WO2020138973A1 - 1,4-사이클로헥산디메탄올의 제조방법 - Google Patents

1,4-사이클로헥산디메탄올의 제조방법 Download PDF

Info

Publication number
WO2020138973A1
WO2020138973A1 PCT/KR2019/018516 KR2019018516W WO2020138973A1 WO 2020138973 A1 WO2020138973 A1 WO 2020138973A1 KR 2019018516 W KR2019018516 W KR 2019018516W WO 2020138973 A1 WO2020138973 A1 WO 2020138973A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
chda
cyclohexanedimethanol
catalyst
trans
Prior art date
Application number
PCT/KR2019/018516
Other languages
English (en)
French (fr)
Inventor
장남진
김은정
이선욱
이종권
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US17/293,482 priority Critical patent/US11629112B2/en
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to EP19904729.1A priority patent/EP3904323A4/en
Priority to CN201980076296.6A priority patent/CN113056446B/zh
Priority to JP2021531780A priority patent/JP7222092B2/ja
Publication of WO2020138973A1 publication Critical patent/WO2020138973A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • C07C29/158Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof containing rhodium or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/56Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by isomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/94Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/27Polyhydroxylic alcohols containing saturated rings
    • C07C31/272Monocyclic
    • C07C31/276Monocyclic with a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/353Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C61/08Saturated compounds having a carboxyl group bound to a six-membered ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof

Definitions

  • the present invention relates to a method for producing 1,4-cyclohexanedimethanol.
  • 1,4-cyclohexanedimethanol is widely used as a raw material for pharmaceuticals, synthetic resins, synthetic fibers, or dyes, and is particularly used as a raw material for eco-friendly polyester polyethylene terephthalate.
  • 1,4-cyclohexanedimethanol exists as a stereoisomer in cis and trans form, but for higher quality products, trans 1,4-cyclohexanedimethanol (trans CHDM) than cis It is required that the ratio of is high.
  • DMT dimethyl terephthalate
  • This method is a method of producing DMT by reacting phthalate with methanol, and then producing 1,4-cyclohexanedimethanol by a two-step hydrogenation reaction.
  • the first hydrogenation reaction converts DMT to DMCD (diester dimethyl 1,4-cyclohexanedicarboxylate), and the second hydrogenation reaction converts DMCD to CHDM.
  • DMCD dimethyl 1,4-cyclohexanedicarboxylate
  • the second hydrogenation reaction converts DMCD to CHDM.
  • the ratio of cis CHDM and trans CHDM is determined according to the type of catalyst.
  • Korean Patent Publication No. 2015-0062911 proposes a method for producing CHDM through a two-step reduction process for phthalate.
  • this method does not undergo an isomerization reaction, and there is a problem in that the ratio of trans CHDM is low.
  • Korean Registered Patent No. 0943872 proposed a method of separating and producing an intermediate product, trans CHDA, to increase the ratio of trans CHDM.
  • This method is a method of carrying out the isomerization reaction using the difference between the melting points of cis CHDA and trans CHDA, and simultaneously producing trans CHDA in a solid or molten state.
  • the method cannot be said to be an economical method because it requires a process of removing water or other solvent used as a solvent, and it is necessary to remove heat used in the phthalate reduction process by operating at a low temperature for recrystallization.
  • Japanese Patent Publication No. 2014-177422 proposed a method of obtaining a desired ratio of trans CHDM by controlling the temperature and reaction time of the hydrogenation reaction.
  • This method adopts a means to control the reaction temperature and reaction time in a fixed-bed reactor as a method of proceeding the isomerization reaction simultaneously with the reduction reaction of CHDA.
  • crystallization proceeds easily in the conversion of CHDA, which is a reactant. Thereby, the performance of the catalyst is reduced, and there is a problem that a desired yield and a ratio of trans CHDM are not achieved.
  • Patent Document 1 Korean Patent Publication No. 2015-0062911
  • Patent Document 2 International Publication Patent WO2015-156582
  • Patent Document 3 Korean Registered Patent No. 0943872
  • Patent Document 4 Japanese Patent Publication No. 2014-177422
  • the present invention is to solve the above problems, and performs a two-step reduction reaction using terephthalic acid as a starting material, and by introducing an isomerization process to increase the ratio of the trans isomer of CHDA in the middle, the ratio of the trans isomer is high. It is to provide a method for stably producing CHDM.
  • Terephthalic acid is subjected to a hydrogenation reaction in the presence of a first hydrogenation catalyst to give 1,4-cyclohexanedicarboxylic acid (CHDA) including cis and trans isomers.
  • CHDA 1,4-cyclohexanedicarboxylic acid
  • a hydrogenation reaction is performed in the presence of a second hydrogenation catalyst to prepare 1,4-cyclohexanedimethanol (CHDM) including cis isomers and trans isomers. step;
  • CHDM can be prepared in a high yield by continuous hydrogenation reaction and isomerization reaction using terephthalic acid as a starting material, and among the cis isomer and trans isomer of CHDM CHDM with a high ratio of trans isomers can be stably prepared.
  • the isomerization process is performed using the hydrogenation reaction product of terephthalic acid as a reactant without further purification or separation, the process can be simplified, and the reaction temperature in the hydrogenation reaction step of terephthalic acid is also maintained. Since it is possible to carry out the isomerization step while maintaining it, it may be economical because no thermal energy loss occurs.
  • 1 is a graph showing the yield of CHDA over time in the hydrogenation reaction of terephthalic acid.
  • 3 is a graph showing changes in the yield, conversion, and selectivity of CHDM over time in the hydrogenation reaction of CHDA.
  • the method for producing 1,4-cyclohexanedimethanol of the present invention performs a hydrogenation reaction with respect to terephthalic acid in the presence of a first hydrogenation catalyst, and 1,4-cyclo containing cis and trans isomers
  • 1,4-cyclohexanedimethanol (CHDM) containing the cis isomer and the trans isomer by performing a hydrogenation reaction in the presence of a second hydrogenation catalyst for the second step reaction product. It includes the steps.
  • the method for producing 1,4-cyclohexanedimethanol performs a two-step hydrogenation (reduction) reaction using terephthalic acid as a starting material, and introduces an isomerization process to increase the ratio of the trans isomer of CHDA in the middle. It is a method to stably produce CHDM with a high ratio of isomers.
  • CHDM can be produced in a high yield, and CHDM having a high ratio of trans isomers among cis and trans isomers of CHDM can be prepared.
  • the first step is a 1,4-cyclohexanedicarboxylic acid containing a cis isomer and a trans isomer by performing a hydrogenation reaction on terephthalic acid in the presence of a first hydrogenation catalyst. , CHDA).
  • the aromatic ring of terephthalic acid is hydrogenated and converted to the corresponding 1,4-cyclohexane dicarboxylic acid.
  • the CHDA obtained as the first step reaction product is cis isomer and trans isomer, that is, cis CHDA (cis CHDA) and trans CHDA (trans CHDA) is obtained in a mixed form, and the molar ratio of cis isomer to trans isomer is about 8:2 to about 6:4, and more cis isomer is obtained.
  • the molar ratio of the cis CHDA to the trans CHDA appears to be substantially within the above range regardless of the type of hydrogenation catalyst or the detailed conditions in the hydrogenation reaction.
  • an isomerization reaction is first performed under certain conditions to increase the trans isomer ratio relative to the cis isomer, and thus the ratio of the trans isomer is relatively high. It was confirmed that by performing a hydrogenation reaction on CHDA, it is possible to simultaneously improve the overall yield of CHDM and the ratio of trans CHDM in a continuous and simplified process.
  • the hydrogenation process of the first step may be performed in a liquid phase or a gas phase.
  • the terephthalic acid is a liquid dissolved in a solvent such as water, hydrogen can be hydrogenated in the gaseous state.
  • the amount of hydrogen input to the reactor is 3 moles or more, or 4 moles or more, or 7 moles or more per mole of terephthalic acid, and 300 moles Or less, or 100 mol or less, or 50 mol or less, or 30 mol or less.
  • the conversion rate of the reaction is lowered to obtain a conversion rate of 95% or more, and if it exceeds 300 moles, the residence time of the liquid raw material droplets in the reactor is short due to hydrogen.
  • the conversion rate may be lowered, the by-products may increase, or the life of the catalyst may decrease rapidly. From this point of view, the amount of hydrogen is preferably in the above-described range.
  • the temperature and pressure conditions of the gaseous raw material and the liquid raw material input to the reactor are not particularly limited, but the gaseous raw material is about 100 to about 200 bar, preferably about 130 to about 160 bar, and about 100 to about It can be adjusted to be in the range of 200°C, preferably about 130 to about 180°C, the liquid raw material is about 100 to about 200 bar, preferably about 130 to about 160 bar pressure and about 100 to about 300°C, preferably It can be adjusted to be in the range of about 210 to about 260 °C.
  • the first hydrogenation catalyst a catalyst known to be used for the hydrogenation reaction of terephthalic acid can be used.
  • the first hydrogenation catalyst may include at least one metal selected from the group consisting of palladium (Pd), rhodium (Rh), ruthenium (Ru) and platinum (Pt) as active ingredients.
  • Pd palladium
  • Rh rhodium
  • Ru ruthenium
  • Pt platinum
  • the first hydrogenation catalyst may include palladium (Pd) as an active ingredient.
  • the active component of the first hydrogenation catalyst may be appropriately controlled in accordance with the content of terephthalic acid as a reactant. Specifically, since the reaction rate increases as the content of the first hydrogenation catalyst is higher than that of terephthalic acid, the first hydrogenation catalyst may be added in an amount such that the weight ratio of the first hydrogenation catalyst to terephthalic acid is 0.01:1 or more. have.
  • the first hydrogenation catalyst is more specifically the weight ratio of the first hydrogenation catalyst to terephthalic acid A may be added in an amount to satisfy 0.01:1 to 3:1, or 0.01:1 to 2.5:1, or 0.1:1 to 2:1.
  • the weight ratio does not limit the scope of the present invention, and the ratio of the catalyst can be appropriately adjusted according to detailed reaction conditions and the type of the reactor.
  • Such a first hydrogenation catalyst can be used by being supported on a carrier, wherein carriers known in the art can be used without limitation.
  • a carrier such as carbon, zirconia (ZrO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), or silica (SiO 2 ) may be used.
  • carbon as the carrier is not particularly limited, activated carbon, carbon black, graphite, graphene, OMC (ordered mesoporous carbon) and at least one selected from the group consisting of carbon nanotubes can be used.
  • the amount of the active component of the first hydrogenation catalyst is preferably 20 parts by weight or less with respect to 100 parts by weight of the carrier, and 15 parts by weight or less, or 10 parts by weight or less, and 1 part by weight Or more, or 3 parts by weight or more. If the amount of the first hydrogenation catalyst is too large compared to 100 parts by weight of the carrier, the reaction proceeds abruptly on the surface of the catalyst, and a side reaction also increases in this process, which may cause a problem of an increase in the amount of by-products. The above range is preferred because the yield of the hydrogenation reaction may be insufficient due to lack thereof.
  • the hydrogenation reaction conditions of the first step are not particularly limited, but for example, the reaction pressure is 50 bar or more, or 80 bar or more, or 100 bar or more, and 220 bar or less, or 200 bar or less, or 180 bar. It may be: If the reaction pressure is less than 50 bar, the reaction does not occur well, and an excessive amount of catalyst is consumed, and the residence time is too long, which may cause various problems such as by-product increase, and if it exceeds 200 bar, process operation When the energy such as excessive power is required, and the manufacturing cost of equipment such as a reactor may be greatly increased, the above range is preferable.
  • reaction temperature may be 100°C or higher, or 150°C or higher, or 200°C or higher, and 300°C or lower, or 280°C or lower, or 260°C or lower. If the reaction temperature is less than 100°C, the reaction rate may be too slow and the reaction may not be smooth. If the temperature exceeds 300°C, by-products may be rapidly increased. In addition, the above range is preferable because it may affect the catalyst life.
  • a stirring process may be performed during the hydrogenation reaction, and the reaction efficiency during the hydrogenation reaction may be increased through speed control during the stirring process.
  • the stirring process may be performed at a speed of 500 to 2,000 rpm, and more specifically, it may be preferable to perform at a speed of 700 to 1,500 rpm or 700 to 1,000 rpm.
  • the stirring process may be performed using a stirring device used in a conventional gas-liquid reaction.
  • the reaction product obtained after the first step reaction includes CHDA including cis and trans isomers, water as a solvent, a catalyst, and the like, and is used as a reactant in the isomerization reaction of the second step described later. If necessary, the catalyst contained in the reaction product may be removed by a catalyst filter or the like and then sent to the reactant in the second-stage isomerization reaction.
  • the weight of CHDA including the cis and trans isomers in the total weight of the first step reaction product may be 0.1 to 10% by weight, or 10 to 20% by weight.
  • the second step is a step of isomerizing the first step reaction product in the presence of an isomerization catalyst to isomerize at least some of the cis isomers of CHDA to trans isomers.
  • the cis isomer of CHDA is adsorbed to the isomerization catalyst, and after the isomerization reaction proceeds, the isomerization reaction to trans CHDA proceeds through a reaction mechanism in which the product is desorbed.
  • the isomerization catalyst used in the isomerization step may include one or more oxides of a Group 4 transition metal such as zirconium (Zr), titanium (Ti), or hafnium (Hf).
  • a Group 4 transition metal such as zirconium (Zr), titanium (Ti), or hafnium (Hf).
  • the oxide of the Group 4 transition metal exhibits excellent interaction with cis CHDA compared to inorganic oxides such as silica and ceria, and thus can exhibit excellent reaction efficiency during the isomerization reaction of CHDA.
  • the product, trans CHDA is strongly adsorbed to the isomerization catalyst and is not separated. There is no concern about the occurrence of the problem of reducing the.
  • the isomerization catalyst is surface-treated or modified to have a functional functional group as in the related art, the isomerization reaction efficiency may be lowered or the yield may be reduced by affecting adsorption to reactants and desorption of products.
  • the catalyst may exhibit appropriate adsorption and desorption power by being untreated or unmodified.
  • isomerization catalyst usable in the present invention include zirconia or titania, and any one or a mixture of two or more of them may be used.
  • the zirconia has a high melting point, shows excellent fire resistance, and is very stable chemically. Accordingly, there is no fear of side reactions occurring during the isomerization reaction. In addition, since it exhibits sufficient interaction with the reactants, it can exhibit a better catalytic effect for the CHDA isomerization reaction.
  • the zirconia may have various crystal structures of a monoclinic system, a tetragonal system, or a hexagonal system. Among these, it may be more preferable to have a monoclinic crystal structure when considering thermal/chemical stability and a catalytic effect on the CHDA isomerization reaction. have.
  • the titania has excellent chemical and material stability, and exhibits a sufficient interaction with the reactants, thereby exhibiting a better catalytic effect during the CHDA isomerization reaction.
  • the titania may have a crystal structure of anatase, rutile, and brookite, even when considering the ease of catalyst preparation and the catalytic effect on the CHDA isomerization reaction. It may be more desirable.
  • the isomerization catalyst may be appropriately controlled according to the amount of CHDA as a reactant. Specifically, the higher the content of the isomerization catalyst compared to CHDA, the higher the reaction rate.
  • the isomerization catalyst is in an amount such that the weight ratio of the isomerization catalyst to CHDA is 0.1:1 or more. Can be added.
  • the isomerization catalyst when the content of the isomerization catalyst compared to CHDA is more than a certain level, the isomerization catalyst has a weight ratio of 0.1:1 to 5 in more detail, considering that the effect of increasing the reaction rate compared to the amount of use is small and the reaction efficiency is reduced. It can be added in an amount to satisfy :1.
  • the isomerization catalyst has a weight ratio of isomerization catalyst to CHDA of 0.1: 1 to 5: 1, or 0.1: 1 to 4: It may be more preferably added in an amount such that it is 1 or 0.2:1 to 3:1.
  • the weight ratio does not limit the scope of the present invention, and the ratio of the catalyst can be appropriately adjusted according to detailed reaction conditions and the type of the reactor.
  • the cis isomer has a higher ratio than the trans isomer, as described above, for example, the molar ratio of cis CHDA to trans CHDA is about 8:2 to about 6:4.
  • the first step reaction product may include water used as a solvent in the first step reaction.
  • the isomerization reaction of the second step can be simplified as a reactant without additional purification or separation process of CHDA with respect to the first step reaction product, and also in the first step reaction. Since the second step reaction can be performed while maintaining the reaction temperature, thermal energy loss does not occur, which is very advantageous in the reaction economy.
  • mol% of the cis isomer of CHDA 50 mol% or more, or 60 mol% or more, or 70 mol% or more, and 99 mol% or less, or 90 mol% or less may be converted into trans isomers.
  • the ratio of the cis isomer and trans isomer of CHDA is reversed in the second-stage reaction product obtained after the isomerization reaction, for example, the molar ratio of the cis isomer and trans isomer of CHDA is 4:6 to 2:8.
  • the reaction temperature during the isomerization reaction in the second step may be 100°C or higher, or 150°C or higher, or 200°C or higher, and 300°C or lower, or 280°C or lower, or 260°C or lower, similar to the first step. If the reaction temperature is less than 100°C, the reaction rate may be too slow, and thus the reaction may not be smooth. If the temperature exceeds 300°C, by-products may be rapidly increased. In addition, the above range may be preferred, as it may also affect catalyst life.
  • Isomerization reaction conditions of the second step in the present invention is not particularly limited, for example, the reaction pressure is 20 bar or more, or 30 bar or more, or 40 bar or more, 200 bar or less, or 150 bar or less, or 120 bar It may be: If the reaction pressure is less than 20 bar, the reaction does not occur well, excessive amount of catalyst is consumed, the residence time is too long, there may be various problems such as by-product increase, and if it exceeds 200 bar, process operation When the energy such as excessive power is required, and the manufacturing cost of equipment such as a reactor may be greatly increased, the above range is preferable.
  • a stirring process may be performed during the isomerization reaction, and the reaction efficiency may be increased during the isomerization reaction through speed control during the stirring process.
  • the stirring process may be performed at a speed of 500 to 2,000 rpm, and more specifically, it may be preferable to perform at a speed of 700 to 1,300 rpm or 800 to 1,200 rpm.
  • the stirring process may be performed using a conventional stirring device.
  • 1,4-cyclohexanedimethanol (CHDM) containing cis and trans isomers is reduced by reducing the second reaction product in the presence of a second hydrogenation catalyst. It is a manufacturing step.
  • the third step is a product produced through the hydrogenation reaction in the first step and the isomerization reaction in the second step, whereby the hydrogenation reaction is performed on CHDA having a ratio of trans isomers higher than that of cis isomers, thereby The carboxyl group is reduced to prepare 1,4-cyclohexanedimethanol (CHDM).
  • CHDM 1,4-cyclohexanedimethanol
  • the second hydrogenation catalyst is at least one metal selected from the group consisting of palladium (Pd), rhodium (Rh), ruthenium (Ru) and platinum (Pt) as active ingredients, and tin It may include one or more metals selected from the group consisting of (Sn), iron (Fe), rhenium (Re), and gallium (Ga).
  • ruthenium (Ru) and tin (Sn) may be included as the active components of the second hydrogenation catalyst.
  • the active component of the second hydrogenation catalyst, the amount of CHDA that is a reactant can be appropriately controlled according to its content. Specifically, the higher the content of the isomerization catalyst compared to CHDA, the higher the reaction rate. Therefore, in the CHDA isomerization method according to an embodiment of the present invention, the second hydrogenation catalyst has a second hydrogenation catalyst to CHDA weight ratio of 0.01:1 or more. It can be added in an amount to allow.
  • the second hydrogenation catalyst is more specifically compared to the active component of the second hydrogenation catalyst. It may be added in an amount such that the weight ratio of CHDA satisfies 0.01:1 to 3:1.
  • the second hydrogenation catalyst has a weight ratio of the second hydrogenation catalyst to CHDA of 0.01: 1 to 3: 1, or 0.1: 1 to 3: 1 Or, it may be more preferably added in an amount such that 0.1:1 to 2:1 or 0.5:1 to 2:1.
  • the weight ratio does not limit the scope of the present invention, and the ratio of the catalyst can be appropriately adjusted according to detailed reaction conditions and the type of the reactor.
  • Such a second hydrogenation catalyst can be used by being supported on a carrier, wherein carriers known in the art can be used without limitation.
  • a carrier such as carbon, zirconia (ZrO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), or silica (SiO 2 ) may be used.
  • ruthenium (Ru) and tin (Sn) when included as active components of the second hydrogenation catalyst, ruthenium (Ru) and tin (Sn) are 100 weight of the entire carrier With respect to parts, it may be included as 1 to 20 parts by weight, or 1 to 10 parts by weight, or 3 to 8 parts by weight, respectively.
  • carbon as the carrier is not particularly limited, activated carbon, carbon black, graphite, graphene, OMC (ordered mesoporous carbon) and at least one selected from the group consisting of carbon nanotubes can be used.
  • the ratio of mesopores among the total pores may be high carbon black
  • the activated carbon is SXULTRA, CGSP, PK1-3, SX 1G, DRACO S51HF, CA-1, A-51, GAS 1240 PLUS , KBG, CASP and SX PLUS
  • the carbon black may be BLACK PEARLS®, ELFTEX®, VULCAN®, MOGUL®, MONARCH®, EMPEROR®, and REGAL®, but is not limited thereto.
  • the carbon in the carbon carrier, may have a volume ratio of mesopores having a pore size of 2 to 50 nm in the total pores of 50% or more.
  • the carbon in the carbon carrier, has a volume ratio of mesopores of 70% or more of the total pores, and more preferably, the carbon carrier has a volume ratio of mesopores of the total pores of 75% or more.
  • the volume ratio of the mesopores is less than 50%, there may be a problem of microscopic mass transfer rate in the carbon carrier of the reactants and products, and when the average size of the pores is more than 50 nm, the physical strength of the carrier is weak. As such, the above range is suitable.
  • the carbon includes an ordered mesoporous carbon (OMC) having a specific surface area (BET) ranging from 100 to 1,500 m 2 /g.
  • the carbon may include ordered mesoporous carbon (OMC) having a specific surface area (BET) ranging from 200 to 1,000 m 2 /g.
  • OMC ordered mesoporous carbon
  • BET specific surface area
  • the carbon carrier of the catalyst according to the present invention includes a micropore in an appropriate ratio in addition to the mesoporosity of a medium size, and preferably, the volume ratio of the micropore among the total pores is 0 To 25%.
  • the volume ratio of the micropores is included in excess of 25%, the above range is suitable because there may be a problem of micro material transfer rate in the carbon carrier of the reactants and products.
  • the hydrogenation reaction conditions of the third step are not particularly limited, but for example, the reaction pressure is 50 bar or more, or 80 bar or more, or 100 bar or more, and 220 bar or less, or 200 bar or less, or 180 bar. It may be: If the reaction pressure is less than 50 bar, the reaction does not occur well, and an excessive amount of catalyst is consumed, and the residence time is too long, which may cause various problems such as by-product increase, and if it exceeds 200 bar, process operation When the energy such as excessive power is required, and the manufacturing cost of equipment such as a reactor may be greatly increased, the above range is preferable.
  • reaction temperature may be 100°C or higher, or 150°C or higher, or 200°C or higher, and 300°C or lower, or 280°C or lower, or 260°C or lower. If the reaction temperature is less than 100°C, the reaction rate may be too slow, and thus the reaction may not be smooth. If the temperature exceeds 300°C, by-products may be rapidly increased. In addition, the above range is preferable because it may affect the catalyst life.
  • a stirring process may be performed during the hydrogenation reaction, and the reaction efficiency during the hydrogenation reaction may be increased through speed control during the stirring process.
  • the stirring process may be performed at a speed of 500 to 2,000 rpm, and more specifically, it may be preferable to perform at a speed of 700 to 1,500 rpm or 700 to 1,000 rpm.
  • the stirring process may be performed using a conventional stirring device.
  • the molar ratio of the cis isomer to the trans isomer of CHDA remains unchanged, and thus the obtained CHDM also has a higher ratio of the trans isomer than the ratio of the cis isomer. That is, in the product of the third step, the molar ratio of the cis and trans isomers of CHDM may be 4:6 to 2:8.
  • CHDM finally obtained by the manufacturing method of the present invention can be usefully used as a raw material for manufacturing a higher quality product.
  • a batch reactor capable of withstanding 300°C and 150 bar was prepared.
  • 1.5 g of terephthalic acid (TPA) as a reactant, 1 g of 5 wt% hydrogenation catalyst Pd/C, and 250 g of distilled water as a solvent were added, and the atmosphere inside the reactor was replaced with nitrogen, and then mixed solution to 250° C. while stirring at 50 rpm. The temperature was raised.
  • TPA terephthalic acid
  • the mixture was stirred for 30 minutes while maintaining the temperature for dissolving TPA. Thereafter, a hydrogen pressure of 120 bar was filled in the reactor, the stirring speed was increased to 800 rpm, and hydrogenation reaction was performed for 1 hour while stirring.
  • CHDA was obtained with a final yield of 98%, a conversion rate of 99%, and a selectivity of 99%.
  • a batch reactor capable of withstanding 300°C and 150 bar was prepared.
  • the stirring speed was increased to 1000 rpm and reacted for 6 hours while stirring.
  • the ratio of trans CHDA was about 35%, and the ratio of trans CHDA was increased to about 70% after the isomerization reaction for 6 hours.
  • the ratio of the trans CHDA and the cis CHDA was confirmed by gas chromatography.
  • a batch reactor capable of withstanding 300°C and 150 bar was selected.
  • nitrogen for purging and hydrogen for a hydrogenation reaction are introduced, and the equipment is capable of stirring for the reaction.
  • reactant CHDA 4.05 g catalyst (including ruthenium-tin/carbon catalyst, 5 parts by weight of ruthenium, 5 parts by weight of tin with respect to 100 parts by weight of carbon carrier), 125 g of distilled water as a solvent, and 5 bar of 5 bar
  • the temperature was raised to 250° C. while stirring at 50 rpm in a hydrogen atmosphere (about 14 to 15 bar).
  • the solution containing the reactants and products other than the solid phase catalyst was sampled using a sampling port, and the sampled liquid was analyzed using a gas chromatography device equipped with a FID (Flame Ionization Detector) detector. .
  • FID Flume Ionization Detector
  • CHDM was obtained with a final yield of 97.7%, a conversion rate of 99.4%, and a selectivity of 98.3% after the hydrogenation reaction for 6 hours.
  • CHDM when CHDM was prepared according to the production method of the present invention, CHDM having a high ratio of trans isomers could be produced with high yield.

Abstract

본 발명은 1,4-사이클로헥산디메탄올의 제조방법에 대한 것이다. 본 발명에 따르면, 테레프탈산을 출발 물질로 하여 2 단계의 환원반응을 수행하며, 그 중간에 CHDA의 트랜스 이성질체의 비율을 높이는 이성화 공정을 도입하여 트랜스 이성질체의 비율이 높은 CHDM을 안정적으로 제조할 수 있는 방법을 제공할 수 있다.

Description

1,4-사이클로헥산디메탄올의 제조방법
관련 출원들과의 상호 인용
본 출원은 2018년 12월 27일자 한국 특허 출원 제 10-2018-0171228호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 1,4-사이클로헥산디메탄올의 제조방법에 대한 것이다.
1,4-사이클로헥산디메탄올(1, 4-cyclohexanedimethanol, CHDM)은 의약품, 합성수지, 합성 섬유 또는 염료 등의 원료로서 널리 사용되고 있으며, 특히 친환경 폴리에스터인 폴리에틸렌테레프탈레이트의 원료로 이용되고 있다.
1,4-사이클로헥산디메탄올은 시스(cis)와 트랜스(trans) 형태의 입체이성질체(stereoisomer)로서 존재하는데, 보다 고품질의 제품을 위해서는 시스보다 트랜스 1,4-사이클로헥산디메탄올(trans CHDM)의 비율이 높은 것이 요구된다.
1,4-사이클로헥산디메탄올을 제조하는 방법 중 디메틸 테레프탈레이트(dimethyl terephthalate, DMT)의 수소화 반응에 의한 방법이 상업적으로 많이 이용된다. 이 방법은 프탈레이트를 메탄올과 반응하여 DMT를 제조하고, 이후 2 단계의 수소화 반응에 의해 1,4-사이클로헥산디메탄올을 생성하는 방법이다. 첫 번째 수소화 반응은 DMT를 DMCD(diester dimethyl 1,4-cyclohexanedicarboxylate)로 전환하는 반응이고, 두 번째 수소화 반응에서 DMCD를 CHDM으로 전환하게 된다. 이때, 촉매의 종류에 따라서 시스 CHDM과 트랜스 CHDM의 비율이 결정된다. 상업적으로 주로 사용되는 구리 크롬 산화물인 copper chromite 촉매를 사용할 경우 시스 CHDM과 트랜스 CHDM의 비율이 약 3:7로 제조된다. 이러한 방법은 DMT를 이용하고, 메탄올을 이용한 트랜스 에스테르화(trans esterification) 반응을 이용하기 때문에 반응 및 분리공정이 복잡하고, 이성화를 위해서 첨가물을 사용하여야 하여 최종 제품의 품질에 영향을 줄 수 있다.
다른 방법으로 프탈레이트를 먼저 수소화하여 1,4-사이클로헥산 디카르복실산(1,4-cyclohexanedicarboxylic acid, CHDA)으로 전환하고 CHDA를 수소화하여 CHDM으로 전환하는 방법이 있다. 이 방법은 불균일계 촉매를 사용하며 2단계 수소화 반응으로 구성된다.
한국 공개 특허 제 2015-0062911호에서는 프탈레이트에 대하여 2단계의 환원 공정을 거쳐 CHDM을 제조하는 방법을 제안하였다. 하지만, 이 방법은 이성화 반응을 거치지 않는 것으로, 트랜스 CHDM의 비율이 낮은 문제가 있다.
또한, 국제 공개 특허 WO 2015-156582호에서는 복합 금속 촉매 조성물을 이용하여 고정층 반응기에서 단일 반응기를 사용하여 CHDM을 제조하는 방법을 제안하였다. 이 방법 또한 트랜스 CHDM 비율이 낮고, 프탈레이트와 중간 생성물인 CHDA가 고정층 반응기에서 온도 조절 및 구배가 일정하지 않음으로써 중간에 결정화가 진행되어 촉매의 성능을 저하시킬 가능성이 매우 높다.
한국 등록 특허 제 0943872호에서는 트랜스 CHDM의 비율을 높이기 위해서 중간 생성물인 트랜스 CHDA를 분리하여 생산하는 방법을 제안하였다. 이 방법은 시스 CHDA와 트랜스 CHDA의 융점의 차를 이용하여 이성화 반응을 진행함과 동시에, 트랜스 CHDA를 고체 또는 용융된 상태로 생산하는 방법이다. 그러나 상기 방법은 용매로 사용하게 되는 물 또는 다른 용매를 제거하는 공정이 필요하고, 재결정화를 위해서 낮은 온도에서 운전함으로써 프탈레이트의 환원 공정에서 사용된 열을 제거해야 함으로써 경제적인 방법이라고 할 수 없다.
또 다른 방법으로, 일본 공개 특허 제 2014-177422호에서는 수소화 반응의 온도와 반응시간을 조절함으로써 원하는 트랜스 CHDM의 비율을 얻는 방법을 제안하였다. 이 방법은 CHDA의 환원 반응과 동시에 이성화 반응을 진행시키는 방법으로 고정층 반응기에서 반응온도와 반응시간을 조절하는 수단을 채택하였는데, 고정층 반응기는 반응물인 CHDA의 전환에서 쉽게 결정화가 진행되고, 이때 결정에 의해서 촉매의 성능이 감소되어, 원하는 수율 및 트랜스 CHDM의 비율이 달성되지 못한다는 문제가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 공개 특허 제 2015-0062911호
(특허문헌 2) 국제 공개 특허 WO2015-156582호
(특허문헌 3) 한국 등록 특허 제 0943872호
(특허문헌 4) 일본 공개 특허 제 2014-177422호
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 테레프탈산을 출발 물질로 하여 2 단계의 환원반응을 수행하며, 그 중간에 CHDA의 트랜스 이성질체의 비율을 높이는 이성화 공정을 도입하여 트랜스 이성질체의 비율이 높은 CHDM을 안정적으로 제조할 수 있는 방법을 제공하기 위한 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면은
테레프탈산(terephthalic acid)에 대하여, 제 1 수소화 촉매의 존재 하에 수소화 반응을 수행하여, 시스 이성질체 및 트랜스 이성질체를 포함하는 1,4-사이클로헥산 디카르복실산(1,4-cyclohexanedicarboxylic acid, CHDA)를 제조하는 제 1 단계;
상기 제 1 단계 반응 생성물에 대하여, 이성화 촉매의 존재 하에 이성화 반응을 수행하여, 상기 CHDA의 시스 이성질체 중 적어도 일부를 트랜스 이성질체로 이성화하는 제 2 단계; 및
상기 제 2 단계 반응 생성물에 대하여, 제 2 수소화 촉매의 존재 하에 수소화 반응을 수행하여, 시스 이성질체 및 트랜스 이성질체를 포함하는 1,4-사이클로헥산디메탄올(1, 4-cyclohexanedimethanol, CHDM)을 제조하는 단계;
를 포함하는 1,4-사이클로헥산디메탄올의 제조방법을 제공한다.
본 발명의 1,4-사이클로헥산디메탄올의 제조방법에 따르면, 테레프탈산을 출발 물질로 하여 연속적인 수소화 반응 및 이성화 반응에 의해 CHDM을 고수율로 제조할 수 있으며, CHDM의 시스 이성질체와 트랜스 이성질체 중 트랜스 이성질체의 비율이 높은 CHDM을 안정적으로 제조할 수 있다.
또한 본 발명의 제조방법에 따르면, 테레프탈산의 수소화 반응 생성물을 추가적인 정제나 분리 공정없이 그대로 반응물로 이용하여 이성화 공정을 수행하므로 공정이 단순화될 수 있으며, 또한 테레프탈산의 수소화 반응 단계에서의 반응 온도를 그대로 유지한 채 이성화 단계를 수행할 수 있으므로 열적 에너지 손실도 발생하지 않아 경제적일 수 있다.
도 1은 테레프탈산의 수소화 반응에서 시간에 따른 CHDA의 수율을 나타내는 그래프이다.
도 2는 이성화 반응의 시간에 따른 트랜스 CHDA의 비율을 나타내는 그래프이다.
도 3은 CHDA의 수소화 반응에서, 시간에 따른 CHDM의 수율, 전환율, 및 선택도의 변화를 나타내는 그래프이다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 발명의 구체적인 구현예에 따라 1,4-사이클로헥산디메탄올의 제조방법에 대해 보다 상세히 설명하기로 한다.
본 발명의 1,4-사이클로헥산디메탄올의 제조방법은, 테레프탈산(terephthalic acid)에 대하여, 제 1 수소화 촉매의 존재 하에 수소화 반응을 수행하여, 시스 이성질체 및 트랜스 이성질체를 포함하는 1,4-사이클로헥산 디카르복실산(1,4-cyclohexanedicarboxylic acid, CHDA)를 제조하는 제 1 단계; 상기 제 1 단계 반응 생성물에 대하여, 이성화 촉매의 존재 하에 이성화 반응을 수행하여, 상기 CHDA의 시스 이성질체 중 적어도 일부를 트랜스 이성질체로 이성화하는 제 2 단계; 및 상기 제 2 단계 반응 생성물에 대하여, 제 2 수소화 촉매의 존재 하에 수소화 반응을 수행하여, 시스 이성질체 및 트랜스 이성질체를 포함하는 1,4-사이클로헥산디메탄올(1, 4-cyclohexanedimethanol, CHDM)을 제조하는 단계를 포함한다.
이와 같이 1,4-사이클로헥산디메탄올의 제조방법은, 테레프탈산을 출발 물질로 하여 2 단계의 수소화(환원) 반응을 수행하며, 그 중간에 CHDA의 트랜스 이성질체의 비율을 높이는 이성화 공정을 도입하여 트랜스 이성질체의 비율이 높은 CHDM을 안정적으로 제조할 수 있는 방법이다.
이에 본 발명의 1,4-사이클로헥산디메탄올의 제조방법에 따르면, CHDM을 고수율로 제조할 수 있으며, CHDM의 시스 이성질체와 트랜스 이성질체 중 트랜스 이성질체의 비율이 높은 CHDM을 제조할 수 있다.
이하에서, 각 단계별로 본 발명의 일 구현예에 따른 1,4-사이클로헥산디메탄올의 제조방법을 상세히 설명한다.
제 1 단계
제 1 단계는, 테레프탈산(terephthalic acid)에 대하여, 제 1 수소화 촉매의 존재 하에 수소화 반응을 수행하여 시스 이성질체 및 트랜스 이성질체를 포함하는 1,4-사이클로헥산 디카르복실산(1,4-cyclohexanedicarboxylic acid, CHDA)를 제조하는 단계이다.
상기 제 1 단계의 수소화 반응에 의해, 테레프탈산의 방향족 고리가 수소화되어 이에 상응하는 1,4-사이클로헥산 디카르복실산으로 전환된다.
상기와 같이 제 1 수소화 촉매의 존재 하에 테레프탈산에 대하여 수소화 반응을 수행하여 CHDA를 제조할 경우, 상기 제 1 단계 반응 생성물로 수득되는 CHDA는 시스 이성질체와 트랜스 이성질체, 즉 시스 CHDA (cis CHDA)와 트랜스 CHDA (trans CHDA)가 혼합된 형태로 수득되며, 시스 이성질체 대 트랜스 이성질체의 몰비는 약 8:2 내지 약 6:4로 시스 이성질체가 더 많이 수득된다. 또한 상기 시스 CHDA 대 트랜스 CHDA의 몰비는 수소화 촉매의 종류나 수소화 반응시 세부 조건과 관계없이 대체로 상기 범위 내인 것으로 나타난다.
상기와 같이 테레프탈산의 수소화 반응으로 제조된 CHDA에 대해 다시 수소화 반응을 수행하여 CHDM을 제조할 경우 상기 시스 이성질체 대 트랜스 이성질체의 몰비는 그대로 유지되어 크게 변하지 않으므로, CHDM의 트랜스 이성질체 비율을 높이기 위해 트랜스 CHDA만을 분리하여 수소화 반응을 수행하거나, CHDA의 수소화 반응과 동시에 이성화 반응을 진행하는 방법 등이 제안된 바 있다. 그러나 이와 같은 종래 방법들에 의해서는 높은 수율 및 높은 트랜스 CHDM 비율을 동시에 달성하기 어렵고, 공정이 지나치게 복잡하거나 생산 비용이 높아 상업적으로 바람직하지 못한 측면이 있었다.
이에, 본 발명의 제조방법에 따르면, 높은 시스 이성질체 비율을 갖는 CHDA 생성물에 대하여, 먼저 일정한 조건에서 이성화 반응을 수행하여 트랜스 이성질체 비율을 시스 이성질체보다 상대적으로 높이고, 이처럼 트랜스 이성질체의 비율이 상대적으로 높아진 CHDA에 대하여 수소화 반응을 수행함으로써, 연속적이고 단순화된 공정으로 CHDM의 전체 수율 및 트랜스 CHDM의 비율을 동시에 향상시킬 수 있음을 확인하였다.
한편, 상기 제 1 단계의 수소화 공정은 액체상 또는 기체상에서 수행될 수 있다. 본 발명의 일 실시예에 따르면, 상기 테레프탈산은 물 등의 용매에 용해된 액상으로, 수소는 기체 상태로 수소화 반응이 진행될 수 있다.
한편, 부반응을 최소화하고, 반응 물질 간 비율을 최적화하여 공정 생산성을 향상시키기 위하여, 반응기에 투입되는 수소의 양은 테레프탈산 1몰에 대하여 3 몰 이상, 또는 4 몰 이상, 또는 7 몰 이상이면서, 300 몰 이하, 또는 100몰 이하, 또는 50 몰 이하, 또는 30 몰 이하일 수 있다.
수소의 양이 테레프탈산 1 몰에 대하여 3 몰 미만으로 너무 적으면 반응 전환율이 낮아져 95 % 이상의 전환율을 얻을 수가 없고, 300 몰을 초과하여 너무 많으면 수소에 의해 액상 원료의 액적들의 반응기 내 체류시간이 짧아져서 전환율이 낮아지거나, 혹은 부생성물이 증가하거나, 촉매 수명이 급격히 낮아 질 수가 있다. 이러한 관점에서, 상기 수소의 양은 상술한 범위가 바람직하다.
본 발명에서 반응기에 투입되는 기상 원료 및 액상 원료의 온도 및 압력 조건은 특별히 제한되는 것은 아니나, 기상 원료는 약 100 내지 약 200 bar, 바람직하게는 약 130 내지 약 160 bar의 압력 및 약 100 내지 약 200℃, 바람직하게는 약 130 내지 약 180℃의 범위가 되도록 조절할 수 있으며, 액상 원료는 약 100 내지 약 200 bar, 바람직하게는 약 130 내지 약 160 bar의 압력 및 약 100 내지 약 300℃, 바람직하게는 약 210 내지 약 260℃의 범위가 되도록 조절할 수 있다.
상기 제 1 수소화 촉매로는, 테레프탈산의 수소화 반응에 사용될 수 있는 것으로 알려진 촉매를 사용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제 1 수소화 촉매는 활성 성분으로써 팔라듐(Pd), 로듐(Rh), 루테늄(Ru) 및 백금(Pt)으로 이루어진 군으로부터 선택되는 1종 이상의 금속을 포함할 수 있다.
바람직하게는, 상기 제 1 수소화 촉매는 활성 성분으로써 팔라듐(Pd)을 포함할 수 있다.
본 발명의 일 구현예에 따르면, 상기 제 1 수소화 촉매의 활성 성분은 반응물인 테레프탈산의 함량에 따라 그 사용량이 적절히 제어될 수 있다. 구체적으로 테레프탈산 대비 제 1 수소화 촉매의 함량이 높을수록 반응 속도는 증가하기 때문에, 상기 제 1 수소화 촉매는, 상기 제 1 수소화 촉매 대 테레프탈산의 중량비가 0.01:1 이상이 되도록 하도록 하는 양으로 첨가될 수 있다.
그러나, 테레프탈산 대비 제 1 수소화 촉매의 함량이 일정 수준 이상일 경우 사용량 대비 반응 속도의 증가 효과가 미미하여 반응 효율성이 감소하는 점을 고려할 때 상기 제 1 수소화 촉매는 보다 구체적으로 제 1 수소화 촉매 대 테레프탈산의 중량비가 0.01 : 1 내지 3 : 1, 또는 0.01 : 1 내지 2.5 : 1, 또는 0.1 : 1 내지 2: 1을 충족하도록 하는 양으로 첨가될 수 있다.
그러나 상기 중량비가 본 발명의 범위를 제한하는 것은 아니며, 세부적인 반응 조건, 및 반응기의 종류에 따라 촉매의 비율을 적절히 조절할 수 있다.
이러한 제 1 수소화 촉매는 담체에 담지시켜 사용할 수 있으며, 이때 담체로는 당 업계에 알려져 있는 담체가 제한 없이 사용될 수 있다. 구체적으로 탄소, 지르코니아(ZrO2), 티타니아(TiO2), 알루미나(Al2O3), 또는 실리카(SiO2) 등의 담체가 사용될 수 있다.
상기 담체로 탄소를 사용할 때 특별히 제한되는 것은 아니나, 활성탄, 카본블랙, 흑연, 그래핀, OMC (ordered mesoporous carbon) 및 탄소나노튜브로 이루어진 군에서 선택된 적어도 하나를 사용할 수 있다.
상기 제 1 수소화 촉매가 담체에 담지된 경우, 제 1 수소화 촉매의 활성 성분의 양은 담체 100 중량부에 대하여 20 중량부 이하인 것이 바람직하며, 15 중량부 이하, 또는 10 중량부 이하이면서, 1 중량부 이상, 또는 3 중량부 이상일 수 있다. 만일 제 1 수소화 촉매의 양이 담체 100 중량부에 비해 너무 많으면, 촉매 표면에서 반응이 급격하게 진행되며, 이 과정에서 부반응 또한 증가하여 부생성물량이 급증하는 문제가 발생할 수 있고, 너무 적으면 촉매량이 부족하여 수소화 반응의 수율이 떨어질 수 있으므로 상기 범위가 바람직하다.
본 발명에서 상기 제 1 단계의 수소화 반응 조건은 특별히 제한되는 것은 아니나, 일례로 반응압력은 50 bar 이상, 또는 80 bar 이상, 또는 100 bar 이상이면서, 220 bar 이하, 또는 200 bar이하, 또는 180 bar 이하일 수 있다. 만일 반응압력이 50 bar 미만이면 반응이 잘 일어나지 않아, 과도한 양의 촉매가 소모되고, 체류시간이 너무 길어져서 부생성물이 증가하는 등의 여러 가지 문제가 있을 수 있고, 200 bar를 초과하면 공정 운전 시 과도한 전력 등의 에너지가 필요로 하며, 또한 반응기 등의 설비 제작비용이 크게 증가하는 문제가 있을 수 있으므로, 상기 범위가 바람직하다.
또한, 반응온도는 100℃ 이상, 또는 150℃ 이상, 또는 200℃ 이상이면서, 300℃ 이하, 또는 280℃ 이하, 또는 260℃ 이하일 수 있다. 만일 반응온도가 100℃ 미만이면 반응 속도가 너무 느려 반응이 원활하지 않을 수 있는 문제가 있을 수 있고, 300℃를 초과하면 부생성물이 급격하게 증가될 수가 있다. 또한 촉매 수명에도 영향을 미칠 수 있으므로, 상기 범위가 바람직하다.
또, 수소화 반응 동안에 교반 공정이 수행될 수도 있으며, 상기 교반 공정 동안의 속도 제어를 통해 수소화 반응시 반응 효율을 높일 수 있다. 구체적으로 상기 교반 공정은 500 내지 2,000rpm의 속도로 수행될 수 있으며, 보다 구체적으로는 700 내지 1,500rpm 혹은 700 내지 1,000rpm의 속도로 수행되는 것이 바람직할 수 있다.
한편, 상기 교반 공정은 통상의 기액 반응에서 사용하는 교반 장치를 이용하여 수행될 수 있다.
상기한 수소화 반응 조건을 모두 충족하는 조건에서 1 내지 10시간 동안 수행되는 것이, 공정 효율성 면에서 보다 바람직할 수 있다.
상기 제 1 단계 반응 후 수득되는 반응 생성물에는 시스 이성질체 및 트랜스 이성질체를 포함하는 CHDA, 용매인 물, 촉매 등이 포함되어 있으며, 이를 후술하는 제 2 단계의 이성화 반응의 반응물로 이용하게 된다. 필요에 따라, 상기 반응 생성물에 포함되어 있는 촉매는 촉매 필터 등에 의해 제거한 후 제 2 단계 이성화 반응의 반응물로 보내질 수 있다.
본 발명의 일 구현예에 따르면, 상기 제 1 단계 반응 생성물의 전체 중량 중 시스 이성질체 및 트랜스 이성질체를 포함하는 CHDA의 중량은 0.1 내지 10 중량%, 또는 10 내지 20 중량%일 수 있다.
제 2 단계
상기 제 2 단계는, 상기 제 1 단계 반응 생성물에 대하여 이성화 촉매의 존재 하에 이성화 반응을 수행하여, 상기 CHDA의 시스 이성질체 중 적어도 일부를 트랜스 이성질체로 이성화하는 단계이다.
이성화 반응시 CHDA의 시스 이성질체가 이성화 촉매에 흡착되고 이성화 반응이 진행된 후, 생성물이 탈착되는 반응 메커니즘을 통해 트랜스 CHDA로의 이성화 반응이 진행된다.
상기 이성화 단계에서 사용되는 이성화 촉매는 지르코늄(Zr), 티타늄(Ti), 또는 하프늄(Hf)과 같은 4 족 전이금속의 산화물을 1종 이상 포함할 수 있다.
상기 4족 전이금속의 산화물은, 실리카, 세리아 등과 같은 무기 산화물과 비교하여 시스 CHDA와 우수한 상호작용을 나타내기 때문에 CHDA의 이성화 반응시 우수한 반응 효율을 나타낼 수 있다.
또 알루미나, 마그네시아 등과 같은 전이금속 산화물과 달리 이성화 반응시 반응물 및 생성물에 대해 각각 적절한 흡착력 및 탈착력을 나타내기 때문에, 이성화 반응 완료 후 생성물인 트랜스 CHDA가 이성화 촉매에 강하게 흡착되어 분리되지 않음으로써 수득률을 감소시키는 문제의 발생 우려도 없다. 또, 종래와 같이 이성화 촉매가 기능성 작용기를 갖도록 표면처리 또는 개질될 경우 반응물에 대한 흡착 및 생성물에 대한 탈착에 영향을 미쳐 이성화 반응 효율이 저하되거나, 수득률이 감소될 수 있는데, 본 발명에서의 이성화 촉매는 표면 미처리 또는 미개질됨으로써 적절한 흡착력 및 탈착력을 나타낼 수 있다.
본 발명에서 사용가능한 이성화 촉매의 구체적인 예로는 지르코니아 또는 티타니아 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 지르코니아는 높은 용융점을 가져 우수한 내화성을 나타내며, 화학적으로도 매우 안정하다. 이에 따라 상기 이성화 반응시 부반응 발생의 우려가 없다. 또 반응물에 대해 충분한 상호작용을 나타내기 때문에 CHDA 이성화 반응에 대해 보다 우수한 촉매 효과를 나타낼 수 있다. 상기 지르코니아는 단사정계, 정방정계 또는 육방정계의 다양한 결정 구조를 가질 수 있는데, 이중에서도 열적/화학적 안정성 및 CHDA 이성화 반응에 대한 촉매 효과를 고려할 때 단사정계형의 결정 구조를 갖는 것이 보다 바람직할 수 있다.
또, 상기 티타니아는 화학적, 물질적 안정성이 우수하며, 반응물에 대해 충분한 상호작용을 나타냄으로써 CHDA 이성화 반응시 보다 우수한 촉매 효과를 나타낼 수 있다. 상기 티타니아는 아나타제(anatase), 루타일(rutile) 및 브루카이트(brookite)의 결정 구조를 가질 수 있는데, 이중에서도 촉매 제조의 용이함 및 CHDA 이성화 반응에 대한 촉매 효과를 고려할 때 아나타제의 결정 구조를 갖는 것이 보다 바람직할 수 있다.
본 발명의 일 구현예에 따르면, 상기 이성화 촉매는 반응물인 CHDA의 함량에 따라 그 사용량이 적절히 제어될 수 있다. 구체적으로 CHDA 대비 이성화 촉매의 함량이 높을수록 반응 속도는 증가하기 때문에 발명의 일 구현예에 따른 CHDA 이성화 방법에 있어서 상기 이성화 촉매는 이성화 촉매 대 CHDA의 중량비가 0.1:1 이상이 되도록 하도록 하는 양으로 첨가될 수 있다.
그러나, CHDA 대비 이성화 촉매의 함량이 일정 수준 이상일 경우 사용량 대비 반응속도의 증가 효과가 미미하여 반응 효율성이 감소하는 점을 고려할 때 상기 이성화 촉매는 보다 구체적으로 이성화 촉매 대 CHDA의 중량비가 0.1:1 내지 5:1을 충족하도록 하는 양으로 첨가될 수 있다.
이성화 촉매 대 CHDA의 중량비 제어에 따른 반응속도 개선 효과 및 트랜스 CHDA의 수득률 증가 효과를 고려할 때, 상기 이성화 촉매는 이성화 촉매 대 CHDA의 중량비가 0.1 : 1 내지 5 : 1 , 혹은 0.1 : 1 내지 4 : 1, 혹은 0.2 : 1 내지 3 : 1이 되도록 하는 양으로 첨가되는 것이 보다 바람직할 수 있다.
그러나 상기 중량비가 본 발명의 범위를 제한하는 것은 아니며, 세부적인 반응 조건, 및 반응기의 종류에 따라 촉매의 비율을 적절히 조절할 수 있다.
한편, 이성화 단계의 대상물인 제 1 단계 반응 생성물은 앞서 설명한 바와 같이 시스 이성질체가 트랜스 이성질체보다 더 높은 비율을 가지며, 예를 들어 시스 CHDA 대 트랜스 CHDA의 몰비는 약 8:2 내지 약 6:4이다. 상기 제 1 단계 반응 생성물은 CHDA 외에도, 상기 제 1 단계 반응에서 용매로 사용된 물이 포함된 상태일 수 있다.
본 발명의 제조방법에 따르면, 제 2 단계의 이성화 반응은 상기 제 1 단계 반응 생성물에 대하여 CHDA의 추가적인 정제나 분리 공정없이 그대로 반응물로 이용하여 공정이 단순화될 수 있으며, 또한 제 1 단계 반응에서의 반응 온도를 그대로 유지한 채 제 2 단계 반응을 수행할 수 있으므로 열적 에너지 손실도 발생하지 않아 반응 경제상 매우 유리하다.
상기 제 2 단계의 이성화 반응에 의해, 상기 CHDA의 시스 이성질체 중 적어도 일부가 트랜스 이성질체로 이성화된다.
보다 구체적으로, 상기 CHDA의 시스 이성질체 100몰% 중에서 50몰% 이상, 또는 60몰% 이상, 또는 70몰% 이상, 및 99몰% 이하, 또는 90몰% 이하가 트랜스 이성질체로 변환될 수 있다.
이에 따라, 제 1 단계 반응 생성물과 비교하여, 이성화 반응 후 수득되는 제 2 단계 반응 생성물에서는 CHDA의 시스 이성질체와 트랜스 이성질체의 비율이 역전되게 되며, 예를 들어 CHDA의 시스 이성질체 및 트랜스 이성질체의 몰비가 4:6 내지 2:8이 될 수 있다.
상기 제 2 단계의 이성화 반응시 반응 온도는 상기 제 1 단계와 유사하게, 100℃ 이상, 또는 150℃ 이상, 또는 200℃ 이상이면서, 300℃ 이하, 또는 280℃ 이하, 또는 260℃ 이하일 수 있다. 만일 반응온도가 100℃ 미만이면 반응속도가 너무 느려 반응이 원활하지 않을 수 있는 문제가 있을 수 있고, 300℃를 초과하면 부생성물이 급격하게 증가될 수가 있다. 또한 촉매 수명에도 영향을 미칠 수 있으므로, 상기 범위가 바람직할 수 있다.
한편, 앞서 설명하였듯이 상기 이성화 반응시 제 1 단계 반응에서의 반응 온도를 그대로 유지한 채 제 2 단계 반응을 수행할 수 있으므로 추가적인 가열은 필요하지 않으나, 필요에 따라 외부로의 열손실을 보충하기 위한 추가적인 가열 공정 또는 이성화 반응의 반응열을 제거하기 위한 제열 공정을 수행할 수도 있다.
본 발명에서 상기 제 2 단계의 이성화 반응 조건은 특별히 제한되는 것은 아니나, 일례로 반응압력은 20 bar 이상, 또는 30 bar 이상, 또는 40 bar 이상이면서, 200 bar 이하, 또는 150 bar이하, 또는 120 bar 이하일 수 있다. 만일 반응압력이 20 bar 미만이면 반응이 잘 일어나지 않아, 과도한 양의 촉매가 소모되고, 체류시간이 너무 길어져서 부생성물이 증가하는 등의 여러 가지 문제가 있을 수 있고, 200 bar를 초과하면 공정 운전 시 과도한 전력 등의 에너지가 필요로 하며, 또한 반응기 등의 설비 제작비용이 크게 증가하는 문제가 있을 수 있으므로, 상기 범위가 바람직하다.
또, 상기 이성화 반응 동안에 교반 공정이 수행될 수도 있으며, 상기 교반 공정 동안의 속도 제어를 통해 이성화 반응시 반응 효율을 높일 수 있다. 구체적으로 상기 교반 공정은 500 내지 2,000rpm의 속도로 수행될 수 있으며, 보다 구체적으로는 700 내지 1,300rpm 혹은 800 내지 1,200rpm의 속도로 수행되는 것이 바람직할 수 있다.
한편, 상기 교반 공정은 통상의 교반 장치를 이용하여 수행될 수 있다.
상기한 이성화 반응 조건을 모두 충족하는 조건에서 1 내지 10시간 동안 수행되는 것이, 공정 효율성 면에서 보다 바람직할 수 있다.
제 3 단계
제 3 단계는, 상기 제 2 단계 반응 생성물에 대하여, 제 2 수소화 촉매의 존재 하에 환원시켜, 시스 이성질체 및 트랜스 이성질체를 포함하는 1,4-사이클로헥산디메탄올(1, 4-cyclohexanedimethanol, CHDM)을 제조하는 단계이다.
보다 구체적으로 제 3 단계는, 제 1 단계의 수소화 반응 및 제 2 단계의 이성화 반응을 통해 생성된 생성물로, 트랜스 이성질체의 비율이 시스 이성질체의 비율보다 높은 CHDA에 대하여 수소화 반응을 수행함으로써, CHDA의 카르복실기가 환원되어 1,4-사이클로헥산디메탄올(1, 4-cyclohexanedimethanol, CHDM)을 제조하는 단계이다.
본 발명의 일 실시예에 따르면, 상기 제 2 수소화 촉매는 활성 성분으로써 팔라듐(Pd), 로듐(Rh), 루테늄(Ru) 및 백금(Pt)으로 이루어진 군으로부터 선택되는 1종 이상의 금속과, 주석(Sn), 철(Fe), 레늄(Re) 및 갈륨(Ga)으로 이루어진 군으로부터 선택되는 1종 이상의 금속을 각각 포함할 수 있다.
바람직하게는, 상기 제 2 수소화 촉매의 활성 성분으로써 류테늄(Ru) 및 주석(Sn)을 포함할 수 있다.
본 발명의 일 구현예에 따르면, 상기 제 2 수소화 촉매의 활성 성분은, 반응물인 CHDA의 함량에 따라 그 사용량이 적절히 제어될 수 있다. 구체적으로 CHDA 대비 이성화 촉매의 함량이 높을수록 반응 속도는 증가하기 때문에 발명의 일 구현예에 따른 CHDA 이성화 방법에 있어서 상기 제 2 수소화 촉매는 제 2 수소화 촉매 대 CHDA의 중량비가 0.01:1 이상이 되도록 하도록 하는 양으로 첨가될 수 있다.
그러나, CHDA 대비 제 2 수소화 촉매의 함량이 일정 수준 이상일 경우 사용량 대비 반응속도의 증가 효과가 미미하여 반응 효율성이 감소하는 점을 고려할 때 상기 제 2 수소화 촉매는 보다 구체적으로 제 2 수소화 촉매의 활성 성분 대 CHDA의 중량비가 0.01:1 내지 3:1을 충족하도록 하는 양으로 첨가될 수 있다.
제 2 수소화 촉매 대 CHDA의 중량비 제어에 따른 반응속도 개선 효과를 고려할 때, 상기 제 2 수소화 촉매는 제 2 수소화 촉매 대 CHDA의 중량비가 0.01 : 1 내지 3 : 1 , 혹은 0.1 : 1 내지 3 : 1 , 혹은 0.1 : 1 내지 2 : 1 혹은 0.5: 1 내지 2 : 1이 되도록 하는 양으로 첨가되는 것이 보다 바람직할 수 있다.
그러나 상기 중량비가 본 발명의 범위를 제한하는 것은 아니며, 세부적인 반응 조건, 및 반응기의 종류에 따라 촉매의 비율을 적절히 조절할 수 있다.
이러한 제 2 수소화 촉매는 담체에 담지시켜 사용할 수 있으며, 이때 담체로는 당 업계에 알려져 있는 담체가 제한 없이 사용될 수 있다. 구체적으로 탄소, 지르코니아(ZrO2), 티타니아(TiO2), 알루미나(Al2O3), 또는 실리카(SiO2) 등의 담체가 사용될 수 있다.
본 발명의 일 구현예에 따르면, 상기 제 2 수소화 촉매의 활성 성분으로써 류테늄(Ru) 및 주석(Sn)을 포함할 경우, 류테늄(Ru) 및 주석(Sn)은, 상기 담체 전체 100 중량부에 대해서, 각각 1 내지 20 중량부, 또는 1 내지 10 중량부, 또는 3 내지 8 중량부로 포함될 수 있다.
상기 담체로 탄소를 사용할 때 특별히 제한되는 것은 아니나, 활성탄, 카본블랙, 흑연, 그래핀, OMC (ordered mesoporous carbon) 및 탄소나노튜브로 이루어진 군에서 선택된 적어도 하나를 사용할 수 있다.
바람직하게는 전체 기공 중 메조기공의 비율이 높은 카본블랙일 수 있으며, 구체적인 예에서, 상기 활성탄은 SXULTRA, CGSP, PK1-3, SX 1G, DRACO S51HF, CA-1, A-51, GAS 1240 PLUS, KBG, CASP 및 SX PLUS 등 일 수 있고, 상기 카본블랙은 BLACK PEARLS®, ELFTEX®, VULCAN®, MOGUL®, MONARCH®, EMPEROR®, 및 REGAL® 등 일 수 있으나, 이에 한정되는 것은 아니다.
여기서, 본 발명에 따르면, 상기 탄소 담체에서 상기 탄소는 전체기공 중 기공의 크기가 2 내지 50nm인 메조기공의 부피 비율이 50% 이상일 수 있다. 바람직하게는, 상기 탄소 담체에서 상기 탄소는 전체 기공 중 메조기공의 부피 비율이 70% 이상이며, 더욱 바람직하게는 상기 탄소 담체에서 상기 탄소는 전체 기공 중 메조기공의 부피 비율이 75% 이상일 수 있다.
이때, 상기 메조기공의 부피 비율이 50% 미만인 경우에는 반응물 및 생성물의 탄소 담체 내 미시적 물질전달 속도 문제가 있을 수 있고, 상기 기공의 평균 크기가 50nm 초과인 경우에는 담체의 물리적 강도가 약한 문제가 있을 수 있으므로 상기의 범위가 적합하다.
또, 본 발명에 따르면, 상기 탄소는 비표면적(BET)이 100 내지 1,500 m2/g 범위를 포함하는 규칙적인 메조다공성 탄소(ordered mesoporous carbon, OMC)을 포함한다. 바람직하게는, 상기 탄소는 비표면적(BET)이 200 내지 1,000 m2/g 범위를 포함하는 규칙적인 메조다공성 탄소(ordered mesoporous carbon, OMC)을 포함할 수 있다. 이 때, 상기 탄소의 비표면적이 100 m2/g 미만인 경우에는 활성금속(Ru, Sn)의 고분산이 어려운 문제가 있을 수 있고, 상기 탄소의 비표면적인 1,500 m2/g를 초과하는 경우에는 메조기공의 비율이 낮아지는 문제가 있을 수 있으므로 상기의 범위가 적합하다.
또한, 경우에 따라서, 본 발명에 따른 촉매의 상기 탄소 담체는 중간 크기의 메조다공성 이외에 마이크로기공(micropore)을 적정 비율로 포함하며, 바람직하게는 전체 기공 중 마이크로포어(micropore)의 부피 비율이 0 내지 25% 로 포함할 수 있다. 이 때, 상기 마이크로포어의 부피 비율이 25% 를 초과하여 포함되는 경우에는 반응물 및 생성물의 탄소 담체 내 미시적 물질전달 속도 문제가 있을 수 있으므로 상기의 범위가 적합하다.
본 발명에서 상기 제 3 단계의 수소화 반응 조건은 특별히 제한되는 것은 아니나, 일례로 반응압력은 50 bar 이상, 또는 80 bar 이상, 또는 100 bar 이상이면서, 220 bar 이하, 또는 200 bar이하, 또는 180 bar 이하일 수 있다. 만일 반응압력이 50 bar 미만이면 반응이 잘 일어나지 않아, 과도한 양의 촉매가 소모되고, 체류시간이 너무 길어져서 부생성물이 증가하는 등의 여러 가지 문제가 있을 수 있고, 200 bar를 초과하면 공정 운전 시 과도한 전력 등의 에너지가 필요로 하며, 또한 반응기 등의 설비 제작비용이 크게 증가하는 문제가 있을 수 있으므로, 상기 범위가 바람직하다.
또한, 반응온도는 100℃ 이상, 또는 150℃ 이상, 또는 200℃ 이상이면서, 300℃ 이하, 또는 280 ℃ 이하, 또는 260℃ 이하일 수 있다. 만일 반응온도가 100℃ 미만이면 반응속도가 너무 느려 반응이 원활하지 않을 수 있는 문제가 있을 수 있고, 300℃를 초과하면 부생성물이 급격하게 증가될 수가 있다. 또한 촉매 수명에도 영향을 미칠 수 있으므로, 상기 범위가 바람직하다.
또, 수소화 반응 동안에 교반 공정이 수행될 수도 있으며, 상기 교반 공정 동안의 속도 제어를 통해 수소화 반응시 반응 효율을 높일 수 있다. 구체적으로 상기 교반 공정은 500 내지 2,000rpm의 속도로 수행될 수 있으며, 보다 구체적으로는 700 내지 1,500rpm 혹은 700 내지 1,000rpm의 속도로 수행되는 것이 바람직할 수 있다.
한편, 상기 교반 공정은 통상의 교반 장치를 이용하여 수행될 수 있다.
상기한 수소화 반응 조건을 모두 충족하는 조건에서 1 내지 10시간 동안 수행되는 것이, 공정 효율성 면에서 보다 바람직할 수 있다.
상기와 같은 제 3 단계 수소화 반응에서 CHDA의 시스 이성질체 대 트랜스 이성질체의 몰비는 그대로 유지되어 변하지 않으므로, 수득되는 CHDM 역시 트랜스 이성질체의 비율이 시스 이성질체의 비율보다 높게 된다. 즉, 상기 제 3 단계의 생성물에 있어, CHDM의 시스 이성질체 및 트랜스 이성질체의 몰비는 4:6 내지 2:8이 될 수 있다.
따라서, 본 발명의 제조방법에 의해 최종적으로 수득되는 CHDM는 보다 고품질의 제품을 제조하기 위한 원료로 유용하게 사용될 수 있다.
이하, 하기 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
<실시예>
실시예 1
제 1 단계
반응기로서 300℃, 150 bar 에서도 견딜 수 있는 회분식 반응기를 준비하였다. 상기 회분식 반응기에 반응물인 테레프탈산(TPA) 1.5g, 5중량% 수소화 촉매 Pd/C 1g, 및 용매인 증류수 250g을 넣고, 반응기 내부 대기를 질소로 대체한 후, 50rpm으로 교반하면서 250℃까지 혼합 용액의 온도를 승온시켰다.
혼합 용액의 온도가 250℃에 도달한 후, TPA의 용해를 위해 온도를 유지하면서 30분 동안 교반하였다. 이 후, 반응기 내부에 120 bar의 수소압력을 채우고 교반속도를 800 rpm으로 높이고 교반하면서 1시간 동안 수소 첨가 반응시켰다.
반응 완료 후 CHDA 1.47 g (시스 CHDA : 트랜스 CHDA = 6.5 : 3.5의 몰비), 물 250g를 포함하는 생성물이 수득되었다. 상기 제 1 단계 반응의 생성물을 별다른 정제과정 없이 제 2 단계 반응에 이용하였다. 수소화 반응의 시간에 따른 CHDA의 수율을 도 1에 나타내었다.
도 1을 참조하면, 1시간 동안 수소화 반응 후 최종 수율 98%, 전환율 99%, 선택도 99%로 CHDA가 수득되었다.
제 2 단계
반응기로서 300℃, 150 bar 에서도 견딜 수 있는 회분식 반응기를 준비하였다. 회분식 반응기에 제 1 단계 반응 생성물 CHDA 4.05g, 지르코니아(단사정계) 1.125g, 및 용매인 증류수 250g을 넣고, 50rpm으로 교반하면서 230℃까지 혼합 용액의 온도를 승온시켰다(용액 중 CHDA 농도: 1.6중량%, 지르코니아/CHDA의 중량비=0.28). 혼합 용액의 온도가 230℃에 도달하면 교반속도를 1000 rpm으로 높여 교반하면서 6시간 동안 반응시켰다.
반응 완료 후 CHDA 4 g (시스 CHDA : 트랜스 CHDA = 3 : 7), 물 250 g를 포함하는 생성물이 수득되었다. 상기 제 2 단계 반응의 생성물을 별다른 정제과정 없이 제 3 단계 반응에 이용하였다.
이성화 반응의 시간에 따른 트랜스 CHDA의 비율을 도 2에 나타내었다.
도 2를 참조하면, 초기 반응물에서는 트랜스 CHDA의 비율이 약 35% 이었던 것이, 6시간 동안 이성화 반응 후 트랜스 CHDA의 비율이 약 70%까지 높아진 것을 확인할 수 있다. 상기 트랜스 CHDA와 시스 CHDA의 비율은 가스 크로마토그래피의 방법으로 확인하였다.
제 3 단계
반응기로서 300℃, 150 bar 에서도 견딜 수 있는 회분식 반응기를 선정하였다. 회분식 반응기는 퍼징(purging)을 위한 질소와 수소화 반응을 위한 수소가 도입되며, 반응을 위해 교반이 가능한 장비이다. 회분식 반응기에 반응물인 CHDA 4.05 g, 촉매(루테늄-주석/카본 촉매, 카본 담체 100 중량부에 대하여 루테늄 5 중량부, 주석 5 중량부 포함) 1.125 g, 용매인 증류수 250 g을 넣고, 5 bar의 질소로 2회 퍼지, 약 5 bar의 수소로 2회 퍼지 실시 후, 수소 분위기 (약 14~15 bar)에서 50 rpm으로 교반을 실시하면서 온도를 250℃까지 올려주었다.
반응온도에 도달하면 수소를 반응 압력인 100 bar까지 주입 후, 교반속도를 1000 rpm 올려주어 반응을 실시하였다.
CHDA의 수소화 반응 수행 중, 고체상 촉매를 제외한 반응물 및 생성물이 포함된 용액은 샘플링 포트를 이용하여 샘플링 하였으며, 샘플링된 액체는 FID (Flame Ionization Detector) 검출기가 장착된 가스크로마토그래피 장치를 이용하여 분석하였다.
상기와 같이 분석한 결과, 수소화 반응의 시간에 따른 CHDM의 수율, 전환율, 선택도의 변화를 도 3에 나타내었다. 또한 시간에 따른 수율, 전환율, 선택도를 아래와 같이 계산하여 하기 표 1에 나타내었다.
수율(yield) = 전환율 x 선택도
전환율(conversion) = 반응한 CHDA의 몰수 / 공급된 CHDA의 몰수
선택도(selectivity) = 생성된 CHDM의 몰수 / 반응한 CHDA의 몰수
Figure PCTKR2019018516-appb-T000001
도 3 및 표 1을 참조하면, 6시간 동안 수소화 반응 후 최종 수율 97.7%, 전환율 99.4%, 선택도 98.3%로 CHDM이 수득된 것을 확인할 수 있다.
또한, 가스 크로마토그래피의 방법으로 확인한 트랜스 CHDM의 비율은 약 70%로, 수소화 단계 이전의 트랜스 CHDA의 비율이 동일하게 유지되었다.
이처럼 본 발명의 제조방법에 따라 CHDM을 제조하는 경우 트랜스 이성질체의 비율이 높은 CHDM을 고수율로 제조할 수 있었다.

Claims (15)

  1. 테레프탈산(terephthalic acid)에 대하여, 제 1 수소화 촉매의 존재 하에 수소화 반응을 수행하여, 시스 이성질체 및 트랜스 이성질체를 포함하는 1,4-사이클로헥산 디카르복실산(1,4-cyclohexanedicarboxylic acid, CHDA)를 제조하는 제 1 단계;
    상기 제 1 단계 반응 생성물에 대하여, 이성화 촉매의 존재 하에 이성화 반응을 수행하여, 상기 CHDA의 시스 이성질체 중 적어도 일부를 트랜스 이성질체로 이성화하는 제 2 단계; 및
    상기 제 2 단계 반응 생성물에 대하여, 제 2 수소화 촉매의 존재 하에 수소화 반응을 수행하여, 시스 이성질체 및 트랜스 이성질체를 포함하는 1,4-사이클로헥산디메탄올(1, 4-cyclohexanedimethanol, CHDM)을 제조하는 단계;
    를 포함하는 1,4-사이클로헥산디메탄올의 제조방법.
  2. 제 1 항에 있어서,
    상기 제 1 수소화 촉매 대 테레프탈산의 중량비는 0.01 : 1 내지 3 : 1인, 1,4-사이클로헥산디메탄올의 제조방법.
  3. 제 1 항에 있어서,
    상기 제 1 수소화 촉매는 팔라듐(Pd), 로듐(Rh), 루테늄(Ru), 및 백금(Pt)으로 이루어진 군으로부터 선택되는 1종 이상의 금속을 포함하는, 1,4-사이클로헥산디메탄올의 제조방법.
  4. 제 1 항에 있어서,
    상기 제 1 단계는 50 내지 220 bar의 압력, 및 100 내지 300℃의 온도에서 수행되는, 1,4-사이클로헥산디메탄올의 제조방법.
  5. 제 1 항에 있어서,
    상기 제 1 단계 반응 생성물은 CHDA의 시스 이성질체 및 트랜스 이성질체를 8:2 내지 6:4의 몰비로 포함하는, 1,4-사이클로헥산디메탄올의 제조방법.
  6. 제 1 항에 있어서,
    상기 이성화 촉매는 4족 전이금속의 산화물을 1종 이상 포함하는, 1,4-사이클로헥산디메탄올의 제조방법.
  7. 제 1 항에 있어서,
    상기 이성화 촉매 대 CHDA의 중량비는 0.1:1 내지 5:1인, 1,4-사이클로헥산디메탄올의 제조방법.
  8. 제 1 항에 있어서,
    상기 제 2 단계는 20 내지 200 bar의 압력, 및 100 내지 300℃의 온도에서 수행되는, 1,4-사이클로헥산디메탄올의 제조방법.
  9. 제 1 항에 있어서,
    상기 제 2 단계의 이성화 반응에 의해, 상기 CHDA의 시스 이성질체 100몰% 중에서 50몰% 이상이 트랜스 이성질체로 변환되는, 1,4-사이클로헥산디메탄올의 제조방법.
  10. 제 1 항에 있어서,
    상기 제 2 단계 반응 생성물은, CHDA의 시스 이성질체 및 트랜스 이성질체를 4:6 내지 2:8의 몰비로 포함하는, 1,4-사이클로헥산디메탄올의 제조방법.
  11. 제 1 항에 있어서,
    상기 제 2 수소화 촉매 대 CHDA의 중량비는 0.01:1 내지 3:1인, 1,4-사이클로헥산디메탄올의 제조방법
  12. 제 1 항에 있어서,
    상기 제 2 수소화 촉매는 팔라듐(Pd), 로듐(Rh), 루테늄(Ru), 및 백금(Pt)으로 이루어진 군으로부터 선택되는 1종 이상의 금속과, 주석(Sn), 철(Fe), 레늄(Re), 및 갈륨(Ga)으로 이루어진 군으로부터 선택되는 1종 이상의 금속을 각각 포함하는, 1,4-사이클로헥산디메탄올의 제조방법
  13. 제 1 항에 있어서,
    상기 제 3 단계는 50 내지 220 bar의 압력, 및 100 내지 300℃의 온도에서 수행되는, 1,4-사이클로헥산디메탄올의 제조방법.
  14. 제 1 항에 있어서,
    상기 제 3 단계 반응 생성물은, CHDM의 시스 이성질체 및 트랜스 이성질체를 4:6 내지 2:8의 몰비로 포함하는, 1,4-사이클로헥산디메탄올의 제조방법.
  15. 제 1 항에 있어서,
    상기 제 1 수소화 촉매는 팔라듐(Pd)을 포함하고, 상기 제 2 수소화 촉매는 류테늄(Ru) 및 주석(Sn)을 포함하는, 1,4-사이클로헥산디메탄올의 제조방법.
PCT/KR2019/018516 2018-12-27 2019-12-26 1,4-사이클로헥산디메탄올의 제조방법 WO2020138973A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/293,482 US11629112B2 (en) 2018-12-27 2019-12-16 Method for preparation of 1,4-cyclohexanedimethanol
EP19904729.1A EP3904323A4 (en) 2018-12-27 2019-12-26 METHOD FOR PREPARING 1,4-CYCLOHEXANEDIMETHANOL
CN201980076296.6A CN113056446B (zh) 2018-12-27 2019-12-26 制备1,4-环己烷二甲醇的方法
JP2021531780A JP7222092B2 (ja) 2018-12-27 2019-12-26 1,4-シクロヘキサンジメタノールの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0171228 2018-12-27
KR1020180171228A KR102446307B1 (ko) 2018-12-27 2018-12-27 1,4-사이클로헥산디메탄올의 제조방법

Publications (1)

Publication Number Publication Date
WO2020138973A1 true WO2020138973A1 (ko) 2020-07-02

Family

ID=71129856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018516 WO2020138973A1 (ko) 2018-12-27 2019-12-26 1,4-사이클로헥산디메탄올의 제조방법

Country Status (6)

Country Link
US (1) US11629112B2 (ko)
EP (1) EP3904323A4 (ko)
JP (1) JP7222092B2 (ko)
KR (2) KR102446307B1 (ko)
CN (1) CN113056446B (ko)
WO (1) WO2020138973A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114929657A (zh) 2019-12-27 2022-08-19 韩华思路信(株) 制备1,4-环己烷二甲酸的方法
CN114929658A (zh) 2019-12-27 2022-08-19 韩华思路信(株) 1,4-环己烷二甲醇的制备方法
US20240083831A1 (en) * 2021-02-03 2024-03-14 Hanwha Solutions Corporation 1,4-cyclohexanedimethanol composition and method for purifying the same
CN114409525B (zh) * 2022-01-29 2022-11-08 浙江清和新材料科技有限公司 一种1,4-环己烷二甲酸的制备方法
CN114685241B (zh) * 2022-04-29 2023-11-03 浙江清和新材料科技有限公司 由对苯二甲酸一步加氢制备1,4-环己烷二甲醇的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191602A (ja) * 1998-12-25 2000-07-11 New Japan Chem Co Ltd トランス―1,4―シクロヘキサンジカルボン酸ジメチルの製造方法
JP2002145824A (ja) * 2000-08-30 2002-05-22 Mitsubishi Chemicals Corp テレフタル酸の水素添加方法
KR100943872B1 (ko) 2001-10-26 2010-02-24 미쓰비시 가가꾸 가부시키가이샤 트랜스-1,4-시클로헥산디카르복실산의 생산방법
JP2014177422A (ja) 2013-03-14 2014-09-25 Mitsubishi Chemicals Corp シクロアルカンジメタノールの製造方法
KR20150002258A (ko) * 2013-06-28 2015-01-07 에스케이케미칼주식회사 1,4-시클로헥산 디메탄올의 제조방법
KR20150062911A (ko) 2013-11-29 2015-06-08 롯데케미칼 주식회사 1,4-사이클로헥산디메탄올의 제조 방법
WO2015156582A1 (ko) 2014-04-07 2015-10-15 롯데케미칼 주식회사 복합 금속 촉매 조성물과 이를 이용한 1,4-사이클로헥산디메탄올 제조방법 및 장치
KR20160056208A (ko) * 2014-11-11 2016-05-19 롯데케미칼 주식회사 트랜스-1,4-사이클로헥산디메탄올의 직접 제조방법
JP2018076282A (ja) * 2016-10-28 2018-05-17 株式会社シンテック トランス‐シクロヘキサンジカルボン酸ビス(2‐ヒドロキシアルキル)の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824540A (ja) 1981-08-06 1983-02-14 Dai Ichi Seiyaku Co Ltd トランス−ヘキサヒドロテレフタル酸の製造法
US5231218A (en) 1992-10-23 1993-07-27 Eastman Kodak Company Isomerization of dimethylcyclohexanedicarboxylate
JP3108736B2 (ja) * 1996-06-28 2000-11-13 エスケー エヌジェイシー 株式会社 シクロヘキサンジメタノールの製造方法
JP3921877B2 (ja) 1998-06-22 2007-05-30 三菱化学株式会社 1,4−シクロヘキサンジメタノールの製造方法
JP2001151716A (ja) 1999-11-26 2001-06-05 Mitsubishi Chemicals Corp トランス−1,4−シクロヘキサンジメタノールの製造方法
JP2002060356A (ja) 2000-08-18 2002-02-26 Mitsubishi Chemicals Corp テレフタル酸の水素添加方法
JP2015054828A (ja) * 2013-09-10 2015-03-23 三菱化学株式会社 アルコールの製造方法
CN103539660A (zh) * 2013-09-25 2014-01-29 江苏康恒化工有限公司 由混式1,4-环己烷二甲酸制备反式1,4-环己烷二甲酸的方法
US9346737B2 (en) * 2013-12-30 2016-05-24 Eastman Chemical Company Processes for making cyclohexane compounds
KR102506281B1 (ko) 2017-11-29 2023-03-06 한화솔루션 주식회사 프탈레이트 화합물의 수소화 방법
KR102238560B1 (ko) 2017-12-29 2021-04-08 한화솔루션 주식회사 고선택 전환이 가능한 탄소 기반의 귀금속-전이금속 촉매 및 이의 제조방법
KR102336273B1 (ko) 2018-06-15 2021-12-06 한화솔루션 주식회사 사이클로헥산 디카르복실산의 이성화 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191602A (ja) * 1998-12-25 2000-07-11 New Japan Chem Co Ltd トランス―1,4―シクロヘキサンジカルボン酸ジメチルの製造方法
JP2002145824A (ja) * 2000-08-30 2002-05-22 Mitsubishi Chemicals Corp テレフタル酸の水素添加方法
KR100943872B1 (ko) 2001-10-26 2010-02-24 미쓰비시 가가꾸 가부시키가이샤 트랜스-1,4-시클로헥산디카르복실산의 생산방법
JP2014177422A (ja) 2013-03-14 2014-09-25 Mitsubishi Chemicals Corp シクロアルカンジメタノールの製造方法
KR20150002258A (ko) * 2013-06-28 2015-01-07 에스케이케미칼주식회사 1,4-시클로헥산 디메탄올의 제조방법
KR20150062911A (ko) 2013-11-29 2015-06-08 롯데케미칼 주식회사 1,4-사이클로헥산디메탄올의 제조 방법
WO2015156582A1 (ko) 2014-04-07 2015-10-15 롯데케미칼 주식회사 복합 금속 촉매 조성물과 이를 이용한 1,4-사이클로헥산디메탄올 제조방법 및 장치
KR20160056208A (ko) * 2014-11-11 2016-05-19 롯데케미칼 주식회사 트랜스-1,4-사이클로헥산디메탄올의 직접 제조방법
JP2018076282A (ja) * 2016-10-28 2018-05-17 株式会社シンテック トランス‐シクロヘキサンジカルボン酸ビス(2‐ヒドロキシアルキル)の製造方法

Also Published As

Publication number Publication date
JP2022513714A (ja) 2022-02-09
CN113056446B (zh) 2023-10-10
JP7222092B2 (ja) 2023-02-14
EP3904323A4 (en) 2022-11-23
KR20210154130A (ko) 2021-12-20
US11629112B2 (en) 2023-04-18
CN113056446A (zh) 2021-06-29
US20220127212A1 (en) 2022-04-28
KR20200081096A (ko) 2020-07-07
EP3904323A1 (en) 2021-11-03
KR102446307B1 (ko) 2022-09-21

Similar Documents

Publication Publication Date Title
WO2020138973A1 (ko) 1,4-사이클로헥산디메탄올의 제조방법
WO2021241841A1 (ko) 암모니아 분해 촉매, 및 이를 이용한 암모니아 분해 및 수소 생산 방법
WO2014030820A1 (ko) 젖산으로부터 락타이드의 직접적 제조방법 및 이에 사용되는 촉매
WO2016195162A1 (ko) 페라이트 금속 산화물 촉매의 제조방법
EP2318131A1 (en) Catalyst for direct production of light olefins and preparation method thereof
WO2019132524A1 (ko) 카본이 코팅된 실리카-알루미나 담체에 담지된 귀금속-전이금속 복합 촉매 및 이의 제조방법
WO2018182214A1 (ko) 금속산화물 촉매, 그 제조방법, 및 이를 이용한 알코올의 제조방법
WO2021133138A1 (ko) 1,4-사이클로헥산디메탄올의 제조방법
WO2021132876A1 (ko) 1,4-사이클로헥산디메탄올의 제조 방법
WO2010085018A1 (en) Method of regenerating heteropolyacid catalyst used in the direct process of preparing dichloropropanol by reacting glycerol and chlorinating agent, method of preparing dichloropropanol comprising the method of regenerating heteropolyacid catalyst and method of preparing epichlorohydrin comprising the method of preparing dichloropropanol
WO2017039218A1 (ko) 아크릴산 제조용 불균일계 촉매 및 이를 이용한 아크릴산 제조방법
EP3533779B1 (en) Production method for trans-bis(2-hydroxyalkyl) cyclohexanedicarboxylate, and bis(2-hydroxyalkyl) cyclohexanedicarboxylate
WO2021133136A1 (ko) 1,4-사이클로헥산 디카르복실산의 제조 방법
CN1490293A (zh) 由环己酮缩合脱氢制备邻苯基苯酚
JP2002003474A (ja) ピペリジンの製造方法
WO2016053004A1 (ko) 산화 몰리브덴의 복합체 및 이의 제조방법
WO2021133137A1 (ko) 1,4-사이클로헥산디메탄올의 제조 방법
WO2021112405A1 (ko) 사이클로헥산 디카르복실산의 이성화 방법
JP2001151716A (ja) トランス−1,4−シクロヘキサンジメタノールの製造方法
US20040267052A1 (en) Method for catalytic decomposition of organic hydroperoxides
KR910002508B1 (ko) 4-(4-히드록시페닐)-시클로헥산올의 제조방법
KR101173216B1 (ko) 트랜스-디메틸사이클로헥산디카복실레이트의 분리방법
JP7188543B2 (ja) アリル化合物の異性化方法
WO2021071100A1 (ko) 아세틸렌의 선택적 수소화용 촉매 및 이의 제조방법
KR20210151960A (ko) 2-알킬안트라센의 분리 방법 및 2-알킬안트라센의 과산화수소 제조를 위한 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531780

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019904729

Country of ref document: EP

Effective date: 20210727