WO2020129371A1 - 多結晶ダイヤモンド自立基板の製造方法 - Google Patents

多結晶ダイヤモンド自立基板の製造方法 Download PDF

Info

Publication number
WO2020129371A1
WO2020129371A1 PCT/JP2019/040040 JP2019040040W WO2020129371A1 WO 2020129371 A1 WO2020129371 A1 WO 2020129371A1 JP 2019040040 W JP2019040040 W JP 2019040040W WO 2020129371 A1 WO2020129371 A1 WO 2020129371A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound semiconductor
polycrystalline diamond
substrate
semiconductor substrate
layer
Prior art date
Application number
PCT/JP2019/040040
Other languages
English (en)
French (fr)
Inventor
祥泰 古賀
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to DE112019006310.3T priority Critical patent/DE112019006310T5/de
Priority to CN201980084289.0A priority patent/CN113544318B/zh
Publication of WO2020129371A1 publication Critical patent/WO2020129371A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing

Definitions

  • the present invention relates to a method for producing a polycrystalline diamond free-standing substrate in which a compound semiconductor layer is formed on a polycrystalline diamond layer as a supporting substrate.
  • Patent Document 1 discloses a method for manufacturing a gallium nitride type wafer on diamond. In this method, a thin silicon nitride film having a thickness of 60 nm or less is formed on a GaN layer located on a supporting substrate, diamond particles are embedded and fixed on the surface of the silicon nitride film by dry scratching, and the silicon nitride film is fixed on the surface.
  • Gallium nitride layer on the diamond including a step of growing a diamond layer on the GaN layer through the silicon nitride film by a chemical vapor deposition method using the diamond particles as nuclei, and a step of removing the supporting substrate. To produce a wafer on which the film has been formed.
  • an object of the present invention is to provide a method for producing a polycrystalline diamond free-standing substrate capable of producing a polycrystalline diamond free-standing substrate in which high quality compound semiconductor layers are laminated.
  • the present inventor has conducted earnest research and obtained the following findings.
  • the present inventor conceived not to grow a diamond layer on a compound semiconductor layer located on a supporting substrate as in Patent Document 1, but to grow a diamond layer on a compound semiconductor substrate prepared in advance. ..
  • the present inventor further studied, by applying a solution containing diamond particles on the compound semiconductor substrate, and then by heat treatment to evaporate the solvent, by attaching the diamond particles on the compound semiconductor substrate, It has been found that a polycrystalline diamond layer can be grown without cracking the compound semiconductor substrate. Thereafter, dislocation did not occur in the compound semiconductor layer obtained by reducing the thickness of the compound semiconductor substrate.
  • the gist of the present invention completed based on the above findings is as follows. (1) applying a solution containing diamond particles onto a compound semiconductor substrate, and then subjecting the compound semiconductor substrate to a heat treatment to attach the diamond particles onto the compound semiconductor substrate; Growing a polycrystalline diamond layer having a thickness of 100 ⁇ m or more on the compound semiconductor substrate by chemical vapor deposition using the diamond particles as nuclei; Thereafter, a step of reducing the thickness of the compound semiconductor substrate to form a compound semiconductor layer, A method for producing a polycrystalline diamond free-standing substrate, comprising: a polycrystalline diamond free-standing substrate having the above-mentioned polycrystalline diamond layer functioning as a supporting substrate for the compound semiconductor layer.
  • the temperature of the compound semiconductor substrate is kept below 100° C. for 1 minute or more and 30 minutes or less, and the production of the polycrystalline diamond free-standing substrate according to any one of (1) to (3) above. Method.
  • the compound semiconductor substrate is made of GaN, AlN, InN, SiC, Al 2 O 3 , Ga 2 O 3 , MgO, ZnO, CdO, GaAs, GaP, GaSb, InP, InAs, InSb, or SiGe.
  • the method for producing a polycrystalline diamond free-standing substrate according to any one of (1) to (5) above.
  • (A) ⁇ (F) is a schematic cross-sectional view illustrating a method for manufacturing a polycrystalline diamond free-standing substrate 100 according to an embodiment of the present invention.
  • a method for manufacturing a polycrystalline diamond free-standing substrate 100 includes the following steps. First, as shown in FIGS. 1A and 1B, a solution containing diamond particles is applied onto the compound semiconductor substrate 10. As a result, the diamond particle-containing liquid film 12 is formed on the compound semiconductor substrate 10. After that, as shown in FIGS. 1B and 1C, the compound semiconductor substrate 10 is heat-treated to evaporate the solvent in the diamond particle-containing liquid film 12, and the surface of the compound semiconductor substrate 10 and the diamond particles. The diamond particles 14 are attached to the compound semiconductor substrate 10 by strengthening the bonding force with the compound semiconductor substrate 10. After that, as shown in FIGS.
  • a thickness of 100 ⁇ m or more is formed on the compound semiconductor substrate 10 by the chemical vapor deposition method (CVD method) using the diamond particles 14 as nuclei.
  • the polycrystalline diamond layer 16 is grown. After that, the surface of the polycrystalline diamond layer 16 may be optionally flattened as shown in FIGS. Thereafter, as shown in FIGS. 1E and 1F, the compound semiconductor substrate 10 is reduced in thickness to form a compound semiconductor layer 18.
  • the polycrystalline diamond free-standing substrate 100 in which the polycrystalline diamond layer 16 functions as a supporting substrate for the compound semiconductor layer 18 can be manufactured through the above steps.
  • the compound semiconductor layer 18 becomes a device layer for forming a semiconductor device.
  • each step in this embodiment will be described in detail.
  • a compound semiconductor substrate 10 is prepared.
  • the compound semiconductor forming the compound semiconductor substrate 10 is not particularly limited, and may be appropriately selected according to the type of semiconductor device formed in the compound semiconductor layer 18, for example, GaN, AlN, InN, SiC, Al 2 O. It is preferably made of 3 , Ga 2 O 3 , MgO, ZnO, CdO, GaAs, GaP, GaSb, InP, InAs, InSb, or SiGe.
  • the thickness of the compound semiconductor substrate 10 is preferably 200 ⁇ m or more and 3 mm or less.
  • the compound semiconductor substrate warps to cause peeling of polycrystalline diamond or cracking of the compound semiconductor substrate. Further, when it exceeds 3 mm, it is not preferable from the viewpoint of process time and material cost in the step of reducing the thickness of the compound semiconductor substrate 10 described later.
  • a solution containing diamond particles is applied onto the compound semiconductor substrate 10 to form a diamond particle-containing liquid film 12 on the compound semiconductor substrate 10.
  • the coating method include a spin coating method, a spraying method, and a dipping method, and the spin coating method is particularly preferable. According to the spin coating method, the diamond particle-containing solution can be uniformly applied to only one surface on both sides of the compound semiconductor substrate 10 to which the diamond particles 14 are to be attached.
  • the average particle diameter of diamond particles contained in the diamond particle-containing solution is preferably 1 nm or more and 50 nm or less, and more preferably 10 nm or less. If it is 1 nm or more, it is possible to suppress the phenomenon that the diamond particles 14 are repelled from the surface of the compound semiconductor substrate 10 by the sputtering action in the initial stage of growing the polycrystalline diamond layer 16, and if it is 50 nm or less, This is because the crystalline diamond layer can be densely formed without abnormal growth, and the flattening (polishing) process on the polycrystalline diamond surface can be easily performed. Diamond particles of such a size can be suitably prepared from graphite by a known detonation method, implosion method or pulverization method.
  • the “average particle size of diamond particles contained in the solution containing diamond particles” is calculated according to JIS 8819-2, and the particle size distribution measured by a known laser diffraction type particle size distribution measuring device follows a normal distribution. Means the average particle size calculated on the assumption.
  • the compound semiconductor substrate 10 before being coated with the diamond particle-containing solution is generally acid-washed with hydrofluoric acid or the like in order to remove metal impurities attached to the surface thereof. Since the surface of the acid-cleaned compound semiconductor substrate 10 is an active water repellent surface, particles are likely to adhere to the surface. Therefore, it is preferable to wash the acid-cleaned compound semiconductor substrate 10 with pure water or the like to make the surface of the compound semiconductor substrate 10 a hydrophilic surface on which a natural oxide film is formed. Alternatively, it is preferable to leave the acid-cleaned compound semiconductor substrate 10 in a clean room for a long time to form a natural oxide film on the surface of the compound semiconductor substrate 10. This can prevent particles from adhering to the surface of the compound semiconductor substrate 10.
  • oxidation treatment a method of heating the diamond particles for oxidation, a method of immersing the diamond particles in an ozone solution, a nitric acid solution, an aqueous hydrogen peroxide solution, or a perchloric acid solution can be mentioned.
  • Examples of the solvent for the diamond particle-containing solution include water, as well as organic solvents such as methanol, ethanol, 2-propanol, and toluene. These solvents may be used alone or in combination of two or more. May be.
  • the content of diamond particles in the diamond particle-containing solution is preferably 0.03% by mass or more and 10% by mass or less based on the entire diamond particle-containing solution. If it is 0.03 mass% or more, the diamond particles 14 can be uniformly attached to the compound semiconductor substrate 10. If it is 10 mass% or less, the attached diamond particles 14 are abnormal in the growth process of the diamond layer 16. This is because the growth can be suppressed.
  • the diamond particle-containing solution is preferably in the form of gel, and the diamond particle-containing solution may contain a thickening agent.
  • the thickener include agar, carrageenan, xanthan gum, gellan gum, guar gum, polyvinyl alcohol, polyacrylate thickeners, water-soluble celluloses, polyethylene oxide, etc., and one or more of them should be used. You can When a thickening agent is contained, it is preferable that the pH of the diamond particle-containing solution is in the range of 6 or more and 8 or less.
  • the diamond particle-containing solution may be prepared by mixing diamond particles with the above solvent and stirring the solution to disperse the diamond particles in the solvent.
  • the stirring speed is preferably 500 rpm or more and 3000 rpm or less, and the stirring time is preferably 10 minutes or more and 1 hour or less.
  • the compound semiconductor substrate 10 is heat-treated.
  • the solvent in the diamond particle-containing liquid film 12 evaporates, the bonding force between the surface of the compound semiconductor substrate 10 and the diamond particles 14 is strengthened, and the diamond particles 14 adhere to the compound semiconductor substrate 10.
  • the temperature of the compound semiconductor substrate 10 during the heat treatment is preferably less than 100° C., more preferably 30° C. or higher and 80° C. or lower. When the temperature is lower than 100° C., it is possible to suppress the generation of bubbles accompanying the boiling of the diamond particle-containing solution, and therefore, the portion where the diamond particles 14 do not partially exist on the compound semiconductor substrate 10 does not occur.
  • the heat treatment time is preferably 1 minute or more and 30 minutes or less.
  • a known heat treatment apparatus may be used as the heat treatment apparatus, and for example, the compound semiconductor substrate 10 may be placed on a heated hot plate.
  • a polycrystalline diamond layer 16 having a thickness of 100 ⁇ m or more is grown on the compound semiconductor substrate 10 by the CVD method using the diamond particles 14 as nuclei.
  • the CVD method a plasma CVD method, a hot filament CVD method, or the like can be preferably used.
  • the microwave plasma CVD method is a method in which a source gas such as methane is decomposed by a microwave in a plasma chamber to generate plasma, and the source gas converted into plasma is introduced onto a heated compound semiconductor substrate 10 to form a polycrystalline diamond layer 16 Is a way to grow.
  • the pressure in the plasma chamber, the microwave output, and the temperature of the compound semiconductor substrate 10 are preferably set as follows.
  • the pressure in the plasma chamber is preferably 1.3 ⁇ 10 3 Pa or more and 1.3 ⁇ 10 5 Pa or less, more preferably 1.1 ⁇ 10 4 Pa or more and 4.0 ⁇ 10 4 Pa or less.
  • the microwave output is preferably 0.1 kW or more and 100 kW or less, and more preferably 1 kW or more and 10 kW or less.
  • the temperature of the compound semiconductor substrate 10 is preferably 700° C. or higher and 1300° C. or lower, and more preferably 900° C. or higher and 1200° C. or lower.
  • the hot filament CVD method When the hot filament CVD method is used, a filament made of tungsten, tantalum, rhenium, molybdenum, iridium or the like is used, the filament temperature is set to about 1900° C. or higher and 2300° C. or lower, and carbon radicals are generated from a hydrocarbon-based source gas such as methane. To generate. By introducing the carbon radicals onto the heated compound semiconductor substrate 10, the polycrystalline diamond layer 16 is grown. According to the hot filament CVD method, it is possible to easily cope with an increase in the diameter of the wafer.
  • the pressure in the chamber, the distance between the filament and the compound semiconductor substrate 10, and the temperature of the compound semiconductor substrate 10 are preferably set as follows.
  • the pressure in the chamber is preferably 1.3 ⁇ 10 3 Pa or more and 1.3 ⁇ 10 5 Pa or less.
  • the distance between the filament and the compound semiconductor substrate 10 is preferably 5 mm or more and 20 mm or less.
  • the temperature of the compound semiconductor substrate 10 is preferably 700° C. or higher and 1300° C. or lower.
  • the polycrystalline diamond layer 16 functions as a supporting substrate for the compound semiconductor layer 18, its thickness is 100 ⁇ m or more, and more preferably 500 ⁇ m or more.
  • the upper limit of the thickness of the polycrystalline diamond layer 16 is not particularly limited, but it is preferably 3 mm or less from the viewpoint that the process time during growth by the CVD method is not excessive.
  • the surface of the polycrystalline diamond layer 16 may be flattened. Excessive unevenness is formed on the surface of the polycrystalline diamond layer 16 after the film formation.
  • the planarization method is not particularly limited, but for example, a known chemical mechanical polishing (CMP) method can be preferably used. Even after the flattening, the thickness of the polycrystalline diamond layer 16 is 100 ⁇ m or more, more preferably 500 ⁇ m or more.
  • the compound semiconductor substrate 10 is reduced in thickness to form a compound semiconductor layer 18.
  • the compound semiconductor substrate 10 is reduced in thickness by grinding and polishing from the surface opposite to the interface with the polycrystalline diamond layer 16.
  • the polycrystalline diamond free-standing substrate 100 in which the compound semiconductor layer 18 having a desired thickness is laminated on the polycrystalline diamond layer 16 as the supporting substrate can be obtained.
  • the thickness of the compound semiconductor layer 18 can be appropriately determined according to the type and structure of the semiconductor device formed therein, and is preferably 1 ⁇ m or more and 500 ⁇ m or less.
  • a known or arbitrary grinding method and polishing method can be preferably used, and specifically, a surface grinding method and a mirror polishing method can be used.
  • Example 1 A polycrystalline diamond free-standing substrate according to Inventive Example 1-1 was produced through the steps shown in FIGS.
  • GaN substrate with a diameter of 2 inches and a thickness of 600 ⁇ m was prepared by cutting out a gallium nitride (GaN) single crystal produced by the HVPE (Hydride Vapor Phase Epitaxy) method.
  • diamond particles having an average particle diameter of 4 nm were prepared by the detonation method.
  • the diamond particles were immersed in an aqueous solution of hydrogen peroxide, terminated with a carboxyl group (COOH), and charged with a negative charge.
  • the diamond particles were mixed with a solvent (H 2 O) and stirred to prepare a diamond particle-containing solution having a diamond particle content of 6 mass %.
  • the stirring speed was 1100 rpm, the stirring time was 50 minutes, and the temperature of the diamond particle-containing solution during stirring was 25°C.
  • the GaN substrate was washed with pure water to form a natural oxide film on the surface, and then a diamond particle-containing solution was applied onto the GaN substrate by spin coating to form a diamond particle-containing liquid film.
  • the GaN substrate was placed on a hot plate set at 80° C. for 5 minutes to perform heat treatment for strengthening the bond between the GaN substrate and the diamond particles, and the diamond particles were attached to the GaN substrate.
  • a polycrystalline diamond layer having a thickness of 300 ⁇ m was grown using the diamond particles attached to the GaN substrate as nuclei. ..
  • the pressure inside the plasma chamber was 1.5 ⁇ 10 4 Pa, the microwave output was 5 kW, and the temperature of the GaN substrate was 1050° C.
  • the thickness of the polycrystalline diamond layer after flattening was 290 ⁇ m.
  • the GaN substrate was ground and polished to form a GaN layer having a thickness of 10 ⁇ m.
  • a free standing polycrystalline diamond substrate was obtained in which a 10 ⁇ m thick GaN layer was laminated on a 290 ⁇ m thick polycrystalline diamond layer.
  • the polycrystalline diamond layer could be grown without cracking the GaN substrate.
  • the cross section of the GaN layer was observed by TEM, no dislocation was observed.
  • a GaN substrate similar to that of Inventive Example 1 was prepared.
  • diamond particles were embedded in the surface of the GaN substrate by a known scratching method. That is, the GaN substrate was ultrasonically cleaned in a solution containing diamond particles having an average particle size of 1 ⁇ m to embed the diamond particles on the surface of the GaN substrate.
  • an attempt was made to form a polycrystalline diamond layer having a thickness of 300 ⁇ m with the diamond particles embedded on the GaN substrate as nuclei.
  • the GaN substrate was cracked during the polycrystalline diamond film formation. It is considered that this is because a crack introduced into the surface of the GaN substrate due to the embedding started as a starting point and the crack propagated through the GaN substrate during the formation of the polycrystalline diamond film at a high temperature of 1050°C. As a result of observing the cracked portion with a TEM, it was found that the crack was present at the starting point of the crack.
  • the GaN substrate was cracked together with the polycrystalline diamond layer in the process of grinding the GaN substrate. That is, it was found that the polycrystalline diamond layer does not function as a free-standing substrate at a thickness of 5 ⁇ m.
  • Example 2 A polycrystalline diamond free-standing substrate was produced in the same manner as in Inventive Example 1, except that the type of compound semiconductor substrate was changed from a GaN substrate to a SiC substrate.
  • the polycrystalline diamond layer could be grown without cracking the SiC substrate.
  • the cross section of the SiC layer was observed by TEM, no dislocation was observed.
  • a SiC substrate similar to that of Inventive Example 2 was prepared.
  • diamond particles were embedded in the surface of the SiC substrate by a known scratching method. That is, the SiC substrate was ultrasonically cleaned in a solution containing diamond particles having an average particle diameter of 1 ⁇ m to embed the diamond particles on the surface of the SiC substrate.
  • an attempt was made to form a polycrystalline diamond layer having a thickness of 460 ⁇ m by using the microwave plasma CVD method with the diamond particles embedded on the SiC substrate as nuclei.
  • Comparative Example 2-1 the SiC substrate was cracked during the polycrystalline diamond film formation. It is considered that this is because a crack introduced into the surface of the SiC substrate due to the embedding started as a starting point and the crack propagated through the SiC substrate during the formation of the polycrystalline diamond film at a high temperature of 1050°C. As a result of observing the cracked portion with a TEM, it was found that the crack was present at the starting point of the crack.
  • Comparative Example 2-2 the SiC substrate was cracked together with the polycrystalline diamond layer in the process of grinding the SiC substrate. That is, it was found that the polycrystalline diamond layer does not function as a free-standing substrate at a thickness of 5 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

高品質な化合物半導体層が積層された多結晶ダイヤモンド自立基板を製造することが可能な、多結晶ダイヤモンド自立基板の製造方法を提供する。ダイヤモンド粒子を含有する溶液を化合物半導体基板10上に塗布し、その後、化合物半導体基板10に熱処理を施すことによって、化合物半導体基板10上にダイヤモンド粒子14を付着させる。ダイヤモンド粒子14を核として、化学気相成長法により、化合物半導体基板10上に厚さが100μm以上の多結晶ダイヤモンド層16を成長させる。その後、化合物半導体基板10を減厚して、化合物半導体層18とする。これらの工程を経て、多結晶ダイヤモンド層16が化合物半導体層18の支持基板として機能する多結晶ダイヤモンド自立基板100を得る。

Description

多結晶ダイヤモンド自立基板の製造方法
 本発明は、支持基板としての多結晶ダイヤモンド層上に化合物半導体層が形成されてなる多結晶ダイヤモンド自立基板の製造方法に関する。
 高周波デバイスやパワーデバイス等の高耐圧の半導体デバイスにおいては、デバイスの自己発熱が問題となる。この対策として、デバイス形成領域の下に熱伝導率が大きい材料を配置する技術が知られている。
 例えば、半導体デバイスを形成するためのデバイス層となる窒化ガリウム(GaN)層等の化合物半導体層の直下に、放熱性の高いダイヤモンド層を配置する技術が知られている。特許文献1には、ダイヤモンド上の窒化ガリウム型ウェーハの製造方法が開示されている。この方法は、支持基板上に位置するGaN層上に60nm以下の薄い窒化珪素膜を形成した後に、当該窒化珪素膜の表面に乾式スクラッチによりダイヤモンド粒子を埋め込み固定する工程と、前記表面に固定されたダイヤモンド粒子を核として、化学気相成長法によりGaN層上に前記窒化ケイ素膜を介してダイヤモンド層を成長させる工程と、前記支持基板を除去する工程と、を含み、ダイヤモンド上に窒化ガリウム層が形成されたウェーハを製造するものである。
特表2015-509479号公報
 しかしながら、本発明者の検討によると、特許文献1に記載の方法では、前記埋め込みに起因してGaN層にクラックが入り、その後の化学気相成長法による高温長時間の熱処理の過程でGaN層内をクラックが進展し、転位が発生することが判明した。このようなGaN層に半導体デバイスを形成すると、リーク電流が増加して、デバイス特性が悪化するおそれがある。
 上記課題に鑑み、本発明は、高品質な化合物半導体層が積層された多結晶ダイヤモンド自立基板を製造することが可能な、多結晶ダイヤモンド自立基板の製造方法を提供することを目的とする。
 上記課題を解決すべく、本発明者は鋭意研究を進め、以下の知見を得た。まず、本発明者は、特許文献1のような、支持基板上に位置する化合物半導体層上にダイヤモンド層を成長させるのではなく、予め用意した化合物半導体基板にダイヤモンド層を成長させることを着想した。しかしながら、化合物半導体基板の表面に、特許文献1と同様にダイヤモンド粒子を埋め込み固定し、当該ダイヤモンド粒子を核として化学気相成長法によりダイヤモンド層を成長させると、化合物半導体基板が割れることが分かった。これは、やはり前記埋め込みに起因して化合物半導体基板の表面に導入されたクラックが起点となったものと推測される。
 そこで、本発明者がさらに検討したところ、化合物半導体基板上にダイヤモンド粒子を含有する溶液を塗布し、その後熱処理して溶媒を蒸発させる方法で、化合物半導体基板上にダイヤモンド粒子を付着させることで、化合物半導体基板が割れることなく、多結晶ダイヤモンド層を成長させることができることが分かった。その後、化合物半導体基板を減厚して得た化合物半導体層には、転位が発生することがなかった。
 上記知見に基づき完成した本発明の要旨構成は以下のとおりである。
 (1)化合物半導体基板上にダイヤモンド粒子を含有する溶液を塗布し、その後、前記化合物半導体基板に熱処理を施すことによって、前記化合物半導体基板上に前記ダイヤモンド粒子を付着させる工程と、
 前記ダイヤモンド粒子を核として、化学気相成長法により、前記化合物半導体基板上に厚さが100μm以上の多結晶ダイヤモンド層を成長させる工程と、
 その後、前記化合物半導体基板を減厚して、化合物半導体層とする工程と、
を有し、前記多結晶ダイヤモンド層が、前記化合物半導体層の支持基板として機能する多結晶ダイヤモンド自立基板を得ることを特徴とする多結晶ダイヤモンド自立基板の製造方法。
 (2)前記溶液中の前記ダイヤモンド粒子の平均粒径が50nm以下である、上記(1)に記載の多結晶ダイヤモンド自立基板の製造方法。
 (3)前記溶液中の前記ダイヤモンド粒子が負電荷に帯電している、上記(1)又は(2)に記載の多結晶ダイヤモンド自立基板の製造方法。
 (4)前記熱処理では、前記化合物半導体基板の温度を100℃未満に1分以上30分以下保持する、上記(1)~(3)のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。
 (5)前記多結晶ダイヤモンド層の表面を平坦化する工程をさらに有する、上記(1)~(4)のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。
 (6)前記化合物半導体基板は、GaN、AlN、InN、SiC、Al23、Ga23、MgO、ZnO、CdO、GaAs、GaP、GaSb、InP、InAs、InSb、又はSiGeからなる、上記(1)~(5)のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。
 (7)前記化合物半導体層の厚さを1μm以上500μm以下とする、上記(1)~(7)のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。
 本発明の多結晶ダイヤモンド自立基板の製造方法によれば、高品質な化合物半導体層が積層された多結晶ダイヤモンド自立基板を製造することが可能である。
(A)~(F)は、本発明の一実施形態による多結晶ダイヤモンド自立基板100の製造方法を説明する模式断面図である。
 (多結晶ダイヤモンド自立基板の製造方法)
 図1を参照して、本発明の一実施形態による多結晶ダイヤモンド自立基板100の製造方法は、以下の工程を有する。まず、図1(A),(B)に示すように、化合物半導体基板10上にダイヤモンド粒子を含有する溶液を塗布する。これにより、化合物半導体基板10上にダイヤモンド粒子含有液膜12が形成される。その後、図1(B),(C)に示すように、化合物半導体基板10に熱処理を施すことによって、ダイヤモンド粒子含有液膜12中の溶媒を蒸発させ、かつ化合物半導体基板10の表面とダイヤモンド粒子14との結合力を強化して、化合物半導体基板10上にダイヤモンド粒子14を付着させる。その後、図1(C),(D)に示すように、ダイヤモンド粒子14を核として、化学気相成長法(CVD法:Chemical Vapor Deposition)により、化合物半導体基板10上に厚さが100μm以上の多結晶ダイヤモンド層16を成長させる。その後、任意に、図1(D),(E)に示すように、多結晶ダイヤモンド層16の表面を平坦化してもよい。その後、図1(E),(F)に示すように、化合物半導体基板10を減厚して、化合物半導体層18とする。
 本実施形態では、以上の工程を経て、多結晶ダイヤモンド層16が化合物半導体層18の支持基板として機能する多結晶ダイヤモンド自立基板100を製造することができる。ここで、化合物半導体層18は、半導体デバイスを形成するためのデバイス層となる。以下、本実施形態における各工程を詳細に説明する。
 [化合物半導体基板の用意]
 図1(A)を参照して、まず、化合物半導体基板10を用意する。化合物半導体基板10を構成する化合物半導体は、特に限定されず、化合物半導体層18に形成する半導体デバイスの種類等に応じて適宜選定すればよく、例えば、GaN、AlN、InN、SiC、Al23、Ga23、MgO、ZnO、CdO、GaAs、GaP、GaSb、InP、InAs、InSb、又はSiGeからなるものとすることが好ましい。また、化合物半導体基板10の厚さは、200μm以上3mm以下とすることが好ましい。200μm未満の場合、化合物半導体基板が反ることにより多結晶ダイヤモンドの剥がれが発生したり、化合物半導体基板の割れを発生する。また、3mm超えの場合、後述の化合物半導体基板10の減厚の工程におけるプロセスタイムや材料コストの観点から好ましくない。
 [ダイヤモンド粒子含有溶液の塗布]
 次に、図1(A),(B)に示すように、化合物半導体基板10上にダイヤモンド粒子を含有する溶液を塗布して、化合物半導体基板10上にダイヤモンド粒子含有液膜12を形成する。塗布方法としては、スピンコート法、スプレー法、及び浸漬法を挙げることができ、スピンコート法が特に好ましい。スピンコート法によれば、化合物半導体基板10の両面のうちダイヤモンド粒子14を付着させたい片側の表面のみに、ダイヤモンド粒子含有溶液を均一に塗布することができる。
 ダイヤモンド粒子含有溶液に含まれるダイヤモンド粒子の平均粒径は1nm以上50nm以下とすることが好ましく、10nm以下とすることがより好ましい。1nm以上であれば、多結晶ダイヤモンド層16を成長させる初期段階において、ダイヤモンド粒子14がスパッタリング作用により化合物半導体基板10の表面から弾き飛ばされる現象を抑制することができ、50nm以下であれば、多結晶ダイヤモンド層を異常成長なく緻密に成膜でき、さらに多結晶ダイヤモンド表面への平坦化(研磨)プロセスを容易に実施することができるからである。このようなサイズのダイヤモンド粒子は、公知の爆轟法や爆縮法や粉砕法によりグラファイトから好適に作製することができる。なお、「ダイヤモンド粒子含有溶液に含まれるダイヤモンド粒子の平均粒径」は、JIS 8819-2に従って算出されるものであり、公知のレーザー回折式粒度分布測定装置によって測定された粒度分布が正規分布に従うと仮定して算出された平均粒径を意味する。
 ここで、ダイヤモンド粒子含有溶液を塗布する前の化合物半導体基板10は、その表面に付着した金属不純物を除去するために、一般的にフッ酸などを用いて酸洗浄される。酸洗浄された化合物半導体基板10の表面は活性な撥水面であるので、その表面にはパーティクルが付着しやすい。このため、酸洗浄した化合物半導体基板10を純水などで洗浄して、化合物半導体基板10の表面を自然酸化膜が形成された親水性面とすることが好ましい。あるいは、酸洗浄した化合物半導体基板10をクリーンルーム内に長時間放置して、化合物半導体基板10の表面に自然酸化膜を形成することが好ましい。これにより、化合物半導体基板10の表面にパーティクルが付着するのを抑制することができる。この時、自然酸化膜中には正電荷を有する固定電荷が発生する。そのため、正電荷に帯電した自然酸化膜上に、負電荷に帯電させたダイヤモンド粒子を含有するダイヤモンド粒子含有溶液を塗布すれば、化合物半導体基板10とダイヤモンド粒子14とがクーロン引力により強固に結合する。その結果、多結晶ダイヤモンド層16の化合物半導体基板10に対する密着性が向上する。このように負電荷に帯電させたダイヤモンド粒子は、ダイヤモンド粒子に酸化処理を施すことによって、カルボキシル基やケトン基でダイヤモンド粒子を終端することで得られる。例えば、酸化処理としては、ダイヤモンド粒子を酸化熱する方法や、オゾン溶液、硝酸溶液、過酸化水素水溶液、又は過塩素酸溶液にダイヤモンド粒子を浸漬する方法などが挙げられる。
 ダイヤモンド粒子含有溶液の溶媒としては、水の他、メタノール、エタノール、2-プロパノ-ル、及びトルエン等の有機溶媒が挙げられ、これらの溶媒を単独で用いてもよく、2種以上組み合わせて用いてもよい。
 ダイヤモンド粒子含有溶液におけるダイヤモンド粒子の含有量は、ダイヤモンド粒子含有溶液全体に対して0.03質量%以上10質量%以下とすることが好ましい。0.03質量%以上であれば、ダイヤモンド粒子14を化合物半導体基板10上に均一に付着させることができ、10質量%以下であれば、付着したダイヤモンド粒子14がダイヤモンド層16の成長過程で異常成長するのを抑制することができるからである。
 ダイヤモンド粒子14と化合物半導体基板10との密着性を向上させる観点から、ダイヤモンド粒子含有溶液をジェル状のものとすることが好ましく、ダイヤモンド粒子含有溶液に増粘剤を含有させてもよい。増粘剤としては、寒天、カラギーナン、キサンタンガム、ジェランガム、グアーガム、ポリビニルアルコール、ポリアクリル酸塩系増粘剤、水溶性セルロース類、ポリエチレンオキサイドなどが挙げられ、これらの一種又は二種以上を用いることができる。増粘剤を含有させる場合、ダイヤモンド粒子含有溶液のpHを6以上8以下の範囲とすることが好ましい。
 ダイヤモンド粒子含有溶液の調製は、上記の溶媒にダイヤモンド粒子を混合して撹拌することにより、溶媒中にダイヤモンド粒子を分散させるようにして行えばよい。撹拌速度は500rpm以上3000rpm以下とすることが好ましく、撹拌時間は10分以上1時間以下とすることが好ましい。
 [熱処理]
 次に、図1(B),(C)に示すように、化合物半導体基板10に熱処理を施す。これにより、ダイヤモンド粒子含有液膜12中の溶媒が蒸発し、かつ化合物半導体基板10の表面とダイヤモンド粒子14との結合力が強化されて、化合物半導体基板10上にダイヤモンド粒子14が付着する。熱処理中の化合物半導体基板10の温度は、100℃未満とすることが好ましく、30℃以上80℃以下とすることがより好ましい。100℃未満であれば、ダイヤモンド粒子含有溶液の沸騰に伴う泡の発生を抑制することができるので、化合物半導体基板10上にダイヤモンド粒子14が部分的に存在しない部位が発生することがなく、この部位を起点として多結晶ダイヤモンド層16が剥離するおそれもない。30℃以上であれば、化合物半導体基板10とダイヤモンド粒子14とが十分に結合するので、CVD法によって多結晶ダイヤモンド層16を成長させる過程で、スパッタリング作用によりダイヤモンド粒子14が弾き飛ばされるのを抑制することができ、多結晶ダイヤモンド層16を均一に成長させることができる。また、熱処理時間は1分以上30分以下とすることが好ましい。なお、熱処理装置としては、公知の熱処理装置を用いればよく、例えば、加熱したホットプレート上に化合物半導体基板10を載置することにより行うことができる。
 本実施形態では、上記のように、化合物半導体基板上にダイヤモンド粒子を含有する溶液を塗布し、その後熱処理する方法を採用することが肝要である。この方法であれば、化合物半導体基板10の表面にクラックが導入されることがなく、そのため、化合物半導体基板10が割れることなく、多結晶ダイヤモンド層16を成長させることができる。そして、化合物半導体基板10を減厚して得た化合物半導体層18に転位が発生することもない。
 [多結晶ダイヤモンド層の成長]
 次に、図1(C),(D)に示すように、ダイヤモンド粒子14を核として、CVD法により、化合物半導体基板10上に厚さが100μm以上の多結晶ダイヤモンド層16を成長させる。CVD法としては、プラズマCVD法および熱フィラメントCVD法等を好適に用いることができる。
 プラズマCVD法を用いる場合、例えば、水素をキャリアガスとして、メタン等のソースガスをチャンバー内に導入して、化合物半導体基板10の温度を700℃以上1300℃以下として、多結晶ダイヤモンド層16を成長させる。多結晶ダイヤモンド層16の厚さの均一性を向上させる観点から、マイクロ波プラズマCVD法を用いることが好ましい。マイクロ波プラズマCVD法とは、プラズマチャンバー内でメタン等のソースガスをマイクロ波によって分解してプラズマ化し、プラズマ化したソースガスを加熱した化合物半導体基板10上に導くことにより、多結晶ダイヤモンド層16を成長させる方法である。ここで、プラズマチャンバー内の圧力、マイクロ波の出力、及び化合物半導体基板10の温度は、以下のように設定することが好ましい。プラズマチャンバー内の圧力は、1.3×103Pa以上1.3×105Pa以下とすることが好ましく、1.1×104Pa以上4.0×104Pa以下とすることがより好ましい。マイクロ波の出力は、0.1kW以上100kW以下とすることが好ましく、1kW以上10kW以下とすることがより好ましい。化合物半導体基板10の温度は、700℃以上1300℃以下とすることが好ましく、900℃以上1200℃以下とすることがより好ましい。
 熱フィラメントCVD法を用いる場合、タングステン、タンタル、レニウム、モリブデン、イリジウム等からなるフィラメントを用いて、フィラメント温度を1900℃以上2300℃以下程度とし、メタン等の炭化水素系のソースガスから炭素ラジカルを生成する。この炭素ラジカルを加熱した化合物半導体基板10上に導くことにより、多結晶ダイヤモンド層16を成長させる。熱フィラメントCVD法によれば、ウェーハの大口径化に容易に対応することができる。ここで、チャンバー内の圧力、フィラメントと化合物半導体基板10との距離、及び化合物半導体基板10の温度は、以下のように設定することが好ましい。チャンバー内の圧力は1.3×103Pa以上1.3×105Pa以下とすることが好ましい。フィラメントと化合物半導体基板10との距離は5mm以上20mm以下とすることが好ましい。化合物半導体基板10の温度は700℃以上1300℃以下とすることが好ましい。
 多結晶ダイヤモンド層16は化合物半導体層18の支持基板として機能するものであるため、その厚さは100μm以上とし、500μm以上とすることがより好ましい。また、多結晶ダイヤモンド層16の厚さについて、上限は特に限定されないが、CVD法による成長時のプロセスタイムを過大としない観点から、3mm以下とすることが好ましい。
 [多結晶ダイヤモンド層の平坦化]
 次に、図1(D),(E)に示すように、多結晶ダイヤモンド層16の表面を平坦化してもよい。成膜後の多結晶ダイヤモンド層16の表面には過度の凹凸が形成されている。多結晶ダイヤモンド層16の表面を平坦化することにより、その後得られる多結晶ダイヤモンド自立基板100を半導体プロセス装置の試料台へ確実にセット(チャック)することができる。平坦化方法は特に限定されないが、例えば公知の化学機械研磨(CMP:Chemical Mechanical Polishing)法を好適に用いることができる。なお、平坦化後も、多結晶ダイヤモンド層16の厚さは100μm以上とし、500μm以上とすることがより好ましい。
 [化合物半導体基板の減厚]
 次に、図1(E),(F)に示すように、化合物半導体基板10を減厚して、化合物半導体層18とする。具体的には、化合物半導体基板10を、多結晶ダイヤモンド層16との界面とは反対側の表面から研削及び研磨することにより減厚する。これにより、所望厚さの化合物半導体層18が支持基板としての多結晶ダイヤモンド層16上に積層された多結晶ダイヤモンド自立基板100を得ることができる。化合物半導体層18の厚さは、そこに形成する半導体デバイスの種類や構造に応じて適宜決定することができ、1μm以上500μm以下とすることが好ましい。なお、この研削及び研磨には、公知又は任意の研削法及び研磨法を好適に用いることができ、具体的には平面研削法及び鏡面研磨法を用いることができる。
 (実施例1)
 [本発明例1]
 図1(A)~(F)に示す工程を経て、本発明例1-1に係る多結晶ダイヤモンド自立基板を作製した。
 まず、HVPE(Hydride Vapor Phase Epitaxy)法により作製した窒化ガリウム(GaN)単結晶から切り出し加工した、直径が2インチ、厚さが600μmのGaN基板を用意した。
 次に、爆轟法によって、平均粒径が4nmのダイヤモンド粒子を用意した。このダイヤモンド粒子を、過酸化水素水溶液に浸漬することによりカルボキシル基(COOH)で終端して、負電荷に帯電させた。次に、ダイヤモンド粒子を溶媒(H2O)に混合し、撹拌して、ダイヤモンド粒子の含有量が6質量%のダイヤモンド粒子含有溶液を調製した。なお、撹拌速度は1100rpm、撹拌時間は50分とし、撹拌中のダイヤモンド粒子含有溶液の温度は25℃とした。続いて、GaN基板を純水により洗浄して、表面に自然酸化膜を形成した後、スピンコート法によってGaN基板上にダイヤモンド粒子含有溶液を塗布し、ダイヤモンド粒子含有液膜を形成した。
 次に、80℃に設定したホットプレート上にGaN基板を5分間置くことにより、GaN基板とダイヤモンド粒子との結合を強化する熱処理を施し、GaN基板上にダイヤモンド粒子を付着させた。
 次に、水素をキャリアガス、メタンをソースガスとして、既述のマイクロ波プラズマCVD法を用いて、GaN基板上に付着したダイヤモンド粒子を核として、厚さ300μmの多結晶ダイヤモンド層を成長させた。なお、プラズマチャンバー内の圧力を1.5×104Pa、マイクロ波の出力を5kW、GaN基板の温度を1050℃とした。
 次に、CMP法により多結晶ダイヤモンド層の表面を平坦化した。平坦化後の多結晶ダイヤモンド層の厚さは290μmとした。
 次に、GaN基板を研削及び研磨して、厚さが10μmのGaN層とした。このようにして、厚さ290μmの多結晶ダイヤモンド層上に厚さが10μmのGaN層が積層された多結晶ダイヤモンド自立基板を得た。
 本発明例では、GaN基板が割れることなく、多結晶ダイヤモンド層を成長させることができた。GaN層の断面をTEMにて観察したところ、転位は観察されなかった。
 [比較例1-1]
 ダイヤモンド粒子の付着方法を変更した以外は、発明例1と同様の方法で多結晶ダイヤモンド自立基板の作製を試みた。
 発明例1と同様のGaN基板を用意した。次に、公知の傷付け法によって、GaN基板の表面にダイヤモンド粒子を埋め込んだ。すなわち、平均粒径1μmのダイヤモンド粒子を含有する溶液中で、GaN基板を超音波洗浄することによって、GaN基板の表面にダイヤモンド粒子を埋め込んだ。次に、発明例1と同様の条件で、マイクロ波プラズマCVD法を用いて、GaN基板上に埋め込んだダイヤモンド粒子を核として、厚さ300μmの多結晶ダイヤモンド層の成膜を試みた。
 比較例1-1では、多結晶ダイヤモンド成膜中にGaN基板が割れた。これは、埋め込みに起因してGaN基板の表面に導入されたクラックが起点となり、1050℃の高温での多結晶ダイヤモンド成膜中に、当該クラックがGaN基板を進展したためと考えられる。割れた箇所をTEMで観察した結果、割れの起点にクラックが存在していることがわかった。
 [比較例1-2]
 多結晶ダイヤモンド層の厚さを5μmに変更した以外は、発明例1と同様の方法で多結晶ダイヤモンド自立基板の作製を試みた。
 比較例1-2では、GaN基板の研削の過程で、多結晶ダイヤモンド層とともにGaN基板が割れた。すなわち、多結晶ダイヤモンド層は、厚さ5μmでは自立基板としては機能しないことが分かった。
 (実施例2)
 [本発明例2]
 化合物半導体基板の種類をGaN基板からSiC基板に変更した以外は、発明例1と同様の方法で多結晶ダイヤモンド自立基板の作製を行った。
 まず、昇華再結晶法により作製した炭化ケイ素(SiC)単結晶から切り出し加工した、直径が2インチ、厚さが600μmの4H-SiC基板を用意した。
 以降は発明例1と同様の手順及び条件にて、厚さ460μmの多結晶ダイヤモンド層上に厚さが10μmのSiC層が積層された多結晶ダイヤモンド自立基板を得た。
 本発明例では、SiC基板が割れることなく、多結晶ダイヤモンド層を成長させることができた。SiC層の断面をTEMにて観察したところ、転位は観察されなかった。
 [比較例2-1]
 ダイヤモンド粒子の付着方法を変更した以外は、発明例2と同様の方法で多結晶ダイヤモンド自立基板の作製を試みた。
 発明例2と同様のSiC基板を用意した。次に、公知の傷付け法によって、SiC基板の表面にダイヤモンド粒子を埋め込んだ。すなわち、平均粒径1μmのダイヤモンド粒子を含有する溶液中で、SiC基板を超音波洗浄することによって、SiC基板の表面にダイヤモンド粒子を埋め込んだ。次に、発明例2と同様の条件で、マイクロ波プラズマCVD法を用いて、SiC基板上に埋め込んだダイヤモンド粒子を核として、厚さ460μmの多結晶ダイヤモンド層の成膜を試みた。
 比較例2-1では、多結晶ダイヤモンド成膜中にSiC基板が割れた。これは、埋め込みに起因してSiC基板の表面に導入されたクラックが起点となり、1050℃の高温での多結晶ダイヤモンド成膜中に、当該クラックがSiC基板を進展したためと考えられる。割れた箇所をTEMで観察した結果、割れの起点にクラックが存在していることがわかった。
 [比較例2-2]
 多結晶ダイヤモンド層の厚さを5μmに変更した以外は、発明例2と同様の方法で多結晶ダイヤモンド自立基板の作製を試みた。
 比較例2-2では、SiC基板の研削の過程で、多結晶ダイヤモンド層とともにSiC基板が割れた。すなわち、多結晶ダイヤモンド層は、厚さ5μmでは自立基板としては機能しないことが分かった。
 本発明の多結晶ダイヤモンド自立基板の製造方法によれば、高品質な化合物半導体層が積層された多結晶ダイヤモンド自立基板を製造することが可能である。
 100 多結晶ダイヤモンド自立基板
  10 化合物半導体基板
  12 ダイヤモンド粒子含有液膜
  14 ダイヤモンド粒子
  16 多結晶ダイヤモンド層
  18 化合物半導体層

Claims (7)

  1.  化合物半導体基板上にダイヤモンド粒子を含有する溶液を塗布し、その後、前記化合物半導体基板に熱処理を施すことによって、前記化合物半導体基板上に前記ダイヤモンド粒子を付着させる工程と、
     前記ダイヤモンド粒子を核として、化学気相成長法により、前記化合物半導体基板上に厚さが100μm以上の多結晶ダイヤモンド層を成長させる工程と、
     その後、前記化合物半導体基板を減厚して、化合物半導体層とする工程と、
    を有し、前記多結晶ダイヤモンド層が、前記化合物半導体層の支持基板として機能する多結晶ダイヤモンド自立基板を得ることを特徴とする多結晶ダイヤモンド自立基板の製造方法。
  2.  前記溶液中の前記ダイヤモンド粒子の平均粒径が50nm以下である、請求項1に記載の多結晶ダイヤモンド自立基板の製造方法。
  3.  前記溶液中の前記ダイヤモンド粒子が負電荷に帯電している、請求項1又は2に記載の多結晶ダイヤモンド自立基板の製造方法。
  4.  前記熱処理では、前記化合物半導体基板の温度を100℃未満に1分以上30分以下保持する、請求項1~3のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。
  5.  前記多結晶ダイヤモンド層の表面を平坦化する工程をさらに有する、請求項1~4のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。
  6.  前記化合物半導体基板は、GaN、AlN、InN、SiC、Al23、Ga23、MgO、ZnO、CdO、GaAs、GaP、GaSb、InP、InAs、InSb、又はSiGeからなる、請求項1~5のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。
  7.  前記化合物半導体層の厚さを1μm以上500μm以下とする、請求項1~6のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。
PCT/JP2019/040040 2018-12-19 2019-10-10 多結晶ダイヤモンド自立基板の製造方法 WO2020129371A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019006310.3T DE112019006310T5 (de) 2018-12-19 2019-10-10 Verfahren zur herstellung eines freistehenden polykristallinen diamantsubstrats
CN201980084289.0A CN113544318B (zh) 2018-12-19 2019-10-10 多晶金刚石自立基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-237665 2018-12-19
JP2018237665A JP7172556B2 (ja) 2018-12-19 2018-12-19 多結晶ダイヤモンド自立基板の製造方法

Publications (1)

Publication Number Publication Date
WO2020129371A1 true WO2020129371A1 (ja) 2020-06-25

Family

ID=71100761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040040 WO2020129371A1 (ja) 2018-12-19 2019-10-10 多結晶ダイヤモンド自立基板の製造方法

Country Status (4)

Country Link
JP (1) JP7172556B2 (ja)
CN (1) CN113544318B (ja)
DE (1) DE112019006310T5 (ja)
WO (1) WO2020129371A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517331A (zh) * 2022-02-28 2022-05-20 郑州航空工业管理学院 一种mpcvd法生长多晶金刚石的制备方法
CN114672879A (zh) * 2020-12-24 2022-06-28 胜高股份有限公司 多晶金刚石自立基板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306617A (ja) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd ダイヤモンド薄膜およびその製造方法
JP2007519262A (ja) * 2004-01-22 2007-07-12 クリー インコーポレイテッド ダイアモンド基板上炭化珪素並びに関連するデバイス及び方法
JP2007537127A (ja) * 2004-05-13 2007-12-20 チェン−ミン スン, ダイヤモンド担持半導体デバイスおよび形成方法
WO2011161190A1 (en) * 2010-06-25 2011-12-29 Element Six Limited Substrates for semiconductor devices
JP2016501811A (ja) * 2013-04-23 2016-01-21 カルボデオン リミティド オサケユイチア ゼータ負のナノダイヤモンド分散液の製造方法およびゼータ負のナノダイヤモンド分散液

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558784A (ja) * 1991-09-02 1993-03-09 Toyota Central Res & Dev Lab Inc ダイヤモンドの析出方法
US5485804A (en) * 1994-05-17 1996-01-23 University Of Florida Enhanced chemical vapor deposition of diamond and related materials
JP2691884B2 (ja) * 1995-07-10 1997-12-17 株式会社石塚研究所 親水性ダイヤモンド微細粒子及びその製造方法
EP0844319A4 (en) * 1996-06-12 2001-09-05 Matsushita Electric Ind Co Ltd DIAMOND FILM AND METHOD FOR THE PRODUCTION THEREOF
JP3650917B2 (ja) * 1997-08-29 2005-05-25 株式会社神戸製鋼所 表面光電圧による半導体表面評価方法及び装置
JP4654389B2 (ja) * 2006-01-16 2011-03-16 株式会社ムサシノエンジニアリング ダイヤモンドヒートスプレッダの常温接合方法,及び半導体デバイスの放熱部
JP5978548B2 (ja) 2012-02-29 2016-08-24 エレメント シックス テクノロジーズ ユーエス コーポレイション ダイヤモンド上の窒化ガリウム型ウェーハの製造方法
KR101331566B1 (ko) * 2012-03-28 2013-11-21 한국과학기술연구원 나노결정다이아몬드 박막 및 그 제조방법
CN108373153A (zh) * 2018-04-17 2018-08-07 中国科学院宁波材料技术与工程研究所 一种纳米金刚石薄膜及其自组装制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519262A (ja) * 2004-01-22 2007-07-12 クリー インコーポレイテッド ダイアモンド基板上炭化珪素並びに関連するデバイス及び方法
JP2005306617A (ja) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd ダイヤモンド薄膜およびその製造方法
JP2007537127A (ja) * 2004-05-13 2007-12-20 チェン−ミン スン, ダイヤモンド担持半導体デバイスおよび形成方法
WO2011161190A1 (en) * 2010-06-25 2011-12-29 Element Six Limited Substrates for semiconductor devices
JP2016501811A (ja) * 2013-04-23 2016-01-21 カルボデオン リミティド オサケユイチア ゼータ負のナノダイヤモンド分散液の製造方法およびゼータ負のナノダイヤモンド分散液

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672879A (zh) * 2020-12-24 2022-06-28 胜高股份有限公司 多晶金刚石自立基板及其制备方法
CN114517331A (zh) * 2022-02-28 2022-05-20 郑州航空工业管理学院 一种mpcvd法生长多晶金刚石的制备方法

Also Published As

Publication number Publication date
JP2020100517A (ja) 2020-07-02
DE112019006310T5 (de) 2021-09-09
CN113544318A (zh) 2021-10-22
JP7172556B2 (ja) 2022-11-16
CN113544318B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
JP7115297B2 (ja) 多結晶ダイヤモンド自立基板及びその製造方法
JP6796162B2 (ja) 膜応力を制御可能なシリコン基板の上に電荷トラップ用多結晶シリコン膜を成長させる方法
TWI721223B (zh) 具有較佳電荷捕獲效率之高電阻率絕緣體上矽基板
TWI694559B (zh) 用於絕緣體上半導體結構之製造之熱穩定電荷捕捉層
JP6118757B2 (ja) 貼り合わせsoiウェーハの製造方法
KR102115631B1 (ko) 나노카본막의 제작 방법 및 나노카본막
US20230260841A1 (en) Method for producing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate of polycrystalline sic
WO2020129371A1 (ja) 多結晶ダイヤモンド自立基板の製造方法
JP2023519165A (ja) SiCでできたキャリア基板の上に単結晶SiCでできた薄層を備える複合構造を製造するための方法
KR20220159960A (ko) SiC로 이루어진 캐리어 기판 상에 단결정 SiC로 이루어진 박층을 포함하는 복합 구조체를 제조하기 위한 방법
US20220270875A1 (en) Method for manufacturing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate of polycrystalline sic
JP7024668B2 (ja) Soiウェーハ及びその製造方法
JP7480699B2 (ja) 多結晶ダイヤモンド自立基板を用いた積層基板及びその製造方法
JP6772995B2 (ja) Soiウェーハの製造方法およびsoiウェーハ
JP6825509B2 (ja) ダイヤモンド積層シリコンウェーハの製造方法およびダイヤモンド積層シリコンウェーハ
CN114381806A (zh) 二维氮化铝晶体的制备方法
JP2023502571A (ja) SiCでできたキャリア基材上に単結晶SiCの薄層を備える複合構造を作成するプロセス
CN113557588B (zh) 多晶金刚石自立基板及其制造方法
JP2023085098A (ja) 積層ウェーハ及びその製造方法
JP2000150838A (ja) 半導体基板及び半導体基板の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898771

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19898771

Country of ref document: EP

Kind code of ref document: A1