WO2020034141A1 - 基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用 - Google Patents

基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用 Download PDF

Info

Publication number
WO2020034141A1
WO2020034141A1 PCT/CN2018/100812 CN2018100812W WO2020034141A1 WO 2020034141 A1 WO2020034141 A1 WO 2020034141A1 CN 2018100812 W CN2018100812 W CN 2018100812W WO 2020034141 A1 WO2020034141 A1 WO 2020034141A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
weight
corrosion inhibitor
coating
nanocontainer
Prior art date
Application number
PCT/CN2018/100812
Other languages
English (en)
French (fr)
Inventor
赵海超
刘成宝
叶育伟
王立平
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to PCT/CN2018/100812 priority Critical patent/WO2020034141A1/zh
Priority to JP2020501815A priority patent/JP6925680B2/ja
Priority to US16/630,489 priority patent/US11505706B2/en
Publication of WO2020034141A1 publication Critical patent/WO2020034141A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/086Organic or non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/42Gloss-reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Definitions

  • the present application relates to an anticorrosive coating, in particular to a graphene nanocontainer-based coating, a self-repairing coating, and a method and application thereof, and belongs to the technical field of metal anticorrosion.
  • Graphene as a two-dimensional nanomaterial, has excellent chemical stability, permeability resistance and mechanical properties.
  • the preparation of graphene-based composite coatings has attracted widespread interest from corrosion protection workers.
  • pinholes and micro-cracks will occur on the coating surface, which will cause local corrosion of the metal, which will greatly reduce the service life of the coating.
  • the anticorrosive coating with self-repairing ability can recover the protective performance of the coating to a certain extent through certain physical and chemical effects after the coating is defective, which can effectively improve the protective performance of the coating.
  • the size of the microcapsules required for the self-healing coatings of this type is large, which will have a certain impact on the denseness of the coating film, which limits its wide application.
  • the other type is to use nano-containers to encapsulate the corrosion inhibitor.
  • the coordination between the corrosion inhibitor and the metal substrate is used to adsorb and form a protective film on the surface of the bare metal to prevent the oxidation reaction of the metal.
  • the commonly used nano-containers are mesopores. , Porous materials, and most of them are spherical or tubular, can not provide a good shielding effect for the coating.
  • the purpose of this application is to provide a coating based on a graphene nanocontainer, a self-healing coating, and a method and application thereof, thereby overcoming the deficiencies in the prior art.
  • An embodiment of the present application provides a coating based on a graphene nanocontainer, which includes:
  • a first component comprising 20 to 40 parts by weight of an epoxy resin
  • the second component comprises 0.1 to 2 parts by weight of a graphene nanocontainer carrying a corrosion inhibitor, 1 part by weight of a diluent, 30 to 60 parts by weight of an epoxy curing agent, 1 part by weight of a defoamer, and 1 part by weight Leveling agent
  • the graphene nanocontainer loaded with a corrosion inhibitor includes graphene grafted with cyclodextrin and a corrosion inhibitor reversibly combined with cyclodextrin.
  • the embodiment of the present application further provides a method for preparing the coating, which comprises: thoroughly mixing 0.1 to 2 parts by weight of a graphene nanocontainer with a corrosion inhibitor and 1 part by weight of a diluent, and then adding 30 to 60 parts by weight Parts of epoxy curing agent, 1 part by weight of defoaming agent and 1 part by weight of leveling agent, and then thoroughly mixed with 20 to 40 parts by weight of epoxy resin to obtain the coating.
  • the embodiment of the present application further provides a self-healing coating formed by any one of the foregoing coatings.
  • the embodiment of the present application further provides a method for preparing a self-healing coating, which includes:
  • the first component and the second component of the coating are thoroughly mixed, and then cured at room temperature for 40-50 hours, and then cured at 40-50 ° C for 3-5 hours.
  • the embodiment of the present application further provides the use of any one of the aforementioned coatings or the aforementioned self-healing coatings in metal anticorrosion.
  • the coating based on the graphene nanocontainer provided in this application can simultaneously improve the shielding performance (passive corrosion protection) and self-repairing performance (active corrosion protection) of the anticorrosive coating, and make full use of the barrier of graphene to the corrosive medium in the organic coating. Effect, while giving the anticorrosive coating a self-healing function.
  • the self-repairing anticorrosive coating based on the graphene nanocontainer provided in the present application relies on the graphene nanocontainer to release the corrosion inhibitor and coordinate with the metal substrate after the coating has suffered mechanical damage and coating defects. It can form an adsorption film on the metal surface, effectively improving the long-term protection of the coating.
  • the preparation method of the graphene nano-container-based coating provided by the present application is simple, the raw materials are environmentally friendly, and the source is wide. At the same time, the self-repairing coating formed by the coating has excellent protection performance, and can be widely used in marine facilities, ship equipment, and Nuclear power industry and other metal anticorrosive coatings.
  • FIG. 1 is an infrared spectrum of a graphene nanocontainer obtained in an example of the present application.
  • 3a-3e show a pure epoxy coating in Comparative Example 1, a graphene oxide / epoxy coating in Comparative Example 3, and a corrosion inhibitor-reduction oxidation in Comparative Example 4, respectively.
  • Graphene / epoxy coating, a graphene nanocontainer / epoxy coating in Comparative Example 2 and a graphene nanocontainer / epoxy coating loaded with a corrosion inhibitor in Example 1 in a 3.5 wt% NaCl solution Electrochemical impedance spectroscopy at different immersion times.
  • the present application proposes a self-repairing coating based on a graphene nanocontainer and a method for preparing the same, which can improve the physical shielding performance of the coating while giving the coating self-repairing performance, and make the formed self-repairing
  • the coating shows excellent long-term protection and self-healing properties, and its preparation process is simple, green and environmentally friendly.
  • a first component comprising 20 to 40 parts by weight of an epoxy resin
  • the second component comprises 0.1 to 2 parts by weight of a graphene nanocontainer carrying a corrosion inhibitor, 1 part by weight of a diluent, 30 to 60 parts by weight of an epoxy curing agent, 1 part by weight of an antifoaming agent, and 1 part by weight Leveling agent
  • the graphene nanocontainer loaded with a corrosion inhibitor includes graphene grafted with cyclodextrin and a corrosion inhibitor reversibly combined with cyclodextrin.
  • the corrosion inhibitor includes benzotriazole, mercaptobenzothiazole, 8-hydroxyquinoline, and the like, but is not limited thereto.
  • the dilution includes, but is not limited to, any one or more of ethanol and n-butanol.
  • the epoxy resin includes any one or more combinations of E44, E20, and E51, but is not limited thereto.
  • the aforementioned "reversible binding" means that after the corrosion inhibitor and the cyclodextrin grafted on graphene are combined under one set condition, they can also be separated from each other under another set condition.
  • the epoxy curing agent includes, but is not limited to, aqueous curing agents such as polyamide-based and acid-anhydride-based curing agents.
  • a combination of high-temperature grafting and low-temperature condensation can be used.
  • an aminated cyclodextrin is grafted onto the surface of graphene oxide, and after reduction with hydrazine hydrate, etc., the mixture is centrifuged and deionized water 2.
  • the corrosion inhibitor such as benzotriazole, BTA
  • the method for preparing the graphene nanocontainer carrying the corrosion inhibitor includes:
  • the cyclodextrin dispersion is slowly added to the graphene oxide dispersion to form a first mixture.
  • the molar ratio of the carboxyl group contained in the graphene oxide to the amino group contained in the aminated cyclodextrin is 1: 1 to 1: 1.3.
  • the first mixture is allowed to react at 75 to 85 ° C. for 20 to 30 hours, after which the solids are separated, washed and dispersed in water to form a second mixture;
  • the method for preparing a graphene nanocontainer carrying a corrosion inhibitor includes: in step (1), (3) or (4), after the reaction is completed, the reaction mixture is separated by centrifugation. , And wash the separated solid with deionized water and absolute ethanol. Further, the centrifugal speed used in the centrifugation method is 4000 to 6000 r / min, and the time is 4 to 15 minutes.
  • the method for preparing a graphene nano-container loaded with a corrosion inhibitor includes: in step (4), dialysis treatment of the separated solid with a dialysis bag with a molecular weight cut-off (MW) of 3000 to 10,000 After 4 to 6 days, it was washed with deionized water and absolute ethanol, and dried under vacuum to obtain a graphene-based nano container.
  • MW molecular weight cut-off
  • the method for preparing a graphene nano-container loaded with a corrosion inhibitor comprises: in step (5), dispersing the graphene nano-container with a mass ratio of 1: 5 to 1:10 and the corrosion inhibitor A fifth mixture is formed in an organic solvent, and the fifth mixture is reacted under the conditions of room temperature, vacuum and stirring to realize the loading of the corrosion inhibitor, and then centrifuged, washed with water and dried in vacuum to obtain the graphene nanometers loaded with the corrosion inhibitor. container.
  • the fifth mixture contains 30-60 mg / mL corrosion inhibitor.
  • the organic solvent includes ethanol and the like, and is not limited thereto.
  • the method for preparing the graphene nanocontainer includes the following steps ("parts” are “molar parts” unless otherwise specified below):
  • Step 1 Disperse 1 part of graphene oxide (based on carboxyl group content) and 1.1 ⁇ 1.3 parts of aminated cyclodextrin (based on amino group content) in a certain amount of deionized water, disperse it with ultrasound, and stir under magnetic stirring The cyclodextrin dispersion was slowly added dropwise to the graphene oxide dispersion to obtain a first reaction mixture.
  • Step 2 Put the first reaction mixture in an 85 ° C oil bath for 30 hours, centrifuge for 15 minutes, discard the supernatant, and wash the lower sediment with deionized water and absolute ethanol. This process is repeated 3 to 5 times. A precipitate was obtained. The precipitate was uniformly dispersed in water to obtain a second reaction mixture
  • Step 3 Disperse 1.1 to 1.2 parts of 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC) and 1.1 to 1.3 parts of aminated cyclodextrin, respectively.
  • EDC 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride
  • aminated cyclodextrin aminated cyclodextrin
  • Step 4 The third reaction mixture is reacted at room temperature for 24 hours, centrifuged for 15 minutes, the supernatant is discarded, and the lower sediment is washed with deionized water and absolute ethanol. This process is repeated 3 to 5 times to obtain a precipitate. The precipitate was uniformly dispersed in deionized water to obtain a fourth reaction mixture.
  • Step 5 Add a certain amount of hydrazine hydrate to the fourth reaction mixture at a mass ratio of 1: 1 to 1: 2 (hydrazine hydrate: graphene oxide) for 5h at room temperature, centrifuge for 15min, discard the supernatant, and use deionization. The lower sediment was washed with water and anhydrous ethanol. This process was repeated 3 to 5 times to obtain a precipitate.
  • the obtained precipitate is subjected to dialysis treatment for 4 to 6 days, washed with deionized water, absolute ethanol, and centrifuged. This process is repeated 3 to 5 times, and the graphene-based nano container is obtained by vacuum drying.
  • Step 7 Using the graphene-based nanocontainer under vacuum and stirring conditions, the concentration of the corrosion inhibitor (such as BTA) is 40 to 60 mg / mL to realize the loading of the corrosion inhibitor, which is obtained by centrifugation, water washing and vacuum drying. Corrosion inhibitor loaded graphene nanocontainers.
  • the corrosion inhibitor such as BTA
  • a method for preparing the coating provided by another aspect of the embodiments of the present application includes: mixing a graphene nanocontainer with a corrosion inhibitor and a diluent, and dispersing it ultrasonically, and then adding a curing agent, a defoaming agent, and a leveling agent. Add the epoxy resin after mixing evenly to obtain a uniformly dispersed coating.
  • the method for preparing the coating includes: thoroughly mixing 0.1 to 2 parts by weight of a graphene nanocontainer with a corrosion inhibitor and 1 part by weight of a diluent, and then adding 30 to 60 parts by weight of a ring An oxygen curing agent, 1 part by weight of a defoaming agent, and 1 part by weight of a leveling agent are then thoroughly mixed with 20 to 40 parts by weight of an epoxy resin to obtain the coating.
  • Another aspect of the embodiments of the present application provides a coating formed from any one of the foregoing coatings.
  • the method for preparing the coating includes (unless otherwise specified, “parts” are “parts by weight”):
  • Step 1 Take 0.1 ⁇ 2 parts of the prepared graphene nano-container with corrosion inhibitor and 1 part of the diluent, magnetically stir for 10 min, and ultrasonically disperse for 15 min to obtain component one.
  • Second step Take 30-60 parts of water-based curing agent, 1 part of defoaming agent and 1 part of leveling agent into component one, and magnetically stir for 1 to 2 hours to obtain component two.
  • the third step Add 20 to 40 parts of epoxy resin to component two to obtain a coating based on graphene nanocontainers.
  • the first component and the second component of the coating are thoroughly mixed, and then cured at room temperature for 40-50 hours, and then cured at 40-50 ° C for 3-5 hours.
  • the method for preparing the self-healing coating is convenient to operate, the raw materials are green and environmentally friendly, and the cost is low.
  • the introduction of graphene nanosheets effectively improves the shielding performance of the coating, and when the coating is damaged, the graphene nanocontainer can release the inhibitor molecules and form a protective film by adsorption on the metal surface, resulting in a self-repairing effect.
  • Another aspect of the embodiments of the present application provides the use of the coating or the self-healing coating in metal anticorrosion.
  • the coating or the self-repairing coating can be widely used in the fields of marine facilities, ship equipment, and nuclear power industry.
  • Embodiment 1 A method for preparing a self-repairing coating based on a graphene nanocontainer in this embodiment includes:
  • step (3) Redisperse the final precipitate obtained in step (2) into deionized water, add hydrazine hydrate dropwise at a mass ratio of 1: 2 (hydrazine hydrate: graphene oxide), magnetically stir at room temperature for 5 hours, centrifuge, and deionize Water and anhydrous ethanol were respectively washed three times to obtain a precipitate.
  • step (3) The final precipitate obtained in step (3) is subjected to dialysis treatment for 4 to 6 days (the cut-off molecular weight MW of the dialysis bag is 3,000 to 10,000), washed with deionized water, absolute ethanol, and centrifuged. This process is repeated.
  • Graphene nanocontainers were obtained by vacuum drying 3 to 5 times, and the infrared spectrum is shown in FIG. 1.
  • the electrode coated with the self-healing coating was immersed in a 3.5wt% NaCl solution, and the long-term protection failure process and mechanism of the coating were analyzed by electrochemical impedance spectroscopy.
  • the self-recovery of the coating was studied by micro-area electrochemical-local impedance technology. Fix performance.
  • Embodiment 2 A method for preparing a self-repairing coating based on a graphene nanocontainer in this embodiment includes:
  • step (3) Redisperse the final precipitate obtained in step (2) into deionized water, add hydrazine hydrate dropwise at a mass ratio of 1: 2 (hydrazine hydrate: graphene oxide), magnetically stir at room temperature for 5 hours, centrifuge, and use Ionic water and absolute ethanol were washed three times respectively to obtain a precipitate.
  • step (3) The final precipitate obtained in step (3) is subjected to dialysis treatment for 4 to 6 days, washed with deionized water, absolute ethanol, and centrifuged. This process is repeated 3 to 5 times, and the graphene nano container is obtained by vacuum drying. , Its infrared spectrum is basically the same as in Figure 1.
  • the electrode coated with the self-healing coating was immersed in a 3.5 wt% NaCl solution, and the long-term protection failure process and mechanism of the coating were analyzed using electrochemical impedance spectroscopy; the self-recovery of the coating was studied by micro-area electrochemical-local impedance technology Fix performance.
  • Embodiment 3 A method for preparing a self-repairing coating based on a graphene nanocontainer in this embodiment includes:
  • step (3) Redisperse the final precipitate obtained in step (2) into deionized water, add hydrazine hydrate dropwise at a mass ratio of 1: 1 (hydrazine hydrate: graphene oxide), magnetically stir at room temperature for 5 hours, centrifuge, and use Ionic water and absolute ethanol were washed three times respectively to obtain a precipitate.
  • step (3) The final precipitate obtained in step (3) is subjected to dialysis treatment for 4 to 6 days, washed with deionized water, absolute ethanol, and centrifuged. This process is repeated 3 to 5 times, and the graphene nano container is obtained by vacuum drying. , Its infrared spectrum is basically the same as in Figure 1.
  • the electrode coated with the self-healing coating was immersed in a 3.5wt% NaCl solution, and the long-term protection failure process and mechanism of the coating were analyzed by electrochemical impedance spectroscopy. Fix performance.
  • Embodiment 4 A method for preparing a self-repairing coating based on a graphene nanocontainer in this embodiment includes:
  • step (3) Redisperse the final precipitate obtained in step (2) into deionized water, add hydrazine hydrate dropwise at a mass ratio of 1: 2 (hydrazine hydrate: graphene oxide), magnetically stir at room temperature for 5 hours, centrifuge, and use Ionic water and absolute ethanol were washed three times respectively to obtain a precipitate.
  • step (3) The final precipitate obtained in step (3) is subjected to dialysis treatment for 4 to 6 days, washed with deionized water, absolute ethanol, and centrifuged. This process is repeated 3 to 5 times, and the graphene nano container is obtained by vacuum drying. , Its infrared spectrum is basically the same as in Figure 1.
  • the electrode coated with the self-healing coating was immersed in a 3.5wt% NaCl solution, and the long-term protection failure process and mechanism of the coating were analyzed by electrochemical impedance spectroscopy.
  • the self-recovery of the coating was studied by micro-area electrochemical-local impedance technology. Fix performance.
  • Comparative Example 1 A method for preparing a pure epoxy coating in the comparative example includes:
  • the carbon steel electrode (1 ⁇ 1cm 2 ) was gradually polished on SiC sandpaper, followed by ultrasonic treatment with anhydrous ethanol and acetone in order; the prepared coating was coated on the carbon steel electrode with a wire rod applicator, and cured at room temperature for 48h. Then, it was placed in an oven at 50 ° C for 3 hours to form an epoxy coating.
  • the coated electrode was immersed in a 3.5 wt% NaCl solution.
  • the electrochemical impedance spectroscopy technique was used to analyze the long-term protection failure process and mechanism of the coating.
  • the micro-area electrochemical-local impedance technique was used to study the self-repairing performance of the coating.
  • Comparative Example 2 A method for preparing a graphene nanocontainer / epoxy coating in the comparative example includes:
  • step (3) Redisperse the final precipitate obtained in step (2) into deionized water, add hydrazine hydrate dropwise at a mass ratio of 1: 2 (hydrazine hydrate: graphene oxide), magnetically stir at room temperature for 5 hours, centrifuge, and use Ionic water and absolute ethanol were washed three times respectively to obtain a precipitate.
  • step (3) The final precipitate obtained in step (3) is subjected to dialysis treatment for 4 to 6 days, washed with deionized water, absolute ethanol, and centrifuged. This process is repeated 3 to 5 times, and the graphene nano container is obtained by vacuum drying.
  • the carbon steel electrode (1 ⁇ 1cm 2 ) was gradually polished on SiC sandpaper, followed by ultrasonic treatment with anhydrous ethanol and acetone in order; the prepared coating was coated on the carbon steel electrode with a wire rod applicator, and cured at room temperature for 48h. Then, it was placed in an oven at 50 ° C. for 3 hours to form a coating (also referred to as “graphene nanocontainer / epoxy coating”).
  • the electrode coated with the coating was immersed in a 3.5 wt% NaCl solution, and the long-term protection failure process and mechanism of the coating were analyzed using electrochemical impedance spectroscopy.
  • the self-repairing performance of the coating was studied by micro-area electrochemical-local impedance technology. .
  • Comparative Example 3 A method for preparing a graphene oxide / epoxy coating in the comparative example includes:
  • the electrode coated with the coating was immersed in a 3.5 wt% NaCl solution, and the long-term protection failure process and mechanism of the coating were analyzed using electrochemical impedance spectroscopy.
  • the self-repairing performance of the coating was studied by micro-area electrochemical-local impedance technology. .
  • Comparative Example 4 A method for preparing a corrosion inhibitor-reduced graphene oxide / epoxy coating in this comparative example includes:
  • the reduced graphene oxide and the inhibitor are reacted at room temperature for 10 to 20 hours to realize the loading of the inhibitor.
  • the concentration of the inhibitor in the reaction system is 30 to 60 mg / mL.
  • the reduced graphene oxide and the inhibitor The mass ratio of the agent is 1: 5 to 1:10.
  • the reduced graphene oxide loaded with the corrosion inhibitor is obtained by centrifugation, washing with water and vacuum drying.
  • the electrode coated with the coating was immersed in a 3.5 wt% NaCl solution, and the long-term protection failure process and mechanism of the coating were analyzed using electrochemical impedance spectroscopy.
  • the self-repairing performance of the coating was studied by micro-area electrochemical-local impedance technology. .
  • FIG. 2a to FIG. 2e respectively show a pure epoxy coating in Comparative Example 1, a graphene oxide / epoxy coating in Comparative Example 3, and a corrosion inhibitor in Comparative Example 4 respectively. Scanning of the cross-sections of the reduced graphene oxide / epoxy coating, the graphene nanocontainer / epoxy coating of Comparative Example 2, and the graphene nanocontainer / epoxy coating of Example 1 loaded with a corrosion inhibitor Electron micrograph.
  • FIGS. 3 a to 3 e respectively showing a pure epoxy coating in Comparative Example 1, a graphene oxide / epoxy coating in Comparative Example 3, and a corrosion inhibitor in Comparative Example 4, respectively.
  • the self-healing coatings obtained in other embodiments of the present application also have similar cross-sectional morphology and corrosion resistance to the self-healing coatings of Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

一种基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用。该涂料包括:第一组分,其包括20~40重量份环氧树脂;以及,第二组分,其包括0.1~2重量份的负载缓蚀剂的石墨烯纳米容器、1重量份的稀释剂、30~60重量份环氧固化剂,1重量份消泡剂和1重量份流平剂;所述负载缓蚀剂的石墨烯纳米容器包括枝接有环糊精的石墨烯以及与环糊精可逆结合的缓蚀剂。由其形成的自修复涂层防护性能优异,兼具良好的屏蔽性能(被动防腐)与自修复性能(主动防腐),可广泛应用于海洋设施、船舶装备及核电工业等金属防腐涂料领域。

Description

基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用 技术领域
本申请涉及一种防腐涂层,特别涉及一种基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用,属于金属防腐技术领域。
背景技术
石墨烯作为一种二维纳米材料,具有优异的化学稳定性、耐渗透性及机械性能。在金属防腐领域,制备石墨烯基复合涂层引起了腐蚀防护工作者的广泛兴趣。然而,涂层在长期服役过程中,涂层表面会发生针孔和微裂纹等现象,引发金属的局部腐蚀,导致涂层使用寿命大大降低。具有自我修复能力的防腐涂层,在涂层产生缺陷后,能够通过一定的物理、化学作用使涂层的防护性能得到一定程度的恢复,可有效提高涂层的防护性能。
人们对于自修复防腐涂层的研究大致分为两类:一是利用聚合物胶囊包覆愈合剂,如异氰酸酯、环氧树脂、亚麻籽油等,利用交联固化反应修复涂层缺陷,但该类自修复涂层所需微胶囊尺寸较大,会对涂层膜的致密性产生一定的影响,限制了其广泛的应用。另一类是利用纳米容器封装缓蚀剂,利用缓蚀剂与金属基底间的配位作用,在裸露金属表面吸附并形成保护膜,阻止金属的氧化反应,通常所使用的纳米容器为介孔、多孔材料,且多为球形或管状,无法为涂层提供良好的屏蔽效果。
目前关于提高石墨烯改性有机涂层的研究较多,关于制备自修复防腐涂层的方法也比较多,但大多数仅仅关注于石墨烯纳米片(被动防腐)或者微胶囊(主动防腐)单独的作用。同时提高涂层被动防腐与主动防腐性能的研究较少。
发明内容
本申请的目的在于提供一种基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用,从而克服现有技术中的不足。
为实现前述发明目的,本申请采用的技术方案包括:
本申请实施例提供了一种基于石墨烯纳米容器的涂料,其包括:
第一组分,其包括20~40重量份环氧树脂;以及
第二组分,其包括0.1~2重量份的负载缓蚀剂的石墨烯纳米容器、1重量份的稀释剂、30~60重量份环氧固化剂,1重量份消泡剂和1重量份流平剂;
所述负载缓蚀剂的石墨烯纳米容器包括枝接有环糊精的石墨烯以及与环糊精可逆结合的缓蚀剂。
本申请实施例还提供了一种制备所述涂料的方法,其包括:将0.1~2重量份负载缓蚀剂的石墨烯纳米容器与1重量份稀释剂充分混合后,再加入30~60重量份环氧固化剂、1重量份消泡剂及1重量份流平剂,之后与20~40重量份环氧树脂充分混合,制得所述涂料。
本申请实施例还提供了由前述任一种涂料形成的自修复涂层。
本申请实施例还提供了一种自修复涂层的制备方法,其包括:
提供前述的任一种涂料;
将所述涂料的第一组分与第二组分充分混合,再在室温固化40~50h,之后于40~50℃固化3~5h。
本申请实施例还提供了前述任一种涂料或前述自修复涂层于金属防腐中的用途。
与现有技术相比,本申请的优点至少在于:
(1)本申请提供的基于石墨烯纳米容器的涂料同时实现防腐涂层屏蔽性能(被动防腐)与自修复性能(主动防腐)的提高,充分发挥石墨烯在有机涂层中对腐蚀介质的阻隔效应,同时赋予防腐涂层自我修复功能。
(2)本申请提供的基于石墨烯纳米容器的自修复防腐涂层,在涂层产生机械损伤及涂层缺陷后,依靠石墨烯纳米容器中释放缓蚀剂并与金属基底的配位作用,能够在金属表面形成吸附膜,有效提高了涂层的长效防护性。
(3)本申请提供的基于石墨烯纳米容器的涂料的制备方法简单、原料绿色环保,且来源广,同时由其形成的自修复涂层防护性能优异,可广泛应用于海洋设施、船舶装备及核电工业等金属防腐涂料领域。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例所获的一种石墨烯纳米容器的红外谱图。
图2a-图2e分别示出了本申请对照例1中一种纯环氧涂层、对照例3中一种氧化石墨烯/环氧涂层、对照例4中一种缓蚀剂-还原氧化石墨烯/环氧涂层、对照例2中一种石墨烯纳米容器/环氧涂层以及实施例1中一种负载缓蚀剂的石墨烯纳米容器/环氧涂层的断面的扫描电镜图。
图3a-图3e分别示出了本申请对照例1中一种纯环氧涂层、对照例3中一种氧化石墨烯/环氧涂层、对照例4中一种缓蚀剂-还原氧化石墨烯/环氧涂层、对照例2中一种石墨烯纳米容器/环氧涂层以及实施例1中一种负载缓蚀剂的石墨烯纳米容器/环氧涂层在3.5wt%NaCl溶液中浸泡不同时间的电化学阻抗谱图。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
概括地讲,本申请提出了一种基于石墨烯纳米容器的自修复涂层及其制备方法,其可以在在提高涂层物理屏蔽性能的同时赋予涂层自修复性能,且使形成的自修复涂层表现出优异的长效防护性及自修复性,同时其制备工艺具有简单、绿色环保等特点。
本申请实施例的一个方面提供的一种基于石墨烯纳米容器的涂料包括:
第一组分,其包括20~40重量份环氧树脂;以及
第二组分,其包括0.1~2重量份的负载缓蚀剂的石墨烯纳米容器、1重量份的稀释剂、30~60重量份环氧固化剂,1重量份消泡剂和1重量份流平剂;
所述负载缓蚀剂的石墨烯纳米容器包括枝接有环糊精的石墨烯以及与环糊精可逆结合的缓蚀剂。
进一步的,所述缓蚀剂包括苯并三氮唑、巯基苯并噻唑、8-羟基喹啉等,但不限于此。
进一步的,所述稀释包括乙醇、正丁醇的任意一种或多种的组合,但不限于此。
进一步的,所述环氧树脂包括E44,E20和E51的任意一种或多种的组合,但不限于此。
进一步的,前述的“可逆结合”是指缓蚀剂与枝接在石墨烯上的环糊精在一设定条件下结合后,还可在另一设定条件下相互分离。
进一步的,所述环氧固化剂包括聚酰胺类、酸酐类固化剂等水性固化剂,但不限于此。
在本申请的一些实施方案中,可以采用高温接枝与低温缩合相结合的方法,先将氨基化环糊精接枝到氧化石墨烯表面,利用水合肼等还原后,经离心,去离子水、无水乙醇清洗,真空干燥得到石墨烯纳米容器,之后,利用环糊精与缓蚀剂(例如苯并三氮唑,BTA)之间的主客体相互作用,实现缓蚀剂的有效负载,即,获得负载缓蚀剂的石墨烯纳米容器。
在一些较为具体的实施方案中,所述负载缓蚀剂的石墨烯纳米容器的制备方法包括:
(1)将环糊精分散液缓慢加入氧化石墨烯分散液内形成第一混合物,其中氧化石墨烯所含羧基与氨基化环糊精所含氨基的摩尔比为1:1~1:1.3,并使所述第一混合物于75~85℃反应20~30h,之后分离出其中的固形物,清洗后分散到水中,形成第二混合物;
(2)将1.1~1.2份摩尔份1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和1.1~1.3摩尔份氨基化环糊精分散在去离子水中形成分散液,再将该分散液缓慢加入第二混合物中,获得第三混合物;
(3)使所述第三混合物在常温下反应20~30h,之后分离出其中的固形物,清洗后分散到水中,形成第四混合物;
(4)将水合肼与第四混合物混合并在常温下反应4~10h,之后分离出其中的固形物,依次经清洗、透析处理后,获得石墨烯纳米容器,其中水合肼与氧化石墨烯的质量比为1:1~1:2;
(5)使石墨烯纳米容器与缓蚀剂于室温条件下反应10~20h,形成负载缓蚀剂的石墨烯纳米容器,其中石墨烯纳米容器与缓蚀剂的质量比为1:5~1:10。
在一些实施方案中,所述负载缓蚀剂的石墨烯纳米容器的制备方法包括:在步骤(1)、(3)或(4)中,于反应结束后,采用离心方式对反应混合物进行分离,并以去离子水、无水乙醇清洗分离出的固形物。进一步的,所述离心方式中采用的离心转速为4000~6000r/min, 时间为4~15min。
在一些实施方案中,所述负载缓蚀剂的石墨烯纳米容器的制备方法包括:在步骤(4)中,以截留分子量(MW)为3000~10000的透析袋对分离出的固形物透析处理4~6天,再经去离子水、无水乙醇清洗,真空干燥后,得到石墨烯基纳米容器。
在一些实施方案中,所述负载缓蚀剂的石墨烯纳米容器的制备方法包括:在步骤(5)中,将质量比为1:5~1:10的石墨烯纳米容器与缓蚀剂分散在有机溶剂中形成第五混合物,并使第五混合物于室温条件、抽真空及搅拌状态下反应,实现缓蚀剂的负载,再经离心,水洗、真空干燥得到负载缓蚀剂的石墨烯纳米容器。
优选的,所述第五混合物包含30~60mg/mL缓蚀剂。
进一步地,所述有机溶剂包括乙醇等,且不限于此。
在本申请的一些较为具体的实施方案中,所述石墨烯纳米容器的制备方法包括如下步骤(如下若非特别说明,则“份”均为“摩尔份”):
第一步:将1份氧化石墨烯(按羧基含量计)、1.1~1.3份氨基化环糊精(按氨基含量计)分别分散在一定量的去离子水中,超声分散,在磁力搅拌下将环糊精分散液缓慢滴加到氧化石墨烯分散液中,获得第一反应混合物。
第二步:将第一反应混合物置于85℃油浴中反应30h,离心15min,倒掉上清液,用去离子水、无水乙醇清洗下层沉积物,该过程反复进行3~5次,获得沉淀物。将所述沉淀物均匀分散到水中,得到第二反应混合物
第三步:分别将1.1~1.2份1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和1.1~1.3份氨基化环糊精分散在一定量的去离子水中,超声分散,在磁力搅拌下将分散液缓慢滴加到第二反应混合物中,获得第三反应混合物。
第四步:将第三反应混合物在常温下反应24h,离心15min,倒掉上清液,用去离子水、无水乙醇清洗下层沉积物,该过程反复进行3~5次,获得沉淀物。将所述沉淀物均匀分散到去离子水中,得到第四反应混合物。
第五步:按质量比1:1~1:2(水合肼:氧化石墨烯)将一定量水合肼加入到第四反应混合物中常温反应5h,离心15min,倒掉上清液,用去离子水、无水乙醇水洗下层沉积物,该过程反复进行3~5次,获得沉淀物。
第六步:将上述所得沉淀物进行透析处理4~6天,经去离子水、无水乙醇清洗,离心处理,该过程反复进行3~5次,真空干燥得到石墨烯基纳米容器。
第七步:利用所述石墨烯基纳米容器在抽真空及搅拌状态下,缓蚀剂(如BTA)浓度为40~60mg/mL,实现缓蚀剂的负载,经离心,水洗、真空干燥得到负载缓蚀剂的石墨烯纳米容器。
本申请实施例的另一个方面提供的一种制备所述涂料的方法,包括:将负载缓蚀剂的石墨烯纳米容器与稀释剂混合并超声分散,之后加入固化剂、消泡剂、流平剂等,混合均匀后加入环氧树脂,得到均匀分散的涂料。
在一些较为具体的实施方案中,所述涂料的制备方法包括:将0.1~2重量份负载缓蚀剂的石墨烯纳米容器与1重量份稀释剂充分混合后,再加入30~60重量份环氧固化剂、1重量份消泡剂及1重量份流平剂,之后与20~40重量份环氧树脂充分混合,制得所述涂料。
本申请实施例的另一个方面提供了由前述任一种涂料形成的涂层。
在一些较为具体的实施方案中,所述涂料的制备方法包括(如下若非特别说明,则“份”均为“重量份”):
第一步:取0.1~2份制备的负载缓蚀剂的石墨烯纳米容器与1份稀释剂混合,磁力搅拌10min,超声分散15min,得到组分一。
第二步:取30~60份水性固化剂,1份消泡剂、1份流平剂加入到组分一中,磁力搅拌1~2h,得到组分二。
第三步:取20~40份环氧树脂加入到组分二中,得到基于石墨烯纳米容器的涂料。
本申请实施例的另一个方面提供的一种自修复涂层的制备方法包括:
提供前述的任一种涂料;
将所述涂料的第一组分与第二组分充分混合,再在室温固化40~50h,之后于40~50℃固化3~5h。
本申请制备所述自修复涂层的方法操作方便,原材料绿色环保,成本低廉。其中,石墨烯纳米片的引入有效提高了涂层的屏蔽性能,而且当涂层产生破损后,石墨烯纳米容器能够释放缓蚀剂分子,并在金属表面吸附形成保护膜,产生自修复作用。
相应的,本申请实施例的另一个方面提供了所述涂料或所述自修复涂层于金属防腐中的 用途。
进一步的,所述涂料或所述自修复涂层可广泛应用于海洋设施、船舶装备及核电工业等领域。
下面结合说明书附图及若干典型实施例对本申请的技术方案作进一步说明。需说明的是,如下实施例中所使用的各种原料均可通过市购或自制途径获取。而相应的反应设备、测试设备等,若非特别说明,也均可以从本领域技术人员所知的途径获取。
实施例1该实施例中一种基于石墨烯纳米容器的自修复涂层的制备方法包括:
(1)将1摩尔份氧化石墨烯(按羧基含量计)、1.2摩尔份氨基化环糊精(按氨基含量计)分别分散在一定量的去离子水中,超声分散,在磁力搅拌下将环糊精分散液缓慢滴加到氧化石墨烯分散液中。将上述混合物置于85℃油浴中反应30h,离心处理15min(离心转速为4000~6000r/min),倒掉上清液,用去离子水、无水乙醇清洗下层沉积物,该过程反复进行3~5次,获得沉淀物。
(2)将1.2摩尔份1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)、1.2摩尔份氨基化环糊精分别分散在一定量的去离子水中,在磁力搅拌下将EDC分散液缓慢滴加到步骤(1)所得沉淀物中。将上述合物在常温下反应20~30h,之后离心分离(离心转速为4000~6000r/min,时间为4~15min,下同)出其中的固形物。
(3)将步骤(2)最终所获沉淀物重新分散到去离子水中,按质量比1:2(水合肼:氧化石墨烯)滴加入水合肼,常温下磁力搅拌5h,离心,用去离子水、无水乙醇分别清洗三次,得到沉淀物。
(4)将步骤(3)最终所获沉淀物进行透析处理4~6天(透析袋的截留分子量MW为3000~10000),经去离子水、无水乙醇清洗,离心处理,该过程反复进行3~5次,真空干燥得到石墨烯纳米容器,其红外谱图如图1所示。
(5)将质量比为1:5的石墨烯纳米容器与缓蚀剂分散在乙醇等有机溶剂中形成第五混合物,其中缓蚀剂浓度为30mg/mL,并使第五混合物于室温条件、抽真空及搅拌状态下反应,实现缓蚀剂的负载,再经离心,水洗、真空干燥得到负载缓蚀剂的石墨烯纳米容器。
(6)取0.1重量份负载缓蚀剂的石墨烯纳米容器与1重量份稀释剂混合,磁力搅拌10min,超声分散15min,得到组分一,另取30重量份水性固化剂、1重量份消泡剂、1重量份 流平剂加入到组分一中,磁力搅拌1h,得到组分二;取20重量份环氧树脂加入到组分二中,得到基于石墨烯纳米容器的涂料。
(7)将碳钢电极(1×1cm 2)在SiC砂纸上逐级打磨,依次用无水乙醇、丙酮超声处理;用线棒涂布器将所制备的涂料涂敷在碳钢电极上,常温固化48h后,再置于50℃烘箱中处理3h,形成自修复涂层(亦称“负载缓蚀剂的石墨烯纳米容器/环氧涂层”)。
将涂敷该自修复涂层的电极浸泡在3.5wt%NaCl溶液中,利用电化学阻抗谱技术分析涂层长周期防护失效过程及机理;通过微区电化学-局部阻抗技术研究涂层的自修复性能。
实施例2该实施例中一种基于石墨烯纳米容器的自修复涂层的制备方法包括:
(1)将1摩尔份氧化石墨烯(按羧基含量计)、1.2摩尔份氨基化环糊精(按氨基含量计)分别分散在一定量的去离子水中,超声分散,在磁力搅拌下将环糊精分散液缓慢滴加到氧化石墨烯分散液中。将上述混合物置于85℃油浴中反应30h,离心(离心转速为4000~6000r/min)15min,倒掉上清液,用去离子水、无水乙醇清洗下层沉积物,该过程反复进行3~5次,获得沉淀物。
(2)将1.2摩尔份1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)、1.2摩尔份氨基化环糊精分别分散在一定量的去离子水中,在磁力搅拌下将EDC分散液缓慢滴加到步骤(1)所得沉淀物中。将上述合物在常温下反应20~30h,之后离心分离(离心转速为4000~6000r/min,时间为4~15min,下同)出其中的固形物。
(3)将步骤(2)最终所获沉淀物重新分散到去离子水中,按质量比1:2(水合肼:氧化石墨烯)滴加入水合肼,常温下磁力搅拌5h,离心处理,用去离子水、无水乙醇分别清洗三次,得到沉淀物。
(4)将步骤(3)最终所获沉淀物进行透析处理4~6天,经去离子水、无水乙醇清洗,离心处理,该过程反复进行3~5次,真空干燥得到石墨烯纳米容器,其红外谱图与图1基本相同。
(5)将质量比为1:10的石墨烯纳米容器与缓蚀剂分散在乙醇等有机溶剂中形成第五混合物,其中缓蚀剂浓度为60mg/mL,并使第五混合物于室温条件、抽真空及搅拌状态下反应,实现缓蚀剂的负载,再经离心,水洗、真空干燥得到负载缓蚀剂的石墨烯纳米容器。
(6)取0.5重量份负载缓蚀剂的石墨烯纳米容器与1重量份稀释剂混合,磁力搅拌10 min,超声分散15min,得到组分一,另取30重量份水性固化剂、1重量份消泡剂、1重量份流平剂加入到组分一中,磁力搅拌1h,得到组分二;取20重量份环氧树脂加入到组分二中,得到基于石墨烯纳米容器的涂料。
(7)将碳钢电极(1×1cm 2)在SiC砂纸上逐级打磨,依次用无水乙醇、丙酮超声处理;用线棒涂布器将所制备的涂料涂敷在碳钢电极上,常温固化48h后,再置于50℃烘箱中处理3h,形成自修复涂层(亦称“负载缓蚀剂的石墨烯纳米容器/环氧涂层”)。
将涂敷该自修复涂层的电极浸泡在3.5wt%NaCl溶液中,利用电化学阻抗谱技术分析涂层长周期防护失效过程及机理;通过微区电化学-局部阻抗技术研究涂层的自修复性能。
实施例3该实施例中一种基于石墨烯纳米容器的自修复涂层的制备方法包括:
(1)将1摩尔份氧化石墨烯(按羧基含量计)、1.1摩尔份氨基化环糊精(按氨基含量计)分别分散在一定量的去离子水中,超声分散,在磁力搅拌下将环糊精分散液缓慢滴加到氧化石墨烯分散液中。将上述混合物置于85℃油浴中反应30h,离心(离心转速为4000~6000r/min)15min,倒掉上清液,用去离子水、无水乙醇清洗下层沉积物,该过程反复进行3~5次,获得沉淀物。
(2)将1.1摩尔份1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)、1.3摩尔份氨基化环糊精分别分散在一定量的去离子水中,在磁力搅拌下将EDC分散液缓慢滴加到步骤(1)所得沉淀物中。将上述合物在常温下反应20~30h,之后离心分离(离心转速为4000~6000r/min,时间为4~15min,下同)出其中的固形物。
(3)将步骤(2)最终所获沉淀物重新分散到去离子水中,按质量比1:1(水合肼:氧化石墨烯)滴加入水合肼,常温下磁力搅拌5h,离心处理,用去离子水、无水乙醇分别清洗三次,得到沉淀物。
(4)将步骤(3)最终所获沉淀物进行透析处理4~6天,经去离子水、无水乙醇清洗,离心处理,该过程反复进行3~5次,真空干燥得到石墨烯纳米容器,其红外谱图与图1基本相同。
(5)将质量比为1:6的石墨烯纳米容器与缓蚀剂分散在乙醇等有机溶剂中形成第五混合物,其中缓蚀剂浓度为40mg/mL,并使第五混合物于室温条件、抽真空及搅拌状态下反应,实现缓蚀剂的负载,再经离心,水洗、真空干燥得到负载缓蚀剂的石墨烯纳米容器。
(6)取1重量份负载缓蚀剂的石墨烯纳米容器与1重量份稀释剂混合,磁力搅拌10min,超声分散15min,得到组分一,另取30重量份水性固化剂、1重量份消泡剂、1重量份流平剂加入到组分一中,磁力搅拌1h,得到组分二;取20重量份环氧树脂加入到组分二中,得到基于石墨烯纳米容器的涂料。
(7)将碳钢电极(1×1cm 2)在SiC砂纸上逐级打磨,依次用无水乙醇、丙酮超声处理;用线棒涂布器将所制备的涂料涂敷在碳钢电极上,常温固化48h后,再置于50℃烘箱中处理3h,形成自修复涂层(亦称“负载缓蚀剂的石墨烯纳米容器/环氧涂层”)。
将涂敷该自修复涂层的电极浸泡在3.5wt%NaCl溶液中,利用电化学阻抗谱技术分析涂层长周期防护失效过程及机理;通过微区电化学-局部阻抗技术研究涂层的自修复性能。
实施例4该实施例中一种基于石墨烯纳米容器的自修复涂层的制备方法包括:
(1)将1摩尔份氧化石墨烯(按羧基含量计)、1.3摩尔份氨基化环糊精(按氨基含量计)分别分散在一定量的去离子水中,超声分散,在磁力搅拌下将环糊精分散液缓慢滴加到氧化石墨烯分散液中。将上述混合物置于85℃油浴中反应30h,离心15min(离心转速为4000~6000r/min),倒掉上清液,用去离子水、无水乙醇清洗下层沉积物,该过程反复进行3~5次,获得沉淀物。
(2)将1.1摩尔份1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)、1.1摩尔份氨基化环糊精分别分散在一定量的去离子水中,在磁力搅拌下将EDC分散液缓慢滴加到步骤(1)所得沉淀物中。将上述合物在常温下反应20~30h,之后离心分离(离心转速为4000~6000r/min,时间为4~15min,下同)出其中的固形物。
(3)将步骤(2)最终所获沉淀物重新分散到去离子水中,按质量比1:2(水合肼:氧化石墨烯)滴加入水合肼,常温下磁力搅拌5h,离心处理,用去离子水、无水乙醇分别清洗三次,得到沉淀物。
(4)将步骤(3)最终所获沉淀物进行透析处理4~6天,经去离子水、无水乙醇清洗,离心处理,该过程反复进行3~5次,真空干燥得到石墨烯纳米容器,其红外谱图与图1基本相同。
(5)将质量比为1:8的石墨烯纳米容器与缓蚀剂分散在乙醇等有机溶剂中形成第五混合物,其中缓蚀剂浓度为50mg/mL,并使第五混合物于室温条件、抽真空及搅拌状态下反应, 实现缓蚀剂的负载,再经离心,水洗、真空干燥得到负载缓蚀剂的石墨烯纳米容器。
(6)取2重量份负载缓蚀剂的石墨烯纳米容器与1重量份稀释剂混合,磁力搅拌10min,超声分散15min,得到组分一,另取30重量份水性固化剂、1重量份消泡剂、1重量份流平剂加入到组分一中,磁力搅拌1h,得到组分二;取20重量份环氧树脂加入到组分二中,得到基于石墨烯纳米容器的涂料。
(7)将碳钢电极(1×1cm 2)在SiC砂纸上逐级打磨,依次用无水乙醇、丙酮超声处理;用线棒涂布器将所制备的涂料涂敷在碳钢电极上,常温固化48h后,再置于50℃烘箱中处理3h,形成自修复涂层(亦称“负载缓蚀剂的石墨烯纳米容器/环氧涂层”)。
将涂敷该自修复涂层的电极浸泡在3.5wt%NaCl溶液中,利用电化学阻抗谱技术分析涂层长周期防护失效过程及机理;通过微区电化学-局部阻抗技术研究涂层的自修复性能。
对比例1该对照例中一种纯环氧涂层的制备方法包括:
取1份消泡剂、1份流平剂、1份稀释剂加入到30份环氧固化剂中,磁力搅拌1h,得到组分一;取20份环氧树脂加入到组分一中,得到环氧涂料。
将碳钢电极(1×1cm 2)在SiC砂纸上逐级打磨,依次用无水乙醇、丙酮超声处理;用线棒涂布器将所制备的涂料涂敷在碳钢电极上,常温固化48h后,置于50℃烘箱中处理3h,形成环氧涂层。
将涂敷涂层的电极浸泡在3.5wt%NaCl溶液中。利用电化学阻抗谱技术分析涂层长周期防护失效过程及机理;通过微区电化学-局部阻抗技术研究涂层的自修复性能。
对比例2该对照例中一种石墨烯纳米容器/环氧涂层的制备方法包括:
(1)将1摩尔份氧化石墨烯(按环氧基含量)、1.2摩尔份氨基化环糊精分别分散在一定量的去离子水中,超声分散,在磁力搅拌下将环糊精分散液缓慢滴加到氧化石墨烯分散液中。将上述混合物置于85℃油浴中反应30h,离心15min(离心转速为4000~6000r/min),倒掉上清液,用去离子水、无水乙醇清洗下层沉积物,该过程反复进行3~5次,获得沉淀物。
(2)将1.2摩尔份1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)、1.2摩尔份氨基化环糊精分别分散在一定量的去离子水中,在磁力搅拌下将EDC分散液缓慢滴加到步骤(1)所得沉淀物中。将上述合物在常温下反应20~30h,之后离心分离(离心转速为4000~6000r/min,时间为4~15min,下同)出其中的固形物。
(3)将步骤(2)最终所获沉淀物重新分散到去离子水中,按质量比1:2(水合肼:氧化石墨烯)滴加入水合肼,常温下磁力搅拌5h,离心处理,用去离子水、无水乙醇分别清洗三次,得到沉淀物。
(4)将步骤(3)最终所获沉淀物进行透析处理4~6天,经去离子水、无水乙醇清洗,离心处理,该过程反复进行3~5次,真空干燥得到石墨烯纳米容器
(5)取0.5份(质量比)石墨烯纳米容器与1份稀释剂混合,磁力搅拌10min,超声分散15min,得到组分一;取30份水性固化剂、1份消泡剂、1份流平剂加入到组分一中,磁力搅拌1h,得到组分二;取20份环氧树脂加入到组分二中,得到基于石墨烯纳米容器的涂料。
将碳钢电极(1×1cm 2)在SiC砂纸上逐级打磨,依次用无水乙醇、丙酮超声处理;用线棒涂布器将所制备的涂料涂敷在碳钢电极上,常温固化48h后,置于50℃烘箱中处理3h,形成涂层(亦称“石墨烯纳米容器/环氧涂层”)。
将涂敷该涂层的电极浸泡在3.5wt%NaCl溶液中,利用电化学阻抗谱技术分析涂层长周期防护失效过程及机理;通过微区电化学-局部阻抗技术研究涂层的自修复性能。
对照例3:该对照例中一种氧化石墨烯/环氧涂层的制备方法包括:
(1)取0.5重量份市购氧化石墨烯与1重量份稀释剂混合,磁力搅拌10min,超声分散15min,得到组分一,另取30重量份水性固化剂、1重量份消泡剂、1重量份流平剂加入到组分一中,磁力搅拌1h,得到组分二;取20重量份环氧树脂加入到组分二中,得到基于氧化石墨烯的涂料。
(2)将碳钢电极(1×1cm 2)在SiC砂纸上逐级打磨,依次用无水乙醇、丙酮超声处理;用线棒涂布器将所制备的涂料涂敷在碳钢电极上,常温固化48h后,再置于50℃烘箱中处理3h,形成涂层。
将涂敷该涂层的电极浸泡在3.5wt%NaCl溶液中,利用电化学阻抗谱技术分析涂层长周期防护失效过程及机理;通过微区电化学-局部阻抗技术研究涂层的自修复性能。
对照例4:该对照例中一种缓蚀剂-还原氧化石墨烯/环氧涂层的制备方法包括:
(1)将市购氧化石墨烯分散到去离子水中,按质量比1:2(水合肼:氧化石墨烯)滴加入水合肼,常温下磁力搅拌5h,离心处理15min(离心转速为4000~6000r/min),用去离子水、无水乙醇分别清洗三次,得到沉淀物,真空干燥得到还原氧化石墨烯。
(2)使还原氧化石墨烯与缓蚀剂在室温条件下反应10~20h,实现缓蚀剂的负载,反应体系中缓蚀剂的浓度为30~60mg/mL,还原氧化石墨烯与缓蚀剂的质量比为1:5~1:10,经离心,水洗、真空干燥得到负载缓蚀剂的还原氧化石墨烯。
(3)取0.5重量份负载缓蚀剂的还原氧化石墨烯与1重量份稀释剂混合,磁力搅拌10min,超声分散15min,得到组分一,另取30重量份水性固化剂、1重量份消泡剂、1重量份流平剂加入到组分一中,磁力搅拌1h,得到组分二;取20重量份环氧树脂加入到组分二中,得到基于还原氧化石墨烯的涂料。
(4)将碳钢电极(1×1cm 2)在SiC砂纸上逐级打磨,依次用无水乙醇、丙酮超声处理;用线棒涂布器将所制备的涂料涂敷在碳钢电极上,常温固化48h后,再置于50℃烘箱中处理3h,形成涂层。
将涂敷该涂层的电极浸泡在3.5wt%NaCl溶液中,利用电化学阻抗谱技术分析涂层长周期防护失效过程及机理;通过微区电化学-局部阻抗技术研究涂层的自修复性能。
请参阅图2a-图2e分别示出了本申请对照例1中一种纯环氧涂层、对照例3中一种氧化石墨烯/环氧涂层、对照例4中一种缓蚀剂-还原氧化石墨烯/环氧涂层、对照例2中一种石墨烯纳米容器/环氧涂层以及实施例1中一种负载缓蚀剂的石墨烯纳米容器/环氧涂层的断面的扫描电镜图。
另请参阅图3a-图3e分别示出了本申请对照例1中一种纯环氧涂层、对照例3中一种氧化石墨烯/环氧涂层、对照例4中一种缓蚀剂-还原氧化石墨烯/环氧涂层、对照例2中一种石墨烯纳米容器/环氧涂层以及实施例1中一种负载缓蚀剂的石墨烯纳米容器/环氧涂层在3.5wt%NaCl溶液中浸泡不同时间的电化学阻抗谱图。
本申请其它实施例所获自修复涂层亦具有与实施例1自修复涂层相似的断面形貌及抗腐蚀性能。
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种基于石墨烯纳米容器的涂料,其特征在于包括:
    第一组分,其包括20~40重量份环氧树脂;以及
    第二组分,其包括0.1~2重量份的负载缓蚀剂的石墨烯纳米容器、1重量份的稀释剂、30~60重量份环氧固化剂,1重量份消泡剂和1重量份流平剂;
    所述负载缓蚀剂的石墨烯纳米容器包括枝接有环糊精的石墨烯以及与环糊精可逆结合的缓蚀剂。
  2. 根据权利要求1所述的涂料,其特征在于:所述缓蚀剂包括苯并三氮唑、巯基苯并噻唑和8-羟基喹啉中的任意一种或两种以上的组合;和/或,所述稀释剂包括无水乙醇和/或正丁醇;和/或,所述环氧树脂包括E44、E20和E51中的任意一种或两种以上的组合;和/或,所述环氧固化剂包括聚酰胺类或酸酐类固化剂。
  3. 根据权利要求1所述的涂料,其特征在于,所述负载缓蚀剂的石墨烯纳米容器的制备方法包括:
    (1)将环糊精分散液缓慢加入氧化石墨烯分散液内形成第一混合物,其中氧化石墨烯所含羧基与氨基化环糊精所含氨基的摩尔比为1:1~1:1.3,并使所述第一混合物于75~85℃反应20~30h,之后分离出其中的固形物,清洗后分散到水中,形成第二混合物;
    (2)将1.1~1.2摩尔份1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和1.1~1.3摩尔份氨基化环糊精分散在去离子水中形成分散液,再将该分散液缓慢加入第二混合物中,获得第三混合物;
    (3)使所述第三混合物在常温下反应20~30h,之后分离出其中的固形物,清洗后分散到水中,形成第四混合物;
    (4)将水合肼与第四混合物混合并在常温下反应4~10h,之后分离出其中的固形物,依次经清洗、透析处理后,获得石墨烯纳米容器,其中水合肼与氧化石墨烯的质量比为1:1~1:2;
    (5)使石墨烯纳米容器与缓蚀剂在室温条件下反应10~20h,形成负载缓蚀剂的石墨烯纳米容器,其中石墨烯纳米容器与缓蚀剂的质量比为1:5~1:10。
  4. 根据权利要求3所述的涂料,其特征在于,所述的制备方法包括:在步骤(1)、(3)或(4)中,于反应结束后,采用离心方式对反应混合物进行分离,并以去离子水、无水乙醇清洗分离出的固形物,其中采用的离心转速为4000~6000r/min,离心时间为4~15min;和/或,在步骤(4)中,以截留分子量为3000~10000的透析袋对分离出的固形物透析处理4~6天,再经去离子水、无水乙醇清洗,真空干燥后,得到石墨烯基纳米容器。
  5. 根据权利要求3所述的涂料,其特征在于,所述的制备方法包括:在步骤(5)中,将质量比为1:5~1:10的石墨烯纳米容器与缓蚀剂分散在有机溶剂中形成第五混合物,并使第五混合物于室温条件、抽真空及搅拌状态下反应,实现缓蚀剂的负载,再经离心,水洗、真空干燥得到负载缓蚀剂的石墨烯纳米容器。
  6. 根据权利要求5所述的涂料,其特征在于:所述第五混合物包含30~60mg/mL缓蚀剂;和/或,所述有机溶剂包括乙醇。
  7. 如权利要求1-6中任一项所述涂料的制备方法,其特征在于包括:将0.1~2重量份负载缓蚀剂的石墨烯纳米容器与1重量份稀释剂充分混合后,再加入30~60重量份环氧固化剂、1重量份消泡剂及1重量份流平剂,之后与20~40重量份环氧树脂充分混合,制得所述涂料。
  8. 由权利要求1-6中任一项所述涂料形成的自修复涂层。
  9. 一种自修复涂层的制备方法,其特征在于包括:
    提供权利要求1-6中任一项所述的涂料;
    将所述涂料的第一组分与第二组分充分混合,再在室温固化40~50h,之后于40~60℃固化3~5h。
  10. 权利要求1-6中任一项所述涂料或权利要求8所述自修复涂层于金属防腐中的用途。
PCT/CN2018/100812 2018-08-16 2018-08-16 基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用 WO2020034141A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/100812 WO2020034141A1 (zh) 2018-08-16 2018-08-16 基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用
JP2020501815A JP6925680B2 (ja) 2018-08-16 2018-08-16 塗料の製造方法、および自己修復コーティング層の調製方法
US16/630,489 US11505706B2 (en) 2018-08-16 2018-08-16 Paint based on graphene nano container and self-repairing coating as well as preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100812 WO2020034141A1 (zh) 2018-08-16 2018-08-16 基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用

Publications (1)

Publication Number Publication Date
WO2020034141A1 true WO2020034141A1 (zh) 2020-02-20

Family

ID=69524644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100812 WO2020034141A1 (zh) 2018-08-16 2018-08-16 基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用

Country Status (3)

Country Link
US (1) US11505706B2 (zh)
JP (1) JP6925680B2 (zh)
WO (1) WO2020034141A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111268672A (zh) * 2020-02-24 2020-06-12 山西大学 一种功能化石墨烯复合物及其制备方法和应用
CN111423785A (zh) * 2020-04-09 2020-07-17 青岛理工大学 一种具有自修复功能的超疏水涂料及其制备方法
CN111704821A (zh) * 2020-06-19 2020-09-25 中国科学院金属研究所 一种基于氧化石墨烯接枝的复合型防锈颜料及其在防腐涂料中的应用
CN111826074A (zh) * 2020-07-09 2020-10-27 北京科技大学 一种基于氮化钛光热响应的双重自修复涂层及其制备方法
CN113265185A (zh) * 2021-05-24 2021-08-17 广州市上善纳米材料有限公司 一种自修复石墨烯复合钛纳米重防腐材料及其制备和使用方法
CN114381023A (zh) * 2021-12-17 2022-04-22 武汉工程大学 一种交联β-环糊精的MXene膜及其制备方法和应用
CN114933844A (zh) * 2022-03-30 2022-08-23 哈尔滨工程大学 一种环糊精改性氧化石墨烯复合涂层的制备方法
CN116213227A (zh) * 2023-02-27 2023-06-06 中国石油大学(华东) 一种防腐耐冲蚀多功能涂层的制备方法
CN117777820A (zh) * 2024-02-28 2024-03-29 太原理工大学 一种可逆自预警、自修复涂层及其制备方法
CN117777820B (zh) * 2024-02-28 2024-05-31 太原理工大学 一种可逆自预警、自修复涂层及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202037681A (zh) 2018-11-29 2020-10-16 大陸商東麗先端材料研究開發(中國)有限公司 一種石墨烯防腐塗料
CN113337166B (zh) * 2021-06-18 2022-02-11 中国科学院苏州纳米技术与纳米仿生研究所 二维石墨烯超分子自修复疏水防护复合材料、制法及应用
CN113563753B (zh) * 2021-07-07 2022-09-09 西安理工大学 一种离子响应型抗菌防腐涂料的制备方法
CN113603404B (zh) * 2021-08-11 2022-10-04 广东大禹水利建设有限公司 一种用于道路修缮的骨料复合胶结混凝土的制备方法及制备装置
CN113637391A (zh) * 2021-08-20 2021-11-12 西安石油大学 一种石墨烯自修复无溶剂环氧防腐涂料及其制备方法和使用方法
CN113583545B (zh) * 2021-09-13 2022-06-21 安徽大学 氨基化go/环糊精改性水性环氧树脂防腐涂料
CN113912164A (zh) * 2021-09-15 2022-01-11 黑龙江省瓦茨环保机电设备有限责任公司 一种油田污水杀菌用多元金属掺杂石墨烯复合电极材料的制备方法
CN113861800B (zh) * 2021-10-08 2022-11-22 中山大学 一种太阳光驱动自修复涂料、涂层及其制备方法
CN113861791B (zh) * 2021-10-15 2022-10-11 国网湖南省电力有限公司 一种单组分固化酸性水性锈转涂料及其制备和应用
CN114806247B (zh) * 2022-06-09 2023-04-11 东北石油大学 一种紫外光敏防腐耐磨填料及其制备方法和在涂料中的应用
CN115504454B (zh) * 2022-09-13 2024-02-02 中国石油大学(华东) 一种新型绿色稀土掺杂的碳点缓蚀剂的制备及离子液体对其进行改性的方法
CN115678411B (zh) * 2022-12-19 2023-06-09 南昌航空大学 一种制备GO/Ce-MOF@PDA/PU超疏水自修复防腐蚀涂层的方法
CN115960479A (zh) * 2023-02-09 2023-04-14 山东韩师傅新材料有限公司 一种纳米改性的聚合物自修复海洋防腐涂层

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920160A (zh) * 2014-04-25 2014-07-16 南开大学 环糊精为媒介的石墨烯/透明质酸组装体及其制备方法
CN105585939A (zh) * 2016-03-18 2016-05-18 青岛农业大学 一种具有铁锈转化功能的自修复涂层及其制备方法
CN105820377A (zh) * 2016-06-03 2016-08-03 江苏华昌织物有限公司 一种负载环糊精磁性石墨烯的制备方法
CN108384428A (zh) * 2018-02-12 2018-08-10 唐山德生科技有限公司 一种耐光抗菌型水性聚氨酯涂料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102537A (zh) * 2013-05-10 2015-11-25 蓝立方知识产权有限责任公司 环氧树脂组合物
US9862798B2 (en) * 2013-09-30 2018-01-09 Evonik Degussa Gmbh Epoxy liquid curing agent compositions
JP5913762B1 (ja) * 2016-02-12 2016-04-27 日本ペイントマリン株式会社 防食塗料組成物、塗膜、船舶及び海洋構造物
US20200317932A1 (en) * 2016-02-25 2020-10-08 Chugoku Marine Paints, Ltd. Anticorrosion coating composition, anticorrosion coating film, substrate with anticorrosion coating film, and method of manufacturing same
JP6615411B1 (ja) * 2016-11-17 2019-12-04 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所Ningbo Institute Of Materials Technology & Engineering,Chinese Academy Of Sciences 六方晶窒化ホウ素エポキシ複合防食塗料及びその製造方法並びに応用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920160A (zh) * 2014-04-25 2014-07-16 南开大学 环糊精为媒介的石墨烯/透明质酸组装体及其制备方法
CN105585939A (zh) * 2016-03-18 2016-05-18 青岛农业大学 一种具有铁锈转化功能的自修复涂层及其制备方法
CN105820377A (zh) * 2016-06-03 2016-08-03 江苏华昌织物有限公司 一种负载环糊精磁性石墨烯的制备方法
CN108384428A (zh) * 2018-02-12 2018-08-10 唐山德生科技有限公司 一种耐光抗菌型水性聚氨酯涂料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE, YI ET AL.: "Fabrication study of a new anticorrosion coating based on supramolecular nanocontainer", SYNTHETIC METALS, vol. 212, 23 November 2015 (2015-11-23) - 28 February 2016 (2016-02-28), pages 186 - 194, XP055685059 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111268672A (zh) * 2020-02-24 2020-06-12 山西大学 一种功能化石墨烯复合物及其制备方法和应用
CN111268672B (zh) * 2020-02-24 2023-03-07 山西大学 一种功能化石墨烯复合物及其制备方法和应用
CN111423785A (zh) * 2020-04-09 2020-07-17 青岛理工大学 一种具有自修复功能的超疏水涂料及其制备方法
CN111423785B (zh) * 2020-04-09 2021-12-14 青岛理工大学 一种具有自修复功能的超疏水涂料及其制备方法
CN111704821A (zh) * 2020-06-19 2020-09-25 中国科学院金属研究所 一种基于氧化石墨烯接枝的复合型防锈颜料及其在防腐涂料中的应用
CN111704821B (zh) * 2020-06-19 2021-07-23 中国科学院金属研究所 一种基于氧化石墨烯接枝的复合型防锈颜料及其在防腐涂料中的应用
CN111826074A (zh) * 2020-07-09 2020-10-27 北京科技大学 一种基于氮化钛光热响应的双重自修复涂层及其制备方法
CN111826074B (zh) * 2020-07-09 2021-10-01 北京科技大学 一种基于氮化钛光热响应的双重自修复涂层及其制备方法
CN113265185B (zh) * 2021-05-24 2022-02-11 广州市上善纳米材料有限公司 一种自修复石墨烯复合钛纳米重防腐材料及其制备和使用方法
CN113265185A (zh) * 2021-05-24 2021-08-17 广州市上善纳米材料有限公司 一种自修复石墨烯复合钛纳米重防腐材料及其制备和使用方法
CN114381023A (zh) * 2021-12-17 2022-04-22 武汉工程大学 一种交联β-环糊精的MXene膜及其制备方法和应用
CN114381023B (zh) * 2021-12-17 2023-12-12 武汉工程大学 一种交联β-环糊精的MXene膜及其制备方法和应用
CN114933844A (zh) * 2022-03-30 2022-08-23 哈尔滨工程大学 一种环糊精改性氧化石墨烯复合涂层的制备方法
CN114933844B (zh) * 2022-03-30 2023-06-06 哈尔滨工程大学 一种环糊精改性氧化石墨烯复合涂层的制备方法
CN116213227A (zh) * 2023-02-27 2023-06-06 中国石油大学(华东) 一种防腐耐冲蚀多功能涂层的制备方法
CN116213227B (zh) * 2023-02-27 2023-10-17 中国石油大学(华东) 一种防腐耐冲蚀多功能涂层的制备方法
CN117777820A (zh) * 2024-02-28 2024-03-29 太原理工大学 一种可逆自预警、自修复涂层及其制备方法
CN117777820B (zh) * 2024-02-28 2024-05-31 太原理工大学 一种可逆自预警、自修复涂层及其制备方法

Also Published As

Publication number Publication date
US11505706B2 (en) 2022-11-22
JP2020533424A (ja) 2020-11-19
US20210062011A1 (en) 2021-03-04
JP6925680B2 (ja) 2021-08-25

Similar Documents

Publication Publication Date Title
WO2020034141A1 (zh) 基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用
CN110835488B (zh) 基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用
Ubaid et al. Multifunctional self-healing polymeric nanocomposite coatings for corrosion inhibition of steel
Yan et al. Dual-functional graphene oxide-based nanomaterial for enhancing the passive and active corrosion protection of epoxy coating
Zhou et al. Facile modification of graphene oxide with Lysine for improving anti-corrosion performances of water-borne epoxy coatings
WO2020221378A1 (zh) 一种刺激响应型自修复防腐涂层材料和制备方法
WO2021139007A1 (zh) 阳离子多巴胺功能化石墨烯水性防腐涂料、其制法与应用
WO2020000559A1 (zh) 硅烷/氧化石墨烯复合钝化液及其制备方法与应用
CN105440884B (zh) 一种水性环氧树脂自修复防腐蚀涂层的制备及应用
CN111218144A (zh) 一种负载腐蚀响应剂的纳米容器及其制备方法与应用
CN111205739B (zh) 离子液体改性石墨烯复合防腐耐磨涂料及其制法与应用
CN110054965B (zh) 改性氧化石墨烯共固化水性环氧树脂涂料及其制备方法
CN113088162B (zh) 一种耐磨环氧树脂涂料及其制备方法
CN105505112B (zh) 抗菌涂料、防腐涂料、抗菌防腐涂层及输油管道
WO2021129079A1 (zh) 一种可用于铁质炊具的石墨烯改性水性不粘涂料的制备方法
CN114410209B (zh) 一种双重自修复水性聚氨酯防腐涂层的制备方法
TW201427900A (zh) 二氧化矽溶膠,應用該二氧化矽溶膠對金屬基體進行表面處理的方法及其製品
CN103469286A (zh) 一种金属表面有机-无机复合涂层及其制备工艺
CN107163826A (zh) 一种纳米陶瓷聚合物重防腐涂料及其制备方法
CN113321985A (zh) 一种pH刺激响应智能修复涂料及其制备方法
CN113150644A (zh) 一种pH响应石墨烯基固体缓蚀剂自修复涂料的制备方法
CN114806347B (zh) 一种防腐涂料及其制备方法
CN108047792B (zh) 一种石墨烯基环氧树脂防腐涂层的制备方法
CN107815218B (zh) 一种制备高分散性石墨烯防腐涂料的方法
CN116426193A (zh) 一种水性环保防腐涂料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020501815

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930115

Country of ref document: EP

Kind code of ref document: A1