WO2020085198A1 - 表面処理済金属酸化物粒子材料、その製造方法、及び電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラー - Google Patents

表面処理済金属酸化物粒子材料、その製造方法、及び電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラー Download PDF

Info

Publication number
WO2020085198A1
WO2020085198A1 PCT/JP2019/040921 JP2019040921W WO2020085198A1 WO 2020085198 A1 WO2020085198 A1 WO 2020085198A1 JP 2019040921 W JP2019040921 W JP 2019040921W WO 2020085198 A1 WO2020085198 A1 WO 2020085198A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide particle
particle material
less
test
Prior art date
Application number
PCT/JP2019/040921
Other languages
English (en)
French (fr)
Inventor
真宜 野口
優 倉木
展歩 中村
義徳 大川内
Original Assignee
株式会社アドマテックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドマテックス filed Critical 株式会社アドマテックス
Priority to CN201980046812.0A priority Critical patent/CN112399962B/zh
Priority to EP19876447.4A priority patent/EP3854755B1/en
Priority to KR1020207034319A priority patent/KR102268485B1/ko
Publication of WO2020085198A1 publication Critical patent/WO2020085198A1/ja
Priority to US17/237,294 priority patent/US11401423B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/026Making or stabilising dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Definitions

  • the present invention relates to a surface-treated metal oxide particle material, a method for producing the same, a resin composition for electronic materials, and a filler for silicone resin materials.
  • resin compositions containing inorganic particles as fillers in resin materials are commonly used to improve physical and thermal properties.
  • a heat conductive material (TIM) used for fixing a heat sink or the like to a semiconductor element, which has been adopted by paying attention to thermal characteristics is known (Patent Document 1, etc.).
  • the present invention has been completed in view of the above circumstances, the surface-treated metal oxide particle material which can be expected to be applied to a filler having a low viscosity when mixed in a resin material and a small dielectric constant and dielectric loss tangent, It is an object to be solved to provide a manufacturing method thereof, a resin composition for electronic materials in which the surface-treated metal oxide particle material is adopted as a filler, and a filler for a silicone resin material.
  • a surface-treated metal oxide particle material that solves the above problems is a metal oxide particle material and a surface-treated metal oxide particle material represented by the general formula (1): (RO) 3 SiO— (SiR 2 —O—) n —SiR 3 (in the general formula (1), R can be independently selected from an alkyl group having 1 to 4 carbon atoms, and n is 10 or more and 200 or less). And a polyorganosiloxane compound.
  • the metal oxide particle material has a volume average particle size of 0.1 ⁇ m or more and 200 ⁇ m or less
  • the amount of the polyorganosiloxane compound is preferably 0.05% or more and 3.0% or less based on the mass of the metal oxide particle material.
  • the surface can be further treated with a second surface treatment agent composed of a silane compound having a vinyl group or an alkyl group having 1 to 3 carbon atoms, or organosilazane.
  • the method for producing a surface-treated metal oxide particle material according to the present invention which solves the above-mentioned problems, relates to the metal oxide particle material having a volume average particle diameter of 0.1 ⁇ m or more and 200 ⁇ m or less, wherein It is 0.05% or more and 3.0% or less based on the mass of the particle material, and is represented by the general formula (1): (RO) 3 SiO— (SiR 2 —O—) n —SiR 3 (general formula (1) Wherein R can be independently selected from an alkyl group having 1 to 4 carbon atoms, and n is 10 or more and 200 or less.)
  • a second surface treatment step of surface-treating with a silane compound having a vinyl group or an alkyl group having 1 to 3 carbon atoms or organosilazane can be included.
  • a resin composition for electronic materials according to the present invention which solves the above-mentioned problems, comprises the above-described surface-treated metal oxide particle material of the present invention, and a silicone resin material in which the surface-treated metal oxide particle material is dispersed.
  • the surface-treated metal oxide particle material of the present invention can suppress the viscosity of the resin composition obtained by being contained in the resin material, and has the dielectric constant or the dielectric constant of the resin composition by having the above-mentioned constitution. It becomes possible to suppress the tangent.
  • the surface-treated metal oxide particle material of the present invention a method for producing the same, and a resin composition for electronic materials will be described in detail based on the following embodiments.
  • the surface-treated metal oxide particle material of the present embodiment has a metal oxide particle material and a polyorganosiloxane compound.
  • the polyorganosiloxane compound is a compound that acts on the surface of the metal oxide particle material to perform surface treatment.
  • the metal oxide particle material is a particle material made of a metal oxide.
  • the metal oxide is not particularly limited, and examples thereof include alumina, silica, zirconia, magnesia, titania, zinc oxide, iron oxide, and also a composite oxide containing a plurality of metals and a mixture of a plurality of types of metal oxides.
  • Alumina is particularly preferable from the viewpoint of high thermal conductivity and high physical / chemical stability.
  • the metal oxide particle material preferably has a volume average particle size of 10 ⁇ m or more. In particular, it is preferably 45 ⁇ m or more, 70 ⁇ m or more, and 100 ⁇ m or more. Furthermore, it is preferable not to include particles having a particle size equal to or less than half the volume average particle size. For thick film TIMs, a larger grain size is preferable from the viewpoint of improving the thermal conductivity because it is possible to reduce the contact thermal resistance due to the dissimilar material interface.
  • the volume average particle diameter can be measured by a laser diffraction / scattering method.
  • the volume average particle diameter of the metal oxide particle material is preferably 30 ⁇ m or less. In particular, it is preferably 10 ⁇ m or less, 3 ⁇ m or less, and 0.2 ⁇ m or less. Furthermore, it is preferable not to include particles (coarse particles) having a particle diameter equal to or more than twice the volume average particle diameter. As electronic materials and electronic parts, their size and internal wiring width are becoming smaller, and it is necessary to make them smaller in order to adopt them. In the surface-treated metal oxide particle material of the present embodiment, the particle size distribution can be determined by arbitrarily combining the upper and lower limits of these particle sizes.
  • the polyorganosiloxane compound is the compound disclosed in the above general formula (1).
  • R preferably has 3 or less carbon atoms, more preferably 1 or 2 carbon atoms, and most preferably 1 carbon atom.
  • n it is preferably more than 10, more preferably 30 or more, and further preferably 60 or more.
  • the value of n may be a mixture of different compounds.
  • the upper limit of the value of n may be 200 or 100.
  • the amount of the polyorganosiloxane compound is preferably 0.05% or more and 3.0% or less based on the mass of the metal oxide particle material.
  • As the lower limit value 0.05% and 0.10% can be exemplified.
  • the upper limit value include 2.0%, 2.5%, and 3.0%. It is possible to sufficiently treat the surface of the metal oxide particle material with an amount not more than these amounts.
  • the polyorganosiloxane compound reacts with the reactive functional group (for example, OH group) present on the surface of the metal oxide particle material, it can be treated with an amount corresponding to the amount of the reactive functional group. Can be reacted with the reactive functional group. Excessive amounts of polyorganosiloxane compound physically adhere to the surface of the metal oxide particulate material. Therefore, the amount of the polyorganosiloxane compound is simply determined based on the mass of the metal oxide particle material, and is also determined according to the amount of the reactive functional group existing on the surface of the metal oxide particle material. can do.
  • the reactive functional group for example, OH group
  • an amount capable of reacting with all the reactive functional groups an amount capable of reacting with 90% or 80% of the reactive functional groups can be selected.
  • a surface treatment for another purpose can be treated with an organosilazane such as hexamethyldisilazane in order to improve hydrophobicity, or a surface treatment can be performed with a second surface treatment agent comprising a silane compound having a vinyl group or an alkyl group (organosiloxane). It can be done either before or after surface exposure with the compound). Further, the surface treatment can be performed with an amount of the polyorganosiloxane compound exceeding the amount corresponding to the reactive functional group.
  • the method for producing a surface-treated metal oxide particle material of the present embodiment has a mixing step and a surface treatment step.
  • the mixing step is a step of mixing the metal oxide particle material and the polyorganosiloxane compound.
  • the mixing ratio the above-mentioned ratio can be adopted, and the description thereof will be omitted.
  • the metal oxide particle material is the same as the metal oxide particle material described in the surface-treated metal oxide particle material described above except that the volume average particle diameter is limited.
  • the metal oxide particle material can be subjected to a drying process before being subjected to the mixing process.
  • the drying step is a step of removing existing polar solvent such as water and is not particularly limited.
  • a heating step normal temperature (25 ° C.) or higher, a temperature of 50 ° C., 75 ° C., 100 ° C., 125 ° C., 150 ° C., 200 ° C., 300 ° C., etc.
  • a depressurizing step a non-polar solvent
  • the step of drying after immersion, and the combination thereof can be exemplified.
  • the polyorganosiloxane compound is also preferably subjected to a step of reducing polar solvent such as water.
  • the polyorganosiloxane compound is as described above.
  • the mixing step is a step of bringing a polyorganosiloxane compound into contact with the surface of the metal oxide particle material. Since the surface treatment of the metal oxide particle material proceeds during the mixing, it can be presumed that the mixing step and the surface treatment step are performed in an overlapping manner.
  • the polyorganosiloxane compound is preferably subjected to a process in which it contacts the surface of the metal oxide particle material as uniformly as possible.
  • the metal oxide particle material and the polyorganosiloxane compound can be mixed more uniformly by mixing it in a state of being dispersed in an appropriate solvent.
  • a suitable solvent a non-polar solvent such as hexane, heptane, THF (tetrahydrofuran), toluene, xylene can be adopted.
  • Polyorganosiloxane compounds can be mixed little by little. In that case, the reaction can be allowed to proceed while mixing. Further, the polyorganosiloxane compound may be mixed at once in the entire amount added, or may be mixed little by little, or may be divided into two or more and mixed sequentially.
  • the surface treatment step is a step in which the mixture obtained in the mixing step is held at a temperature of 5 ° C. or higher and 100 ° C. or lower for 1 hour or more and 168 hours or less to react.
  • the reaction here means that the functional group of the polyorganosiloxane compound of the general formula (1) reacts with the functional group (reactive functional group) on the surface of the metal oxide particle material. Since the reaction in the surface treatment step may proceed even in the above-mentioned mixing step, the surface treatment step and the mixing step may proceed at the same time.
  • the temperature at which the surface treatment process is performed is not particularly limited, and the lower limit value may be 20 ° C, 30 ° C, 40 ° C, 50 ° C, 60 ° C, 70 ° C, 80 ° C, 90 ° C, 100 ° C, or the like. By increasing the temperature, the surface treatment can be rapidly advanced.
  • the upper limit of the temperature is not particularly limited, and 20 ° C., 30 ° C., 40 ° C., 50 ° C., 60 ° C., 70 ° C., 80 ° C., 90 ° C. and 100 ° C. similar to the lower limit can be adopted.
  • the combination of the upper limit value and the lower limit value of temperature has different preferable ranges depending on factors such as an allowable surface treatment time, a required surface treatment time, and an allowable heating cost, and can be set in any combination.
  • the surface treatment process does not have to be completed at once, and the reaction may be completed in two or more stages. For example, after adopting the condition that a part of the mixed polyorganosiloxane compound reacts, another step may be performed, and then the remaining polyorganosiloxane compound may be reacted. Further, when the polyorganosiloxane compound is not mixed all at once, the surface treatment step can be performed every time the polyorganosiloxane compound is mixed little by little. It is also possible to perform the surface treatment step at the same time as the second surface treatment step described later.
  • the second surface treatment step is a step of surface-treating the metal oxide particle material with the second surface treatment agent.
  • the surface treatment with the second surface treatment agent can be performed independently after the above-mentioned mixing step and surface treatment step, and at any time point between before the mixing step and when the surface treatment step is completed. You may go in.
  • the second surface treatment agent is a compound that can also react with a reactive functional group present on the surface of the metal oxide particle material.
  • the metal oxide can be treated. Bonds can be firmly formed on the surface of the particulate material.
  • the second surface treatment step may be performed after the polyorganosiloxane compound is reacted with all the reactive functional groups on the surface of the metal oxide particle material, or the polyorganosiloxane compound may be reacted on the surface of the metal oxide particle material. It may be carried out after the reaction with a part of the reactive functional groups or before the surface treatment with the polyorganosiloxane compound. Further, the second surface treatment step may be performed after the surface treatment step is interrupted halfway, and then the surface treatment step may be restarted.
  • the second surface treatment agent is a silane compound having a vinyl group or an alkyl group having 1 to 3 carbon atoms, or organosilazane. Hexamethyldisilazane can be illustrated as an organosilazane.
  • the resin material for electronic materials of the present embodiment includes the surface-treated metal oxide particle material of the present embodiment and the resin material described above.
  • the resin composition for electronic materials of the present embodiment can be used as a substrate on which electronic parts are arranged, a semiconductor sealing material, a heat transfer material for connecting a semiconductor element and a heat sink, and the like.
  • the mixing ratio of the surface-treated metal oxide particle material and the resin material is not particularly limited, but it is preferable to increase the surface-treated metal oxide particle material.
  • the amount of the surface-treated metal oxide particle material mixed is preferably determined by the viscosity of the obtained resin composition for electronic materials. Since it is possible to sufficiently fill fine gaps and the like with a lower viscosity, it is preferable to determine the mixing amount so that the viscosity becomes the required viscosity or less.
  • the resin material is not particularly limited, but it is preferable to contain a silicone resin.
  • a silicone resin those having various degrees of polymerization can be adopted, and liquid, solid, and those which are solidified by a reaction can be adopted.
  • Test Example 1-1 Alumina particles as the metal oxide particle material (Admatechs Ltd.: AO-509: The volume average particle diameter of 7 ⁇ 13 .mu.m: specific surface area 1.0cm 2 /g ⁇ 1.8cm 2 / g) surface-treated surface treated metal A resin composition was prepared by dispersing 85 parts by mass of the oxide particle material in 15 parts by mass of a silicone resin (KE-106: two-component RTV rubber manufactured by Shin-Etsu Chemical Co., Ltd.) as a resin material to prepare a test sample of this test example. And
  • the surface treatment of the metal oxide particle material was performed with 0.5% of the polyorganosiloxane compound of the general formula (1) (R is all methyl groups, n is 30) based on the mass of the metal oxide particle material. .
  • the surface treatment was performed by mixing the metal oxide particle material and the polyorganosiloxane compound, heating the mixture at 60 ° C. for 8 hours, and then allowing it to stand for 12 hours.
  • the mixing amount of the polyorganosiloxane compound is such that all the OH groups as reactive functional groups existing on the surface of the metal oxide particle material can be reacted.
  • Test Example 1-2 A resin composition was prepared in the same manner as in Test Example 1-1, except that the metal oxide particle material was used as it was without surface treatment, and used as a test sample in this test example.
  • the thickness of the resin composition when measuring the viscosity characteristics is 0.1 mm when the value 10 times the volume average particle diameter is 0.1 mm or less, and the value 10 times the volume average particle diameter is 0. When it is 1 mm or more, the thickness is 10 times the volume average particle diameter.
  • the results are shown in Fig. 1.
  • Test Example 1-3 A resin composition was prepared by mixing 90.5 parts by mass of the surface-treated metal oxide particle material in Test Example 1-1 and 9.5 parts by mass of a resin material, and used as a test sample of this test example. This mixing ratio is a value such that the viscosity is about the same as that of the test sample of Test Example 1-2 (viscosity at a shear rate of 0.05 s ⁇ 1 ). The results of viscosity measurement of the test samples of Test Examples 1-3 are also shown in FIG. The test sample of Test Example 1-3 had a viscosity similar to that of the test sample of Test Example 1-2 at a shear rate of 0.05 s -1 , but the viscosity was generally low at a lower shear rate. .
  • the thermal conductivity of the test samples of Test Examples 1-2 and 1-3 was measured.
  • the thermal conductivity was measured by cutting a cured product obtained by curing each test sample into a test piece having a diameter of 20 mm and a height of 30 mm, and then measuring by a hot disk method using "TPS 2500S” manufactured by Kyoto Electronics Manufacturing Co., Ltd.
  • the thermal conductivity was 1.518 W / m ⁇ K (density 2.69 g / cm 3 : average value) in Test Example 1-2 and 2.578 W / m ⁇ K (density 2 in Test Example 1-3).
  • test sample of Test Example 1-3 using the surface-treated metal oxide particle material is better than the test sample of Test Example 1-2 using the metal oxide particle material as it is. It has been revealed that the film has a high thermal conductivity of 70% or more. It is presumed that this is because the effect of lowering the viscosity was high and a large amount of the surface-treated metal oxide particle material could be contained.
  • Test examples 2-1 to 2-3 AO-502 (manufactured by Admatex: alumina: volume average particle size 0.2 to 0.3 ⁇ m: specific surface area 6.5 to 9.0 cm 2 / g) was used as the metal oxide particle material instead of AO-509. Test Example 1 except that the mixing amount of the polyorganosiloxane compound was 1.0% (Test Example 2-1), 1.5% (Test Example 2-2), and 2.5% (Test Example 2-3). A surface-treated metal oxide particle material was prepared in the same manner as in -1.
  • Test Example 2-4 The resin composition obtained by mixing 63.5 parts by mass of the metal oxide particle material and 36.5 parts by mass of the resin material used in Test Example 2-1 was used as a test sample of this test example.
  • Test Example 2-5 A resin composition was prepared by mixing 76.9 parts by mass of the surface-treated metal oxide particle material in Test Example 2-2 and 23.1 parts by mass of the resin material, and used as a test sample of this test example. This mixing ratio is a value such that the viscosity is similar to that of the test sample of Test Example 2-4 (viscosity at a shear rate of 0.05 s ⁇ 1 ).
  • Test Example 2-4 test pieces were prepared in the same manner as in Test 1 to measure thermal conductivity.
  • the thermal conductivity of Test Example 2-4 was 0.521 W / m ⁇ K (density 1.92 g / cm 3 : average value)
  • that of Test Example 2-5 was 0.756 W / m ⁇ K (density 2). .23 g / cm 3 : average value)
  • the test sample of Test Example 2-5 using the surface-treated metal oxide particle material is more than the test sample of Test Example 2-4 using the metal oxide particle material as it is.
  • the film also has a high thermal conductivity of 45% or more. It is presumed that this is because the effect of lowering the viscosity was high and a large amount of the surface-treated metal oxide particle material could be contained.
  • Test Example 3-1 A surface-treated metal oxide particle material was prepared in the same manner as in Test Example 1-1, and 85 parts by mass of the surface-treated metal oxide particle material and 15 parts by mass of the resin material were mixed to form a mixture. It was used as the test sample of the test example.
  • Test Example 3-2 Instead of the polyorganosiloxane compound, Me 3 SiO— (SiMe 2 —O) p — (SiMeX—O) q — (SiMe Y —O) r —SiMe 3 (where X is —R 1 — (SiMe 2 —O) a —SiMe 3 ; Y is —R 2 —Si (OEt) 3 : R 1 and R 2 are alkylene groups: the molecular weight is about 5000).
  • a resin composition was prepared and used as a test sample of this test example.
  • Test Example 3-3 Test Example 3 except that (MeO) 3 SiO— (SiMe (OMe) —O—SiMe (OMe)) n —O—Si (OMe) 3 (having a molecular weight of about 2430) was used instead of the polyorganosiloxane compound.
  • a resin composition was prepared in the same manner as in -1, and used as a test sample of this test example.
  • Test Example 3-4 A resin composition was prepared in the same manner as in Test Example 3-1 except that the metal oxide particle material was used as it was instead of the surface-treated metal oxide particle material, and used as a test sample of this test example.
  • the thermal stability of the test samples of Test Examples 3-1 and 3-2 was evaluated.
  • the thermal stability was evaluated by using RIGAKU's THRMO PLUS series TG-DTA TG8120 to determine the weight reduction rate of the surface treatment agent when the temperature was raised from an environment of 25 ° C to 250 ° C. .
  • the temperature rising rate was 5 ° C./min, and the temperature was kept at 100 ° C., 150 ° C., 200 ° C., and 250 ° C. for 1 hour each.
  • the weight of the surface treatment agent used in Test Example 3-1 at the start of measurement was 14.660 mg, and the weight after the measurement was 13.752 mg. Since the weight decreased is 0.90756 mg, the weight reduction rate is 6.2%.
  • the weight of the surface treatment agent used in Test Example 3-2 at the start of measurement was 18.490 mg, and the weight after the measurement was 12.726 mg. Since the reduced weight was 5.764 mg, the weight reduction rate was 31%.
  • the surface treatment agent of Test Example 3-1 showed a weight reduction rate of 10% or less, and it was found that the surface treatment agent had higher thermal stability than the surface treatment agent of Test Example 3-2. It can be inferred that this is because the alkylene group is present in the main chain in the chemical structure of the surface treatment agent used in Test Example 3-2, and the alkylene group is decomposed by heat.
  • Test 4 A particle material composed of alumina was adopted as the metal oxide particle material. Volume average particle diameters of 3 ⁇ m, 10 ⁇ m, 70 ⁇ m, and 100 ⁇ m were adopted. These metal oxide particle materials were subjected to surface treatment with various mixing amounts of polyorganosiloxane compound (from Test Example 1-1), and the resin composition mixed with the resin material at respective ratios was tested 1 The viscosity was measured by the method described in 1. Further, the mixing amount of the polyorganosiloxane compound and the viscosity at a shear rate of 0.05 s ⁇ 1 were plotted for each particle size. The results are shown in FIGS. 4 to 11, respectively.
  • the mixing amount of the polyorganosiloxane compound is 0.1% or more. All of them showed similar viscosities, and it was found that the surface of the metal oxide particle material can be sufficiently modified by the mixed amount of about 0.1%. It should be noted that when the particle size is 100 ⁇ m, the viscosity from 0.1% to 0.5% is lower than that at 0% and 1.0%, suggesting that this addition amount has a viscosity reducing effect. (Fig. 10).
  • Test Example 5-1 A resin composition was prepared in the same manner as in Test Example 1-1, except that a polyorganosiloxane compound having n of 10 in the general formula (1) was adopted as a test sample of this test example.
  • Test Example 5-2 A resin composition was prepared in the same manner as in Test Example 1-1 and used as a test sample in this Test Example (n in general formula (1) was 30).
  • Test Example 5-3 A resin composition was prepared in the same manner as in Test Example 1-1, except that a polyorganosiloxane compound having n of 60 in the general formula (1) was adopted as a test sample of this test example.
  • Test Example 5-4 The test sample of Test Example 1-2 was used as the test sample of this test example.
  • Test Example 5-5 A resin composition was prepared in the same manner as in Test Example 1-1 except that (RO) 3 SiO— (SiR 2 —O—) 10 —Si (OR) 3 was used as the surface treatment agent. It was used as a test sample.
  • Test 6 Examination of surface treatment agent and second surface treatment agent
  • the relative dielectric constant and the dielectric loss tangent of the reaction products were measured by the method of Test Example 1-1 in the order of calculating the amount of alumina to be processed in two layers from the specific surface area of the particles. The results are shown in Table 1.
  • the relative permittivity and the dielectric loss tangent were measured as a relative permittivity and a dielectric loss tangent at 1 GHz using a network analyzer (E5071C manufactured by Keysight, Inc.) and a cavity resonator perturbation method. This measurement was performed according to ASTM D2520 (JIS C2565).
  • the dielectric constant is around 12 F / m for all the test examples, which is sufficiently higher than the dielectric constant of silica (3.7 to 3.9).
  • Test Examples 6-1 to 6-3 and 6-7 had low dielectric loss tangents. Therefore, it was found that it is preferable to use the polyorganosiloxane compound of the general formula (1), vinylsilane, and both in combination as the surface treatment agent. It was confirmed that the polyorganosiloxane compound represented by the general formula (1) was superior in thermal stability to vinylsilane. From the above, it can be seen that the material has a low dielectric loss tangent while maintaining a high dielectric constant.
  • Test 7 Examination of particle size of metal oxide particle material
  • Alumina particles having the volume average particle diameters shown in Table 2 were used as the metal oxide particle material, and the dielectric constant and the dielectric loss tangent were measured in the same manner as in Test 6. The results are shown in Table 2.
  • Test Examples 7-1 and 7-4 have a purity of 99.8%
  • Test Examples 7-2 and 7-5 have a purity of 99.9%
  • Test Examples 7-3 and 7-6 have a purity of 99.99%. Is. Regarding Test Examples 7-7 to 7-11, the purity is 99.0%.
  • Test 8 ⁇ Test Examples 8-1 to 8-3
  • the resin compositions of Test Examples 1-1 and 1-2 were used as test samples of Test Examples 8-1 and 8-2, respectively.
  • a resin composition obtained by mixing (integral blending) the metal oxide particle material, the polyorganosiloxane compound, and the resin material at once was used as a test sample of Test Example 8-3.
  • Test Example 6-9 (without surface treatment) is Test Example 9-1
  • Test example 6-1 (treated with General Formula (1)) is Test Example 9-2
  • Test Example 6-3 (treated with vinylsilane).
  • Test Example 9-3 Test Example 6-7 (treated with a hydrosilyl group-containing silicone) as Test Example 9-4
  • the resin composition of Test Example 6-5 as Test Example 9-5.
  • the viscosity was measured by the method. The results are shown in Fig. 15. 16 shows the viscosity values at a shear rate of 0.05 s ⁇ 1 for these test samples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

樹脂材料中に混合した場合の粘度が低く且つ誘電率や誘電正接を小さくできるフィラーを提供すること。 金属酸化物粒子材料と、前記金属酸化物粒子材料を表面処理する、一般式(1):(RO)Si-(SiR-O-)-SiR(一般式(1)中、Rは炭素数1~4のアルキル基からそれぞれ独立して選択することができる。nは10以上200以下である)で表されるポリオルガノシロキサン化合物とを有するフィラーである。このフィラーを樹脂中に含有させた樹脂組成物が電子材料用に好適である。

Description

表面処理済金属酸化物粒子材料、その製造方法、及び電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラー
 本発明は、表面処理済金属酸化物粒子材料、その製造方法、及び電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラーに関する。
 電子基板や半導体封止材には、物理的特性、熱的特性を向上するために無機物粒子をフィラーとして樹脂材料中に含有させた樹脂組成物が汎用されている。特に熱的特性に着目して採用され、半導体素子にヒートシンクなどを固定する際に用いる熱伝導材料(TIM)が知られている(特許文献1など)。
 樹脂組成物の物理的特性及び熱的特性を向上するためにはフィラーの含有量を多くすることが求められるが、樹脂材料中へのフィラーの混合量には限度がある。樹脂材料中に大量のフィラーを含有させるためには、樹脂材料中にフィラーを含有させたときの粘度を低く保つことが必要である。
 従来より、樹脂材料中にフィラーを含有させたときの粘度を低下させるためにフィラーに種々の表面処理が行われてきた。
特開2017-210518号公報
 ところで樹脂組成物を適用する電子材料、電子部品として、高周波回路に採用されるものが多くなっている。高周波回路に樹脂組成物を用いる場合、誘電率及び誘電正接を小さくすることが求められる。
 本発明は上記実情に鑑み完成したものであり、樹脂材料中に混合した場合の粘度が低く且つ誘電率や誘電正接を小さくできるフィラーなどへの応用が期待できる表面処理済金属酸化物粒子材料、その製造方法、及びその表面処理済金属酸化物粒子材料をフィラーとして採用した電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラーを提供することを解決すべき課題とする。
 上記課題を解決する目的で本発明者らが鋭意検討を行った結果、一般式(1):(RO)SiO-(SiR-O-)-SiR(一般式(1)中、Rは炭素数1~4のアルキル基からそれぞれ独立して選択することができる。nは10以上200以下である)で表されるポリオルガノシロキサン化合物にて表面処理を行った金属酸化物粒子材料が樹脂材料中で粘度が低く、且つ誘電率や誘電正接が小さくできるとの知見を得、その知見に基づき以下の発明を完成した。
(1)上記課題を解決する表面処理済金属酸化物粒子材料は、金属酸化物粒子材料と、前記金属酸化物粒子材料を表面処理する、一般式(1):(RO)SiO-(SiR-O-)-SiR(一般式(1)中、Rは炭素数1~4のアルキル基からそれぞれ独立して選択することができる。nは10以上200以下である)で表されるポリオルガノシロキサン化合物とを有する。
 特に、前記金属酸化物粒子材料は、体積平均粒径が0.1μm以上200μm以下であり、
 前記ポリオルガノシロキサン化合物の量は、前記金属酸化物粒子材料の質量を基準として、0.05%以上3.0%以下であることが好ましい。
 更に、ビニル基、若しくは炭素数1~3のアルキル基をもつシラン化合物、又は、オルガノシラザンからなる第2表面処理剤にて更に表面処理されていることができる。
(2)上記課題を解決する本発明の表面処理済金属酸化物粒子材料の製造方法は、体積平均粒径が0.1μm以上200μm以下である金属酸化物粒子材料に対して、前記金属酸化物粒子材料の質量を基準として、0.05%以上3.0%以下であり、一般式(1):(RO)SiO-(SiR-O-)-SiR(一般式(1)中、Rは炭素数1~4のアルキル基からそれぞれ独立して選択することができる。nは10以上200以下である。)で表されるポリオルガノシロキサン化合物を混合して混合物を得る混合工程と、前記混合物を5℃以上100℃以下の温度で1時間以上168時間以下保持して反応させる表面処理工程とを有する。
 更に、ビニル基、若しくは炭素数1~3のアルキル基をもつシラン化合物、又は、オルガノシラザンにて表面処理する第2表面処理工程を有することができる。
(3)上記課題を解決する本発明の電子材料用樹脂組成物は、前述した本発明の表面処理済金属酸化物粒子材料と、前記表面処理済金属酸化物粒子材料を分散するシリコーン樹脂材料とを有する。
 本発明の表面処理済金属酸化物粒子材料は、上述の構成を有することにより、樹脂材料中に含有させて得られる樹脂組成物の粘度を抑制でき、且つ、その樹脂組成物の誘電率や誘電正接を抑制することが可能になる。
実施例における各試験試料の粘度のシェアレート依存性を示すグラフである。 実施例における各試験試料の粘度のシェアレート依存性を示すグラフである。 実施例における各試験試料の粘度のシェアレート依存性を示すグラフである。 実施例における各試験試料の粘度のシェアレート依存性を示すグラフである。 実施例における各試験試料の粘度の処理剤添加量依存性を示すグラフ図である。 実施例における各試験試料の粘度のシェアレート依存性を示すグラフである。 実施例における各試験試料の粘度の処理剤添加量依存性を示すグラフである。 実施例における各試験試料の粘度のシェアレート依存性を示すグラフである。 実施例における各試験試料の粘度の処理剤添加量依存性を示すグラフである。 実施例における各試験試料の粘度のシェアレート依存性を示すグラフである。 実施例における各試験試料の粘度の処理剤添加量依存性を示すグラフである。 実施例における各試験試料の粘度のシェアレート依存性を示すグラフである。 実施例における各試験試料の粘度の重合度(n)依存性を示すグラフである。 実施例における各試験試料の粘度のシェアレート依存性を示すグラフである。 実施例における各試験試料の粘度のシェアレート依存性を示すグラフである。 実施例における各試験試料の粘度を示すグラフである。
 本発明の表面処理済金属酸化物粒子材料及びその製造方法、並びに電子材料用樹脂組成物について以下実施形態に基づき詳細に説明を行う。
(表面処理済金属酸化物粒子材料)
 本実施形態の表面処理済金属酸化物粒子材料は、金属酸化物粒子材料とポリオルガノシロキサン化合物とを有する。ポリオルガノシロキサン化合物は金属酸化物粒子材料の表面に作用して表面処理する化合物である。
 金属酸化物粒子材料は、金属の酸化物からなる粒子材料である。金属酸化物としては特に限定しないがアルミナ、シリカ、ジルコニア、マグネシア,チタニア、酸化亜鉛,酸化鉄、更には複数の金属を含む複合酸化物や複数種類の金属酸化物の混合物などが挙げられる。特にアルミナが熱伝導性の高さや物理的・化学的安定性の高さの観点などから好ましい。
 金属酸化物粒子材料は、体積平均粒径が10μm以上であることが好ましい。特に45μm以上、70μm以上、100μm以上とすることが好ましい。更に、粒径が体積平均粒径の半分の値以下の粒子を含有しないことが好ましい。厚膜TIM向けでは,粒径が大きい方が異材界面による接触熱抵抗を低減することが可能で,熱伝導性を向上する観点からは好ましい。体積平均粒径の測定はレーザー回折・散乱法にて行うことができる。
 また、金属酸化物粒子材料は、体積平均粒径が30μm以下であることが好ましい。特に10μm以下、3μm以下、0.2μm以下とすることが好ましい。更に、粒径が体積平均粒径の倍の値以上の粒子(粗粒)を含有しないことが好ましい。電子材料・電子部品としては自身の大きさや内部の配線幅が小さくなってきており、そこに採用するためには小さくすることが求められる。本実施形態の表面処理済金属酸化物粒子材料は、これらの粒径の上限下限を任意に組み合わせて粒度分布を決定することができる。
 ポリオルガノシロキサン化合物は上述の一般式(1)に開示の化合物である。Rとしては炭素数3以下であることが好ましく、炭素数が1又は2であることがより好ましく、炭素数が1であることが最も好ましい。nについては、10超であることが好ましく、30以上であることがより好ましく、60以上であることが更に好ましい。nの値については、異なる化合物の混合物であっても良い。nの値の上限としては200、100が例示できる。
 ポリオルガノシロキサン化合物の量は、金属酸化物粒子材料の質量を基準として、0.05%以上3.0%以下であることが好ましい。下限値としては、0.05%、0.10%が例示できる。これらの量以上の量で金属酸化物粒子材料の表面を処理することで充分な粘度低下作用が発現できる。上限値としては、2.0%、2.5%、3.0%が例示できる。これらの量以下の量で金属酸化物粒子材料の表面を充分に処理することが可能である。
 ポリオルガノシロキサン化合物は、金属酸化物粒子材料の表面に存在する反応性官能基(例えばOH基)と反応するため、反応性官能基の量に相当する量に対応する量で処理することで全ての反応性官能基に反応させることができる。過剰な量のポリオルガノシロキサン化合物は、金属酸化物粒子材料の表面に物理的に付着する。そのため、ポリオルガノシロキサン化合物の量としては簡易的に金属酸化物粒子材料の質量を基準として決定する方法の他、金属酸化物粒子材料の表面に存在する反応性官能基の量に対応して決定することができる。
 反応性官能基に対応する量としては、全ての反応性官能基に反応できる量、反応性官能基の90%、80%と反応できる量が選択できる。反応性官能基を残存させることにより、その後に他の表面処理剤にて別の目的での表面処理を行うことができる。例えば疎水性を向上するためにヘキサメチルジシラザンなどのオルガノシラザンにて処理したり、ビニル基やアルキル基をもつシラン化合物からなる第2表面処理剤にて表面処理を行うことができる(オルガノシロキサン化合物にて表面する前でも後でもどちらでも行うことができる)。更に反応性官能基に対応する量を超えた量のポリオルガノシロキサン化合物にて表面処理を行うこともできる。
(表面処理済金属酸化物粒子材料の製造方法)
 本実施形態の表面処理済金属酸化物粒子材料の製造方法は、混合工程と表面処理工程とを有する。
 混合工程は金属酸化物粒子材料とポリオルガノシロキサン化合物とを混合する工程である。混合比については前述した比率が採用できるため説明を省略する。金属酸化物粒子材料については前述した表面処理済金属酸化物粒子材料にて説明した金属酸化物粒子材料に対して体積平均粒径を限定した以外は同じものである。
 金属酸化物粒子材料は、混合工程に供する前に乾燥工程を行うことができる。乾燥工程は存在する水などの極性溶媒を除去する工程であり、特に限定しない。例えば、加熱する工程(常温(25℃)以上、50℃、75℃、100℃、125℃、150℃、200℃、300℃などの温度を採用できる。)、減圧する工程、非極性溶媒に浸漬後乾燥する工程、更にはそれらの組み合わせなどが例示できる。ポリオルガノシロキサン化合物についても水分などの極性溶媒を減らす工程を経ることが好ましい。なお、ポリオルガノシロキサン化合物については前述した通りである。
 混合工程は、金属酸化物粒子材料の表面にポリオルガノシロキサン化合物を接触させる工程である。なお、混合する際に金属酸化物粒子材料の表面処理が進行するため、混合工程と表面処理工程とは重複して行われるものと推測できる。ポリオルガノシロキサン化合物はできるだけ均一に金属酸化物粒子材料の表面に接触するような工程を採用することが好ましい。
 例えば、金属酸化物粒子材料とポリオルガノシロキサン化合物とを混合した後、撹拌することで均一に混合することができる。更にポリオルガノシロキサン化合物を適正な溶媒に分散した状態で混合することで更に均一に混合することが可能である。適正な溶媒としてはヘキサン、へプタン、THF(テトラヒドロフラン)、トルエン、キシレンなどの非極性溶媒を採用することができる。
 ポリオルガノシロキサン化合物は少しずつ混合していくことができる。その場合に混合しながら反応を進行させることもできる。また、ポリオルガノシロキサン化合物は添加量の全量を一度に混合したり、少しずつ混合したりするほか、2つ以上に分割して逐次混合することもできる。
 表面処理工程は、混合工程にて得られた混合物を5℃以上100℃以下の温度で1時間以上168時間以下保持して反応させる工程である。ここでいう反応とは一般式(1)のポリオルガノシロキサン化合物が有する官能基が金属酸化物粒子材料の表面に有する官能基(反応性官能基)と反応することを意味する。前述の混合工程においても表面処理工程における反応が進行していることがあるため、表面処理工程と混合工程とは同時に進行する場合もある。
 表面処理工程を行う温度としては特に限定されず、下限値として20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃などが採用できる。温度を上昇させることにより表面処理を速やかに進行することができる。温度の上限値としても特に限定されず、下限値と同様の20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃が採用できる。温度の上限値と下限値の組み合わせは許容できる表面処理時間、必要な表面処理時間、許容できる加熱費用などの要因により好ましい範囲が異なっており任意に組み合わせて設定できる。
 更に表面処理工程は、一度に完了させる必要は無く、2段階以上に分けて反応を完了させても良い。例えば、混合したポリオルガノシロキサン化合物の一部が反応する条件を採用後、他の工程を行い、その後に残りのポリオルガノシロキサン化合物を反応させても良い。また、ポリオルガノシロキサン化合物の混合を一度に全部行わない場合には、ポリオルガノシロキサン化合物を少しずつ混合する毎に表面処理工程を行うこともできる。また、後述する第2表面処理工程と同時に表面処理工程を行うことも可能である。
 第2表面処理工程は、第2表面処理剤にて金属酸化物粒子材料を表面処理する工程である。第2表面処理剤にて行う表面処理は、前述の混合工程及び表面処理工程が終わった後に独立して行うことができるほか、混合工程の前から表面処理工程が完了するまでの間のどの時点で行っても良い。例えば第2表面処理剤は、金属酸化物粒子材料の表面に存在する反応性官能基にも反応しうる化合物であるが、ポリオルガノシロキサン化合物が反応する前に表面処理を行うことで金属酸化物粒子材料の表面に強固に結合を生成することができる。
 例えば、第2表面処理工程は、ポリオルガノシロキサン化合物を金属酸化物粒子材料表面の反応性官能基の全部に反応させた後に行っても良いし、ポリオルガノシロキサン化合物を金属酸化物粒子材料表面の反応性官能基の一部に反応させた後に行っても良いし、ポリオルガノシロキサン化合物にて表面処理する前に行っても良い。また、表面処理工程を行うときに途中で中断した後、第2表面処理工程を行い、その後、表面処理工程を再開しても良い。
 第2表面処理剤としては、ビニル基、若しくは炭素数1~3のアルキル基をもつシラン化合物、又は、オルガノシラザンである。オルガノシラザンとしてはヘキサメチルジシラザンが例示できる。
(電子材料用樹脂組成物)
 本実施形態の電子材料用樹脂材料は、上述した本実施形態の表面処理済金属酸化物粒子材料と樹脂材料とを有する。本実施形態の電子材料用樹脂組成物は、電子部品を配置する基板、半導体の封止材、半導体素子とヒートシンクとを接続する伝熱材料などに用いることができる。
 表面処理済金属酸化物粒子材料と樹脂材料との混合比は特に限定しないが、表面処理済金属酸化物粒子材料を多くする方が好ましい。表面処理済金属酸化物粒子材料の混合量は、得られた電子材料用樹脂組成物の粘度により決定することが好ましい。粘度が低い方が微細な隙間などへの充填を充分に行うことが可能になるため、必要な粘度以下になるように混合量を決定することが好ましい。
 樹脂材料としては特に限定しないが、シリコーン樹脂を含有することが好ましい。シリコーン樹脂としては種々の重合度のものが採用でき、液状、固体状、反応により固体化するものなどが採用可能である。
 以下本発明の表面処理済金属酸化物粒子材料及びその製造方法、並びに電子材料用樹脂組成物について実施例に基づき説明を行う。
(試験1:ポリオルガノシロキサン化合物の効果の確認)
・試験例1-1
 金属酸化物粒子材料としてのアルミナ粒子(アドマテックス製:AO-509:体積平均粒径7~13μm:比表面積1.0cm/g~1.8cm/g)を表面処理した表面処理済金属酸化物粒子材料85質量部を、樹脂材料としてのシリコーン樹脂(信越化学工業製:KE-106:二液型RTVゴム)15質量部中に分散した樹脂組成物を調製し本試験例の試験試料とした。
 金属酸化物粒子材料の表面処理は、金属酸化物粒子材料の質量を基準として0.5%の一般式(1)のポリオルガノシロキサン化合物(Rは全てメチル基、nは30)にて行った。表面処理は、金属酸化物粒子材料とポリオルガノシロキサン化合物とを混合した後、60℃で8時間加熱後,12時間静置することで行った。ポリオルガノシロキサン化合物の混合量は、金属酸化物粒子材料の表面に存在する反応性官能基としてのOH基と全て反応できる程度の量である。
・試験例1-2
 金属酸化物粒子材料を表面処理を行わずにそのまま使用した以外は、試験例1-1と同様にして樹脂組成物を調製し本試験例の試験試料とした。
・粘度測定
 試験例1-1及び1-2の試験試料について粘度を測定した。粘度測定は、TA Instrument製のレオメーター「ARES G2」を用いて行った。樹脂組成物を下側からφ75mmのステージ、上側からφ25mmのパラレルプレートで特定の厚さになるように挟み、下部のステージを回転させ、シェアレート0.01s-1から100s-1までの範囲の粘度を測定した。
 粘度特性を測定する際の樹脂組成物の厚さは,体積平均粒径の10倍の値が0.1mm以下の場合は,0.1mmとし、体積平均粒径の10倍の値が0.1mm以上の場合は、体積平均粒径の10倍の値を厚さとする。結果を図1に示す。
 図1より明らかなように、試験例1-1の粘度は試験例1-2の粘度の5分の1程度にまで低下できることが分かった。
・試験例1-3
 試験例1-1における表面処理済金属酸化物粒子材料を90.5質量部と、樹脂材料9.5質量部とを混合して樹脂組成物を調製し本試験例の試験試料とした。この混合比は、試験例1-2の試験試料と同程度の粘度(シェアレート0.05s-1における粘度)になるようにした値である。試験例1-3の試験試料における粘度測定の結果を図1に合わせて示す。試験例1-3の試験試料は、シェアレート0.05s-1においては試験例1-2の試験試料と同程度の粘度であるが、それより低いシェアレートにおいては粘度が全体的に低かった。
・熱伝導率測定
 試験例1-2及び1-3の試験試料について熱伝導率を測定した。熱伝導率の測定はそれぞれの試験試料を硬化した硬化物をφ20mm×高さ30mmの試験片に切り出した後、ホットディスク法で、京都電子工業株式会社製「TPS 2500S」を用いて測定した。その結果、熱伝導率は、試験例1-2が1.518W/m・K(密度2.69g/cm:平均値)、試験例1-3が2.578W/m・K(密度2.92g/cm:平均値)となり、表面処理済金属酸化物粒子材料を用いた試験例1-3の試験試料が、金属酸化物粒子材料をそのまま用いた試験例1-2の試験試料よりも70%以上も高い熱伝導率を示すことが明らかになった。これは粘度の低下効果が高く、表面処理済金属酸化物粒子材料を大量に含有させることができたからであると推測される。
(試験2:ポリオルガノシロキサン化合物の混合量による粘度の変化)
・試験例2-1~2-3
 金属酸化物粒子材料としてAO-509に代えてAO-502(アドマテックス製:アルミナ:体積平均粒径0.2~0.3μm:比表面積6.5~9.0cm/g)を用い、ポリオルガノシロキサン化合物の混合量を1.0%(試験例2-1)、1.5%(試験例2-2)、2.5%(試験例2-3)とした以外は試験例1-1と同様の方法により表面処理済金属酸化物粒子材料を調製した。
 この表面処理済金属酸化物粒子材料63.5質量部、樹脂材料(KE-106)36.5質量部を混合して得られた樹脂組成物を本試験例の試験試料とした。
・試験例2-4
 試験例2-1で用いた金属酸化物粒子材料63.5質量部、樹脂材料36.5質量部とを混合して得られた樹脂組成物を本試験例の試験試料とした。
・粘度測定
 試験例2-1~2-4の試験試料について試験1と同様に粘度を測定した。結果を図2に示す。図2より明らかなように、表面処理に用いたポリオルガノシロキサン化合物の量が多くなるにつれて粘度が低下することが分かった。ただし、試験例2-2及び2-3の試験試料の粘度がほぼ同等であることからポリオルガノシロキサン化合物の量は1.5%で飽和していることが推察された。
・試験例2-5
 試験例2-2における表面処理済金属酸化物粒子材料を76.9質量部と、樹脂材料23.1質量部とを混合して樹脂組成物を調製し本試験例の試験試料とした。この混合比は、試験例2-4の試験試料と同程度の粘度(シェアレート0.05s-1における粘度)になるようにした値である。
・熱伝導率測定
 試験例2-4及び2-5の試験試料について試験1と同様に試験片を作成して熱伝導率を測定した。その結果、熱伝導率は、試験例2-4が0.521W/m・K(密度1.92g/cm:平均値)、試験例2-5が0.756W/m・K(密度2.23g/cm:平均値)となり、表面処理済金属酸化物粒子材料を用いた試験例2-5の試験試料が、金属酸化物粒子材料をそのまま用いた試験例2-4の試験試料よりも45%以上も高い熱伝導率を示すことが明らかになった。これは粘度の低下効果が高く、表面処理済金属酸化物粒子材料を大量に含有させることができたからであると推測される。
(試験3:ポリオルガノシロキサン化合物の化学構造の検討)
・試験例3-1
 試験例1-1と同様の方法にて表面処理済金属酸化物粒子材料を調製して得られた表面処理済金属酸化物粒子材料を85質量部、樹脂材料を15質量部を混合して本試験例の試験試料とした。
・試験例3-2
 ポリオルガノシロキサン化合物に代えて、MeSiO-(SiMe-O)-(SiMeX-O)-(SiMe-O)-SiMe(式中、Xは、-R-(SiMe-O)-SiMe;Yは、-R-Si(OEt):R及びRはアルキレン基:分子量は約5000)を用いた以外は試験例3-1と同様にして樹脂組成物を調製し本試験例の試験試料とした。
・試験例3-3
 ポリオルガノシロキサン化合物に代えて、(MeO)SiO-(SiMe(OMe)-O-SiMe(OMe))-O-Si(OMe)(分子量は約2430)を用いた以外は試験例3-1と同様にして樹脂組成物を調製し本試験例の試験試料とした。
・試験例3-4
 表面処理済金属酸化物粒子材料に代えて、金属酸化物粒子材料をそのまま使用した以外は試験例3-1と同様に樹脂組成物を調製し本試験例の試験試料とした。
・粘度測定及び熱的安定性の評価
 試験1と同様の方法で試験例3-1~3-4の試験試料について粘度を測定した。図3に結果を示す。試験例3-3の試験試料については粘度が非常に高く測定できなかった。図3より明らかなように、試験例3-1及び3-2については、表面処理を行っていない試験例3-4よりも大幅に粘度が低下することが分かった。
 試験例3-1及び3-2の試験試料について熱的安定性を評価した。熱的安定性の評価は、RIGAKU社製 THRMO PLUSシリーズ TG-DTA TG8120を用いて、25℃の環境下から250℃まで昇温した際の表面処理剤の重量の減少率を求めることで行った。昇温速度は5℃/minで、100℃、150℃、200℃、250℃でそれぞれ1時間温度をキープした。その結果、試験例3-1に使用した表面処理剤の測定開始時の重量は14.660mgで、測定終了後の重量は13.752mgであった。減少した重量は0.90756mgのため、重量減少率は6.2%である。試験例3-2に使用した表面処理剤の測定開始時の重量は18.490mgで、測定終了後の重量は12.726mgであった、減少した重量は5.764mgのため,重量減少率は31%である。試験例3-1の表面処理剤は重量減少率が10%以下の値を示しており、試験例3-2の表面処理剤と比べて熱的安定性が高いことが分かった。これは試験例3-2にて用いた表面処理剤の化学構造における主鎖中にアルキレン基が存在することから、そのアルキレン基が熱により分解することに由来するものと推測できる。
(試験4)
 金属酸化物粒子材料としてアルミナから構成された粒子材料を採用した。体積平均粒径は、3μm、10μm、70μm、100μmのものを採用した。これらの金属酸化物粒子材料に対して、ポリオルガノシロキサン化合物(試験例1-1のもの)を種々の混合量として表面処理を行い、それぞれの比率で樹脂材料と混合した樹脂組成物について試験1に記載した方法で粘度を測定した。また、それぞれの粒径毎に、ポリオルガノシロキサン化合物の混合量と、シェアレート0.05s-1における粘度とをプロットした。それぞれ結果を図4~図11に示す。
 図4及び図5より明らかなように、粒径が3μmではポリオルガノシロキサン化合物の混合量が0.25%、0.5%と増加するにつれて粘度が低下することが分かった。特に0.25%の添加での粘度低下に比べて0.5%添加での粘度低下が顕著であった。
 図6及び図7、図8及び図9、並びに、図10及び図11より明らかなように、粒径が10μm、70μm、及び100μmではポリオルガノシロキサン化合物の混合量が0.1%以上であればどれも同等の粘度を示しており0.1%前後の混合量により金属酸化物粒子材料の表面を充分に改質できることが分かった。なお、粒径が100μmでは0.1%から0.5%にかけての粘度が0%及び1.0%の場合と比べて低下しており、この添加量での粘度低下効果があることが示唆された(図10)。
(試験5:表面処理剤の化学構造)
・試験例5-1
 ポリオルガノシロキサン化合物として一般式(1)におけるnが10のものを採用した以外は、試験例1-1と同様にして樹脂組成物を調製し本試験例の試験試料とした。
・試験例5-2
 試験例1-1と同様にして樹脂組成物を調製し本試験例の試験試料とした(一般式(1)におけるnが30)。
・試験例5-3
 ポリオルガノシロキサン化合物として一般式(1)におけるnが60のものを採用した以外は、試験例1-1と同様にして樹脂組成物を調製し本試験例の試験試料とした。
・試験例5-4
 試験例1-2の試験試料を本試験例の試験試料とした。
・試験例5-5
 (RO)SiO-(SiR-O-)10-Si(OR)を表面処理剤として用いた以外は試験例1-1と同様の方法にて樹脂組成物を調製し本試験例の試験試料とした。
・粘度測定
 試験1と同様に粘度を測定した。結果を図12に示す。また、それぞれの試験例毎に、nの値と、シェアレート0.05s-1における粘度とをプロットし図13に示す。
 図12及び図13より明らかなように、nの値が大きくなるにつれて粘度が低下することが分かった。また、試験例5-1のポリオルガノシロキサン化合物の片末端が-SiMeであるところ、その部分を-Si(OMe)にて置換した試験例5-5の試験試料では試験例5-1と比較して粘度が数倍になることが分かった。両末端とも反応性がある-Si(OMe)にすることにより複数粒子間を接続することになって絡み合い発生による粘度上昇が生起するものと推測できる。
(試験6:表面処理剤及び第2表面処理剤の検討)
 金属酸化物粒子材料として試験例1-1にて採用したアルミナ粒子、表1に記載の第1回目の表面処理剤(1.5質量%)及び第2回目の表面処理剤(処理量はアルミナ粒子の比表面積からアルミナを二層処理する量を算出)の順で試験例1-1の方法にて反応させたものについて比誘電率と誘電正接を測定した。結果を表1に示す。比誘電率と誘電正接との測定は、ネットワークアナライザー(キーサイト社製、E5071C)と空洞共振器摂動法を用いて、1GHzにおける比誘電率、誘電正接として測定した。この測定はASTMD2520(JIS C2565)に準拠して行った。
Figure JPOXMLDOC01-appb-T000001
 表1より明らかなように、誘電率は全ての試験例について12F/m前後であり,シリカの誘電率(3.7~3.9)と比較すると充分に高い。また、試験例6-1~6-3及び6-7が誘電正接が低かった。従って、表面処理剤としては一般式(1)のポリオルガノシロキサン化合物、ビニルシラン、及び両者を併用することが好ましいことが分かった。なお、一般式(1)のポリオルガノシロキサン化合物はビニルシランと比較して熱的安定性に優れていることを確認した。上記のことから誘電率は高い値を維持しつつ、誘電正接が低い材料であることが分かる。
(試験7:金属酸化物粒子材料の粒径の検討)
 金属酸化物粒子材料として表2に示す体積平均粒径をもつアルミナ粒子を試験6と同様にしてそれぞれ誘電率と誘電正接を測定した。結果を表2に示す。
 試験例7-1及び7-4は純度が99.8%、試験例7-2及び7-5は純度が99.9%、試験例7-3及び7-6は純度が99.99%である。試験例7-7~7-11については純度が99.0%である。
Figure JPOXMLDOC01-appb-T000002
 表2より明らかなように、試験例7-1~7-6の結果から誘電率及び誘電正接は純度による影響は無いことが分かった。また粒径が小さいほど誘電正接が大きくなることが分かった。これは粒径が小さい粒子の方が比表面積が大きく、吸着水量も比例して多くなり、その吸着水に起因することが原因と考えている.空気中の水分が粒子に吸着する(細孔に取り込まれる)速度は非常に早く、800℃程の高温で焼成して吸着水を除去した場合でも、空気中に取り出すとすぐに空気中の水分が吸着する。今回、それぞれポリオルガノシロキサン化合物による表面処理により誘電正接が低下していることを確認しているが、ポリオルガノシロキサン化合物により水分の吸着が抑制された結果であると推測できる。
(試験8)
・試験例8-1~8-3
 試験例1-1及び1-2の樹脂組成物をそれぞれ試験例8-1及び8-2の試験試料とした。
 金属酸化物粒子材料、ポリオルガノシロキサン化合物、樹脂材料を一度に混合(インテグラルブレンド)して得られた樹脂組成物を試験例8-3の試験試料とした。
・粘度測定
 試験1と同様の方法で粘度を測定した。結果を図14に示す。図14より明らかなように、試験例8-1のように、金属酸化物粒子材料を予めポリオルガノシロキサン化合物によって表面処理することにより、一度に混合して得られる樹脂組成物と比べて粘度を低下できることが明らかになった。
(試験9)
 試験例6-9(表面処理無)を試験例9-1、試験例6-1(一般式(1)にて処理)を試験例9-2、試験例6-3(ビニルシランにて処理)を試験例9-3、試験例6-7(ヒドロシリル基含有シリコーンにて処理)を試験例9-4、そして試験例6-5の樹脂組成物を試験例9-5として、それぞれ試験1の方法にて粘度を測定した。結果を図15に示す。また、それらの試験試料についてシェアレート0.05s-1における粘度の値を図16に示す。
 図15及び16より明らかなように、試験例9-2(一般式(1)のポリオルガノシロキサン化合物)、試験例9-3(ビニルシラン)の樹脂組成物の粘度が表面処理を行っていない試験例9-1と比べて低下できることが分かった。また、試験例9-5(メタクリルシラン処理)については表面処理を行っていない試験例9-1よりも粘度が上昇してしまった。

Claims (7)

  1.  アルミナからなる金属酸化物粒子材料と、
     前記金属酸化物粒子材料を表面処理する、一般式(1):(RO)SiO-(SiR-O-)-SiR(一般式(1)中、Rは炭素数1~4のアルキル基からそれぞれ独立して選択することができる。nは10以上200以下である)で表されるポリオルガノシロキサン化合物とを有し、
     樹脂材料と混合可能な状態である表面処理済金属酸化物粒子材料。
  2.  前記金属酸化物粒子材料は、体積平均粒径が0.1μm以上200μm以下であり、
     前記ポリオルガノシロキサン化合物の量は、前記金属酸化物粒子材料の質量を基準として、0.05%以上3.0%以下である請求項1に記載の表面処理済金属酸化物粒子材料。
  3.  ビニル基、若しくは炭素数1~3のアルキル基をもつシラン化合物、又は、オルガノシラザンからなる第2表面処理剤にて更に表面処理されている請求項1又は2に記載の表面処理済金属酸化物粒子材料。
  4.  体積平均粒径が0.1μm以上200μm以下であってアルミナからなる金属酸化物粒子材料に対して、前記金属酸化物粒子材料の質量を基準として、0.05%以上3.0%以下であり、一般式(1):(RO)SiO-(SiR-O-)-SiR(一般式(1)中、Rは炭素数1~4のアルキル基からそれぞれ独立して選択することができる。nは10以上200以下である。)で表されるポリオルガノシロキサン化合物を混合して混合物を得る混合工程と、
     前記混合物を5℃以上100℃以下の温度で1時間以上168時間以下保持して反応させる表面処理工程と、
     を有する樹脂材料と混合可能な状態の粒子を製造する表面処理済金属酸化物粒子材料の製造方法。
  5.  体積平均粒径が0.1μm以上200μm以下である金属酸化物粒子材料に対して、前記金属酸化物粒子材料の質量を基準として、0.05%以上3.0%以下であり、一般式(1):(RO)SiO-(SiR-O-)-SiR(一般式(1)中、Rは炭素数1~4のアルキル基からそれぞれ独立して選択することができる。nは10以上200以下である。)で表されるポリオルガノシロキサン化合物を混合して混合物を得る混合工程と、
     前記混合物を5℃以上100℃以下の温度で1時間以上168時間以下保持して反応させる表面処理工程と、
     を有し、
     更に、ビニル基、若しくは炭素数1~3のアルキル基をもつシラン化合物、又は、オルガノシラザンからなる第2表面処理剤にて前記金属酸化物粒子材料を表面処理する第2表面処理工程を有する表面処理済金属酸化物粒子材料の製造方法。
  6.  請求項1~3の何れか1項に記載の表面処理済金属酸化物粒子材料と、
     前記表面処理済金属酸化物粒子材料を分散するシリコーン樹脂材料と、
     を有する電子材料用樹脂組成物。
  7.  金属酸化物粒子材料と、
     前記金属酸化物粒子材料と直接結合している、一般式(1):(RO)SiO-(SiR-O-)-SiR(一般式(1)中、Rは炭素数1~4のアルキル基からそれぞれ独立して選択することができる。nは10以上200以下である)で表されるポリオルガノシロキサン化合物とを有し、
     前記金属酸化物粒子材料は、体積平均粒径が0.1μm以上200μm以下であり、
     前記ポリオルガノシロキサン化合物の量は、前記金属酸化物粒子材料の質量を基準として、0.05%以上3.0%以下であり、
     ビニル基、若しくは炭素数1~3のアルキル基をもつシラン化合物、又は、オルガノシラザンからなる第2表面処理剤にて更に表面処理されていてもよい、
     表面処理済金属酸化物粒子材料からなるシリコーン樹脂材料用のフィラー。
PCT/JP2019/040921 2018-10-24 2019-10-17 表面処理済金属酸化物粒子材料、その製造方法、及び電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラー WO2020085198A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980046812.0A CN112399962B (zh) 2018-10-24 2019-10-17 表面处理过的金属氧化物粒子材料及其制造方法、电子材料用树脂组合物、以及有机硅树脂材料用填料
EP19876447.4A EP3854755B1 (en) 2018-10-24 2019-10-17 Surface treated-metal oxide particle material, method for producing same, resin composition for electronic material, and filler for silicone resin material
KR1020207034319A KR102268485B1 (ko) 2018-10-24 2019-10-17 표면 처리가 끝난 금속 산화물 입자 재료, 그 제조 방법, 및 전자 재료용 수지 조성물, 그리고 실리콘 수지 재료용의 필러
US17/237,294 US11401423B2 (en) 2018-10-24 2021-04-22 Surface treated-metal oxide particle material, method for producing same, resin composition for electronic material, and filler for silicone resin material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-200341 2018-10-24
JP2018200341A JP6603777B1 (ja) 2018-10-24 2018-10-24 表面処理済金属酸化物粒子材料、その製造方法、及び電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラー

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/237,294 Continuation US11401423B2 (en) 2018-10-24 2021-04-22 Surface treated-metal oxide particle material, method for producing same, resin composition for electronic material, and filler for silicone resin material

Publications (1)

Publication Number Publication Date
WO2020085198A1 true WO2020085198A1 (ja) 2020-04-30

Family

ID=68462419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040921 WO2020085198A1 (ja) 2018-10-24 2019-10-17 表面処理済金属酸化物粒子材料、その製造方法、及び電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラー

Country Status (7)

Country Link
US (1) US11401423B2 (ja)
EP (1) EP3854755B1 (ja)
JP (1) JP6603777B1 (ja)
KR (1) KR102268485B1 (ja)
CN (1) CN112399962B (ja)
TW (1) TWI697457B (ja)
WO (1) WO2020085198A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6603777B1 (ja) 2018-10-24 2019-11-06 株式会社アドマテックス 表面処理済金属酸化物粒子材料、その製造方法、及び電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラー
WO2022254960A1 (ja) 2021-06-04 2022-12-08 ステラケミファ株式会社 低誘電損失樹脂組成物、その製造方法、高周波機器用成形体及び高周波機器
CN116376028A (zh) * 2023-05-22 2023-07-04 江苏至昕新材料有限公司 一种粉料表面处理剂及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051237A (ja) * 1991-06-24 1993-01-08 Shin Etsu Chem Co Ltd 表面処理アルミナ及びそれを含有する熱伝導性シリコーン組成物
JP2011021192A (ja) * 1999-07-08 2011-02-03 Miyoshi Kasei Inc 超分散性を有する新規被覆粉体及びこれを配合した化粧料
JP2011190153A (ja) * 2010-03-16 2011-09-29 Shin-Etsu Chemical Co Ltd 表面処理無機粉体
JP2014218564A (ja) * 2013-05-07 2014-11-20 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP2017105659A (ja) * 2015-12-08 2017-06-15 信越化学工業株式会社 表面処理無機酸化物粒子、該粒子を含む分散液、及びその製造方法
JP2017125138A (ja) * 2016-01-14 2017-07-20 信越化学工業株式会社 熱伝導性硬化物、該硬化物を有する粘着テープ及び粘着シート
JP2017210518A (ja) 2016-05-24 2017-11-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP2018053260A (ja) * 2017-12-21 2018-04-05 信越化学工業株式会社 熱伝導性シリコーン組成物及び硬化物並びに複合シート

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062693A (en) * 1976-09-29 1977-12-13 Union Carbide Corporation Dry liquid alumina trihydrate concentrates
JPS5945906A (ja) * 1982-09-09 1984-03-15 Nippon Yunikaa Kk 無機固体粒子組成物
JP4034430B2 (ja) * 1997-09-10 2008-01-16 三好化成株式会社 有機ケイ素化合物処理粉体基材、その製造方法及び前記基材を含有する化粧料
JP4727017B2 (ja) * 1999-11-15 2011-07-20 東レ・ダウコーニング株式会社 熱伝導性シリコーンゴム組成物
DE102005006870A1 (de) * 2005-02-14 2006-08-24 Byk-Chemie Gmbh Oberflächenmodifizierte Nanopartikel, Verfahren zu ihrer Herstellung und ihre Verwendung
US7923507B2 (en) * 2007-08-30 2011-04-12 Siovation, Llc Polyorganosiloxane—containing compositions
JP5507059B2 (ja) * 2008-05-27 2014-05-28 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物および電子装置
EP2223973A1 (en) * 2009-02-26 2010-09-01 Nitto Denko Corporation Metal oxide fine particles, silicone resin composition and use thereof
DE102009029640A1 (de) * 2009-09-21 2011-04-07 Evonik Degussa Gmbh Verfahren zur Oberflächenmodifizierung von Metalloxidpartikeln
CN102093586A (zh) * 2010-12-21 2011-06-15 浙江大学 聚二甲基硅氧烷表面的物理及化学联合修饰方法
JP2013095782A (ja) * 2011-10-28 2013-05-20 Mitsubishi Chemicals Corp 半導体発光装置用シリコーン樹脂組成物
WO2013133430A1 (ja) * 2012-03-09 2013-09-12 住友大阪セメント株式会社 表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置
KR102280840B1 (ko) * 2013-01-15 2021-07-22 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 적층판, 금속박 피복 적층판 및 프린트 배선판
DE102013226798A1 (de) * 2013-12-20 2015-06-25 Evonik Industries Ag Oberflächenbehandlung von Partikeln und deren Verwendung
JP6432269B2 (ja) * 2014-10-10 2018-12-05 住友大阪セメント株式会社 有機酸含有ジルコニア微粒子分散液、表面修飾ジルコニア微粒子分散液及びその製造方法、樹脂複合組成物
US9856361B2 (en) * 2014-10-16 2018-01-02 Sumitomo Osaka Cement Co., Ltd. Surface-modified metal oxide particle dispersion liquid, method for producing same, surface-modified metal oxide particle-silicone resin composite composition, surface-modified metal oxide particle-silicone resin composite body, optical member and light emitting device
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
EP3372630B1 (en) * 2015-11-05 2020-09-16 Momentive Performance Materials Japan LLC Method for producing thermally-conductive polysiloxane composition
JP6755116B2 (ja) * 2016-04-14 2020-09-16 株式会社アドマテックス アルミナ粒子材料及びその製造方法
JP6603777B1 (ja) 2018-10-24 2019-11-06 株式会社アドマテックス 表面処理済金属酸化物粒子材料、その製造方法、及び電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラー

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051237A (ja) * 1991-06-24 1993-01-08 Shin Etsu Chem Co Ltd 表面処理アルミナ及びそれを含有する熱伝導性シリコーン組成物
JP2011021192A (ja) * 1999-07-08 2011-02-03 Miyoshi Kasei Inc 超分散性を有する新規被覆粉体及びこれを配合した化粧料
JP2011190153A (ja) * 2010-03-16 2011-09-29 Shin-Etsu Chemical Co Ltd 表面処理無機粉体
JP2014218564A (ja) * 2013-05-07 2014-11-20 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP2017105659A (ja) * 2015-12-08 2017-06-15 信越化学工業株式会社 表面処理無機酸化物粒子、該粒子を含む分散液、及びその製造方法
JP2017125138A (ja) * 2016-01-14 2017-07-20 信越化学工業株式会社 熱伝導性硬化物、該硬化物を有する粘着テープ及び粘着シート
JP2017210518A (ja) 2016-05-24 2017-11-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP2018053260A (ja) * 2017-12-21 2018-04-05 信越化学工業株式会社 熱伝導性シリコーン組成物及び硬化物並びに複合シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3854755A4

Also Published As

Publication number Publication date
US11401423B2 (en) 2022-08-02
EP3854755B1 (en) 2024-01-10
JP6603777B1 (ja) 2019-11-06
EP3854755C0 (en) 2024-01-10
CN112399962A (zh) 2021-02-23
KR20200140918A (ko) 2020-12-16
EP3854755A4 (en) 2021-12-08
CN112399962B (zh) 2021-09-10
KR102268485B1 (ko) 2021-06-22
JP2020066678A (ja) 2020-04-30
TW202023950A (zh) 2020-07-01
EP3854755A1 (en) 2021-07-28
US20210238421A1 (en) 2021-08-05
TWI697457B (zh) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2020085198A1 (ja) 表面処理済金属酸化物粒子材料、その製造方法、及び電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラー
KR102334773B1 (ko) 열전도성 폴리오가노실록산 조성물
JP6383885B2 (ja) 熱伝導性ポリオルガノシロキサン組成物
TWI767007B (zh) 熱傳導性聚有機矽氧烷組成物
EP3176220A1 (en) Thermally conductive silicone composition, and thermally conductive silicone moudled article
JP2009138036A (ja) 熱伝導性シリコーングリース組成物
JP7050479B2 (ja) 接着剤組成物及びエレクトロニクスにおけるその使用
JP7055255B1 (ja) 熱伝導性シリコーン組成物の製造方法
KR102632046B1 (ko) 열전도성 폴리실록산 조성물의 제조 방법
US20170210886A1 (en) Spherical alumina powder and resin composition using same
CN109564906A (zh) 导热性片材
WO2018139506A1 (ja) 熱伝導性ポリオルガノシロキサン組成物
JP2022546342A (ja) 熱伝導性フィラーおよびその調製方法
TW202144505A (zh) 樹脂組成物、散熱構件、及電子機器
WO2018016565A1 (ja) 熱伝導性ポリオルガノシロキサン組成物用表面処理剤
TW202231785A (zh) 可交聯的導熱矽酮組合物、及其製備方法及其用途
TW202134396A (zh) 導熱性矽酮樹脂組成物、硬化物及導熱性矽酮散熱片材
US11041101B2 (en) Condensation-curable electrically conductive silicone adhesive composition
JP7184311B1 (ja) 樹脂添加剤の製造方法および無機粒子含有樹脂組成物の製造方法
JP2016060680A (ja) 窒化ホウ素凝集体および熱伝導性組成物
JP2023533466A (ja) 熱伝導性シリコーン組成物
Kim et al. Synthesis and Physical Property of Multi-Functional Siloxane Protective Coating Materials Applicable for Electronic Components.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207034319

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019876447

Country of ref document: EP

Effective date: 20210420