WO2020000559A1 - 硅烷/氧化石墨烯复合钝化液及其制备方法与应用 - Google Patents

硅烷/氧化石墨烯复合钝化液及其制备方法与应用 Download PDF

Info

Publication number
WO2020000559A1
WO2020000559A1 PCT/CN2018/097602 CN2018097602W WO2020000559A1 WO 2020000559 A1 WO2020000559 A1 WO 2020000559A1 CN 2018097602 W CN2018097602 W CN 2018097602W WO 2020000559 A1 WO2020000559 A1 WO 2020000559A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
silane
oxide composite
passivation solution
composite passivation
Prior art date
Application number
PCT/CN2018/097602
Other languages
English (en)
French (fr)
Inventor
张双红
杨波
陈平
李茂东
孔纲
黄国家
翟伟
王志刚
Original Assignee
广州特种承压设备检测研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州特种承压设备检测研究院 filed Critical 广州特种承压设备检测研究院
Publication of WO2020000559A1 publication Critical patent/WO2020000559A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Definitions

  • the invention relates to the technical field of metal anticorrosion, in particular to a silane / graphene oxide composite passivation solution, and a preparation method and application thereof.
  • the corrosion protection of metal materials has been a research hotspot in the field of materials science.
  • the most commonly used method of corrosion protection is to cover the metal surface with another organic, inorganic or composite film as a protective layer through physical, chemical or electrochemical processes. Use this protective layer to prevent or slow down metal corrosion.
  • the chromate passivation process is a traditional process for metal surface treatment, which is effective and widely used.
  • due to the high toxicity of hexavalent chromium ions it will not only cause environmental pollution, but also be easy to cause cancer. Therefore, the traditional process is gradually restricted. .
  • Silane has a unique chemical structure, which can be firmly adhered to the metal surface by chemical adsorption, forming a good protective layer on the metal surface, which plays a role of anticorrosion. Because the process will not cause damage to the environment and human body, low cost, wide range of applications, good protection for metals, and good adhesion to organic coatings, it has received enthusiasm in the field of corrosion and protection. However, the simple silane film is relatively thin, which cannot prevent metal corrosion in a long time, and there is room for improvement in its corrosion resistance. At present, the use of a variety of additives to improve the inorganic and organic passivation technology of silane films has complicated procedures and difficult process control, which is not conducive to industrial applications.
  • the single-component graphene is easy to agglomerate, and it is not easy to be processed and shaped, which limits the application of graphene.
  • Graphene oxide has a planar structure similar to graphene. The surface contains a large number of active groups. The presence of oxygen-containing functional groups (carboxyl, hydroxyl, epoxy, etc.) makes graphene oxide highly hydrophilic and stable. It is dispersed in a polar reagent, but a single graphene oxide film layer has poor adhesion to a metal substrate.
  • a method for preparing a silane / graphene oxide composite passivation solution includes the following steps:
  • the pH of the dispersion was adjusted to a pH of 2 to 4, and the hydrolysis was performed to obtain the silane / oxidized alkalene composite passivation solution.
  • the water is distilled water or deionized water.
  • the aqueous silane coupling agent is selected from the group consisting of ⁇ -glycidyl ether oxypropyltrimethoxysilane, ⁇ -glycidyl ether oxypropyltriethoxysilane, and ⁇ -methacryloxy One or more of propyltrimethoxysilane and ⁇ -methacryloxypropyltriethoxysilane.
  • the alcohol is selected from one or more of methanol, ethanol, n-propanol, isopropanol, and n-butanol.
  • the aqueous silane coupling agent, the water and the alcohol are mixed in a volume ratio of 1: 8: 1.
  • the graphene oxide is added in an amount of 0.01% to 0.5% by mass of the mixed solution.
  • the pH of the dispersion is adjusted using acetic acid.
  • the ultrasonic treatment time is 5 to 30 minutes.
  • the hydrolysis time is from 12h to 36h.
  • a silane / graphene oxide composite passivation solution is prepared by the method for preparing a silane / graphene oxide composite passivation solution according to any one of the foregoing embodiments.
  • a method for anti-corrosion of metal surface includes the following steps:
  • the metal is impregnated or coated with the silane / graphene oxide composite passivation solution, and dried.
  • the temperature for dipping or coating is 20 ° C to 50 ° C, and the time for dipping or coating is 2min to 120min.
  • the drying temperature is 60 ° C to 180 ° C, and the drying time is 2h to 6h.
  • the step of pre-treating the surface of the metal is included before the step of dipping or coating.
  • the pre-processing includes the following steps:
  • the surface of the metal is polished with metallographic sandpaper, then polished with a metallographic polisher, and then washed with ultrasonic water, and then washed with ethanol and water in that order and dried.
  • the metal is zinc, a zinc alloy, or steel.
  • the present invention has the following beneficial effects:
  • the above silane / graphene oxide composite passivation solution combines the advantages of both graphene oxide and silane.
  • graphene oxide and an aqueous silane coupling agent are used to co-hydrolyze to achieve the silane of graphene oxide.
  • functionalization covalent bonds can be formed between the silane coupling agent and the metal substrate, which is helpful to improve the bonding force between the film layer and the metal substrate, and the lamellar graphene oxide can enhance the physical shielding of the film layer against corrosive media performance. Therefore, the silane / graphene oxide composite passivation liquid can have an excellent anticorrosive effect on metals.
  • both graphene oxide and silane participate in the film-forming reaction, and the functional group functional group of the silane coupling agent can react with the oxygen of graphene oxide.
  • the groups react to form a larger molecular network structure and increase the film thickness.
  • the functional groups such as carboxyl groups on the edges of graphene oxide decrease, the hydrophilicity of graphene oxide decreases, and the hydrophobicity increases.
  • the increased hydrophobicity of the film layer is conducive to the film formation reaction, and further increases the film thickness.
  • the stability of the passivation solution has an important effect on the film thickness.
  • the graphene oxide is first dispersed in the mixed solution, and then the acid is hydrolyzed, and the aqueous silane coupling agent, water and alcohol are selected.
  • the volume ratio is 1: (7 to 9): (0.8 to 1.2), and the pH value of the passivation solution is 2 to 4, so that graphene oxide can be dispersed well and stably, so that it can more fully interact with silane during the film formation process.
  • the coupling agent contacts and reacts, so that a 20 ⁇ m to 30 ⁇ m passivation film can be formed on the metal substrate by a film formation method such as dipping or coating, and the film layer is uniform and dense without cracks and warping, which can achieve long-term Protective effect.
  • the above silane / graphene oxide composite passivation solution and its preparation method require a wide range of raw materials and simple preparation process. Only a small amount of graphene oxide is added to obtain excellent anti-corrosion effects without the need to add other organic solvents or inorganic buffers. Etchant, green environmental protection, low cost, easy and simple operation, easy to control, suitable for industrial production.
  • Example 1 is a scanning electron microscope image of a surface of a passivation film formed in Example 1;
  • Example 2 is a scanning electron microscope image of a cross-section of a passivation film formed in Example 1;
  • FIG. 3 is a graph of point polarization curves of a pure zinc sheet, a passivation film formed in Comparative Example 1, and a passivation film formed in Example 1.
  • FIG. 3 is a graph of point polarization curves of a pure zinc sheet, a passivation film formed in Comparative Example 1, and a passivation film formed in Example 1.
  • a method for preparing a silane / graphene oxide composite passivation solution according to an embodiment of the present invention includes the following steps:
  • the pH of the dispersion is adjusted to a pH of 2 to 4, and hydrolysis is performed to obtain a silane / graphene oxide composite passivation solution.
  • the preparation method of the above silane / graphene oxide composite passivation solution combines the advantages of both graphene oxide and silane, and utilizes co-hydrolysis of graphene oxide and an aqueous silane coupling agent to achieve silane functionalization of graphene oxide and silane coupling.
  • a covalent bond can be formed between the agent and the metal substrate, which is beneficial to improve the binding force between the film layer and the metal substrate, and the lamellar graphene oxide can enhance the physical shielding performance of the film layer against the corrosive medium.
  • Graphene oxide has oxygen-containing functional groups to make it negatively charged, and electrostatic repulsion between the sheets makes the graphene oxide have good dispersibility.
  • the present invention first performs ultrasonic dispersion of graphene oxide under neutral conditions and then adjusts the dispersion to It is acidic, avoiding the addition of graphene oxide to the acid solution to reduce the charge on its edges, which makes it difficult to disperse when adding graphene oxide.
  • it is added slowly while stirring, which is also beneficial to improve the dispersibility and stability of graphene oxide. Only a very small amount of graphene oxide is needed to obtain excellent corrosion protection.
  • the added amount of graphene oxide is 0.01% to 0.5% of the mass of the mixed solution.
  • the volume ratio of the water-based silane coupling agent, water and alcohol is selected to be 1: (7-9): (0.8-1.2), so that the graphene oxide can be dispersed well and stably, so that it can more fully interact with the silane during the film formation process.
  • the coupling agent contacts and reacts.
  • the volume ratio of the aqueous silane coupling agent, water and alcohol is preferably 1: 8: 1.
  • the pH value of the passivation solution is selected from 2 to 4, so that the passivation solution is relatively stable and can spontaneously react on the metal surface to form a chemical bond film. Further, the pH value of the passivation solution is preferably 3 to 3.3.
  • the aqueous silane coupling agent refers to a silane coupling agent capable of being dissolved in water.
  • the aqueous silane coupling agent is selected from ⁇ -glycidyl ether oxypropyltrimethoxysilane, ⁇ -glycidyl ether oxypropyltriethoxysilane, ⁇ -methacryloxypropyl One or more of trimethoxysilane and ⁇ -methacryloxypropyltriethoxysilane.
  • the aqueous silane coupling agent used in this embodiment contains epoxy groups or carbonyl groups. Because graphene oxide also contains epoxy groups or carbonyl groups, the same or similar functional groups are conducive to improving the compatibility of the two, and then it is beneficial to the reaction between the two. Chemical fluid.
  • the water is distilled water or deionized water.
  • the invention uses alcohols as solvents, has low cost, is environmentally friendly, and is easy to volatilize for film formation.
  • the alcohols can be selected from one or more of methanol, ethanol, n-propanol, isopropanol, and n-butanol.
  • the pH value of the dispersion is adjusted by using acetic acid, which is helpful for accurately controlling the pH value, for controlling the hydrolysis condensation reaction rate of the aqueous silane coupling agent, and for avoiding agglomeration of graphene oxide.
  • the ultrasonic treatment time is 5 to 30 minutes, so as to ensure that the graphene oxide can be uniformly dispersed in a short time and fully contacted with the aqueous silane coupling agent.
  • the hydrolysis time is 12h to 36h, so that the aqueous silane coupling agent can be fully hydrolyzed and fully react with the graphene oxide, while preventing the agglomeration of the graphene oxide.
  • the method for preparing the silane / graphene oxide composite passivation solution requires a wide range of raw materials and a simple preparation process. Only a very small amount of graphene oxide is added to obtain excellent anti-corrosion effects without the need to add other organic solvents or inorganic corrosion inhibitors. Agent, green environmental protection, low cost, convenient and simple operation, easy to control, suitable for industrial production.
  • This embodiment also provides a silane / graphene oxide composite passivation solution prepared by the method for preparing a silane / graphene oxide composite passivation solution according to any one of the foregoing embodiments.
  • the silane / graphene oxide composite passivation solution can form a 20 ⁇ m to 30 ⁇ m passivation film on a metal substrate by a film formation method such as dipping or coating.
  • the film layer is uniform and dense, without cracks and warping, and it is excellent for corrosive media. Shielding performance.
  • This embodiment also provides a method for applying the above silane / graphene oxide composite passivation solution to a metal surface to prevent corrosion, including the following steps:
  • silane / graphene oxide composite passivation solution is used to impregnate or coat the metal and bake it.
  • the metal may be, but is not limited to, zinc, a zinc alloy, or steel.
  • the dipping or coating is performed at 20 ° C. to 50 ° C. Further, the dipping or coating time is 2 min to 120 min.
  • the drying temperature is 60 ° C to 180 ° C, and the drying time is 2h to 6h.
  • the metal surface is pretreated before being dipped or coated. Further, pretreating the metal surface includes the following steps: grinding the metal surface with metallographic sandpaper, polishing with a metallographic polishing machine, and then ultrasonically washing, and then sequentially washing with ethanol and water, and drying.
  • the metal is first polished by metallographic sandpaper and polished by a metallographic polishing machine to remove surface impurities and undulations. At this time, the sand of the metallographic sandpaper and metallographic polishing liquid are still left on the surface, and then it can be washed away more thoroughly by ultrasonic washing. Part of the remaining impurities are finally washed with ethanol and water in sequence, which can improve the tightness of the combination of the passivation film layer and the metal surface obtained under the dipping or coating conditions.
  • This embodiment provides a method for performing anti-corrosion treatment on the surface of a zinc sheet.
  • the specific test process is as follows:
  • This embodiment provides a method for performing anti-corrosion treatment on the surface of a zinc sheet.
  • the specific test process is as follows:
  • This embodiment provides a method for performing anti-corrosion treatment on the surface of a zinc sheet.
  • the specific test process is as follows:
  • This embodiment provides a method for performing anti-corrosion treatment on the surface of a zinc sheet.
  • the specific test process is as follows:
  • polish the surface of the zinc sheet with metallographic sandpaper polish it with a metallographic polishing machine, and then wash it with distilled water and ultrasonic water, and then wash it with anhydrous ethanol and deionized water in sequence. After drying, immerse it in the above passivation solution at 50 ° C for 1 h. Then, it is dried at 60 ° C for 6 hours, and then the natural cooling is covered with a layer of a silane / graphene oxide composite passivation film on the surface of the zinc sheet.
  • This embodiment provides a method for performing anti-corrosion treatment on the surface of a zinc sheet.
  • the specific test process is as follows:
  • polish the surface of the zinc sheet with metallographic sandpaper polish it with a metallographic polishing machine, and then wash it with distilled water and ultrasonic water, and then wash with anhydrous ethanol and deionized water in order. After drying, apply the above passivation to the zinc sheet surface at 20 ° C. Liquid for 2 min, and then dried at 60 ° C for 6 h, and then cooled naturally, that is, a silane / graphene oxide composite passivation film was coated on the surface of the zinc sheet.
  • This comparative example provides a method for anticorrosive treatment on the surface of zinc flakes.
  • the specific test process is as follows:
  • This comparative example provides a method for anticorrosive treatment on the surface of zinc flakes.
  • the specific test process is as follows:
  • This comparative example provides a method for anticorrosive treatment on the surface of zinc flakes.
  • the specific test process is as follows:
  • This comparative example provides a method for anticorrosive treatment on the surface of zinc flakes.
  • the specific test process is as follows:
  • This comparative example provides a method for anticorrosive treatment on the surface of zinc flakes.
  • the specific test process is as follows:
  • FIG. 1 is a scanning electron microscope image of the passivation film layer formed in Example 1. It can be seen from the figure that the film layer completely covers the substrate without peeling or peeling, and the film layer and the substrate are tightly combined.
  • FIG. 2 is a cross-section electron micrograph of a passivation film layer formed by treating a zinc sheet with a passivation solution in Example 1. The experimental results show that the zinc film was passivated in a silane / graphene oxide composite passivation solution, and the film layer formed on the surface The thickness reaches 21 ⁇ m.
  • the electrochemical layer was evaluated for corrosion resistance by an electrochemical test.
  • the sample was coated with epoxy resin to expose only a working area of 10 mm ⁇ 10 mm.
  • the electrochemical corrosion performance of the sample was evaluated by Tafel polarization measurement.
  • the industrial electrochemical workstation of Shanghai Chenhua Instrument Co., Ltd. is used.
  • the conventional three-electrode system is used.
  • the auxiliary electrode is a platinum electrode.
  • the reference electrode is a saturated calomel electrode.
  • the test sample is used as the working electrode.
  • the test solution is 5% NaCl.
  • the solution is immersed at room temperature without degassing, after the corrosion potential is stabilized.
  • the scan rate for polarization curve measurement is 1 mV / s.
  • the electrochemical polarization curve is shown in Figure 3, and Table 1 shows the corresponding electrochemical polarization parameters.
  • the polarization resistance of the pure zinc sheet is 1.47 k ⁇ ⁇ cm 2
  • the corrosion current density is 9.476 ⁇ A ⁇ cm -2
  • the polarization resistance of the pure organic silicon film layer formed in Comparative Example 1 is 2.96k ⁇ ⁇ cm 2
  • the polarization resistance of the silane / graphene composite oxide passivation film is 1.34 ⁇ 10 3 k ⁇ ⁇ cm 2
  • the corrosion current density of 0.029 ⁇ A ⁇ cm - 2 the corrosion current density of 0.029 ⁇ A ⁇ cm - 2 .
  • Table 2 lists the test results of the anticorrosive layer on the surface of the zinc flakes obtained in the above examples.
  • the metal surface anti-corrosion method of the present invention can form a passivation film of 20 ⁇ m to 30 ⁇ m on a metal substrate through a film formation method of dipping or coating, and the polarization resistance of the passivation film layer can reach 0.88 ⁇ 10 3 1.34 ⁇ 10 3 k ⁇ ⁇ cm 2 , excellent anti-corrosion effect.
  • Example 1 twenty one 1.34 ⁇ 10 3
  • Example 2 twenty three 1.22 ⁇ 10 3
  • Example 3 30 1.09 ⁇ 10 3
  • Example 4 20 0.88 ⁇ 10 3
  • Example 5 25 1.05 ⁇ 10 3 Comparative Example 1 0.3 2.96 Comparative Example 2 5 0.52 ⁇ 10 3 Comparative Example 3 7 0.61 ⁇ 10 3 Comparative Example 4 6 0.33 ⁇ 10 3 Comparative Example 5 4 0.3 ⁇ 10 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种硅烷/氧化石墨烯复合钝化液制备方法,包括以下步骤:将水性硅烷偶联剂、水和醇按体积比为1:(7~9):(0.8~1.2)进行混合,得混合液;在混合液中加入氧化石墨烯,超声处理得分散液;调节分散液的酸碱度至pH值为2~4,进行水解得硅烷/氧化石墨烯复合钝化液。还公开了一种硅烷/氧化石墨烯复合钝化液及金属表面防腐蚀方法。

Description

硅烷/氧化石墨烯复合钝化液及其制备方法与应用 技术领域
本发明涉及金属防腐技术领域,特别是涉及一种硅烷/氧化石墨烯复合钝化液及其制备方法与应用。
背景技术
长期以来,金属材料的防腐一直是材料科学领域的研究热点,最常用的腐蚀防护方法是通过物理、化学或电化学的工艺方法在金属表面覆盖上另一种有机、无机或复合膜作为保护层,借助这一保护层来阻止或减缓金属腐蚀。其中,铬酸盐钝化处理工艺是金属表面处理的传统工艺,效果好且应用广泛,但由于六价铬离子毒性高,不仅会造成环境污染,而且容易致癌,因此该传统工艺被逐步限制应用。
在金属表面覆盖有机硅膜层是金属表面防腐的另一方法。硅烷具有独特的化学结构,可以通过化学吸附的形式牢固的附着在金属表面,在金属表面形成很好的保护层,起到防腐的作用。由于该工艺不会对环境和人体造成损害、成本低、适用范围广、对金属能产生良好的防护作用及与有机涂层粘接性能好等特点,得到了腐蚀与防护领域的热切关注。但是单纯的硅烷膜较薄,不能够在较长的时间内防止金属防腐,其耐腐蚀性能还有提升空间。而目前,利用多种添加剂改进硅烷膜的无机有机钝化技术,工序复杂,过程控制难度大,不利于工业化应用。
另外,还有利用石墨烯和氧化石墨烯对金属进行防腐的研究。石墨烯稳定的六元环结构和超大的比表面积使其具有很强的抗渗性,能在金属表面与活性 介质之间形成物理阻隔层,从而有效地阻隔水和氧气等气体原子的通过,同时,石墨烯还能对镀层金属起到钝化作用,提高其耐蚀性能,这些特性使其在金属防腐蚀领域具有非常大的应用价值。利用化学气相沉积方法(CVD)法制备的石墨烯薄膜具有一定的抗腐蚀性能,但目前CVD技术通常只能在Cu或Cu/Ni合金等特定金属表面制备石墨烯薄膜,而且石墨烯膜层均为单层或少层,并不能起到长期的防护效果。单一组分的石墨烯容易发生团聚,不易加工成型等,限制了石墨烯的应用。氧化石墨烯具有和石墨烯相似的平面结构,表面含有大量的活性基团,含氧官能团(羧基、羟基、环氧基等)的存在使氧化石墨烯具有较强的亲水性,能稳定的分散在极性试剂中,但单一氧化石墨烯膜层与金属基底结合差。
目前,已有的采用硅烷和氧化石墨烯复合物在金属表面制作钝化膜的研究报道,通过浸渍或涂敷的方式处理金属表面所能获得的膜层存在厚度较小、与金属表面结合不紧密等问题,不能起到长期的防护效果。
发明内容
基于此,有必要针对上述问题,提供一种通过浸渍或涂敷的方式在金属表面形成较厚的、结合紧密的钝化膜的硅烷/氧化石墨烯复合钝化液及其制备方法与应用。
一种硅烷/氧化石墨烯复合钝化液的制备方法,包括以下步骤:
将水性硅烷偶联剂、水和醇按体积比为1:(7~9):(0.8~1.2)进行混合,得混合液;
在所述混合液中加入氧化石墨烯,超声处理得分散液;
调节所述分散液的酸碱度至pH值为2~4,进行水解,即得所述硅烷/氧化石 墨烯复合钝化液。
在其中一个实施例中,所述水为蒸馏水或去离子水。
在其中一个实施例中,所述水性硅烷偶联剂选自γ-缩水甘油醚氧丙基三甲氧基硅烷、γ-缩水甘油醚氧丙基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷和γ-甲基丙烯酰氧基丙基三乙氧基硅烷中的一种或多种。
在其中一个实施例中,所述醇选自甲醇、乙醇、正丙醇、异丙醇和正丁醇中的一种或多种。
在其中一个实施例中,所述水性硅烷偶联剂、所述水和所述醇按体积比为1:8:1进行混合。
在其中一个实施例中,所述氧化石墨烯的添加量为所述混合液质量的0.01%~0.5%。
在其中一个实施例中,采用乙酸调节所述分散液的酸碱度。
在其中一个实施例中,所述超声处理的时间为5min~30min。
在其中一个实施例中,所述水解的时间为12h~36h。
一种硅烷/氧化石墨烯复合钝化液,由上述任一实施例所述的硅烷/氧化石墨烯复合钝化液的制备方法制备得到。
一种金属表面防腐蚀方法,包括以下步骤:
采用所述硅烷/氧化石墨烯复合钝化液对金属进行浸渍或涂覆,烘干。
在其中一个实施例中,所述浸渍或涂覆的温度为20℃~50℃,所述浸渍或涂覆的时间为2min~120min。
在其中一个实施例中,所述烘干的温度为60℃~180℃,所述烘干的时间为2h~6h。
在其中一个实施例中,在所述浸渍或涂覆的步骤之前,还包括对金属的表 面进行预处理的步骤。
在其中一个实施例中,所述预处理包括以下步骤:
对所述金属的表面用金相砂纸打磨,再用金相抛光机抛光,然后进行超声水洗,再依次用乙醇、水进行清洗,干燥。
在其中一个实施例中,所述金属为锌、锌合金或钢。
与现有技术相比,本发明具有以下有益效果:
上述硅烷/氧化石墨烯复合钝化液,结合氧化石墨烯和硅烷两者的优点,在金属表面形成钝化膜时,利用氧化石墨烯与水性硅烷偶联剂共水解,实现氧化石墨烯的硅烷功能化,硅烷偶联剂与金属基底之间可以形成共价键,有利于提高膜层与金属基底之间的结合力,而层片状的氧化石墨烯可以增强膜层对腐蚀介质的物理屏蔽性能。因而,该硅烷/氧化石墨烯复合钝化液可以对金属起到优异的防腐效果。
具体地,该硅烷/氧化石墨烯复合钝化液在金属表面钝化成膜过程中,氧化石墨烯与硅烷均参与成膜反应,硅烷偶联剂的功能基官能团能够和氧化石墨烯的含氧基团反应,从而形成更大的分子网络结构,增加膜层厚度。随着反应进行,氧化石墨烯边缘的羧基等官能团减少,氧化石墨烯的亲水性减弱,疏水性增强,膜层疏水性增强有利于成膜反应的进行,进一步增加膜层厚度。本发明试验过程中发现,钝化液的稳定性对成膜厚度有重要影响,本发明通过先将氧化石墨烯分散在混合液中再加酸水解,并且选择水性硅烷偶联剂、水和醇按体积比为1:(7~9):(0.8~1.2),钝化液pH值为2~4,使氧化石墨烯能够良好且稳定地分散,从而在成膜过程中更加充分地与硅烷偶联剂接触、反应,最终使得通过浸渍或涂敷的成膜方式能够在金属基底上形成20μm~30μm的钝化膜,并且膜层均匀致密,无裂纹翘起现象,从而能够起到长期的防护效果。
上述硅烷/氧化石墨烯复合钝化液及其制备方法,所需原材料来源广泛,配制工艺简单,只需添加极少量氧化石墨烯,可获得优异的防腐蚀效果,无需添加其他有机溶剂或无机缓蚀剂,绿色环保,成本低廉,操作方便简易,易于控制,适合工业化生产。
附图说明
图1为实施例1形成的钝化膜表面的扫描电镜图;
图2为实施例1形成的钝化膜截面的扫描电镜图;
图3为纯锌片、对比例1形成的钝化膜以及实施例1形成的钝化膜的点极化曲线图。
具体实施方式
为了便于理解本发明,下面结合实施例对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明一实施例的硅烷/氧化石墨烯复合钝化液的制备方法,包括以下步骤:
将水性硅烷偶联剂、水和醇按体积比为1:(7~9):(0.8~1.2)进行混合,得混合液;
在混合液中加入氧化石墨烯,超声处理得分散液;
调节分散液的酸碱度至pH值为2~4,进行水解,即得硅烷/氧化石墨烯复合钝化液。
上述硅烷/氧化石墨烯复合钝化液的制备方法,结合氧化石墨烯和硅烷两者的优点,利用氧化石墨烯与水性硅烷偶联剂共水解,实现氧化石墨烯的硅烷功能化,硅烷偶联剂与金属基底之间可以形成共价键,有利于提高膜层与金属基底之间的结合力,而层片状的氧化石墨烯可以增强膜层对腐蚀介质的物理屏蔽性能。
氧化石墨烯具有含氧官能团使其显负电性,片层之间存在静电排斥使得氧化石墨烯具有良好的分散性,本发明先在中性条件下进行氧化石墨烯的超声分散再调节分散液至酸性,避免氧化石墨烯加入酸液中使其边缘的电荷减少,导致添加氧化石墨烯时分散困难。优选地,加入氧化石墨烯时,一边搅拌一边缓慢加入,也有利于提高氧化石墨烯的分散性和稳定性。氧化石墨烯只需添加极少量,即可获得优异的防腐蚀效果。在一个实施例中,氧化石墨烯的添加量为混合液质量的0.01%~0.5%。
水性硅烷偶联剂、水和醇的体积比选择为1:(7~9):(0.8~1.2),使氧化石墨烯能够良好且稳定地分散,从而在成膜过程中更加充分地与硅烷偶联剂接触、反应。进一步地,水性硅烷偶联剂、水和醇的体积比优选为1:8:1。另外,钝化液的pH值选择为2~4,使得钝化液较为稳定的同时能够自发在金属表面发生反应,形成化学键成膜。进一步地,钝化液的pH值优选为3~3.3。
水性硅烷偶联剂指能够溶于水中的硅烷偶联剂。在一个实施例中,水性硅烷偶联剂选自γ-缩水甘油醚氧丙基三甲氧基硅烷、γ-缩水甘油醚氧丙基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷和γ-甲基丙烯酰氧基丙基三乙氧基硅烷中的一种或多种。本实施例采用的水性硅烷偶联剂含有环氧基或羰基,由于 氧化石墨烯也含有环氧基、羰基,相同或相似的官能团利于提高两者的相容性,进而利于两者反应制备钝化液。
在一个实施例中,所述水为蒸馏水或去离子水。
本发明采用醇类作为溶剂,成本低廉、绿色环保且易于挥发利于成膜,醇类可以选自甲醇、乙醇、正丙醇、异丙醇和正丁醇中的一种或多种。
在一个实施例中,采用乙酸调节分散液的pH值,利于精确控制pH值,利于控制水性硅烷偶联剂水解缩合反应速度,且可避免氧化石墨烯的团聚。
在一个实施例中,超声处理的时间为5min~30min,以保证氧化石墨烯能够在短时间内均匀分散,与水性硅烷偶联剂充分接触。
在一个实施例中,水解的时间为12h~36h,以使水性硅烷偶联剂能够充分水解,并与氧化石墨烯充分反应,同时防止氧化石墨烯的团聚。
上述硅烷/氧化石墨烯复合钝化液的制备方法,所需原材料来源广泛,配制工艺简单,只需添加极少量氧化石墨烯,可获得优异的防腐蚀效果,无需添加其他有机溶剂或无机缓蚀剂,绿色环保,成本低廉,操作方便简易,易于控制,适合工业化生产。
本实施例还提供一种由上述任一实施例所述的硅烷/氧化石墨烯复合钝化液的制备方法制备得到的硅烷/氧化石墨烯复合钝化液。该硅烷/氧化石墨烯复合钝化液能够通过浸渍或涂敷的成膜方式能够在金属基底上形成20μm~30μm的钝化膜,膜层均匀致密,无裂纹翘起现象,并且对腐蚀介质优异的屏蔽性能。
本实施例还提供一种将上述硅烷/氧化石墨烯复合钝化液应用到金属表面防腐蚀的方法,包括以下步骤:
采用上述硅烷/氧化石墨烯复合钝化液对金属进行浸渍或涂覆,烘干。
可选地,金属可以是但不限于锌、锌合金或钢等。
在一个实施例中,浸渍或涂覆在20℃~50℃下进行,进一步,浸渍或涂覆的时间为2min~120min。
在一个实施例中,烘干的温度为60℃~180℃,烘干的时间为2h~6h。
在一个实施例中,先对金属表面进行预处理,再进行浸渍或涂覆。进一步地,对金属表面进行预处理,包括以下步骤:对金属表面用金相砂纸打磨,再用金相抛光机抛光,然后进行超声水洗,再依次用乙醇、水进行清洗,干燥。金属先经过金相砂纸打磨、金相抛光机抛光,除去表面杂质和起伏,此时表面还残留有金相砂纸的沙粒、金相抛光液等,再通过超声水洗能够较为彻底地清洗掉这部分残留的杂质,最后依次用乙醇、水进行清洗,可以提高浸渍或涂覆条件下得到的钝化膜层与金属表面结合的紧密性。
下面结合具体实施例对本发明作详细的说明。
实施例1
本实施例提供一种在锌片表面进行防腐蚀处理的方法,具体试验过程如下:
在200ml烧杯中,先加入10ml无水乙醇,再加入80ml去离子水,然后添加10ml KH560硅烷偶联剂,充分搅拌均匀。再慢慢加入50mg氧化石墨烯,边加入边搅拌,然后超声20min。然后添加乙酸调节pH值至3.3,搅拌均匀,密封静置,水解24h,得钝化液。
用金相砂纸将锌片表面打磨,用金相抛光机抛光,然后用蒸馏水超声水洗,再依次用无水乙醇、去离子水清洗,干燥后浸入上述的钝化液中20℃下浸涂1h,然后在60℃条件下烘干6h,自然冷却即在锌片表面覆盖一层的硅烷/氧化石墨烯复合钝化膜。
实施例2
本实施例提供一种在锌片表面进行防腐蚀处理的方法,具体试验过程如下:
在200ml烧杯中,先加入10ml无水乙醇,再加入80ml去离子水,然后添加10ml KH560硅烷偶联剂,充分搅拌均匀。再慢慢加入80mg氧化石墨烯,边加入边搅拌,然后超声30min。然后添加乙酸调节pH值至3.3,搅拌均匀,密封静置,水解24h,得钝化液。
用金相砂纸将锌片表面打磨,用金相抛光机抛光,然后用蒸馏水超声水洗,再依次用无水乙醇、去离子水清洗,干燥后浸入上述的钝化液中20℃下浸涂2h,然后在180℃条件下烘干3h,自然冷却即在锌片表面覆盖一层的硅烷/氧化石墨烯复合钝化膜。
实施例3
本实施例提供一种在锌片表面进行防腐蚀处理的方法,具体试验过程如下:
在200ml烧杯中,先加入10ml异丙醇,再加入80ml去离子水,然后添加10ml KH560硅烷偶联剂,充分搅拌均匀。再慢慢加入500mg氧化石墨烯,边加入边搅拌,然后超声20min。然后添加乙酸调节pH值至3.3,搅拌均匀,密封静置,水解36h,得钝化液。
用金相砂纸将锌片表面打磨,用金相抛光机抛光,然后用蒸馏水超声水洗,再依次用无水乙醇、去离子水清洗,干燥后浸入上述的钝化液中20℃下浸涂1h,然后在180℃条件下烘干2h,自然冷却即在锌片表面覆盖一层的硅烷/氧化石墨烯复合钝化膜。
实施例4
本实施例提供一种在锌片表面进行防腐蚀处理的方法,具体试验过程如下:
在200ml烧杯中,先加入12ml正丙醇,再加入70ml去离子水,然后添加10ml KH560硅烷偶联剂,充分搅拌均匀。再慢慢加入10mg氧化石墨烯,边加入边搅拌,然后超声5min。然后添加乙酸调节pH值至2.0,搅拌均匀,密封静置,水解24h,得钝化液。
用金相砂纸将锌片表面打磨,用金相抛光机抛光,然后用蒸馏水超声水洗,再依次用无水乙醇、去离子水清洗,干燥后浸入上述的钝化液中50℃下浸涂1h,然后在60℃条件下烘干6h,自然冷却即在锌片表面覆盖一层的硅烷/氧化石墨烯复合钝化膜。
实施例5
本实施例提供一种在锌片表面进行防腐蚀处理的方法,具体试验过程如下:
在200ml烧杯中,先加入8ml甲醇,再加入90ml去离子水,然后添加10ml KH570硅烷偶联剂,充分搅拌均匀。再慢慢加入250mg氧化石墨烯,边加入边搅拌,然后超声5min。然后添加乙酸调节pH值至4.0,搅拌均匀,密封静置,水解12h,得钝化液。
用金相砂纸将锌片表面打磨,用金相抛光机抛光,然后用蒸馏水超声水洗,再依次用无水乙醇、去离子水清洗,干燥后20℃下在锌片表面涂覆上述的钝化液2min,然后在60℃条件下烘干6h,自然冷却即在锌片表面覆盖一层的硅烷/氧化石墨烯复合钝化膜。
对比例1
本对比例提供一种在锌片表面进行防腐蚀处理的方法,具体试验过程如下:
在200ml烧杯中,先加入10ml无水乙醇,再加入80ml去离子水,然后添加10ml KH560硅烷偶联剂,充分搅拌均匀。然后添加乙酸调节pH值至3.3,搅拌均匀,密封静置,水解24h,得钝化液。
用金相砂纸将锌片表面打磨,用金相抛光机抛光,然后用蒸馏水超声水洗,再依次用无水乙醇、去离子水清洗,干燥后浸入上述的钝化液中20℃下浸涂1h,然后在60℃条件下烘干6h,自然冷却即在锌片表面覆盖一层的有机硅钝化膜。
对比例2
本对比例提供一种在锌片表面进行防腐蚀处理的方法,具体试验过程如下:
在200ml烧杯中,先加入60ml无水乙醇,再加入30ml去离子水,然后添加10ml KH560硅烷偶联剂,充分搅拌均匀。再慢慢加入50mg氧化石墨烯,边加入边搅拌,然后超声20min。然后添加乙酸调节pH值至3.3,搅拌均匀,密封静置,水解24h,得钝化液。
用金相砂纸将锌片表面打磨,用金相抛光机抛光,然后用蒸馏水超声水洗,再依次用无水乙醇、去离子水清洗,干燥后浸入上述的钝化液中20℃下浸涂1h,然后在60℃条件下烘干6h,自然冷却即在锌片表面覆盖一层的硅烷/氧化石墨烯复合钝化膜。
对比例3
本对比例提供一种在锌片表面进行防腐蚀处理的方法,具体试验过程如下:
在200ml烧杯中,先加入40ml无水乙醇,再加入50ml去离子水,然后添加10ml KH560硅烷偶联剂,充分搅拌均匀。再慢慢加入50mg氧化石墨烯,边加入边搅拌,然后超声20min。然后添加乙酸调节pH值至3.3,搅拌均匀,密 封静置,水解24h,得钝化液。
用金相砂纸将锌片表面打磨,用金相抛光机抛光,然后用蒸馏水超声水洗,再依次用无水乙醇、去离子水清洗,干燥后浸入上述的钝化液中20℃下浸涂1h,然后60℃条件下烘干6h,自然冷却即在锌片表面覆盖一层的硅烷/氧化石墨烯复合钝化膜。
对比例4
本对比例提供一种在锌片表面进行防腐蚀处理的方法,具体试验过程如下:
在200ml烧杯中,先加入10ml无水乙醇,再加入80ml去离子水,然后添加10ml KH560硅烷偶联剂,充分搅拌均匀。再慢慢加入50mg氧化石墨烯,边加入边搅拌,然后超声20min。然后添加乙酸调节pH值至4.5,搅拌均匀,密封静置,水解24h,得钝化液。
用金相砂纸将锌片表面打磨,用金相抛光机抛光,然后用蒸馏水超声水洗,再依次用无水乙醇、去离子水清洗,干燥后浸入上述的钝化液中20℃下浸涂1h,然后在60℃条件下烘干6h,自然冷却即在锌片表面覆盖一层的硅烷/氧化石墨烯复合钝化膜。
对比例5
本对比例提供一种在锌片表面进行防腐蚀处理的方法,具体试验过程如下:
在200ml烧杯中,先加入10ml无水乙醇,再加入80ml去离子水,然后添加10ml KH560硅烷偶联剂,然后添加乙酸调节pH值至3.3,充分搅拌均匀。再慢慢加入50mg氧化石墨烯,边加入边搅拌,然后超声20min。密封静置,水解24h,得钝化液。
用金相砂纸将锌片表面打磨,用金相抛光机抛光,然后用蒸馏水超声水洗,再依次用无水乙醇、去离子水清洗,干燥后浸入上述的钝化液中20℃下浸涂1h,然后在60℃条件下烘干6h,自然冷却即在锌片表面覆盖一层的硅烷/氧化石墨烯复合钝化膜。
对上述各实施例和对比例得到的锌片表面防腐层进行测试分析。
采用Quanta200型环境扫描电子显微镜(荷兰FEI公司)观察膜层微观形貌,测评膜层与基体的结合及覆盖情况。图1为实施例1形成的钝化膜层的扫描电镜图,从图中可以看出,膜层完全覆盖基体,没有起皮、脱落等情况,膜层与基体结合紧密。图2为实施例1用钝化液处理锌片后形成的钝化膜层的截面电镜图,实验结果表明锌片在硅烷/氧化石墨烯复合钝化液中钝化后,表面形成的膜层厚度达到21μm。
用电化学试验评价膜层耐腐蚀性能,将试样用环氧树脂进行涂封,仅露出10mm×10mm的工作面积,通过塔菲尔极化测量来评价试样的电化学腐蚀性能。采用上海辰化仪器公司的工电化学工作站,用常规的三电极体系,辅助电极为铂电极,参比电极为饱和甘汞电极,待测试样作为工作电极,测试溶液为质量分数5%NaCl溶液,在室温、不除气的条件下、浸泡、待腐蚀电位稳定后进行。极化曲线测量的扫描速率为1mV/s。电化学极化曲线如图3所示,表1为相应的电化学极化参数。从图3和表1可以看出,纯锌片的极化电阻为1.47kΩ·cm 2,腐蚀电流密度为9.476μA·cm -2,对比例1形成的纯有机硅膜层的极化电阻为2.96kΩ·cm 2,腐蚀电流密度为6.247μA·cm -2,硅烷/氧化石墨烯复合钝化膜的极化电阻为1.34×10 3kΩ·cm 2,其腐蚀电流密度为0.029μA·cm -2。实验结果表明锌片采用硅烷/氧化石墨烯复合钝化液钝化处理后,极化电阻显著增大,腐蚀电流密 度明显减小,表明硅烷/氧化石墨烯复合钝化液的防腐蚀效果较单一硅烷显著提高。
表2列出了上述实施例得到的锌片表面防腐层的测试试验结果。从表中可见,本发明的金属表面防腐蚀方法通过浸渍或涂敷的成膜方式能够在金属基底上形成20μm~30μm的钝化膜,钝化膜层极化电阻可达到0.88×10 3~1.34×10 3kΩ·cm 2,防腐蚀效果优异。
表1
  极化电阻/kΩ·cm 2 腐蚀电流密度/μA·cm -2
纯锌片 1.47 9.476
对比例1所得钝化膜 2.96 6.247
实施例1所得钝化膜 1.34×10 3 0.029
表2
  膜层厚度/μm 极化电阻/kΩ·cm 2
实施例1 21 1.34×10 3
实施例2 23 1.22×10 3
实施例3 30 1.09×10 3
实施例4 20 0.88×10 3
实施例5 25 1.05×10 3
对比例1 0.3 2.96
对比例2 5 0.52×10 3
对比例3 7 0.61×10 3
对比例4 6 0.33×10 3
对比例5 4 0.3×10 3
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种硅烷/氧化石墨烯复合钝化液的制备方法,其特征在于,包括以下步骤:
    将水性硅烷偶联剂、水和醇按体积比为1:(7~9):(0.8~1.2)进行混合,得混合液;
    在所述混合液中加入氧化石墨烯,超声处理得分散液;
    调节所述分散液的酸碱度至pH值为2~4,进行水解,即得所述硅烷/氧化石墨烯复合钝化液。
  2. 如权利要求1所述的硅烷/氧化石墨烯复合钝化液的制备方法,其特征在于,所述水性硅烷偶联剂选自γ-缩水甘油醚氧丙基三甲氧基硅烷、γ-缩水甘油醚氧丙基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷和γ-甲基丙烯酰氧基丙基三乙氧基硅烷中的一种或多种;和/或,
    所述醇选自甲醇、乙醇、正丙醇、异丙醇和正丁醇中的一种或多种。
  3. 如权利要求1所述的硅烷/氧化石墨烯复合钝化液的制备方法,其特征在于,所述氧化石墨烯的添加量为所述混合液质量的0.01%~0.5%。
  4. 如权利要求1所述的硅烷/氧化石墨烯复合钝化液的制备方法,其特征在于,采用乙酸调节所述分散液的酸碱度。
  5. 如权利要求1~4任一项所述的硅烷/氧化石墨烯复合钝化液的制备方法,其特征在于,所述水解的时间为12h~36h。
  6. 一种硅烷/氧化石墨烯复合钝化液,其特征在于,由如权利要求1~5任一项所述的硅烷/氧化石墨烯复合钝化液的制备方法制备得到。
  7. 一种金属表面防腐蚀方法,其特征在于,包括以下步骤:
    采用如权利要求6所述的硅烷/氧化石墨烯复合钝化液对金属进行浸渍或涂 覆,烘干。
  8. 如权利要求7所述的金属表面防腐蚀方法,其特征在于,所述浸渍或涂覆的温度为20℃~50℃;和/或,
    所述烘干的温度为60℃~180℃,所述烘干的时间为2h~6h。
  9. 如权利要求7或8所述的金属表面防腐蚀方法,其特征在于,在所述浸渍或涂覆的步骤之前,还包括对金属的表面进行预处理的步骤。
  10. 如权利要求9所述的金属表面防腐蚀方法,其特征在于,所述预处理包括以下步骤:
    对所述金属的表面用金相砂纸打磨,再用金相抛光机抛光,然后进行超声水洗,再依次用乙醇、水进行清洗,干燥。
PCT/CN2018/097602 2018-06-26 2018-07-27 硅烷/氧化石墨烯复合钝化液及其制备方法与应用 WO2020000559A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810669324.2A CN108642484B (zh) 2018-06-26 2018-06-26 硅烷/氧化石墨烯复合钝化液及其制备方法与应用
CN201810669324.2 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020000559A1 true WO2020000559A1 (zh) 2020-01-02

Family

ID=63753695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097602 WO2020000559A1 (zh) 2018-06-26 2018-07-27 硅烷/氧化石墨烯复合钝化液及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN108642484B (zh)
WO (1) WO2020000559A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053402A2 (en) 2019-09-20 2021-03-25 Step Pharma S.A.S. Compounds
CN114574847A (zh) * 2022-04-07 2022-06-03 东莞市精诚环保科技有限公司 一种新型石墨烯成膜剂及其制备方法与应用

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675120B (zh) * 2018-12-05 2020-11-13 暨南大学 一种医用镁基金属抗应力腐蚀自修复功能涂层的制备方法与应用
CN109679497A (zh) * 2018-12-20 2019-04-26 上海理工大学 一种氧化石墨烯水性复合涂料及其制备方法和应用
CN109943111A (zh) * 2019-03-25 2019-06-28 中铁建大桥工程局集团第四工程有限公司 一种石墨烯基防腐钢筋的制备方法
CN109778168A (zh) * 2019-03-30 2019-05-21 华南理工大学 一种热镀锌表面高耐蚀还原氧化石墨烯/硅烷复合膜层及其制备方法
CN110370780B (zh) * 2019-06-28 2021-09-07 佛山佛塑科技集团股份有限公司 软包装膜的制备方法
CN110396709A (zh) * 2019-08-14 2019-11-01 桂林理工大学 一种在铝合金表面制备微弧氧化/氧化石墨烯/硅烷复合薄膜的方法
CN110373698A (zh) * 2019-08-14 2019-10-25 桂林理工大学 一种在铝合金表面制备微弧氧化/石墨烯/硅烷复合薄膜的方法
CN110938372A (zh) * 2019-11-11 2020-03-31 江苏安纳泰环保科技有限公司 一种镁合金用石墨烯防腐蚀水性涂料及其制备方法和应用
CN111058021A (zh) * 2019-12-30 2020-04-24 南京精德丰新材料科技有限公司 一种高防腐金属表面处理剂及制备方法
CN111155085A (zh) * 2020-01-09 2020-05-15 中国民航大学 钛合金表面制备硅烷/分子筛/氧化石墨烯防腐膜的方法
CN111455363B (zh) * 2020-04-07 2021-10-08 西安石油大学 一种钝化液及其制备方法和应用
CN112111202A (zh) * 2020-08-24 2020-12-22 安徽未来表面技术有限公司 一种卷钢用水性环保耐指纹工作液及其制备方法
CN112126264B (zh) * 2020-09-15 2021-12-21 常州大学 一种镁合金防腐、耐磨涂层组合物及其使用方法
CN113088117A (zh) * 2021-03-31 2021-07-09 杭州佳杭新材料科技有限公司 一种石墨烯复合防腐涂层的制备方法
CN113231289A (zh) * 2021-05-12 2021-08-10 浦江三思光电技术有限公司 用于灯具结构件的喷塑方法及系统
CN115537795B (zh) * 2022-08-23 2024-06-14 江苏法尔胜特钢制品有限公司 一种钢丝绳表面活化工艺
CN116426147A (zh) * 2023-04-11 2023-07-14 东南大学 一种透明耐磨超双疏涂料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153877A (zh) * 2011-02-22 2011-08-17 中国科学技术大学 石墨烯复合材料及其制备方法
CN103590025A (zh) * 2013-10-15 2014-02-19 昆山宏凌电子有限公司 一种金属表面的钝化方法
KR101391044B1 (ko) * 2012-10-23 2014-05-27 주식회사 포스코 친환경 금속 표면처리용 수지 조성물 및 이를 이용한 금속 가공품
CN103966646A (zh) * 2014-04-16 2014-08-06 湖北大学 一种还原氧化石墨烯/硅烷复合膜的电沉积制备方法及其用途
CN106011816A (zh) * 2016-06-29 2016-10-12 苏州禾川化学技术服务有限公司 一种石墨烯基皮膜剂
CN107722682A (zh) * 2017-11-21 2018-02-23 上海涂尊新材料科技有限公司 一种钢铁表面防腐蚀纳米陶瓷涂料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153877A (zh) * 2011-02-22 2011-08-17 中国科学技术大学 石墨烯复合材料及其制备方法
KR101391044B1 (ko) * 2012-10-23 2014-05-27 주식회사 포스코 친환경 금속 표면처리용 수지 조성물 및 이를 이용한 금속 가공품
CN103590025A (zh) * 2013-10-15 2014-02-19 昆山宏凌电子有限公司 一种金属表面的钝化方法
CN103966646A (zh) * 2014-04-16 2014-08-06 湖北大学 一种还原氧化石墨烯/硅烷复合膜的电沉积制备方法及其用途
CN106011816A (zh) * 2016-06-29 2016-10-12 苏州禾川化学技术服务有限公司 一种石墨烯基皮膜剂
CN107722682A (zh) * 2017-11-21 2018-02-23 上海涂尊新材料科技有限公司 一种钢铁表面防腐蚀纳米陶瓷涂料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, HAIJAING: "Study on Environment-Friendly Hot-Dip Galvanized Steel and Magnesium Alloy Chromium-Free Protective Film", 1.5 (NON-OFFICIAL TRANSLATION: RESEARCH STATUS OF ORGANIC SUBSTANCE PASSIVATION), 31 December 2016 (2016-12-31), pages 16 - 17 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053402A2 (en) 2019-09-20 2021-03-25 Step Pharma S.A.S. Compounds
CN114574847A (zh) * 2022-04-07 2022-06-03 东莞市精诚环保科技有限公司 一种新型石墨烯成膜剂及其制备方法与应用
CN114574847B (zh) * 2022-04-07 2023-10-24 东莞市精诚环保科技有限公司 一种新型石墨烯成膜剂及其制备方法与应用

Also Published As

Publication number Publication date
CN108642484A (zh) 2018-10-12
CN108642484B (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2020000559A1 (zh) 硅烷/氧化石墨烯复合钝化液及其制备方法与应用
WO2021139007A1 (zh) 阳离子多巴胺功能化石墨烯水性防腐涂料、其制法与应用
CN104629603B (zh) 含石墨烯的金属表面处理剂以及耐腐蚀性涂层制备方法
Parhizkar et al. Steel surface pre-treated by an advance and eco-friendly cerium oxide nanofilm modified by graphene oxide nanosheets; electrochemical and adhesion measurements
Liu et al. Corrosion protection of silane coatings modified by carbon nanotubes on stainless steel
CN111117309A (zh) 一种纳米封闭剂及其制备方法
CN102677039A (zh) 一种铝及铝合金表面硅烷稀土复合保护膜及其制备方法
CN114574022B (zh) 一种镁合金表面低表面能纳米涂层的制备方法
CN106148900B (zh) 一种氧化石墨烯超疏水涂层及其蒸镀设备
CN102070928B (zh) 一种用于镀锌板的彩涂无铬预处理液
WO2006120390A2 (en) Organic-inorganic hybrid coatings
CN110527995B (zh) MXene/硅烷表面复合硅烷膜在金属腐蚀防护中的应用
CN108103545A (zh) 一种绿色环保型纳米薄膜及其在金属耐蚀领域中的应用
CN108611631B (zh) 防腐蚀易加工镀锌钢板的加工工艺
CN109778168A (zh) 一种热镀锌表面高耐蚀还原氧化石墨烯/硅烷复合膜层及其制备方法
CN106835093A (zh) 一种q型poss改性的金属表面前处理剂及其制备方法、应用
CN113150644A (zh) 一种pH响应石墨烯基固体缓蚀剂自修复涂料的制备方法
CN112029314A (zh) 一种纳米填料及其制备方法与应用
Wang et al. Preparation and corrosion resistance of AKT-waterborne polyurethane coating
CN106894009A (zh) 一种环氧基poss改性的金属表面前处理剂及其制备方法、应用
CN114163859B (zh) 一种氧化锌-羟基磷灰石复合防腐颜料的制备方法
CN108948898A (zh) 一种低表面处理冷喷锌涂料及其制备方法
CN112813426B (zh) 表面处理液及其制备方法、超疏水耐腐蚀复合转化膜及其制备方法
CN114921782A (zh) 一种钕铁硼磁体表面预处理的复合处理剂及其制备方法和应用
CN108486562B (zh) 一种适用于改善热浸镀锌钢材表面耐腐蚀性能的钝化液及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 18924728

Country of ref document: EP

Kind code of ref document: A1