WO2020194441A1 - 高周波半導体増幅器 - Google Patents

高周波半導体増幅器 Download PDF

Info

Publication number
WO2020194441A1
WO2020194441A1 PCT/JP2019/012471 JP2019012471W WO2020194441A1 WO 2020194441 A1 WO2020194441 A1 WO 2020194441A1 JP 2019012471 W JP2019012471 W JP 2019012471W WO 2020194441 A1 WO2020194441 A1 WO 2020194441A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
matching
circuit
transistor
frequency
Prior art date
Application number
PCT/JP2019/012471
Other languages
English (en)
French (fr)
Inventor
善伸 佐々木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/012471 priority Critical patent/WO2020194441A1/ja
Priority to KR1020217029113A priority patent/KR102587455B1/ko
Priority to CN201980094252.6A priority patent/CN113574797B/zh
Priority to US17/296,747 priority patent/US11979117B2/en
Priority to JP2021508416A priority patent/JP6930680B2/ja
Priority to DE112019007087.8T priority patent/DE112019007087B4/de
Priority to TW109109161A priority patent/TWI727711B/zh
Publication of WO2020194441A1 publication Critical patent/WO2020194441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/047Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/642Capacitive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/6655Matching arrangements, e.g. arrangement of inductive and capacitive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13064High Electron Mobility Transistor [HEMT, HFET [heterostructure FET], MODFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a high frequency semiconductor amplifier.
  • harmonic the frequency that is a multiple of the frequency of the signal amplified by the semiconductor
  • fundamental wave the frequency of the signal amplified by the semiconductor
  • harmonic processing there is a method of achieving high-efficiency operation by controlling the impedance of peripheral circuits expected from a semiconductor, so-called harmonic processing.
  • harmonic processing it is particularly important to control the second harmonic, which is twice the frequency of the fundamental wave among the harmonics.
  • Patent Document 1 discloses a method for improving the efficiency of a high-frequency semiconductor amplifier.
  • the inductor is composed of a transmission line, it occupies a large area near the electrodes of the transistor. Therefore, in an actual semiconductor product, Non-Patent Document 1 shows an example in which a desired inductance is realized in a smaller area, the area of a semiconductor chip is reduced, and the cost is reduced by configuring the inductor with a spiral inductor. ing.
  • the conventional high frequency semiconductor amplifier is a one-stage amplifier for a mobile phone base station sealed in a package 12.
  • those having the same reference numerals are the same or equivalent thereof, and this is common to the entire text of the specification.
  • FIG. 9 and 10 show a cross-sectional view and a top view of a conventional high-frequency semiconductor amplifier.
  • FIG. 9 is a cross-sectional view of a conventional high frequency semiconductor amplifier as seen from arrow A in FIG.
  • FIG. 10 is a top view of a conventional high frequency semiconductor amplifier.
  • the cap 12c in FIG. 9 is not shown in FIG. 10 to show the mounting situation in the package of the conventional high frequency semiconductor amplifier.
  • the package 12 is composed of a metal plate 12a, an insulator 12b, a cap 12c, and leads 10 and 14.
  • the insulator 12b is a frame made of ceramic, and is fixed in contact with the upper surface of the metal plate 12a by brazing.
  • the leads 10 and 14 are formed of a thin plate such as a copper alloy, and are fixed to the upper surface of the insulator 12b by brazing.
  • the inside of the package formed on the insulator 12b and the metal plate 12a is sealed with a cap 12c using an adhesive (not shown).
  • the material of the cap 12c is ceramic.
  • the lead 10 is a lead for inputting high-frequency power to a conventional high-frequency semiconductor amplifier, and also serves as a gate bias terminal.
  • the lead 14 is a lead for outputting high-frequency power amplified by a conventional high-frequency semiconductor amplifier, and also serves as a drain bias terminal.
  • the chip T1 is a small piece of a semiconductor substrate in which a semiconductor layer mainly made of GaN (Gallium Nitride) is epitaxially grown on the upper surface of a SiC (Silicon Carbide) substrate.
  • a gate electrode, a source electrode, And a transistor having a drain electrode (not shown in FIGS. 9 and 10) is formed.
  • This transistor is a HEMT (High Electron Mobility Transistor) having excellent high frequency characteristics.
  • the chip P1 is a small piece of a semiconductor substrate made of GaAs, which forms a part of a matching circuit (prematch circuit) for matching the fundamental waves on the input side of the transistor formed on the chip T1.
  • the chip T1 and the chip P1 are fixed to the upper surface of the metal plate 12a by a bonding material (not shown) such as solder or a conductive adhesive, and are electrically connected to each other.
  • the metal plate 12a serves as a heat radiating plate that transfers heat generated by the chip T1 mounted on the upper surface thereof to the back surface of the metal plate 12a.
  • the back surface of the metal plate 12a serves as a ground terminal for a conventional high-frequency semiconductor amplifier, and gives a ground potential to the chip T1 and the chip P1.
  • the lead 10 and the chip P1 are connected by wires W11 to W15.
  • the P1 and the chip T1 are connected by wires W21 to W25.
  • the chip T1 and the lead 14 are connected by wires W31 to W35.
  • the wires W11 to W15 connecting the input lead 10 and the chip P1 are arranged substantially parallel to each other when viewed from the upper surface.
  • the wires W21 to W25 connecting the chip P1 and the chip T1 are arranged substantially parallel to each other when viewed from the upper surface.
  • the wires W31 to W35 connecting the chip T1 and the output lead 14 are arranged substantially parallel to each other when viewed from the upper surface.
  • FIG. 11 is a detailed view of the inside of a conventional high-frequency semiconductor amplifier as viewed from above.
  • Matching circuits MC1 to MC5 for input-side fundamental wave matching are arranged on the upper surface of the chip P1.
  • the fundamental wave matching circuits MC1 to MC5 each have an independent bonding pad on the output side, and have a common wire bonding pad PP for signal input on the input side.
  • the transistors Tr1 to Tr5 are formed on the upper surface of the chip T1 and form a HEMT cell.
  • the HEMT cell in the present specification means a mass of units Tr in which gate electrodes are connected to each other in the vicinity of a transistor.
  • the transistors Tr1 to Tr5 each have a bonding pad connected to an independent gate electrode and a common wire bonding pad TT for signal output connected to the drain electrode.
  • a double-wave short-circuit circuit composed of double-wave matching inductors L1 to L5 and double-wave matching capacitances C1 to C5 is arranged on the upper surface of the chip T1.
  • One end of the double wave matching inductors L1 to L5 is connected to the gate of the transistors Tr1 to Tr5, and the other end is connected to one end of the double wave matching capacitors C1 to C5.
  • the other ends of the double wave matching capacitances C1 to C5 are grounded via a VIA connected to the back surface formed on the chip T1.
  • the double wave matching inductors L1 to L5 and the double wave matching capacitances C1 to C5 are connected in series.
  • FIG. 12 is an equivalent circuit of the path from the connection point IN1 to OUT1 of FIG.
  • the 2nd harmonic matching inductor L1 and the 2nd harmonic matching capacitance C1 formed on the chip T1 form a 2nd harmonic short circuit that resonates at a frequency near the 2nd harmonic.
  • the above-mentioned high efficiency is realized by setting the magnitude of the reflection coefficient of the impedance of the double wave expected from the gate of the transistor to approximately 1 (total reflection) and appropriately setting the phase of the reflection coefficient.
  • total reflection is realized only when the double-wave short-circuit circuit ideally becomes 0 ⁇ due to resonance, but in practice, the impedance of the double-wave short-circuit circuit is compared with the impedance of the fundamental wave. It should be added that if the value is 1/5 or less, the effect of improving efficiency is more than a certain level.
  • FIG. 13 is a diagram showing the input double wave reflection phase dependence of the drain efficiency.
  • the drain efficiency of the power amplifier from the path IN1 to OUT1 in FIG. 12 is set to approximately 1 (total reflection) with the magnitude of the reflection coefficient of the double wave impedance viewed from the gate electrode of the transistor Tr1 in the direction of the connection point IN1.
  • the simulation is performed by changing the reflection phase. However, in this simulation, the magnitude and phase of the reflection coefficient seen from the gate electrode are ideally changed, and the 2nd harmonic matching inductor L1 and the 2nd harmonic matching capacitance C1 in FIG. 12 are not included. ..
  • the drain efficiency of the amplifier shows the drain efficiency of the amplifier, and the horizontal axis shows the reflection phase of the double wave impedance when viewed from the gate electrode to the signal source side, that is, the connection point IN1 direction.
  • the drain efficiency of the amplifier changes depending on the 2nd harmonic reflection phase seen from the gate. The maximum value is usually shown near 180 °, and the maximum efficiency is obtained at 170 ° to 190 ° in this simulation as well.
  • FIG. 14 is a diagram showing a locus of input-side impedance in a conventional high-frequency semiconductor amplifier. Specifically, in the equivalent circuit of FIG. 12, it is a vector locus showing the frequency dependence of the impedance when the direction of the connection point IN1 is viewed from the gate electrode of the transistor Tr1.
  • the lower limit frequency of the band of the fundamental wave for which power amplification is to be performed by the high frequency semiconductor amplifier is fl
  • the upper limit frequency is fh
  • these center frequencies are fc.
  • the lower limit frequency of the double wave band is 2fl (twice the frequency of fl)
  • the upper limit frequency is 2fh (the frequency twice the fh)
  • the center frequencies thereof are 2fc.
  • the impedances at frequencies fl, fc, and fh in the fundamental wave band are indicated by markers, and these impedances are concentrated at almost one point. That is, it indicates that the frequency characteristics are small.
  • the impedance at frequencies 2fl, 2fc, and 2fh in the 2nd harmonic band is also indicated by the markers, but the impedance trajectory of the 2nd harmonic band has a considerably wider marker spacing than the fundamental wave band. That is, it can be seen that the frequency dependence of impedance in harmonics is larger than the frequency dependence of impedance in fundamental waves. This spread deviates from the range in which the maximum efficiency shown in FIG. 13 can be obtained. Therefore, there is a problem that high-efficiency operation cannot be performed over the entire target band.
  • the high-frequency semiconductor device is formed on a semiconductor substrate with a transistor having a gate electrode, a source electrode, and a drain electrode formed on the semiconductor substrate, a matching circuit for matching the fundamental wave on the input side of the transistor, and a matching circuit.
  • One end is formed on the gate electrode of the transistor, the other end is formed on the semiconductor substrate with the first inductor connected to the matching circuit, and one end is formed on the semiconductor substrate with a short-circuited capacitance, and one end is formed on the semiconductor substrate.
  • the gate electrode of the above is provided with a second inductor whose other end is connected to the other end of the capacitance.
  • the second inductor resonates in series with the capacitance at the frequency of the second harmonic, exhibits a depolarizing mutual inductance with the first inductor, and forms a mutual induction circuit for double wave matching on the input side with the first inductor. To do.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a high-frequency semiconductor amplifier capable of highly efficient power amplification in a wide frequency band.
  • FIG. 4 is a diagram showing the frequency dependence of the impedance of the fundamental wave circuit and the double wave short circuit in FIG. It is a figure which shows the frequency dependence of n. It is a figure which shows the locus of the input side impedance in the high frequency semiconductor amplifier which concerns on Embodiment 1 of this invention. It is a detailed view of the inside of the high frequency semiconductor amplifier which concerns on Embodiment 2 of this invention as seen from the top surface.
  • Tr2 of FIG. It is an enlarged view of the vicinity of Tr2 of FIG. It is sectional drawing of the conventional high frequency semiconductor amplifier. It is a top view of the conventional high frequency semiconductor amplifier. It is a detailed view which looked at the inside of the conventional high frequency semiconductor amplifier from the top. It is an equivalent circuit of the path from the connection point IN1 to OUT1 of FIG. It is a figure which shows the input double wave reflection phase dependence of a drain efficiency. It is a figure which shows the locus of the input side impedance in the conventional high frequency semiconductor amplifier.
  • Embodiment 1 The high frequency semiconductor amplifier according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 6.
  • embodiments of the present invention will be described with reference to the drawings.
  • FIG. 1 is a detailed view of the inside of the high-frequency semiconductor amplifier according to the first embodiment of the present invention as viewed from above.
  • the major difference from the conventional high-frequency semiconductor amplifier described above with reference to FIG. 11 is that the chip T1 exhibits mutually depolarizing mutual inductances to form a mutual induction circuit for double-frequency matching on the input side. It has matching inductors L11 to L15 and fundamental wave circuit inductors L21 to L25.
  • the chip T1 is a small piece of a semiconductor substrate in which a semiconductor layer mainly made of GaN (Gallium Nitride) is epitaxially grown on an upper surface of a SiC (Silicon Carbide) substrate.
  • Transistors Tr1 to Tr5 having a gate electrode, a source electrode, and a drain electrode are formed on the upper surface of the chip T1.
  • This transistor is a HEMT (High Electron Mobility Transistor) having excellent high frequency characteristics. That is, the transistors Tr1 to Tr5 are GaN-based HEMTs.
  • the chip P1 is a chip in which a matching circuit (prematch circuit) for matching the input-side fundamental waves of the transistors Tr1 to Tr5 is formed on a GaAs substrate.
  • the fundamental wave circuit inductors L21 to L25 are formed on the chip T1, one end of which is connected to the gate electrode of the transistors Tr1 to Tr5, and the input side fundamental wave formed on the chip P1 via the wires W21 to W25. The other end is connected to the matching circuits MC1 to MC5 for matching.
  • the double wave matching capacitances C11 to C15 are formed on the chip T1, and one end thereof is short-circuited via a VIA conducting to the back surface of the chip T1 formed on the chip T1.
  • the double wave matching inductors L11 to L15 are formed on the chip T1, one end is connected to the gate electrode of the transistors Tr1 to Tr5, and the other end is connected to the other end of the capacitances C11 to C15. That is, the 2nd harmonic matching inductors L11 to L15, the 2nd harmonic matching capacitances C11 to C15, and VIA are connected in series and are configured to resonate in series at a frequency of approximately 2nd harmonic. Is forming.
  • the double wave matching inductors L11 to L15 and the fundamental wave circuit inductors L21 to L25 form a spiral inductor which is a spiral transmission line so that the inductor per unit area can be increased and the semiconductor area can be reduced. There is.
  • the double wave matching inductors L11 to L15 and the fundamental wave circuit inductors L21 to L25 are overlapped so that the transmission lines are close to each other in the spiral portion, and the winding direction of the spiral is reversed when viewed from the upper surface of the chip. Have been placed. Therefore, the double wave matching inductors L11 to L15 and the fundamental wave circuit inductors L21 to L25 exhibit depolarizing mutual inductance and form an input side double wave matching mutual induction circuit.
  • FIG. 2 is an equivalent circuit of the path from the connection point IN1 to OUT1 of FIG. 1, and is a part of the high-frequency semiconductor amplifier according to the first embodiment of the present invention.
  • the 2nd harmonic matching inductor L11 and the 2nd harmonic matching capacitance C11 are connected in series, and one end of the 2nd harmonic matching capacitance C11 is grounded.
  • the inductance value of the 2nd harmonic matching inductor L11 and the capacitance value of the 2nd harmonic matching capacitance C11 are set to resonate at the frequency of the 2nd harmonic and to be substantially short-circuited.
  • the ideal short circuit is 0 ⁇ , but in practice, if the impedance of the double wave short circuit is 1/5 or less of the impedance of the fundamental wave, there is a certain effect on improving efficiency. I will add that.
  • the 2nd harmonic matching inductor L11 and the fundamental wave circuit inductor L21 form a mutual induction circuit for 2nd harmonic matching on the input side. That is, the fundamental wave circuit inductor L21 and the double wave matching inductor L11 are arranged so as to exhibit depolarizing mutual inductance when power is input from the gate at the same time.
  • the fundamental wave circuit inductor L21 is connected to one end of the wire W21.
  • a shunt-connected capacitance Cp1 and a parallel-connected capacitance Cs1 and a resistor Rs1 are connected to the other end of the wire W21.
  • the capacitances Cp1, Cs1, and the resistor Rs1 are formed on the chip P1 and constitute the matching circuit MC1.
  • the resistor Rs1 is used for the purpose of improving the stability of operation at a frequency lower than the fundamental wave, and the capacitance Cs1 is used for the purpose of lowering the resistance value in the fundamental wave.
  • the capacitance Cp1 and the inductor L21 for the fundamental wave circuit and the wire W21 operate as a prematch circuit for the fundamental wave on the input side.
  • the transmission line TL1 outside the package operates as an impedance converter.
  • FIG. 3 is an equivalent circuit diagram for explaining the operation of the present invention.
  • FIG. 3A is an equivalent circuit of the path from the connection point IN1 to OUT1 of FIG. 1, and only a part necessary for the explanation of FIG. 2 is briefly shown.
  • the fundamental wave circuit inductor L21 and the double wave inductor L11 form a mutual induction circuit for double wave matching on the input side, and mutually exhibit depolarizing mutual inductance. This is indicated by dots of L11 and L21.
  • Let i1 be the current flowing through the double-wave inductor L11 and i2 be the current flowing through the fundamental-wave circuit inductor L21.
  • the inductance value of L11 is L (L11)
  • the inductance value of L21 is L (L21)
  • the mutual inductance value is ⁇ M.
  • FIG. 3B is an equivalent circuit diagram in the case where FIG. 3A is replaced with an inductor without coupling.
  • the inductance value of the fundamental wave inductor L21a is L (L21) + M
  • the inductance value of the double wave inductor L11a is L (L11) + M
  • the inductance value of the inductor M1 is ⁇ M.
  • both the current i1 and the current i2 flow through the inductor M1.
  • FIG. 3C it is considered that the inductor M1 is virtually divided into an inductor M1b through which only the current i1 flows and an inductor M1a through which only the current i2 flows.
  • FIG. 3C it is considered that the inductor M1 is virtually divided into an inductor M1b through which only the current i1 flows and an inductor M1a through which only the current i2 flows.
  • L (M1a) and L (M1b) can be expressed as follows using i1, i2 and M.
  • L (M1a) -(i1 + i2) / i2 ⁇ M
  • L (M1b) -(i1 + i2) / i1 ⁇ M.
  • L (M1a) ⁇ (1 + 1 / n) ⁇ M
  • n is used for L (M1a) and L (M1b).
  • L (M1b) -(1 + n) x M
  • FIG. 4 is a diagram showing the frequency dependence of the impedance of the fundamental wave circuit and the double wave short circuit circuit seen from the gate of the transistor Tr1 in FIG.
  • the solid line shows the impedance of the fundamental wave circuit
  • the broken line shows the impedance of the double wave short circuit.
  • FIG. 5 is a diagram showing the frequency dependence of n.
  • FIG. 5A is a diagram showing a locus of n on polar coordinates
  • FIG. 5B is a diagram showing a frequency characteristic of the real part of n in the vicinity of the double wave frequency.
  • the position of n in fc is shown in FIG. 5 (a). Comparing the high-frequency current flowing from the gate of the transistor to the fundamental-wave matching circuit in the fundamental wave with the high-frequency current flowing from the gate of the transistor to the double-wave short-circuit circuit, the impedance of the double-wave short-circuit circuit is shown in FIG. Is high and almost no current flows, so the value of n is large. Further, in the fundamental wave, the impedance that anticipates the fundamental wave matching circuit is inductive, and the impedance that anticipates the double wave short circuit is capacitive, so the sign of the real part of n is negative.
  • FIG. 6 is a diagram showing a locus of input-side impedance in the high-frequency semiconductor amplifier according to the first embodiment of the present invention. It can be seen that the impedance interval between 2fl and 2fh shown in FIG. 6 is narrower than the impedance interval between 2fl and 2fh shown in FIG. That is, it is shown that the phase change of the impedance in the double wave is close and the frequency band in which high efficiency can be maintained is widened.
  • the semiconductor device is for matching the input side fundamental wave of the transistor Tr1 having the gate electrode, the source electrode, and the drain electrode formed on the semiconductor substrate T1 with the transistor Tr1.
  • the second inductor L11 resonates in series with the capacitance C11 at the frequency of the second harmonic, exhibits a depolarizing mutual inductance with the first inductor L21, and forms a mutual induction circuit for double wave matching on the input side. There is.
  • a depolarizing mutual inductance with respect to the first inductor L21 constituting the resonance circuit is provided to the gate electrode of the transistor Tr1 and the matching circuit MC1 for fundamental wave matching via the second inductor L11. Since the connection is made, the spread of the double wave impedance seen from the gate of the transistor Tr1 can be suppressed, and the effect of enabling high-efficiency operation over the entire target band is achieved.
  • Embodiment 2 The configuration of the high-frequency semiconductor amplifier according to the second embodiment of the present invention will be described with reference to FIGS. 7 and 8.
  • the difference from the first embodiment is the configuration of the first inductor and the second inductor, and other parts are common.
  • the input-side double-wave matching mutual induction circuit including the double-wave matching inductor L11 and the fundamental-wave circuit inductor L21 is close to the gate feeder wiring GF1. are doing. Therefore, when the operating frequency becomes high, the influence on each basic transistor constituting the transistor Tr1 becomes unbalanced. Specifically, in FIG. 1, the distance between the gate feeder wiring GF1 and the 2nd harmonic matching inductor L11 is close to each other in the downward direction when viewed from the connection point between the gate feeder wiring GF1 and the 2nd harmonic matching inductor L11. Coupling occurs. On the other hand, in FIG.
  • the distance between the gate feeder wiring GF1 and the double wave matching inductor L11 is larger than that in the downward direction, and the coupling is performed.
  • the effect of is small. Since the distance between the mutual induction circuit for double wave matching on the input side and each basic transistor is not uniform as described above, there is a problem that the operation of the transistor Tr1 becomes unbalanced and the characteristics deteriorate.
  • FIG. 7 is a detailed view of the inside of the high-frequency semiconductor amplifier according to the second embodiment of the present invention as viewed from above.
  • FIG. 8 is an enlarged view of the vicinity of Tr2 in FIG.
  • a route from the connection point IN2 to OUT2 will be described as an example.
  • the chip T1 is a small piece of a semiconductor substrate obtained by epitaxially growing a semiconductor layer mainly made of GaN (Gallium Nitride) on the upper surface of a SiC (Silicon Carbide) substrate.
  • Transistors Tr1 to Tr5 having a gate electrode, a source electrode, and a drain electrode are formed on the upper surface of the chip T1.
  • This transistor is a HEMT (High Electron Mobility Transistor) having excellent high frequency characteristics. That is, the transistors Tr1 to Tr5 are GaN-based HEMTs.
  • the double wave matching capacitances C11 to C15 are formed on the chip T1.
  • One end of the double wave matching capacitances C1 to C6 is short-circuited via a VIA conducting to the back surface of the chip T1 formed on the chip T1.
  • the gate electrodes of the transistor Tr2 are connected to each other by the gate feeder wiring GF2.
  • the 2nd harmonic matching inductor L121 and the 2nd harmonic matching capacitance C2 are configured to resonate at substantially a 2nd harmonic frequency, and form a 2nd harmonic short circuit.
  • One end of the double wave matching inductor L122 is connected to the gate electrode of the transistor Tr2, and the other end is connected to the other end of the double wave matching capacitance C3.
  • the 2nd harmonic matching inductor L122 and the 2nd harmonic matching capacitance C3 are configured to resonate at substantially a 2nd harmonic frequency, forming a 2nd harmonic short circuit.
  • One end of the fundamental wave circuit inductor L221 is connected to the gate electrode of the transistor Tr2, and the other end is connected to the fundamental wave matching matching circuit MC2 via the wire W22.
  • One end of the fundamental wave circuit inductor L222 is connected to the gate electrode of the transistor Tr2, and the other end is connected to the fundamental wave matching matching circuit MC2 via a wire W22.
  • the double wave matching inductor L121 and the fundamental wave circuit inductor L221 are arranged in an intricate manner close to each other.
  • the arrangement is such that the path from the gate of the transistor Tr2 to C2 along the double wave matching inductor L121 and the path from the gate of the transistor Tr2 to the wire W22 along the fundamental wave circuit inductor L221 are close to each other. It is devised so that the routes are opposite to each other. Therefore, the double-wave matching inductor L121 and the fundamental wave circuit inductor L221 exhibit depolarizing mutual inductance, and form an input-side double-wave matching mutual induction circuit. Similarly, the double wave matching inductor L122 and the fundamental wave circuit inductor L222 also exhibit depolarizing mutual inductance to form an input side double wave matching mutual induction circuit.
  • Input side double wave matching mutual induction circuit consisting of double wave matching inductor L121 and fundamental wave circuit inductor L221, double wave matching inductor L122, and input side double consisting of fundamental wave circuit inductor L222.
  • the double wave matching inductor inductors L121 and L122 are connected, and the fundamental wave circuit inductor inductors L221 and L222 are connected. That is, a pair of input-side double-wave matching mutual induction circuits are connected to each other.
  • the double wave matching mutual induction circuit is arranged line-symmetrically with respect to a straight line BB'that passes through the center of the transistor Tr2 and extends in the width direction of the gate with respect to the length direction of the gate. That is, a pair of input-side double-wave matching mutual induction circuits are arranged line-symmetrically with respect to a straight line extending in the width direction of the gate.
  • the double wave matching inductor inductors L121 and L122 are in close proximity to the gate feeder wiring GF2. However, since they are arranged symmetrically with respect to the straight line BB', the difference in distance between each basic transistor and the inductor is small as compared with the first embodiment. Therefore, as compared with the first embodiment, the imbalance of the operation between the basic transistors can be suppressed, and the characteristics of the high frequency semiconductor amplifier are improved. The explanation of other parts is omitted.
  • the transistor Tr2 having the gate electrode, the source electrode, and the drain electrode formed on the semiconductor substrate T1 and the input side fundamental wave matching of the transistor Tr2 are matched.
  • the matching circuit MC2 for use, the first inductors L221 and L222 formed on the semiconductor substrate T1 having one end connected to the gate electrode of the transistor Tr2 and the other end connected to the matching circuit MC2, and the semiconductor substrate T1.
  • the capacitances C2 and C3 formed in the above are provided with one ends short-circuited.
  • a second high-frequency semiconductor amplifier according to the second embodiment of the present invention is formed on the semiconductor substrate T1, one end of which is connected to the gate electrode of the transistor Tr2, and the other end of which is connected to the other end of the capacitance C2.
  • An input-side double-wave matching mutual induction circuit that includes an inductor L121, the second inductor L121 resonates in series with the capacitance C2 at a frequency of the second harmonic, and exhibits a depolarizing mutual inductance with the first inductor L221. Is forming.
  • the high-frequency semiconductor amplifier according to the second embodiment of the present invention is formed on the semiconductor substrate T1, one end of which is connected to the gate electrode of the transistor Tr2, and the other end of which is connected to the other end of the capacitance C3.
  • the second inductor L122 includes an inductor L122, and the second inductor L122 resonates in series with the capacitance C2 at a frequency of the second harmonic, and exhibits a depolarizing mutual inductance with the first inductor L222. Is forming.
  • the inductor L121 and the inductor L221 are connected to each other, and the inductor L122 and the inductor L222 are connected to each other.
  • the inductor L121 and the inductor L221 are arranged line-symmetrically with respect to a straight line extending in the width direction of the gate, and the inductor L122 and the inductor L222 are arranged line-symmetrically with respect to a straight line extending in the width direction of the gate. That is, a pair of input-side double-wave matching mutual induction circuits are arranged line-symmetrically with respect to a straight line extending in the width direction of the gate and are connected to each other.
  • the semiconductor device according to the second embodiment similarly to the high-frequency semiconductor amplifier shown in the first embodiment, in the semiconductor device according to the second embodiment, with respect to the first inductors L211 and L212 constituting the resonance circuit. Since the gate electrode of the transistor Tr2 and the matching circuit MC2 for fundamental wave matching are connected via the second inductors L121 and L122, the depolarized mutual inductance spreads the double wave impedance seen from the gate of the transistor Tr2. It can be suppressed and has the effect of enabling highly efficient operation over the entire target band.
  • a pair of input-side double-wave matching mutual induction circuits are extended in the width direction of the gate through the center of the transistor Tr2 with respect to the length direction. It was arranged line-symmetrically with respect to the straight line BB'. Therefore, the difference in distance between each basic transistor and the inductor can be reduced as compared with the first embodiment. Therefore, as compared with the first embodiment, the imbalance of operation between the basic transistors can be suppressed, and the characteristics of the high-frequency semiconductor amplifier can be further improved.
  • the operation and configuration thereof are used by using the path from the connection point IN1 to OUT1 or the path from the connection point IN2 to OUT2.
  • the operation and configuration are the same for the route from the connection point INx to OUTx (x is an integer of 1 to 5).
  • the transistor is a GaN-based HEMT formed on a SiC substrate, but the substrate material may be Si or the like.
  • the transistor may be made of a GaAs-based or Si-based material, and the transistor structure may be a MOSFET, MESFET, or HBT.
  • each embodiment can be freely combined within the scope of the invention, and each embodiment can be appropriately modified or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

本発明に係る高周波半導体増幅器は、半導体基板上に形成されたゲート電極、ソース電極、及びドレイン電極を有するトランジスタと、トランジスタの入力側基本波整合用の整合回路と、半導体基板上に形成され、一端がトランジスタのゲート電極に、他端が整合回路に接続された第1のインダクタと、半導体基板上に形成され一端が短絡された容量と、半導体基板上に形成され、一端がトランジスタのゲート電極に、他端が容量の他端に接続された第2のインダクタと、を備えている。第2のインダクタは、2倍波の周波数において容量と直列共振し、第1のインダクタと減極性の相互インダクタンスを呈すると共に、第1のインダクタとで入力側2倍波整合用相互誘導回路を形成する。

Description

高周波半導体増幅器
 この発明は、高周波半導体増幅器に関するものである。
 動作時の低消費電力化、すなわち高効率化は半導体増幅器における基本的な課題である。マイクロ波を超える高周波で電力を増幅する高周波半導体増幅器における、この課題に対する回路面からのアプローチの一つに、半導体が増幅する信号の周波数(以下、基本波)の、倍数にあたる周波数(以下、高調波)において、半導体から見込んだ周辺回路のインピーダンスの制御により高効率動作を達成する手法、いわゆる高調波処理、がある。ここで、高調波の中でも基本波の2倍の周波数にあたる、2倍波での制御が特に重要である。
 例えば、半導体チップ上のトランジスタのゲート近傍に、MIM(Metal Insulator Metal)キャパシタと、伝送線路により構成されたインダクタからなる、2倍波共振回路を接続して入力2倍波を制御することにより、高周波半導体増幅器の高効率化を図る手法が、例えば特許文献1に公開されている。
 インダクタを伝送線路で構成した場合、トランジスタの電極近傍に大きな面積を占める。そこで実際の半導体製品においては、インダクタをスパイラルインダクタで構成することで、所望のインダクタンスをより小さな面積で実現して半導体チップの面積を低減し、コストを低減した事例が非特許文献1に示されている。
 図9から図14に、上記した入力2倍波の制御技術が適用された、従来の高周波半導体増幅器の例を示す。従来の高周波半導体増幅器は、パッケージ12に封止された、携帯電話基地局用の、1段増幅器である。
 なお図において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することである。
 図9と図10に、従来の高周波半導体増幅器の断面図と上面図を示す。図9は図10の矢印Aから見た、従来の高周波半導体増幅器の断面図である。図10は従来の高周波半導体増幅器の上面図である。従来の高周波半導体増幅器のパッケージ内の実装状況を示すため、図9におけるキャップ12cは、図10には図示されていない。
 図9に示すように、パッケージ12は、金属プレート12a、絶縁体12b、キャップ12c、及びリード10、14から構成されている。
 絶縁体12bはセラミックからなる枠体であり、ロウ付けにより金属プレート12aの上面に接して固定されている。
 リード10及び14は、銅合金等の薄板から形成されており、ロウ付けにより絶縁体12bの上面に固定されている。絶縁体12b並びに金属プレート12aに形成されるパッケージの内部は、接着剤(図示せず)を用いてキャップ12cにより封止されている。キャップ12cは、材料はセラミックである。
 リード10は、従来の高周波半導体増幅器への高周波電力の入力用リードであって、ゲートバイアス端子を兼ねている。リード14は、従来の高周波半導体増幅器により増幅された高周波電力の出力用リードであって、ドレインバイアス端子を兼ねている。
 チップT1はSiC(Silicon Carbide)基板の上面に、GaN(Gallium Nitride)を主材料とする半導体層をエピタキシャル成長させた半導体基板の小片であって、チップT1の上面には、ゲート電極、ソース電極、及びドレイン電極を有するトランジスタ(図9、10には図示せず)が形成されている。このトランジスタは高周波特性に優れたHEMT(High Electron Mobility Transistor)である。
 チップP1は、チップT1に形成されたトランジスタの入力側の基本波を整合する整合回路(プリマッチ用回路)の一部を形成したGaAsを主材料とする半導体基板の小片である。チップT1及びチップP1は、はんだ、導電性接着剤等の接合材(図示せず)により、金属プレート12aの上面に固定され、電気的に接続されている。
 金属プレート12aは、その上面に搭載されたチップT1で発生する熱を金属プレート12aの裏面に伝える放熱板の役割を果たしている。金属プレート12aの裏面は、従来の高周波半導体増幅器の接地端子の役割を果たし、チップT1、及びチップP1に対しグランド電位を与える。
 リード10及びチップP1は、ワイヤW11~W15により接続されている。P1及びチップT1は、ワイヤW21~W25により接続されている。チップT1及びリード14は、ワイヤW31~W35により接続されている。
 図10に示すように、入力用のリード10とチップP1とを接続するワイヤW11からW15は上面より見て略平行に配置されている。チップP1とチップT1とを接続するワイヤW21からW25は上面より見て略平行に配置されている。チップT1と出力用のリード14とを接続するワイヤW31からW35は上面より見て略平行に配置されている。
 図11は、従来の高周波半導体増幅器の内部を上面から見た詳細図である。チップP1の上面に、入力側基本波整合用の整合回路MC1~MC5が配置されている。基本波整合回路MC1~MC5は、それぞれ独立した出力側のボンディングパッドを有し、入力側に共通となる信号入力用のワイヤボンディングパッドPPを有している。
 トランジスタTr1~Tr5は、チップT1の上面に形成されており、HEMTセルを形成している。なお本明細書におけるHEMTセルとはトランジスタ近傍でゲート電極が互いに接続された単位Trのかたまりを示すものとする。トランジスタTr1~Tr5はそれぞれ独立したゲート電極に繋がっているボンディングパッドと、ドレイン電極に繋がっている共通の信号出力用のワイヤボンディングパッドTTを有している。
 チップT1の上面には、2倍波整合用インダクタL1~L5,2倍波整合用容量C1~C5からなる2倍波短絡回路が配置されている。2倍波整合用インダクタL1~L5の一端はトランジスタTr1~Tr5のゲートに接続され、他端は2倍波整合用容量C1~C5の一端に接続されている。2倍波整合用容量C1~C5の他端は、チップT1に形成された裏面へ繋がるVIAを介して、接地されている。2倍波整合用インダクタL1~L5,及び2倍波整合用容量C1~C5は直列に接続されている。
 図12は、図11の接続点IN1からOUT1に至る経路の等価回路である。チップT1上に形成された2倍波整合用インダクタL1と2倍波整合用容量C1は、2倍波近辺の周波数で共振する2倍波短絡回路を形成している。上述の高効率化は、トランジスタのゲートから見込んだ2倍波のインピーダンスの反射係数の大きさを概略1(全反射)とし、反射係数の位相を適切に設定することで実現される。
 ここで、全反射は2倍波短絡回路が共振により理想的に0Ωとなった場合にのみ実現されるものであるが、実用上は基本波のインピーダンスと比較して2倍波短絡回路のインピーダンスが1/5以下とすれば、高効率化に一定以上の効果があることを付記しておく。
 図13は、ドレイン効率の入力2倍波反射位相依存性を示す図である。図12における経路IN1からOUT1へ至る電力増幅器のドレイン効率を、トランジスタTr1のゲート電極から接続点IN1方向を見た2倍波インピーダンスの反射係数の大きさを概略1(全反射)とした状態で反射位相を変化させてシミュレーションしている。ただし、このシミュレーションでは、ゲート電極から見た当該反射係数の大きさと位相を理想的に変化させており、図12の2倍波整合用インダクタL1と2倍波整合用容量C1は含まれていない。
 図13の縦軸は増幅器のドレイン効率を示し、横軸はゲート電極から信号源側、すなわち接続点IN1方向、を見た2倍波インピーダンスの反射位相を示している。図13に示されるように、増幅器のドレイン効率はゲートから見た2倍波反射位相によって変化する。通例180°付近で最大値を示し、本シミュレーションにおいても170°~190°で最大効率が得られている。
 一方、実際の回路のインピーダンスは周波数特性を有する。図14は従来の高周波半導体増幅器における入力側インピーダンスの軌跡を示す図である。具体的には、図12の等価回路において、トランジスタTr1のゲート電極から接続点IN1の方向を見たインピーダンスの周波数依存性を示したベクトル軌跡である。
 ここで、高周波半導体増幅器で電力増幅を行おうとする基本波の帯域の下限周波数をfl、上限周波数をfh、これらのセンター周波数をfcとする。また2倍波帯域の下限周波数を2fl(flの2倍の周波数)、上限周波数を2fh(fhの2倍の周波数)、これらのセンター周波数を2fcとする。本シミュレーションにおいて、fl=3.4GHz、fh=3.6GHzである。
 図14において、基本波帯域の周波数fl、fc、fhにおけるインピーダンスをマーカーで示しているが、これらのインピーダンスはほぼ一点に集まっている。すなわち周波数特性が小さいことを示している。一方、2倍波帯域の周波数2fl、2fc、2fhにおけるインピーダンスもマーカーで示しているが、2倍波のインピーダンスの軌跡は基本波帯域と比較してマーカーの間隔がかなり広い。
 すなわち高調波でのインピーダンスの周波数依存性は、基本波におけるインピーダンスの周波数依存性と比較して大きいことが分かる。この広がりは、図13に示した最大効率が得られる範囲を逸脱している。
 このため、目的とする帯域内全般に亘って高効率動作が出来ないという課題がある。
 本発明に係る高周波半導体装置は、半導体基板に形成された、ゲート電極、ソース電極、及びドレイン電極を有するトランジスタと、トランジスタの入力側基本波整合用の整合回路と、半導体基板上に形成され、一端が前記トランジスタのゲート電極に、他端が前記整合回路に接続された第1のインダクタと、半導体基板上に形成され、一端が短絡された容量と、半導体基板上に形成され、一端がトランジスタのゲート電極に、他端が容量の他端に接続された第2のインダクタとを備えている。
 第2のインダクタは、2倍波の周波数において容量と直列共振し、第1のインダクタと減極性の相互インダクタンスを呈するとともに、第1のインダクタとで入力側2倍波整合用相互誘導回路を形成する。
 この発明は上記のような問題点を解消するためになされたもので、広い周波数帯域で高効率な電力増幅が可能な高周波半導体増幅器の提供を目的とする。
本発明の実施の形態1に係る高周波半導体増幅器の内部を上面から見た詳細図である。 図1の接続点IN1からOUT1に至る経路の等価回路の図である。 本発明の動作を説明するための等価回路図である。 図4は、図2における基本波回路、及び2倍波短絡回路のインピーダンスの周波数依存性を示した図である。 nの周波数依存性を示す図である。 本発明の実施の形態1に係る高周波半導体増幅器における入力側インピーダンスの軌跡を示す図である。 本発明の実施の形態2に係る高周波半導体増幅器の内部を上面から見た詳細図である。 図7のTr2近傍の拡大図である。 従来の高周波半導体増幅器の断面図である。 従来の高周波半導体増幅器の上面図である。 従来の高周波半導体増幅器の内部を上面から見た詳細図である。 図11の接続点IN1からOUT1に至る経路の等価回路である。 ドレイン効率の入力2倍波反射位相依存性を示す図である。 従来の高周波半導体増幅器における入力側インピーダンスの軌跡を示す図である。
実施の形態1.
 本発明の実施の形態1に係る高周波半導体増幅器について、図1から図6を用いて説明する。以下、図面を参照しつつ、本発明の実施形態について説明する。
 図1は、本発明の実施の形態1に係る高周波半導体増幅器の内部を上面から見た詳細図である。図11を用いて先に説明した従来の高周波半導体増幅器との大きな違いは、チップT1上に互いに減極性の相互インダクタンスを呈し、入力側2倍波整合用相互誘導回路を形成する、2倍波整合用インダクタL11~L15、及び基本波回路用インダクタL21~L25を有していることである。
 従来の高周波半導体増幅器と同じく、チップT1はSiC(Silicon Carbide)基板の上面に、GaN(Gallium Nitride)を主材料とする半導体層をエピタキシャル成長させた半導体基板の小片である。
 チップT1の上面にはゲート電極、ソース電極、及びドレイン電極を有するトランジスタTr1~Tr5が形成されている。このトランジスタは高周波特性に優れたHEMT(High Electron Mobility Transistor)である。すなわち、トランジスタTr1~Tr5は、GaN系HEMTである。
 チップP1は、トランジスタTr1~Tr5の入力側基本波を整合する整合回路(プリマッチ用回路)を、GaAs基板上に形成したチップである。
 基本波回路用インダクタL21~L25はチップT1上に形成されており、一端がトランジスタTr1~Tr5のゲート電極に接続されており、ワイヤW21~W25を介してチップP1に形成された入力側基本波整合用の整合回路MC1~MC5に他端が接続されている。
 2倍波整合用容量C11~C15はチップT1上に形成されており、一端はチップT1に形成されたチップT1の裏面へ導通するVIAを介して短絡されている。
 2倍波整合用インダクタL11~L15はチップT1上に形成されており、一端はトランジスタTr1~Tr5のゲート電極に接続され、他端は容量C11~C15の他端に接続されている。
 すなわち、2倍波整合用インダクタL11~L15と2倍波整合用容量C11~C15とVIAは直列に接続され、ほぼ2倍波の周波数において直列共振するよう構成されており、2倍波短絡回路を形成している。
 2倍波整合用インダクタL11~L15及び基本波回路用インダクタL21~L25は、単位面積あたりのインダクタを高めて半導体の面積を縮小できるように、うずまき状の伝送線路であるスパイラルインダクタを構成している。
 2倍波整合用インダクタL11~L15及び基本波回路用インダクタL21~L25は、うずまき部分で伝送線路が近接するようにうずまきを重ね、かつチップ上面から見てうずまきの巻き方向が逆となるように配置されている。
 よって、2倍波整合用インダクタL11~L15及び基本波回路用インダクタL21~L25は、減極性の相互インダクタンスを呈し、入力側2倍波整合用相互誘導回路を形成している。
 図2は、図1の接続点IN1からOUT1に至る経路の等価回路であり、本発明の実施の形態1に係る高周波半導体増幅器の一部を抜き出したものである。
 先にも述べたように、2倍波整合用インダクタL11と2倍波整合用容量C11とは直列に接続されており、2倍波整合用容量C11の一端は接地されている。2倍波整合用インダクタL11のインダクタンス値と2倍波整合用容量C11の容量値は、2倍波の周波数で共振し、ほぼ短絡するよう設定されている。
 なお,短絡とは理想的は0Ωであるが、実用上は基本波のインピーダンスと比較して2倍波短絡回路のインピーダンスが1/5以下となれば、高効率化に一定以上の効果があることを付記しておく。
 2倍波整合用インダクタL11及び基本波回路用インダクタL21は、入力側2倍波整合用相互誘導回路を形成している。すなわち、基本波回路用インダクタL21と2倍波整合用インダクタL11とに、同時にゲートから電力が入力された場合に、減極性の相互インダクタンスを呈するように配置されている。
 基本波回路用インダクタL21はワイヤW21の一端に接続されている。ワイヤW21の他端にはシャント接続された容量Cp1、並びに並列接続された容量Cs1及び抵抗Rs1が接続されている。容量Cp1、Cs1、及び抵抗Rs1はチップP1上に形成されており、整合回路MC1を構成している。抵抗Rs1は、基本波より低い周波数における動作の安定性を高め、容量Cs1は基本波での抵抗値を下げる目的で用いられている。
 容量Cp1並びに基本波回路用インダクタL21及びワイヤW21は、入力側の基本波に対するプリマッチ回路として動作する。パッケージ外部のトランスミッションラインTL1は、インピーダンス変換器として動作する。
 図3は、本発明の動作を説明するための等価回路図である。図3(a)は、図1の接続点IN1からOUT1に至る経路の等価回路であり、図2の説明に必要な部分だけを簡略に示したものである。
 先に説明したように基本波回路用インダクタL21と2倍波用インダクタL11は入力側2倍波整合用相互誘導回路を形成しており、互いに減極性の相互インダクタンスを呈する。これをL11、L21のドットで示す。
 2倍波用インダクタL11に流れる電流をi1、基本波回路用インダクタL21に流れる電流をi2とする。また、L11のインダクタンス値をL(L11)、L21のインダクタンス値をL(L21)、相互インダクタンス値を-Mとする。
 図3(b)は、図3(a)をカップリングの無いインダクタに置き換え構成した場合の等価回路図である。基本波インダクタL21aのインダクタンス値はL(L21)+M、2倍波インダクタL11aのインダクタンス値はL(L11)+M、インダクタM1のインダクタンス値は-Mとなる。
 図3(b)から明らかなようにインダクタM1には電流i1と電流i2の両方が流れる。ここで、図3(c)に示すように、電流i1のみが流れるインダクタM1bと、電流i2のみが流れるインダクタM1aに、インダクタM1を仮想的に分割する事を考える。
 図3(c)において、インダクタL21aとインダクタM1aの直列接続をインダクタL21b、インダクタL11aとインダクタM1bの直列接続をインダクタL11bとすると、図3(a)と図3(c)との比較から、図3(c)のL21b、L11bは、図3(a)のL21、L11に相当することが分かる。
 インダクタM1aのインダクタンス値をL(M1a),インダクタLM1bのインダクタンス値をL(M1b)とすると、図3(b)のノードN1と、図3(c)のノードN11及びN12は同一の電位であるので、L(M1a)、L(M1b)はi1、i2及びMを用いて次のように表すことが出来る。
 L(M1a)=-(i1+i2)/i2×M、
 L(M1b)=-(i1+i2)/i1×M。
 ここでn=i2/i1とすると、先ほどのL(M1a)、L(M1b)はnを用いて
 L(M1a)=-(1+1/n)×M、
 L(M1b)=-(1+n)×M
と表すことが出来る。
 すると、基本波インダクタ側に流れる電流i2はnを用いてn×i1と表せるので、図3(c)における基本波インダクタンスL21bのインダクタンス値L(L21b)は、
 L(L21b)=L(L21a)+L(M1a)=L(L21)―(1/n)×M、
2倍波インダクタンスL11bのインダクタンス値L(L11b)は、
 L(L11b)=L(L11a)+L(M1b)=L(L11)-n×M
と表すことが出来る。
 図4は、図2におけるトランジスタTr1のゲートから見た基本波回路、及び2倍波短絡回路のインピーダンスの周波数依存性を示した図である。図中において、実線は基本波回路のインピーダンスを、破線は2倍波短絡回路のインピーダンスを示している。ただし、基本波回路用インダクタL21と2倍波整合用インダクタL11が相互インダクタンスを有する場合、基本波回路、2倍波短絡回路単独でのインピーダンス計算が出来ないため、相互インダクタンスは無いとした状態で計算を実施している。このため、図2とは若干の差異があるが、回路インピーダンスの概略の動きを把握することは出来る。
 図5は、nの周波数依存性を示す図である。図5(a)はnの極座標上での軌跡を示した図であり、図5(b)は2倍波周波数付近におけるnの実部の周波数特性を示した図である。
 図5(a)においてfcでのnの位置を示す。基本波における、トランジスタのゲートから基本波整合回路へ流れる高周波電流と、トランジスタのゲートから2倍波短絡回路へ流れる高周波電流とを比較すると、図4に示されるように2倍波短絡回路のインピーダンスが高くほとんど電流が流れないので、nの値は大きい。また基本波において、基本波整合回路を見込むインピーダンスは誘導性であり、2倍波短絡回路を見込むインピーダンスは容量性なので、nの実部の符号は負である。
 一方、図4に示されるように、基本波から周波数が高くなり2倍波に近づくにつれ、容量性である2倍波短絡回路のインピーダンスは低くなっていき、トランジスタのゲートから2倍波短絡回路へ流れる高周波電流が増加していく。2倍波短絡回路のインピーダンスはその共振周波数で最少となり、2倍波を超えると誘導性となり絶対値は高くなっていく。よって図5(a)に示されるように、周波数の上昇につれてnの軌跡は負の値からゼロ付近を通り、正の方向に動く。
 2倍波周波数付近では、図5(a)に示されるようにnの虚部はほぼ無く、図5(b)に示されるように、nの実部は周波数に対して単調増加である。よって、帯域の下限(2fl)におけるインダクタンスL11bに対し、帯域の上限(2fh)におけるインダクタンスL11bは小さくなる。このため、L11bとC11による共振周波数は、帯域の下限(2fl)では低く、帯域の上限(2fh)では高くなる。つまり、トランジスタのゲートから見込んだ2倍波のインピーダンスの反射係数の位相変化を抑制する。なお、ここでもfl=3.4GHz、fh=3.6GHzである。
 図6は本発明の実施の形態1に係る高周波半導体増幅器における入力側インピーダンスの軌跡を示す図である。図6に示された2flと2fhにおけるインピーダンスの間隔は、図14に示された2flと2fhにおけるインピーダンスの間隔と比較して狭いことが分かる。すなわち、2倍波におけるインピーダンスの位相変化が近く、高効率を維持できる周波数帯域が広がっている事を示している。
 以上のとおり、本発明の実施の形態1における半導体装置は、半導体基板T1上に形成された、ゲート電極、ソース電極、及びドレイン電極を有するトランジスタTr1と、トランジスタTr1の入力側基本波整合用の整合回路MC1と、半導体基板T1上に形成され、一端がトランジスタTr1のゲート電極に接続され、他端が整合回路MC1に接続された第1のインダクタL21と、半導体基板T1上に形成され、一端が短絡された容量C11と、半導体基板T1上に形成され、一端がトランジスタTr1のゲート電極に接続され、他端が容量C11の他端に接続された、第2のインダクタL11と、を備えており、第2のインダクタL11は、2倍波の周波数において容量C11と直列共振し、第1のインダクタL21と減極性の相互インダクタンスを呈し、入力側2倍波整合用相互誘導回路を形成している。
 このような構成によれば、共振回路を構成する第1のインダクタL21に対し減極性の相互インダクタンスを第2のインダクタL11を介してトランジスタTr1のゲート電極と基本波整合用の整合回路MC1とを接続したので、トランジスタTr1のゲートから見た2倍波インピーダンスの広がりを抑制でき、目的とする帯域内全般に亘って高効率動作が可能になる効果を奏する。
なお、実施の形態1において、所望のnを実現できる回路の一例を示したが、周波数の増加に伴って負の値から正の方向に動くnが実現できる回路であれば回路構成の制約はない。
実施の形態2.
 本発明の実施の形態2に係る高周波半導体増幅器の構成を、図7、8を用いて説明する。実施の形態1との相違点は第1のインダクタ、及び第2のインダクタの構成であって、その他の部分は共通である。
 図1に示した実施の形態1に係る高周波半導体増幅器では、2倍波整合用インダクタL11及び基本波回路用インダクタL21からなる入力側2倍波整合用相互誘導回路が、ゲートフィーダ配線GF1と近接している。このため動作周波数が高くなると、トランジスタTr1を構成する各基本トランジスタに対する影響がアンバランスとなる。
 具体的には、図1において、ゲートフィーダ配線GF1と2倍波整合用インダクタL11の接続点からみて下方向では、ゲートフィーダ配線GF1と2倍波整合用インダクタL11の距離が近接しており、カップリングが発生する。一方、図1において、ゲートフィーダ配線GF1とインダクタL11の接続点からみて上方向では、ゲートフィーダ配線GF1と2倍波整合用インダクタL11の距離は、下方向と比較して離れており、カップリングの影響は小さい。
 このように入力側2倍波整合用相互誘導回路と、各基本トランジスタとの距離が均一ではないため、トランジスタTr1の動作がアンバランスとなり、特性が低下するという問題があった。
 図7は、本発明の実施の形態2に係る高周波半導体増幅器の内部を上面から見た詳細図である。図8は、図7のTr2近傍の拡大図である。ここでは接続点IN2からOUT2に至る経路を例にとって説明する。
 実施の形態1と同じく、チップT1はSiC(Silicon Carbide)基板の上面に、GaN(Gallium Nitride)を主材料とする半導体層をエピタキシャル成長させた半導体基板の小片である。
 チップT1の上面にはゲート電極、ソース電極、及びドレイン電極を有するトランジスタTr1~Tr5が形成されている。このトランジスタは高周波特性に優れたHEMT(High Electron Mobility Transistor)である。すなわち、トランジスタTr1~Tr5は、GaN系HEMTである。
 2倍波整合用容量C11~C15はチップT1上に形成されている。2倍波整合用容量C1~C6の一端は、チップT1に形成されたチップT1の裏面へ導通するVIAを介して短絡されている。
 トランジスタTr2のゲート電極は、ゲートフィーダ配線GF2により互いに接続されている。
 2倍波整合用インダクタL121は、一端がトランジスタTr2のゲート電極に接続され、他端は2倍波整合用容量C2の他端に接続されている。2倍波整合用インダクタL121と2倍波整合用容量C2は、ほぼ2倍波の周波数において共振するように構成されており、2倍波短絡回路を形成している。
 2倍波整合用インダクタL122は、一端がトランジスタTr2のゲート電極に接続され、他端は2倍波整合用容量C3の他端に接続されている。2倍波整合用インダクタL122と2倍波整合用容量C3は、ほぼ2倍波の周波数において共振するように構成されており、2倍波短絡回路を形成している。
 基本波回路用インダクタL221は、一端がトランジスタTr2のゲート電極に接続され、他端はワイヤW22を介して基本波整合用の整合回路MC2に接続されている。基本波回路用インダクタL222は、一端がトランジスタTr2のゲート電極に接続され、他端はワイヤW22を介して基本波整合用の整合回路MC2に接続されている。
 図7、8に示すように、2倍波整合用インダクタL121と基本波回路用インダクタL221は、入り組んだ形で互いに近接して配置されている。その配置は、トランジスタTr2のゲートから2倍波整合用インダクタL121に沿ってC2へ至る経路と、トランジスタTr2のゲートから基本波回路用インダクタL221に沿ってワイヤW22へ至る経路とが、近接部分で経路が互いに逆方向になるよう工夫されている。
 このため、2倍波整合用インダクタL121と基本波回路用インダクタL221は減極性の相互インダクタンスを呈し、入力側2倍波整合用相互誘導回路を形成する。
 同様に、2倍波整合用インダクタL122と基本波回路用インダクタL222も減極性の相互インダクタンスを呈し、入力側2倍波整合用相互誘導回路を形成する。
 2倍波整合用インダクタL121、及び基本波回路用インダクタL221からなる入力側2倍波整合用相互誘導回路と、2倍波整合用インダクタL122、及び基本波回路用インダクタL222からなる入力側2倍波整合用相互誘導回路において、2倍波整合用インダクタインダクタL121とL122とは接続されており、基本波回路用インダクタインダクタL221とL222とは接続されている。
 すなわち1対の入力側2倍波整合用相互誘導回路は互いに接続されている。また、2倍波整合用インダクタL121、及び基本波回路用インダクタL221からなる入力側2倍波整合用相互誘導回路と、2倍波整合用インダクタL122、及び基本波回路用インダクタL222からなる入力側2倍波整合用相互誘導回路とは、ゲートの長さ方向に対してトランジスタTr2の中心を通りゲートの幅方向に延伸する直線B-B’に対し、線対称に配置されている。すなわち1対の入力側2倍波整合用相互誘導回路はゲートの幅方向に延伸する直線に対し線対称に配置されている。
 2倍波整合用インダクタインダクタL121及びL122は、ゲートフィーダ配線GF2と近接している。しかしながら、直線B-B’に対し対称に配置されているため、実施の形態1と比較して、各基本トランジスタとインダクタとの距離の差は小さい。このため、実施の形態1と比較して、各基本トランジスタ間の動作のアンバランスが抑制でき、高周波半導体増幅器の特性が向上する。他の部分は説明を省略する。
 以上のとおり、本発明の実施の形態2に係る高周波半導体増幅器は、半導体基板T1上に形成された、ゲート電極、ソース電極、及びドレイン電極を有するトランジスタTr2と、トランジスタTr2の入力側基本波整合用の整合回路MC2と、半導体基板T1上に形成された、一端がトランジスタTr2のゲート電極に接続され、他端が整合回路MC2に接続された第1のインダクタL221及びL222と、半導体基板T1上に形成された、一端が短絡された容量C2及びC3を備える。
 また、本発明の実施の形態2に係る高周波半導体増幅器は、半導体基板T1上に形成され、一端がトランジスタTr2のゲート電極に接続され、他端が容量C2の他端に接続された第2のインダクタL121を備えており、第2のインダクタL121は、2倍波の周波数において容量C2と直列共振し、第1のインダクタL221と減極性の相互インダクタンスを呈する入力側2倍波整合用相互誘導回路を形成している。
 更に、本発明の実施の形態2に係る高周波半導体増幅器は、半導体基板T1上に形成され、一端がトランジスタTr2のゲート電極に接続され、他端が容量C3の他端に接続された第2のインダクタL122を備えており、第2のインダクタL122は、2倍波の周波数において容量C2と直列共振し、第1のインダクタL222と減極性の相互インダクタンスを呈する入力側2倍波整合用相互誘導回路を形成している。
 加えて、本発明の実施の形態2に係る高周波半導体増幅器では、インダクタL121とインダクタL221とが互いに接続されており、インダクタL122とインダクタL222とが互いに接続されている。インダクタL121及びインダクタL221とはゲートの幅方向に延伸する直線に対し線対称に配置されており、インダクタL122及びインダクタL222とはゲートの幅方向に延伸する直線に対し線対称に配置されている。すなわち、1対の入力側2倍波整合用相互誘導回路が、ゲートの幅方向に延伸する直線に対し線対称に配置され、互いに接続されている。
 このような構成によれば、実施の形態1に示された高周波半導体増幅器と同様に、実施の形態2に係る半導体装置にあっては、共振回路を構成する第1のインダクタL211及びL212に対し減極性の相互インダクタンスを第2のインダクタL121及びL122を介してトランジスタTr2のゲート電極と基本波整合用の整合回路MC2とを接続したので、トランジスタTr2のゲートから見た2倍波インピーダンスの広がりを抑制でき、目的とする帯域内全般に亘って高効率動作が可能になる効果を奏する。
 更に、実施の形態2に係る高周波半導体増幅器にあっては、1対の入力側2倍波整合用相互誘導回路をトランジスタTr2のゲートの長さ方向に対する中心を通り、ゲートの幅方向に延伸する直線B-B’に対し、線対称に配置した。よって、実施の形態1と比較して、各基本トランジスタとインダクタとの距離の差を小さくできる。このため、実施の形態1と比較して、各基本トランジスタ間の動作のアンバランスが抑制でき、高周波半導体増幅器の特性を更に向上させることが出来るという効果を奏する。
 なお、本明細書では、本発明に係る高周波半導体増幅器、あるいは従来の高周波半導体増幅器全体において、接続点IN1からOUT1に至る経路、あるいは接続点IN2からOUT2に至る経路を用いて、その動作、構成を説明したが、接続点INxからOUTx(xは1から5のいずれかの整数)に至る経路でも、その動作、構成は同様である。
 また本発明の実施の形態において、トランジスタはSiC基板上に形成されたGaN系HEMTであったが、基板材料はSi等でも良い。またはトランジスタはGaAs系やSi系の材料で構成されていてもよく、トランジスタ構造はMOSFET,MESFETやHBTでも良い。
 本発明は、発明の範囲内において各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。
 10、14 リード、12 パッケージ、12a 金属プレート、12b 絶縁体、
12c キャップ、C1~C5、C11~C15 2倍波整合用容量、
L1~L5、L11~L15、L111~L152 2倍波整合用インダクタ、
L21~L25、L211~L252 基本波回路用インダクタ、
MC1~MC5 整合回路、T1 チップ、Tr1~Tr5 トランジスタ、
W11~W15、W21~W30、W31~W35 ワイヤ。

Claims (3)

  1.  半導体基板上に形成された、ゲート電極、ソース電極、及びドレイン電極を有するトランジスタと、
     前記トランジスタの入力側基本波整合用の整合回路と、
     前記半導体基板上に形成され、一端が前記トランジスタのゲート電極に、他端が前記整合回路に接続された第1のインダクタと、
     前記半導体基板上に形成され、一端が短絡された容量と、
     前記半導体基板上に形成され、一端が前記トランジスタのゲート電極に、他端が前記容量の他端に接続された第2のインダクタと、
     を備えた高周波半導体増幅器であって、
     前記第2のインダクタは、2倍波の周波数において前記容量と直列共振し、前記第1のインダクタと減極性の相互インダクタンスを呈するとともに、前記第1のインダクタとで入力側2倍波整合用相互誘導回路を形成する高周波半導体増幅器。
  2.  前記入力側2倍波整合用相互誘導回路は、前記ゲートの幅方向に延伸する直線に対し線対称に配置され、互いに接続されていることを特徴とする、請求項1に記載の高周波半導体増幅器。
  3.  前記トランジスタは、GaN系HEMTである事を特徴とする、請求項1または請求項2に記載の高周波半導体増幅器。
PCT/JP2019/012471 2019-03-25 2019-03-25 高周波半導体増幅器 WO2020194441A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2019/012471 WO2020194441A1 (ja) 2019-03-25 2019-03-25 高周波半導体増幅器
KR1020217029113A KR102587455B1 (ko) 2019-03-25 2019-03-25 고주파 반도체 증폭기
CN201980094252.6A CN113574797B (zh) 2019-03-25 2019-03-25 高频半导体放大器
US17/296,747 US11979117B2 (en) 2019-03-25 2019-03-25 High frequency semiconductor amplifier
JP2021508416A JP6930680B2 (ja) 2019-03-25 2019-03-25 高周波半導体増幅器
DE112019007087.8T DE112019007087B4 (de) 2019-03-25 2019-03-25 Hochfrequenz-Halbleiterverstärker
TW109109161A TWI727711B (zh) 2019-03-25 2020-03-19 高頻半導體放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012471 WO2020194441A1 (ja) 2019-03-25 2019-03-25 高周波半導体増幅器

Publications (1)

Publication Number Publication Date
WO2020194441A1 true WO2020194441A1 (ja) 2020-10-01

Family

ID=72609673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012471 WO2020194441A1 (ja) 2019-03-25 2019-03-25 高周波半導体増幅器

Country Status (7)

Country Link
US (1) US11979117B2 (ja)
JP (1) JP6930680B2 (ja)
KR (1) KR102587455B1 (ja)
CN (1) CN113574797B (ja)
DE (1) DE112019007087B4 (ja)
TW (1) TWI727711B (ja)
WO (1) WO2020194441A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289678B1 (ja) * 2016-05-31 2018-03-07 三菱電機株式会社 高周波増幅器
JP6388747B2 (ja) * 2016-05-23 2018-09-12 三菱電機株式会社 電力増幅器
JP6399267B1 (ja) * 2018-02-09 2018-10-03 三菱電機株式会社 増幅器

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117203A (en) * 1990-12-13 1992-05-26 General Electric Company Phase stable limiting power amplifier
US5276406A (en) * 1992-02-13 1994-01-04 Trontech, Inc. Low noise wide dynamic range amplifiers
JP3668610B2 (ja) 1998-04-10 2005-07-06 太陽誘電株式会社 高周波電力増幅回路
JP2002171138A (ja) * 2000-12-01 2002-06-14 Nec Corp マイクロ波電力増幅器
JP4601247B2 (ja) * 2002-12-26 2010-12-22 ルネサスエレクトロニクス株式会社 半導体装置
JP2005311579A (ja) * 2004-04-20 2005-11-04 Miyoshi Electronics Corp 半導体装置
JP2006005848A (ja) * 2004-06-21 2006-01-05 Sharp Corp 電力増幅器及び高周波通信装置
JP4743077B2 (ja) 2006-10-23 2011-08-10 三菱電機株式会社 高周波電力増幅器
US8076994B2 (en) * 2007-06-22 2011-12-13 Cree, Inc. RF power transistor packages with internal harmonic frequency reduction and methods of forming RF power transistor packages with internal harmonic frequency reduction
JP2010245819A (ja) * 2009-04-06 2010-10-28 Panasonic Corp 増幅回路
US8659359B2 (en) * 2010-04-22 2014-02-25 Freescale Semiconductor, Inc. RF power transistor circuit
JP4948683B2 (ja) * 2010-06-21 2012-06-06 パナソニック株式会社 高周波増幅回路
JP2012174996A (ja) 2011-02-23 2012-09-10 Fujitsu Ltd 半導体装置及び半導体装置の製造方法
JP2012257070A (ja) * 2011-06-09 2012-12-27 Nippon Telegr & Teleph Corp <Ntt> トランスインピーダンスアンプ
JP5954974B2 (ja) 2011-12-05 2016-07-20 三菱電機株式会社 高周波増幅器
JP5619055B2 (ja) * 2012-03-08 2014-11-05 株式会社東芝 高周波半導体増幅器
US9825597B2 (en) * 2015-12-30 2017-11-21 Skyworks Solutions, Inc. Impedance transformation circuit for amplifier
KR101924639B1 (ko) 2016-04-14 2018-12-03 한국전자통신연구원 고주파를 이용하여 무선 신호를 증폭하기 위한 회로
KR101899922B1 (ko) * 2016-04-19 2018-09-18 한국전자통신연구원 저전력 고주파 증폭기
KR102467950B1 (ko) * 2016-12-08 2022-11-17 한국전자통신연구원 통신 장치의 임피던스 정합 회로
US10432164B2 (en) 2016-12-08 2019-10-01 Electronics And Telecommunications Research Institute Impedance matching circuit of communication apparatus
US10003311B1 (en) * 2016-12-21 2018-06-19 Infineon Technologies Ag Compact class-F chip and wire matching topology
JP2018142827A (ja) * 2017-02-27 2018-09-13 三菱電機特機システム株式会社 半導体装置および電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388747B2 (ja) * 2016-05-23 2018-09-12 三菱電機株式会社 電力増幅器
JP6289678B1 (ja) * 2016-05-31 2018-03-07 三菱電機株式会社 高周波増幅器
JP6399267B1 (ja) * 2018-02-09 2018-10-03 三菱電機株式会社 増幅器

Also Published As

Publication number Publication date
TW202103439A (zh) 2021-01-16
KR102587455B1 (ko) 2023-10-10
CN113574797A (zh) 2021-10-29
JPWO2020194441A1 (ja) 2021-09-13
DE112019007087T5 (de) 2021-12-09
US11979117B2 (en) 2024-05-07
JP6930680B2 (ja) 2021-09-01
US20220029591A1 (en) 2022-01-27
DE112019007087B4 (de) 2023-12-28
CN113574797B (zh) 2023-10-10
TWI727711B (zh) 2021-05-11
KR20210125553A (ko) 2021-10-18

Similar Documents

Publication Publication Date Title
CN109818582B (zh) 具有谐波陷波器的宽带功率放大器
JP5085179B2 (ja) F級増幅回路
US20130076446A1 (en) Rf device with compensatory resonator matching topology
US10453810B2 (en) Integrated passive device for RF power amplifier package
JP5603893B2 (ja) 高周波半導体増幅器
JP7074892B2 (ja) 周波数選択インピーダンス整合ネットワークを備えるrfパワー増幅器
US10003311B1 (en) Compact class-F chip and wire matching topology
CN109889168B (zh) 具有谐波终止电路的放大器装置
JP4936965B2 (ja) F級増幅回路
JP7258612B2 (ja) 高周波回路
US20200059204A1 (en) Amplifiers with broadband impedance matching and methods of manufacture thereof
JP6930680B2 (ja) 高周波半導体増幅器
CN111989861B (zh) 高频功率放大器
CN104733810B (zh) 开关电路及高频模块
JP6164722B2 (ja) 半導体装置
WO2021117142A1 (ja) 高周波増幅器
JP6581477B2 (ja) 増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508416

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217029113

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19921329

Country of ref document: EP

Kind code of ref document: A1