CN114381023B - 一种交联β-环糊精的MXene膜及其制备方法和应用 - Google Patents

一种交联β-环糊精的MXene膜及其制备方法和应用 Download PDF

Info

Publication number
CN114381023B
CN114381023B CN202111550450.4A CN202111550450A CN114381023B CN 114381023 B CN114381023 B CN 114381023B CN 202111550450 A CN202111550450 A CN 202111550450A CN 114381023 B CN114381023 B CN 114381023B
Authority
CN
China
Prior art keywords
cyclodextrin
mxene
beta
film
crosslinked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111550450.4A
Other languages
English (en)
Other versions
CN114381023A (zh
Inventor
陈喆
杨昊东
王戈明
邓泉荣
姚蕾
付萍
林志东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202111550450.4A priority Critical patent/CN114381023B/zh
Publication of CN114381023A publication Critical patent/CN114381023A/zh
Application granted granted Critical
Publication of CN114381023B publication Critical patent/CN114381023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2611Measuring inductance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于二维材料技术领域,具体涉及一种交联β‑环糊精的MXene膜及其制备方法和应用。本发明将超分子材料环糊精与MXene纳米片产生交联反应,将MXene表面地功能化基团所取代,让β‑环糊精与MXene纳米片产生交联,改变MXene表面的功能性,然后通过层层组装地方式抽滤成膜,得到交联β‑环糊精的MXene膜,其在盐溶液中稳定的电感特征,从而可以作为生物体内使用的电感材料。

Description

一种交联β-环糊精的MXene膜及其制备方法和应用
技术领域
本发明属于二维材料技术领域,具体涉及一种交联β-环糊精的MXene膜及其制备方法和应用。
背景技术
随着目前对神经科学在不同科学领域的理解的出现,有一个很好的机会来理解和治疗不同的神经疾病,如癫痫、帕金森病和脊髓损伤。自20世纪90年代中期以来,从实验中获得的这类知识数量急剧增长。在多年动物实验的基础上,为人类使用的早期植入装置被设计和制造,以恢复受损的听力、视力和肢体运动。研究的主要方向是大脑皮层具有不同寻常的可塑性,这种可塑性通过脑-机接口来控制植入的假肢,其方式与控制天然肢体的方式基本相同。随着当前技术和知识的进步,脑机接口研究的先行者可能会尝试构建增强人类功能的脑机接口,而不仅仅是恢复人类功能。这种技术直到现在都是科幻小说里的东西。Phillip Kennedy和他的同事在猴子身上植入神经营养锥电极,建立了首个皮层内脑-计算机接口(BCI)。所谓脑机接口(brain-computer interface,BCI)就是指解码人类思维过程中的脑神经活动信息,构建了大脑与外界之间的直接信息传递通路,在神经修复、神经反馈训练、大脑状态监测等领域具有广泛的应用前景。电极作为脑机接口中接收信号的重要环节,它直接决定了采集大脑电信号的质量和强度,可以说是BCI技术实现的关键所在。为了在植入脑机接口的情况下又对大脑不产生机械损伤,传统刚性材料如硅、钛、铂以及碳所固有的高弹性模量、高致密性、弱生物相容性不能满足脑电信号的采集需求,因此寻找具备低弹性模量、多孔性、湿软性以及良好生物相容性的电极材料尤为重要。柔性电极是由软基体和导电性物质复合而成,基底材料有聚合物、碳基材料及纳米材料等,导电性物质一般有二维(2D)纳米材料如氧化石墨烯、MoS2、MOF等,此类材料的柔性大、密度低、导电性和机械性能俱佳,而且其内部互联的多孔通道有助于实现离子的快速迁移,从而大幅度提高了电化学性能。
然而,二维材料膜在实现高效电信号传递方面仍然面临巨大挑战,这是由于在液相环境下,二维纳米材料会产生不可逆的溶胀效应,大大降低了使用寿命。为了在亚纳米尺度上精确控制层间空间,增强截取电信号能力,科学家们做了许多尝试,无论是在开发新的二维材料,还是通过物理和化学方法抑制膨胀,以提高性能和在液体环境下的稳定性。
近年来,过渡金属碳化物、碳氮化物和氮化物(MXene)作为一种新型的二维材料,以其优异的电子导电性、机械性能和广泛的表面化学特性,受到了广泛的关注。MXene由于其丰富的表面功能性、亲水性、易于放大合成和环境友好性,具备广泛的应用前景。然而,含氧基团的存在使MXene具有优异的亲水性,使得MXene在水溶液条件下极易吸水,增大了MXene纳米片之间的间距,使得膜的机械强度较差,对盐离子的选择性较低。因此,加强MXene相互作用,固定MXene纳米片之间的二维纳米通道,以提高MXene纳米片的分离性能和长期稳定性是非常必要的。
发明内容
为解决现有技术的不足,本发明提供了一种交联β-环糊精的MXene膜及其制备方法和应用。
本发明所提供的技术方案如下:
一种交联β-环糊精的MXene膜的制备方法,包括以下步骤:
1)取0.4-0.8ml 5mg/ml的MXene水分散液和0-200mg(不包括零)的β-环糊精粉末置于干净的容器中,加入去离子水超声震荡;
2)向均匀的MXene和β-环糊精的混合溶液中分别加入0.1-1ml水合肼和5-15ml的氨水,在70-90℃下水浴加热搅拌4-8h,进行反应;
3)待反应结束后将容器放置冷却至室温,然后超声震荡让反应后的混合溶液均匀分散;
4)取PES微滤膜作为基底膜并置于真空抽滤装置上,然后将均匀分散的混合溶液倒入装有PES基底膜的抽滤装置中抽滤,得到湿润的交联β-环糊精的MXene膜;
5)将湿润的交联β-环糊精的MXene膜放入25℃恒温干燥箱保存12h,得到干燥的交联β-环糊精的MXene膜。
上述技术方案将超分子材料环糊精与MXene纳米片产生交联反应,将MXene表面地功能化基团所取代,让β-环糊精与MXene纳米片产生交联,改变MXene表面的功能性,然后通过层层组装地方式抽滤成膜,得到交联β-环糊精的MXene膜。
具体的,PES微滤膜的孔径范围为0.2-0.4μm。
本发明还提供了根据上述制备方法制备得到的交联β-环糊精的MXene膜。
本发明还提供了根据上述交联β-环糊精的MXene膜的应用,作为生物体体液环境下的具备稳定电感性能的柔性电极材料。
通过电化学交流阻抗谱的表征手段,对MXene/β-环糊精膜的电感特性进行表征,证实其具有在盐溶液中稳定的电感特征,从而可以作为生物体内使用的柔性电极材料。
具体的,电感材料可承受的体液盐浓度为0.01-1mol/L。
与不加修饰的纯MXene膜相比,交联β-环糊精的MXene膜具有增大的层间距、抗溶胀效应,性能更加稳定,且其在浓度变化的盐溶液中,具有稳定的电感值,具有广阔的应用前景。
附图说明
图1是本发明的一个制备流程图。
图2是MXene/β-CD膜的XRD和FTIR测试图。
图3是测试装置结构图。
图4是测试电路等效电路图。
图5是测试得到的阻抗谱图。
具体实施方式
以下对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围。
实施例1
取0.4ml 5mg/ml的氧化石墨烯分散液(水溶剂)和200mgβ-环糊精,置于50ml的圆底烧瓶中加入适量的去离子水溶解,充分震荡搅拌分散,然后向均匀的MXene、β-环糊精的混合溶液中分别加入1ml水合肼和5ml的氨水,在70℃下水浴加热搅拌4h,带反应结束后超声震荡20min使反应得到的MXene/β-环糊精复合材料均匀分散开。待反应结束后放置至室温冷却,取孔径0.22μm的PES微滤膜作为基底膜置于真空抽滤装置上,然后将均匀分散的混合溶液倒入装有PES基底膜的抽滤装置中抽滤30min,得到湿润的MXene/β-环糊精膜,将湿润的MXene/β-环糊精膜放入25℃恒温干燥箱保存12h,得到实验所需的干燥MXene/β-环糊精膜,在常温条件下晾干保存。
测试例
对得到的MXene/β-环糊精膜进行XRD和FTIR测试,结果如图2所示。对比XRD可知,β-环糊精的加入使得MXene纳米片间的层间距增大,FTIR谱图也证明了β-环糊精成功枝接到了MXene纳米片表面,形成了MXene/β-环糊精复合材料。
在膜池一侧倒入使用不同浓度(1mol/L、0.1mol/L、0.01mol/L)的KCl溶液作电解液,另一侧取电导率为18.25μs/cm的超纯水,采用四电极(左侧纯水,右侧盐溶液)在恒流模式下对膜进行电化学测试,得到阻抗值测试结果。
图3为测试装置结构图。
图4为测试电路等效电路图。
图5为测试得到的阻抗谱图。各谱图中,随着时间的变化电感曲线由外至内依次减小。可以看出,对比添加了β-环糊精和未添加β-环糊精的MXene膜的Nyquist图,环糊精的添加使得MXene的电感性能在盐溶液中表现更加稳定可控。
因此,基于MXene/β-CD膜在盐溶液下稳定的电感性质,可以作为生物体内接触体液的柔性电极材料。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种交联β-环糊精的MXene膜的制备方法,其特征在于,具体步骤如下:
1)取0.4-0.8ml 5mg/ml的MXene水分散液和0-200mg且不为零的β-环糊精粉末置于干净的容器中,加入去离子水超声震荡;
2)向均匀的MXene和β-环糊精的混合溶液中分别加入0.1-1ml水合肼和5-15ml的氨水,在70-90℃下水浴加热搅拌4-8h,进行反应;
3)待反应结束后将容器放置冷却至室温,然后超声震荡让反应后的混合溶液均匀分散;
4)取PES微滤膜作为基底膜并置于真空抽滤装置上,然后将均匀分散的混合溶液倒入装有PES基底膜的抽滤装置中抽滤,得到湿润的交联β-环糊精的MXene膜;
5)将湿润的交联β-环糊精的MXene膜放入25-30℃恒温干燥箱保存8-16h,得到干燥的交联β-环糊精的MXene膜。
2.根据权利要求1所述的交联β-环糊精的MXene膜的制备方法,其特征在于:PES微滤膜的孔径范围为0.2-0.4μm。
3.一种根据权利要求1至2任一所述的制备方法制备得到的交联β-环糊精的MXene膜。
4.一种根据权利要求3所述的交联β-环糊精的MXene膜的应用,其特征在于:所述MXene膜作为工作在生物体体液环境下的柔性电极材料。
5.根据权利要求4所述的应用,其特征在于:柔性电极材料工作的体液环境盐浓度为0.01-1mol/L。
CN202111550450.4A 2021-12-17 2021-12-17 一种交联β-环糊精的MXene膜及其制备方法和应用 Active CN114381023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111550450.4A CN114381023B (zh) 2021-12-17 2021-12-17 一种交联β-环糊精的MXene膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111550450.4A CN114381023B (zh) 2021-12-17 2021-12-17 一种交联β-环糊精的MXene膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114381023A CN114381023A (zh) 2022-04-22
CN114381023B true CN114381023B (zh) 2023-12-12

Family

ID=81197100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111550450.4A Active CN114381023B (zh) 2021-12-17 2021-12-17 一种交联β-环糊精的MXene膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114381023B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183557A (zh) * 2011-01-22 2011-09-14 青岛大学 一种环糊精功能化石墨烯的制备方法
CN105926013A (zh) * 2016-04-22 2016-09-07 浙江大学 一种电沉积制备类贝壳层状结构氧化石墨烯复合膜的方法
WO2020034141A1 (zh) * 2018-08-16 2020-02-20 中国科学院宁波材料技术与工程研究所 基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用
CN112938979A (zh) * 2021-01-29 2021-06-11 中山大学 具有SERS效应的MXene复合材料及其制备方法和应用
CN113640358A (zh) * 2021-08-13 2021-11-12 青岛科技大学 MXene复合膜修饰电极及其对蛋氨酸对映体的电化学鉴别

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183557A (zh) * 2011-01-22 2011-09-14 青岛大学 一种环糊精功能化石墨烯的制备方法
CN105926013A (zh) * 2016-04-22 2016-09-07 浙江大学 一种电沉积制备类贝壳层状结构氧化石墨烯复合膜的方法
WO2020034141A1 (zh) * 2018-08-16 2020-02-20 中国科学院宁波材料技术与工程研究所 基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用
CN112938979A (zh) * 2021-01-29 2021-06-11 中山大学 具有SERS效应的MXene复合材料及其制备方法和应用
CN113640358A (zh) * 2021-08-13 2021-11-12 青岛科技大学 MXene复合膜修饰电极及其对蛋氨酸对映体的电化学鉴别

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
邹静等."环糊精-氧化石墨烯复合材料的制备及其对Cu2+的吸附性能研究".《中国塑料》.2019,第33卷(第4期),第17-21页. *
陈欢."MXene 膜的电化学性能研究".《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》.2023,(第2期),B020-2493. *

Also Published As

Publication number Publication date
CN114381023A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
Vivaldi et al. Three-dimensional (3D) laser-induced graphene: Structure, properties, and application to chemical sensing
Zhang et al. Highly sensitive capacitive flexible pressure sensor based on a high-permittivity MXene nanocomposite and 3D network electrode for wearable electronics
Wang et al. Recent advances in porous carbon materials for electrochemical energy storage
CN105597791B (zh) 一种硒化钼/多孔碳纳米纤维复合材料及其制备方法和应用
CN110540729B (zh) 一种轻质高导电屏蔽材料及其制备方法
CN104030280A (zh) 石墨烯纸的制备方法
CN104876282A (zh) 用作超级电容器电极的CoSx纳米材料及其制备方法
CN112646212B (zh) 一种聚苯胺包覆的金属有机框架纳米阵列薄膜的制备方法及其产品和应用
Sharma et al. Graphene-polymer nanocomposites electrode with ionic nanofibrous membrane for highly sensitive supercapacitive pressure sensor
CN106146833A (zh) 一种柔性聚苯胺导电石墨烯膜及其制备方法
CN109422263A (zh) 一种纤维素多孔活性炭及其制备方法与应用
CN114381023B (zh) 一种交联β-环糊精的MXene膜及其制备方法和应用
CN112430394B (zh) 一种导电增强型聚吡咯/石墨烯/明胶复合柔性电极材料及其制备方法
CN114220602B (zh) 银纳米线/MXene高导电多功能加热、温度传感器件的制备方法
Prilepskii et al. Conductive bacterial cellulose: From drug delivery to flexible electronics
Patil et al. Intercalation Engineering of 2D Materials at Macroscale for Smart Human–Machine Interface and Double‐Layer to Faradaic Charge Storage for Ions Separation
CN103762356A (zh) Ni纳米线、NiO/Ni自支撑膜及其制备方法和应用
Xu et al. Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics
Zhang et al. 3D graphene-based active electrodes with large areal capacitance by modified direct ink writing method
Liu et al. Flexible electrode materials for emerging electronics: materials, fabrication and applications
CN103767699B (zh) 一种基于碳纳米管/导电聚合物的神经元探针及其制备方法
CN115844411A (zh) 一种超疏水高导电柔性干电极及其制作方法
JP2022022930A (ja) 銀ナノワイヤーのカーボンナノボール電極材料の作製方法
CN107313093A (zh) 一种基于导电基材的纳米结构聚吡咯/生物素复合材料及制备与应用
CN105185600B (zh) 一种电泳制备石墨烯电极材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant