CN106148900B - 一种氧化石墨烯超疏水涂层及其蒸镀设备 - Google Patents

一种氧化石墨烯超疏水涂层及其蒸镀设备 Download PDF

Info

Publication number
CN106148900B
CN106148900B CN201610629445.5A CN201610629445A CN106148900B CN 106148900 B CN106148900 B CN 106148900B CN 201610629445 A CN201610629445 A CN 201610629445A CN 106148900 B CN106148900 B CN 106148900B
Authority
CN
China
Prior art keywords
coating
graphene oxide
evaporation
super
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610629445.5A
Other languages
English (en)
Other versions
CN106148900A (zh
Inventor
周忠福
王会利
姜川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Shenmeng New Material Technology Co ltd
Original Assignee
Chongqing Senmeng New Energy Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Senmeng New Energy Development Co ltd filed Critical Chongqing Senmeng New Energy Development Co ltd
Priority to CN201610629445.5A priority Critical patent/CN106148900B/zh
Publication of CN106148900A publication Critical patent/CN106148900A/zh
Application granted granted Critical
Publication of CN106148900B publication Critical patent/CN106148900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种超疏水氧化石墨烯涂层,包括内涂层和外涂层,内涂层是利用蒸镀方法将氧化石墨烯蒸镀在金属基底上的涂层,外涂层是利用蒸镀设备将低表面能的有机物蒸镀在所述内涂层表面的涂层。本发明还包括制备上述超疏水氧化石墨烯涂层的蒸镀设备,包括滚筒装置和蒸发装置。所述超疏水氧化石墨烯涂层表面接触角150°以上,涂层之间特殊的结构使得其不仅可有效的抑制水汽、油污等对涂层的粘附和侵蚀,还不易剥落,使用寿命长,本发明提供的蒸镀设备简单可操作,便于实现所述超疏水涂层的大规模生产,使其在自清洁、防腐蚀等领域有广泛的应用。

Description

一种氧化石墨烯超疏水涂层及其蒸镀设备
技术领域
本发明属于石墨烯表面润湿调控领域,具有涉及一种氧化石墨烯超疏水涂层及其蒸镀设备。
背景技术
随着经济的发展,金属材料由于其高强度、可塑性强、硬度高、耐热耐寒等优良性能,已经成为工业和生活中最重要的材料。然而由于金属材料性质较为活泼,不稳定,严重限制其在恶劣环境中的应用。通过制备合金、电化学保护、添加缓蚀剂等方法可以在一定程度上解决问题,但相比这些,人们发现防腐涂层是最有效、最经济、应用最为普遍的方法。常用的涂层材料有环氧树脂、油脂、生漆等。有机材料良好的稳定性有效的保护了金属材料。同时也产生了新的问题,涂层的粘附程度不良将会严重影响其保护作用,所以保护层与基底之间的结合能力是衡量涂层对基底保护力的重要依据。
石墨烯作为一种新型的碳纳米材料,其独特的二维片层结构,使其比表面积较高,接触面积大,表面吸附力强,能在基底表面形成二维平面结构,增强涂层与基底的吸附力,使涂层更加均匀致密,结合强度更高,且石墨烯表面疏水,有助于提高涂层的韧性,耐摩性,导热性及防腐性能。但直接制备石墨烯涂层工艺复杂,目前制备石墨烯涂层的方法大多数以氧化石墨烯为原料,通过在后处理中提高氧化石墨烯还原程度,或在氧化石墨烯的含氧官能团上接续疏水官能团以达到疏水防污、耐腐蚀的性能。
涂层CN103101908B公布了一种调制石墨烯薄膜润湿性的方法,利用喷枪将氧化石墨烯分散液喷到加热的衬底上,接着对其进行肼蒸汽还原,并对上述样品进行碳颗粒的修饰从而实现石墨烯薄膜表面超疏水的特性,最终得到碳颗粒修饰后石墨烯薄膜润角达到155°,但该法所需设备昂贵,操作复杂,难以实现大规模工业化生产。
发明内容
为了解决现有技术中氧化石墨烯超疏水涂层的易剥落、使用寿命不长,且制作设备昂贵,操作复杂,难以实现大规模工业化生产的问题,本发明提供了一种氧化石墨烯超疏水涂层及其蒸镀设备,利用蒸镀方法先将氧化石墨烯蒸镀到金属基底(如铝、铜、锌、铁、钢)上,再对所制备的涂层表面蒸镀进行疏水修饰。当氧化石墨烯蒸镀到金属表面时,由于金属的还原作用使其与氧化石墨烯反应并以化学键的方式结合,有效的提高了涂层与基底之间的结合力,涂层不易剥落,且该法简单经济,便于实现大规模工业化生产。
本发明是通过以下技术方案实现上述技术目的:
所述超疏水氧化石墨烯涂层包括内涂层和外涂层,所述内涂层是和基底相接触的涂层,利用蒸镀方法将氧化石墨烯蒸镀在金属基底上的涂层;在该涂层中,由于金属的还原作用使其与最初蒸镀到基底上的氧化石墨烯发生反应,这个过程不仅增加了涂层的致密性,并使涂层与基底之间的结合力不仅依靠物理吸附,还以化学键的方式结合,有效的提高了涂层与基底之间的结合力。
所述外涂层是和内涂层的表面相接触,靠近外部环境的涂层,是利用蒸镀方法将低表面能的有机物蒸镀在所述内涂层表面的涂层,有效地改善涂层表面疏水性能。
进一步的,所述内涂层的蒸镀方法为在35-95℃下非真空蒸镀0.5-3h。
进一步的,所述外涂层的蒸镀方法为在100-150℃下非真空蒸镀0.5-3h后, 140-160℃下烘干1-3h。
进一步的,所述金属基底是锌片、铁片、钢片、铝箔或铜箔中的一种。
优选的,所述金属基底是铝箔。
进一步的,所述的低表面能的有机物是氟碳表面活性剂。
优选的,所述的氟碳表面活性剂是十三氟辛基三乙氧基硅烷、三甲基硅醇或聚二甲基硅氧烷中的一种。
最优选的,所述的氟碳表面活性剂是十三氟辛基三乙氧基硅烷。
本发明提供的一种制备所述超疏水氧化石墨烯涂层的蒸镀设备包括滚筒装置和蒸发装置;
所述的滚筒装置包括滚筒、转轴、旋转头、电动机和转速控制模块,所述滚筒其外表面包覆用于被蒸镀的金属箔片;所述转轴横贯所述滚筒中央,一端与所述旋转接头相连,另一端与所述电动机和转速控制模块相连,用来提供所述滚筒稳定的转速;所述滚筒内表面上缠绕螺旋管线并伸出所述转轴两端,所述螺旋管线中持续通过流体,用于提供金属箔片表面蒸镀所需要的温度;
所述的蒸发装置包括用于盛放溶液的样品池和用于加热溶液的热电偶;
优选的,所述的蒸发装置还包括搅拌器、电源、温度及转速控制模块、水位计和把手。
本发明的有益效果是:首先,利用蒸镀方法将氧化石墨烯蒸镀到金属基底(如铝、铜、锌、钢)表面,由于金属的还原作用使其与氧化石墨烯反应,使涂层与基底的之间的结合力不仅依靠物理吸附,而且还通过以化学键的方式结合,有效的提高了涂层与基底之间的结合力,使得涂层不易剥落,使用寿命长;本发明提供的制备超疏水氧化石墨烯涂层的蒸镀设备蒸镀效率高,构造简单,成本低,在非真空的条件下使用,便于实现大规模工业化生产;利用该蒸镀设备制备超疏水氧化石墨烯涂层的方法简单,制备过程无污染,也不会破坏金属基底;本发明制备的氧化石墨烯超疏水涂层均匀紧密,表面接触角在150°以上,实现了涂层表面的超疏水性,可有效的抑制水汽、油污等对涂层的粘附和侵蚀,使该涂层在自清洁、防腐蚀等领域有广泛的应用。
附图说明
图1为超疏水氧化石墨烯涂层的蒸镀设备的正视图。
图2为超疏水氧化石墨烯涂层的蒸镀设备的左视图。
图3为在金属铝表面蒸镀的氧化石墨烯涂层在扫描电镜(SEM)下的微观结构。
图4为X射线光电子能谱分析(XPS)对氧化石墨烯涂层碳元素的分析及各元素百分比。
图5为氧化石墨烯涂层的拉曼光谱分析(Raman)。
图6为十三氟辛基三乙氧基硅烷修饰后的氧化石墨烯超疏水涂层接触角测试。
附图标记:1入水管,接(冷/热)水源、2旋转接头、3转轴、4滚筒、5螺旋管线、6出水管和接水槽、7电动机、8转速及电源控制模块、9上盖、10密封水槽、11溶液池、12搅拌器、13电源、14温度及转速控制模块、15热电偶、16水位计、17合页、18把手、19水封槽。
具体实施方式
以下通过特定的具体实施说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。
实施例
由图1和图2所示,本发明所制备涂层的蒸镀设备分为两部分:
上部的滚筒式装置和下部的蒸发装置。上部滚筒4通过电动机7和转速控制模块8来提供稳定的转速,而在滚筒4的外表面包覆用于被蒸镀的金属铝箔。滚筒内部通过贴附在内壁上螺旋管线5中的流体来提供铝箔表面蒸镀所需要的温度。下部蒸发装置为蒸发装置,包括溶液池11、搅拌器12、温度及转速控制模块14、热电偶15、水位计16等部分。溶液池中加入适量的氧化石墨烯溶液,通过水位计16来保证溶液的量符合实验要求。开口处的密封水槽19,防止氧化石墨烯蒸汽扩散出来,造成污染。
本发明所制备的氧化石墨烯涂层是通过如下方法实现的:
1)利用Hummers法制备氧化石墨烯,并配置成氧化石墨烯水溶液,浓度为0.1-10mg/mL,超声3h,得到分散良好的氧化石墨烯溶液;
2)借助自组装的石墨烯蒸镀设备,在铝箔上蒸镀氧化石墨烯:将配制好的氧化石墨烯水溶液定量加入到溶液池11中,然后开启温度及转速控制模块14,设定温度范围为35-95℃,转速为200-500r/min。温度恒定之后,将金属铝箔包覆在滚筒4表面,然后盖上上盖9,使其置于石墨烯液面上方,同时在利用螺旋管线5中高温流体保持温度与氧化石墨烯溶液一致或略高,防止冷凝。同时在密封水槽19中加入适量的清水进行液封,滚筒4开始转动,转速1-10r/min,使其表面的铝箔均匀蒸镀。经过0.5-3h后,关闭仪器,取出蒸镀好的氧化石墨烯涂层样品。
进一步利用SEM、XPS、Raman等测试方法说明氧化石墨烯涂层的微观结构及组成,如图3-5所示。氧化石墨烯蒸镀到金属铝表面时,由于铝的还原作用使其与氧化石墨烯反应并以化学键的方式结合起来,进而有效的提高了石墨烯与铝基底之间的结合力。从图3的SEM中可以看到氧化石墨烯涂层二维分布均匀平整,涂层质量较高;从图4的XPS分析中得到虽然铝还原了部分氧化石墨烯,但蒸镀层的含氧量仍然较高,即涂层表现为亲水,不利于金属的防腐。为增强石墨烯的疏水和防腐能力,一种方法是提高氧化石墨烯还原程度,另一方面是在氧化石墨烯的含氧官能团上接续疏水官能团。前一种方法主要是通过高温还原和还原剂还原,但都容易对基底金属材质造成破坏,或者还原程度不够,达不到要求。后者操作简单方便,也不会对石墨烯和基材造成破坏;从图5的Raman分析中得出涂层成分为氧化石墨烯。
紧接着,通过下述步骤完成超疏水氧化石墨烯涂层的制备:
用热蒸发的方式将1wt%的十三氟辛基三乙氧基硅烷的酒精溶液在120℃下,蒸镀0.5-3h到氧化石墨烯涂层。蒸镀完成后将样品放入150℃的烘箱内1h,目的是蒸发掉多余未反应的有机溶液。
所述超疏水氧化石墨烯涂层包括内涂层和外涂层,所述内涂层是和基底铝相接触的涂层,利用蒸镀方法将氧化石墨烯蒸镀在金属基底铝上的涂层;在该涂层中,由于金属的还原作用使其与最初蒸镀到铝上的氧化石墨烯发生反应,这个过程不仅增加了涂层的致密性,并使涂层与铝之间的结合力不仅依靠物理吸附,还以化学键的方式结合,有效的提高了涂层与基底之间的结合力。所述外涂层是和内涂层的表面相接触,靠近外部环境的涂层,在本实施例中是利用蒸镀方法将十三氟辛基三乙氧基硅烷蒸镀在所述内涂层表面的涂层,也可以使用氟碳表面活性剂,例如三甲基硅醇或聚二甲基硅氧烷中的一种。
利用接触角测试测得接触角度和亲疏水性能,图6的接触角测试可以看出,本实施例得到的超疏水氧化石墨烯涂层接触角在150°左右,满足超疏水的条件。
以上所述,仅为本发明的较佳实施例,上述实施例仅例示性说明本发明的原理及其功效,而并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明得到实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

Claims (9)

1.一种超疏水氧化石墨烯涂层,其特征在于,包括内涂层和外涂层;
所述内涂层是和基底相接触的涂层,利用蒸镀方法将氧化石墨烯蒸镀在金属基底上的涂层;
所述外涂层是和内涂层的表面相接触,靠近外部环境的涂层,是利用蒸镀方法将低表面能的有机物蒸镀在所述内涂层表面的涂层。
2.如权利要求1所述的一种超疏水氧化石墨烯涂层,其特征在于,所述内涂层的蒸镀条件为35-95℃,非真空蒸镀0.5-3h。
3.如权利要求2所述的一种超疏水氧化石墨烯涂层,其特征在于,所述外涂层的蒸镀条件为100-150℃下非真空蒸镀0 .5-3h后,140-160℃下烘干1-3h。
4.如权利要求3所述的一种超疏水氧化石墨烯涂层,其特征在于,所述金属基底是锌片、铁片、钢片、铝箔或铜箔中的一种。
5.如权利要求4所述的一种超疏水氧化石墨烯涂层,其特征在于,所述金属基底是铝箔。
6.如权利要求5所述的一种超疏水氧化石墨烯涂层,其特征在于,所述低表面能的有机物是氟碳表面活性剂。
7.如权利要求6所述的一种超疏水氧化石墨烯涂层,其特征在于,所述的氟碳表面活性剂是十三氟辛基三乙氧基硅烷。
8.一种制备如权利要求1-7任一所述的一种超疏水氧化石墨烯涂层的蒸镀设备,其特征在于,所述设备包括滚筒装置和蒸发装置;
所述的滚筒装置包括滚筒、转轴、旋转头、电动机和转速控制模块,所述滚筒其外表面包覆用于被蒸镀的金属箔片;所述转轴横贯所述滚筒中央,一端与所述旋转接头相连,另一端与所述电动机和转速控制模块相连,用来提供所述滚筒稳定的转速;所述滚筒内表面上缠绕螺旋管线并伸出所述转轴两端,所述螺旋管线中持续通过流体,用于提供金属箔片表面蒸镀所需要的温度;
所述的蒸发装置包括用于盛放溶液的样品池和用于加热溶液的热电偶;
所述的滚筒装置位于所述蒸发装置的上部,所述的滚筒装置和所述蒸发装置通过合页相连。
9.如权利要求8所述超疏水氧化石墨烯涂层的蒸镀设备,其特征在于,所述的蒸发装置还包括搅拌器、电源、温度控制模块、水位计和把手。
CN201610629445.5A 2016-08-03 2016-08-03 一种氧化石墨烯超疏水涂层及其蒸镀设备 Active CN106148900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610629445.5A CN106148900B (zh) 2016-08-03 2016-08-03 一种氧化石墨烯超疏水涂层及其蒸镀设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610629445.5A CN106148900B (zh) 2016-08-03 2016-08-03 一种氧化石墨烯超疏水涂层及其蒸镀设备

Publications (2)

Publication Number Publication Date
CN106148900A CN106148900A (zh) 2016-11-23
CN106148900B true CN106148900B (zh) 2021-01-15

Family

ID=57328933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610629445.5A Active CN106148900B (zh) 2016-08-03 2016-08-03 一种氧化石墨烯超疏水涂层及其蒸镀设备

Country Status (1)

Country Link
CN (1) CN106148900B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756786A (zh) * 2017-02-10 2017-05-31 上海大学 氧化石墨烯超疏水涂层的制备方法及涂层蒸镀装置
CN111763974A (zh) * 2019-04-01 2020-10-13 滨州学院 一种石墨烯基超疏水不锈钢的制备方法
CN111763973A (zh) * 2019-04-01 2020-10-13 滨州学院 一种石墨烯基超疏水低碳钢的制备方法
CN111330829B (zh) * 2020-03-09 2022-05-10 广州大学 一种硅基底超疏水表面及其制备方法与应用
CN116041798A (zh) * 2022-12-23 2023-05-02 海南中之林仿生科技有限公司 一种纤维增强热塑性淀粉板材及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110059173A (ko) * 2009-11-27 2011-06-02 부산대학교 산학협력단 초소수 코팅막 조성물과 이를 이용한 초소수 코팅막
CN102677052A (zh) * 2012-06-05 2012-09-19 南昌航空大学 石墨烯基自组装多层纳米润滑薄膜的制备方法
CN104241533A (zh) * 2013-06-17 2014-12-24 宁波大学 一种有机薄膜功能层的制备装置及其方法
CN104776529A (zh) * 2015-04-07 2015-07-15 西安工程大学 间接蒸发冷却与滚筒填料式直接蒸发冷却联合的空调机组
CN105271209A (zh) * 2015-11-05 2016-01-27 北京旭碳新材料科技有限公司 一种石墨烯薄膜和连续生产石墨烯薄膜的方法及装置
CN105754144A (zh) * 2016-03-04 2016-07-13 武汉工程大学 一种超疏水还原氧化石墨烯/海绵复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110059173A (ko) * 2009-11-27 2011-06-02 부산대학교 산학협력단 초소수 코팅막 조성물과 이를 이용한 초소수 코팅막
CN102677052A (zh) * 2012-06-05 2012-09-19 南昌航空大学 石墨烯基自组装多层纳米润滑薄膜的制备方法
CN104241533A (zh) * 2013-06-17 2014-12-24 宁波大学 一种有机薄膜功能层的制备装置及其方法
CN104776529A (zh) * 2015-04-07 2015-07-15 西安工程大学 间接蒸发冷却与滚筒填料式直接蒸发冷却联合的空调机组
CN105271209A (zh) * 2015-11-05 2016-01-27 北京旭碳新材料科技有限公司 一种石墨烯薄膜和连续生产石墨烯薄膜的方法及装置
CN105754144A (zh) * 2016-03-04 2016-07-13 武汉工程大学 一种超疏水还原氧化石墨烯/海绵复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Fabrication of a superhydrophobic graphene surface with excellent mechanical abrasion and corrosion resistance on an aluminum alloy substrate";Yan Liu et al.;《Royal aociety of chemistry》;20140902;第45389-45396页 *
"Novel preparation of functionalized graphene oxide for large scale,low cost,and self-cleaing coatings of electronic devices";Ziyin Lin et al.;《Electronica components and technology conference》;20111231;第358-362页 *

Also Published As

Publication number Publication date
CN106148900A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
CN106148900B (zh) 一种氧化石墨烯超疏水涂层及其蒸镀设备
Zhang et al. Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride
Zhou et al. Facile modification of graphene oxide with Lysine for improving anti-corrosion performances of water-borne epoxy coatings
Zhu et al. Bioinspired ultrathin graphene nanosheets sandwiched between epoxy layers for high performance of anticorrosion coatings
Ramezanzadeh et al. Studying various mixtures of 3-aminopropyltriethoxysilane (APS) and tetraethylorthosilicate (TEOS) silanes on the corrosion resistance of mild steel and adhesion properties of epoxy coating
Zhou et al. Corrosion resistance of novel silane-functional polybenzoxazine coating on steel
Zhao et al. Environmentally-friendly superhydrophobic surface based on Al2O3@ KH560@ SiO2 electrokinetic nanoparticle for long-term anti-corrosion in sea water
Wang et al. Super-hydrophobic film prepared on zinc as corrosion barrier
Parhizkar et al. Synthesis and characterization of a unique isocyanate silane reduced graphene oxide nanosheets; Screening the role of multifunctional nanosheets on the adhesion and corrosion protection performance of an amido-amine cured epoxy composite
Cui et al. Influence of water adhesion of superhydrophobic surfaces on their anti-corrosive behavior
Chen et al. Preparation of hydrophobic silane/graphene oxide composite coating implanted with benzotriazole to improve the anti-corrosion performance of copper
Li et al. Large-scale fabrication of a durable and self-healing super-hydrophobic coating with high thermal stability and long-term corrosion resistance
Du et al. Enhancing the corrosion resistance of aluminum by superhydrophobic silane/graphene oxide coating
Vignesh et al. Surface modification, characterization and corrosion protection of 1, 3-diphenylthiourea doped sol-gel coating on aluminium
Gao et al. Effect of amorphous phytic acid nanoparticles on the corrosion mitigation performance and stability of sol-gel coatings on cold-rolled steel substrates
Li et al. Benzotriazole functionalized polydimethylsiloxane for reinforcement water-repellency and corrosion resistance of bio-based waterborne epoxy coatings in salt environment
Sharifalhoseini et al. Surface modification of mild steel before acrylic resin coating by hybrid ZnO/GO nanostructures to improve the corrosion protection
Sui et al. Comparative anti-corrosion properties of alkylthiols SAMs and mercapto functional silica sol–gel coatings on copper surface in sodium chloride solution
Zhang et al. TiO2 coated multi-wall carbon nanotube as a corrosion inhibitor for improving the corrosion resistance of BTESPT coatings
Sun et al. Silane functionalized plasma-treated boron nitride nanosheets for anticorrosive reinforcement of waterborne epoxy coatings
Geng et al. Superior corrosion resistance of mild steel coated with graphene oxide modified silane coating in chlorinated simulated concrete solution
Qin et al. Synergistic effect of hydroxylated boron nitride and silane on corrosion resistance of aluminum alloy 5052
Ji et al. Composite coating with synergistic effect of biomimetic epoxy thermoset morphology and incorporated superhydrophobic silica for corrosion protection.
Gao et al. Effect of anti-corrosive performance, roughness and chemical composition of pre-treatment layer on the overall performance of the paint system on cold-rolled steel
Luo et al. Improved corrosion resistance based on APTES-grafted reduced sulfonated graphene/waterborne polyurethane coatings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200324

Address after: 400000 25-6, building C, No. 15, Huayi Road, Yuzhong District, Chongqing

Applicant after: Chongqing Anjun Technology Co.,Ltd.

Address before: 200433, room 243, 701 University Road, Shanghai, Yangpu District

Applicant before: SHANGHAI JINGDUN TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201016

Address after: 401120 Chongqing Yubei District City Longxing Zhen Ying Long Road No. 19

Applicant after: CHONGQING SENMENG NEW ENERGY DEVELOPMENT Co.,Ltd.

Address before: 400000 25-6, building C, No. 15, Huayi Road, Yuzhong District, Chongqing

Applicant before: Chongqing Anjun Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 16-4-2-2, No. 1, Jiangxia Road, Changshengqiao Town, Economic Development Zone, Chongqing City, 401336 (self numbered 208-9)

Patentee after: Chongqing Shenmeng New Material Technology Co.,Ltd.

Address before: No. 19, Longxing Town, Yubei District, Chongqing, Chongqing

Patentee before: CHONGQING SENMENG NEW ENERGY DEVELOPMENT CO.,LTD.

CP03 Change of name, title or address
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A kind of graphite oxide superhydrophobic coating and its evaporation equipment

Effective date of registration: 20230403

Granted publication date: 20210115

Pledgee: Bank of China Limited Chongqing Nan'an Sub-branch

Pledgor: Chongqing Shenmeng New Material Technology Co.,Ltd.

Registration number: Y2023500000023

PE01 Entry into force of the registration of the contract for pledge of patent right