WO2020221378A1 - 一种刺激响应型自修复防腐涂层材料和制备方法 - Google Patents

一种刺激响应型自修复防腐涂层材料和制备方法 Download PDF

Info

Publication number
WO2020221378A1
WO2020221378A1 PCT/CN2020/099498 CN2020099498W WO2020221378A1 WO 2020221378 A1 WO2020221378 A1 WO 2020221378A1 CN 2020099498 W CN2020099498 W CN 2020099498W WO 2020221378 A1 WO2020221378 A1 WO 2020221378A1
Authority
WO
WIPO (PCT)
Prior art keywords
cuo
microcapsules
self
coating material
stimulus
Prior art date
Application number
PCT/CN2020/099498
Other languages
English (en)
French (fr)
Inventor
李伟华
赵秀蓉
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2020221378A1 publication Critical patent/WO2020221378A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints

Definitions

  • the invention belongs to the technical field of self-repairing anticorrosive coatings. More specifically, it relates to a stimulus-responsive self-healing anticorrosive coating material and a preparation method.
  • metal corrosion Due to their excellent physical and chemical properties, metal materials are widely used in military, civil, deep sea, petroleum and people's daily lives. However, metal has defects in the casting process. In the process of use, there are factors such as external force and corrosive media, and metal materials are inevitably damaged, such as fracture, corrosion and wear. And in terms of thermodynamics, the corrosion of metals is a process in which Gibbs free energy decreases. It is a spontaneous process, which causes metals to be more likely to corrode. Metal corrosion is generally carried out through two ways: chemical corrosion caused by direct chemical reaction between the metal surface and the corrosive medium; electrochemical corrosion caused by the reaction of the electrode in contact with the metal material and the electrolyte solution. In real life, especially in the marine environment, metal corrosion is mainly electrochemical corrosion.
  • organic coatings are the most widely used, and their cost accounts for a third of the total anti-corrosion expenditure Second, it is the most effective and economical method.
  • the organic coating mainly isolates the substrate from the external corrosive medium, inhibits the cathode and anode reaction of corrosion, thereby preventing the occurrence of corrosion electrochemistry.
  • the coating will inevitably appear micro-damages and micro-cracks due to various external aggressions during use and service, and such micro-damages are difficult to detect visually. If these coatings are not effectively repaired in time, the corrosive medium will Corrosion occurs from the defect to the metal substrate.
  • the coating is mainly repaired by manual repair or replacement, but the process is cumbersome and expensive.
  • Self-repairing anticorrosive coating materials that is, coating materials with self-repairing function after the coating is damaged, or with self-repairing function under certain conditions.
  • the self-healing function is introduced into the anti-corrosion coating to prepare a coating that can freely combine chemical anti-corrosion and physical passive anti-corrosion. It can repeat self-damage repairs in the external environment and become a kind of intelligent that can be used stably for a long time.
  • Anti-corrosion coating is the pursuit goal in the field of anti-corrosion coating in the future. Industry researchers are conducting detailed research on this type of coating materials, and many coating materials with self-healing functions have been applied, and a series of self-healing mechanisms and self-healing models have been proposed. Adding microcapsules, microspheres or fiber tubes coated with a repairing agent to the coating. When the coating is broken, the released repairing agent can inhibit the continuous occurrence of corrosion and electrochemistry through physical or chemical actions.
  • Microcapsule self-healing technology embeds self-healing microcapsules in the substrate.
  • the repairing agent is not released; when the substrate produces microcracks and scratches or other internal reactions occur, the microcapsules embedded in the substrate The capsule ruptures according to its nature and releases the core material (repairing agent and catalyst). Under the action of the siphon, the core material is filled with cracks and reacts to complete the self-repair process and delay corrosion.
  • Common repair agents such as vegetable oil (CN102719184A), epoxy resin (CN104624132A, CN106215826A, CN102604469A, CN106118367A), and isosine ester derivatives (CN102702838A).
  • Porous hollow inorganic materials also known as cage materials, have received widespread attention in the fields of catalysis, energy storage, and sensing. Their porous structure can be used as a carrier to store and transport substances.
  • the sacrificial template method is commonly used to prepare this material.
  • the sacrificial template method has the characteristics of low manufacturing cost and high synthesis efficiency.
  • Cage materials can be prepared by using metal-organic frameworks (MOFs) as sacrificial templates or precursors through pyrolysis. s material.
  • MOFs metal-organic frameworks
  • Chinese Patent Document CN 107474615 A discloses an anticorrosive self-healing paint and a preparation method thereof, which contain 5%-10% of self-healing components by mass percentage.
  • the self-healing paint is a paint containing anti-rust filler;
  • the repairing component can be microspheres loaded with a slow release agent, and the loading amount of the corrosion inhibitor is 10% to 30% of the mass of the microspheres; the prepared anticorrosive self-repairing coating automatically releases the corrosion inhibitor when the coating is corroded and damaged Molecule blocks the contact between metal and corrosive medium, thus achieving the effect of preventing further corrosion.
  • the current microcapsule self-healing coating has a relatively low encapsulation rate of microcapsules and poor bonding with the coating, which reduces the anticorrosive performance of the coating.
  • most of the microcapsules in the current self-healing coating resin are organic microcapsule systems.
  • the capsule core material easily reacts with the capsule shell material, and the capsule core material loses its repair ability.
  • the current inorganic microcapsule system has high surface energy and is easy to agglomerate in the coating, resulting in a decrease in the anti-corrosion performance of the coating and no corrosion inhibitory effect on steel.
  • the purpose of the present invention is to overcome the above-mentioned defects and deficiencies of the prior art, organically combine the Cu-MOF material with the layer-by-layer self-assembly method, and provide a stimulus-responsive self-healing anticorrosive coating material with dual functions of pH response and self-healing .
  • the second object of the present invention is to provide a preparation method of the above intelligent response self-repairing anticorrosive coating material.
  • a stimulus-responsive self-healing anticorrosive coating material comprising CuO microcapsules and a coating substrate, the CuO microcapsules comprising a capsule core and a capsule core carrier, the capsule core is a corrosion inhibitor, and the capsule core carrier is porous CuO; the surface of the CuO microcapsules are alternately coated anionic polyelectrolyte layers and cationic polyelectrolyte layers.
  • the invention encapsulates the capsule core by using a porous CuO prepared from a Cu-MOF material with a unique octahedral crystal structure and pore surface as the capsule core carrier.
  • the surface potential of the porous copper oxide is negatively charged, and the corrosion inhibitor is charged positively.
  • the anionic polyelectrolyte can be adsorbed on its surface by layer by layer self-assembly method to make the copper oxide loaded with the corrosion inhibitor negatively charged, and under the action of Coulomb force, it can adsorb cations
  • the polyelectrolyte is on its surface to improve the dispersion of the microcapsules in the coating, improve the dispersion of the microcapsules in the coating, solve the agglomeration problem of the porous substance CuO, and improve the combination of the capsule core carrier and the coating matrix. Performance, so that the anti-corrosion performance of the coating material has been further improved.
  • the anionic polyelectrolyte and cationic polyelectrolyte composite membrane layer generated on the surface of the porous CuO can also be used as a sealing material to prevent the premature release of the capsule core material (corrosion inhibitor).
  • the CuO microcapsules of the present invention are unstable in acidic substances, can automatically decompose, and have pH response characteristics. When the coating cracks, the CuO microcapsules will rupture as the cracks occur and release the capsule core material, which can realize the self-repair function; when the coating is not obviously damaged and internal corrosion has occurred, the surrounding corrosion site As the pH decreases, the CuO microcapsules can degrade by themselves, release the core material (corrosion inhibitor) automatically, and realize the self-repair function.
  • the invention successfully constructs an anticorrosive coating material with dual functions of pH response and self-repair.
  • the addition amount of the CuO microcapsules is 1%-10% of the coating matrix.
  • the addition amount of the CuO microcapsules is 6.7%-10% of the coating matrix.
  • the particle size of the CuO microcapsules is 200-400 nm.
  • the CuO microcapsule of the present invention has a smaller size and a better self-repair effect.
  • the anionic polyelectrolyte is selected from at least one of polystyrene sulfonate, polyacrylic acid, polymethacrylic acid or sodium alginate; the cationic polyelectrolyte is selected From at least one of polyethyleneimine, polyvinylpyridine, or chitosan.
  • the anionic polyelectrolyte is selected from polystyrene sulfonate; the cationic polyelectrolyte is selected from polyethyleneimine.
  • the polyethyleneimine in the outer layer of the microcapsules due to the highly reactive primary and secondary amines, can easily react with epoxy, aldehyde, isocyanate compounds and acid gases. It can be used as epoxy resin modifier, aldehyde adsorbent and dye fixing agent by using its reaction characteristics.
  • the polystyrene sulfonate is preferably sodium polystyrene sulfonate.
  • the surface of the CuO microcapsules is modified by an anionic polyelectrolyte-cationic polyelectrolyte layer-by-layer self-assembly method.
  • the layer-by-layer self-assembly method uses Coulomb attraction such as ionic bonds or covalent bonds between polyelectrolytes with opposite charges to spontaneously form a film on a charged template.
  • Coulomb attraction such as ionic bonds or covalent bonds between polyelectrolytes with opposite charges to spontaneously form a film on a charged template.
  • the polyelectrolyte is affected by protonation, and its charge density will change, which will destroy the interaction between them, so that the release of substances can be achieved.
  • the present invention uses an anionic polyelectrolyte-cationic polyelectrolyte layer-by-layer self-assembly method to modify the surface of the CuO microcapsules, including the following steps:
  • the concentration ratio of the anionic polyelectrolyte solution to the cationic polyelectrolyte solution is 1:1-2; CuO microcapsules account for 10%-20% of the total mass of the polymer solution.
  • the low-speed stirring condition is preferably 300-600 rpm/min.
  • low-speed stirring is performed for 5 hours.
  • the concentration of the polystyrene sulfonate solution is 2 to 4 mg/mL; the concentration of the polyethyleneimine solution is 2 to 4 mg/mL.
  • the concentration ratio of the polystyrene sulfonate solution to the polyethyleneimine solution is 1:1.
  • the method for preparing the CuO microcapsules is: calcining the Cu-MOF material at 400-600°C for 3 to 5 hours to obtain porous CuO; after dissolving the corrosion inhibitor, add Porous CuO, stirred at low speed for 4-6 hours to encapsulate the corrosion inhibitor, filtered and washed to obtain microcapsules;
  • the Cu-MOF material is calcined at 500-600°C for 4 hours.
  • the low-speed stirring condition is 300-600 rpm/min.
  • the corrosion inhibitor is a small molecule corrosion inhibitor.
  • the small molecule corrosion inhibitor is preferably benzotriazole.
  • the preparation method of the Cu-MOF material is as follows: the copper precursor and the organic ligand are dissolved in a solvent, and the reaction is sealed at 80 to 120°C for 10 to 14 hours. After completion, cooling, washing, and drying are performed to obtain the Cu-MOF material.
  • the copper precursor and the organic ligand are dissolved in a solvent, and the reaction is sealed at 90-120° C. for 12 hours.
  • the copper precursor is copper nitrate trihydrate; the organic ligand is 1,3,5-benzenetricarboxylic acid; and the solvent is methanol and N,N- Dimethyl divinyl amide; the mass ratio of the copper precursor to the organic ligand is 30-35: 20-25; the volume ratio of the methanol to N,N-dimethyl divinyl amide is 1: 1 to 3.
  • the present invention also provides a preparation method of the stimulus-responsive self-repairing anticorrosive coating material: mixing CuO microcapsules, curing agent and coating matrix, stirring at 800-1000 rpm/min for 1-2 hours, 500-1000W ultrasonic dispersion for 30 ⁇ 50min; wherein the mass ratio of the curing agent to the coating substrate is 1:1 ⁇ 3.
  • the coating substrate is an oily substrate; the curing agent is preferably polyamide.
  • the oily matrix is selected from one or more of epoxy resin, polyurethane resin, acrylic resin, perchloroethylene resin or polyethylene resin.
  • the oily matrix is preferably epoxy resin.
  • the present invention has the following beneficial effects:
  • the present invention successfully constructs an anticorrosive coating material with dual functions of pH response and self-repair.
  • the porous CuO prepared from the Cu-MOF material with a unique octahedral crystal structure and pore surface as the carrier of the capsule core to encapsulate the capsule core, the loading rate and encapsulation rate of the capsule core material can be improved, and guarantee to a large extent The activity of the core material.
  • the surface of CuO microcapsules is modified by self-assembly of anionic polyelectrolyte and cationic polyelectrolyte layers, which improves the dispersion of microcapsules in the coating, solves the agglomeration problem of porous CuO, and improves the core carrier and the core carrier.
  • the bonding performance of the coating substrate further improves the anti-corrosion performance of the coating material.
  • the CuO microcapsules of the present invention are unstable in acidic substances, can automatically decompose, and have pH response characteristics.
  • the CuO microcapsules When the coating cracks, the CuO microcapsules will rupture as the cracks occur and release the capsule core material, which can realize the self-repair function; when the coating is not obviously damaged and internal corrosion has occurred, the surrounding corrosion site As the pH decreases, the CuO microcapsules can degrade by themselves, release the core material (corrosion inhibitor) automatically, and realize the self-repair function.
  • the CuO microcapsules of the present invention can be uniformly dispersed in the coating matrix. Under the premise of ensuring the bonding force, impact resistance, salt spray performance and UV resistance of the coating material, when the coating material cracks , CuO microcapsules will rupture with the occurrence of cracks and release the core material, which can realize the self-repair function; when the coating has no obvious damage and internal corrosion has occurred, the pH around the corrosion site will decrease, and the CuO microcapsules It can degrade by itself and release the core material (corrosion inhibitor) automatically to realize the self-repair function.
  • the present invention realizes the self-repair of the coating, and can repair the microcracks and internal corrosion of the coating generated in the coating without human intervention, and overcomes the internal corrosion and microcracks of the coating in the prior art. It is difficult to detect and repair, the economic cost is too large, and the application range is wide, the construction is simple, and the cost is low. It can be effectively combined with a variety of coating matrix materials, and it has good application prospects and broad development space.
  • Figure 1 shows the response performance of the stimulus-responsive self-healing anticorrosive coating material of the present invention under different pH conditions.
  • Figure 2 shows the self-healing performance of the stimulus-responsive self-healing anticorrosive coating material of the present invention.
  • Figure 3 is a scanning electron microscope image and a transmission electron microscope image of CuO microcapsules; among them, Figure 3(a) is a scanning electron microscope (SEM) image of Cu-MOF material, and Figure 3(b) is a scanning electron microscope (SEM) image of sintered CuO ) Figure, Figure 3(c) is a TEM image of CuO.
  • SEM scanning electron microscope
  • SEM scanning electron microscope
  • the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
  • a preparation method of stimulus-responsive self-repairing anticorrosive coating material includes the following steps:
  • the solution was reacted in a reactor at 120°C for 12 hours; after the reactor was cooled, it was filtered, washed and dried to obtain Cu-MOF material; the Cu-MOF material was placed in the muffle Calcined in a furnace at 600°C for 4 hours to obtain porous CuO; dissolve 10g of benzotriazole (BTA) in deionized water, then add porous CuO, stir at 300-600rpm/min for 5h to encapsulate the corrosion inhibitor, filter and wash to collect the sample, Obtain CuO microcapsules.
  • BTA benzotriazole
  • 300 g of epoxy resin, 300 g of polyamide curing agent and 20 g of modified CuO microcapsules were mixed, stirred at 1000 rpm/min for 1 h, and dispersed by 500 W ultrasonic for 30 min to obtain a stimulus-responsive self-healing coating material.
  • a preparation method of stimulus-responsive self-repairing anticorrosive coating material includes the following steps:
  • Cu-MOF material was placed in the muffle Calcined in a furnace at 500°C for 4 hours to obtain porous CuO; dissolve 10g of benzotriazole (BTA) in deionized water, then add porous CuO, stir at 300-600rpm/min for 5h to encapsulate the corrosion inhibitor, filter and wash to collect the sample, Obtain CuO microcapsules.
  • BTA benzotriazole
  • a preparation method of stimulus-responsive self-repairing anticorrosive coating material includes the following steps:
  • the solution was reacted at 80°C for 10 hours after the reactor was cooled; after the reactor was cooled, it was filtered, washed and dried to obtain the Cu-MOF material; the Cu-MOF material was placed in the muffle Calcined in a furnace at 400°C for 3 hours to obtain porous CuO; dissolve 10g of benzotriazole (BTA) in deionized water, then add porous CuO, stir at 300-600rpm/min for 4h to encapsulate the corrosion inhibitor, filter and wash to collect the sample, Obtain CuO microcapsules.
  • BTA benzotriazole
  • the epoxy resin, polyamide curing agent and modified CuO microcapsules were mixed, stirred at 800rpm/min for 2h, and dispersed under 1000w ultrasonic for 50min to obtain a stimulus-responsive self-healing coating material; among them, the curing agent and the coating matrix
  • the mass ratio is 1:2, and the added amount of modified CuO microcapsules is 2% of the coating matrix.
  • a preparation method of stimulus-responsive self-repairing anticorrosive coating material includes the following steps:
  • the solution was reacted at 80°C for 14h after the reactor was cooled; after the reactor was cooled, it was filtered, washed and dried to obtain the Cu-MOF material; the Cu-MOF material was placed in the muffle Calcined in a furnace at 400°C for 5 hours to obtain porous CuO; dissolve 10g of benzotriazole (BTA) in deionized water, then add porous CuO, stir at low speed at 300-600rpm/min for 6h to encapsulate the corrosion inhibitor, filter and wash to collect the sample, Obtain CuO microcapsules.
  • BTA benzotriazole
  • the epoxy resin, polyamide curing agent and modified CuO microcapsules were mixed, stirred at 800rpm/min for 2h, and dispersed under 1000w ultrasonic for 50min to obtain a stimulus-responsive self-healing coating material; among them, the curing agent and the coating matrix
  • the mass ratio is 1:3, and the addition amount of the modified CuO microcapsules is 5% of the coating matrix.
  • Impedance spectroscopy is a commonly used method to evaluate the anti-corrosion performance of coatings.
  • Figures 1 and 2 are the results of electrochemical impedance spectroscopy.
  • the electrochemical impedance method is to give a small amplitude sine wave disturbance signal to the test system, which will not cause major changes in the measurement system during the test process, and can obtain coating capacitance, coating resistance, electric double layer capacitance, and electric double layer capacitance at different frequencies. Polarization resistance and other parameters related to coating damage.
  • the low frequency (0.01Hz) is the closest to the actual situation. Usually the value at this frequency is used to estimate the anti-corrosion performance.
  • the ratio of the value of the solution containing microcapsules at 0.01Hz to the value of the solution without microcapsules at 0.01Hz is used as the corrosion inhibition The amount of agent released.
  • Figure 1 shows the relationship between the release amount of corrosion inhibitor and time when the pH value of the solution is 7, 6, 5, and 4. As can be seen from Figure 1, the pH value of the solution is 7, 6, and 5 respectively. , The release of corrosion inhibitor is less, indicating that the stability of the microcapsules is better under this condition, but when the pH of the solution is 4, the acidity is stronger, and the release rate of corrosion inhibitors increases, indicating that the microcapsules have Good pH response performance.
  • the particle diameters of the microcapsules prepared in Examples 1 to 4 of the present invention are concentrated in 200-400 nm, the particle size is small, and the particle size distribution is uniform and stable, which is beneficial to the automatic release of the corrosion inhibitor and improves the repair effect.
  • FIG. 3 It can be seen from Fig. 3 that the Cu-MOF crystal is in the shape of an octahedron.
  • CuO is obtained after calcination of Cu-MOF. Its particle size and shape are similar to that of Cu-MOF. CuO has many void structures and a rougher surface. Formed by the release of organic matter during calcination.
  • Figure c in Figure 3 is a transmission electron microscope image of CuO, showing the internal structure of the calcined product CuO, indicating that the obtained polyhedral particles are actually porous.
  • Microcapsules CuO CuO+BTA CuO+BTA+PSS CuO+BTA+PSS+PEI Zeta(mV) -5.8 0.8 -2.1 0.3
  • BTA is benzotriazole
  • PSS is sodium polystyrene sulfonate
  • PEI is polyethyleneimine
  • the present invention encapsulates the capsule core by using a porous CuO prepared from a Cu-MOF material with a unique octahedral crystal structure and a pore surface as the capsule core carrier.
  • the surface potential of the porous copper oxide is negatively charged, and the corrosion inhibitor is positively charged.
  • the anionic polyelectrolyte can be adsorbed on its surface by layer by layer self-assembly method to make the copper oxide loaded with the corrosion inhibitor negatively charged, and under the action of Coulomb force, it can adsorb cations
  • the polyelectrolyte is on its surface to improve the dispersion of the microcapsules in the coating, improve the dispersion of the microcapsules in the coating, solve the agglomeration problem of the porous substance CuO, and improve the combination of the capsule core carrier and the coating matrix. Performance, so that the anti-corrosion performance of the coating material has been further improved.
  • the corrosion inhibitor can be selected from benzotriazole, but also can be selected from small molecule corrosion inhibitors such as sulfonated lignin, mercaptobenzothiazole, or tolyltriazole.
  • the curing agent can also be selected from curing agents such as isocyanate, diethylenetriamine, butanol, or methyltrichlorosilane.
  • the coating substrate can also be an oily substrate such as polyurethane resin, acrylic resin, perchloroethylene resin or polyethylene resin.
  • the cationic polyelectrolyte can also be a positive polyelectrolyte such as polyvinylpyridine or chitosan.
  • a positive polyelectrolyte such as polyvinylpyridine or chitosan.
  • polyacrylic acid In addition to sodium polystyrene sulfonate, polyacrylic acid, Negative polyelectrolytes such as polymethacrylic acid or sodium alginate.
  • the coating made of polyamide and epoxy resin encapsulates the zinc oxide microcapsules. It has better properties, and has better binding properties with zinc oxide microcapsules.
  • the anionic polyelectrolyte is sodium polystyrene sulfonate and the cationic polyelectrolyte is polyethyleneimine, the effect of modifying CuO microcapsules is better than other polyelectrolytes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

一种刺激响应型自修复防腐涂层材料和制备方法。该涂层材料包括CuO微胶囊和涂层基体,所述CuO微胶囊包括囊芯和囊芯载体,所述囊芯为缓蚀剂,所述囊芯载体为多孔CuO;所述CuO微胶囊的表面为交替包覆的阴离子聚电解质层和阳离子聚电解质层。本发明成功构建了具有pH响应和自修复双重功效的防腐涂层材料。多孔CuO可以提高囊芯物质的装载率和封装率;同时,阴离子聚电解质可通过层层自组装的方法吸附在其表面,在库仑力的作用下,再吸附阳离子聚电解质在其表面,改善了微胶囊在涂层中的分散性,解决了多孔物质CuO的团聚问题,同时提高了囊芯载体与涂层基体的结合性能,使涂层材料的防腐性能得到进一步提高。

Description

一种刺激响应型自修复防腐涂层材料和制备方法 技术领域
本发明属于自修复防腐涂料技术领域。更具体地,涉及一种刺激响应型自修复防腐涂层材料和制备方法。
背景技术
金属材料因其优异的物理化学性能在军工、民用、深海、石油以及人们的日常生活等方面得到广泛应用。然而金属在铸造过程中存在缺陷,在使用过程中,存在外力、腐蚀介质等因素,金属材料不可避免的受到破坏,如断裂、腐蚀和磨损。且在热力学方面,金属的腐蚀是吉布斯自由能降低的过程,是一个自发过程,导致金属更趋向于腐蚀。金属的腐蚀一般通过两种途径进行:金属表面与腐蚀介质直接发生化学反应而引起的化学腐蚀;金属材料与电解质溶液接触,通过电极反应反生的电化学腐蚀。在实际生活中,尤其是在海洋环境下,金属腐蚀主要以电化学腐蚀为主。
防止金属的腐蚀有很多种方法,如电化学保护,开发新型耐腐蚀材料,缓蚀剂保护,涂层保护等,其中有机涂层的使用最为广泛,其成本占总防腐蚀支出的三分之二,是最有效、最经济的方法。有机涂层主要使基体与外部腐蚀介质隔离,抑制腐蚀的阴阳极反应,从而阻止腐蚀电化学的发生。然而涂层在使用及服役过程中因受到各种外界侵害不可避免的出现微损伤和微裂纹,且这种微损伤很难通过目视检测,如果没有及时有效修补这些涂层,腐蚀介质就会由缺陷处到达金属基体发生腐蚀。目前涂层主要通过人工修补或更换来修复,但是此过程工艺繁琐,造价昂贵。受自然界生物体受到损伤后的自愈合功能启发,科学家们研发了智能材料,使涂层具有自行修复破损的作用。
自修复防腐涂层材料,即涂层遭到破坏后具有自修复功能,或在一定条件下具有自修复功能的涂层材料。自修复功能引入到防腐涂层中,制备一种能自如的将化学防腐与物理被动防腐结合在一起的涂层,在外界环境中可反复进行自我损伤修补,成为一种能够长期稳定使用的智能防腐涂层,是未来防腐涂层领域追求目标。行业研究者正在对这类涂层材料进行细致研究,许多具有自修复功能的涂 层材料得到应用,同时提出了一系列自修复机理和自修复模型。在涂层中添加包覆了修复剂的微胶囊、微球或纤维管,当涂层破损时,释放的修复剂通过物理或化学作用抑制腐蚀电化学的持续发生的自主型自修复涂层。
通过设计特定的结构,在涂层受到损伤时,通过物质和能量的释放,发生相应的反应,凭借涂层的屏蔽作用、钝化作用、阴极保护作用、缓蚀作用等,涂层在破坏后得以自我修复,可以提高防腐涂料生命周期。微胶囊自修复技术将自修复微胶囊埋植于基体中,当涂层完好无损时,修复剂不释放;当基体产生微裂纹及划伤或内部发生其他反应时,埋植于基体内部的微胶囊根据其性质破裂,释放出芯材(修复剂及催化剂),在虹吸作用下芯材充满裂纹处发生反应完成自修复过程,延缓腐蚀。常见修复剂如植物油(CN102719184 A)、环氧树脂(CN 104624132 A、CN 106215826 A、CN 102604469 A、CN 106118367 A)、异氨酸酯类衍生物(CN 102702838A)。
多孔中空无机材料,又称为笼状材料,在催化、储能、传感等领域受到广泛关注,其多孔结构可作为载体储存、运输物质。制备这种材料常用的是牺牲模板法,牺牲模板法具有制造成本低、合成效率高等特点,笼状材料可通过用金属-有机骨架(MOFs)作为牺牲模版或者前驱体,通过热解,制备特定的材料。
中国专利文献CN 107474615 A,公开了一种防腐自修复涂料及其制备方法,按质量百分比含有自修复组分5%~10%,所述自修复涂料为含有防锈填料的涂料;所述自修复组分可以为负载缓释剂的微球,缓蚀剂负载量为微球质量的10%~30%;所制备的防腐自修复涂料,在涂层腐蚀受损时,自动释放缓蚀剂分子,阻隔金属与腐蚀介质接触,从而达到防止腐蚀进一步加深的效果。但是,目前微胶囊自修复的涂层中的微胶囊封装率比较低,且与涂层的结合力较差,使涂层的防腐性能下降。而且,目前的自修复涂层树脂中的微胶囊大多为有机微胶囊体系,在制备过程中,囊芯物质易与胶囊壳体物质发生反应,使囊芯物质失去修复能力。另外,目前无机微胶囊体系的表面能高,在涂层中容易团聚,导致涂层的防腐性能下降,对钢材无缓蚀作用。
发明内容
本发明的目的是克服上述现有技术的缺陷和不足,将Cu-MOF材料与层层自组装方法有机结合,提供一种具有pH响应和自修复双重功效的刺激响应型自修复防腐涂层材料。
本发明的第二个目的是提供上述智能响应自修复防腐涂层材料的制备方法。
本发明上述目的通过以下技术方案实现:
一种刺激响应型自修复防腐涂层材料,包括CuO微胶囊和涂层基体,所述CuO微胶囊包括囊芯和囊芯载体,所述囊芯为缓蚀剂,所述囊芯载体为多孔CuO;所述CuO微胶囊的表面为交替包覆的阴离子聚电解质层和阳离子聚电解质层。
本发明通过利用具备独特的八面体形状晶体结构和孔道表面的Cu-MOF材料制备得到的多孔CuO作为囊芯载体来封装囊芯,多孔氧化铜表面电位带负电,负载缓蚀剂后带正电,可以提高囊芯物质的装载率和封装率;同时,阴离子聚电解质可通过层层自组装的方法吸附在其表面使负载缓蚀剂的氧化铜带负电,在库仑力的作用下,吸附阳离子聚电解质在其表面以改善微胶囊在涂层中的分散性,改善了微胶囊在涂层中的分散性,解决了多孔物质CuO的团聚问题,同时提高了囊芯载体与涂层基体的结合性能,使涂层材料的防腐性能得到进一步提高。另外,多孔CuO表面生成的阴离子聚电解质和阳离子聚电解质复合膜层还可作为封孔物质,防止囊芯物质(缓蚀剂)的过早释放。而且,本发明所述CuO微胶囊在酸性物质中不稳定,可自动发生分解,具有pH响应特性。当涂层产生裂纹时,CuO微胶囊会随着裂纹的产生而破裂,并释放出囊芯物质,能够实现自修复功能;当涂层无明显破损,而内部腐蚀已然发生时,腐蚀位点周围pH减小,CuO微胶囊可自行降解,自动释放出囊芯物质(缓蚀剂),实现自修复功能。本发明成功构建了具有pH响应和自修复双重功效的防腐涂层材料。
进一步地,在本发明较佳的实施例中,所述CuO微胶囊的添加量为涂层基体的1%~10%。
进一步地,在本发明较佳的实施例中,所述CuO微胶囊的添加量为涂层基体的6.7%~10%。
进一步地,在本发明较佳的实施例中,所述CuO微胶囊的粒径为200~400nm。本发明CuO微胶囊的尺寸较小,自修复效果更佳。
进一步地,在本发明较佳的实施例中,所述阴离子聚电解质选自聚苯乙烯磺酸盐、聚丙烯酸、聚甲基丙烯酸或海藻酸钠中的至少一种;所述阳离子聚电解质选自聚乙烯亚胺、聚乙烯吡啶或壳聚糖中的至少一种。
更进一步地,在本发明较佳的实施例中,所述阴离子聚电解质选自聚苯乙烯磺酸盐;所述阳离子聚电解质选自聚乙烯亚胺。微胶囊外层的聚乙烯亚胺,由于 具有反应性很强的伯胺和仲胺,能够很容易地与环氧、醛、异氰酸酯化合物和酸性气体反应。利用其此种反应特性可作为环氧树脂改性剂、醛吸附剂和染料固定剂使用。
更进一步地,在本发明较佳的实施例中,所述聚苯乙烯磺酸盐优选为聚苯乙烯磺酸钠。
进一步地,在本发明较佳的实施例中,利用阴离子聚电解质-阳离子聚电解质层层自组装法对所述CuO微胶囊表面进行改性。层层自组装法是利用具有相反电荷的聚电解质之间的离子键或共价键等库仑引力作用而在带电模板上自发成膜的方法。在层层自组装的过程中,当环境pH发生变化时,聚电解质受质子化影响,其电荷密度会发生变化进而破坏它们之间的相互作用力,从而可以实现物质的释放。
本发明利用阴离子聚电解质-阳离子聚电解质层层自组装法对所述CuO微胶囊表面进行改性的方法,包括以下步骤:
将CuO微胶囊置于阴离子聚电解质溶液中,低速搅拌反应,得到一层阴离子聚电解质修饰的微胶囊;将其置于阳离子聚电解质溶液中,低速搅拌反应,得到阴离子聚电解质-阳离子聚电解质改性后的CuO微胶囊;
所述阴离子聚电解质溶液与所述阳离子聚电解质溶液的浓度比为1:1~2;CuO微胶囊占聚合物溶液总质量的10%~20%。
进一步地,在本发明较佳的实施例中,所述低速搅拌的条件优选为300~600rpm/min。
进一步地,在本发明较佳的实施例中,低速搅拌5h。
进一步地,在本发明较佳的实施例中,所述聚苯乙烯磺酸盐溶液的浓度为2~4mg/mL;所述聚乙烯亚胺溶液的浓度为2~4mg/mL。
更进一步地,在本发明较佳的实施例中,所述聚苯乙烯磺酸盐溶液与所述聚乙烯亚胺溶液的浓度比为1:1。
进一步地,在本发明较佳的实施例中,所述CuO微胶囊的制备方法为:将Cu-MOF材料于400~600℃煅烧3~5h,得到多孔CuO;将缓蚀剂溶解后,加入多孔CuO,低速搅拌4~6h以封装缓蚀剂,过滤,洗涤,得到微胶囊;
更进一步地,在本发明较佳的实施例中,将Cu-MOF材料于500~600℃煅烧4h。
进一步地,在本发明较佳的实施例中,所述低速搅拌的条件为300~600rpm/min。
进一步地,在本发明较佳的实施例中,所述缓蚀剂为小分子缓蚀剂。
更进一步地,在本发明较佳的实施例中,所述小分子缓蚀剂优选为苯并三氮唑。
进一步地,在本发明较佳的实施例中,所述Cu-MOF材料的制备方法如下:将铜前驱体与有机配体在溶剂中溶解,于80~120℃下密闭反应10~14h,反应完成后,冷却,洗涤,干燥,得到所述Cu-MOF材料。
更进一步地,在本发明较佳的实施例中,将铜前驱体与有机配体在溶剂中溶解,于90~120℃下密闭反应12h。
进一步地,在本发明较佳的实施例中,所述铜前驱体为三水合硝酸铜;所述有机配体为1,3,5-苯三甲酸;所述溶剂为甲醇和N,N-二甲基二乙烯酰胺;所述铜前驱体与有机配体的质量比为30~35:20~25;所述甲醇与N,N-二甲基二乙烯酰胺的体积比为1:1~3。
本发明还提供了所述刺激响应型自修复防腐涂层材料的制备方法:将CuO微胶囊、固化剂和涂层基体混合,800~1000rpm/min下搅拌1~2h,500~1000w超声分散30~50min;其中,所述固化剂和涂层基体的质量比为1:1~3。
进一步地,在本发明较佳的实施例中,所述涂层基体为油性基体;所述固化剂优选为聚酰胺。
更进一步地,在本发明较佳的实施例中,所述油性基体选自环氧树脂、聚氨酯树脂、丙烯酸树脂、过氯乙烯树脂或聚乙烯树脂中的一种或几种。
更进一步地,在本发明较佳的实施例中,所述油性基体优选为环氧树脂。
与现有技术相比,本发明具有以下有益效果:
(1)本发明成功构建了具有pH响应和自修复双重功效的防腐涂层材料。通过利用具备独特的八面体形状晶体结构和孔道表面的Cu-MOF材料制备得到的多孔CuO作为囊芯载体来封装囊芯,可以提高囊芯物质的装载率和封装率,在很大程度上保证了囊芯物质的活性。同时,通过阴离子聚电解质和阳离子聚电解质层层自组装改性修饰CuO微胶囊表面,改善了微胶囊在涂层中的分散性,解决了多孔物质CuO的团聚问题,同时提高了囊芯载体与涂层基体的结合性能,使涂层材料的防腐性能得到进一步提高。而且,本发明CuO微胶囊在酸性物质 中不稳定,可自动发生分解,具有pH响应特性。当涂层产生裂纹时,CuO微胶囊会随着裂纹的产生而破裂,并释放出囊芯物质,能够实现自修复功能;当涂层无明显破损,而内部腐蚀已然发生时,腐蚀位点周围pH减小,CuO微胶囊可自行降解,自动释放出囊芯物质(缓蚀剂),实现自修复功能。
(2)本发明的CuO微胶囊能在涂层基体中能均匀分散,在保证涂层材料的结合力、耐冲击能力、盐雾性能和耐紫外性能的前提下,当涂层材料产生裂纹时,CuO微胶囊会随着裂纹的产生而破裂,并释放出囊芯物质,能够实现自修复功能;当涂层无明显破损,而内部腐蚀已然发生时,腐蚀位点周围pH降低,CuO微胶囊可自行降解,自动释放出囊芯物质(缓蚀剂),实现自修复功能。
(3)本发明实现了对涂层的自修复,无需人为干涉就可以对涂层中产生的微裂纹、涂层内部腐蚀等损伤进行修复,克服了现有技术涂层内部腐蚀和微裂纹的检测和修复困难,经济成本过大的不足,而且使用范围广,施工简单,成本低,可与多种涂层基体材料有效结合,具有良好的应用前景和广阔的发展空间。
附图说明
图1是本发明刺激响应型自修复防腐涂层材料在不同pH条件下的响应性能。
图2是本发明刺激响应型自修复防腐涂层材料的自修复性能。
图3是CuO微胶囊的扫描电镜图和透射电镜图;其中,图3(a)为Cu-MOF材料的扫描电镜(SEM)图,图3(b)为烧结后的CuO的扫描电镜(SEM)图,图3(c)为CuO的透射电镜图。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1
一种刺激响应型自修复防腐涂层材料的制备方法,包括以下步骤:
1、CuO微胶囊的制备:
量取体积比为1:1的甲醇和N,N-二甲基二乙烯酰胺(DMF),充分混合后作为溶剂;然后,称取25g 1,3,5-苯三甲酸(BTC)和35g三水合硝酸铜加入混 合溶液中,待完全溶解后,将溶液反应釜中,120℃下反应12h;待反应釜冷却后,过滤洗涤干燥,得到Cu-MOF材料;将Cu-MOF材料在马弗炉中600℃煅烧4h得到多孔CuO;将10g苯并三氮唑(BTA)溶于去离子水中,然后加入多孔CuO,300~600rpm/min低速搅拌5h以封装缓蚀剂,过滤洗涤收集样品,得到CuO微胶囊。
(2)对CuO微胶囊表面进行改性
将10g CuO微胶囊加入到配置好的聚苯乙烯磺酸钠(2mg/mL)溶液中,300~600rpm/min低速搅拌使聚电解质聚苯乙烯磺酸钠(PSS)在样品表面吸附,离心洗涤,收集样品;将得到的样品加入到配置好的聚乙烯亚胺(PEI)(2mg/mL)溶液中,300~600rpm/min低速搅拌以吸附聚电解质PEI,离心洗涤干燥,收集样品,得到表面为交替包覆的阴离子聚电解质层和阳离子聚电解质层的CuO微胶囊。该CuO微胶囊的粒径为200~400nm。
(3)刺激响应型自修复涂层的制备
将300g环氧树脂、300g聚酰胺固化剂与20g改性后的CuO微胶囊进行混合,1000rpm/min下搅拌1h,500w超声分散30min,得到刺激响应型自修复涂层材料。
实施例2
一种刺激响应型自修复防腐涂层材料的制备方法,包括以下步骤:
1、CuO微胶囊的制备:
量取体积比为1:1的甲醇和N,N-二甲基二乙烯酰胺(DMF),充分混合后作为溶剂;然后,称取20g 1,3,5-苯三甲酸(BTC)和30g三水合硝酸铜加入混合溶液中,待完全溶解后,将溶液反应釜中,90℃下反应12h;待反应釜冷却后,过滤洗涤干燥,得到Cu-MOF材料;将Cu-MOF材料在马弗炉中500℃煅烧4h得到多孔CuO;将10g苯并三氮唑(BTA)溶于去离子水中,然后加入多孔CuO,300~600rpm/min低速搅拌5h以封装缓蚀剂,过滤洗涤收集样品,得到CuO微胶囊。
(2)对CuO微胶囊表面进行改性
将10g CuO微胶囊加入到配置好的聚苯乙烯磺酸钠(4mg/mL)溶液中,300~600rpm/min低速搅拌使聚电解质聚苯乙烯磺酸钠(PSS)在样品表面吸附,离心洗涤,收集样品;将得到的样品加入到配置好的聚乙烯亚胺(PEI)(4mg/mL) 溶液中,300~600rpm/min低速搅拌以吸附聚电解质PEI,离心洗涤干燥,收集样品,得到表面为交替包覆的阴离子聚电解质层和阳离子聚电解质层的CuO微胶囊。该CuO微胶囊的粒径为200~400nm。
(3)刺激响应型自修复涂层的制备
将100g环氧树脂、100g聚酰胺固化剂与10g改性后的CuO微胶囊进行混合,1000rpm/min下搅拌1h,500w超声分散30min,得到刺激响应型自修复涂层材料。
实施例3
一种刺激响应型自修复防腐涂层材料的制备方法,包括以下步骤:
1、CuO微胶囊的制备:
量取体积比为1:3的甲醇和N,N-二甲基二乙烯酰胺(DMF),充分混合后作为溶剂;然后,称取20g 1,3,5-苯三甲酸(BTC)和30g三水合硝酸铜加入混合溶液中,待完全溶解后,将溶液反应釜中,80℃下反应10h;待反应釜冷却后,过滤洗涤干燥,得到Cu-MOF材料;将Cu-MOF材料在马弗炉中400℃煅烧3h得到多孔CuO;将10g苯并三氮唑(BTA)溶于去离子水中,然后加入多孔CuO,300~600rpm/min低速搅拌4h以封装缓蚀剂,过滤洗涤收集样品,得到CuO微胶囊。
(2)对CuO微胶囊表面进行改性
将20g CuO微胶囊加入到配置好的聚苯乙烯磺酸钠(4mg/mL)溶液中,300~600rpm/min低速搅拌使聚电解质聚苯乙烯磺酸钠(PSS)在样品表面吸附,离心洗涤,收集样品;将得到的样品加入到配置好的聚乙烯亚胺(PEI)(4mg/mL)溶液中,300~600rpm/min低速搅拌以吸附聚电解质PEI,离心洗涤干燥,收集样品,得到表面为交替包覆的阴离子聚电解质层和阳离子聚电解质层的CuO微胶囊。该CuO微胶囊的粒径为200~400nm。
(3)刺激响应型自修复涂层的制备
将环氧树脂、聚酰胺固化剂与改性后的CuO微胶囊进行混合,800rpm/min下搅拌2h,1000w超声分散50min,得到刺激响应型自修复涂层材料;其中,固化剂和涂层基体的质量比为1:2,改性后的CuO微胶囊的添加量为涂层基体的2%。
实施例4
一种刺激响应型自修复防腐涂层材料的制备方法,包括以下步骤:
1、CuO微胶囊的制备:
量取体积比为1:3的甲醇和N,N-二甲基二乙烯酰胺(DMF),充分混合后作为溶剂;然后,称取20g 1,3,5-苯三甲酸(BTC)和30g三水合硝酸铜加入混合溶液中,待完全溶解后,将溶液反应釜中,80℃下反应14h;待反应釜冷却后,过滤洗涤干燥,得到Cu-MOF材料;将Cu-MOF材料在马弗炉中400℃煅烧5h得到多孔CuO;将10g苯并三氮唑(BTA)溶于去离子水中,然后加入多孔CuO,300~600rpm/min低速搅拌6h以封装缓蚀剂,过滤洗涤收集样品,得到CuO微胶囊。
(2)对CuO微胶囊表面进行改性
将15g CuO微胶囊加入到配置好的聚苯乙烯磺酸钠(4mg/mL)溶液中,300~600rpm/min低速搅拌使聚电解质聚苯乙烯磺酸钠(PSS)在样品表面吸附,离心洗涤,收集样品;将得到的样品加入到配置好的聚乙烯亚胺(PEI)(4mg/mL)溶液中,300~600rpm/min低速搅拌以吸附聚电解质PEI,离心洗涤干燥,收集样品,得到表面为交替包覆的阴离子聚电解质层和阳离子聚电解质层的CuO微胶囊。该CuO微胶囊的粒径为200~400nm。
(3)刺激响应型自修复涂层的制备
将环氧树脂、聚酰胺固化剂与改性后的CuO微胶囊进行混合,800rpm/min下搅拌2h,1000w超声分散50min,得到刺激响应型自修复涂层材料;其中,固化剂和涂层基体的质量比为1:3,改性后的CuO微胶囊的添加量为涂层基体的5%。
实施例5性质检测
对本发明上述实施例制备得到的自修复防腐涂层材料进行下述性质检测:
1、不同pH缓蚀剂释放曲线
(1)阻抗谱是评估涂层防腐性能常用的一种手段,图1与图2是借助电化学阻抗谱法测试的结果。电化学阻抗法是给测试体系小振幅的正弦波扰动信号,不会使测量体系在测试过程中发生大的改变,且能够得到不同频率下得到涂层电容、涂层电阻、双电层电容、极化电阻等与涂层破坏有关的参数。
低频(0.01Hz)最接近实际情况,通常以此频率下的值预估防腐性能,用含有微胶囊的溶液在0.01Hz的数值与不含微胶囊的溶液在0.01Hz的数值之比 作为缓蚀剂的释放量。
(2)图1是溶液pH值分别为7、6、5、4时,缓蚀剂的释放量与时间的关系,从图1中可以看出,溶液pH值分别为7、6、5时,缓蚀剂的释放量较少,表明在此条件下微胶囊的稳定性较好,但当溶液pH值为4时,酸性较强,缓蚀剂的释放量速率增大,表明微胶囊具有较好地pH响应性能。
2、自修复防腐性能测试
(1)在3.5%的NaCl溶液中利用电化学交流阻抗谱技术来评判自修复性能。用尖锐的刀片在完全固化之后的涂层上划“十”字型伤口,测试上述实施例1~2制得的自修复防腐涂层材料表面出现裂纹后的自修复防腐性能。其中,当涂层出现裂纹时,涂层材料的防腐性能降低,阻抗值变小,从而利用涂层材料阻抗值的大小可以评价涂层材料的自修复防腐性能,阻抗值越大,自修复防腐性能越好。
由图2可知,与单独的环氧树脂涂层相比,实施例1与实施例2涂层材料的电阻较大,说明实施例1与实施例2涂层材料的防腐性能明显提高。结果表明,本发明自修复防腐涂层材料的防腐性能明显提高,而且具有良好的自修复防腐性能。
3、粒径与表征
本发明实施例1~4制得的微胶囊的粒径集中在200~400nm,粒径较小,且粒径分布均一稳定,有利于缓蚀剂的自动释放,提高修复效果。
从图3中可以看出,Cu-MOF晶体呈八面体形状,煅烧Cu-MOF后得到CuO,其颗粒大小和形状与Cu-MOF相似,CuO有很多空洞结构,表面更粗糙,这是由于在煅烧过程中有机物的释放形成的。图3中的c图为CuO的透射电镜图,显示了煅烧产物CuO的内部结构,表明所得到的多面体颗粒实际上是多孔结构。
4、CuO微胶囊改性前后的Zeta电位改变情况
表1 CuO微胶囊的Zeta电位
微胶囊 CuO CuO+BTA CuO+BTA+PSS CuO+BTA+PSS+PEI
Zeta(mV) -5.8 0.8 -2.1 0.3
其中,BTA为苯并三氮唑,PSS为聚苯乙烯磺酸钠,PEI为聚乙烯亚胺。
本发明通过利用具备独特的八面体形状晶体结构和孔道表面的Cu-MOF材料制备得到的多孔CuO作为囊芯载体来封装囊芯,多孔氧化铜表面电位带负电, 负载缓蚀剂后带正电,可以提高囊芯物质的装载率和封装率;同时,阴离子聚电解质可通过层层自组装的方法吸附在其表面使负载缓蚀剂的氧化铜带负电,在库仑力的作用下,吸附阳离子聚电解质在其表面以改善微胶囊在涂层中的分散性,改善了微胶囊在涂层中的分散性,解决了多孔物质CuO的团聚问题,同时提高了囊芯载体与涂层基体的结合性能,使涂层材料的防腐性能得到进一步提高。
以上结果说明,本发明成功构建了具有pH响应和自修复双重功效的防腐涂层材料。
上述实施例中,所述缓蚀剂除可以选择苯并三氮唑外,也可以选择磺化木质素、巯基苯并噻唑或甲基苯并三唑等小分子缓蚀剂。所述固化剂除可以选择聚酰胺外,也可以选择异氰酸酯、二乙烯三胺、丁醇或甲基三氯硅烷等固化剂。所述涂层基体除可以选择环氧树脂外,也可以选择聚氨酯树脂、丙烯酸树脂、过氯乙烯树脂或聚乙烯树脂等油性基体。所述阳离子聚电解质除可以选择聚乙烯亚胺外,还可以选择聚乙烯吡啶或壳聚糖等正性聚电解质,阴离子聚电解质处可以选择聚苯乙烯磺酸钠外,还可以选择聚丙烯酸、聚甲基丙烯酸或海藻酸钠等负性聚电解质。发明人经过实验发现,上述的几种固化剂和油性基体具有可接受的效果,而选择其他的固化剂和油性基体则不如前者,聚酰胺和环氧树脂制备的涂层对氧化锌微胶囊包裹性较佳,并且与氧化锌微胶囊具有更好的结合性。阴离子聚电解质为聚苯乙烯磺酸钠,阳离子聚电解质为聚乙烯亚胺时,对CuO微胶囊的改性效果比其他聚电解质好。
以上具体实施方式为便于理解本发明而说明的较佳实施例,但本发明并不局限于上述实施例,即不意味着本发明必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种刺激响应型自修复防腐涂层材料,其特征在于,包括CuO微胶囊和涂层基体,所述CuO微胶囊包括囊芯和囊芯载体,所述囊芯为缓蚀剂,所述囊芯载体为多孔CuO;所述CuO微胶囊的表面为交替包覆的阴离子聚电解质层和阳离子聚电解质层。
  2. 根据权利要求1所述的刺激响应型自修复防腐涂层材料,其特征在于,所述CuO微胶囊的添加量为涂层基体的1%~10%。
  3. 根据权利要求2所述的刺激响应型自修复防腐涂层材料,其特征在于,所述阴离子聚电解质选自聚苯乙烯磺酸盐、聚丙烯酸、聚甲基丙烯酸或海藻酸钠中的至少一种;所述阳离子聚电解质选自聚乙烯亚胺、聚乙烯吡啶或壳聚糖中的至少一种;所述聚苯乙烯磺酸盐优选为聚苯乙烯磺酸钠。
  4. 根据权利要求3所述的刺激响应型自修复防腐涂层材料,其特征在于,所述CuO微胶囊的粒径为200~400nm。
  5. 根据权利要求1所述的刺激响应型自修复防腐涂层材料,其特征在于,利用阴离子聚电解质-阳离子聚电解质层层自组装法对所述CuO微胶囊表面进行改性,包括以下步骤:
    将CuO微胶囊置于阴离子聚电解质溶液中,低速搅拌反应,得到一层阴离子聚电解质修饰的微胶囊;将其置于阳离子聚电解质溶液中,低速搅拌反应,得到阴离子聚电解质-阳离子聚电解质改性后的CuO微胶囊;
    所述阴离子聚电解质溶液与所述阳离子聚电解质溶液的浓度比为1:1~2;CuO微胶囊占聚合物溶液总质量的10%~20%;所述低速搅拌的条件优选为300~600rpm/min。
  6. 根据权利要求5所述的刺激响应型自修复防腐涂层材料,其特征在于,所述CuO微胶囊的制备方法为:将Cu-MOF材料于400~600℃煅烧3~5h,得到多孔CuO;将缓蚀剂溶解后,加入多孔CuO,低速搅拌4~6h以封装缓蚀剂,过滤,洗涤,得到CuO微胶囊。
  7. 根据权利要求6所述的刺激响应型自修复防腐涂层材料,其特征在于,所述低速搅拌的条件为300~600rpm/min;所述缓蚀剂为小分子缓蚀剂;所述小分子缓蚀剂优选为苯并三氮唑。
  8. 根据权利要求6所述的刺激响应型自修复防腐涂层材料,其特征在于, 所述Cu-MOF材料的制备方法如下:将铜前驱体与有机配体在溶剂中溶解,于80~120℃下密闭反应10~14h,反应完成后,冷却,洗涤,干燥,得到所述Cu-MOF材料。
  9. 根据权利要求8所述的刺激响应型自修复防腐涂层材料,其特征在于,所述铜前驱体为三水合硝酸铜;所述有机配体为1,3,5-苯三甲酸;所述溶剂为甲醇和N,N-二甲基二乙烯酰胺;所述铜前驱体与有机配体的质量比为30~35:20~25;所述甲醇与N,N-二甲基二乙烯酰胺的体积比为1:1~3。
  10. 权利要求1~9任一所述刺激响应型自修复防腐涂层材料的制备方法,其特征在于,将CuO微胶囊、固化剂和涂层基体混合,800~1000rpm/min下搅拌1~2h,500~1000w超声分散30~50min;其中,所述固化剂和涂层基体的质量比为1:1~3;所述涂层基体为油性基体;所述固化剂优选为聚酰胺。
PCT/CN2020/099498 2019-04-30 2020-06-30 一种刺激响应型自修复防腐涂层材料和制备方法 WO2020221378A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910365018.4 2019-04-30
CN201910365018.4A CN110105843B (zh) 2019-04-30 2019-04-30 一种刺激响应型自修复防腐涂层材料和制备方法

Publications (1)

Publication Number Publication Date
WO2020221378A1 true WO2020221378A1 (zh) 2020-11-05

Family

ID=67487966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099498 WO2020221378A1 (zh) 2019-04-30 2020-06-30 一种刺激响应型自修复防腐涂层材料和制备方法

Country Status (2)

Country Link
CN (1) CN110105843B (zh)
WO (1) WO2020221378A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011159A (zh) * 2022-07-28 2022-09-06 中北大学 一种基于pH响应的自修复材料

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105843B (zh) * 2019-04-30 2020-06-19 中山大学 一种刺激响应型自修复防腐涂层材料和制备方法
CN110698931B (zh) * 2019-08-29 2021-07-30 中山大学 一种具有Fe2+响应特性的金属有机骨架缓蚀剂-水凝胶复合物及其制备方法和应用
CN110551398B (zh) * 2019-08-29 2021-04-20 中国科学院海洋研究所 一种具有Fe2+响应特性的金属有机骨架缓蚀剂-水凝胶复合物及其制备方法和应用
CN110628293B (zh) * 2019-10-24 2021-05-11 庆阳洲阳石油机械制造有限公司 一种高稳定性的改性水性酚醛树脂防腐涂料及其制法
CN110776808B (zh) * 2019-11-13 2021-11-30 上海师范大学 基于微纳米容器的防腐自修复涂层材料及其制备方法
CN111253831B (zh) * 2020-01-20 2021-07-23 中科院广州化学有限公司 一种具有自修复防腐性能的木质素/苯并三氮唑复合涂料及其制备方法与应用
CN112500760B (zh) * 2020-06-04 2021-12-10 中国海洋大学 一种聚苯胺/mof复合涂层电极材料及制备方法和应用
US20230287224A1 (en) * 2020-07-29 2023-09-14 Ohio State Innovation Foundation pH-SENSITIVE CAPSULE AND RELEASE SYSTEM
CN111903678B (zh) * 2020-08-18 2021-09-14 常州美胜生物材料有限公司 一种植物精油驱蚊微胶囊的制备方法
CN112457696B (zh) * 2020-10-28 2022-03-22 桂林理工大学 一种基于喹啉类纳米金属-有机框架材料的自修复涂层及其制备方法
CN112521837B (zh) * 2020-12-30 2022-05-20 四川轻化工大学 一种mof负载缓蚀剂的填料、自修复防腐蚀涂料及其制备方法
CN113349221B (zh) * 2021-06-07 2022-10-25 中山大学 一种纳米复合材料Cu2O@HKUST-1及其制备方法和应用
CN113321985A (zh) * 2021-06-15 2021-08-31 江苏科技大学 一种pH刺激响应智能修复涂料及其制备方法
CN114106416B (zh) * 2021-12-28 2023-06-23 滨州学院 一种双重响应型埃洛石纳米容器的制备方法和应用
CN114891405A (zh) * 2022-01-24 2022-08-12 海南大学 智能防污微胶囊粒子、其制备方法及其具有智能防污功能的环保性海洋防污涂层
CN116376401B (zh) * 2023-04-12 2024-06-21 北京科技大学 pH响应型长效智能水性防腐涂料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287020A (zh) * 2013-03-26 2013-09-11 大连理工大学 Cu基表面八羟基喹啉铜/BTA/环氧树脂自修复防腐蚀涂层及其制法
US20150111987A1 (en) * 2013-10-23 2015-04-23 Autonomic Materials, Inc. Self-healing agent formulations containing liquid corrosion inhibitors
CN105440884A (zh) * 2015-12-12 2016-03-30 青岛农业大学 一种水性环氧树脂自修复防腐蚀涂层的制备及应用
CN106047068A (zh) * 2016-07-06 2016-10-26 陕西科技大学 一种无VOC环氧树脂/HNTs复合自修复涂料及其制备方法
CN108841318A (zh) * 2018-07-12 2018-11-20 中国科学院海洋研究所 一种自修复壳聚糖水凝胶防腐涂料及其合成方法
CN109608985A (zh) * 2018-12-08 2019-04-12 郑州师范学院 一种可自动修复防腐涂层及其制备方法
CN110105843A (zh) * 2019-04-30 2019-08-09 中山大学 一种刺激响应型自修复防腐涂层材料和制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279277A (ja) * 1985-10-02 1987-04-11 Nissan Motor Co Ltd 防錆用組成物
US7192993B1 (en) * 2003-03-04 2007-03-20 The United States Of America As Represented By The Secretary Of The Army Self-healing coating and microcapsules to make same
CN103387867B (zh) * 2013-08-02 2015-01-07 武汉材料保护研究所 一种防锈软膜组合物及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287020A (zh) * 2013-03-26 2013-09-11 大连理工大学 Cu基表面八羟基喹啉铜/BTA/环氧树脂自修复防腐蚀涂层及其制法
US20150111987A1 (en) * 2013-10-23 2015-04-23 Autonomic Materials, Inc. Self-healing agent formulations containing liquid corrosion inhibitors
CN105440884A (zh) * 2015-12-12 2016-03-30 青岛农业大学 一种水性环氧树脂自修复防腐蚀涂层的制备及应用
CN106047068A (zh) * 2016-07-06 2016-10-26 陕西科技大学 一种无VOC环氧树脂/HNTs复合自修复涂料及其制备方法
CN108841318A (zh) * 2018-07-12 2018-11-20 中国科学院海洋研究所 一种自修复壳聚糖水凝胶防腐涂料及其合成方法
CN109608985A (zh) * 2018-12-08 2019-04-12 郑州师范学院 一种可自动修复防腐涂层及其制备方法
CN110105843A (zh) * 2019-04-30 2019-08-09 中山大学 一种刺激响应型自修复防腐涂层材料和制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011159A (zh) * 2022-07-28 2022-09-06 中北大学 一种基于pH响应的自修复材料

Also Published As

Publication number Publication date
CN110105843B (zh) 2020-06-19
CN110105843A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020221378A1 (zh) 一种刺激响应型自修复防腐涂层材料和制备方法
CN110079140B (zh) 一种智能响应自修复防腐涂层材料和制备方法
Chen et al. Corrosion protection of 304 stainless steel from a smart conducting polypyrrole coating doped with pH-sensitive molybdate-loaded TiO2 nanocontainers
Liu et al. Self-healing corrosion protective coatings based on micro/nanocarriers: A review
CN107474615B (zh) 一种防腐自修复涂料
WO2020034141A1 (zh) 基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用
WO2019029172A1 (zh) 具备自修复能力的防腐涂层及其制备方法和应用
CN109608985A (zh) 一种可自动修复防腐涂层及其制备方法
CN105440884B (zh) 一种水性环氧树脂自修复防腐蚀涂层的制备及应用
Shi et al. Sub-micrometer mesoporous silica containers for active protective coatings on AA 2024-T3
CN104927583A (zh) 可自动修复智能防腐涂层的制备方法及应用
CN103360907B (zh) 具有自修复能力的集输管线用有机涂层及其制备方法
CN111234566A (zh) 一种酸碱双响应中空介孔二氧化硅复合纳米容器和自修复防腐蚀涂料及其制备方法
CN107964097B (zh) 还原氧化石墨烯、四氧化三铁和聚苯胺的三元纳米复合材料制备方法及应用
CN105623475A (zh) 一种基于环境友好型纳米容器的自愈合涂层的制备方法
CN107556865A (zh) 镁合金表面自修复防腐蚀涂层的制备方法
Liu et al. Self-healing and corrosion-sensing coatings based on pH-sensitive MOF-capped microcontainers for intelligent corrosion control
CN111116165B (zh) 一种双层改性无机防腐涂层及其制备方法
Cheng et al. Three birds with one stone: Contemporaneously boosting passive, active and self-healing properties for long-term anticorrosion coatings
CN110776808B (zh) 基于微纳米容器的防腐自修复涂层材料及其制备方法
Sun et al. A unique anti-corrosion composite coating with CO2 gas barrier and acid resistance suitable for CCUS environment
WO2024056109A1 (zh) 一种"砖-泥"层状结构耐腐蚀磷酸盐复合涂层及其制备方法与应用
Dua et al. Conjugated polymer-based composites for anti-corrosion applications
Li et al. A photothermal and pH-responsive intelligent PSBG nanofiller for enhancing the barrier and self-healing performance of the SMP coatings
CN107216774A (zh) 一种磁性防腐自修复涂料及其在油气田套管防腐蚀中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798503

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/03/2022).

122 Ep: pct application non-entry in european phase

Ref document number: 20798503

Country of ref document: EP

Kind code of ref document: A1