those produced by known methods such as the methods described in the above publications, Even in this case, it is preferable to use one purified by recrystallization or vapor deposition before preparing the varnish for forming the hole injection layer. By using the purified one, the characteristics of the optical sensor element including the thin film obtained from the composition can be further enhanced.
  • purification by recrystallization for example, 1,4-dioxane, tetrahydrofuran or the like can be used as the solvent.
  • the aniline derivative represented by the formulas (H1) and (H2) is one compound selected from the compounds represented by the formulas (H1) and (H2) (that is, The dispersion of molecular weight distribution 1) may be used alone, or two or more compounds may be used in combination.
  • an aniline derivative represented by the formula (H2) from the viewpoint of enhancing the transparency of the hole injection layer, and it is more preferable to use a benzidine derivative in which the m is 2, and the following formula (g) It is even more preferable to use diphenylbenzidine represented by
  • aniline derivatives suitable as the hole injecting material include the following, but are not limited thereto.
  • the electron-accepting dopant substance is not particularly limited as long as it is soluble in at least one solvent used for the hole injection layer forming varnish.
  • the electron-accepting dopant material include inorganic strong acids such as hydrogen chloride, sulfuric acid, nitric acid and phosphoric acid; aluminum chloride (III) (AlCl 3 ), titanium tetrachloride (IV) (TiCl 4 ), boron tribromide (BBr 3 ), boron trifluoride ether complex (BF 3 ⁇ OEt 2 ), iron chloride (III) (FeCl 3 ), copper (II) chloride (CuCl 2 ), antimony pentachloride (V) (SbCl 5 ), Lewis acids such as arsenic pentafluoride (V) (AsF 5 ), phosphorus pentafluoride (PF 5 ), tris (4-bromophenyl) aluminum hexachloroantimonate (TBPAH); benzenesulfonic acid, tosylic acid, camphorsulfonic acid , Naphthalene disulfuric acid such as hydroxybenzobenz
  • naphthalene trisulfonic acid such as 1,3,6-naphthalene trisulfonic acid, polystyrene sulfonic acid, 1,4 described in International Publication No.
  • 2005/000832 -Aryl sulfonic acid compounds such as benzodioxane disulfonic acid compounds, naphthalene or anthracene sulfonic acid compounds described in WO 2006/025342, and dinonyl naphthalene sulfonic acid compounds described in JP-A-2005-108828
  • Strong organic acids such as 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), organic oxidants such as iodine, Phosphomolybdic acid and phosphorus described in WO2010 / 058777
  • organic oxidants such as iodine, Phosphomolybdic acid and phosphorus described in WO2010 / 058777
  • examples thereof include inorganic oxidizing agents such as heteropolyacids such as tungstic acid and phosphotungstomolybdic
  • aryl sulfonic acid compounds are preferable, and in particular, naphthalene or anthracene sulfonic acid compound represented by the formula (D1), 1,3,5-naphthalene trisulfonic acid, 1,3,6-naphthalene trisulfonic acid, etc.
  • naphthalene trisulfonic acid and polystyrene sulfonic acid are preferred.
  • Z represents O
  • A represents a naphthalene ring or an anthracene ring
  • B represents a divalent to tetravalent perfluorobiphenyl group
  • s represents the number of sulfonic acid groups bonded to A
  • It is an integer that satisfies 1 ⁇ s ⁇ 4
  • t represents the number of bonds between B and Z, and is an integer that satisfies 2 to 4.
  • naphthalene or anthracene sulfonic acid compound represented by the formula (D1) include the following naphthalene sulfonic acid compounds (formula (D2)), but are not limited thereto.
  • a highly soluble solvent capable of satisfactorily dissolving the hole injecting material and the electron-accepting dopant substance used as necessary can be used.
  • Highly soluble solvents can be used singly or in combination of two or more, and the amount used can be 5-100% by mass with respect to the total solvent used in the varnish.
  • Examples of such highly soluble solvents include N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1, Examples include 3-dimethyl-2-imidazolidinone. It is preferable that both the charge transporting substance and the electron-accepting dopant substance are completely dissolved or uniformly dispersed in the organic solvent, thereby providing an organic EL device having good characteristics. In view of obtaining the hole injection layer with good reproducibility, it is more preferable that these substances are completely dissolved in the organic solvent.
  • the varnish for forming a hole injection layer has a viscosity of 10 to 200 mPa ⁇ s, particularly 35 to 150 mPa ⁇ s at 25 ° C., and a high viscosity organic material having a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure. It is preferable to contain at least one solvent.
  • the high-viscosity organic solvent is not particularly limited.
  • cyclohexanol ethylene glycol, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene glycol and the like.
  • the addition ratio of the high-viscosity organic solvent to the entire solvent used in the hole injection layer forming varnish is preferably within a range in which no solid precipitates. As long as no solid precipitates, the addition ratio is 5 to 80 masses. % Is preferred.
  • adjusting the surface tension of the solvent, adjusting the polarity, adjusting the boiling point, etc. 1 to 90% by mass, preferably 1 to 50% by mass can be mixed.
  • a solvent include butyl cellosolve, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl carbitol,
  • Examples include, but are not limited to, diacetone alcohol, ⁇ -butyrolactone, ethyl lactate, and n-hexyl acetate.
  • the solid content concentration of the varnish for forming the hole injection layer is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but usually 0.1 to 10.0. It is about mass%, preferably 0.5 to 5.0 mass%, more preferably 1.0 to 3.0 mass%.
  • solid content means components other than an organic solvent.
  • the substance amount (mol) ratio between the hole injecting material and the electron-accepting dopant substance is appropriately set in consideration of the type of charge transporting property, hole injecting material, etc.
  • the electron-accepting dopant substance is 0.1 to 10, preferably 0.2 to 5.0, more preferably 0.5 to 3.0 with respect to the hole injecting material 1.
  • the viscosity of the varnish for forming a hole injection layer used in the present invention is appropriately adjusted according to the coating method in consideration of the thickness of the thin film to be produced and the solid content concentration. About 1 to 50 mPa ⁇ s.
  • the hole injecting material, the electron-accepting dopant substance, and the organic solvent can be mixed in any order as long as the solid content is uniformly dissolved or dispersed in the solvent.
  • varnish is usually prepared in an inert gas atmosphere at normal temperature and pressure, but in an air atmosphere (in the presence of oxygen) unless the compound in the varnish is decomposed or the composition changes significantly. Or may be performed while heating.
  • the hole injection layer of the present invention can be formed by applying the hole injection layer varnish to the anode of the organic EL element and baking it.
  • the coating method and the firing conditions the same conditions as the hole transport layer forming conditions described above can be adopted.
  • the film thickness is usually about 1 to 200 nm, preferably about 3 to 100 nm, more preferably 5 to 30 nm.
  • a method for changing the film thickness there are methods such as changing the solid content concentration in the composition or changing the amount of the solution at the time of coating.
  • the other example of the manufacturing method of the organic EL element which has a positive hole transport layer which consists of a thin film obtained from the charge transportable varnish of this invention is as follows.
  • the light transport layer varnish is used to form the light transport layer varnish of the present invention.
  • An organic EL device having a charge transporting thin film can be produced. Specifically, the charge transporting varnish of the present invention is applied on the anode substrate on which the hole injection layer is formed, and the hole transporting layer is formed by the above method, and the light emitting polymer layer is formed thereon. Further, a cathode electrode is deposited to obtain an organic EL element.
  • the cathode and anode material to be used the same ones as described above can be used, and the same cleaning treatment and surface treatment can be performed.
  • the light-emitting polymer layer is formed by adding a solvent to a light-emitting polymer material or a material obtained by adding a dopant substance to the light-emitting polymer material, or after uniformly dispersing and applying the solution on a hole transport layer. And a method of forming a film by firing each.
  • Examples of the light-emitting polymer material include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH). And polyphenylene vinylene derivatives such as -PPV), polythiophene derivatives such as poly (3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).
  • polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH).
  • polyphenylene vinylene derivatives such as -PPV
  • polythiophene derivatives such as poly (3-alkylthiophene) (PAT)
  • PVCz polyvinylcarbazole
  • Examples of the solvent include toluene, xylene, chloroform, and the like.
  • Examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
  • the application method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dipping method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating method.
  • the application is preferably performed under an inert gas such as nitrogen or argon.
  • Examples of the firing method include a method of heating in an oven or a hot plate under an inert gas or in a vacuum.
  • a hole block layer, an electron block layer, or the like may be provided between the electrode and any of the above layers as necessary.
  • a hole block layer, an electron block layer, or the like may be provided between the electrode and any of the above layers as necessary.
  • tris (phenylpyrazole) iridium etc. are mentioned as a material which forms an electronic block layer.
  • the materials constituting the anode and the cathode and the layer formed between them differ depending on whether the element having the bottom emission structure or the top emission structure is manufactured. Therefore, the material is appropriately selected in consideration of this point.
  • a transparent anode is used on the substrate side, and light is extracted from the substrate side
  • a reflective anode made of metal is used in the opposite direction to the substrate. Because light is extracted from a certain transparent electrode (cathode) side, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing a device with a bottom emission structure, and Al is used when manufacturing a device with a top emission structure.
  • a reflective anode such as / Nd is used.
  • the organic EL device of the present invention may be sealed together with a water catching agent or the like according to a standard method in order to prevent deterioration of characteristics.
  • the reaction mixture was cooled to room temperature, and ethyl acetate and ion-exchanged water were mixed to carry out a liquid separation treatment.
  • the reaction mixture was cooled to room temperature, mixed with ion-exchanged water and subjected to a liquid separation treatment.
  • the obtained organic layer was washed with ion-exchanged water and saturated brine in that order, and dried over magnesium sulfate.
  • the solvent was distilled off under reduced pressure.
  • the obtained solid was washed with methanol and dried to obtain arylamine derivative 3 (yield: 1.15 g, yield: 39%).
  • the reaction mixture was cooled to room temperature, mixed with toluene, ethyl acetate, and ion-exchanged water, and subjected to liquid separation treatment.
  • the solvent was distilled off under reduced pressure.
  • Example 2-2 A hole transport layer forming varnish 2 was obtained in the same manner as in Example 2-1, except that the arylamine derivative 2 obtained in Example 1-2 was used.
  • Example 2-3 A hole transport layer forming varnish 3 was obtained in the same manner as in Example 2-1, except that the arylamine derivative 3 obtained in Example 1-3 was used.
  • Example 2-4 Hole transport layer in the same manner as in Example 2-1, except that 16 mg of the arylamine derivative 3 obtained in Example 1-3 and 8 mg of the arylamine derivative 4 obtained in Example 1-4 were used. A forming varnish 4 was obtained.
  • Example 2-5 Hole transport layer in the same manner as in Example 2-1, except that 12 mg of the arylamine derivative 3 obtained in Example 1-3 and 12 mg of the arylamine derivative 4 obtained in Example 1-4 were used. A forming varnish 5 was obtained.
  • Example 2-6 A hole transport layer forming varnish 6 was obtained in the same manner as in Example 2-1, except that 24 mg of the arylamine derivative 4 obtained in Example 1-4 was used.
  • the charge transporting thin film containing the crosslinked arylamine derivative of the present invention can be applied to a device in which the upper light emitting layer is a coating type.
  • Example 4-1 Fabrication and characteristic evaluation of organic EL device
  • the hole injection layer forming varnish 1 obtained in Reference Example 1 was applied to an ITO substrate using a spin coater, dried at 80 ° C. for 1 minute, and further baked at 230 ° C. for 15 minutes in an air atmosphere.
  • a uniform thin film (hole injection layer) of 100 nm was formed on the ITO substrate.
  • As the ITO substrate a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 t in which indium tin oxide (ITO) is patterned on the surface with a film thickness of 150 nm is used, and an O 2 plasma cleaning apparatus (150 W, 30 seconds) before use. To remove impurities on the surface.
  • ITO indium tin oxide
  • the hole transport layer forming varnish 1 obtained in Example 2-1 was applied to the ITO substrate on which the thin film was formed using a spin coater, and then baked at 200 ° C. for 30 minutes to inject holes.
  • a uniform thin film (hole transport layer) having a thickness of 20 nm was formed on the layer.
  • CBP and Ir (PPy) 3 were co-evaporated using a vapor deposition apparatus (degree of vacuum: 1.0 ⁇ 10 ⁇ 5 Pa). In the co-evaporation, the deposition rate was controlled so that the concentration of Ir (PPy) 3 was 6%, and the layers were laminated to 40 nm.
  • the organic EL element is placed between the sealing substrates, and the sealing substrate is bonded with an adhesive (XNR5516Z-B1 manufactured by Nagase ChemteX Corporation). It was. At this time, a water catching agent (manufactured by Dynic Co., Ltd., HD-071010W-40) was placed in the sealing substrate together with the organic EL element.
  • the bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
  • Examples 4-2, 4-3 An organic EL device was obtained in the same manner as in Example 4-1, except that the hole transport layer forming varnishes 2 and 3 obtained in Examples 2-2 and 2-3 were used.
  • Example 4-4 to 4-6 Organic EL devices were obtained in the same manner as in Example 4-1, except that the hole transport layer forming varnishes 4 to 6 obtained in Examples 2-4 to 2-6 were used.
  • Example 4-1 An organic EL device was obtained in the same manner as in Example 4-1, except that CBP and Ir (PPy) 3 were directly co-deposited on the hole injection layer.
  • Example 3-2 With respect to the devices manufactured in Examples 4-1 to 4-6 and Comparative Example 4-1, the driving voltage and current efficiency when driving at a luminance of 500 cd / m 2 , and the half life of the luminance (initial luminance 500 cd / m 2) , The time required to reach half, Example 3-2 was not carried out) was measured. The results are shown in Table 2.
  • the EL device provided with the charge transporting thin film of the present invention as a hole transporting layer is excellent in current efficiency and life characteristics.

Abstract

式(1)で表されるアリールアミン誘導体は、有機溶媒への良好な溶解性を示すとともに溶剤耐性を有する薄膜を与えるうえ、正孔輸送層として適用した場合に良好な特性を示す有機EL素子を与える。 〔式中、Rは、互いに独立して、炭素数1~5のフッ素原子含有アルキル基を表し、Ar1は、互いに独立して、架橋基を有するとともに、Z1で置換されていてもよい炭素数6~20のアリール基を表し、Ar2は、互いに独立して、式(2)~(4)から選ばれる少なくとも1つのアリール基を表し、Z1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ4で置換されていてもよい、炭素数1~20のアルキル基を表す。 (式中、Ar3は、水素原子、またはZ2で置換されていてもよい炭素数6~20のアリール基を表し、R1~R39は、互いに独立して、水素原子、ハロゲン原子等を表す。)〕

Description

アリールアミン誘導体とその利用
 本発明は、アリールアミン誘導体とその利用に関する。
 有機エレクトロルミネッセンス(以下、有機ELという)素子には、発光層や電荷注入層として、有機化合物からなる電荷輸送性薄膜が用いられる。特に、正孔注入層は、陽極と、正孔輸送層あるいは発光層との電荷の授受を担い、有機EL素子の低電圧駆動および高輝度を達成するために重要な機能を果たす。
 正孔注入層の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスとに大別され、これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。
 このような事情に鑑み、本発明者らは、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性の良好な化合物を開発してきている(例えば特許文献1~4参照)。
 しかし、近年、正孔輸送層や正孔注入層だけでなく、発光層等もウェットプロセスで作製することが求められ、その際、下地となる正孔輸送層や正孔注入/輸送層には、発光層形成用組成物に用いられる溶剤耐性が求められることになるが、上記特許文献1~4の材料には、この点で改良の余地があった。
国際公開2008/032616号 国際公開2008/129947号 国際公開2006/025342号 国際公開2010/058777号
 本発明は、上記事情に鑑みてなされたものであり、有機溶媒への良好な溶解性を示すとともに溶剤耐性を有する薄膜を与えるうえ、正孔輸送層として適用した場合に良好な特性を示す有機EL素子を与えるアリールアミン誘導体を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、架橋基含有アリール基を有する所定のアリールアミン誘導体が有機溶媒への優れた溶解性を有し、それを有機溶媒へ溶解させて調製したワニスを加熱し、上記アリールアミン誘導体を熱架橋させることで溶剤耐性に優れた薄膜が得られること、および当該薄膜を有機EL素子の正孔輸送層に適用した場合に、良好な発光効率を示す素子が得られることを見出し、本発明を完成させた。
 すなわち、本発明は、
1. 式(1)で表されることを特徴とするアリールアミン誘導体、
Figure JPOXMLDOC01-appb-C000006
〔式中、Rは、互いに独立して、炭素数1~5のフッ素原子含有アルキル基を表し、Ar1は、互いに独立して、架橋基を有するとともに、Z1で置換されていてもよい炭素数6~20のアリール基を表し、Ar2は、互いに独立して、式(2)~(4)から選ばれる少なくとも1つのアリール基を表し、Z1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ4で置換されていてもよい、炭素数1~20のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000007
(式中、Ar3は、水素原子、またはZ2で置換されていてもよい炭素数6~20のアリール基を表し、R1~R39は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、Z3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、-NHY1、-NY23、-OY4、または-SY5基を表し、Y1~Y5は、それぞれ独立して、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、またはZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表し、Z2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ4で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表し、Z3は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ4で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Z4は、ハロゲン原子、ニトロ基、シアノ基、またはアミノ基を表す。)〕
2. 前記Rが、ともにパーフルオロアルキル基であり、R1~R39が、すべて水素原子である1のアリールアミン誘導体、
3. 前記架橋基が、ビニル基である1または2のアリールアミン誘導体、
4. 前記Ar1が、4-ビニルフェニル基である1~3のいずれかのアリールアミン誘導体、
5. 1~4のいずれかのアリールアミン誘導体からなる電荷輸送性物質と、有機溶媒とを含む電荷輸送性ワニス、
6. 5の電荷輸送性ワニスから作製される電荷輸送性薄膜、
7. 5の電荷輸送性ワニスから作製され、その中に、前記式(1)で表されるアリールアミン誘導体の架橋基が反応してなる架橋構造を有する電荷輸送性薄膜、
8. 有機エレクトロルミネッセンス素子の正孔輸送層用である6または7の電荷輸送性薄膜、
9. 6または7の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子、
10. 陽極および陰極と、これら各極間に介在する、正孔注入層、正孔輸送層および発光層を含む複数の機能層と、を備え、前記正孔輸送層が、7の電荷輸送性薄膜から構成される有機エレクトロルミネッセンス素子、
11. 陽極上に、正孔注入層形成用ワニスを塗布し、これを乾燥して正孔注入層を形成する工程と、この正孔注入層上に、1~5のいずれかの電荷輸送性ワニスを塗布し、これを加熱して前記式(1)で表されるアリールアミン誘導体が有する架橋基を熱架橋させて正孔輸送層を形成する工程と、を有する有機エレクトロルミネッセンス素子の製造方法、
12. さらに、前記正孔輸送層の上に、発光層形成用組成物を塗布し、これを乾燥して発光層を形成する工程を含む11の有機エレクトロルミネッセンス素子の製造方法、
13. 式(5)
Figure JPOXMLDOC01-appb-C000008
(式中、Rは、前記と同じ意味を表す。)
で表されるジアミン化合物を、触媒存在下、式(6)または式(7)
Figure JPOXMLDOC01-appb-C000009
(式中、Xは、ハロゲン原子または擬ハロゲン基を表し、Ar1およびAr2は、前記と同じ意味を表す。)
で表されるアリール化合物と反応させて式(8)または式(9)
Figure JPOXMLDOC01-appb-C000010
(式中、R、Ar1およびAr2は、は、前記と同じ意味を表す。)
で表される化合物を得た後、これら式(8)または式(9)で表される化合物と、前記式(7)または式(6)で表されるアリール化合物とを反応させる1のアリールアミン誘導体の製造方法
を提供する。
 本発明のアリールアミン誘導体は有機溶媒に溶けやすく、これを有機溶媒へ溶解させて容易に電荷輸送性ワニスを調製することができる。
 本発明の電荷輸送性ワニスから作製した薄膜は、上記アリールアミン誘導体中の架橋基が架橋硬化して高い溶剤耐性を示すため、塗布法にて他の機能層を積層する塗布型デバイスの作製に適している。特に、この薄膜を有機EL素子の正孔輸送層に適用することで、塗布法にて容易に発光層を形成することができる。
 また、本発明の電荷輸送性ワニスから作製した薄膜は、高い電荷輸送性を示すため、有機EL素子をはじめとした電子デバイス用薄膜として好適に用いることができる。
 さらに、本発明の電荷輸送性ワニスは、スピンコート法やスリットコート法等、大面積に成膜可能な各種ウェットプロセスを用いた場合でも電荷輸送性に優れた薄膜を再現性よく製造できるため、近年の有機EL素子の分野における進展にも十分対応できる。
 以下、本発明についてさらに詳しく説明する。
 本発明に係るアリールアミン誘導体は、式(1)で表される。
Figure JPOXMLDOC01-appb-C000011
 式中、Rは、互いに独立して、炭素数1~5のフッ素原子含有アルキル基を表し、Ar1は、互いに独立して、架橋基を有するとともに、Z1で置換されていてもよい炭素数6~20のアリール基を表し、Ar2は、互いに独立して、式(2)~(4)から選ばれる少なくとも1つのアリール基を表し、Z1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ4で置換されていてもよい、炭素数1~20のアルキル基を表す。
 合成の観点から、Ar1は互いに同一、かつ、Ar2は互いに同一であることが好ましいがこれに限定されない。
Figure JPOXMLDOC01-appb-C000012
 特に、式(2)~(4)で表される基としては、合成の容易性等の観点から以下に示す基が好ましいが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000013
 式中、Ar3は、水素原子、またはZ2で置換されていてもよい炭素数6~20のアリール基を表し、R1~R39は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、Z3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、-NHY1、-NY23、-OY4、または-SY5基を表し、Y1~Y5は、それぞれ独立して、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、またはZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表し、Z2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ4で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表し、Z3は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ4で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Z4は、ハロゲン原子、ニトロ基、シアノ基、またはアミノ基を表す。
 炭素数1~5のフッ素原子含有アルキル基の具体例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基、4,4,4-トリフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。
 炭素数6~20のアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。
 炭素数6~20のアリール基が有する架橋基としては、相互に反応して架橋構造を形成し得る基であれば特に限定されるものではないが、本発明では、ビニル基、エポキシ基、オキセタン基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、シクロブテニル基等が好ましく、これらの中でも、ビニル基がより好ましい。なお、エポキシ基、シクロブテニル基等の環状構造を有する架橋基は、アリール基と縮環していてもよい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 炭素数1~20のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖または分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基などが挙げられる。
 炭素数2~20のヘテロアリール基の具体例としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。
 炭素数2~20のアルケニル基の具体例としては、エテニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルエテニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基、n-1-エイコセニル基等が挙げられる。
 炭素数2~20のアルキニル基の具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基、n-1-ペンタデシニル基、n-1-エイコシニル基等が挙げられる。
 これらの中でも、Rとしては、共にパーフルオロアルキル基が好ましく、トリフルオロメチル基がより好ましい。
 Ar1としては、2-ビニルフェニル基、3-ビニルフェニル基、4-ビニルフェニル基、2-オキシラニルフェニル基、3-オキシラニルフェニル基、4-オキシラニルフェニル基、2-グリシジルフェニル基、3-グリシジルフェニル基、4-グリシジルフェニル基、ベンゾシクロブテニル基等が好ましく、特に、4-ビニルフェニル基がより好ましい。
 Ar3としては、水素原子またはフェニル基が好ましく、フェニル基がより好ましい。
 R1~R39としては、水素原子が好ましい。
 したがって、Ar2としては、下記式(10)~(12)で表される基が好ましく、式(13)~(15)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 本発明における式(1)で表されるアリールアミン誘導体としては、Rが共にパーフルオロアルキル基、Ar1が4-ビニルフェニル基、Ar2が式(10)~(12)のいずれかの基のものが好ましく、Rが共にパーフルオロアルキル基、Ar1が4-ビニルフェニル基、Ar2が式(13)~(15)のいずれかの基のものがより好ましく、Rが共にトリフルオロメチル基、Ar1が4-ビニルフェニル基、Ar2が式(13)~(15)のいずれかの基のものがより一層好ましい。
 上記式(1)で表されるアリールアミン誘導体は、下記スキームに示されるように、式(5)で表されるジアミン化合物と、式(6)または式(7)で表されるアリール化合物とを、触媒存在下で反応させて式(8)または式(9)で表される化合物を得た後、これら式(8)または式(9)で表される化合物と、式(7)または式(6)で表されるアリール化合物とを反応させて製造できる。
Figure JPOXMLDOC01-appb-C000016
(式中、Xは、ハロゲン原子または擬ハロゲン基を表し、R、Ar1およびAr2は、上記と同じ意味を表す。)
 ハロゲン原子としては、上記と同様のものが挙げられる。
 擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基などが挙げられる。
 式(5)で表されるジアミン化合物と、式(6)または式(7)で表されるアリール化合物との仕込み比、および式(9)で表されるジアミン化合物と、式(7)または式(6)で表されるアリール化合物との仕込み比は、物質量(mol)比で、ジアミン化合物1に対して、アリール化合物2~2.4程度が好適である。
 上記反応に用いられる触媒としては、例えば、塩化銅、臭化銅、ヨウ化銅等の銅触媒;Pd(PPh34(テトラキス(トリフェニルフォスフィン)パラジウム)、Pd(PPh32Cl2(ビス(トリフェニルフォスフィン)ジクロロパラジウム)、Pd(dba)2(ビス(ジベンジリデンアセトン)パラジウム)、Pd2(dba)3(トリス(ジベンジリデンアセトン)ジパラジウム)、Pd(P-t-Bu32(ビス(トリ(t-ブチルフォスフィン))パラジウム)、Pd(OAc)2(酢酸パラジウム)等のパラジウム触媒などが挙げられる。これらの触媒は、単独で用いてもよく、2種以上組み合わせて用いてもよい。また、これらの触媒は、公知の適切な配位子とともに使用してもよい。
 このような配位子としては、トリフェニルフォスフィン、トリ-o-トリルフォスフィン、ジフェニルメチルフォスフィン、フェニルジメチルフォスフィン、トリメチルフォスフィン、トリエチルフォスフィン、トリブチルフォスフィン、トリ-t-ブチルフォスフィン、ジ-t-ブチル(フェニル)フォスフィン、ジ-t-ブチル(4-ジメチルアミノフェニル)フォスフィン、1,2-ビス(ジフェニルフォスフィノ)エタン、1,3-ビス(ジフェニルフォスフィノ)プロパン、1,4-ビス(ジフェニルフォスフィノ)ブタン、1,1’-ビス(ジフェニルフォスフィノ)フェロセン等の3級フォスフィン、トリメチルフォスファイト、トリエチルフォスファイト、トリフェニルフォスファイト等の3級フォスファイトなどが挙げられる。
 触媒の使用量は、式(6)または(7)で表されるアリール化合物1molに対して、0.2mol程度とすることができるが、0.15mol程度が好適である。
 また、配位子を用いる場合、その使用量は、使用する金属錯体に対し0.1~5当量とすることができるが、1~2当量が好適である。
 原料化合物が全て固体である場合あるいは目的とするアリールアミン誘導体を効率よく得る観点から、上記各反応は溶媒中で行う。溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば特に制限はない。具体例としては、脂肪族炭化水素類(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、ハロゲン化脂肪族炭化水素類(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ラクタムおよびラクトン類(N-メチルピロリドン、γ-ブチロラクトン等)、尿素類(N,N-ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド類(ジメチルスルホキシド、スルホラン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが挙げられ、これらの溶媒は単独で用いても、2種以上混合して用いてもよい。
 反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、特に、0~200℃程度が好ましく、20~150℃がより好ましい。
 反応終了後は、常法にしたがって後処理をし、目的とするアリールアミン誘導体を得ることができる。
 本発明の電荷輸送性ワニスは、式(1)で表されるアリールアミン誘導体からなる電荷輸送性物質と、有機溶媒とを含むものである。
 電荷輸送性ワニス調製に用いられる有機溶媒としては、式(1)で表されるアリールアミン誘導体を溶解または分散可能なものであれば特に限定されるものではなく、例えば、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、シクロヘキサノール、エチレングリコール、1,3-オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、へキシレングリコール、ブチルセロソルブ、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチルカルビトール、ジアセトンアルコール、γ-ブチロラクトン、エチルラクテート、n-ヘキシルアセテート等が挙げられ、これらは1種単独で用いても、2種以上組み合わせて用いてもよい。
 これらの中でも、トルエン、キシレン等の芳香族炭化水素系溶媒が好ましい。
 本発明の電荷輸送性ワニスの固形分濃度は、ワニスの粘度および表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1~10.0質量%程度であり、好ましくは0.5~5.0質量%、より好ましくは1.0~3.0質量%である。なお、固形分とは、ワニスを構成する有機溶媒以外の成分を意味する。
 本発明の電荷輸送性ワニスを調製する際、固形分が溶媒に均一に溶解または分散する限り、アリールアミン誘導体および有機溶媒を任意の順序で混合することができる。
 また、通常、ワニス調製は、常温、常圧の不活性ガス雰囲気下で行われるが、ワニス中の化合物が分解したり、組成が大きく変化したりしない限り、大気雰囲気下(酸素存在下)で行ってもよく、加熱しながら行ってもよい。
 以上説明した電荷輸送性ワニスは、有機EL素子等の電荷輸送性薄膜形成用ワニスとして好適に用いることができる。具体的には、本発明の電荷輸送性ワニスを下地上に塗布して焼成することで電荷輸送性薄膜を作製することができる。
 特に、本発明の電荷輸送性ワニスは、正孔注入層上に積層される正孔輸送層形成用ワニスとして用いることが好ましい。
 ワニスの塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられ、塗布方法に応じてワニスの粘度および表面張力を調節することが好ましい。
 また、本発明のワニスを用いる場合、焼成雰囲気も特に限定されるものではなく、大気雰囲気だけでなく、窒素等の不活性ガスや真空中でも均一な成膜面および高い電荷輸送性を有する薄膜を得ることができる。
 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度、溶媒の種類や沸点等を勘案して、100~260℃程度の範囲内で適宜設定されるものではあるが、式(1)で表されるアリールアミン誘導体の架橋基による架橋反応を十分に進行させて強固な架橋構造を形成させることを考慮すると、180~250℃程度が好ましく、190~240℃程度がより好ましい。
 なお、焼成の際、より高い均一成膜性を発現させる目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。
 電荷輸送性薄膜の膜厚は特に限定されないが、有機EL素子の正孔輸送層として用いる場合、5~200nmが好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりする等の方法がある。
 本発明の有機EL素子は、一対の電極を有し、これら電極の間に、上述の本発明の電荷輸送性薄膜からなる正孔輸送層または正孔注入輸送層を有するものである。この正孔輸送層において、上に積層される発光層を塗布法で作製する場合には、式(1)で表されるアリールアミン誘導体が架橋した架橋構造を有することが好ましい。
 有機EL素子の代表的な構成としては、以下(a)~(f)が挙げられるが、これらに限定されるわけではない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
 「正孔注入層」、「正孔輸送層」および「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものであり、発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入(輸送)層は、陽極からの正孔受容性だけでなく、正孔輸送(発光)層への正孔注入性にも優れる薄膜が用いられる。
 「電子注入層」、「電子輸送層」および「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものであり、発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。
 「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
 本発明の電荷輸送性ワニスを用いて有機EL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されるものではない。
 使用する電極基板は、洗剤、アルコール、純水等による液体洗浄を予め行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にUVオゾン処理、酸素-プラズマ処理等の表面処理を行うことが好ましい。ただし陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。
 本発明の電荷輸送性ワニスから得られる薄膜からなる正孔輸送層を有する有機EL素子の作製方法の例は、以下のとおりである。
 まず、陽極基板上に正孔注入層を形成し、この正孔注入層の上に、上述した方法によって本発明の電荷輸送性ワニスを塗布して焼成し、正孔輸送層を形成する。
 この上に、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。正孔注入層、発光層、電子輸送層および電子注入層は、用いる材料の特性等に応じて、蒸着法、塗布法(ウェットプロセス)のいずれかで形成すればよい。
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
 なお、金属陽極を構成するその他の金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、カドミウム、インジウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ハフニウム、タリウム、タングステン、レニウム、オスミウム、イリジウム、プラチナ、金、チタン、鉛、ビスマスやこれらの合金等が挙げられるが、これらに限定されるわけではない。
 発光層を形成する材料としては、トリス(8-キノリノラート)アルミニウム(III)(Alq3)、ビス(8-キノリノラート)亜鉛(II)(Znq2)、ビス(2-メチル-8-キノリノラート)-4-(p-フェニルフェノラート)アルミニウム(III)(BAlq)、4,4’-ビス(2,2-ジフェニルビニル)ビフェニル、9,10-ジ(ナフタレン-2-イル)アントラセン、2-t-ブチル-9,10-ジ(ナフタレン-2-イル)アントラセン、2,7-ビス[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン、2-メチル-9,10-ビス(ナフタレン-2-イル)アントラセン、2-(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン、2,7-ビス(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン、2-[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン、2,2’-ジピレニル-9,9-スピロビフルオレン、1,3,5-トリス(ピレン-1-イル)ベンゼン、9,9-ビス[4-(ピレニル)フェニル]-9H-フルオレン、2,2’-ビ(9,10-ジフェニルアントラセン)、2,7-ジピレニル-9,9-スピロビフルオレン、1,4-ジ(ピレン-1-イル)ベンゼン、1,3-ジ(ピレン-1-イル)ベンゼン、6,13-ジ(ビフェニル-4-イル)ペンタセン、3,9-ジ(ナフタレン-2-イル)ペリレン、3,10-ジ(ナフタレン-2-イル)ペリレン、トリス[4-(ピレニル)-フェニル]アミン、10,10’-ジ(ビフェニル-4-イル)-9,9’-ビアントラセン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-[1,1’:4’,1’’:4’’,1’’’-クウォーターフェニル]-4,4’’’-ジアミン、4,4’-ジ[10-(ナフタレン-1-イル)アントラセン-9-イル]ビフェニル、ジベンゾ{[f,f’]-4,4’,7,7’-テトラフェニル}ジインデノ[1,2,3-cd:1’,2’,3’-lm]ペリレン、1-(7-(9,9’-ビアントラセン-10-イル)-9,9-ジメチル-9H-フルオレン-2-イル)ピレン、1-(7-(9,9’-ビアントラセン-10-イル)-9,9-ジヘキシル-9H-フルオレン-2-イル)ピレン、1,3-ビス(カルバゾール-9-イル)ベンゼン、1,3,5-トリス(カルバゾール-9-イル)ベンゼン、4,4’,4”-トリス(カルバゾール-9-イル)トリフェニルアミン、4,4’-ビス(カルバゾール-9-イル)ビフェニル(CBP)、4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル、2,7-ビス(カルバゾール-9-イル)-9,9-ジメチルフルオレン、2,2’,7,7’-テトラキス(カルバゾール-9-イル)-9,9-スピロビフルオレン、2,7-ビス(カルバゾール-9-イル)-9,9-ジ(p-トリル)フルオレン、9,9-ビス[4-(カルバゾール-9-イル)-フェニル]フルオレン、2,7-ビス(カルバゾール-9-イル)-9,9-スピロビフルオレン、1,4-ビス(トリフェニルシリル)ベンゼン、1,3-ビス(トリフェニルシリル)ベンゼン、ビス(4-N,N-ジエチルアミノ-2-メチルフェニル)-4-メチルフェニルメタン、2,7-ビス(カルバゾール-9-イル)-9,9-ジオクチルフルオレン、4,4”-ジ(トリフェニルシリル)-p-ターフェニル、4,4’-ジ(トリフェニルシリル)ビフェニル、9-(4-t-ブチルフェニル)-3,6-ビス(トリフェニルシリル)-9H-カルバゾール、9-(4-t-ブチルフェニル)-3,6-ジトリチル-9H-カルバゾール、9-(4-t-ブチルフェニル)-3,6-ビス(9-(4-メトキシフェニル)-9H-フルオレン-9-イル)-9H-カルバゾール、2,6-ビス(3-(9H-カルバゾール-9-イル)フェニル)ピリジン、トリフェニル(4-(9-フェニル-9H-フルオレン-9-イル)フェニル)シラン、9,9-ジメチル-N,N-ジフェニル-7-(4-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェニル)-9H-フルオレン-2-アミン、3,5-ビス(3-(9H-カルバゾール-9-イル)フェニル)ピリジン、9,9-スピロビフルオレン-2-イル-ジフェニル-フォスフィン オキサイド、9,9’-(5-(トリフェニルシリル)-1,3-フェニレン)ビス(9H-カルバゾール)、3-(2,7-ビス(ジフェニルフォスフォリル)-9-フェニル-9H-フルオレン-9-イル)-9-フェニル-9H-カルバゾール、4,4,8,8,12,12-ヘキサ(p-トリル)-4H-8H-12H-12C-アザジベンゾ[cd,mn]ピレン、4,7-ジ(9H-カルバゾール-9-イル)-1,10-フェナントロリン、2,2’-ビス(4-(カルバゾール-9-イル)フェニル)ビフェニル、2,8-ビス(ジフェニルフォスフォリル)ジベンゾ[b,d]チオフェン、ビス(2-メチルフェニル)ジフェニルシラン、ビス[3,5-ジ(9H-カルバゾール-9-イル)フェニル]ジフェニルシラン、3,6-ビス(カルバゾール-9-イル)-9-(2-エチル-ヘキシル)-9H-カルバゾール、3-(ジフェニルフォスフォリル)-9-(4-(ジフェニルフォスフォリル)フェニル)-9H-カルバゾール、3,6-ビス[(3,5-ジフェニル)フェニル]-9-フェニルカルバゾール等が挙げられ、発光性ドーパントと共蒸着することによって、発光層を形成してもよい。
 発光性ドーパントとしては、3-(2-ベンゾチアゾリル)-7-(ジエチルアミノ)クマリン、2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H,11H-10-(2-ベンゾチアゾリル)キノリジノ[9,9a,1gh]クマリン、キナクリドン、N,N’-ジメチル-キナクリドン、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)、ビス(2-フェニルピリジン)(アセチルアセトネート)イリジウム(III)(Ir(ppy)2(acac))、トリス[2-(p-トリル)ピリジン]イリジウム(III)(Ir(mppy)3)、9,10-ビス[N,N-ジ(p-トリル)アミノ]アントラセン、9,10-ビス[フェニル(m-トリル)アミノ]アントラセン、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(II)、N10,N10,N10’,N10’-テトラ(p-トリル)-9,9’-ビアントラセン-10,10’-ジアミン、N10,N10,N10’,N10’-テトラフェニル-9,9’-ビアントラセン-10,10’-ジアミン、N10,N10’-ジフェニル-N10,N10’-ジナフタレニル-9,9’-ビアントラセン-10,10’-ジアミン、4,4’-ビス(9-エチル-3-カルバゾビニレン)-1,1’-ビフェニル、ペリレン、2,5,8,11-テトラ-t-ブチルペリレン、1,4-ビス[2-(3-N-エチルカルバゾリル)ビニル]ベンゼン、4,4’-ビス[4-(ジ-p-トリルアミノ)スチリル]ビフェニル、4-(ジ-p-トリルアミノ)-4’-[(ジ-p-トリルアミノ)スチリル]スチルベン、ビス[3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)]イリジウム(III)、4,4’-ビス[4-(ジフェニルアミノ)スチリル]ビフェニル、ビス(2,4-ジフルオロフェニルピリジナト)テトラキス(1-ピラゾリル)ボレートイリジウム(III)、N,N’-ビス(ナフタレン-2-イル)-N,N’-ビス(フェニル)-トリス(9,9-ジメチルフルオレニレン)、2,7-ビス{2-[フェニル(m-トリル)アミノ]-9,9-ジメチル-フルオレン-7-イル}-9,9-ジメチル-フルオレン、N-(4-((E)-2-(6((E)-4-(ジフェニルアミノ)スチリル)ナフタレン-2-イル)ビニル)フェニル)-N-フェニルベンゼンアミン、fac-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2’)、mer-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2’)、2,7-ビス[4-(ジフェニルアミノ)スチリル]-9,9-スピロビフルオレン、6-メチル-2-(4-(9-(4-(6-メチルベンゾ[d]チアゾール-2-イル)フェニル)アントラセン-10-イル)フェニル)ベンゾ[d]チアゾール、1,4-ジ[4-(N,N-ジフェニル)アミノ]スチリルベンゼン、1,4-ビス(4-(9H-カルバゾール-9-イル)スチリル)ベンゼン、(E)-6-(4-(ジフェニルアミノ)スチリル)-N,N-ジフェニルナフタレン-2-アミン、ビス(2,4-ジフルオロフェニルピリジナト)(5-(ピリジン-2-イル)-1H-テトラゾレート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾール)((2,4-ジフルオロベンジル)ジフェニルフォスフィネート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾレート)(ベンジルジフェニルフォスフィネート)イリジウム(III)、ビス(1-(2,4-ジフルオロベンジル)-3-メチルベンズイミダゾリウム)(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾレート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾレート)(4’,6’-ジフルオロフェニルピリジネート)イリジウム(III)、ビス(4’,6’-ジフルオロフェニルピリジナト)(3,5-ビス(トリフルオロメチル)-2-(2’-ピリジル)ピロレート)イリジウム(III)、ビス(4’,6’-ジフルオロフェニルピリジナト)(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾレート)イリジウム(III)、(Z)-6-メシチル-N-(6-メシチルキノリン-2(1H)-イリデン)キノリン-2-アミン-BF2、(E)-2-(2-(4-(ジメチルアミノ)スチリル)-6-メチル-4H-ピラン-4-イリデン)マロノニトリル、4-(ジシアノメチレン)-2-メチル-6-ジュロリジル-9-エニル-4H-ピラン、4-(ジシアノメチレン)-2-メチル-6-(1,1,7,7-テトラメチルジュロリジル-9-エニル)-4H-ピラン、4-(ジシアノメチレン)-2-t-ブチル-6-(1,1,7,7-テトラメチルジュロリジン-4-イル-ビニル)-4H-ピラン、トリス(ジベンゾイルメタン)フェナントロリンユーロピウム(III)、5,6,11,12-テトラフェニルナフタセン、ビス(2-ベンゾ[b]チオフェン-2-イル-ピリジン)(アセチルアセトネート)イリジウム(III)、トリス(1-フェニルイソキノリン)イリジウム(III)、ビス(1-フェニルイソキノリン)(アセチルアセトネート)イリジウム(III)、ビス[1-(9,9-ジメチル-9H-フルオレン-2-イル)-イソキノリン](アセチルアセトネート)イリジウム(III)、ビス[2-(9,9-ジメチル-9H-フルオレン-2-イル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[4,4’-ジ-t-ブチル-(2,2’)-ビピリジン]ルテニウム(III)・ビス(ヘキサフルオロフォスフェート)、トリス(2-フェニルキノリン)イリジウム(III)、ビス(2-フェニルキノリン)(アセチルアセトネート)イリジウム(III)、2,8-ジ-t-ブチル-5,11-ビス(4-t-ブチルフェニル)-6,12-ジフェニルテトラセン、ビス(2-フェニルベンゾチアゾラト)(アセチルアセトネート)イリジウム(III)、5,10,15,20-テトラフェニルテトラベンゾポルフィリン白金、オスミウム(II)ビス(3-トリフルオロメチル-5-(2-ピリジン)-ピラゾレート)ジメチルフェニルフォスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(4-t-ブチルピリジル)-1,2,4-トリアゾレート)ジフェニルメチルフォスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾール)ジメチルフェニルフォスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(4-t-ブチルピリジル)-1,2,4-トリアゾレート)ジメチルフェニルフォスフィン、ビス[2-(4-n-ヘキシルフェニル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[2-(4-n-ヘキシルフェニル)キノリン]イリジウム(III)、トリス[2-フェニル-4-メチルキノリン]イリジウム(III)、ビス(2-フェニルキノリン)(2-(3-メチルフェニル)ピリジネート)イリジウム(III)、ビス(2-(9,9-ジエチル-フルオレン-2-イル)-1-フェニル-1H-ベンゾ[d]イミダゾラト)(アセチルアセトネート)イリジウム(III)、ビス(2-フェニルピリジン)(3-(ピリジン-2-イル)-2H-クロメン-2-オネート)イリジウム(III)、ビス(2-フェニルキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)、ビス(フェニルイソキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)、イリジウム(III)ビス(4-フェニルチエノ[3,2-c]ピリジナト-N,C2’)アセチルアセトネート、(E)-2-(2-t-ブチル-6-(2-(2,6,6-トリメチル-2,4,5,6-テトラヒドロ-1H-ピローロ[3,2,1-ij]キノリン-8-イル)ビニル)-4H-ピラン-4-イリデン)マロノニトリル、ビス(3-トリフルオロメチル-5-(1-イソキノリル)ピラゾレート)(メチルジフェニルフォスフィン)ルテニウム、ビス[(4-n-ヘキシルフェニル)イソキノリン](アセチルアセトネート)イリジウム(III)、白金(II)オクタエチルポルフィン、ビス(2-メチルジベンゾ[f,h]キノキサリン)(アセチルアセトネート)イリジウム(III)、トリス[(4-n-ヘキシルフェニル)キソキノリン]イリジウム(III)等が挙げられる。
 電子輸送層を形成する材料としては、8-ヒドロキシキノリノレート-リチウム、2,2’,2”-(1,3,5-ベンジントリル)-トリス(1-フェニル-1-H-ベンズイミダゾール)、2-(4-ビフェニル)5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン、ビス(2-メチル-8-キノリノレート)-4-(フェニルフェノラト)アルミニウム、1,3-ビス[2-(2,2’-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]ベンゼン、6,6’-ビス[5-(ビフェニル-4-イル)-1,3,4-オキサジアゾ-2-イル]-2,2’-ビピリジン、3-(4-ビフェニル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール、4-(ナフタレン-1-イル)-3,5-ジフェニル-4H-1,2,4-トリアゾール、2,9-ビス(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン、2,7-ビス[2-(2,2’-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]-9,9-ジメチルフルオレン、1,3-ビス[2-(4-t-ブチルフェニル)-1,3,4-オキサジアゾ-5-イル]ベンゼン、トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン、1-メチル-2-(4-(ナフタレン-2-イル)フェニル)-1H-イミダゾ[4,5f][1,10]フェナントロリン、2-(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン、フェニル-ジピレニルフォスフィンオキサイド、3,3’,5,5’-テトラ[(m-ピリジル)-フェン-3-イル]ビフェニル、1,3,5-トリス[(3-ピリジル)-フェン-3-イル]ベンゼン、4,4’-ビス(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル、1,3-ビス[3,5-ジ(ピリジン-3-イル)フェニル]ベンゼン、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム、ジフェニルビス(4-(ピリジン-3-イル)フェニル)シラン、3,5-ジ(ピレン-1-イル)ピリジン等が挙げられる。
 電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグネシウム(MgF2)、フッ化セシウム(CsF)、フッ化ストロンチウム(SrF2)、三酸化モリブデン(MoO3)、アルミニウム、Li(acac)、酢酸リチウム、安息香酸リチウム等が挙げられる。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
 正孔注入層を形成する材料としては、銅フタロシアニン、酸化チタンフタロシアニン、白金フタロシアニン、ピラジノ[2,3-f][1,10]フェナントロリン-2,3-ジカルボニトリル、N,N,N’,N’-テトラキス(4-メトキシフェニル)ベンジジン、2,7-ビス[N,N-ビス(4-メトキシ-フェニル)アミノ]-9,9-スピロビフルオレン、2,2’-ビス[N,N-ビス(4-メトキシ-フェニル)アミノ]-9,9-スピロビフルオレン、N,N’-ジフェニル-N,N’-ジ[4-(N,N-ジトリルアミノ)フェニル]ベンジジン、N,N’-ジフェニル-N,N’-ジ[4-(N,N-ジフェニルアミノ)フェニル]ベンジジン、N4,N4’-(ビフェニル-4,4’-ジイル)ビス(N4,N4’,N4’-トリフェニルビフェニル-4,4’-ジアミン)N1,N1’-(ビフェニル-4,4’-ジイル)ビス(N1-フェニル-N4,N4’-ジ-m-トリルベンゼン-1,4-ジアミン)、国際公開第2004/043117号、国際公開第2004/105446号、国際公開第2005/000832号、国際公開第2005/043962号、国際公開第2005/042621号、国際公開第2005/107335号、国際公開第2006/006459号、国際公開第2006/025342号、国際公開第2006/137473号、国際公開第2007/049631号、国際公開第2007/099808号、国際公開第2008/010474号、国際公開第2008/032617号、国際公開第2008/032616号、国際公開第2008/129947号、国際公開第2009/096352号、国際公開第2010/041701号、国際公開第2010/058777号、国際公開第2010/058776号、国際公開第2013/042623号、国際公開第2013/129249号、国際公開第2014/115865号、国際公開第2014/132917号、国際公開第2014/141998号および国際公開2014/132834号に記載の電荷輸送材料等が挙げられる。
 これらの中でも、国際公開第2005/043962号、国際公開第2013/042623号、国際公開第2014/141998号等に開示されたアニリン誘導体やチオフェン誘導体が好ましく、アニリン誘導体がより好ましく、下記式(H1)~(H2)で示されるアニリン誘導体がより一層好ましい。
 この場合、正孔注入層を構成する電荷輸送性物質の分子量は200~2,000が好適であるが、導電性という点を考慮すると、下限として好ましくは300以上、より好ましくは400以上であり、溶媒に対する溶解性向上という点を考慮すると、上限として好ましくは1,500以下、より好ましくは1,000以下である。
Figure JPOXMLDOC01-appb-C000017
 なお、式(H1)で表されるアニリン誘導体は、その分子内に下記式で示されるキノンジイミン構造を有する酸化型アニリン誘導体(キノンジイミン誘導体)であってもよい。アニリン誘導体を酸化してキノンジイミン誘導体とする方法としては、国際公開第2008/010474号、国際公開第2014/119782号記載の方法等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 式(H1)中、R40~R45は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、Z3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、-NHY1、-NY23、-OY4、または-SY5基を表し、Y1~Y5は、それぞれ独立して、Z3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、またはZ2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Z2およびZ3は、上記と同じ意味を表し、kおよびlは、それぞれ独立して、1~5の整数である。
 式(H2)中、R46~R49は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、リン酸基、スルホン酸基、カルボキシル基、Z3で置換されていてもよい、炭素数1~20のアルコキシ基、炭素数1~20のチオアルコキシ基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数7~20のアラルキル基、または炭素数1~20のアシル基を表し、R50~R53は、それぞれ独立して、水素原子、フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、チエニル基(これらの基は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、リン酸基、スルホン酸基、カルボキシル基、炭素数1~20のアルコキシ基、炭素数1~20のチオアルコキシ基、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基または炭素数1~20のアシル基で置換されていてもよい。)、または式(H3)で表される基を表し(ただし、R50~R53の少なくとも1つは水素原子である。)、mは、2~5の整数を表す。Z2およびZ3は上記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000019
 式(H3)中、R54~R57は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、リン酸基、スルホン酸基、カルボキシル基、Z3で置換されていてもよい、炭素数1~20のアルコキシ基、炭素数1~20のチオアルコキシ基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数7~20のアラルキル基、または炭素数1~20のアシル基を表し、R58およびR59は、それぞれ独立して、フェニル基、ナフチル基、アントリル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、チエニル基(これらの基は、互いに結合して環を形成してもよく、また、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、リン酸基、スルホン酸基、カルボキシル基、炭素数1~20のアルコキシ基、炭素数1~20のチオアルコキシ基、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、または炭素数1~20のアシル基で置換されていてもよい。)を表す。Z2およびZ3は上記と同じ意味を表す。
 上記各式において、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基の具体例としては、上記と同様のものが挙げられる。
 炭素数7~20のアラルキル基の具体例としては、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基、ナフチルエチル基、ナフチルプロピル基等が挙げられる。
 炭素数1~20のハロアルキル基としては、上記炭素数1~20のアルキル基の水素原子の少なくとも1つを、ハロゲン原子で置換したものが挙げられるが、中でも、フルオロアルキル基が好ましく、パーフルオロアルキル基がより好ましい。
 その具体例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、ヘプタフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル基、ノナフルオロブチル基、4,4,4-トリフルオロブチル基、ウンデカフルオロペンチル基、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル基、2,2,3,3,4,4,5,5-オクタフルオロペンチル基、トリデカフルオロヘキシル基、2,2,3,3,4,4,5,5,6,6,6-ウンデカフロオロヘキシル基、2,2,3,3,4,4,5,5,6,6-デカフルオロヘキシル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられる。
 炭素数1~20のアルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、c-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペントキシ基、n-ヘキソキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、n-ドデシルオキシ基、n-トリデシルオキシ基、n-テトラデシルオキシ基、n-ペンタデシルオキシ基、n-ヘキサデシルオキシ基、n-ヘプタデシルオキシ基、n-オクタデシルオキシ基、n-ノナデシルオキシ基、n-エイコサニルオキシ基等が挙げられる。
 炭素数1~20のチオアルコキシ(アルキルチオ)基の具体例としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、イソブチルチオ基、s-ブチルチオ基、t-ブチルチオ基、n-ペンチルチオ基、n-ヘキシルチオ基、n-ヘプチルチオ基、n-オクチルチオ基、n-ノニルチオ基、n-デシルチオ基、n-ウンデシルチオ基、n-ドデシルチオ基、n-トリデシルチオ基、n-テトラデシルチオ基、n-ペンタデシルチオ基、n-ヘキサデシルチオ基、n-ヘプタデシルチオ基、n-オクタデシルチオ基、n-ノナデシルチオ基、n-エイコサニルチオ基等が挙げられる。
 炭素数1~20のアシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基等が挙げられる。
 式(H1)において、R40~R45は、水素原子、ハロゲン原子、Z3で置換されていてもよい炭素数1~20のアルキル基、Z2で置換されていてもよい炭素数6~20のアリール基、-NHY1、-NY23、-OY4、または-SY5が好ましく、この場合において、Y1~Y5は、Z3で置換されていてもよい炭素数1~10のアルキル基またはZ2で置換されていてもよい炭素数6~10のアリール基が好ましく、Z3で置換されていてもよい炭素数1~6のアルキル基またはZ2で置換されていてもよいフェニル基がより好ましく、炭素数1~6のアルキル基またはフェニル基がより一層好ましい。
 特に、R40~R45は、水素原子、フッ素原子、メチル基、フェニル基またはジフェニルアミノ基(Y2およびY3がフェニル基である-NY23)がより好ましく、R42~R45が水素原子であり、かつ、R40およびR41が同時に水素原子またはジフェニルアミノ基がより一層好ましい。
 とりわけ、R40~R45およびY1~Y5においては、Z3は、ハロゲン原子またはZ4で置換されていてもよい炭素数6~10のアリール基が好ましく、フッ素原子またはフェニル基がより好ましく、存在しないこと(すなわち、非置換の基であること)がより一層好ましく、また、Z2は、ハロゲン原子またはZ4で置換されていてもよい炭素数1~10のアルキル基が好ましく、フッ素原子または炭素数1~6のアルキル基がより好ましく、存在しないこと(すなわち、非置換の基であること)がより一層好ましい。
 また、Z4は、ハロゲン原子が好ましく、フッ素原子がより好ましく、存在しないこと(すなわち、非置換の基であること)がより一層好ましい。
 kおよびlとしては、式(H1)で表されるアニリン誘導体の溶解性を高める観点から、好ましくは、k+l≦8であり、より好ましくは、k+l≦5である。
 式(H2)において、R46~R49は、水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のパーフルオロアルキル基、炭素数1~4のアルコキシ基が好ましく、水素原子がより好ましい。
 また、式(H2)で表されるアニリン誘導体の溶媒に対する溶解性を高めるとともに、得られる薄膜の均一性を高めることを考慮すると、R50およびR52が共に水素原子であることが好ましい。
 特に、R50およびR52が共に水素原子であり、R51およびR53が、それぞれ独立して、フェニル基(このフェニル基は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、リン酸基、スルホン酸基、カルボキシル基、炭素数1~20のアルコキシ基、炭素数1~20のチオアルコキシ基、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、または炭素数1~20のアシル基で置換されていてもよい。)、または上記式(H3)で表される基であることが好ましく、R50およびR52が共に水素原子であり、R51およびR53が、それぞれ独立して、フェニル基、またはR58’およびR59’が共にフェニル基である下記式(H3′)で表される基であることがより好ましく、R50およびR52が共に水素原子であり、R51およびR53が、共にフェニル基であることがより一層好ましい。
 また、mとしては、化合物の入手容易性、製造の容易性、コスト面などを考慮すると、2~4が好ましく、溶媒への溶解性を高めることを考慮すると、2または3がより好ましく、化合物の入手容易性、製造の容易性、製造コスト、溶媒への溶解性、得られる薄膜の透明性等のバランスを考慮すると、2が最適である。
Figure JPOXMLDOC01-appb-C000020
 式(H3)において、R54~R57としては、水素原子、フッ素原子、スルホン酸基、炭素数1~8のアルキル基、-OY4基、-SiY678基が好ましく、水素原子がより好ましい。
 式(H1)および(H2)で表されるアニリン誘導体は、市販品を用いても、上記各公報に記載されている方法等の公知の方法によって製造したものを用いてもよいが、いずれの場合も正孔注入層形成用ワニスを調製する前に、再結晶や蒸着法などによって精製したものを用いることが好ましい。精製したものを用いることで、当該組成物から得られた薄膜を備えた光センサ素子の特性をより高めることができる。再結晶にて精製する場合、溶媒としては、例えば、1,4-ジオキサン、テトラヒドロフランなどを用いることができる。
 正孔注入層形成用ワニスを調製するにあたって、式(H1)および(H2)で表されるアニリン誘導体は、式(H1)および(H2)で表される化合物から選ばれる1種の化合物(すなわち、分子量分布の分散度が1)を単独で用いてもよく、2以上の化合物を組み合わせて用いてもよい。
 特に、正孔注入層の透明性を高めるという点から、式(H2)で示されるアニリン誘導体を用いることが好ましく、中でも上記mが2であるベンジジン誘導体を用いることがより好ましく、下記式(g)で示されるジフェニルベンジジンを用いることがより一層好ましい。
 正孔注入性材料として好適なアニリン誘導体の具体例としては、下記のものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 また、正孔注入層形成用ワニスを調製するにあたり、電子受容性ドーパント物質を添加してもよい。
 電子受容性ドーパント物質は、正孔注入層形成用ワニスに使用する少なくとも一種の溶媒に溶解するものであれば、特に限定されない。
 電子受容性ドーパント物質の具体例としては、塩化水素、硫酸、硝酸、リン酸等の無機強酸;塩化アルミニウム(III)(AlCl3)、四塩化チタン(IV)(TiCl4)、三臭化ホウ素(BBr3)、三フッ化ホウ素エーテル錯体(BF3・OEt2)、塩化鉄(III)(FeCl3)、塩化銅(II)(CuCl2)、五塩化アンチモン(V)(SbCl5)、五フッ化砒素(V)(AsF5)、五フッ化リン(PF5)、トリス(4-ブロモフェニル)アルミニウムヘキサクロロアンチモナート(TBPAH)等のルイス酸;ベンゼンスルホン酸、トシル酸、カンファスルホン酸、ヒドロキシベンゼンスルホン酸、5-スルホサリチル酸、ドデシルベンゼンスルホン酸、1,5-ナフタレンジスルホン酸等のナフタレンジスルホン酸、1,3,5-ナフタレントリスルホン酸,1,3,6-ナフタレントリスルホン酸等のナフタレントリスルホン酸、ポリスチレンスルホン酸、国際公開第2005/000832号に記載されている1,4-ベンゾジオキサンジスルホン酸化合物、国際公開第2006/025342号に記載されているナフタレンまたはアントラセンスルホン酸化合物、特開2005-108828号公報に記載されているジノニルナフタレンスルホン酸化合物等のアリールスルホン酸化合物などの有機強酸;7,7,8,8-テトラシアノキノジメタン(TCNQ)、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(DDQ)、ヨウ素等の有機酸化剤、国際公開第2010/058777号に記載されているリンモリブデン酸、リンタングステン酸、リンタングストモリブデン酸等のヘテロポリ酸等の無機酸化剤などが挙げられ、それぞれを組み合わせて使用してもよい。
 これらの中でも、アリールスルホン酸化合物が好ましく、特に、式(D1)で表されるナフタレンまたはアントラセンスルホン酸化合物、1,3,5-ナフタレントリスルホン酸,1,3,6-ナフタレントリスルホン酸等のナフタレントリスルホン酸、ポリスチレンスルホン酸が好適である。
Figure JPOXMLDOC01-appb-C000023
(式中、Zは、Oを表し、Aは、ナフタレン環またはアントラセン環を表し、Bは、2~4価のパーフルオロビフェニル基を表し、sは、Aに結合するスルホン酸基数を表し、1≦s≦4を満たす整数であり、tは、BとZとの結合数を示し、2~4を満たす整数である。)
 式(D1)で表されるナフタレンまたはアントラセンスルホン酸化合物の具体例としては、以下のナフタレンスルホン酸化合物(式(D2))が挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000024
 正孔注入層形成用ワニスの調製に用いる有機溶媒としては、上記正孔注入性材料および必要に応じて用いられる電子受容性ドーパント物質を良好に溶解し得る高溶解性溶媒を用いることができる。高溶解性溶媒は1種単独で、または2種以上混合して用いることができ、その使用量は、ワニスに使用する溶媒全体に対して5~100質量%とすることができる。
 このような高溶解性溶媒としては、例えば、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなどが挙げられる。
 電荷輸送性物質および電子受容性ドーパント物質は、いずれも上記有機溶媒に完全に溶解しているか、均一に分散している状態となっていることが好ましく、良好な特性を備える有機EL素子を与える正孔注入層を再現性よく得ることを考慮すると、これらの物質は上記有機溶媒に完全に溶解していることがより好ましい。
 また、正孔注入層形成用ワニスは、25℃で10~200mPa・s、特に35~150mPa・sの粘度を有し、常圧で沸点50~300℃、特に150~250℃の高粘度有機溶媒を、少なくとも一種類含有することが好ましい。
 高粘度有機溶媒は、特に限定されるものではなく、例えば、シクロヘキサノール、エチレングリコール、1,3-オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、へキシレングリコールなどが挙げられる。
 正孔注入層形成用ワニスに使用される溶媒全体に対する高粘度有機溶媒の添加割合は、固体が析出しない範囲内であることが好ましく、固体が析出しない限りにおいて、添加割合は、5~80質量%であることが好ましい。
 さらに、塗布面に対する濡れ性の向上、溶媒の表面張力の調整、極性の調整、沸点の調整等の目的で、熱処理時に膜の平坦性を付与し得るその他の溶媒を、ワニスに使用する溶媒全体に対して1~90質量%、好ましくは1~50質量%の割合で混合することもできる。
 このような溶媒としては、例えば、ブチルセロソルブ、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチルカルビトール、ジアセトンアルコール、γ-ブチロラクトン、エチルラクテート、n-ヘキシルアセテートなどが挙げられるが、これらに限定されるものではない。
 正孔注入層形成用ワニスの固形分濃度は、ワニスの粘度および表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1~10.0質量%程度であり、好ましくは0.5~5.0質量%、より好ましくは1.0~3.0質量%である。なお、固形分とは、有機溶媒以外の成分を意味する。
 また、正孔注入性材料と電子受容性ドーパント物質の物質量(mol)比も、発現する電荷輸送性、正孔注入性材料等の種類を考慮して適宜設定されるものではあるが、通常、正孔注入性材料1に対し、電子受容性ドーパント物質0.1~10、好ましくは0.2~5.0、より好ましくは0.5~3.0である。
 そして、本発明において用いる正孔注入層形成用ワニスの粘度は、作製する薄膜の厚み等や固形分濃度を考慮し、塗布方法に応じて適宜調節されるものではあるが、通常25℃で0.1~50mPa・s程度である。
 正孔注入層形成用ワニスを調製する際、固形分が溶媒に均一に溶解または分散する限り、正孔注入性材料、電子受容性ドーパント物質、有機溶媒を任意の順序で混合することができる。
 また、通常、ワニスの調製は、常温、常圧の不活性ガス雰囲気下で行われるが、ワニス中の化合物が分解したり、組成が大きく変化したりしない限り、大気雰囲気下(酸素存在下)で行ってもよく、加熱しながら行ってもよい。
 正孔注入層形成用ワニスを、有機EL素子の陽極に塗布して焼成することで、本発明の正孔注入層を形成できる。
 塗布法や、焼成条件としては、上述した正孔輸送層形成条件と同様のものを採用できる。
 膜厚は、通常1~200nm程度であるが、好ましくは3~100nm程度、より好ましくは5~30nmである。膜厚を変化させる方法としては、組成物中の固形分濃度を変化させたり、塗布時の溶液量を変化させたりするなどの方法がある。
 さらに、本発明の電荷輸送性ワニスから得られる薄膜からなる正孔輸送層を有する有機EL素子の作製方法のその他の例は、以下のとおりである。
 上記EL素子作製において、発光層、電子輸送層、電子注入層の真空蒸着操作を行う代わりに、発光層(以下、発光性高分子層)を形成することによって本発明の電荷輸送性ワニスによって形成される電荷輸送性薄膜を有する有機EL素子を作製することができる。
 具体的には、正孔注入層が形成された陽極基板上に本発明の電荷輸送性ワニスを塗布して上記の方法により正孔輸送層を作製し、その上に発光性高分子層を形成し、さらに陰極電極を蒸着して有機EL素子とする。
 使用する陰極および陽極材料としては、上述のものと同様のものが使用でき、同様の洗浄処理、表面処理を行うことができる。
 発光性高分子層の形成法としては、発光性高分子材料、またはこれらにドーパント物質を加えた材料に溶媒を加えて溶解するか、均一に分散し、正孔輸送層の上に塗布した後、それぞれ焼成することで成膜する方法が挙げられる。
 発光性高分子材料としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2’-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。
 溶媒としては、トルエン、キシレン、クロロホルム等を挙げることができ、溶解または均一分散法としては撹拌、加熱撹拌、超音波分散等の方法が挙げられる。
 塗布方法としては、特に限定されるものではなく、インクジェット法、スプレー法、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
 焼成する方法としては、不活性ガス下または真空中、オーブンまたはホットプレートで加熱する方法が挙げられる。
 なお、電極および上記各層の間の任意の間に、必要に応じてホールブロック層、電子ブロック層等を設けてもよい。例えば、電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられる。
 陽極と陰極およびこれらの間に形成される層を構成する材料は、ボトムエミッション構造、トップエミッション構造のいずれの素子を製造するかで異なるため、その点を考慮して、適宜材料選択する。
 通常、ボトムエミッション構造の素子では、基板側に透明陽極が用いられ、基板側から光が取り出されるのに対し、トップエミッション構造の素子では、金属からなる反射陽極が用いられ、基板と反対方向にある透明電極(陰極)側から光が取り出されることから、例えば陽極材料について言えば、ボトムエミッション構造の素子を製造する際はITO等の透明陽極を、トップエミッション構造の素子を製造する際はAl/Nd等の反射陽極を、それぞれ用いる。
 本発明の有機EL素子は、特性悪化を防ぐため、定法に従い、必要に応じて捕水剤などとともに、封止してもよい。
 以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した装置は以下のとおりである。
(1)1H-NMR:ブルカー・バイオスピン(株)製 核磁気共鳴分光計 AVANCE III HD 500MHz
(2)基板洗浄:長州産業(株)製 基板洗浄装置(減圧プラズマ方式)
(3)ワニスの塗布:ミカサ(株)製 スピンコーターMS-A100
(4)膜厚測定:(株)小坂研究所製 微細形状測定機サーフコーダET-4000
(5)膜の表面観察:レーザーテック社製 共焦点レーザー顕微鏡 リアルタイム走査型レーザー顕微鏡 1LM21D
(6)EL素子の作製:長州産業(株)製 多機能蒸着装置システムC-E2L1G1-N
(7)EL素子の輝度等の測定:(有)テック・ワールド製 I-V-L測定システム
(8)EL素子の寿命測定(輝度半減期測定):(株)イーエッチシー製 有機EL輝度寿命評価システムPEL-105S
[1]アリールアミン誘導体の合成
[実施例1-1]アリールアミン誘導体1の合成
(1)第1工程
Figure JPOXMLDOC01-appb-C000025
 フラスコ内に、4-ブロモスチレン5.77g、4,4′-(ヘキサフルオロイソプロピリデン)ジアニリン5.01g、Pd(dba)20.174gおよびt-ブトキシナトリウム4.04gを入れた後、フラスコ内を窒素置換した。次にトルエン75mL、予め調製しておいたジ-t-ブチル(フェニル)ホスフィンのトルエン溶液2.0mL(濃度:67g/L)を加え、80℃で1時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、酢酸エチルとイオン交換水を混合して分液処理を行った。得られた有機層をイオン交換水、飽和食塩水の順で洗浄し、硫酸マグネシウムで乾燥を行った。これを濾過して溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=85/15→80/20)により、分離、精製を行い、目的物を含むフラクションを集め、溶媒を減圧留去した後、酢酸エチル/n-ヘキサンで再結晶した。最後に結晶を濾過し、得られたろ物を乾燥して中間体1を得た(収量:5.86g、収率:73%)。1H-NMRの測定結果を以下に示す。
1H-NMR (500MHz, DMSO-d6) δ [ppm]: 8.56(s, 2H), 7.37(d, J=8.5Hz,4H), 7.20(d, J=8.5Hz, 4H), 7.12(d, J=8.5Hz, 4H), 7.11(d, J=8.5Hz, 4H), 6.65(dd, J=17.7, 11.0Hz, 2H), 5.65(d, J=17.7Hz, 2H), 5.10(d, J=11.0Hz, 2H).
(2)第2工程
Figure JPOXMLDOC01-appb-C000026
 フラスコ内に、上記第1工程で得られた中間体1を1.46g、3-ブロモ-9-フェニル-9H-カルバゾール1.62g、Pd(dba)20.148gおよびt-ブトキシナトリウム0.673gを入れた後、フラスコ内を窒素置換した。次にトルエン20mL、予め調製しておいたトリ-t-ブチルホスフィンのトルエン溶液1.4mL(濃度:73g/L)を加え、80℃で2時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、イオン交換水を混合して分液処理を行った。得られた有機層をイオン交換水、飽和食塩水の順で洗浄し、硫酸マグネシウムで乾燥を行った。これを濾過して溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/クロロホルム=67/33→0/100)により、分離、精製を行い、目的物を含むフラクションを集め、溶媒を減圧留去した。得られた固体をメタノールで洗浄後、乾燥してアリールアミン誘導体1を得た(収量:1.66g、収率:65%)。
1H-NMRの測定結果を以下に示す。
1H-NMR (500MHz, THF-d8) δ [ppm]: 8.06(d, J=7.9Hz, 2H), 8.03(d, J=1.8Hz, 2H), 7.59-7.65(m, 8H), 7.47-7.49(m, 2H), 7.31-7.39(m, 10H), 7.16-7.24(m, 8H), 7.12(d, J=8.9Hz, 4H), 7.02(d, J=8.9Hz, 4H), 6.66(dd, J=17.7, 11.0Hz, 2H), 5.64(d, J=17.7Hz, 2H), 5.10(d, J=11.0Hz, 2H).
[実施例1-2]アリールアミン誘導体2の合成
Figure JPOXMLDOC01-appb-C000027
 フラスコ内に、上記第1工程で得られた中間体1を1.46g、4-ブロモ-N,N-ジフェニルアニリン1.62g、Pd(dba)20.146gおよびt-ブトキシナトリウム0.676gを入れた後、フラスコ内を窒素置換した。次にトルエン20mL、予め調製しておいたトリ-t-ブチルホスフィンのトルエン溶液1.7mL(濃度:60g/L)を加え、80℃で2時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、イオン交換水を混合して分液処理を行った。得られた有機層をイオン交換水、飽和食塩水の順で洗浄し、硫酸マグネシウムで乾燥を行った。これを濾過して溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/クロロホルム=67/33→60/40)により、分離、精製を行い、目的物を含むフラクションを集め、溶媒を減圧留去した。得られた固体をメタノールで洗浄後、乾燥してアリールアミン誘導体2を得た(収量:1.66g、収率:65%)。
1H-NMRの測定結果を以下に示す。
1H-NMR (500MHz, THF-d8) δ [ppm]: 7.35(d, J=8.5Hz, 4H), 7.21-7.25(m, 12H), 6.96-7.11(m, 28H), 6.67(dd, J=17.4, 11.0Hz, 2H), 5.66(d, J=17.4Hz, 2H), 5.13(d, J=11.0Hz, 2H).
[実施例1-3]アリールアミン誘導体3の合成
Figure JPOXMLDOC01-appb-C000028
 フラスコ内に、上記第1工程で得られた中間体1を1.46g、4′-ブロモ-N,N-ジフェニル-(1,1′-ビフェニル)-4-アミン2.01g、Pd(dba)20.145gおよびt-ブトキシナトリウム0.669gを入れた後、フラスコ内を窒素置換した。次にトルエン20mL、予め調製しておいたトリ-t-ブチルホスフィンのトルエン溶液1.6mL(濃度:63g/L)を加え、80℃で2時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、イオン交換水を混合して分液処理を行った。得られた有機層をイオン交換水、飽和食塩水の順で洗浄し、硫酸マグネシウムで乾燥を行った。これを濾過して溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/クロロホルム=70/30→65/35)により、分離、精製を行い、目的物を含むフラクションを集め、溶媒を減圧留去した。得られた固体をメタノールで洗浄後、乾燥してアリールアミン誘導体3を得た(収量:1.15g、収率:39%)。
1H-NMRの測定結果を以下に示す。
1H-NMR (500MHz, THF-d8) δ [ppm]: 7.54(d, J=8.5Hz, 4H), 7.49(d, J=8.5Hz, 4H), 7.37(d, J=8.2Hz, 4H), 7.28(d, J=8.5Hz, 4H), 7.23(t, J=7.6Hz, 8H), 7.17(d, J=8.5Hz, 4H), 7.06-7.11(m, 20H), 6.99(t, J=7.6Hz, 4H), 6.68(dd, J=17.4, 11.0Hz, 2H), 5.68(d, J=17.4Hz, 2H), 5.14(d, J=11.0Hz, 2H).
[実施例1-4]アリールアミン誘導体4の合成
(1)4′-ヨード-2,2′-ジメチル-N,N-ジフェニル-(1,1′-ビフェニル)-4-アミンの合成
Figure JPOXMLDOC01-appb-C000029
 フラスコ内に、ジフェニルアミン1.69g、4,4′-ジヨード-2,2′-ジメチルビフェニル4.34g、Pd(PPh340.579gおよびt-ブトキシナトリウム1.35gを入れた後、フラスコ内を窒素置換した。次にトルエン165mLを加え、110℃で5時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、イオン交換水を混合して分液処理を行った。得られた有機層をイオン交換水、飽和食塩水の順で洗浄し、硫酸マグネシウムで乾燥を行った。これを濾過して溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/クロロホルム=100/0→85/15)により、分離、精製を行い、目的物を含むフラクションを集め、溶媒を減圧留去した。
濃縮液にメタノールを加えて白色固体を析出させた後、再び溶媒を減圧留去し、乾燥して4′-ヨード-2,2′-ジメチル-N,N-ジフェニル-(1,1′-ビフェニル)-4-アミンを得た(収量:1.25g、収率:26%)。
1H-NMRの測定結果を以下に示す。
1H-NMR (500MHz, DMSO-d6) δ [ppm]: 7.69(d, J=1.2Hz, 1H), 7.57(dd, J=7.9, 1.2Hz, 1H), 7.30-7.33(m, 4H), 7.03-7.06(m, 6H), 6.97(d, J=7.9Hz, 1H), 6.93(d, J=2.1Hz, 1H), 6.90(d, J=7.9Hz 1H), 6.84(dd, J=7.9, 2.1Hz, 1H), 2.01(s, 3H), 1.90(s, 3H).
(2)アリールアミン誘導体4の合成
Figure JPOXMLDOC01-appb-C000030
 フラスコ内に、上記実施例1-1の第1工程で得られた中間体1 0.593g、上記で得られた4′-ヨード-2,2′-ジメチル-N,N-ジフェニル-(1,1′-ビフェニル)-4-アミン1.05g、Pd(dba)20.130gおよびt-ブトキシナトリウム0.425gを入れた後、フラスコ内を窒素置換した。次にトルエン10mL、予め調製しておいたトリ-t-ブチルホスフィンのトルエン溶液1.5mL(濃度:61g/L)を加え、80℃で4時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、トルエン、酢酸エチル、イオン交換水を混合して分液処理を行った。得られた有機層をイオン交換水、飽和食塩水の順で洗浄し、硫酸マグネシウムで乾燥を行った。これを濾過して溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/クロロホルム=80/20→70/30)により、分離、精製を行い、目的物を含むフラクションを集め、溶媒を減圧留去した。得られた固体をメタノールで洗浄後、乾燥してアリールアミン誘導体4を得た(収量:0.398g、収率:29%)。
1H-NMRの測定結果を以下に示す。
1H-NMR (500MHz, THF-d8) δ [ppm]: 7.37(d, J=8.5Hz, 4H), 7.27(d, J=8.5Hz, 4H), 7.21-7.24(m, 8H), 7.04-7.13(m, 20H), 6.96-7.00(m, 10H), 6.90(dd, J=8.2, 2.1Hz, 2H), 6.69(dd, J=17.7, 11.0Hz, 2H), 5.68(d, J=17.7Hz, 2H), 5.14(d, J=11.0Hz, 2H), 2.03(s, 6H), 1.99(s, 6H).
[2]電荷輸送性ワニスおよび薄膜の製造
[2-1]正孔輸送層形成用ワニスの調製
[実施例2-1]
 上記実施例1-1で得られたアリールアミン誘導体1 24mgに、キシレン2.0gを加え、室温で撹拌して固形分を溶解させて溶液を得た。得られた溶液を孔径0.2μmのシリンジフィルターでろ過して、正孔輸送層形成用ワニス1を得た。
[実施例2-2]
 上記実施例1-2で得られたアリールアミン誘導体2を用いた以外は、実施例2-1と同様にして正孔輸送層形成用ワニス2を得た。
[実施例2-3]
 上記実施例1-3で得られたアリールアミン誘導体3を用いた以外は、実施例2-1と同様にして正孔輸送層形成用ワニス3を得た。
[実施例2-4]
 上記実施例1-3で得られたアリールアミン誘導体3 16mgと上記実施例1-4で得られたアリールアミン誘導体4 8mgを用いた以外は、実施例2-1と同様にして正孔輸送層形成用ワニス4を得た。
[実施例2-5]
 上記実施例1-3で得られたアリールアミン誘導体3 12mgと上記実施例1-4で得られたアリールアミン誘導体4 12mgを用いた以外は、実施例2-1と同様にして正孔輸送層形成用ワニス5を得た。
[実施例2-6]
 上記実施例1-4で得られたアリールアミン誘導体4 24mgを用いた以外は、実施例2-1と同様にして正孔輸送層形成用ワニス6を得た。
[2-2]正孔注入層形成用ワニスの調製
[参考例1]正孔注入層形成用ワニス
 上記式(c)で示されるオリゴアニリン化合物58.9mg(0.086mmol)と上記式(D2)で表されるアリールスルホン酸化合物160.9mg(0.161mmol)との混合物に、DMAc5.00gを加えて、40℃で撹拌して固形分を溶解させた。さらにそこへ、CHN5.0gを加えて撹拌し、濃緑色溶液を得た。得られた濃緑色溶液を、孔径0.2μmのシリンジフィルターでろ過して、正孔注入層形成用ワニス1を得た。
 なお、上記式(c)で示されるオリゴアニリン化合物は、国際公開第2014/141998号記載の方法に従って合成した。
[3]電荷輸送性薄膜の形成および耐溶剤性試験
[実施例3-1~3-3]
 参考例1で得られた正孔注入層形成用ワニス1を、スピンコーターを用いてITO基板に塗布した後、80℃で1分間乾燥し、さらに、大気雰囲気下、230℃で15分間焼成し、ITO基板上に30nmの均一な薄膜を形成した。この薄膜を形成したITO基板に対し、実施例2-1~2-3で得られた正孔輸送層形成用ワニス1~3を、それぞれスピンコーターを用いて塗布した後、N2雰囲気下、表1記載の各条件で焼成し、厚み20nmの均一な薄膜を形成した。
 形成した薄膜の上に、トルエン0.5mlを載せて1分放置後、スピンコートにてトルエンを除去し、さらに100℃で1分間加熱乾燥し、膜厚を測定した。トルエンストリッピング前後の膜厚から、残膜率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000031
 表1に示されるように、120℃では、アリールアミン誘導体の架橋反応が進まないため、作製した薄膜はトルエンで全て溶解してしまうが、200℃、30分焼成では、アリールアミン誘導体の架橋反応が進行しているため、作製した薄膜はトルエンにほぼ不溶であることがわかる。
 したがって、本発明のアリールアミン誘導体の架橋体を含む電荷輸送性薄膜は、上層の発光層が塗布型の素子にも適用可能であることがわかる。
[4]有機EL素子の作製および特性評価
[実施例4-1]
 参考例1で得られた正孔注入層形成用ワニス1を、スピンコーターを用いてITO基板に塗布した後、80℃で1分間乾燥し、さらに、大気雰囲気下、230℃で15分間焼成し、ITO基板上に100nmの均一な薄膜(正孔注入層)を形成した。ITO基板としては、インジウム錫酸化物(ITO)が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。
 次いで、薄膜を形成したITO基板に対し、実施例2-1で得られた正孔輸送層形成用ワニス1を、スピンコーターを用いて塗布した後、200℃で30分焼成し、正孔注入層上に、厚み20nmの均一な薄膜(正孔輸送層)を形成した。
 作製した正孔輸送層の上に、蒸着装置(真空度1.0×10-5Pa)を用いてCBPとIr(PPy)3を共蒸着した。共蒸着はIr(PPy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、Alq3、フッ化リチウムおよびアルミニウムの薄膜を順次積層して有機EL素子を得た。この際、蒸着レートは、Alq3およびアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nmおよび80nmとした。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-85℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着材(ナガセケムテックス(株)製,XNR5516Z-B1)により貼り合わせた。この際、捕水剤(ダイニック(株)製,HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着材を硬化させた。
Figure JPOXMLDOC01-appb-C000032
[実施例4-2,4-3]
 実施例2-2および2-3で得られた正孔輸送層形成用ワニス2,3をそれぞれ用いた以外は、実施例4-1と同様にして有機EL素子を得た。
[実施例4-4~4-6]
 実施例2-4~2-6で得られた正孔輸送層形成用ワニス4~6をそれぞれ用いた以外は、実施例4-1と同様にして有機EL素子を得た。
[比較例4-1]
 正孔注入層上に、CBPとIr(PPy)3を直接共蒸着した以外は、実施例4-1と同様にして有機EL素子を得た。
 上記実施例4-1~4-6および比較例4-1で作製した素子について、輝度500cd/m2で駆動した場合における駆動電圧および電流効率、並びに輝度の半減期(初期輝度500cd/m2が半分に達するのに要する時間、実施例3-2は未実施)を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000033
 表2に示されるように、本発明の電荷輸送性薄膜を正孔輸送層として備えるEL素子は、電流効率および寿命特性に優れていることがわかる。

Claims (13)

  1.  式(1)で表されることを特徴とするアリールアミン誘導体。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Rは、互いに独立して、炭素数1~5のフッ素原子含有アルキル基を表し、Ar1は、互いに独立して、架橋基を有するとともに、Z1で置換されていてもよい炭素数6~20のアリール基を表し、Ar2は、互いに独立して、式(2)~(4)から選ばれる少なくとも1つのアリール基を表し、Z1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ4で置換されていてもよい、炭素数1~20のアルキル基を表す。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Ar3は、水素原子、またはZ2で置換されていてもよい炭素数6~20のアリール基を表し、
     R1~R39は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、Z3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、-NHY1、-NY23、-OY4、または-SY5基を表し、Y1~Y5は、それぞれ独立して、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、またはZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表し、
     Z2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ4で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表し、Z3は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ4で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Z4は、ハロゲン原子、ニトロ基、シアノ基、またはアミノ基を表す。)〕
  2.  前記Rが、ともにパーフルオロアルキル基であり、R1~R39が、すべて水素原子である請求項1記載のアリールアミン誘導体。
  3.  前記架橋基が、ビニル基である請求項1または2記載のアリールアミン誘導体。
  4.  前記Ar1が、4-ビニルフェニル基である請求項1~3のいずれか1項記載のアリールアミン誘導体。
  5.  請求項1~4のいずれか1項記載のアリールアミン誘導体からなる電荷輸送性物質と、有機溶媒とを含む電荷輸送性ワニス。
  6.  請求項5記載の電荷輸送性ワニスから作製される電荷輸送性薄膜。
  7.  請求項5記載の電荷輸送性ワニスから作製され、その中に、前記式(1)で表されるアリールアミン誘導体の架橋基が反応してなる架橋構造を有する電荷輸送性薄膜。
  8.  有機エレクトロルミネッセンス素子の正孔輸送層用である請求項6または7記載の電荷輸送性薄膜。
  9.  請求項6または7記載の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子。
  10.  陽極および陰極と、これら各極間に介在する、正孔注入層、正孔輸送層および発光層を含む複数の機能層と、を備え、
     前記正孔輸送層が、請求項7記載の電荷輸送性薄膜から構成される有機エレクトロルミネッセンス素子。
  11.  陽極上に、正孔注入層形成用ワニスを塗布し、これを乾燥して正孔注入層を形成する工程と、この正孔注入層上に、請求項1~5のいずれか1項記載の電荷輸送性ワニスを塗布し、これを加熱して前記式(1)で表されるアリールアミン誘導体が有する架橋基を熱架橋させて正孔輸送層を形成する工程と、を有する有機エレクトロルミネッセンス素子の製造方法。
  12.  さらに、前記正孔輸送層の上に、発光層形成用組成物を塗布し、これを乾燥して発光層を形成する工程を含む請求項11記載の有機エレクトロルミネッセンス素子の製造方法。
  13.  式(5)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、前記と同じ意味を表す。)
    で表されるジアミン化合物を、触媒存在下、式(6)または式(7)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Xは、ハロゲン原子または擬ハロゲン基を表し、Ar1およびAr2は、前記と同じ意味を表す。)
    で表されるアリール化合物と反応させて式(8)または式(9)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R、Ar1およびAr2は、は、前記と同じ意味を表す。)
    で表される化合物を得た後、これら式(8)または式(9)で表される化合物と、前記式(7)または式(6)で表されるアリール化合物とを反応させる請求項1記載のアリールアミン誘導体の製造方法。
PCT/JP2017/011169 2016-03-24 2017-03-21 アリールアミン誘導体とその利用 WO2017164158A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/087,747 US20190084920A1 (en) 2016-03-24 2017-03-21 Arylamine derivative and use thereof
KR1020187030140A KR102372197B1 (ko) 2016-03-24 2017-03-21 아릴아민 유도체와 그 이용
CN201780019241.2A CN108884016B (zh) 2016-03-24 2017-03-21 芳基胺衍生物及其用途
EP17770200.8A EP3434666A4 (en) 2016-03-24 2017-03-21 ARYLAMINE DERIVATIVE AND USE THEREOF
JP2018507325A JP6763425B2 (ja) 2016-03-24 2017-03-21 アリールアミン誘導体とその利用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-060215 2016-03-24
JP2016060215 2016-03-24
JP2016123323 2016-06-22
JP2016-123323 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017164158A1 true WO2017164158A1 (ja) 2017-09-28

Family

ID=59899447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011169 WO2017164158A1 (ja) 2016-03-24 2017-03-21 アリールアミン誘導体とその利用

Country Status (7)

Country Link
US (1) US20190084920A1 (ja)
EP (1) EP3434666A4 (ja)
JP (1) JP6763425B2 (ja)
KR (1) KR102372197B1 (ja)
CN (1) CN108884016B (ja)
TW (1) TWI773664B (ja)
WO (1) WO2017164158A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3527632A4 (en) * 2017-05-29 2020-04-22 LG Chem, Ltd. INK COMPOSITION, ORGANIC ELECTROLUMINESCENT ELEMENT USING THE SAME, AND MANUFACTURING METHOD THEREOF
CN111316463A (zh) * 2018-10-10 2020-06-19 住友化学株式会社 发光元件用膜及使用了它的发光元件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875551B (zh) * 2019-09-02 2022-04-15 广东聚华印刷显示技术有限公司 有机化合物、电子器件及相应的制备方法

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043117A1 (ja) 2002-11-07 2004-05-21 Nissan Chemical Industries,Ltd. 電荷輸送性ワニス
WO2004105446A1 (ja) 2003-05-20 2004-12-02 Nissan Chemical Industries, Ltd. 電荷輸送性ワニス
WO2005000832A1 (ja) 2003-06-25 2005-01-06 Nissan Chemical Industries, Ltd. 1,4-ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用
JP2005108828A (ja) 2003-09-11 2005-04-21 Nissan Chem Ind Ltd 電荷輸送性ワニス、電荷輸送性薄膜および有機エレクトロルミネッセンス素子
WO2005042621A1 (ja) 2003-10-30 2005-05-12 Nissan Chemical Industries, Ltd. 電荷輸送性化合物、電荷輸送性材料、電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
WO2005043962A1 (ja) 2003-10-31 2005-05-12 Nissan Chemical Industries, Ltd. 1,4−ジチイン環を有する化合物を含む電荷輸送性有機材料
WO2005107335A1 (ja) 2004-04-30 2005-11-10 Nissan Chemical Industries, Ltd. 良溶媒及び貧溶媒を含有するワニス
WO2006006459A1 (ja) 2004-07-09 2006-01-19 Nissan Chemical Industries, Ltd. オリゴアニリン化合物の精製方法およびオリゴアニリン化合物
WO2006025342A1 (ja) 2004-08-31 2006-03-09 Nissan Chemical Industries, Ltd. アリールスルホン酸化合物及び電子受容性物質としての利用
WO2006137473A1 (ja) 2005-06-24 2006-12-28 Nissan Chemical Industries, Ltd. 芳香族スルホン酸化合物の製造法
WO2007049631A1 (ja) 2005-10-28 2007-05-03 Nissan Chemical Industries, Ltd. スプレー又はインクジェット塗布用電荷輸送性ワニス
WO2007099808A1 (ja) 2006-02-23 2007-09-07 Nissan Chemical Industries, Ltd. スルホン酸エステル化合物およびその利用
WO2008010474A1 (fr) 2006-07-18 2008-01-24 Nissan Chemical Industries, Ltd. Vernis contenant des charges
WO2008032616A1 (en) 2006-09-13 2008-03-20 Nissan Chemical Industries, Ltd. Oligoaniline compounds
WO2008032617A1 (fr) 2006-09-13 2008-03-20 Nissan Chemical Industries, Ltd. Composé d'oligoaniline et son utilisation
WO2008129947A1 (ja) 2007-04-12 2008-10-30 Nissan Chemical Industries, Ltd. オリゴアニリン化合物
JP2009522273A (ja) * 2005-12-29 2009-06-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 新規な化合物を含む組成物およびそのような組成物を使用して製造された電子デバイス
WO2009096352A1 (ja) 2008-01-29 2009-08-06 Nissan Chemical Industries, Ltd. アリールスルホン酸化合物および電子受容性物質としての利用
WO2010041701A1 (ja) 2008-10-09 2010-04-15 日産化学工業株式会社 電荷輸送性ワニス
WO2010058777A1 (ja) 2008-11-19 2010-05-27 日産化学工業株式会社 電荷輸送性材料および電荷輸送性ワニス
WO2010058776A1 (ja) 2008-11-19 2010-05-27 日産化学工業株式会社 電荷輸送性材料および電荷輸送性ワニス
WO2013042623A1 (ja) 2011-09-21 2013-03-28 日産化学工業株式会社 電荷輸送性ワニス
WO2013129249A1 (ja) 2012-03-02 2013-09-06 日産化学工業株式会社 電荷輸送性ワニス
WO2014073683A1 (ja) * 2012-11-12 2014-05-15 三菱化学株式会社 有機電界発光素子およびその製造方法
WO2014115865A1 (ja) 2013-01-28 2014-07-31 日産化学工業株式会社 電荷輸送性ワニス
WO2014119782A1 (ja) 2013-02-04 2014-08-07 日産化学工業株式会社 有機薄膜太陽電池用バッファ層及び有機薄膜太陽電池
WO2014132917A1 (ja) 2013-02-28 2014-09-04 日産化学工業株式会社 電荷輸送性ワニス
WO2014132834A1 (ja) 2013-02-26 2014-09-04 日産化学工業株式会社 電荷輸送性ワニス
WO2014141998A1 (ja) 2013-03-11 2014-09-18 日産化学工業株式会社 電荷輸送性ワニス
WO2015178407A1 (ja) * 2014-05-23 2015-11-26 日産化学工業株式会社 電荷輸送性ワニス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100626823B1 (ko) 2004-09-16 2006-09-20 서상진 떡 및 제과용 소재 자동 절단 장치
US7781550B1 (en) * 2004-12-30 2010-08-24 E. I. Du Pont De Nemours And Company Charge transport compositions and their use in electronic devices
KR100888131B1 (ko) 2006-10-10 2009-03-11 한올제약주식회사 시간차 투약 원리를 이용한 심혈관계 질환 치료용 복합제제
JP2008129947A (ja) 2006-11-22 2008-06-05 Sharp Corp 半導体装置
KR20100058777A (ko) 2008-11-25 2010-06-04 주식회사 동부하이텍 반도체소자 및 그 제조방법

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043117A1 (ja) 2002-11-07 2004-05-21 Nissan Chemical Industries,Ltd. 電荷輸送性ワニス
WO2004105446A1 (ja) 2003-05-20 2004-12-02 Nissan Chemical Industries, Ltd. 電荷輸送性ワニス
WO2005000832A1 (ja) 2003-06-25 2005-01-06 Nissan Chemical Industries, Ltd. 1,4-ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用
JP2005108828A (ja) 2003-09-11 2005-04-21 Nissan Chem Ind Ltd 電荷輸送性ワニス、電荷輸送性薄膜および有機エレクトロルミネッセンス素子
WO2005042621A1 (ja) 2003-10-30 2005-05-12 Nissan Chemical Industries, Ltd. 電荷輸送性化合物、電荷輸送性材料、電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
WO2005043962A1 (ja) 2003-10-31 2005-05-12 Nissan Chemical Industries, Ltd. 1,4−ジチイン環を有する化合物を含む電荷輸送性有機材料
WO2005107335A1 (ja) 2004-04-30 2005-11-10 Nissan Chemical Industries, Ltd. 良溶媒及び貧溶媒を含有するワニス
WO2006006459A1 (ja) 2004-07-09 2006-01-19 Nissan Chemical Industries, Ltd. オリゴアニリン化合物の精製方法およびオリゴアニリン化合物
WO2006025342A1 (ja) 2004-08-31 2006-03-09 Nissan Chemical Industries, Ltd. アリールスルホン酸化合物及び電子受容性物質としての利用
WO2006137473A1 (ja) 2005-06-24 2006-12-28 Nissan Chemical Industries, Ltd. 芳香族スルホン酸化合物の製造法
WO2007049631A1 (ja) 2005-10-28 2007-05-03 Nissan Chemical Industries, Ltd. スプレー又はインクジェット塗布用電荷輸送性ワニス
JP2009522273A (ja) * 2005-12-29 2009-06-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 新規な化合物を含む組成物およびそのような組成物を使用して製造された電子デバイス
WO2007099808A1 (ja) 2006-02-23 2007-09-07 Nissan Chemical Industries, Ltd. スルホン酸エステル化合物およびその利用
WO2008010474A1 (fr) 2006-07-18 2008-01-24 Nissan Chemical Industries, Ltd. Vernis contenant des charges
WO2008032617A1 (fr) 2006-09-13 2008-03-20 Nissan Chemical Industries, Ltd. Composé d'oligoaniline et son utilisation
WO2008032616A1 (en) 2006-09-13 2008-03-20 Nissan Chemical Industries, Ltd. Oligoaniline compounds
WO2008129947A1 (ja) 2007-04-12 2008-10-30 Nissan Chemical Industries, Ltd. オリゴアニリン化合物
WO2009096352A1 (ja) 2008-01-29 2009-08-06 Nissan Chemical Industries, Ltd. アリールスルホン酸化合物および電子受容性物質としての利用
WO2010041701A1 (ja) 2008-10-09 2010-04-15 日産化学工業株式会社 電荷輸送性ワニス
WO2010058777A1 (ja) 2008-11-19 2010-05-27 日産化学工業株式会社 電荷輸送性材料および電荷輸送性ワニス
WO2010058776A1 (ja) 2008-11-19 2010-05-27 日産化学工業株式会社 電荷輸送性材料および電荷輸送性ワニス
WO2013042623A1 (ja) 2011-09-21 2013-03-28 日産化学工業株式会社 電荷輸送性ワニス
WO2013129249A1 (ja) 2012-03-02 2013-09-06 日産化学工業株式会社 電荷輸送性ワニス
WO2014073683A1 (ja) * 2012-11-12 2014-05-15 三菱化学株式会社 有機電界発光素子およびその製造方法
WO2014115865A1 (ja) 2013-01-28 2014-07-31 日産化学工業株式会社 電荷輸送性ワニス
WO2014119782A1 (ja) 2013-02-04 2014-08-07 日産化学工業株式会社 有機薄膜太陽電池用バッファ層及び有機薄膜太陽電池
WO2014132834A1 (ja) 2013-02-26 2014-09-04 日産化学工業株式会社 電荷輸送性ワニス
WO2014132917A1 (ja) 2013-02-28 2014-09-04 日産化学工業株式会社 電荷輸送性ワニス
WO2014141998A1 (ja) 2013-03-11 2014-09-18 日産化学工業株式会社 電荷輸送性ワニス
WO2015178407A1 (ja) * 2014-05-23 2015-11-26 日産化学工業株式会社 電荷輸送性ワニス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3434666A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3527632A4 (en) * 2017-05-29 2020-04-22 LG Chem, Ltd. INK COMPOSITION, ORGANIC ELECTROLUMINESCENT ELEMENT USING THE SAME, AND MANUFACTURING METHOD THEREOF
US11236246B2 (en) 2017-05-29 2022-02-01 Lg Chem, Ltd. Ink composition, organic light-emitting element using same, and fabrication method thereof
CN111316463A (zh) * 2018-10-10 2020-06-19 住友化学株式会社 发光元件用膜及使用了它的发光元件

Also Published As

Publication number Publication date
KR20180128017A (ko) 2018-11-30
US20190084920A1 (en) 2019-03-21
CN108884016B (zh) 2022-11-01
JPWO2017164158A1 (ja) 2019-02-14
CN108884016A (zh) 2018-11-23
JP6763425B2 (ja) 2020-09-30
EP3434666A1 (en) 2019-01-30
TWI773664B (zh) 2022-08-11
KR102372197B1 (ko) 2022-03-08
TW201808881A (zh) 2018-03-16
EP3434666A4 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP6414213B2 (ja) 有機エレクトロルミネッセンス素子の正孔注入層形成用ワニス
JP6597597B2 (ja) アニリン誘導体およびその利用
TWI643913B (zh) Charge transport varnish, charge transporting film and organic electroluminescent element
JP2019135774A (ja) 正孔注入層形成用電荷輸送性ワニス
JP6763425B2 (ja) アリールアミン誘導体とその利用
JP2019206591A (ja) アニリン誘導体およびその製造方法
JP6011723B2 (ja) トリフェニルアミン誘導体およびその利用
JP6551693B2 (ja) 電荷輸送性ワニス、電荷輸送性薄膜及びその製造方法、並びに有機エレクトロルミネッセンス素子及びその製造方法
JP6601390B2 (ja) アニリン誘導体およびその利用
JP6061034B2 (ja) アニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
JP6558373B2 (ja) 電荷輸送性ワニス
WO2015137391A1 (ja) アニリン誘導体およびその利用
JP6601405B2 (ja) 電荷輸送性ワニス
JP6132016B2 (ja) 電荷輸送性ワニス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507325

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187030140

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017770200

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017770200

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770200

Country of ref document: EP

Kind code of ref document: A1