WO2020012808A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2020012808A1
WO2020012808A1 PCT/JP2019/021218 JP2019021218W WO2020012808A1 WO 2020012808 A1 WO2020012808 A1 WO 2020012808A1 JP 2019021218 W JP2019021218 W JP 2019021218W WO 2020012808 A1 WO2020012808 A1 WO 2020012808A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
circumferential
tire
main groove
circumferential main
Prior art date
Application number
PCT/JP2019/021218
Other languages
English (en)
French (fr)
Inventor
松本 賢一
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2019529277A priority Critical patent/JP7207304B2/ja
Priority to CN201980045492.7A priority patent/CN112384378B/zh
Priority to DE112019003576.2T priority patent/DE112019003576T5/de
Priority to RU2020140204A priority patent/RU2752045C1/ru
Priority to US17/260,206 priority patent/US20210268840A1/en
Publication of WO2020012808A1 publication Critical patent/WO2020012808A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • B60C11/1263Depth of the sipe different within the same sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0348Narrow grooves, i.e. having a width of less than 4 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0351Shallow grooves, i.e. having a depth of less than 50% of other grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0353Circumferential grooves characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0355Circumferential grooves characterised by depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0365Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0367Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0372Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C2011/129Sipe density, i.e. the distance between the sipes within the pattern
    • B60C2011/1295Sipe density, i.e. the distance between the sipes within the pattern variable

Definitions

  • the present invention relates to a pneumatic tire.
  • a lug groove extending in a tire width direction is provided on a tread surface of the tire to ensure drainage.
  • a method of improving the wet performance of a pneumatic tire generally, in addition to a main groove extending in a tire circumferential direction, a lug groove extending in a tire width direction is provided on a tread surface of the tire to ensure drainage. ing.
  • such a method has a problem that the pumping noise generated during traveling increases due to an increase in groove volume, and tire noise (hereinafter referred to as noise performance) increases.
  • the tread pattern in which the main groove and the lug groove are provided is changed to a tread pattern in which the groove volume is reduced by providing a sipe instead of the lug groove, the pumping noise is reduced, and the noise performance is improved. Drainage cannot be ensured due to the decrease, and wet performance is reduced.
  • a pneumatic tire that can improve wet performance and noise performance in a well-balanced manner while maintaining steering stability performance is known (Patent Document 1).
  • the tread pattern of this pneumatic tire has a pair of crown main grooves extending continuously in the tire circumferential direction, a pair of shoulder main grooves extending continuously in the tire circumferential direction outside the crown main groove in the tire axial direction, and a pair of It has a crown rib extending between the crown main grooves, and a pair of middle ribs extending between the crown main groove and the shoulder main groove.
  • the middle rib is divided into an inner middle portion and an outer middle portion by one middle sub-groove extending continuously in the tire circumferential direction.
  • An inner middle lug groove extending from the middle sub groove toward the tire equator side and terminating without communicating with the crown main groove is provided in the inner middle part in the tire circumferential direction, and the outer middle part is provided with a shoulder main groove extending from the shoulder main groove.
  • An outer middle lug groove extending toward the tire equator and terminating without communicating with the middle sub groove is spaced in the tire circumferential direction.
  • the wet performance and the noise performance can be improved in a well-balanced manner while maintaining the steering stability performance.
  • the high-speed range for example, speed of 80 km / hour or more
  • the low-speed range for example, speed of 60 km / hour or less
  • An object of the present invention is to provide a pneumatic tire capable of improving wet steering stability performance and noise performance in a high speed region and a low speed region.
  • One aspect of the present disclosure is a pneumatic tire including a tread pattern.
  • the tread pattern of the pneumatic tire A first circumferential main groove provided on the first side in the tire width direction with respect to the tire equator line and extending in the tire circumferential direction; A second circumferential main groove provided outside the first circumferential main groove in the tire width direction and extending in the tire circumferential direction;
  • the first circumferential main groove and the second circumferential main groove are provided in a region between the first circumferential main groove and the second circumferential main groove and extend in the tire circumferential direction.
  • a narrow first circumferential narrow groove The tire is provided in the region, extends in the direction of the first circumferential narrow groove from the second circumferential main groove, and is closed without reaching the first circumferential narrow groove.
  • Multiple intermediate lug grooves A plurality of sipes provided in the region, extending from the closed end of each of the intermediate lug grooves, and connecting the closed end and the first circumferential narrow groove, arranged at intervals in the tire circumferential direction, Is provided.
  • No lug groove is provided in a region between the first circumferential main groove and the first circumferential narrow groove, and a groove wall of the first circumferential main groove on the side of the first circumferential narrow groove is: It is a wall that goes around the tire without interruption in the circumferential direction.
  • the first circumferential narrow groove is provided on the first circumferential main groove side in the tire width direction with respect to a center position of the region in the tire width direction.
  • the length of the intermediate lug groove in the tire width direction may be 30 to 70% of the length in the tire width direction of a region between the second circumferential main groove and the first circumferential narrow groove. preferable.
  • the maximum groove depth of the first circumferential narrow groove is deeper than the sipe depth of the sipe at a connection portion between the first circumferential narrow groove and the sipe, and shallower than the maximum groove depth of the intermediate lug groove. Is preferred.
  • a shoulder land portion where a ground contact end in the tire width direction is located, In the region of the shoulder land portion, a second circumferential narrow groove that extends in the tire circumferential direction and has a narrower groove width than the first circumferential main groove and the second circumferential main groove is provided.
  • the second circumferential main groove extends from the region between the second circumferential main groove and the second circumferential narrow groove toward the outside in the tire width direction, intersects with the second circumferential narrow groove, and further has the second circumferential circumferential groove. It is preferable that a shoulder lug groove extending outside the narrow groove in the tire width direction is provided.
  • the length in the tire width direction in the region between the second circumferential main groove and the second circumferential narrow groove is the tire width in the region between the first circumferential main groove and the first circumferential narrow groove. It is preferably longer than the length in the direction.
  • Lc is the length along the tire circumferential direction between two connection positions in the tire circumferential direction where two intermediate lug grooves adjacent to each other in the tire circumferential direction among the intermediate lug grooves are connected to the second circumferential main groove.
  • the end of the shoulder lug groove on the side of the second circumferential main groove is defined by ⁇ L of the length Lc about the intermediate point in the tire circumferential direction between the connection positions. Preferably, it is in the range of 30%.
  • the first side is mounted so as to be inside the vehicle when the pneumatic tire is mounted on the vehicle.
  • the tread pattern includes at least two circumferential main grooves extending in a circumferential direction on a second side opposite to the first side with respect to the tire equator, A circumferential groove extending in the tire circumferential direction is provided in a region of a land portion formed by the circumferential main groove on the second side and in a region of a shoulder land portion outside the circumferential main groove in a tire width direction. Is not preferred.
  • a region between the third circumferential main groove closest to the tire equator line and the first circumferential main groove extends in the tire circumferential direction. It is preferable that a circumferential groove surrounding the tire circumference is not provided.
  • the groove wall of the third circumferential main groove on the side of the first circumferential main groove is a wall that goes around the tire circumferentially without interruption.
  • each of the sipes is smoothly connected to one of the intermediate lug grooves.
  • At least a part of the sipe is connected to one of the intermediate lug grooves so as to be bent.
  • the sipe has a sipe depth at a connection portion between the sipe and one of the intermediate lug grooves, which is deeper than a sipe depth at a connection portion between the sipe and the first circumferential narrow groove, and is larger than a maximum groove depth of the intermediate rug groove. Preferably shallow.
  • the wet steering stability performance and the noise performance in the high speed range and the low speed range can be improved.
  • FIG. 2 is a diagram illustrating an example of a tread pattern of the tire illustrated in FIG. 1.
  • FIG. 3 is an enlarged view of a main part of the tread pattern shown in FIG. 2.
  • FIG. 4 is a sectional view taken along the line IV-IV shown in FIG. 2. It is a figure which shows the tread pattern of the tire of another embodiment different from the tread pattern shown in FIG.
  • FIG. 1 is a tire cross-sectional view illustrating an example of a profile cross-section of a tire 10.
  • the tire 10 is, for example, a passenger car tire. Passenger car tires are tires defined in Chapter A of JATMA YEAR BOOK 2012 (standards of the Japan Automobile Tire Association).
  • the tire 10 can be applied to a light truck tire defined in Chapter B and a truck and bus tire defined in Chapter C.
  • the tire width direction is a direction parallel to the rotation axis of the tire.
  • the outer side in the tire width direction is a side apart from the tire equator line CL representing the tire equatorial plane in the tire width direction.
  • the inner side in the tire width direction is a side approaching the tire equator line CL in the tire width direction.
  • the tire circumferential direction is a direction in which the tire rotates around the rotation axis of the tire.
  • the tire radial direction is a direction orthogonal to the rotation axis of the tire.
  • the outer side in the tire radial direction refers to a side away from the rotation axis.
  • the inner side in the tire radial direction refers to a side approaching the rotation axis.
  • the tire 10 includes a tread portion 10T having a tread pattern, a pair of bead portions 10B, and a pair of side portions 10S provided on both sides of the tread portion 10T and connected to the pair of bead portions 10B and the tread portion 10T.
  • the tire 10 has a carcass ply 12, a belt 14, and a bead core 16 as a skeleton material, and around these skeleton materials, a tread rubber member 18, a side rubber member 20, a bead filler rubber member 22, It mainly has a rim cushion rubber member 24 and an inner liner rubber member 26.
  • the carcass ply 12 is formed of a carcass ply material formed by winding between a pair of annular bead cores 16 to form a toroidal shape and covering organic fibers with rubber.
  • the carcass ply 12 is wound around the bead core 16 and extends outward in the tire radial direction.
  • a belt 14 composed of two belt members 14a and 14b is provided outside the carcass ply 12 in the tire radial direction.
  • the belt 14 is formed of a member in which rubber is coated on a steel cord that is arranged at a predetermined angle, for example, 20 to 30 degrees with respect to the tire circumferential direction, and the width of the lower belt material 14a in the tire width direction is reduced.
  • a tread rubber member 18 is provided outside the belt 14 in the tire radial direction, and side rubber members 20 are connected to both ends of the tread rubber member 18 to form side portions 10S.
  • a rim cushion rubber member 24 is provided at an inner end of the side rubber member 20 in the tire radial direction, and comes into contact with a rim on which the tire 10 is mounted. Outside the bead core 16 in the tire radial direction, the portion of the carcass ply 12 before being wound around the bead core 16 is sandwiched between the portion of the carcass ply 12 wound around the bead core 16 after being wound. Thus, a bead filler rubber member 22 is provided.
  • An inner liner rubber member 26 is provided on an inner surface of the tire 10 facing an air-filled tire cavity region surrounded by the tire 10 and the rim.
  • a two-layer belt cover 30 which covers the belt 14 from outside in the tire radial direction of the belt 14 and is covered with organic fibers by rubber.
  • the structure of the tire 10 shown in FIG. 1 is an example, and the tire 10 may have another known tire structure.
  • FIG. 2 is a diagram showing a part of an example of a tread pattern of the tire 10 shown in FIG. 1 developed on a plane.
  • the tread pattern includes circumferential main grooves 21, 23, 25, 27 extending in the tire circumferential direction, a plurality of lug grooves 51, 53, 55, 57, 58, 59, circumferential narrow grooves 31, 33, and sipes 61.
  • lug grooves 51, 53, 55, 57, 58, 59 circumferential narrow grooves 31, 33, and sipes 61.
  • the circumferential main groove 21 is provided on the first side (left side in FIG. 2) in the tire width direction with respect to the tire equator line CL, extends in the tire circumferential direction, and goes around the outer circumference of the tire 10.
  • the circumferential main groove 23 is a groove that is provided inside the circumferential main groove 21 in the tire width direction, extends in the tire circumferential direction, and goes around the outer circumference of the tire 10.
  • the circumferential main groove 23 is referred to as a first circumferential main groove 23, and the circumferential main groove 21 is referred to as a second circumferential main groove 21.
  • the circumferential main groove 25 is provided on a second side (right side in FIG. 2) in the tire width direction with respect to the tire equator line CL, extends in the tire circumferential direction, and goes around the outer circumference of the tire 10.
  • the circumferential main groove 27 is provided outside the circumferential main groove 23 in the tire width direction, is a groove extending in the tire circumferential direction and surrounding the outer periphery of the tire 10. According to one embodiment, the groove widths of the circumferential main grooves 21, 23, 25, 27 are preferably the same as each other. In the example shown in FIG.
  • the first circumferential main groove 23 and the circumferential main groove 25 are located at different distances from the tire equator line CL on different sides in the tire width direction with respect to the tire equator line CL.
  • the second circumferential main groove 21 and the circumferential main groove 27 are provided at the same distance from the tire equator line CL on different sides in the tire width direction with respect to the tire equatorial line CL.
  • the first circumferential main groove 23 and the circumferential main groove 25 may be provided on different sides in the tire width direction at different distances and away from the tire equator line CL.
  • 21 and the circumferential main groove 27 may also be provided on different sides in the tire width direction at different distances from the tire equator line CL.
  • the circumferential narrow groove 31 is a groove that has a smaller groove width than the first circumferential main groove 23 and the second circumferential main groove 21, extends in the tire circumferential direction, and goes around the outer circumference of the tire 10, and has a second circumferential direction. It is provided in a region outside the main groove 21 in the tire width direction, that is, a region of the shoulder land portion where the ground contact end in the tire width direction is located.
  • the circumferential narrow groove 31 divides this region into a region 77A on the outer side in the tire width direction (on the pattern end side) and a region 77B on the inner side in the tire width direction (on the side of the second circumferential main groove 21).
  • the circumferential narrow groove 33 is a groove having a narrower groove width than the first circumferential main groove 23 and the second circumferential main groove 21, extending in the tire circumferential direction, and making a round around the outer circumference of the tire 10, in the first circumferential direction. It is provided in a region between the main groove 23 and the second circumferential main groove 21.
  • the circumferential narrow groove 33 divides this region into a region 71A on the outside in the tire width direction (on the side of the second circumferential main groove 21) and a region 71B on the inside in the tire width direction (on the side of the first circumferential main groove 23).
  • the circumferential narrow groove 33 is referred to as a first circumferential narrow groove 33
  • the circumferential narrow groove 31 is referred to as a second circumferential narrow groove 31.
  • the first circumferential main groove 23, the second circumferential main groove 21, and the circumferential main grooves 25 and 27 have a groove depth of, for example, 6.5 to 9.0 mm, and for example, have a groove depth of 5.0 to 15.0 mm. It has a groove width.
  • the first circumferential narrow groove 31 and the second circumferential narrow groove 33 have a groove depth of, for example, 1.0 to 5.0 mm, and have a groove width of, for example, 0.8 to 3.0 mm.
  • the first circumferential narrow groove 31 and the second circumferential narrow groove 33 are different from the first circumferential main groove 23, the second circumferential main groove 21, and the circumferential main grooves 25 and 27 in the groove depth and depth. It can be distinguished by the size of the groove width.
  • the lug groove 51 is provided in a region between the first circumferential main groove 23 and the second circumferential main groove 21, more specifically, in a region 71 ⁇ / b> A.
  • the groove extends in the direction of 23 and closes without reaching the first circumferential narrow groove 33.
  • a plurality of lug grooves 51 are arranged at intervals in the tire circumferential direction.
  • This lug groove 51 is hereinafter referred to as an intermediate lug groove 51 to distinguish it from other lug grooves.
  • the intermediate lug groove 51 along with the other lug grooves 53, 55, 57, 58, and 59, moves from the left to the right in the tire width direction shown in FIG. 2 to one side in the tire circumferential direction (the example shown in FIG. 2). In this case, the groove extends downward on the paper surface).
  • the lug groove 53 is a groove extending from the first circumferential main groove 23 in the region 73 between the first circumferential main groove 23 and the circumferential main groove 25 in the tire width direction and closing in the region 73.
  • the lug groove 55 extends from the circumferential main groove 25 in the region 75 between the circumferential main grooves 25 and 27 in the tire width direction, and is closed in the region 75.
  • the lug groove 57 extends in the tire width direction from the circumferential main groove 27 in the tire width direction and is closed in the region 75.
  • the length of the lug grooves 53, 55, 57 extending in the tire width direction is smaller than half the width of the continuous land portion that forms the regions 72, 75 and goes around the outer circumference of the tire 10. As a result, a continuous land portion having high tread rigidity can be provided in the regions 73 and 75.
  • the lug groove 58 extends outward from the region between the second circumferential main groove 21 and the second circumferential narrow groove 31 in the tire width direction, intersects the second circumferential narrow groove 31, and A lug groove extending outward in the tire width direction of the two circumferential narrow grooves 31 to a pattern end on the left side of the drawing in FIG. 2, and is a shoulder lug groove.
  • the lug groove 59 extends from a position apart from the circumferential main groove 27 to a pattern end on the right side of the paper of FIG. It is a lug groove that extends.
  • the lug grooves 51, 53, 55, 57, 58, 59 have a groove depth of, for example, 2.0 to 7.5 mm, and have a groove depth of, for example, 1.5 to 7.5 mm.
  • the sipe 61 is provided in the region 71 ⁇ / b> A, extends from the closed end 51 a of each of the intermediate lug grooves 51, and connects the closed end 51 a and the first circumferential narrow groove 33.
  • the sipes 61 are arranged at a plurality of locations at intervals in the tire circumferential direction.
  • the intermediate lug groove 51 forms the lug grooves 40 and 41 with the sipe 61 connected to the closed end 51 a of the intermediate lug groove 51 and extending to the first circumferential narrow groove 33.
  • the wall is a wall that goes around in the tire circumferential direction without interruption.
  • the intermediate lug groove 51 provided in the region 71A extends from the second circumferential main groove 21 to the first circumferential narrow groove 33 as described above, and the first circumferential narrow groove 33 is formed.
  • the sipe 61 extends from the closed end 51 a of the intermediate lug groove 51 to connect the closed end 51 a with the first circumferential narrow groove 33.
  • no lug groove is provided in the region 71B between the first circumferential main groove 23 and the first circumferential narrow groove 33 which is located inside the first circumferential narrow groove 33 in the tire width direction.
  • the groove wall of the main groove 23 on the side of the first circumferential narrow groove 33 is a wall that goes around the tire without interruption in the circumferential direction, that is, the region 71B is a continuous land portion that goes around the outer periphery of the tire 10. ing.
  • the wet steering stability performance in the high speed region and the low speed region (the steering stability performance on a wet road surface at a water depth of 1 to 3 mm). ) And noise performance can be further improved.
  • the tire 10 can exert a drainage function of flowing water entering the region 71A to the outside in the tire width direction, while the sipe
  • the contact area of the tire 10 in contact with the road surface can be increased in a low-speed region (for example, a speed of 60 km / h or less), the adhesion friction on a wet road surface is increased, and the steering stability performance is enhanced. be able to. Since the sipe 61 can change the shape of the tread rubber according to the road surface, the contact area with the road surface is increased as compared with the case where the sipe 61 and the lug groove are not provided.
  • the intermediate lug groove 51 is located on the side of the second circumferential main groove 21 relative to the sipe 61, that is, on the outer side in the tire width direction, so as to open to the second circumferential main groove 21 in order to effectively exert the drainage function. It is preferable to provide them.
  • the intermediate lug groove 51 extends from the second circumferential main groove 21 to the inside of the region 71 ⁇ / b> A and closes halfway without reaching the first circumferential narrow groove 33.
  • the sipe 61 is provided, so that the pattern noise due to the lug groove can be reduced as compared with the case where the intermediate lug groove 51 connects the second circumferential main groove 21 and the first circumferential narrow groove 33, and the noise is reduced. Performance is improved. Also, no lug grooves are provided in the region 71B located on the inner side in the tire width direction with respect to the region 71A, so that the contact area with the road surface is increased, the adhesion friction on the wet road surface is increased, and the steering is performed. Stability performance can be improved. By providing a continuous land portion in which no lug groove is provided in the region 71B closer to the tire equator line CL than the region 71A, the tread rigidity of the region 71 is increased, and the initial steering response during turning can be increased.
  • FIG. 3 is an enlarged view of a main part of the tread pattern shown in FIG.
  • the first circumferential narrow groove 33 is located between the first circumferential main groove 23 and the second circumferential main groove 21 in the tire width direction with respect to the center position M in the tire width direction. Is preferably provided on the side of the first circumferential main groove 23. Thereby, the drainage function by the intermediate lug groove 51 and the adhesive friction by the sipe 61 can be enhanced.
  • the length L1 (see FIG. 3) of the intermediate lug groove 51 in the tire width direction is such that the tire in a region between the second circumferential main groove 21 and the first circumferential narrow groove 33 is provided. It is preferably 30 to 70% of the length L2 in the width direction (see FIG. 3). If the length L1 is shorter than 30% of the length L2, the drainage function of the intermediate lug groove 51 is extremely reduced. If the length L1 exceeds 70% of the length L2, the adhesive friction by the sipe 61 cannot be sufficiently increased, and the noise performance deteriorates. More preferably, the length L1 is 40 to 60% of the length L2.
  • FIG. 4 is a sectional view taken along line IV-IV of a region including the intermediate lug groove 51 and the sipe 61 shown in FIG.
  • the sipe 61 has sipe bottoms 61 a and 61 b having different sipe depths depending on locations and different bottom positions in the sipe depth direction.
  • a portion of the sipe 61 having the sipe bottom 61b (a portion having a small sipe depth) is connected to the first circumferential narrow groove 33, and has a sipe bottom 61a (a sipe depth smaller than the portion having the sipe bottom 61b). (Deep part) is connected to the intermediate lug groove 51.
  • FIG. 4 is a sectional view taken along line IV-IV of a region including the intermediate lug groove 51 and the sipe 61 shown in FIG.
  • the sipe 61 has sipe bottoms 61 a and 61 b having different sipe depths depending on locations and different bottom positions in the sipe depth direction.
  • the maximum groove depth Dmax1 of the first circumferential narrow groove 33 is deeper than the sipe depth D2 of the sipe 61 at the connection portion between the first circumferential narrow groove 33 and the sipe 61.
  • the maximum groove depth Dmax1 of the first circumferential narrow groove 33 is preferably shallower than the maximum groove depth Dmax3 of the intermediate lug groove 51.
  • the first circumferential narrow groove 33 is formed. Groove volume can be increased, contributing to improvement of drainage.
  • the shoulder land includes an area 77A and an area 77B.
  • a continuous land portion extending in the tire circumferential direction and surrounding the outer periphery of the tire 10 is formed.
  • a second circumferential narrow groove 31 is provided in an area where the shoulder land is located.
  • the lug groove 58 extends outward from the region 77 ⁇ / b> B between the second circumferential main groove 21 and the second circumferential narrow groove 31 in the tire width direction, intersects the second circumferential narrow groove 31, and It extends to the pattern end outward in the tire width direction of the two circumferential narrow grooves 31.
  • the second circumferential narrow groove 31 is provided in the shoulder land area, it is possible to suppress a decrease in tread rigidity while exhibiting a drainage function, thereby improving wet steering stability performance. it can.
  • the lug groove 58 intersects the second circumferential narrow groove 31, the water to be drained crosses the second circumferential narrow groove 31 that cannot be covered by the second circumferential narrow groove 31 in the high-speed region. Since the water can flow outward in the tire width direction through the lug groove 58, the drainage function can be improved.
  • the length L3 (see FIG. 3) of the region 77B between the second circumferential main groove 31 and the second circumferential narrow groove 21 in the tire width direction (see FIG. 3) is equal to that of the first circumferential main groove 23. It is preferable that the region 71B between the first circumferential narrow grooves 33 is longer than the length L4 in the tire width direction.
  • the length L3 By making the length L3 longer than the length L4, it is possible to increase the tread rigidity of the region 77B located on the outer side during turning, and to increase the adhesive friction by increasing the contact area with the road surface. And the lateral force during turning can be increased. Even when the left side of the drawing in FIG. 2 is the inner wheel side during turning, it contributes to an increase in lateral force.
  • each of two intermediate lug grooves 51 adjacent in the tire circumferential direction is connected between two connection positions in the tire circumferential direction where each of the intermediate lug grooves 51 connects to the second circumferential main groove 21.
  • the length along the tire circumferential direction is Lc (see FIG. 3)
  • the position of the shoulder lug groove 58 on the side of the second circumferential main groove 21 in the tire circumferential direction is the tire between the connection positions. It is preferable that the distance Lc be within a range of ⁇ 30% of the length Lc about the intermediate point in the circumferential direction, that is, approximately at the intermediate point.
  • the end of the shoulder lug groove 58 on the side of the second circumferential main groove 21 in the tire circumferential direction substantially at the above-mentioned midpoint the end of the lug groove 58 and the opening of the intermediate lug groove 51 are formed.
  • the ends can be arranged alternately on the circumference of the tire.
  • the timing of the occurrence of pattern noise by the lug groove 58 and the intermediate lug groove 51 can be shifted, so that noise performance can be improved.
  • the position in the tire circumferential direction of the end of the shoulder lug groove 58 on the side of the second circumferential main groove 21 is within a range of ⁇ 20% of the length Lc centered on the intermediate point.
  • the left side of the paper surface shown in FIG. 2 that is, the first side, is mounted so that the tire 10 is mounted inside the vehicle when the tire 10 is mounted on the vehicle.
  • the information to be mounted on the left side of the paper shown in FIG. 2 inside the vehicle is displayed on the information display body by characters or symbols on the side portion 10S of the tire 10.
  • At least two tread patterns are formed on a second side (right side of the paper) opposite to the first side (left side of the paper) with respect to the tire equator line CL. It has circumferential main grooves 25 and 27 extending in the tire circumferential direction.
  • a land area 75 formed by the circumferential main grooves 25 and 27 on the second side and a shoulder land area 79 outside the circumferential main groove 27 in the tire width direction include a tire circumferential direction.
  • No extending circumferential groove for example, a narrow circumferential groove extending in the tire circumferential direction and having a narrower groove width than the circumferential main grooves 25 and 27 on the second side is not provided.
  • the tread rigidity in the regions 75 and 79 can be improved as compared with the corresponding regions on the first side. As a result, not only dry steering stability performance but also wet steering stability performance can be improved. Further, since no circumferential narrow groove is provided in the tread pattern on the second side, noise generated due to the flow of air flowing in the tire circumferential direction can be suppressed, and noise performance can be improved.
  • the circumferential main groove 25 (third circumferential main groove) closest to the tire equator, the first circumferential main groove 23, It is preferable that a circumferential groove extending in the circumferential direction of the tire and making one round on the circumference of the tire is not provided in a region between the two. As a result, the response at the initial stage of the steering is quickened, and the steering stability on the wet road surface and the dry road surface is improved.
  • the groove wall on the side of the first circumferential main groove 23 of the circumferential main groove 25 is a wall that goes around the tire circumferentially without interruption, and a lug groove extending from this groove wall. Therefore, the contact area of the region 73 is increased, the response at the initial stage of steering is quickened, and the steering stability is further improved.
  • the inclination direction of the sipe 61 is set at a connection portion of the sipe 61 so that each of the sipe 61 is smoothly connected to one of the intermediate lug grooves 51. Since the sipe 61 is smoothly connected to the intermediate lug groove 51 at the connection portion, the sipe 61 can be smoothly connected to the extending direction of the intermediate rug groove 51 without changing the flow direction of a small amount of water flowing through the gap of the sipe 61. As it flows, it contributes to improving drainage performance.
  • sipe lug grooves 40 and 41 are formed by the intermediate lug groove 51 and the sipe 61.
  • the lug groove 40 with sipe is formed by connecting the intermediate lug groove 51 and the sipe 61 by bending, and the lug groove 41 with sipe is formed by smoothly connecting the intermediate lug groove 51 and the sipe 61.
  • FIG. 2 the example shown in FIG.
  • FIG. 5 is a diagram showing a tread pattern of another embodiment different from FIG.
  • the angle serving as a threshold value for distinguishing whether the sipe 61 and the intermediate lug groove 51 are bent or connected smoothly may be a predetermined angle within a range of 1 to 5 degrees. preferable.
  • the angle serving as the threshold is, for example, 3 degrees.
  • the lug groove with the sipe when the bending angle is 3 degrees or more is the lug groove 40 with the sipe
  • the lug groove with the sipe when the bending angle is less than 3 degrees is the lug groove 41 with the sipe.
  • the maximum angle of the bending angle of the lug groove 40 with a sipe is 10 degrees or less.
  • the sipe lug groove 40 has a sipe lug groove 40 in which the inclination of the intermediate lug groove 51 in the tire width direction is gentler than the inclination of the sipe 61 in the tire width direction. And a sipe lug groove 40 that is steeper than the slope of the sipe 61 with respect to the tire width direction.
  • the inclination of the intermediate rug groove 51 with respect to the tire width direction is greater than the slope of the sipe 61 with respect to the tire width direction.
  • the sipe lug groove 40 may be a steep or gentle sipe lug groove 40 and may have a plurality of types of bending angles with respect to the tire width direction. Similarly, as shown in FIG.
  • the sipe lug groove 40 has a sipe 61 in which the inclination of the sipe 61 in the tire width direction is steeper than the inclination of the intermediate rug groove 51 in the tire width direction.
  • the inclination of the intermediate lug groove 51 in the tire width direction may include a sipe-equipped lug groove 40 that is gentler than the inclination of the intermediate lug groove 51 in the tire width direction.
  • the sipe lug groove 40 may have a steep or gentle slope with respect to the width direction and may have a plurality of types of inclination angles with respect to the tire width direction.
  • the direction of the edge component formed by the sipe 61 or the intermediate lug groove 51 can be changed. . Therefore, even if the direction of the force received from the wet road surface changes, the adhesive component can be stably exhibited by the edge component whose direction has changed. For this reason, wet steering stability can be improved.
  • the sipe depth D4 (see FIG. 4) of the connection portion of the sipe 61 with one of the intermediate lug grooves 51 is deeper than the sipe depth D2 of the connection portion of the sipe 61 with the first circumferential narrow groove 33, and It is preferable to be shallower than the maximum groove depth Dmax3 of 51.
  • the sipe depth D4 is deeper than the sipe depth D2, and the portion of the sipe 61 at the sipe depth D4 and the intermediate lug groove 51 are connected, so that a large change in tread rigidity can be suppressed, and the area 71A The deformation due to the force received from the road surface of the land can be prevented from being concentrated.
  • the groove wall of the first circumferential narrow groove 33 on the side of the first circumferential main groove 23 is preferably a wall that goes around the tire without interruption in the circumferential direction. That is, it is preferable that the region 71 ⁇ / b> B is not provided with a lug groove or a sipe that opens in the first circumferential narrow groove 33 and the first circumferential main groove 23. More preferably, as shown in FIG. 2, in the region 71 ⁇ / b> B, not only the lug grooves and sipes opening to the first circumferential narrow groove 33 and the first circumferential main groove 23, but also no grooves or sipes are provided. It is also preferred.
  • the entire area 71B can be made a continuous land part in which the width of the land part surrounding the outer periphery of the tire 10 is constant, the tread rigidity of the area 71B is increased, the contact area with the road surface is increased, and the adhesive friction is increased. Can be increased, and wet steering stability performance can be improved.
  • Example Comparative Example, Conventional Example
  • tires having variously changed tread patterns based on the tread pattern shown in FIG. 2 were prototyped, and wet steering stability performance and noise performance were examined.
  • the prototype tire has a size of 225 / 65R17.
  • Tables 1 and 2 show the specifications of the tread pattern of each tire and the evaluation results.
  • "presence / absence of intermediate lug groove 51” means that it is provided in region 71A, extends from second circumferential main groove 21 in the direction of first circumferential narrow groove 33, and has first circumferential narrow groove. 33 indicates whether there is a lug groove that closes without reaching 33.
  • the “presence / absence of the sipe 61” refers to whether or not there is a sipe provided in the region 71A, extending from the closed end 51a of each of the intermediate lug grooves 51, and connecting the closed end 51a and the first circumferential narrow groove 33. .
  • “None” is a sipe that is closed in the middle without being connected to the first circumferential narrow groove 33, although there is a sipe in each example.
  • “presence / absence of lug grooves in the region 71B” “present” means that there is an inclined lug groove opened in the circumferential narrow groove 33, and “absent” means that there is no lug groove in the region 71B.
  • Dmax1, D2, Dmax3 comparison “Dmax1 ⁇ Dmax3” means that Dmax3 is 1.0 mm larger than Dmax1 in any of the examples, and “D2 ⁇ Dmax1” means that in any of the examples. Also means that Dmax1 is larger by 1.0 mm than D2.
  • L3 ⁇ L4 means that L4 is greater than L3 in any of the examples.
  • L3> L4 means that L3 is 1.5 mm larger than L4 in each case.
  • present means that there is a groove that intersects the lug groove 58, and “absent” means that there is no groove that intersects the lug groove 58.
  • the inclination angle of the intermediate lug groove 51 and the sipe 61 with respect to the tire circumferential direction was set to 75 degrees.
  • a road surface sprinkled to a depth of 1 to 2 mm is provided in some sections, and other sections are run at a speed of 40 to 100 km / h on a test course on an asphalt road surface sprinkled at a depth of less than 1 mm.
  • the sensory evaluation was performed on the steering performance during lane change and cornering, and the stability during straight running. Since the vehicle travels on a road surface having a water depth of 1 to 2 mm, drainage performance can be evaluated.
  • the wet steering stability performance is indicated by an index with the conventional example set to 100, and the larger the index, the better the wet steering stability performance.
  • Example 1 From the comparison between Example 1 and the conventional example and Comparative Examples 1 and 2, a tread pattern having an intermediate lug groove 51, a sipe 61, a first circumferential narrow groove 33, and no lug groove in the area 71B is obtained. This shows that the wet steering stability performance and the noise performance are improved. From a comparison between Example 1 and Example 2, it is understood that the wet steering stability performance and the noise performance are further improved by setting the sipe depth D2 ⁇ the maximum groove depth Dmax1 ⁇ the maximum groove depth Dmax3. From the comparison between the second embodiment and the third embodiment, the wet steering stability performance can be improved by setting the length L3> the length L4.
  • the intermediate lug groove 51, the sipe 61, and the first circumferential narrow groove 33 are provided in the tread pattern region on the vehicle mounting inner side with respect to the tire equator line CL. It can be seen that the steering stability performance is improved.
  • the pneumatic tire of the present invention has been described in detail.
  • the pneumatic tire of the present invention is not limited to the above embodiments or examples, and various improvements and changes may be made without departing from the gist of the present invention. Of course, you can.

Abstract

空気入りタイヤのトレッドパターンは、タイヤ幅方向の第1の側に設けられた第1周方向主溝と、前記第1周方向主溝のタイヤ幅方向外側に設けられた第2周方向主溝と、前記第1周方向主溝と前記第2周方向主溝との間の領域に設けられ、前記第1周方向主溝及び前記第2周方向主溝よりも溝幅の狭い第1周方向細溝と、前記領域に設けられ、前記第2周方向主溝から前記第1周方向細溝の方向に延び、前記第1周方向細溝に到達することなく閉塞する中間ラグ溝と、前記領域に設けられ、前記中間ラグ溝の閉塞端から延びて、前記閉塞端と前記第1周方向細溝とを接続するサイプと、を備える。前記第1周方向主溝と前記第1周方向細溝の間の領域にはラグ溝は設けられず、前記第1周方向主溝の前記第1周方向細溝の側の溝壁は、タイヤ周方向に途切れることなく一周する。

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関する。
 空気入りタイヤのウェット性能を向上させる方法として、一般に、タイヤのトレッド面に、タイヤ周方向に延びる主溝のほかに、タイヤ幅方向に延びるラグ溝を設けて排水性を確保することが行われている。ところが、このような方法では、溝体積が増えるために、走行中に発生するポンピング音が大きくなり、タイヤ騒音(以降、騒音性能という)が増大するという問題がある。一方、主溝及びラグ溝を設けたトレッドパターンから、ラグ溝に代えてサイプを設けて溝体積を低減したトレッドパターンにすると、ポンピング音が小さくなり、騒音性能が改善されるが、溝体積の減少によって排水性を確保できず、ウェット性能が低下してしまう。
 例えば、操縦安定性能を維持しつつウェット性能及び騒音性能をバランス良く向上しうる空気入りタイヤが知られている(特許文献1)。
 この空気入りタイヤのトレッドパターンは、タイヤ周方向に連続してのびる一対のクラウン主溝と、クラウン主溝のタイヤ軸方向外側をタイヤ周方向に連続してのびる一対のショルダー主溝と、一対のクラウン主溝間をのびるクラウンリブと、クラウン主溝とショルダー主溝との間をのびる一対のミドルリブとを有する。ミドルリブは、タイヤ周方向に連続してのびる1本のミドル副溝により、内側ミドル部と外側ミドル部とに区分される。内側ミドル部には、ミドル副溝からタイヤ赤道側に向かってのびかつクラウン主溝に連通することなく終端する内側ミドルラグ溝がタイヤ周方向に隔設され、外側ミドル部には、ショルダー主溝からタイヤ赤道側に向かってのびかつミドル副溝に連通することなく終端する外側ミドルラグ溝がタイヤ周方向に隔設されている。
特開2011-31773号公報
 上記空気入りタイヤでは、操縦安定性能を維持しつつウェット性能及び騒音性能をバランス良く向上することができるが、高速域(例えば、速度80km/時以上)及び低速域(例えば速度60km/時以下)におけるウェット操縦安定性能及び騒音性能をより向上することが望まれる。特に、低速領域におけるウェット操縦安定性能及び高速領域における操縦安定性能を同時向上させつつ、騒音性能を向上させることは重要である。
 本発明は、高速領域及び低速領域のウェット操縦安定性能及び騒音性能を向上させることができる空気入りタイヤを提供することを目的とする。
 本開示の一態様は、トレッドパターンを備える空気入りタイヤである。当該空気入りタイヤの前記トレッドパターンは、
 タイヤ赤道線に対してタイヤ幅方向の第1の側に設けられ、タイヤ周方向に延びる第1周方向主溝と、
 前記第1周方向主溝のタイヤ幅方向外側に設けられ、タイヤ周方向に延びる第2周方向主溝と、
 前記第1周方向主溝と前記第2周方向主溝との間の領域に設けられ、タイヤ周方向に延びる、前記第1周方向主溝及び前記第2周方向主溝よりも溝幅の狭い第1周方向細溝と、
 前記領域に設けられ、前記第2周方向主溝から前記第1周方向細溝の方向に延び、前記第1周方向細溝に到達することなく閉塞する、タイヤ周方向に間隔をあけて配置された複数の中間ラグ溝と、
 前記領域に設けられ、前記中間ラグ溝それぞれの閉塞端から延びて、前記閉塞端と前記第1周方向細溝とを接続する、タイヤ周方向に間隔をあけて配置された複数のサイプと、
を備える。
 前記第1周方向主溝と前記第1周方向細溝の間の領域にはラグ溝は設けられず、前記第1周方向主溝の前記第1周方向細溝の側の溝壁は、タイヤ周方向に途切れることなく一周する壁である。
 前記第1周方向細溝は、前記領域のタイヤ幅方向の中心位置よりも、前記タイヤ幅方向の前記第1周方向主溝の側に設けられる、ことが好ましい。
 前記中間ラグ溝のタイヤ幅方向の長さは、前記第2周方向主溝と前記第1周方向細溝との間の領域のタイヤ幅方向の長さの30~70%である、ことが好ましい。
 前記第1周方向細溝の最大溝深さは、前記第1周方向細溝と前記サイプとの接続部分における前記サイプのサイプ深さよりも深く、前記中間ラグ溝の最大溝深さより浅い、ことが好ましい。
 前記第2周方向主溝のタイヤ幅方向の外側には、タイヤ幅方向の接地端が位置するショルダー陸部を備え、
 前記ショルダー陸部の領域には、タイヤ周方向に延びる、前記第1周方向主溝及び前記第2周方向主溝よりも溝幅の狭い第2周方向細溝が設けられ、
 前記第2周方向主溝と前記第2周方向細溝の間の領域からタイヤ幅方向の外側に向かって延びて、前記第2周方向細溝と交差して、さらに、前記第2周方向細溝の前記タイヤ幅方向の外側に延びるショルダーラグ溝を備える、ことが好ましい。
 前記第2周方向主溝と前記第2周方向細溝の間の領域のタイヤ幅方向の長さは、前記第1周方向主溝と前記第1周方向細溝の間の領域のタイヤ幅方向の長さに比べて長い、ことが好ましい。
 前記中間ラグ溝のうちタイヤ周方向に隣り合う2つの中間ラグ溝それぞれが前記第2周方向主溝に接続するタイヤ周方向の2つの接続位置の間のタイヤ周方向に沿った長さをLcとしたとき、前記ショルダーラグ溝の前記第2周方向主溝の側の端のタイヤ周方向の位置は、前記接続位置の間のタイヤ周方向における中間点を中心とする前記長さLcの±30%の範囲内にある、ことが好ましい。
 前記第1の側は、前記空気入りタイヤを車両に装着する時、車両装着内側となるように装着される、ことが好ましい。
 前記トレッドパターンは、前記タイヤ赤道線に対して前記第1の側と反対の第2の側に、少なくとも2つのタイヤ周方向に延びる周方向主溝を備え、
 前記第2の側の前記周方向主溝によって作られる陸部の領域、及び前記周方向主溝のタイヤ幅方向外側にあるショルダー陸部の領域には、タイヤ周方向に延びる周方向溝は設けられていない、ことが好ましい。
 前記第2の側の前記周方向主溝のうち、前記タイヤ赤道線に最も近い第3周方向主溝と、前記第1周方向主溝との間の領域には、タイヤ周方向に延びてタイヤ周上を一周する周方向溝は設けられていない、ことが好ましい。
 前記第3周方向主溝の前記第1周方向主溝の側の溝壁は、タイヤ周方向に途切れることなく一周する壁である、ことが好ましい。
 前記サイプそれぞれは、前記中間ラグ溝の1つと滑らかに接続する、ことが好ましい。
 前記サイプの少なくとも一部のサイプは、前記中間ラグ溝の1つと屈曲するように接続する、ことも好ましい。
 前記サイプの、前記中間ラグ溝の1つとの接続部分におけるサイプ深さは、前記サイプの前記第1周方向細溝との接続部分のサイプ深さより深く、前記中間ラグ溝の最大溝深さよりも浅い、ことが好ましい。
 上述の空気入りタイヤによれば、高速域及び低速域のウェット操縦安定性能及び騒音性能を向上させることができる。
一実施形態の空気入りタイヤのプロファイル断面の一例を示す図である。 図1に示すタイヤのトレッドパターンの一例を示す図である。 図2に示すトレッドパターンの要部を拡大した図である。 図2に示すIV-IV線に沿った矢視断面図である。 図2に示すトレッドパターンとは異なる他の一実施形態のタイヤのトレッドパターンを示す図である。
(タイヤの全体説明)
 以下、一実施形態の空気入りタイヤ(以降、タイヤという)について説明する。図1は、タイヤ10のプロファイル断面の一例を示すタイヤ断面図である。
 タイヤ10は、例えば乗用車用タイヤである。乗用車用タイヤは、JATMA YEAR BOOK 2012(日本自動車タイヤ協会規格)のA章に定められるタイヤをいう。この他、B章に定められる小型トラック用タイヤおよびC章に定められるトラック及びバス用タイヤに、タイヤ10を適用することもできる。
 タイヤ幅方向は、タイヤの回転軸と平行な方向である。タイヤ幅方向外側は、タイヤ幅方向において、タイヤ赤道面を表すタイヤ赤道線CLから離れる側である。また、タイヤ幅方向内側は、タイヤ幅方向において、タイヤ赤道線CLに近づく側である。タイヤ周方向は、タイヤの回転軸を回転の中心として回転する方向である。タイヤ径方向は、タイヤの回転軸に直交する方向である。タイヤ径方向外側は、前記回転軸から離れる側をいう。また、タイヤ径方向内側は、前記回転軸に近づく側をいう。
(タイヤ構造)
 タイヤ10は、トレッドパターンを有するトレッド部10Tと、一対のビード部10Bと、トレッド部10Tの両側に設けられ、一対のビード部10Bとトレッド部10Tに接続される一対のサイド部10Sと、を備える。
 タイヤ10は、骨格材として、カーカスプライ12と、ベルト14と、ビードコア16とを有し、これらの骨格材の周りに、トレッドゴム部材18と、サイドゴム部材20と、ビードフィラーゴム部材22と、リムクッションゴム部材24と、インナーライナーゴム部材26と、を主に有する。
 カーカスプライ12は、一対の円環状のビードコア16の間を巻きまわしてトロイダル形状を成した、有機繊維をゴムで被覆したカーカスプライ材で構成されている。カーカスプライ12は、ビードコア16の周りに巻きまわされてタイヤ径方向外側に延びている。カーカスプライ12のタイヤ径方向外側に2枚のベルト材14a,14bで構成されるベルト14が設けられている。ベルト14は、タイヤ周方向に対して、所定の角度、例えば20~30度傾斜して配されたスチールコードにゴムを被覆した部材で構成され、下層のベルト材14aのタイヤ幅方向の幅が上層のベルト材14bのタイヤ幅方向の幅に比べて長い。2層のベルト材14a,14bのスチールコードの傾斜方向は互いに逆方向である。このため、ベルト材14a,14bは、交錯層となっており、充填された空気圧によるカーカスプライ12の膨張を抑制する。
 ベルト14のタイヤ径方向外側には、トレッドゴム部材18が設けられ、トレッドゴム部材18の両端部には、サイドゴム部材20が接続されてサイド部10Sを形成している。サイドゴム部材20のタイヤ径方向内側の端には、リムクッションゴム部材24が設けられ、タイヤ10を装着するリムと接触する。ビードコア16のタイヤ径方向外側には、ビードコア16の周りに巻きまわす前のカーカスプライ12の部分と、ビードコア16の周りに巻きまわしたカーカスプライ12の巻きまわした後の部分との間に挟まれるようにビードフィラーゴム部材22が設けられている。タイヤ10とリムとで囲まれる空気を充填するタイヤ空洞領域に面するタイヤ10の内表面には、インナーライナーゴム部材26が設けられている。
 この他に、ベルト材14bとトレッドゴム部材18との間には、ベルト14のタイヤ径方向外側からベルト14を覆う、有機繊維をゴムで被覆した2層のベルトカバー30が設けられている。
 図1に示すタイヤ10の構造は、一例であって、タイヤ10は、他の公知のタイヤ構造を備えてもよい。
(トレッドパターン)
 図2は、図1に示すタイヤ10のトレッドパターンの一例を平面に展開したものの一部を示す図である。
 トレッドパターンは、タイヤ周方向に延びる周方向主溝21,23,25,27と、複数のラグ溝51,53,55,57,58,59と、周方向細溝31,33と、サイプ61と、を備える。
 周方向主溝21は、タイヤ赤道線CLに対してタイヤ幅方向の第1の側(図2の紙面左側)に設けられ、タイヤ周方向に延びてタイヤ10の外周を一周する溝である。周方向主溝23は、周方向主溝21のタイヤ幅方向内側に設けられ、タイヤ周方向に延びてタイヤ10の外周を一周する溝である。以降、周方向主溝23と周方向主溝21とを区別するために、周方向主溝23は第1周方向主溝23といい、周方向主溝21は第2周方向主溝21という。
 周方向主溝25は、タイヤ赤道線CLに対してタイヤ幅方向の第2の側(図2の紙面右側)に設けられ、タイヤ周方向に延びてタイヤ10の外周を一周する溝である。周方向主溝27は、周方向主溝23のタイヤ幅方向外側に設けられ、タイヤ周方向に延びてタイヤ10の外周を一周する溝である。
 一実施形態によれば、周方向主溝21,23,25,27の溝幅は、互いに同じであることが好ましい。
 図2に示す例では、第1周方向主溝23と周方向主溝25は、タイヤ赤道線CLを境としてタイヤ幅方向の互いに異なる側の、タイヤ赤道線CLから同じ距離、離れた位置に設けられ、第2周方向主溝21と周方向主溝27は、タイヤ赤道線CLを境としてタイヤ幅方向の互いに異なる側の、タイヤ赤道線CLから同じ距離、離れた位置に設けられている。しかし、第1周方向主溝23と周方向主溝25は、タイヤ幅方向の互いに異なる側の、タイヤ赤道線CLから異なる距離、離れた位置に設けられてもよく、第2周方向主溝21と周方向主溝27も、タイヤ幅方向の互いに異なる側の、タイヤ赤道線CLから互いに異なる距離、離れた位置に設けられてもよい。
 周方向細溝31は、第1周方向主溝23及び第2周方向主溝21よりも溝幅の狭い、タイヤ周方向に延びてタイヤ10の外周を一周する溝であり、第2周方向主溝21のタイヤ幅方向の外側の領域、すなわち、タイヤ幅方向の接地端が位置するショルダー陸部の領域に設けられている。周方向細溝31は、この領域を、タイヤ幅方向外側(パターンエンドの側)の領域77Aと、タイヤ幅方向内側(第2周方向主溝21の側)の領域77Bと、に分ける。
 周方向細溝33は、第1周方向主溝23及び第2周方向主溝21よりも溝幅の狭い、タイヤ周方向に延びてタイヤ10の外周を一周する溝であり、第1周方向主溝23と第2周方向主溝21との間の領域に設けられている。周方向細溝33は、この領域を、タイヤ幅方向外側(第2周方向主溝21の側)の領域71Aと、タイヤ幅方向内側(第1周方向主溝23の側)の領域71Bとに分ける。
 以降、周方向細溝31と周方向細溝33とを区別するために、周方向細溝33は第1周方向細溝33といい、周方向細溝31は第2周方向細溝31という。
 第1周方向主溝23、第2周方向主溝21、周方向主溝25,27は、例えば6.5~9.0mmの溝深さを有し、例えば5.0~15.0mmの溝幅を有する。
 一方、第1周方向細溝31及び第2周方向細溝33は、例えば1.0~5.0mmの溝深さを有し、例えば0.8~3.0mmの溝幅を有する。すなわち、第1周方向細溝31及び第2周方向細溝33は、第1周方向主溝23、第2周方向主溝21、周方向主溝25,27に対して、溝深さ及び溝幅の寸法によって区別することができる。
 ラグ溝51は、第1周方向主溝23と第2周方向主溝21との間の領域、さらにいうと、領域71Aに設けられ、第2周方向主溝21から第1周方向細溝23の方向に延び、第1周方向細溝33に到達することなく閉塞する溝である。ラグ溝51は、タイヤ周方向に間隔をあけて複数配置されている。このラグ溝51は、他のラグ溝と区別するために以降中間ラグ溝51という。
 中間ラグ溝51は、他のラグ溝53,55,57,58,59とともに、図2に示すタイヤ幅方向の紙面左側から右側に進むにつれて、タイヤ周方向の一方の側(図2に示す例では、紙面下側)に延びる溝である。
 ラグ溝53は、第1周方向主溝23から、第1周方向主溝23と周方向主溝25の間の領域73内をタイヤ幅方向に延び、領域73内で閉塞する溝である。
 ラグ溝55は、周方向主溝25から、周方向主溝25,27の間の領域75内をタイヤ幅方向に延び、領域75内で閉塞している。
 ラグ溝57は、周方向主溝27から領域75をタイヤ幅方向に延び、領域75内で閉塞している。
 ラグ溝53,55,57のタイヤ幅方向に延びる長さは、領域72,75を形成する、タイヤ10の外周を一周する連続陸部の幅の半分よりも小さい。この結果、領域73,75には、トレッド剛性が高い連続陸部を設けることができる。
 ラグ溝58は、第2周方向主溝21と第2周方向細溝31の間の領域からタイヤ幅方向の外側に向かって延びて、第2周方向細溝31と交差し、さらに、第2周方向細溝31のタイヤ幅方向の外側に向かって図2の紙面左側のパターンエンドまで延びるラグ溝であり、ショルダーラグ溝である。
 ラグ溝59は、周方向主溝27に対してタイヤ幅方向外側にある領域79において、周方向主溝27から離間した位置からタイヤ幅方向の外側に向かって図2の紙面右側のパターンエンドまで延びるラグ溝である。
 ラグ溝51,53,55,57,58,59は、例えば2.0~7.5mmの溝深さを有し、例えば1.5~7.5mmの溝深さを有する。
 サイプ61は、領域71Aに設けられ、中間ラグ溝51それぞれの閉塞端51aから延びて、閉塞端51aと第1周方向細溝33とを接続する。サイプ61は、タイヤ周方向に間隔をあけて複数個所に配置されている。
 中間ラグ溝51は、中間ラグ溝51の閉塞端51aで接続して第1周方向細溝33まで延びるサイプ61とともに、サイプ付きラグ溝40,41を形成する。
 第1周方向細溝33と第1周方向主溝23の間の領域71Bは、タイヤ周方向に連続して延びてタイヤ10の外周を一周する連続陸部を形成する。すなわち、第1周方向細溝23と第1周方向主溝33の間の領域71Bにはラグ溝は設けられず、第1周方向主溝23の第1周方向細溝33の側の溝壁は、タイヤ周方向に途切れることなく一周する壁である。
 図2に示すトレッドパターンには、上述したように領域71Aに設けられる中間ラグ溝51が第2周方向主溝21から第1周方向細溝33の方向に延び、第1周方向細溝33に到達することなく閉塞し、サイプ61が、中間ラグ溝51の閉塞端51aから延びて、閉塞端51aと第1周方向細溝33とを接続する。一方、第1周方向細溝33のタイヤ幅方向内側にある第1周方向主溝23と第1周方向細溝33の間の領域71Bには、ラグ溝は設けられず、第1周方向主溝23の第1周方向細溝33の側の溝壁は、タイヤ周方向に途切れることなく一周する壁である構成、すなわち、領域71Bは、タイヤ10の外周を一周する連続陸部となっている。
 このように、中間ラグ溝51とサイプ61を領域71Aに設け、連続陸部を領域71Bに設けることにより、高速領域及び低速領域のウェット操縦安定性能(水深1~3mmにおけるウェット路面における操縦安定性能)及び騒音性能をより向上させることができる。
 中間ラグ溝51を設けることで、高速度域(例えば、速度80km/時以上)では、領域71Aに進入する水をタイヤ幅方向外側に流す排水機能をタイヤ10に発揮させることができる一方、サイプ61を設けることで、低速域(例えば速度60km/時以下)では、路面に接触するタイヤ10の接触面積を広げることができ、ウェット路面上での凝着摩擦を高めて、操縦安定性能を高めることができる。サイプ61は、路面に合わせてトレッドゴムの形状を変形させることができるので、サイプ61やラグ溝がない場合よりも路面との接触面積を増大させる。しかも、サイプ61は、ラグ溝を設ける場合に比べて溝体積が少なくて済むので、路面との接触面積を大きくすることができる。
 中間ラグ溝51は、排水機能を有効に発揮させるために、第2周方向主溝21に開口するように、サイプ61に比べて第2周方向主溝21の側、すなわちタイヤ幅方向外側に設けることが好ましい。
 中間ラグ溝51は、第2周方向主溝21から領域71A内側に延びて第1周方向細溝33に到達することなく途中で閉塞し、この閉塞端51aから周方向細溝33の間は、サイプ61が設けられるので、中間ラグ溝51が第2周方向主溝21と第1周方向細溝33とを接続する場合に比べて、ラグ溝によるパターンノイズを低減することができ、騒音性能が向上する。
 また、領域71Aに対してタイヤ幅方向内側に位置する領域71Bには、ラグ溝を一切設けないことで、路面との接触面積を増大させてウェット路面上での凝着摩擦を高めて、操縦安定性能を高めることができる。領域71Aに比べてタイヤ赤道線CLに近い領域71Bにラグ溝を一切設けない連続陸部とすることで、領域71のトレッド剛性が高まり、旋回時の初期操舵応答を高めることができる。
 図3は、図2に示すトレッドパターンの要部を拡大した図である。
 図3に示すように、第1周方向細溝33は、第1周方向主溝23と第2周方向主溝21との間の領域におけるタイヤ幅方向の中心位置Mよりも、タイヤ幅方向の第1周方向主溝23の側に設けられることが好ましい。これにより、中間ラグ溝51による排水機能とサイプ61による粘着摩擦を高めることができる。
 また、一実施形態によれば、中間ラグ溝51のタイヤ幅方向の長さL1(図3参照)は、第2周方向主溝21と第1周方向細溝33との間の領域のタイヤ幅方向の長さL2(図3参照)の30~70%である、ことが好ましい。長さL1が長さL2の30%より短いと、中間ラグ溝51による排水機能が極端に低下する。長さL1が長さL2の70%を超えると、サイプ61による粘着摩擦を高めることが十分にできない他、騒音性能が悪化する。長さL1は長さL2の40~60%であることがより好ましい。
 図4は、図2に示す中間ラグ溝51及びサイプ61を含む領域のIV-IV線に沿った矢視断面図である。図4に示すように、サイプ61は、サイプ深さが場所によって異なり、サイプ深さ方向の底の位置が異なるサイプ底61a,61bを有する。サイプ61のうちサイプ底61bを有する部分(サイプ深さの浅い部分)は、第1周方向細溝33と接続され、サイプ底61aを有する部分(サイプ底61bを有する部分に比べてサイプ深さが深い部分)は、中間ラグ溝51と接続する。ここで、図4に示すように、第1周方向細溝33の最大溝深さDmax1は、第1周方向細溝33とサイプ61との接続部分におけるサイプ61のサイプ深さD2よりも深く、第1周方向細溝33の最大溝深さDmax1は、中間ラグ溝51の最大溝深さDmax3より浅いことが好ましい。
 第1周方向細溝33の最大溝深さDmax1を中間ラグ溝51の最大溝深さDmax2より浅くすることで、第1周方向細溝33を設けても領域71Bの連続陸部のトレッド剛性を高く維持することができる。しかも、第1周方向細溝33の最大溝深さDmax1をサイプ61の、第1周方向細溝33との接続部分のサイプ深さD2より深くすることにより、第1周方向細溝33の溝体積を大きくすることができ排水性の向上に寄与する。
 また、図2に示すように、第2周方向主溝21のタイヤ幅方向外側には、タイヤ幅方向の接地端が位置するショルダー陸部を備える。ショルダー陸部は、領域77A及び領域77Bを備える。領域77Bには、図2に示すように、タイヤ周方向に延びて、タイヤ10の外周を一周する連続陸部が形成されている。ショルダー陸部のある領域には、第2周方向細溝31が設けられている。ラグ溝58は、第2周方向主溝21と第2周方向細溝31の間の領域77Bからタイヤ幅方向外側に向かって延びて、第2周方向細溝31と交差し、さらに、第2周方向細溝31のタイヤ幅方向外側に向かってパターンエンドまで延びている。
 このように、ショルダー陸部の領域に、第2周方向細溝31を設けるので、排水機能を発揮しつつ、トレッド剛性の低下を抑制することができるので、ウェット操縦安定性能を向上させることができる。また、ラグ溝58が第2周方向細溝31と交差するので、高速領域で、第2周方向細溝31で賄うことができない、排水すべき水を第2周方向細溝31と交差したラグ溝58を通してタイヤ幅方向外側に流すことができるので、排水機能を向上させることができる。
 一実施形態によれば、第2周方向主溝31と第2周方向細溝21の間の領域77Bのタイヤ幅方向の長さL3(図3参照)は、第1周方向主溝23と第1周方向細溝33の間の領域71Bのタイヤ幅方向の長さL4に比べて長いことが好ましい。長さL3を長さL4より長くすることにより、旋回時の外側に位置する領域77Bのトレッド剛性を高くすることができ、また、路面との接触面積を増大させることで粘着摩擦を増大させることができ、旋回時の横力を大きくすることができる。図2中の図面左側が、旋回時の内輪側である場合でも、横力の上昇に寄与する。
 また、一実施形態によれば、中間ラグ溝51のうちタイヤ周方向に隣り合う2つの中間ラグ溝51それぞれが第2周方向主溝21に接続するタイヤ周方向の2つの接続位置の間のタイヤ周方向に沿った長さをLc(図3参照)とした時、ショルダーラグ溝58の第2周方向主溝21の側の端のタイヤ周方向の位置は、上記接続位置の間のタイヤ周方向における中間点を中心とする長さLcの±30%の範囲内にある、すなわち、略上記中間点に位置することが好ましい。このように、ショルダーラグ溝58の第2周方向主溝21の側の端のタイヤ周方向の位置を、略上記中間点に位置させることにより、ラグ溝58の端及び中間ラグ溝51の開口端をタイヤ周上の位置を互い違いに配置することができ、この結果、ラグ溝58及び中間ラグ溝51によるパターンノイズの発生のタイミングをずらすことができるので、騒音性能を向上させることができる。ショルダーラグ溝58の第2周方向主溝21の側の端のタイヤ周方向の位置は、上記中間点を中心とする長さLcの±20%の範囲内にすることがより好ましい。
 一実施形態によれば、図2に示す紙面左側、すなわち第1の側は、タイヤ10を車両に装着する時、車両装着内側となるように装着される、ことが好ましい。図2に示す紙面左側を、車両装着内側に装着する情報は、タイヤ10のサイド部10Sに文字あるいは記号等によって情報表示体上に表示される。
 図2に示す紙面左側に、上記第1周方向主溝23、第2周方向主溝21、第1周方向細溝33、中間ラグ溝51、及びサイプ61を設けることにより、排水性を含むウェット操縦安定性能及び騒音性能を向上させることができるので、図2に示すタイヤ赤道線CLを境にして紙面右側のトレッドパターンにおいて、ドライ操縦安定性能を高くさせるために、溝面積を第1の側のトレッドパターンに比べて小さくすることが可能になる。
 一実施形態によれば、図2に示すように、トレッドパターンは、タイヤ赤道線CLを境にして第1の側(紙面左側)と反対の第2の側(紙面右側)に、少なくとも2つのタイヤ周方向に延びる周方向主溝25,27を備える。この場合、第2の側の周方向主溝25,27によって作られる陸部の領域75、及び周方向主溝27のタイヤ幅方向外側にあるショルダー陸部の領域79には、タイヤ周方向に延びる周方向溝、例えば第2の側の周方向主溝25,27よりも溝幅の狭い、タイヤ周方向に延びる周方向細溝は設けられていない。周方向細溝31,33のような周方向細溝を設けないので、領域75,79におけるトレッド剛性を、第1の側の対応する領域に比べて向上させることができる。この結果、ドライ操縦安定性能のみならずウェット操縦安定性能を向上させることができる。また、第2の側のトレッドパターンに周方向細溝を設けないのでタイヤ周方向に流れる空気の流れに起因して生じる騒音を抑制することができ、騒音性能を向上させることができる。
 一実施形態によれば、第2の側の複数の周方向主溝のうち、タイヤ赤道線に最も近い周方向主溝25(第3周方向主溝)と、第1周方向主溝23との間の領域には、タイヤ周方向に延びてタイヤ周上を一周する周方向溝は設けられていない、ことが好ましい。これにより、操舵初期の応答が速くなりウェット路面及び乾燥路面における操縦安定性が向上する。特に、周方向主溝25(第3周方向主溝)の第1周方向主溝23の側の溝壁は、タイヤ周方向に途切れることなく一周する壁であり、この溝壁から延びるラグ溝も存在しないので、領域73の接触面積は増大し、操舵初期の応答が速くなり操縦安定性はより大きく向上する。
 一実施形態によれば、サイプ61のそれぞれは、中間ラグ溝51の1つと滑らかに接続するように、サイプ61の接続部分においてサイプの傾斜方向は設定されていることが好ましい。サイプ61が中間ラグ溝51と接続部分で滑らかに接続することにより、サイプ61の隙間を流れる少量の水の流れ方向を変化させることなく、滑らかに接続された中間ラグ溝51の延在方向に流れるので、排水性能の向上に寄与する。
 また、一実施形態では、サイプ61の少なくとも一部のサイプ61は、中間ラグ溝51の1つと屈曲するように接続することも好ましい。図2では、サイプ61と中間ラグ溝51の屈曲を、理解用意のために強調して示している。図2に示すように、中間ラグ溝51とサイプ61とによりサイプ付きラグ溝40,41が形成されている。サイプ付きラグ溝40は、中間ラグ溝51とサイプ61が屈曲して接続されたものであり、サイプ付きラグ溝41は、中間ラグ溝51とサイプ61が滑らかに接続されたものである。図2に示す例は、サイプ61のタイヤ幅方向に対する傾斜角度を同じにし、中間ラグ溝51の傾斜角度が種々の方向に変化させている。図5に示すように、中間ラグ溝51のタイヤ幅方向に対する傾斜角度を同じにし、サイプ61の傾斜角度を種々の方向に変化させることもできる。図5は、図2とは異なる他の一実施形態のトレッドパターンを示す図である。
 ここで、サイプ61と中間ラグ溝51が屈曲して接続されるか、あるいは滑らかに接続されるかを区別する閾値となる角度は、1~5度の範囲内の所定の角度であることが好ましい。この閾値となる角度は例えば3度である。この場合、3度以上の屈曲角度の場合のサイプ付きラグ溝はサイプ付きラグ溝40であり、3度未満の屈曲角度の場合のサイプ付きラグ溝はサイプ付きラグ溝41である。なお、サイプ付きラグ溝40の屈曲角度の最大角度は、10度以下である。
 なお、サイプ付きラグ溝40は、中間ラグ溝51のタイヤ幅方向に対する傾斜が、サイプ61のタイヤ幅方向に対する傾斜よりも緩いサイプ付きラグ溝40と、中間ラグ溝51のタイヤ幅方向に対する傾斜が、サイプ61のタイヤ幅方向に対する傾斜よりも急であるサイプ付きラグ溝40と、を含んでもよく、中間ラグ溝51のタイヤ幅方向に対する傾斜が、サイプ61の傾斜よりもタイヤ幅方向に対して急あるいは緩いサイプ付きラグ溝40であって、タイヤ幅方向に対する屈曲角度が複数種類あるサイプ付きラグ溝40でもよい。
 同様に、図5に示すように、サイプ付きラグ溝40は、サイプ61のタイヤ幅方向に対する傾斜が、中間ラグ溝51のタイヤ幅方向に対する傾斜よりも急であるサイプ付きラグ溝40と、サイプ61のタイヤ幅方向に対する傾斜が、中間ラグ溝51のタイヤ幅方向に対する傾斜よりも緩いサイプ付きラグ溝40と、を含んでもよく、サイプ61のタイヤ幅方向に対する傾斜が、中間ラグ溝51のタイヤ幅方向に対する傾斜が急である、あるいは緩いサイプ付きラグ溝40であって、タイヤ幅方向に対する傾斜角度が複数種類あるサイプ付きラグ溝40でもよい。
 このように、サイプ61と中間ラグ溝51の複数の接続部分の少なくとも一部において、屈曲して接続させることにより、サイプ61あるいは中間ラグ溝51により作られるエッジ成分の向きを変化させることができる。このため、ウェット路面から受ける力の向きが変化しても、向きの変化したエッジ成分により粘着摩擦力を安定して発揮させることができる。このため、ウェット操縦安定性を向上させることができる。
 サイプ61の中間ラグ溝51の1つとの接続部分のサイプ深さD4(図4参照)は、サイプ61の第1周方向細溝33との接続部分のサイプ深さD2より深く、中間ラグ溝51の最大溝深さDmax3よりも浅いことが好ましい。このように、サイプ深さD4は、サイプ深さD2より深く、サイプ61のサイプ深さD4の部分と中間ラグ溝51とが接続するので、トレッド剛性の大きな変化を抑えることができ、領域71Aの陸部の路面から受ける力による変形が集中することを阻止することができる。
 また、図2に示すように、第1周方向細溝33の第1周方向主溝23の側の溝壁は、タイヤ周方向に途切れることなく一周する壁であることが好ましい。すなわち、領域71Bには、第1周方向細溝33及び第1周方向主溝23に開口するラグ溝やサイプが設けられないことが好ましい。さらに好ましくは、図2に示すように、領域71Bには、第1周方向細溝33及び第1周方向主溝23に開口するラグ溝やサイプのみならず、溝及びサイプが一切設けられないことも好ましい。これにより、領域71B全体をタイヤ10の外周を一周する陸部の幅が一定である連続陸部とすることができ、領域71Bのトレッド剛性を高め、路面との接触面積を大きくして粘着摩擦を大きくすることができ、ウェット操縦安定性能を向上させることができる。
(実施例、比較例、従来例)
 上述のタイヤ10のトレッドパターンの効果を調べるために、図2に示すトレッドパターンを基準としてトレッドパターンを種々変更したタイヤを試作してウェット操縦安定性能及び騒音性能を調べた。試作したタイヤは、サイズが225/65R17である。
 表1及び表2に、各タイヤのトレッドパターンの仕様とその評価結果を示す。
 表1及び表2において、「中間ラグ溝51の有無」とは、領域71Aに設けられ、第2周方向主溝21から第1周方向細溝33の方向に延び、第1周方向細溝33に到達することなく閉塞するラグ溝があるか否かをいう。
 「サイプ61の有無」は、領域71Aに設けられ、中間ラグ溝51それぞれの閉塞端51aから延びて、閉塞端51aと第1周方向細溝33とを接続するサイプがあるか否かをいう。「無し」とは、いずれの例でも、サイプはあるが、第1周方向細溝33に接続することなく途中で閉塞したサイプである。
 「領域71Bのラグ溝の有無」において、「有り」とは、周方向細溝33に開口した傾斜ラグ溝があることをいい、「無し」とは、領域71Bにラグ溝が全く無いことをいう。
 「Dmax1、D2、Dmax3の比較」において、「Dmax1<Dmax3」とは、いずれの例においてもDmax3がDmax1に比べて1.0mm大きいこと意味し、「D2<Dmax1」とは、いずれの例においてもDmax1がD2に比べて1.0mm大きいことを意味する。
 「L3,L4の比較」において、「L3<L4」とは、いずれの例においてもL4がL3よりも.5mm大きいことを意味し、「L3>L4」とは、いずれの例においてもL3がL4よりも1.5mm大きいことを意味する。
 「第2周方向細溝31の有無」において、「有り」とは、ラグ溝58と交差する溝があることをいい、「無し」とは、ラグ溝58と交差する溝がないことをいう。
 中間ラグ溝51及びサイプ61のタイヤ周方向に対する傾斜角度を75度とした。
 これらのタイヤについて、下記のウェット操縦安定性能、騒音性能を評価するための試験を行って、評価結果を表1及び表2に示す。各試験では、タイヤをリムサイズ17×7Jのホイールに組み付けて排気量2400ccのSUV(Sport Utility Vehicle)車に装着し、空気圧を230kPaとした条件にて行った。
(ウェット操縦安定性能)
 水深1~2mmとなるように散水した路面を一部の区間に設け、それ以外の区間を水深1mm未満で散水したアスファルト路面のテストコースを、速度40~100km/時で走行し、テストドライバーがレーンチェンジ時及びコーナリング時における操舵性、並びに直進時における安定性についての官能評価を行った。この走行では、水深1~2mmの路面を通るので、排水性能も評価することができる。ウェット操縦安定性能は、従来例を100とする指数で表示され、指数が大きいほどウェット操縦安定性能が優れていることを示す。
(騒音性能)
 各試験タイヤを、ウェット性能の評価試験で用いたのと同じSUV車に装着し、欧州騒音規制条件(ECE R117)に準拠して車外での通過騒音を計測した。評価結果は、計測値の逆数を用い、従来例を100とする指数で示した。この指数が大きいほど、騒音性能が優れていることを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1と従来例及び比較例1,2との比較より、中間ラグ溝51があり、サイプ61があり、第1周方向細溝33があり、領域71Bにラグ溝がないトレッドパターンとすることにより、ウェット操縦安定性能及び騒音性能が向上することがわかる。
 実施例1と実施例2の比較より、サイプ深さD2<最大溝深さDmax1<最大溝深さDmax3とすることで、ウェット操縦安定性能及び騒音性能がさらに向上することがわかる。
 実施例2と実施例3との比較より、長さL3>長さL4とすることにより、ウェット操縦安定性能を向上させることができる。
 実施例3と実施例4との比較より、ラグ溝58と交差する第2周方向細溝31を設けることにより、ウェット操縦安定性能が向上することがわかる。
 実施例4と実施例5の比較より、中間ラグ溝51、サイプ61、第1周方向細溝33を、タイヤ赤道線CLを境にして車両装着内側のトレッドパターンの領域に設けることにより、ウェット操縦安定性能が向上することがわかる。
 以上、本発明の空気入りタイヤについて詳細に説明したが、本発明の空気入りタイヤは上記実施形態あるいは実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
10 タイヤ
10T トレッド部
10S サイド部
10B ビード部
12 カーカスプライ
14 ベルト
16 ビードコア
18 トレッドゴム部材
20 サイドゴム部材
22 ビードフィラーゴム部材
24 リムクッションゴム部材
26 インナーライナーゴム部材
21 第2周方向主溝(周方向主溝)
23 第1周方向主溝(周方向主溝)
25,27 周方向主溝
30 バルトカバー
31 第2周方向細溝(周方向細溝)
33 第1周方向細溝(周方向細溝)
51 中間ラグ溝(ラグ溝)
51a 閉塞端
53,55,57,58,59 ラグ溝
61 サイプ
40 第1のサイプ付きラグ溝
41 第2のサイプ付きラグ溝
61a,61b サイプ底
71A,71B,73,75,77A,77B,79 領域

Claims (14)

  1.  トレッドパターンを備える空気入りタイヤであって、
     前記トレッドパターンは、
     タイヤ赤道線に対してタイヤ幅方向の第1の側に設けられ、タイヤ周方向に延びる第1周方向主溝と、
     前記第1周方向主溝のタイヤ幅方向外側に設けられ、タイヤ周方向に延びる第2周方向主溝と、
     前記第1周方向主溝と前記第2周方向主溝との間の領域に設けられ、タイヤ周方向に延びる、前記第1周方向主溝及び前記第2周方向主溝よりも溝幅の狭い第1周方向細溝と、
     前記領域に設けられ、前記第2周方向主溝から前記第1周方向細溝の方向に延び、前記第1周方向細溝に到達することなく閉塞する、タイヤ周方向に間隔をあけて配置された複数の中間ラグ溝と、
     前記領域に設けられ、前記中間ラグ溝それぞれの閉塞端から延びて、前記閉塞端と前記第1周方向細溝とを接続する、タイヤ周方向に間隔をあけて配置された複数のサイプと、
    を備え、
     前記第1周方向主溝と前記第1周方向細溝の間の領域にはラグ溝は設けられず、前記第1周方向主溝の前記第1周方向細溝の側の溝壁は、タイヤ周方向に途切れることなく一周する壁である、ことを特徴とする空気入りタイヤ。
  2.  前記第1周方向細溝は、前記領域のタイヤ幅方向の中心位置よりも、前記タイヤ幅方向の前記第1周方向主溝の側に設けられる、請求項1に記載の空気入りタイヤ。
  3.  前記中間ラグ溝のタイヤ幅方向の長さは、前記第2周方向主溝と前記第1周方向細溝との間の領域のタイヤ幅方向の長さの30~70%である、請求項1または2に記載の空気入りタイヤ。
  4.  前記第1周方向細溝の最大溝深さは、前記第1周方向細溝と前記サイプとの接続部分における前記サイプのサイプ深さよりも深く、前記中間ラグ溝の最大溝深さより浅い、請求項1~3のいずれか1項に記載の空気入りタイヤ。
  5.  前記第2周方向主溝のタイヤ幅方向の外側には、タイヤ幅方向の接地端が位置するショルダー陸部を備え、
     前記ショルダー陸部の領域には、タイヤ周方向に延びる、前記第1周方向主溝及び前記第2周方向主溝よりも溝幅の狭い第2周方向細溝が設けられ、
     前記第2周方向主溝と前記第2周方向細溝の間の領域からタイヤ幅方向の外側に向かって延びて、前記第2周方向細溝と交差して、さらに、前記第2周方向細溝の前記タイヤ幅方向の外側に延びるショルダーラグ溝を備える、請求項1~4のいずれか1項に記載の空気入りタイヤ。
  6.  前記第2周方向主溝と前記第2周方向細溝の間の領域のタイヤ幅方向の長さは、前記第1周方向主溝と前記第1周方向細溝の間の領域のタイヤ幅方向の長さに比べて長い、請求項5に記載の空気入りタイヤ。
  7.  前記中間ラグ溝のうちタイヤ周方向に隣り合う2つの中間ラグ溝それぞれが前記第2周方向主溝に接続するタイヤ周方向の2つの接続位置の間のタイヤ周方向に沿った長さをLcとしたとき、前記ショルダーラグ溝の前記第2周方向主溝の側の端のタイヤ周方向の位置は、前記接続位置の間のタイヤ周方向における中間点を中心とする前記長さLcの±30%の範囲内にある、請求項5または6に記載の空気入りタイヤ。
  8.  前記第1の側は、前記空気入りタイヤを車両に装着する時、車両装着内側となるように装着される、請求項1~7のいずれか1項に記載の空気入りタイヤ。
  9.  前記トレッドパターンは、前記タイヤ赤道線に対して前記第1の側と反対の第2の側に、少なくとも2つのタイヤ周方向に延びる周方向主溝を備え、
     前記第2の側の前記周方向主溝によって作られる陸部の領域、及び前記周方向主溝のタイヤ幅方向外側にあるショルダー陸部の領域には、タイヤ周方向に延びてタイヤ周上を一周する周方向溝は設けられていない、請求項1~8のいずれか1項に記載の空気入りタイヤ。
  10.  前記第2の側の前記周方向主溝のうち、前記タイヤ赤道線に最も近い第3周方向主溝と、前記第1周方向主溝との間の領域には、タイヤ周方向に延びてタイヤ周上を一周する周方向溝は設けられていない、請求項9項に記載の空気入りタイヤ。
  11.  前記第3周方向主溝の前記第1周方向主溝の側の溝壁は、タイヤ周方向に途切れることなく一周する壁である、請求項10に記載の空気入りタイヤ。
  12.  前記サイプそれぞれは、前記中間ラグ溝の1つと滑らかに接続する、請求項1~11のいずれか1項に記載の空気入りタイヤ。
  13.  前記サイプの少なくとも一部のサイプは、前記中間ラグ溝の1つと屈曲するように接続する、請求項1~11のいずれか1項に記載の空気入りタイヤ。
  14.  前記サイプの、前記中間ラグ溝の1つとの接続部分におけるサイプ深さは、前記サイプの前記第1周方向細溝との接続部分のサイプ深さより深く、前記中間ラグ溝の最大溝深さよりも浅い、請求項1~13のいずれか1項に記載の空気入りタイヤ。
PCT/JP2019/021218 2018-07-13 2019-05-29 空気入りタイヤ WO2020012808A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019529277A JP7207304B2 (ja) 2018-07-13 2019-05-29 空気入りタイヤ
CN201980045492.7A CN112384378B (zh) 2018-07-13 2019-05-29 充气轮胎
DE112019003576.2T DE112019003576T5 (de) 2018-07-13 2019-05-29 Luftreifen
RU2020140204A RU2752045C1 (ru) 2018-07-13 2019-05-29 Пневматическая шина
US17/260,206 US20210268840A1 (en) 2018-07-13 2019-05-29 Pneumatic Tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018133662 2018-07-13
JP2018-133662 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020012808A1 true WO2020012808A1 (ja) 2020-01-16

Family

ID=69141535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021218 WO2020012808A1 (ja) 2018-07-13 2019-05-29 空気入りタイヤ

Country Status (6)

Country Link
US (1) US20210268840A1 (ja)
JP (1) JP7207304B2 (ja)
CN (1) CN112384378B (ja)
DE (1) DE112019003576T5 (ja)
RU (1) RU2752045C1 (ja)
WO (1) WO2020012808A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230061615A1 (en) * 2020-03-05 2023-03-02 The Yokohama Rubber Co., Ltd. Tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003285610A (ja) * 2002-03-28 2003-10-07 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2015500166A (ja) * 2011-12-08 2015-01-05 コンパニー ゼネラール デ エタブリッスマン ミシュラン 可変面取り部付きトレッド
JP2017196974A (ja) * 2016-04-26 2017-11-02 横浜ゴム株式会社 空気入りタイヤ
JP2018012372A (ja) * 2016-07-19 2018-01-25 横浜ゴム株式会社 空気入りタイヤ

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4424272A1 (de) * 1994-07-09 1996-01-11 Continental Ag Symmetrische Laufflächenprofilierung für PKW-Reifen
USD394034S (en) * 1997-04-29 1998-05-05 The Goodyear Tire & Rubber Company Tire tread
JP4544717B2 (ja) * 2000-08-25 2010-09-15 住友ゴム工業株式会社 空気入りタイヤ
JP2003127618A (ja) * 2001-10-19 2003-05-08 Sumitomo Rubber Ind Ltd 空気入りタイヤ
KR100455758B1 (ko) * 2002-09-27 2004-11-06 한국타이어 주식회사 개선된 드라이 제동 성능을 갖는 공기입 타이어
JP4202097B2 (ja) * 2002-11-20 2008-12-24 株式会社ブリヂストン 空気入りタイヤ
JP4392339B2 (ja) * 2004-12-24 2009-12-24 住友ゴム工業株式会社 空気入りタイヤ
JP4214159B2 (ja) * 2006-06-29 2009-01-28 住友ゴム工業株式会社 空気入りタイヤ
JP5282479B2 (ja) * 2008-08-18 2013-09-04 横浜ゴム株式会社 空気入りタイヤ
JP2010126076A (ja) * 2008-11-28 2010-06-10 Bridgestone Corp タイヤ
JP4755709B2 (ja) * 2009-08-03 2011-08-24 住友ゴム工業株式会社 空気入りタイヤ
JP5108924B2 (ja) * 2010-10-07 2012-12-26 住友ゴム工業株式会社 空気入りタイヤ
KR101586264B1 (ko) * 2012-06-27 2016-01-18 요코하마 고무 가부시키가이샤 공기입 타이어
JP5803859B2 (ja) * 2012-09-06 2015-11-04 横浜ゴム株式会社 空気入りタイヤ
JP5658728B2 (ja) * 2012-11-20 2015-01-28 住友ゴム工業株式会社 空気入りタイヤ
JP5482938B1 (ja) * 2013-05-14 2014-05-07 横浜ゴム株式会社 空気入りタイヤ
JP5834046B2 (ja) * 2013-05-21 2015-12-16 住友ゴム工業株式会社 空気入りタイヤ
US10202007B2 (en) * 2013-07-05 2019-02-12 Sumitomo Rubber Industries, Ltd. Pneumatic tire
CN105358339B (zh) * 2013-07-12 2018-03-02 横滨橡胶株式会社 充气轮胎
JP6231974B2 (ja) * 2014-11-27 2017-11-15 住友ゴム工業株式会社 空気入りタイヤ
JP2016113003A (ja) * 2014-12-15 2016-06-23 横浜ゴム株式会社 空気入りタイヤ
JP2016132358A (ja) * 2015-01-20 2016-07-25 横浜ゴム株式会社 空気入りタイヤ
JP2017024661A (ja) * 2015-07-27 2017-02-02 横浜ゴム株式会社 空気入りタイヤ
JP6424765B2 (ja) * 2015-07-31 2018-11-21 横浜ゴム株式会社 空気入りタイヤ
US11090981B2 (en) * 2015-12-29 2021-08-17 Pirelli Tyre S.P.A. Tyre for vehicle wheels
JP2017190077A (ja) * 2016-04-14 2017-10-19 横浜ゴム株式会社 空気入りタイヤ
JP6665806B2 (ja) * 2017-01-31 2020-03-13 Jfeエンジニアリング株式会社 ジルコニウムの精製方法および精製装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003285610A (ja) * 2002-03-28 2003-10-07 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2015500166A (ja) * 2011-12-08 2015-01-05 コンパニー ゼネラール デ エタブリッスマン ミシュラン 可変面取り部付きトレッド
JP2017196974A (ja) * 2016-04-26 2017-11-02 横浜ゴム株式会社 空気入りタイヤ
JP2018012372A (ja) * 2016-07-19 2018-01-25 横浜ゴム株式会社 空気入りタイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230061615A1 (en) * 2020-03-05 2023-03-02 The Yokohama Rubber Co., Ltd. Tire

Also Published As

Publication number Publication date
DE112019003576T5 (de) 2021-03-25
CN112384378A (zh) 2021-02-19
JP7207304B2 (ja) 2023-01-18
CN112384378B (zh) 2022-04-19
US20210268840A1 (en) 2021-09-02
RU2752045C1 (ru) 2021-07-22
JPWO2020012808A1 (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
JP5146564B2 (ja) 空気入りタイヤ
JP6436080B2 (ja) 空気入りタイヤ
JP6358030B2 (ja) 空気入りタイヤ
WO2013133049A1 (ja) 空気入りタイヤ
JP2016113003A (ja) 空気入りタイヤ
WO2015129139A1 (ja) 空気入りタイヤ
JP2016199168A (ja) 空気入りタイヤ
JP5780318B2 (ja) 空気入りタイヤ
US11724550B2 (en) Pneumatic tire
WO2019098277A1 (ja) 空気入りタイヤ
JP2018024420A (ja) 空気入りタイヤ
JPWO2020066906A1 (ja) 空気入りタイヤ
JPWO2019049765A1 (ja) 空気入りタイヤ
JP6421652B2 (ja) 空気入りタイヤ
WO2020012808A1 (ja) 空気入りタイヤ
JP6619214B2 (ja) 空気入りタイヤ
JP6439416B2 (ja) 空気入りタイヤ
JP2018095185A (ja) 空気入りタイヤ
JP2017210168A (ja) 空気入りタイヤ
JP2013139241A (ja) 空気入りタイヤ
JP5239566B2 (ja) 空気入りタイヤ
JP7205475B2 (ja) 空気入りタイヤ
JP7013765B2 (ja) 空気入りタイヤ
JP2017210169A (ja) 空気入りタイヤ
JP7230809B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019529277

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020140204

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 19834808

Country of ref document: EP

Kind code of ref document: A1