WO2020019392A1 - 固态电解质-锂复合体、其制备方法和包含其的全固态锂二次电池 - Google Patents

固态电解质-锂复合体、其制备方法和包含其的全固态锂二次电池 Download PDF

Info

Publication number
WO2020019392A1
WO2020019392A1 PCT/CN2018/101931 CN2018101931W WO2020019392A1 WO 2020019392 A1 WO2020019392 A1 WO 2020019392A1 CN 2018101931 W CN2018101931 W CN 2018101931W WO 2020019392 A1 WO2020019392 A1 WO 2020019392A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
solid electrolyte
solid
battery
main surface
Prior art date
Application number
PCT/CN2018/101931
Other languages
English (en)
French (fr)
Inventor
王亚龙
刘承浩
陈强
牟瀚波
孔德钰
Original Assignee
中能中科(天津)新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中能中科(天津)新能源科技有限公司 filed Critical 中能中科(天津)新能源科技有限公司
Publication of WO2020019392A1 publication Critical patent/WO2020019392A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of energy batteries, and particularly relates to a component for a lithium battery, especially an all-solid-state lithium secondary battery, and a preparation method thereof.
  • Lithium-ion batteries have high energy density, good cycle stability, and have been widely used in portable electronic equipment, electric vehicles and power grid energy storage.
  • graphite is generally used as a negative electrode material for lithium ion batteries. Its working principle is that lithium ions are extracted / intercalated between the positive and negative electrode layered active material layers.
  • the specific capacity limit of graphite negative electrode materials is about 372mAh / g. It has been difficult for the anode material to further increase the energy density of the lithium ion battery, and it is difficult to adapt to the market demand for higher energy density lithium ion batteries.
  • Lithium metal has the lowest potential (-3.04V vs. hydrogen standard electrode), extremely high energy density (3860mAh / g), and the lightest density (0.534g / cm 3 ). It is an ideal choice of negative electrode material.
  • the use of metallic lithium as the negative electrode and the current positive electrode of the lithium-ion battery not only reduces the quality of the negative electrode, but also makes up for the irreversible consumption of lithium ions during the first charging process.
  • lithium metal as a lithium source in the battery can be combined with some high-capacity, low-cost cathode materials to make the battery have a higher energy density, for example, lithium-sulfur batteries (2600wh / kg) , Lithium-air battery (5210wh / kg).
  • metal lithium has shown great advantages, it has not been commercialized. The main reasons are: (1) the lack of a method for accurately controlling the thickness of metal lithium anodes, avoiding the waste of metal lithium, and improving the utilization rate of anodes; (2) ) During the metal lithium cycle, the electrolyte / metal lithium interface continues to evolve, resulting in increased battery internal resistance and poor cycle performance; (3) Although the use of a solid electrolyte can effectively solve the problem of continuous interface reactions, but for solid batteries Interfacial contact is a severe challenge. At present, the metal lithium negative electrode is usually combined with a solid electrolyte by hot pressing. The interface still has holes, the interface resistance is large, and the battery capacity is difficult to play.
  • the object of the present invention is to provide a lithium-containing material with precisely controlled thickness and stable interface, and a preparation method thereof.
  • the lithium-containing material can be directly used as a negative electrode of an all-solid-state lithium secondary battery.
  • An aspect of the present invention provides a solid electrolyte-lithium composite, the solid electrolyte includes a first main surface and a second main surface opposite thereto, and a lithium-containing layer is compounded on the first main surface, and the The lithium layer is formed by coating a lithium-containing substrate on the first main surface in a molten state or vapor-depositing the lithium-containing substrate on the first main surface, and the lithium-containing substrate includes metal lithium or a lithium alloy.
  • the first main surface and the second main surface of the solid electrolyte are relatively speaking.
  • the surface on which the lithium-containing layer is compounded is called the first main surface, which is opposite to the cathode when forming a battery, and is opposite to the first main surface.
  • the surface of is called the second major surface, which is opposite to the anode when forming the battery.
  • the thickness of the lithium-containing layer is 0.001 to 100 ⁇ m, preferably 0.1 to 100 ⁇ m, more preferably 1 to 100 ⁇ m, and most preferably 5 to 25 ⁇ m; the width is 0.1 to 3000 mm, preferably 1 to 3000 mm, and more preferably 10 to 3000 mm , Most preferably 50-600mm.
  • the lithium alloy includes, in addition to the element Li, at least one of Ag, Al, Au, Ba, Fe, Na, K, Mg, Si, Sn, Sr, Ti, Ti, Zn, and Zr Alloy composition, in which the mass percentage of lithium is 10% to 99.99%.
  • the solid electrolyte includes a polymer solid electrolyte and / or an inorganic solid electrolyte, optionally with one or more of the following lithium salts: lithium perchlorate, lithium nitrate, bistrifluoromethanesulfonic acid Lithium imide, lithium bisfluorosulfonimide.
  • the solid electrolyte includes a polymer solid electrolyte to which a lithium salt is added, or an inorganic solid electrolyte.
  • the polymer solid electrolyte includes one or more of the following: polyethylene oxide, polyvinylidene fluoride, polyacrylate, polyvinyl carbonate, polymethacrylic acid, polypropylene Nitrile;
  • Inorganic solid electrolyte includes one or more of the following: lithium lanthanum zirconium oxide with garnet structure, lithium phosphorus oxynitride compound with oxide structure, lithium thiophosphorus compound with sulfide structure, (trans) calcium titanium Ore type.
  • Another aspect of the present invention provides an all-solid-state lithium secondary battery, characterized in that the all-solid-state lithium secondary battery includes the above-mentioned solid electrolyte
  • a metal foil is attached as a negative electrode current collector or a tab on the opposite side of the lithium-containing layer from the solid electrolyte; preferably, the metal foil includes a copper foil, a nickel foil, or a molybdenum foil.
  • LiFePO 4 lithium iron phosphate
  • LiMn 2 O 4 lithium acid acid acid
  • LiCoO 2 lithium cobaltate
  • LiNiCoMnO 2 lithium nickel cobalt manganate
  • the sulfur carbon includes a mixture of elemental sulfur and a carbon material
  • the carbon materials include carbon nanotubes, graphene, activated carbon, Ketjen black, and the like.
  • the shape of the battery is selected from one of the following: button batteries, cylindrical, steel case square, aluminum case square, pouch batteries, linear batteries, flexible bendable batteries.
  • Another aspect of the present invention provides a method for preparing the solid-state electrolyte-lithium composite, and the method includes:
  • Lithium substrate is heated to 250-1500 ° C, preferably 400-700 ° C in an environment filled with lithium non-reactive gas (including inert gas, such as argon), and then the molten lithium substrate is coated in a solid state On the first major surface of the electrolyte surface, preferably, a casting method is used, and the coating speed is 0.1-10 m / min; or
  • the lithium substrate is gasified at a temperature of 500 to 1200 ° C, preferably 600 to 800 ° C.
  • Deposition on the first major surface of the solid electrolyte surface, preferably roll-to-roll deposition is performed at a speed of 0.01-20 m / min, preferably 1-15 m / min.
  • the solid electrolyte-lithium composite and the preparation method provided by the present invention can effectively improve the processing and forming of ultra-thin metal lithium and the problems of matching with the current battery technology, and simplify the battery assembly process.
  • this method can effectively improve the interface resistance of the battery, reduce battery polarization, and increase the energy density of the battery.
  • FIG. 1 is a SEM image of a cross section of a solid electrolyte in which molten lithium metal was applied on the surface of Example 1.
  • FIG. 1 is a SEM image of a cross section of a solid electrolyte in which molten lithium metal was applied on the surface of Example 1.
  • FIG. 2 is a charge-discharge curve of a lithium-sulfur battery assembled in Example 1 by using a solid electrolyte-lithium composite formed by applying molten metal lithium on the surface of a solid electrolyte.
  • FIG. 3 is an SEM image of metal lithium deposited on the surface of a solid electrolyte by vacuum physical deposition in Example 2.
  • FIG. 3 is an SEM image of metal lithium deposited on the surface of a solid electrolyte by vacuum physical deposition in Example 2.
  • FIG. 4 is a charge and discharge curve of an assembled button battery in Example 2 by depositing lithium metal on a lithium metal negative electrode prepared by solid state electrolysis by means of vacuum physical deposition.
  • FIG. 5 is a charge-discharge curve (curve 1) of an assembled all-solid-state lithium battery in which lithium-magnesium alloy is deposited on a solid electrolyte by vacuum physical deposition in Example 3, and in Comparative Example 1, a metal lithium foil is used as a negative electrode Charge-discharge curve of an all-solid-state lithium battery.
  • FIG. 1 is a SEM image of a cross section of the surface of the solid electrolyte obtained in this example. It can be seen from the figure that the thickness of the metal lithium layer is about 3 micrometers, and there is good contact between the solid electrolyte and the metal lithium, and no holes appear.
  • the elemental sulfur (Aladdin Reagent Co., Ltd.) and multi-walled carbon nanotubes (Shandong Dazhan Nanometer Co., Ltd.) were mixed at a mass ratio of 3: 1, and then the mixture was placed in a vacuum oven and heated to 160 ° C. The vacuum of the oven was The temperature is -0.1MPa, and the mixture is heated for 6 hours.
  • the obtained mixture is mixed with acetylene black (Sinopec Group Chemical Reagent Co., Ltd.) and polyvinylidene fluoride (Aladdin Reagent Co., Ltd.) and lithium bistrifluoromethanesulfonimide (Aladdin Reagent Co., Ltd.), mixed in methylpyrrolidone at a mass ratio of 7: 1: 1: 1, mixed for 12 hours, the slurry was coated on aluminum foil with a thickness of 200 microns, and then dried in a vacuum oven at 80 ° C and dried .
  • FIG. 2 is the charge-discharge curve of the Li-S battery. From the curve, it can be seen that the battery exhibits a charge-discharge platform of the Li-S battery, and the voltage platform is normal.
  • FIG. 3 is an SEM image of the lithium negative electrode prepared by vacuum physical deposition in this embodiment. From the figure, it can be seen that the metallic lithium is uniformly deposited on the surface of the solid electrolyte. It is the whole lithium metal-solid electrolyte and lithium iron phosphate positive electrode sheet (Suzhou Nano New Energy Technology Co., Ltd., areal density 10mg / cm 2 ) prepared in Example 2 to form a button battery. The battery charging curve is shown in Figure 4, and its voltage platform is normal.
  • Lithium thiophosphide powder (Shenzhen Kejing Zhida Technology Co., Ltd.) and polymethyl methacrylate (Aladdin Reagent Co., Ltd.) were mixed in a dimethylformamide solution, coated on a stainless steel substrate, and dried. To obtain a solid electrolyte. After that, it was put into a thermal evaporation chamber (Shenyang Scientific Instrument Co., Ltd., Chinese Academy of Sciences), and the lithium-magnesium alloy (mass fraction of lithium was 95%, magnesium was 5%) had an arc current of 120A, a temperature of 850 ° C, and vacuum pressure It is 10 -3 Pa, and the evaporation time is 120 min.
  • a lithium layer with a thickness of 10 ⁇ m is formed on the surface of the solid electrolyte.
  • nickel-cobalt lithium manganate positive electrode (Suzhou Na New Energy Technology Co., Ltd., areal density 14mg / cm 2 ), assembled into an all-solid-state soft pack battery.
  • Example 3 The same solid electrolyte and positive electrode were used as in Example 3, and a 50 ⁇ m metal lithium foil was used as the negative electrode to assemble an all-solid-state soft pack battery.
  • the hollow curve in FIG. 5 is the charge-discharge curve of the all-solid-state battery in Example 3, and the solid curve is the charge-discharge curve of the all-solid-state battery in Comparative Example 1. It can be clearly seen from the figure that the all-solid-state battery in Example 3 The voltage polarization of is significantly lower than the voltage polarization of the all-solid-state battery in Comparative Example 1, so the all-solid-state battery in Example 3 can exhibit a higher capacity. In view of this, depositing lithium metal on the surface of the solid electrolyte can significantly improve the contact, reduce the interface resistance, and avoid the capacity loss of the battery due to polarization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种固态电解质-锂复合体、其制备方法和包含其的全固态锂二次电池。本发明的固态电解质-锂复合体包括固态电解质和复合在固态电解质第一主表面的含锂层,所述含锂层通过将含锂基材以熔融状态涂敷于第一主表面上或将含锂基材气相沉积于第一主表面上而形成,所述含锂基材包括金属锂或锂合金。本发明一方面可以精确控制含锂层(作为锂负极)的厚度,另一方面可以解决金属锂负极和固态电解质之间的接触,改善界面电阻,有助于电池的容量发挥和提高电池的循环性能。

Description

固态电解质-锂复合体、其制备方法和包含其的全固态锂二次电池 技术领域
本发明属于能源电池领域,特别涉及一种用于锂电池、尤其是全固态锂二次电池的部件及其制备方法。
背景技术
锂离子电池具有高能量密度,良好的循环稳定性,已经在便携电子设备,电动汽车和电网储能中得到了广泛的应用。目前的锂离子电池一般以石墨为负极材料,其工作原理是锂离子在正负极层状活性物质层间脱出/嵌入,但是石墨类负极材料的比容量极限约为372mAh/g,基于这类负极材料已经难以进一步提高锂离子电池的能量密度,难以适应市场对更高能量密度锂离子电池的需求。
为此需要开发出具有更高比容量的负极材料。金属锂具有最低的电位(-3.04V相对于氢标电极),极高的能量密度(3860mAh/g),以及最轻的密度(0.534g/cm 3),是理想的负极材料选择。采用金属锂作为负极与目前锂离子电池正极组成电池,不但降低负极的质量,而且可以弥补首次充电过程中的锂离子的不可逆消耗,同时提高电池输出电压,大幅度提高电池的能量密度(500wh/kg);另外,金属锂本身作为电池中的锂源,可以和一些高比容量,低成本的正极材料组成电池,使电池具有更高的能量密度,例如,锂-硫电池(2600wh/kg),锂-空气电池(5210wh/kg)。
虽然金属锂表现出了极大的优势,但是一直没有商业化,主要原因在于:(1)缺乏厚度精确可控的金属锂负极的制备方法,避免金属锂的浪费,提高负极利用率;(2)金属锂循环过程中,电解质/金属锂界面不断演化,导致电池内阻增大,循环性能变差;(3)虽然采用固态电解质,可以有效的解决界面持续反应问题,但是对于固态电池而言,界面接触是一个严峻的挑战,目前通常采用热压法将金属锂负极结合于固态电解质,界面处仍然出现孔洞,界面电阻大,电池容量难以发挥。
针对上述问题,如何开发厚度精确控制,以及高界面稳定的金属锂负极是金属锂作为锂电池负极应用的重要挑战。
发明内容
本发明的目的是提供一种厚度精确控制且界面稳定的含锂材料及其制备方法,该含锂材料可以直接用作全固态锂二次电池的负极。
本发明的一个方面提供一种固态电解质-锂复合体,所述固态电解质包括第一主表面和与其相对的第二主表面,在所述第一主表面上复合有含锂层,所述含锂层通过将含锂基材以熔融状态涂敷于第一主表面上或将含锂基材气相沉积于第一主表面上而形成,所述含锂基材包括金属锂或锂合金。
所述固态电解质的第一主表面和第二主表面是相对而言的,复合有含锂层的表面称为第一主表面,其在组成电池时与阴极相对,而与第一主表面相反的表面称为第二主表面,其在组成电池时与阳极相对。
在某些实施方案中,含锂层的厚度为0.001-100μm,优选0.1-100μm,更优选1-100μm,最优选5-25μm;宽度为0.1-3000mm,优选1-3000mm,更优选10-3000mm,最优选50-600mm。
在某些实施方案中,锂合金除包含元素Li外,还包含Ag、Al、Au、Ba、Fe、Na、K、Mg、Si、Sn、Sr、Ti、Ti、Zn和Zr中的至少一种合金成分,其中锂的质量百分比为10%~99.99%。
在某些实施方案中,固态电解质包括聚合物固态电解质和/或无机固态电解质,任选地加入以下的一种或多种锂盐:高氯酸锂、硝酸锂、双三氟甲基磺酸亚酰胺锂、双氟磺酰亚胺锂。优选地,固态电解质包括加入锂盐的聚合物固态电解质,或无机固态电解质。
在某些实施方案中,聚合物固态电解质包括下列各项中的一种或多种:聚环氧乙烷、聚偏氟乙烯、聚丙烯酸酯、聚碳酸乙烯酯、聚甲基丙烯酸、聚丙烯腈;无机固态电解质包括下列各项中的一种或多种:石榴石结构的锂镧锆氧化合物、氧化物结构的锂磷氧氮化合物、硫化物结构锂硫磷化合物、(反)钙钛矿型。
本发明的另一方面提供一种全固态锂二次电池,其特征在于,所述全固态锂二次电池包含上述的固态电解质
在某些实施方案中,在含锂层与固态电解质相反的一侧上附着金属箔作为负极集流体或是极耳;优选地,所述金属箔包括铜箔、镍箔或钼箔。
在某些实施方案中,全固态锂二次电池的正极材料包括选自下列各项中的至少一种材料:磷酸铁锂(LiFePO 4),酸酸锂(LiMn 2O 4),钴酸锂(LiCoO 2),镍钴锰酸锂(LiNiCoMnO 2),镍钴铝酸锂(LiNi xCo yAl zO 2)(0<x、y、z<1,x+y+z=1),硫碳,空气,五氧化二钒。
在某些实施方案中,硫碳包括单质硫与碳材料的混合物,上述碳材料包括碳纳米管、石墨烯,活性炭,柯琴黑等。
在某些实施方案中,电池形状选自下列各项中的一种:纽扣式电池,圆柱形,钢壳方形,铝壳方形,软包电池,线性电池,柔性可弯折电池。
本发明的再一方面提供一种制备上述固态电解质-锂复合体的方法,所述方法包括:
在充满与锂不反应的气体(包括惰性气体,例如,氩气)的环境中,将锂基材加热至250-1500℃、优选400-700℃,然后将熔融的锂基材涂敷在固态电解质表面的第一主表面上,优选地,采用流延法,涂布速度为0.1-10m/min;或者
在真空度为10 -1~10 -5Pa、优选10 -2~10 -3Pa的真空腔室中,在500-1200℃、优选600-800℃的温度下,将锂基材气化并沉积在固态电解质表面的第一主表面上,优选地,实行卷对卷沉积,速度为0.01-20m/min,优选1-15m/min。
与现有技术相比,本发明提供的固态电解质-锂复合体及其制备方法,可以有效的改善超薄金属锂的加工成型以及和目前电池工艺相匹配的问题,并且简化了电池组装工艺。在能量密度更高、安全性更好的全固态电池中,该方法可以有效的改善电池的界面电阻,降低电池极化,提高电池的能量密度。
附图说明
图1为实施例1中,将熔融态的金属锂涂敷在固态电解质表面的截面的SEM图。
图2为实施例1中,采用将熔融态的金属锂涂敷在固态电解质表面形成的固态电解质-锂复合体组装的锂-硫电池的充放电曲线。
图3为实施例2中通过真空物理沉积的方式,将金属锂沉积在固态电解质表面的SEM图。
图4为实施例2中,通过真空物理沉积的方式,将金属锂沉积在固态电解制备的金属锂负极,组装的扣式电池充放电曲线。
图5为实施例3中通过真空物理沉积的方式,将锂镁合金沉积在固态电解质,组装的全固态锂电池的充放电曲线(曲线1)和对比实施例1中,采用金属锂箔作为负极的全固态锂电池的充放电曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
又及,在如下实施例之中所采用的各种产品结构参数、各种反应参与物及工艺条件均是较为典型的范例,但经过本案发明人大量试验验证,于上文所列出的其它不同结构参数、其它类型的反应参与物及其它工艺条件也均是适用的,并也均可达成本发明所声称的技术效果。
实施例1
将锂镧锆氧粉末(深圳科晶智达科技有限公司)和聚偏氟乙烯(阿拉丁试剂有限公司)以及聚丙烯腈(阿拉丁试剂有限公司),在乙醇溶液中进行混合,涂敷在不锈钢衬底上,烘干,获得固态电解质。之后在氩气手套箱中, 将熔融态的金属锂涂敷在固态电解质表面。图1为该实施例中获得的固态电解质表面的截面的SEM图。从图中可以看出,金属锂层的厚度约为3微米,固态电解质和金属锂之间接触良好,没有出现孔洞。
将单质硫(阿拉丁试剂有限公司)和多壁碳纳米管(山东大展纳米有限公司)按照质量比3:1进行混合,之后将混合物放置于真空烘箱中,加热至160℃,烘箱的真空度为-0.1MPa,加热6h,得到的混合物,与乙炔黑(国药集团化学试剂有限公司)以及聚偏氟乙烯(阿拉丁试剂有限公司)以及双三氟甲基磺酸亚酰胺锂(阿拉丁试剂有限公司),按照质量比7:1:1:1在甲基吡咯烷酮中进行混合,混合12h,浆料涂敷在铝箔上,厚度为200微米,之后在真空烘箱中,80℃,烘干。
将实施例1中的固态电解质-金属锂复合体与如上制备的正极组成扣式电池。图2为该Li-S电池的充放电曲线,从曲线中,看出该电池展现了Li-S电池的充放电平台,电压平台正常。
实施例2
将聚环氧乙烷(分子量60万,阿拉丁试剂有限公司),和双三氟甲基磺酸亚酰胺锂(阿拉丁试剂有限公司)按照摩尔比8:1,在乙腈熔液中进行搅拌,涂敷在不锈钢衬底上,烘干,获得固态电解质。之后放到热蒸发腔室中(中国科学院沈阳科学仪器股份有限公司),蒸发锂的弧电流为80A,温度为750℃,真空压力为10 -3Pa,蒸镀时间为100min,在固态电解质表面形成一层厚度为3μm的锂层。图3为该实施例中,采用真空物理沉积制备的锂负极的SEM图,从图中,可以看出,该金属锂均匀的沉积在固态电解质表面。是实施例2中制备得到的金属锂-固态电解质整体与磷酸铁锂正极片(苏州纳新能源科技有限公司,面密度10mg/cm 2),组成扣式电池。其电池充电曲线见图4,其电压平台正常。
实施例3
将锂硫磷粉末(深圳科晶智达科技有限公司)和聚甲基丙烯酸甲酯(阿拉丁试剂有限公司),在二甲基甲酰胺溶液中进行混合,涂敷在不锈钢衬底上,烘干,获得固态电解质。之后放到热蒸发腔室中(中国科学院沈阳科学仪器股份有限公司),蒸发锂镁合金(锂的质量分数为95%,镁为5%)的弧电流为120A,温度为850℃,真空压力为10 -3Pa,蒸镀时间为120min,在固态电解质表面形成一层厚度为10μm的锂层。与镍钴锰酸锂正极片(苏州纳新能源科技有限公司,面密度14mg/cm 2),组装成全固态软包电池。
对比例1
与实施例3采用同样的固态电解质和正极,采用50μm金属锂箔作为负极,组装成全固态软包电池。
图5中空心曲线为实施例3中全固态电池的充放电曲线,实心曲线为对比例1中的全固态电池充放电曲线,从图中可以明显的看出,实施例3中的全固态电池的电压极化明显低于对比实施例1中的全固态电池的电压极化,因此实施例3中的全固态电池可以发挥出更高的容量。鉴于此,将金属锂沉积在固态电解质表面可以明显的改善接触,降低界面电阻,避免电池由于极化导致的容量损失。
根据上述说明书的揭示和教导,本发明所属领域的技术人员可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种固态电解质-锂复合体,其特征在于,所述固态电解质包括第一主表面和与其相对的第二主表面,在所述第一主表面上复合有含锂层,所述含锂层通过将含锂基材以熔融状态涂敷于第一主表面上或将含锂基材气相沉积于第一主表面上而形成,所述含锂基材包括金属锂或锂合金。
  2. 根据权利要求1所述的固态电解质-锂复合体,其特征在于,所述含锂层的厚度为0.001-100μm,优选0.1-100μm,更优选1-100μm;宽度为0.1-3000mm,优选1-3000mm,更优选10-3000mm。
  3. 根据权利要求1所述的固态电解质-锂复合体,其特征在于,所述锂合金除包含元素Li外,还包含Ag、Al、Au、Ba、Fe、Na、K、Mg、Si、Sn、Sr、Ti、Ti、Zn和Zr中的至少一种合金成分,其中锂的质量百分比为10%~99.99%。
  4. 根据权利要求1所述的固态电解质-锂复合体,其特征在于,所述固态电解质包括聚合物固态电解质和/或无机固态电解质,任选地加入以下的一种或多种锂盐:高氯酸锂、硝酸锂、双三氟甲基磺酸亚酰胺锂、双氟磺酰亚胺锂。
  5. 根据权利要求4所述的固态电解质-锂复合体,其特征在于,所述聚合物固态电解质包括下列各项中的一种或多种:聚环氧乙烷、聚偏氟乙烯、聚丙烯酸酯、聚碳酸乙烯酯、聚甲基丙烯酸、聚丙烯腈;所述无机固态电解质包括下列各项中的一种或多种:石榴石结构的锂镧锆氧化合物、氧化物结构的锂磷氧氮化合物、硫化物结构锂硫磷化合物、(反)钙钛矿型。
  6. 一种全固态锂二次电池,其特征在于,所述全固态锂二次电池包含根据权利要求1-5中任一项所述的固态电解质-锂复合体作为固态电解质和负极。
  7. 根据权利要求6所述的全固态锂二次电池,其特征在于,在含锂层与固态电解质相反的一侧上附着金属箔作为负极集流体或是极耳;优选地,所述金属箔包括铜箔、镍箔或钼箔。
  8. 根据权利要求6所述的全固态锂二次电池,其特征在于,正极材料包括选自下列各项中的至少一种材料:磷酸铁锂(LiFePO 4),酸酸锂(LiMn 2O 4),钴酸锂(LiCoO 2),镍钴锰酸锂(LiNiCoMnO 2),镍钴铝酸锂(LiNi xCo yAl zO 2)(0<x、y、z<1,x+y+z=1),硫碳,空气,五氧化二钒。
  9. 根据权利要求6所述的全固态锂二次电池,其特征在于,电池形状选自下列各项中的一种:纽扣式电池,圆柱形,钢壳方形,铝壳方形,软包电池,线性电池,柔性可弯折电池。
  10. 一种制备权利要求1所述的固态电解质-锂复合体的方法,其特征在于,所述方法包括:
    在充满与锂不反应的气体的环境中,将锂基材加热至250-1500℃,然后将熔融的锂基材涂敷在固态电解质表面的第一主表面上,优选地,采用流延法,涂布速度为0.1-10m/min;或者
    在真空度为10 -1~10 -5Pa的真空腔室中,在500-1200℃的温度下,将锂基材气化并沉积在固态电解质表面的第一主表面上,优选地,实行卷对卷沉积,速度为0.01-20m/min。
PCT/CN2018/101931 2018-07-25 2018-08-23 固态电解质-锂复合体、其制备方法和包含其的全固态锂二次电池 WO2020019392A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810824824.9A CN110767894A (zh) 2018-07-25 2018-07-25 固态电解质-锂复合体、其制备方法和包含其的全固态锂二次电池
CN201810824824.9 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020019392A1 true WO2020019392A1 (zh) 2020-01-30

Family

ID=69181251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101931 WO2020019392A1 (zh) 2018-07-25 2018-08-23 固态电解质-锂复合体、其制备方法和包含其的全固态锂二次电池

Country Status (2)

Country Link
CN (1) CN110767894A (zh)
WO (1) WO2020019392A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554895A (zh) * 2020-04-26 2020-08-18 国联汽车动力电池研究院有限责任公司 一种固态聚合物锂离子电池正极及其制备方法与应用
DE102022106263A1 (de) 2022-03-17 2023-09-21 Volkswagen Aktiengesellschaft Gestapelte Lithium-Ionen-Batterie mit Hybridanode
DE102022111512A1 (de) 2022-05-09 2023-11-09 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Separators für einen Lithiumionen-Akkumulator

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224066B (zh) * 2020-02-11 2022-07-19 五邑大学 一种固态电解质与金属锂负极界面的调控方法
CN113381055B (zh) * 2020-03-10 2022-11-11 中国科学院上海硅酸盐研究所 一种低界面阻抗的锂/石榴石基固态电解质界面及其制备方法
CN112054245A (zh) * 2020-09-16 2020-12-08 昆山宝创新能源科技有限公司 复合电解质膜及其制备方法和应用
CN114267883A (zh) * 2020-09-16 2022-04-01 比亚迪股份有限公司 固态锂电池电芯及其制备方法、电池
CN112490445B (zh) * 2020-11-05 2022-07-19 北京科技大学 改善固态电池界面的改性锂复合负极材料制备与应用方法
CN112736282B (zh) * 2020-12-26 2022-07-12 维达力实业(深圳)有限公司 固态电解质、固态电池、固态电池制造设备及制备方法
CN113140785A (zh) * 2021-04-20 2021-07-20 惠州亿纬锂能股份有限公司 一种改性固态电解质及其制备方法和应用
CN113308674B (zh) * 2021-05-07 2022-10-11 电子科技大学 一种能存算一体化单元、器件、制备工艺及设备
CN113328135A (zh) * 2021-05-31 2021-08-31 河北科技大学 一种低界面电阻的固态锂离子电池及其制备方法
CN113809390B (zh) * 2021-07-30 2022-10-18 福建巨电新能源股份有限公司 一种锂电池的复合负极的制备方法
CN114335494A (zh) * 2021-12-28 2022-04-12 重庆大学 一种复合锂和一种固态锂电池
CN114566696A (zh) * 2022-02-28 2022-05-31 中国科学院上海硅酸盐研究所 一种固态锂金属电池及其制备方法
CN114843615A (zh) * 2022-05-13 2022-08-02 电子科技大学 一种具有合金界面层的全固态厚膜锂电池及其制备方法
CN115044814A (zh) * 2022-05-20 2022-09-13 同济大学 一种具有磁性的金属基复合材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016214399A1 (de) * 2016-08-04 2018-02-08 Bayerische Motoren Werke Aktiengesellschaft Elektrochemische Zelle und Verfahren zur Herstellung der elektrochemischen Zelle
CN108110217A (zh) * 2017-12-19 2018-06-01 成都亦道科技合伙企业(有限合伙) 一种固态锂电池复合负极及其制备方法
CN108134049A (zh) * 2017-12-19 2018-06-08 成都亦道科技合伙企业(有限合伙) 负极层及其制备方法、锂电池电芯及锂电池
CN108321355A (zh) * 2018-03-28 2018-07-24 中能中科(天津)新能源科技有限公司 锂金属负极预制件及其制备方法、锂金属负极和锂金属二次电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033409A1 (fr) * 1998-12-03 2000-06-08 Sumitomo Electric Industries, Ltd. Accumulateur au lithium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016214399A1 (de) * 2016-08-04 2018-02-08 Bayerische Motoren Werke Aktiengesellschaft Elektrochemische Zelle und Verfahren zur Herstellung der elektrochemischen Zelle
CN108110217A (zh) * 2017-12-19 2018-06-01 成都亦道科技合伙企业(有限合伙) 一种固态锂电池复合负极及其制备方法
CN108134049A (zh) * 2017-12-19 2018-06-08 成都亦道科技合伙企业(有限合伙) 负极层及其制备方法、锂电池电芯及锂电池
CN108321355A (zh) * 2018-03-28 2018-07-24 中能中科(天津)新能源科技有限公司 锂金属负极预制件及其制备方法、锂金属负极和锂金属二次电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554895A (zh) * 2020-04-26 2020-08-18 国联汽车动力电池研究院有限责任公司 一种固态聚合物锂离子电池正极及其制备方法与应用
DE102022106263A1 (de) 2022-03-17 2023-09-21 Volkswagen Aktiengesellschaft Gestapelte Lithium-Ionen-Batterie mit Hybridanode
DE102022111512A1 (de) 2022-05-09 2023-11-09 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Separators für einen Lithiumionen-Akkumulator

Also Published As

Publication number Publication date
CN110767894A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2020019392A1 (zh) 固态电解质-锂复合体、其制备方法和包含其的全固态锂二次电池
CN111095616B (zh) 用于锂二次电池的负极及其制造方法
JP5008180B2 (ja) 非水二次電池
JP5196621B2 (ja) 常温溶融塩を用いたリチウムイオン二次電池およびその製造方法
TWI425703B (zh) 高能量密度之鋰二次電池
WO2018209837A1 (zh) 改性正极活性材料及其制备方法及电化学储能装置
US20160013480A1 (en) Multi-layer battery electrode design for enabling thicker electrode fabrication
KR102378583B1 (ko) 리튬-함유 복합체의 코팅층을 구비한 세퍼레이터, 이를 포함하는 리튬 이차전지 및 상기 이차전지의 제조방법
CN110419126B (zh) 用于锂二次电池的负极和包括该负极的锂二次电池以及制备该负极的方法
WO2011132428A1 (ja) リチウムイオン電池用負極およびその製造方法、ならびにリチウムイオン電池
CN109768334A (zh) 一种双极性固态锂二次电池的制备方法
WO2018191843A1 (zh) 一种预锂化的硅基阳极及其制备方法
JP2020184407A (ja) 全固体電池
CN111095618B (zh) 蓄电装置用电极和其制造方法
CN112736277A (zh) 固态电解质-锂负极复合体及其制备方法和全固态锂二次电池
US20210175539A1 (en) Anode-less all-solid-state battery
WO2021241130A1 (ja) 電池および電池の製造方法
JP2015520921A (ja) リチウム二次電池用負極活物質及びこれを含むリチウム二次電池
JP2020035607A (ja) ニオブ酸リチウム、及びそれの製造方法
JP5119584B2 (ja) 非水電解質二次電池およびその負極の製造法
JP2008234850A (ja) 電気化学素子とその電極の製造方法、製造装置
CN110168783A (zh) 锂二次电池用负极、包含其的锂二次电池以及制备所述负极的方法
WO2018209762A1 (zh) 锂电池负极及其制备方法和应用
CN208548401U (zh) 二次电池用电极
JP2021034199A (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927612

Country of ref document: EP

Kind code of ref document: A1