CN108047792B - 一种石墨烯基环氧树脂防腐涂层的制备方法 - Google Patents

一种石墨烯基环氧树脂防腐涂层的制备方法 Download PDF

Info

Publication number
CN108047792B
CN108047792B CN201711337130.4A CN201711337130A CN108047792B CN 108047792 B CN108047792 B CN 108047792B CN 201711337130 A CN201711337130 A CN 201711337130A CN 108047792 B CN108047792 B CN 108047792B
Authority
CN
China
Prior art keywords
graphene
ptca
epoxy resin
solution
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711337130.4A
Other languages
English (en)
Other versions
CN108047792A (zh
Inventor
杨涛
崔亚男
李泽珊
李伟华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201711337130.4A priority Critical patent/CN108047792B/zh
Publication of CN108047792A publication Critical patent/CN108047792A/zh
Application granted granted Critical
Publication of CN108047792B publication Critical patent/CN108047792B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Fuel Cell (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明公开了一种石墨烯基环氧树脂防腐涂层的制备方法,具体包括如下步骤:(1)制备PTCA/石墨烯溶液:将0.1mmol/LPTCA分散液与100mg/L石墨烯溶液按照体积比混合,于室温下超声,超声完毕后转移至搅拌器中搅拌均匀,结束后静置得到PTCA/石墨烯溶液;(2)制备防腐涂层:按照体积mL/质量g比为1:2取PTCA/石墨烯溶液和聚酰胺树脂固化剂,搅拌混合均匀,再加入占聚酰胺树脂固化剂的质量百分比为50%的环氧树脂,继续搅拌十分钟,即得到PTCA/石墨烯防腐涂层。本发明石墨烯基环氧树脂涂层的耐蚀性高,制备方法简单易得,便于推广。与传统的环氧树脂涂层相比,所制备涂层的缓蚀效率达到99.098%。

Description

一种石墨烯基环氧树脂防腐涂层的制备方法
技术领域
本发明属于海洋防腐技术领域,具体涉及一种具有高效耐蚀性的石墨烯基环氧树脂涂层的制备以及检测。
背景技术
陆地面积只占地球总表面积的十分之三,但在世界贸易中,超过90%的货运却需要靠海洋运输,因此海洋资源与船舶业已经成为目前经济发展中必不可少的重要组成部分。然而,随着海洋资源的过度开发,海上船舶和海洋开采设施越来越多的被建造和使用,海水对这些金属构件反复冲击;再加上海洋环境的复杂性,海洋里的微生物和其代谢产物也是造成金属腐蚀的原因。根据美国腐蚀工程协会数据表明,每年因金属腐蚀而造成的经济损失高达上万亿美元。因此无论是在海面上的船只还是在海水里的潜水艇,都需要高强度、耐腐蚀材料制造,并刷有防腐涂层进行防腐保护。寻找最有效、最适合的海洋防腐手段已经受到人们的普遍关注。
就目前的科学技术而言,常用的金属保护手段有:牺牲阳极的阴极保护法,金属镀层法,改变金属内结构,外加电流保护法和表面有机涂层法。相比之下,前面几种方法存在能耗高,浪费大,污染大,受环境因素限制等缺点,后者的表面有机涂层法受到广泛利用,它是将有机涂料通过一定的手段使之覆盖于金属表面所形成一定厚度的有机膜保护层。其性能的优劣取决于涂层和基底材料之间的粘结强度以及对溶剂或其他侵蚀粒子抗渗透能力。之所以用有机涂层,是因为有机涂层中的电解质比无机涂层的来说具有更高的阻拦效果,有效的妨碍了离子在阴阳两极间的移动,降低腐蚀能力。传统的有机涂层往往使用那些挥发性大,味道大而且重金属含量偏高的物质,在使用过程中,由于长时间使用和浸泡,会造成污染环境的可能。因此,开发有机无毒涂层或无机防腐涂层如石墨烯涂层是目前热门发展趋势。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种石墨烯基环氧树脂防腐涂层的制备方法。
本发明采取的技术方案为:
一种石墨烯基环氧树脂防腐涂层的制备方法,具体包括如下步骤:
(1)制备PTCA/石墨烯溶液:将0.1mmol/LPTCA分散液与100mg/L石墨烯溶液按照体积比5:1混合,于室温下超声2h-3h,超声完毕后转移至搅拌器中搅拌均匀,结束后静置24h得到PTCA/石墨烯溶液;
(2)制备防腐涂层:按照体积mL/质量g比为1:2取PTCA/石墨烯溶液和聚酰胺树脂固化剂,搅拌混合均匀,再加入占聚酰胺树脂固化剂的质量百分比为50%的环氧树脂,继续搅拌十分钟,即得到PTCA/石墨烯防腐涂层。
进一步的,所述步骤(1)中的PTCA溶液的制备方法为:
a、制备PTCA粉末:取一定量的PTCDA粉末置于烧杯中,加入0.05M/mL的氢氧化钠溶液进行水解,搅拌10min-20min,直至溶液呈黄绿色,随后滴加浓盐酸,边滴边搅拌,直至溶液变为亮红色,此时pH小于7,将所得悬浊液离心,收集沉淀,即为PTCA粉末;
b、制备PTCA分散液:取制备好的PTCA粉末于烧杯中用N,N-二甲基甲酰胺(DMF)分散,超声2h直至PTCA在DMF中均匀分散,得到PTCA分散液。
进一步的,所述步骤(1)中的石墨烯溶液的制备方法为:称取定量的石墨烯,用无水乙醇溶解并定容到容量瓶中,放入超声器中超声48h直至石墨烯分散均匀,备用。
进一步的,所述步骤(2)中制备得到的PTCA/石墨烯防腐涂层通过匀胶机,涂覆到预处理的Q235钢电极材料上,室温下固化48h,得到复合物涂层。
进一步的,所述Q235钢电极的预处理方法为:
用砂纸对Q235钢电极进行打磨直至表面光滑明亮,打磨完毕后用超纯水清洗;然后把Q235钢电极放在抛光布上,用铝粉进行抛光处理;将抛光好的Q235钢用超纯水清洗、吹干后,放入含无水乙醇的烧杯中,进行超声处理15min-20min,备用。
原理:对于本发明的石墨烯基环氧树脂涂层而言,在其制备过程中添加纳米级的复合物,增强环氧树脂涂层的屏障性能,使腐蚀介质和水分子的扩散路径更加曲折,从而显著增强环氧树脂复合涂层的防腐性能。
石墨烯基复合材料加入环氧树脂涂层后,石墨烯复合材料在环氧树脂中分散,堵塞环氧树脂本身固有的微孔,并且增加了腐蚀介质的扩散路径,从而提高了环氧树脂涂层的耐蚀性。
本发明的有益效果为:
本发明石墨烯基环氧树脂涂层的耐蚀性高,制备方法简单易得,便于推广。与传统的环氧树脂涂层相比,所制备涂层的缓蚀效率达到99.098%。
附图说明
图1为石墨烯扫描电镜图(A)和石墨烯复合材料(PTCA-G)的扫描电镜图(B)以及石墨烯的透射电镜图(C)和石墨烯复合材料(PTCA-G)的透射电镜图(D)。
图2为不同材料的环氧树脂涂层的交流阻抗谱图。
图3为不同材料的环氧树脂涂层的Tafel极化曲线图。
图4为含不同浓度的石墨烯基复合材料的环氧树脂涂层的电化学测试图a。
图5为含不同浓度的石墨烯基复合材料的环氧树脂涂层的电化学测试图b。图6为空白电极(A、B)和PTCA-G(C、D)环氧树脂复合涂层在3.5%NaCl溶液中浸泡24h前后的对比图。
具体实施方式
下面结合附图进一步说明本发明。
石墨烯目前被广泛应用于防腐领域新材料中,其根本原因在于石墨烯有以下优点:一方面,高稳定性、良好的耐热性、高透明度以及高导电性,这是传统涂层所无法同时具备的特性,而且是目前最轻薄的海洋防腐蚀涂层,是海洋防腐蚀领域新材料材料中的一颗新星。另一方面,其化学性质非常稳定,所以能起到隔断阻碍的作用,以起到保护基底物质的作用,防止基底物质与腐蚀介质的直接接触。最关键的一面是石墨烯所具备的独特的内部排序结构使得石墨烯能够自由的掺杂在镀层金属的晶粒之间,填补镀层空洞和裂纹,石墨烯是低密度无机物,而大多数无机惰性物质也没有像石墨烯那般同时具有高比表面积和难渗透的性质,这意味着通过添加了石墨烯的这种新型防腐材料,不仅仅增加了腐蚀介质渗透石墨烯层时路径的曲折程度,也很大程度上提高了腐蚀介质穿过石墨烯层时到达基底物质表面的难度。
实施例1
Q235钢电极的预处理
对Q235钢电极材料进行预处理:用800、1200以及3000目的砂纸对Q235钢电极进行打磨直至表面光滑明亮,打磨完毕后用超纯水清洗;然后把Q235钢电极放在抛光布上,用铝粉进行抛光处理;将抛光好的Q235钢用超纯水清洗、吹干后,放入含无水乙醇的烧杯中,进行超声处理15min,备用。
PTCA溶液的制备
取一定量的PTCDA粉末置于200mL烧杯中,加入20mL 1.0M的氢氧化钠溶液进行水解,搅拌10min,直至溶液呈黄绿色。随后滴加浓盐酸,边滴边搅拌,直至溶液变为亮红色,此时pH小于7。将所得悬浊液离心,收集沉淀,即为PTCA粉末。
取制备好的PTCA粉末于10mL的容量瓶中用N,N-二甲基甲酰胺定容,超声2h,得到PTCA分散液。
石墨烯溶液的制备
称取定量的石墨烯,用无水乙醇溶解并定容到100mL容量瓶中,放入超声器中超声48h,备用。
PTCA/石墨烯溶液的制备
将10mL PTCA分散液与4mL石墨烯悬浊液混合,于室温下超声2h,超声完毕后转移至搅拌器中搅拌2h,结束后静置一天,得到PTCA/G溶液。
从图1A和图1C中可以观察到石墨烯的褶皱结构,从图1B和图1D中,可以观察到PTCA-G复合物的片层结构以及分层纳米结构和微褶皱形貌。这些结果表明由于G的sp2和PTCA的四个苯环中心之间的π-π相互作用,PTCA以面对面的形式堆积在G上。
环氧树脂防腐涂层的制备
取10g的固化剂聚酰胺树脂加入烧杯中,之后再加入5g环氧树脂,搅拌10min。通过匀胶机,将所制备的混合物涂到预先制备好的Q235钢电极材料上,室温下固化48h,得到复合物涂层。按上述方法依次制备环氧树脂组。
PTCA、G、PTCA-G防腐涂层的制备
取5mLPTCA分散液加入10g的固化剂聚酰胺树脂中,搅拌10min使固化剂和混合液充分,之后再加入5g环氧树脂,搅拌10min。通过匀胶机,将所制备的混合物涂到预先制备好的Q235钢电极材料上,室温下固化48h,得到复合物涂层。按上述方法依次制备石墨烯环氧树脂组、PTCA-G环氧树脂涂层。
3.5%氯化钠溶液的制备
取18.1347g NaCl于烧杯中,加超纯水搅拌溶解,转移到500mL的容量瓶中,定容待用。
实施例2
在实施例1的基础上,不同于实施例1,
Q235钢电极的预处理
对Q235钢电极材料进行预处理:用800、1200以及3000目的砂纸对Q235钢电极进行打磨直至表面光滑明亮,打磨完毕后用超纯水清洗;然后把Q235钢电极放在抛光布上,用铝粉进行抛光处理;将抛光好的Q235钢用超纯水清洗、吹干后,放入含无水乙醇的烧杯中,进行超声处理15min,备用。
PTCA溶液的制备
取一定量的PTCDA粉末置于200mL烧杯中,加入20mL 1.0M的氢氧化钠溶液进行水解,搅拌10min,直至溶液呈黄绿色。随后滴加浓盐酸,边滴边搅拌,直至溶液变为亮红色,此时pH小于7。将所得悬浊液离心,收集沉淀,即为PTCA粉末。
取制备好的PTCA粉末于10mL的容量瓶中用N,N-二甲基甲酰胺定容,超声2h,得到PTCA分散液。
石墨烯溶液的制备
称取定量的石墨烯,用无水乙醇溶解并定容到100mL容量瓶中,放入超声器中超声48h,备用。
PTCA/石墨烯溶液的制备
将10mL PTCA分散液与2mL石墨烯悬浊液混合,于室温下超声2h,超声完毕后转移至搅拌器中搅拌2h,结束后静置一天,得到PTCA/G溶液。按上述步骤依次按梯石墨烯悬浊液添加量分别为4mL,6mL,8mL,10mL的复合物溶液,编号备用。
PTCA/石墨烯防腐涂层的制备
取5mL混合液加入10g的固化剂聚酰胺树脂中,搅拌10min使固化剂和混合液充分,之后再加入5g环氧树脂,搅拌10min。通过匀胶机,将所制备的混合物涂到预先制备好的Q235钢电极材料上,室温下固化48h,得到复合物涂层。按上述方法依次制备环氧树脂组,石墨烯环氧树脂组。
3.5%氯化钠溶液的制备
取18.1347g NaCl于烧杯中,加超纯水搅拌溶解,转移到500mL的容量瓶中,定容待用。
实施例1和实施例2中的防腐涂层的性能,从图2和图3的不同材料的电化学测试图中可以看出:图2为不同材料的交流阻抗谱图,半圆的半径约达,说明涂层的耐蚀性越好。图3为不同材料的Tafel极化曲线图,极化曲线的电位越正,电流越小,说明其耐蚀性越好。从图中可以观察到和空白组相比,环氧树脂涂层以及含有PTCA、G以及PTCA-G复合物的涂层的耐蚀性增强。其中,含有PTCA-G复合物的环氧树脂涂层展现出最优越的耐蚀性。
实施例1和实施例2中的防腐涂层的性能,从图4和图5中可以观察到随着G体积的增加,半圆的直径呈现出先增加后减小的现象,当G的体积为4ml时,半圆的直径达到最大,表明当G的体积为4ml时,含有PTCA-G复合物的环氧树脂涂层的耐蚀性最好,这是由于PTCA-G复合物在环氧树脂中的良好的分散以及屏障性能。
实施例3
在实施例1的基础上,不同于实施例1,将空白电极和PTCA-G环氧树脂涂层在3.5%NaCl溶液中浸泡24h,将其浸泡前后的实物图做对比,证明环氧树脂复合涂层的耐蚀性。
从图6A中,可以观察到空白电极浸泡前表面光滑、明亮;从图6B中,可以观察到空白电极浸泡24h后,表面被腐蚀,在表面上有腐蚀产物生成。从图6C中,可以观察到PTCA-G环氧树脂复合涂层的表面是均一的;从图6D中,可以观察到PTCA-G环氧树脂复合涂层的表面边缘部分被轻微腐蚀,这是由于复合涂层的存在,增强了基质的耐蚀性。
以上所述并非是对本发明的限制,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明实质范围的前提下,还可以做出若干变化、改型、添加或替换,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种石墨烯基环氧树脂防腐涂层的制备方法,其特征在于,具体包括如下步骤:
(1)制备PTCA/石墨烯溶液:将0.1mmol/LPTCA分散液与100mg/L石墨烯溶液按照一定的体积比混合,于室温下超声,超声完毕后转移至搅拌器中搅拌均匀,结束后静置得到PTCA/石墨烯溶液;
(2)制备防腐涂层:按照体积mL/质量g比为1:2取PTCA/石墨烯溶液和聚酰胺树脂固化剂,搅拌混合均匀,再加入占聚酰胺树脂固化剂的质量百分比为50%的环氧树脂,继续搅拌十分钟,即得到PTCA/石墨烯防腐涂层;
所述步骤(2)中制备得到的PTCA/石墨烯防腐涂层通过匀胶机,涂覆到预处理的Q235钢电极材料上,室温下固化,得到复合物涂层。
2.根据权利要求1所述一种石墨烯基环氧树脂防腐涂层的制备方法,其特征在于,所述步骤(1)中的PTCA溶液的制备方法为:
a、制备PTCA粉末:取一定量的PTCDA粉末置于烧杯中,加入0.05M/mL的氢氧化钠溶液进行水解,搅拌,直至溶液呈黄绿色,随后滴加浓盐酸,边滴边搅拌,直至溶液变为亮红色,此时pH小于7,将所得悬浊液离心,收集沉淀,即为PTCA粉末;
b、制备PTCA分散液:取制备好的PTCA粉末于烧杯中用N,N-二甲基甲酰胺分散,超声直至PTCA在DMF中均匀分散,得到PTCA分散液。
3.根据权利要求1所述一种石墨烯基环氧树脂防腐涂层的制备方法,其特征在于,所述步骤(1)中的石墨烯溶液的制备方法为:称取定量的石墨烯,用无水乙醇溶解并定容到容量瓶中,放入超声器中超声直至石墨烯分散均匀,备用。
4.根据权利要求1所述一种石墨烯基环氧树脂防腐涂层的制备方法,其特征在于,所述Q235钢电极的预处理方法为:
用砂纸对Q235钢电极进行打磨直至表面光滑明亮,打磨完毕后用超纯水清洗;然后把Q235钢电极放在抛光布上,用铝粉进行抛光处理;将抛光好的Q235钢用超纯水清洗、吹干后,放入含无水乙醇的烧杯中,进行超声处理,备用。
CN201711337130.4A 2017-12-14 2017-12-14 一种石墨烯基环氧树脂防腐涂层的制备方法 Expired - Fee Related CN108047792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711337130.4A CN108047792B (zh) 2017-12-14 2017-12-14 一种石墨烯基环氧树脂防腐涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711337130.4A CN108047792B (zh) 2017-12-14 2017-12-14 一种石墨烯基环氧树脂防腐涂层的制备方法

Publications (2)

Publication Number Publication Date
CN108047792A CN108047792A (zh) 2018-05-18
CN108047792B true CN108047792B (zh) 2020-04-17

Family

ID=62132810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711337130.4A Expired - Fee Related CN108047792B (zh) 2017-12-14 2017-12-14 一种石墨烯基环氧树脂防腐涂层的制备方法

Country Status (1)

Country Link
CN (1) CN108047792B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109181469B (zh) * 2018-07-24 2020-09-25 江西理工大学 石墨烯基-水性环氧树脂复合防腐涂层液的制备方法
CN116004093B (zh) * 2022-12-26 2023-10-03 中国科学院福建物质结构研究所 一种防腐涂层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184858A (zh) * 2011-04-07 2011-09-14 复旦大学 一种石墨烯场效应晶体管的制备方法
CN104356860A (zh) * 2014-10-29 2015-02-18 中国科学院宁波材料技术与工程研究所 一种环氧树脂-氧化石墨烯复合涂料及其使用方法
CN106883557A (zh) * 2017-04-06 2017-06-23 桂林理工大学 利用苝酐非共价修饰石墨烯制备环氧基复合材料的方法
CN106977880A (zh) * 2017-04-06 2017-07-25 桂林理工大学 一种苝酐非共价修饰石墨烯的制备方法及其应用
CN107353737A (zh) * 2017-07-10 2017-11-17 漳州鑫展旺化工有限公司 一种适用于室外金属底材双重防腐水性底漆

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203084B2 (en) * 2013-08-08 2015-12-01 Nanotek Instrurments, Inc. Cathode active material-coated discrete graphene sheets for lithium batteries and process for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184858A (zh) * 2011-04-07 2011-09-14 复旦大学 一种石墨烯场效应晶体管的制备方法
CN104356860A (zh) * 2014-10-29 2015-02-18 中国科学院宁波材料技术与工程研究所 一种环氧树脂-氧化石墨烯复合涂料及其使用方法
CN106883557A (zh) * 2017-04-06 2017-06-23 桂林理工大学 利用苝酐非共价修饰石墨烯制备环氧基复合材料的方法
CN106977880A (zh) * 2017-04-06 2017-07-25 桂林理工大学 一种苝酐非共价修饰石墨烯的制备方法及其应用
CN107353737A (zh) * 2017-07-10 2017-11-17 漳州鑫展旺化工有限公司 一种适用于室外金属底材双重防腐水性底漆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"基于纳米材料构建的生物传感器应用于多组分小分子检测的研究";张纹;《中国优秀硕士论文全文数据库 工程科技Ⅰ辑》;20140915(第9期);B020-101 *

Also Published As

Publication number Publication date
CN108047792A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
Mahidashti et al. The role of post-treatment of an ecofriendly cerium nanostructure Conversion coating by green corrosion inhibitor on the adhesion and corrosion protection properties of the epoxy coating
Yabuki et al. pH-controlled self-healing polymer coatings with cellulose nanofibers providing an effective release of corrosion inhibitor
Situ et al. Synergistic effect of homogeneously dispersed PANI-TiN nanocomposites towards long-term anticorrosive performance of epoxy coatings
Liu et al. Corrosion protection of silane coatings modified by carbon nanotubes on stainless steel
Zhong et al. Novel pH-responsive self-healing anti-corrosion coating with high barrier and corrosion inhibitor loading based on reduced graphene oxide loaded zeolite imidazole framework
CN102604509B (zh) 纳米纤维重防腐涂料及其制备和喷涂方法
He et al. Self-healing epoxy composite coating based on polypyrrole@ MOF nanoparticles for the long-efficiency corrosion protection on steels
CN107964097B (zh) 还原氧化石墨烯、四氧化三铁和聚苯胺的三元纳米复合材料制备方法及应用
Guo et al. Achieving superior anticorrosion and antibiofouling performance of polyaniline/graphitic carbon nitride composite coating
CN107033738A (zh) 一种改性氮化硅防腐涂层的制备方法
CN114561118B (zh) 一种聚吡咯包裹石墨烯缓蚀剂容器及其制备方法和一种复合涂料及其应用
CN108047792B (zh) 一种石墨烯基环氧树脂防腐涂层的制备方法
Situ et al. Polyaniline encapsulated α-zirconium phosphate nanosheet for enforcing anticorrosion performance of epoxy coating
Zhang et al. Study on CePO4 modified PANI/RGO composites to enhance the anti-corrosion property of epoxy resin
CN113621300B (zh) 一种纳米片复合涂料及其制备方法与应用
Sun et al. A unique anti-corrosion composite coating with CO2 gas barrier and acid resistance suitable for CCUS environment
Han et al. Highly dispersed polyaniline/graphene oxide composites for corrosion protection of polyvinyl chloride/epoxy powder coatings on steel
Bai et al. Novel intelligent self-responsive function fillers to enhance the durable anticorrosion performance of epoxy coating
Chang et al. A β-phase crystal poly (vinylidene fluoride) incorporated epoxy-based composite coating with excellent oxygen barrier and anti-corrosion
CN107903761A (zh) 一种组成海洋工程设施的钢板的防腐处理方法
Karthik et al. Enhancement of protection of aluminum through dopamine impregnation into hybrid sol–gel monolayers
Wang et al. Effect of chain length on the anticorrosion property of bis [3‐(triethoxysilyl) propyl] tetrasulfide/trimethoxysilane dual‐component silane film on the AZ31B Mg alloy surface
CN110776808A (zh) 基于微纳米容器的防腐自修复涂层材料及其制备方法
CN109504275A (zh) 一种适用于大型船舶的环保型海洋防腐涂料
Jin et al. Efficient self-healing coatings embedded with polydopamine modified BTA@ DMSNs for corrosion protection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200417

Termination date: 20201214