WO2019098277A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2019098277A1
WO2019098277A1 PCT/JP2018/042299 JP2018042299W WO2019098277A1 WO 2019098277 A1 WO2019098277 A1 WO 2019098277A1 JP 2018042299 W JP2018042299 W JP 2018042299W WO 2019098277 A1 WO2019098277 A1 WO 2019098277A1
Authority
WO
WIPO (PCT)
Prior art keywords
sipe
tire
chamfered
extending
edge
Prior art date
Application number
PCT/JP2018/042299
Other languages
English (en)
French (fr)
Inventor
亮一 友松
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2018560697A priority Critical patent/JP6711421B2/ja
Priority to DE112018005596.5T priority patent/DE112018005596T5/de
Priority to CN201880064031.XA priority patent/CN111183048B/zh
Priority to US16/763,961 priority patent/US11685195B2/en
Publication of WO2019098277A1 publication Critical patent/WO2019098277A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • B60C11/1281Width of the sipe different within the same sipe, i.e. enlarged width portion at sipe bottom or along its length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1392Three dimensional block surfaces departing from the enveloping tread contour with chamfered block edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0348Narrow grooves, i.e. having a width of less than 4 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0393Narrow ribs, i.e. having a rib width of less than 8 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C2011/1254Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern with closed sipe, i.e. not extending to a groove

Definitions

  • the present invention relates to a pneumatic tire.
  • a tread pattern in which a plurality of main grooves extending in the circumferential direction of the tire are provided in the tread portion and a plurality of rows of land portions are divided by these main grooves is adopted.
  • good drainage performance is achieved by providing a plurality of lug grooves extending in the tire width direction on each land portion of the tread portion.
  • a pneumatic tire capable of further improving uneven wear resistance while achieving both steering stability on a dry road surface and steering stability on a wet road surface
  • Patent Document 1 a pneumatic tire capable of further improving uneven wear resistance while achieving both steering stability on a dry road surface and steering stability on a wet road surface.
  • the pneumatic tire is provided with a center main groove extending in the circumferential direction of the tire in a zigzag shape along the tire circumferential direction in the tread portion and a shoulder main groove extending in the tire circumferential direction outside the center main groove.
  • the pneumatic tire has a plurality of lug grooves extending inward in the tire width direction from the shoulder main groove to the land portion between the center main groove and the shoulder main groove and terminating without communicating with the center main groove.
  • a bent portion bent toward one side in the tire circumferential direction is formed on the end side of each lug groove.
  • the land portion is formed with a plurality of narrow grooves intermittently extending along the tire circumferential direction without communicating with the bent portion.
  • the narrow groove is disposed substantially parallel to the center main groove having a zigzag shape.
  • the above pneumatic tire can improve the anti-static wear performance while achieving both the steering stability performance on a dry road surface and the steering stability performance on a wet road surface, but it is caused by the lug grooves provided on the land portion Then, the pattern noise is not reduced and the pattern noise is still large. When the lug grooves are not provided on the land, the steering stability on a wet road surface tends to be degraded.
  • this invention aims at providing the pneumatic tire which can improve the steering stability performance in a dry road surface and the steering stability performance in a wet road surface compared with the former, and can control pattern noise.
  • the pneumatic tire includes a tread portion that extends in the circumferential direction of the tire to form an annular shape, and includes a tread pattern.
  • the tread pattern is A continuous land portion which is provided in each of the first and second half tread regions with respect to the tire equator line and which continuously makes a round in the circumferential direction of the tire;
  • An outer circumferential main groove extending continuously in the tire circumferential direction that divides the continuous land portion of each half tread region from the tire width direction outer side;
  • a first sipe extending inward in the tire width direction from each of the outer circumferential main grooves and closing in the middle of the area of the continuous land portion.
  • the first sipe has a sipe main body portion in which a distance between opposing sipe wall surfaces on the bottom of the sipe in the depth direction of the first sipe is constant in the sipe depth direction, and the tread surface of the first sipe And Sipe chamfers that are sloped such that the distance between opposing sipe wall surfaces on the side increases toward the tread surface.
  • the first sipes a on the first side have an edge shape seen from the tread surface extending in a constant extending direction or extending from the outer circumferential main groove on the first side
  • the first extending portion extending inward in the tire width direction is smoothly changed in the existing direction, and the first extending portion is connected to the end in the tire width direction inner side of the first extending portion, and the edge shape is the 1) a bent portion which bends and extends in a direction approaching the circumferential direction of the tire from the extending direction of the 1 extending portion, and any portion of the first extending portion and the bent portion of the first sipes a
  • the sipe main body portion and the sipe chamfered portion are provided.
  • the first sipes b on the second side have an edge shape seen from the tread surface extending in a constant extending direction or from the outer circumferential main groove on the second side
  • the second sipe b has a second extension portion extending inward in the tire width direction while changing the direction smoothly, and the first sipe b uses the end of the second extension portion as the closed end of the first sipe b.
  • the edge shape of the bent portion viewed from the tread surface is an arrow shape in which the tip of the arrow is directed in the extending direction at the end in the tire width direction of the first extending portion,
  • the arrow shape is A region on one side of the sipe width direction with respect to a virtual arrow direction facing the tip from the center position of the first sipe a in the sipe width direction in the connection portion where the first extension portion is connected to the bent portion
  • the first edge extends from the edge of the connecting portion directly or through a curve or a straight line.
  • the end of the first edge and the end of the second edge are connected directly or via a curve or a straight line.
  • the inclination angles of the chamfers in the opposing chamfered surfaces of the sipe chamfers in the extension portion are the same as each other, It is preferable that the inclination angles of the chamfers are different from each other in a part of the chamfered surfaces facing each other of the sipe chamfered portion in the bent portion.
  • the sipe body extends toward the tip of the arrow shape
  • the chamfered surface of the sipe chamfered portion on the side of the first edge and the second edge with respect to the imaginary line in the arrow direction in the bent portion extends from the chamfered surface in the first extending portion and extends A flat surface passing through the first edge located on the tread surface, having a first chamfered surface and a chamfering inclination angle different from the first chamfered surface, and forming a ridge line with the first chamfered surface And a second chamfered surface
  • the chamfered surface of the sipe chamfered portion on the third edge side with respect to the arrow direction imaginary line in the bent portion is a surface where the chamfered surface in the first extension portion is extended and extended. Is preferred.
  • the ridgeline passes through a position where the sipe wall surface of the sipe body and the first chamfered surface are connected at the tip.
  • the chamfering width of the first chamfered surface and the chamfering width of the second chamfered surface become narrower toward the tip.
  • the bent portion is provided with a tip wall surface of a flat surface passing through the second edge and connected to the second chamfered surface, and the wall surface is inclined in the tire radial direction compared to the slope of the chamfered surface of the sipe chamfered portion Preferably, it extends in the sipe depth direction at a tilt angle. At this time, it is preferable that the tip end wall passes through a position where the sipe wall surface of the sipe main body and the first chamfered surface are connected.
  • the closed end portion of the first sipe b extends in the sipe depth direction at an inclination angle directed in the tire radial direction compared to the inclination of the chamfered surface of the sipe chamfered portion, the sipe chamfer of the first sipe b It is preferable that the flat wall surface connected with the said chamfering surface in a part is provided.
  • the tread pattern includes two inner circumferential main grooves continuously extending in a tire circumferential direction that divides the intermediate continuous land portion from the tire width direction inner side, No lug grooves are provided in the area of the center continuous land portion and the intermediate continuous land portion defined by the two inner circumferential main grooves.
  • a pair of edges of one of the inner circumferential main grooves located on the first side has a chamfering width in the tire circumferential direction so as to form a zigzag shape as viewed from the tread surface of the tread portion. It is preferable to provide the groove chamfer which changes by.
  • narrow grooves not communicating with the bent portion are intermittently provided in the tire circumferential direction, and the narrow grooves extend It is preferable that the direction is parallel to the extending direction of the edge of the center continuous land portion side of the bending portion.
  • the area of the intermediate continuous land portion ⁇ on the second side of the intermediate continuous land portion extends from the inner circumferential main groove on the second side of the inner circumferential main groove to the outer circumferential direction.
  • a second sipe is provided which closes without communicating with the main groove, In the region of the center continuous land portion, the second inner circumferential main groove of the two inner circumferential main grooves extends toward the other inner circumferential main groove from the other inner circumferential main groove,
  • a third sipe is provided that closes without communicating with the inner circumferential main groove,
  • the direction of inclination of the second sipe and the third sipe with respect to the tire width direction and the position on the tire circumference are set so that the second sipe is located on the extension of the third sipe.
  • the first sipes b provided on the second side and the second sipes are in the direction of the same side (for example, the first side) in the tire width direction as viewed from the tread surface. In contrast, it is preferable that they be inclined to different sides in the tire circumferential direction.
  • the first sipe provided on the first side and the second side is a tire with respect to the direction of the same side (for example, the first side) in the tire width direction as viewed from the tread surface. Preferably, they are inclined on the same side in the circumferential direction.
  • a shoulder land portion is provided on the tire width direction outer side of the outer circumferential main groove on the second side of the outer circumferential main grooves, In the area of the shoulder land portion, there is a circumferential auxiliary groove that makes a round in the tire circumferential direction, and a closure without communicating with the outer circumferential main groove on the second side extending in the tire width direction from the outside in the tire width direction
  • the shoulder lug groove is provided, and the shoulder lug groove intersects the circumferential auxiliary groove.
  • the length in the sipe depth direction of the sipe chamfered portion is 15 to 80% of the length in the sipe depth direction of the sipe main body.
  • the tread pattern has a half tread area in which the groove area ratio is different from each other on both sides in the tire width direction with respect to the tire equator line, and the groove area ratio of the half tread area on the first side among the half tread areas.
  • the groove area ratio of the half tread region on the second side is small.
  • the pneumatic tire has a direction of attachment to the vehicle specified so that the first side is located on the vehicle outer side.
  • steering stability performance on a dry road surface and steering stability performance on a wet road surface can be improved as compared with the prior art, and pattern noise can be suppressed.
  • FIG. 1 is a profile sectional view of a pneumatic tire of one embodiment of the present invention. It is a developed view showing an example of a tread pattern of a pneumatic tire of one embodiment.
  • (A), (b) is a top view which expands and shows an example of a 1st sipe shown in FIG. (A),
  • (b) is sectional drawing of an example of a 1st sipe shown to Fig.3 (a).
  • FIG.3 a perspective view of an example of the 1st sipe when a 1st sipe shown in Drawing 3 (a) is cut along a sipe center line.
  • FIG. 3 a perspective view which expands and shows the principal part of the tread pattern shown in FIG.
  • the tire width direction refers to the rotation center axis direction of the pneumatic tire
  • the tire circumferential direction refers to the rotation direction of the tread surface that is obtained when the tire is rotated about the tire rotation center axis.
  • the tire radial direction refers to a direction directed radially from the tire rotation center axis.
  • the tire radial direction outer side means the side away from the tire rotation center axis
  • the tire radial direction inner side means the side approaching the tire rotation center axis.
  • the tire width direction outer side refers to the side away from the tire equator line in the tire width direction
  • the tire width direction inner side refers to the side approaching the tire equator line in the tire width direction.
  • FIG. 1 is a profile cross-sectional view of a pneumatic tire according to an embodiment.
  • the pneumatic tire T shown in FIG. 1 includes a tread portion 1 extending in the circumferential direction of the tire to form an annular shape, a pair of sidewall portions 2 and 2 disposed on both sides of the tread portion 1, and the sidewall portions 2. And a pair of bead portions 3, 3 disposed on the inner side in the tire radial direction.
  • a carcass layer 4 is mounted between the pair of bead portions 3 and 3.
  • the carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded from the inside to the outside around the bead cores 5 disposed in each bead portion 3.
  • a bead filler 6 consisting of a rubber composition having a triangular cross section extending outward in the tire radial direction is disposed.
  • a plurality of belt layers 7 are embedded in the tire radial direction outer side of the carcass layer 4 in the tread portion 1.
  • the belt layers 7 include a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are disposed so as to cross each other between the layers.
  • the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set, for example, in the range of 10 ° to 40 °.
  • a steel cord is preferably used as a reinforcing cord of the belt layer 7. At least one layer (two layers in FIG.
  • a belt cover layer 8 is disposed.
  • a reinforcing cord of the belt cover layer 8 an organic fiber cord such as nylon or aramid is preferably used.
  • the tire internal structure mentioned above shows the typical example in a pneumatic tire, it is not limited to this.
  • FIG. 2 is a developed view showing an example of the tread pattern 10 of the pneumatic tire T according to one embodiment.
  • the pneumatic tire T having the tread pattern 10 can be suitably used for a passenger car tire.
  • symbol CL shows a tire equator line (center line).
  • the tread pattern 10 mainly includes center main grooves 11 and 12, shoulder main grooves 13 and 14, center continuous land portions 21, intermediate continuous land portions 22 and 23, and first sipes 30 and 31.
  • the groove area ratio of the half tread region on the first side in the tire width direction among the half tread regions on both sides in the tire width direction with respect to the tire equatorial line (center line) CL of the tread pattern 10 Is preferably smaller than the groove area ratio of the half tread area on the second side opposite to the first side. That is, it is preferable that the groove area ratio of the tread pattern 10 be different between the first half tread area and the second half tread area.
  • the center main grooves 11 and 12 are provided on both sides in the tire width direction with respect to the tire equator line (center line) CL, and make one turn around the tread portion 1 in the tire circumferential direction.
  • the center main groove 12 is provided on the first side, and the center main groove 11 is provided on the second side. Edges on both sides of the center main groove 12 are provided with groove chamfers 12A and 12B whose chamfering width changes in the tire circumferential direction so as to form a zigzag shape when viewed from the tread surface of the tread portion 1.
  • the chamfer width gradually increases as one of the groove chamfers 12A and 12B proceeds to one side in the tire circumferential direction and ends at a predetermined width, and the end position thereof At substantially the same position, further groove chamfers 12A and 12B start, and the chamfer width gradually increases from zero chamfer width and ends at a predetermined width.
  • the groove chamfered portions 12A and 12B repeat this and make one round of the center main groove 12 along the tire circumferential direction.
  • the chamfer width for starting chamfering is zero at one edge of the groove of the center main groove 12, and at the other edge, chamfering in the tire circumferential direction is completed and the chamfer width is Since it becomes zero, the center main groove 12 looks like a zigzag when viewed from the tread surface.
  • the groove width of the center main groove 12 is maintained constant to make one round of the center main groove 12.
  • the dimension (the length along the tire width direction) of the edge in the tire width direction at the position where one groove chamfer 12A, 12B ends and another groove chamfer 12A, 12B starts in this zigzag shape is For example, 15 to 35% of the groove width of the center main groove 12.
  • the chamfered part provided in the center main groove 12 is not provided in the center main groove 11, and the edges on both sides of the center main groove 11 extend linearly in the tire circumferential direction and make one round of the tire.
  • the shoulder main grooves 13 and 14 are provided so as to sandwich the center main grooves 11 and 12 inward in the tire width direction, extend straight without bending or curving in the tire circumferential direction, and go around the tread portion 1.
  • the groove width of the center main grooves 11, 12 and the shoulder main grooves 13, 14 is, for example, 5.0 to 15.0 mm, and the groove depth is 6.5 to 9.0 mm.
  • the center continuous land portion 21 is formed so as to be sandwiched by the center main grooves 11 and 12 and continuously makes a round in the tire circumferential direction.
  • a tire equator line (center line) CL passes on the center continuous land portion 21.
  • the middle continuous land portion 22 is formed so as to be sandwiched between the center main groove 11 and the shoulder main groove 13, and the tread portion 1 is continuous in the tire circumferential direction on the outer side (second side) of the center continuous land portion 21 in the tire width direction. Then go around.
  • the intermediate continuous land portion 23 is also formed so as to be sandwiched between the center main groove 12 and the shoulder main groove 14, and the tread portion 1 is continuous in the tire circumferential direction on the outer side (first side) of the center continuous land portion 21 in the tire width direction.
  • No lug groove is provided at all in the area of the center continuous land portion 21 and the middle continuous land portions 22 and 23, and only the sipes are provided.
  • the extending direction of the lug groove is a groove closer to the tire width direction than the tire circumferential direction, and the lug groove is distinguished from the sipes in size.
  • the first sipe 30 is provided in the region of the intermediate continuous land portion 23, extends inward in the tire width direction from the shoulder main groove 14, and closes in the region of the intermediate continuous land portion 23 without being connected to the center main groove 12 .
  • the first sipe 31 is provided in the region of the intermediate continuous land portion 22, extends inward in the tire width direction from the shoulder main groove 13, and closes in the region of the intermediate continuous land portion 22 without being connected to the center main groove 11 .
  • Shoulder land portions 24 and 25 are provided on the tire width direction outer side of the shoulder main grooves 13 and 14. In each region of the shoulder lands 24 and 25, the shoulder lands 24 and 25 extend from the tread pattern end on both sides in the tire width direction toward the inside in the tire width direction and are not connected to the shoulder main grooves 13 and 14.
  • a plurality of shoulder lug grooves 35 and 36 are provided at predetermined intervals in the circumferential direction of the tire closed in the region.
  • Shoulder sipes 37 and 38 are provided between the shoulder lug grooves 35 and 36 adjacent in the tire circumferential direction.
  • the shoulder sipes 37 and 38 are provided parallel to the shoulder lug grooves 35 and 36 from the area of the shoulder lands 24 and 25 inward in the tire width direction, and are connected to the shoulder main grooves 13 and 14.
  • the tread pattern 10 continuously extends in the circumferential direction of the tire, which divides the intermediate continuous lands 22 and 23 (continuous lands) and the intermediate continuous lands 22 and 23 of the half tread regions from the outer side in the tire width direction.
  • the first sipes 30 (the first sipes 30 (the first continuous sipes 30) extend inward in the tire width direction from the extending shoulder main grooves 13 and 14 (outer circumferential direction main grooves) and the shoulder main grooves 13 and 14 respectively.
  • a first sipe 31 (first sipe b).
  • the first sipes 30, 31 extend from the shoulder main grooves 13, 14 toward the center continuous land portion 21 so as to be inclined in the tire width direction, as shown in FIG. It is provided to close in the area of 23.
  • FIGS. 3A and 3B are plan views showing an example of the first sipes 30 and 31 in an enlarged manner.
  • FIGS. 4A and 4B are cross-sectional views of an example of the first sipes 30 and 31 shown in FIG.
  • FIG. 5 is a perspective view of an example when the first sipe 30 shown in FIG. 3A is cut along the sipe center 45 (see FIG. 3A).
  • FIG. 6 is a plan view showing the main part of the tread pattern 10 in an enlarged manner.
  • the first sipe 30, 31 is a sipe body 40 (see FIG. 4A) in which the distance between the sipe wall surfaces is constant in the sipe depth direction on the sipe bottom side in the depth direction of the first sipe 30, 31;
  • the sipe chamfered part 42 (refer Fig.4 (a)) inclined so that the distance between sipe wall surfaces may become large as heading to a tread surface in the side of the tread surface of 1st sipe 30 and 31 is provided. That is, the first sipes 30 and 31 are so-called chamfered sipes.
  • the first sipe 30 (first sipe a) on the first side has an extending portion 44 and a bending portion 46, as shown in FIG. 3A, with respect to the edge shape viewed from the tread surface.
  • the extending portion 44 has the above-described edge shape in a constant extending direction or smoothly changing the extending direction from the shoulder main groove 14 (outside circumferential main groove) (curved) inward in the tire width direction It is an extending part.
  • the bending portion 46 is provided by being connected to the end in the tire width direction of the extending portion 44, and the edge shape is bent and extended in a direction approaching the tire circumferential direction from the extending direction of the extending portion 44 It is.
  • a sipe main body 40 and a sipe chamfered portion 42 are provided in any of the extension portion 44 and the bending portion 46 of the first sipe 30.
  • the bend 46 is preferably formed so that the edge shape of the first sipe 30 (first sipe a) is a shape that is bent at right angles or acute angles. Further, when the extending portion 44 extends on one side in the tire circumferential direction, according to one embodiment, the edge shape is bent in the direction opposite to the one side of the extending portion 44 in the tire circumferential direction. It is preferable to provide a bend 46 that extends.
  • the first sipe 31 (first sipe b) on the second side changes the extension direction smoothly from the shoulder main groove 13 (outer circumferential direction main groove) in a certain extending direction or
  • the curved portion has an extending portion in the same form as the extending portion 44 extending inward in the tire width direction, and the end of the extending portion is a closed end of the first sipe 31.
  • the first sipe 31 is not provided with a bending portion such as the bending portion 46, and the first sipe 31 extends from the shoulder main groove 13 in a constant or smooth changing direction and extends to the center main groove 11. It is closed in the area of the middle continuous land 22 without being connected.
  • the sipe main body 40 and the sipe chamfered portion 42 extend to the closed end in the same cross-sectional shape as the extending portion 44.
  • the inclination angle with respect to the sipe depth direction of the chamfered surfaces 42A and 42B (see FIG. 4A) in the sipe chamfered portion 42 does not change, and a constant angle is maintained.
  • the depth of the first sipe 30, 31 is, for example, 5.5 to 8.5 mm.
  • the first sipes 30, 31 are shallower than the groove depths of the center main grooves 11, 12 and the shoulder main grooves 13, 14, and the distance between the sipe wall surfaces in the sipe body 40 is, for example, 0.3 to 0.9 mm. It is.
  • the distance between the sipe wall surfaces of the sipe is 0.3 to 0.9 mm when the sipe wall surfaces are parallel to each other. This distance is narrower than the groove width of the main grooves such as the center main grooves 11, 12 and the shoulder main grooves 13, 14.
  • the sipe and the groove can be distinguished by the difference between the distance between parallel sipe wall surfaces and the dimension of the groove width.
  • the groove widths of the center main grooves 11, 12 and the shoulder main grooves 13, 14 or the known lug grooves are greater than 0.9 mm.
  • the width of the chamfered surface of the sipe chamfered portion 42 in the extension portion 44 is, for example, 0.6 to 2.0 mm.
  • the first sipes 30, 31 are provided in the region of the intermediate continuous land portions 22, 23. Since both of the first sipes 30, 31 are closed in the region of the intermediate continuous land portions 22, 23, The reduction in tread stiffness of the intermediate continuous land portions 22 and 23 is suppressed as compared with the case where the lug grooves are provided on the intermediate continuous land portions 22 and 23, and the steering stability on a dry road surface is improved. Furthermore, since there is no lug groove in the area of the center land portion 21 and a decrease in tread stiffness is suppressed, steering performance at the initial stage of steering on a dry road surface is also improved.
  • the first sipe 30, 31 provided on the intermediate continuous land portions 22, 23 is a chamfered sipe, water easily flows in the sipe chamfered portion 42, and a part of the chamfered sipe portion 42 functions as an edge. Therefore, the steering stability performance on a wet road surface is improved. Further, since the first sipe 30, 31 provided in the region of the intermediate continuous land portions 22, 23 is a chamfered sipe, the pattern noise is compared to the case where the lug groove is provided while maintaining the steering stability on the wet road surface. Can be reduced.
  • the first sipes 30 provided in the first half tread area have a bending area 46 in the groove area ratio Can compensate for the lack of steering stability performance on wet road surfaces due to low As a result, the steering stability on a dry road surface and the steering stability on a wet road surface can be improved as compared with the prior art, and pattern noise can be suppressed.
  • the inclination angle ⁇ (see FIGS. 4A and 4B) of the chamfered surfaces 42A and 42B of the first sipe 30 and 31 with respect to the sipe depth direction is, for example, It is preferably 20 to 80 degrees.
  • the length in the sipe depth direction of the sipe chamfered portion 42 is constant regardless of the position in the extension direction of the first sipe 30, 31. Therefore, in the first sipe 30, 31, the position in the sipe depth direction of the connection position between the sipe chamfered portion 42 and the sipe main body 40 is constant regardless of the position in the extending direction of the first sipe 30, 31. Is preferred.
  • the length in the sipe depth direction of the sipe chamfered portion 42 is preferably 15 to 80% of the length in the sipe depth direction of the sipe main body 40.
  • the length in the sipe depth direction of the sipe chamfered portion 42 is less than 15% of the length in the sipe depth direction of the sipe body 40, the improvement in steering stability performance on a wet road surface is small, and in the case of more than 80% The tread stiffness is reduced, and the improvement in steering stability performance on a dry road surface is reduced.
  • the edge shape of the bending portion 46 viewed from the tread surface in the first sipe 30 is an arrow shape in which the tip of the arrow is directed in the extending direction at the inner end of the extending portion 44 in the tire width direction. It is. Specifically, as shown in FIG. 3A, this arrow shape is an arrow directed from the central position in the sipe width direction of the connecting portion where the extension portion 44 is connected to the bending portion 46 to the tip of the arrow shaped arrow A first edge of a region on one side of the sipe width direction (a region on the upper left side in FIG. 3A) with respect to the direction imaginary line (a line passing through the sipe center 45 shown in FIG. 3A).
  • the third edge 42H is provided in the lower right side region.
  • the first edge 42F, the second edge 42G, and the third edge 42H have a linear shape.
  • the first edge 42F extends obliquely to the arrow direction imaginary line in a region on one side in the sipe width direction (upper left side in FIG. 3A with respect to the arrow direction imaginary line).
  • the second edge 42G extends obliquely to the imaginary line in the arrow direction, but has a smaller inclination to the imaginary line in the arrow direction than the first edge 42F, and extends toward the tip.
  • the first edge 42F extends directly from the edge of the connecting portion where the extending portion 44 connects with the bending portion 46.
  • the first edge 42F may extend from the edge of the connecting portion where the extension 44 connects with the bending portion 46 via a short curve or a straight line.
  • the length of the intervening part is less than or equal to a quarter of the length of the first edge 42F.
  • the end of the first edge 42F and the end of the second edge 42G are connected via a short curve, but such an intervening portion is a curve It may be a straight line instead.
  • the end of the first edge 42F and the end of the second edge 42G may be directly connected.
  • the end of the first edge 42F and the end of the second edge 42G can be connected directly or via a curve or a straight line. If there is an intervening portion between the end of the first edge 42F and the end of the second edge 42G, the perimeter of the intervening portion is the length of the first edge 42F or the second edge 42G. It is preferable that the length of the longer one is not more than one fourth.
  • the third edge 42 H extends toward the tip so as to extend from the edge of the extension 44.
  • Such a shape of the bending portion 46 increases the area of the sipe chamfered portion 42, the edge of the bending portion 46 increases, the edge effect is enhanced, and the steering stability on a wet road surface is improved.
  • the inclination angles of the chamfered surfaces are the same.
  • the inclination angles of the chamfered surfaces of the sipe chamfered portion 42 in the bending portion 46 are different from each other in parts of the chamfered surfaces facing each other.
  • the inclination angle of the chamfered surface 42A and the inclination angle of the chamfered surface 42B in the bending portion 46 are the same as shown in FIG. 4B, the inclination angle ⁇ of the chamfered surface 42C shown in FIG. , And the inclination angle of the chamfered surface 42B.
  • the space volume of the sipe chamfered portion 42 can be adjusted (increased) in accordance with the edge shape of the bent portion 46. Therefore, the action of drainage in the bending portion 46 can be enhanced, and the steering stability on a wet road surface is improved.
  • the sipe body 40 extends towards the arrow-shaped tip, as shown in FIG.
  • the sipe chamfered portion 42 on the side having the first edge 42F and the second edge 42G in the bending portion 46 includes a chamfered surface 42A (first chamfered surface) and a chamfered surface 42C (second chamfered surface).
  • the chamfered surface 42 ⁇ / b> A is a chamfered surface extending and extending from the chamfered surface 42 ⁇ / b> A in the extension portion 44.
  • the chamfered surface 42C (second chamfered surface) has a chamfering inclination angle ⁇ different from that of the chamfered surface 42A, and connects the chamfered surface 42A and the ridgeline 42E to form a first edge 42F located on the tread surface. It is a passing plane.
  • the chamfered surface 42B on the side of the third edge 42H with respect to the imaginary line in the arrow direction in the bending portion 46 is a surface (flat surface) in which the chamfered surface 42B in the extension portion 44 extends and extends.
  • the chamfered surface 42C is an inclined surface connected to the tread surface at the first edge 42F, the tread rigidity of the area of the land portion near the first edge 42F can be maintained high. Therefore, the steering stability on a dry road surface can be improved.
  • a ridgeline 42E which is a connection portion between the chamfered surface 42A and the chamfered surface 42C, passes through a position where the sipe wall surface of the sipe main body 40 and the chamfered surface 42A are connected at the tip.
  • the chamfered surface 42C is an inclined surface and extends to the connecting portion at the tip of the chamfered surface 42A and the chamfered surface 42C, a space for drainage can be secured in the sipe chamfered portion 42. As a result, steering stability on a wet road surface is improved.
  • the chamfered width of the chamfered surface 42A and the chamfered width of the chamfered surface 42C can be narrowed toward the tip according to the arrow shape, and the effect of the chamfered sipe is directed to the tip Can be made smaller and smaller.
  • the bending portion 46 includes a flat front end wall surface 42D that passes through the second edge 42G and is connected to the chamfered surface 42C.
  • the tip wall surface 42D extends in the sipe depth direction at an inclination angle directed in the tire radial direction compared to the inclinations of the chamfered surface 42A and the chamfered surface 42C of the sipe chamfered portion 42.
  • the inclination angle of the tip end wall 42D with respect to the tread surface is, for example, 80 to 110 degrees, and 85 to 95 degrees. That is, the end wall surface 42D extends substantially in parallel to the tire radial direction. Further, according to one embodiment, as shown in FIG. 5, the end wall surface 42D preferably passes through the position where the sipe wall surface of the sipe main body 40 and the chamfered surface 42A (first chamfered surface) are connected.
  • the closed end of the first sipe 31 comprises a wall surface 42I (see FIG. 3 (b)).
  • the wall surface 42I is a wall surface extending in the sipe depth direction at an inclination angle which is inclined in the tire radial direction compared to the inclination of the chamfered surfaces 42A and 42B of the sipe chamfered portion 42.
  • the wall surface 42I is connected to the chamfered surface 42A of the first sipe 31.
  • the first sipe 31 without the bending portion 46 is configured to be closed by the wall surface 42I.
  • the wall surface 42I may be provided in an asymmetrical shape inclined in one direction with respect to the center of the sipe like a sword shape as shown in FIG. 3 (b).
  • the inclination angle of the wall surface 42I to the tread surface is, for example, 80 to 110 degrees, and 85 to 95 degrees. That is, the wall surface 42I extends substantially in parallel to the tire radial direction.
  • the steering stability performance on the wet road surface in the first half tread area is It is easy to run short compared with the half tread area on the 2 side.
  • This shortage can be compensated by the edge effect due to the zigzag shape of the center main groove 12 and the edge effect and drainage property due to the bent portion 46 of the first sipe 30.
  • no lug grooves are provided in the areas of the center continuous land portion 21 and the middle continuous land portions 22 and 23, the tread stiffness of the center continuous land portion 21 and the middle continuous land portions 22 and 23 does not decrease, and Pattern noise is reduced.
  • narrow grooves 60 not communicating with the bent portion 46 are intermittent in the tire circumferential direction.
  • the extending direction of the narrow groove 60 is parallel to the extending direction of the second edge 42G on the center continuous land portion 21 side of the bending portion 46.
  • the edge effect is increased because the edge of the second edge 42G and the edge of the narrow groove 60 can be made parallel to one another to align the edge components. For this reason, steering stability performance on a wet road surface can be improved.
  • the mounting direction of the pneumatic tire T is specified such that the first side is located on the vehicle outer side.
  • the designation of the mounting direction is attached as information by characters, symbols or the like provided on the sidewall surface of the pneumatic tire T.
  • the intermediate continuous land portion 22 in the region of the intermediate continuous land portion 22 (intermediate continuous land portion ⁇ ) on the second side, it extends from the center main groove 11 (inner circumferential main groove) and communicates with the outer circumferential main groove
  • a second sipe 32 is provided which is closed without taking place.
  • the center main groove 12 extends from the center main groove 11 (inner circumferential main groove) in contact with the middle continuous land portion 22 on the second side toward the center main groove 12.
  • a third sipe 33 is provided which is closed without communicating with 12.
  • the direction of inclination of the second sipe 32 and the third sipe 33 with respect to the tire width direction and the position on the tire circumference are set so that the second sipe 32 is located on the extension of the third sipe 33 Is preferred.
  • the second sipe 32 and the third sipe 33 act like one sipe and the edge effect is concentrated, the braking / driving performance on a wet road surface can be improved.
  • the second sipe 32 and the third sipe 33 are sipes having a configuration in which the distance between the opposing sipe wall surfaces is constant at any position in the sipe depth direction, and the sipe wall surfaces are parallel to each other.
  • the first sipe 31 (first sipe b) provided in the region of the intermediate continuous land portion 31 and the second sipe 32 are in the same direction in the tire width direction, for example, in the direction of the first side, viewed from the tread surface. In contrast, they are inclined to different sides in the tire circumferential direction. That is, the first sipe 31 and the second sipe 32 have a C shape. As a result, even if the pneumatic tire T has a positive slip angle or a negative slip angle, steering stability and braking / driving performance on a wet road surface can be effectively exhibited.
  • the first sipes 30, 31 are inclined to the same side in the tire width direction, for example, the same side in the tire circumferential direction with respect to the first side, as viewed from the tread surface.
  • the first sipes 30, 31 extend from the lower left to the upper right, or from the upper right to the lower left on the paper surface.
  • the inclination angle with respect to the tire circumferential direction in the extension direction of the extension portion 44 of the first sipes 30 and 31 is preferably 25 to 75 degrees.
  • the tread stiffness of the intermediate continuous land portion 23 locally decreases near the connection portion where the first sipe 30, 31 connects with the shoulder main grooves 13, 14, and steering stability on a dry road surface The performance is apt to decrease and to become a core of the occurrence of uneven wear. If the inclination angle is greater than 75 degrees, the tread rigidity of the intermediate continuous land portion 23 in the tire circumferential direction is reduced, and the steering stability on a dry road surface tends to be reduced.
  • a circumferential auxiliary groove 39 and a shoulder lug groove 36 are provided, which make a round in the tire circumferential direction.
  • the shoulder lug groove 36 extends in the tire width direction from the outside in the tire width direction and closes without communicating with the shoulder main groove 13.
  • the shoulder lug groove 36 preferably intersects the circumferential auxiliary groove 39.
  • the circumferential auxiliary groove 39 suppresses the tread rigidity of the shoulder land portion 24 from becoming too high, and adjusts the contact area of the shoulder land portion 24.
  • the contact pressure can be reduced by increasing the contact area of the tire by the effect of the camber (negative camber). Can reduce wear.
  • the groove width of the circumferential auxiliary groove 39 is, for example, 0.8 to 3.0 mm, and the groove depth is 1.0 to 4. It is mm.
  • pneumatic tires provided with various tread patterns were produced by trial and the performance was evaluated.
  • the tire size of the prototyped pneumatic tire was 225 / 50R17 98W.
  • the prototyped pneumatic tire was mounted on a rim (rim size 17 ⁇ 7.5 J) and mounted on a test vehicle (four-wheel drive vehicle with a displacement of 2400 cc) under conditions of an air pressure of 230 kPa.
  • the test vehicle was run on a test road surface, and the steering stability performance on a dry road surface and the steering stability performance on a wet road surface were evaluated, and the magnitude of pattern noise was evaluated.
  • the driver's steering was performed on the dry road surface, and the response to the steering was evaluated by sensory evaluation, and the conventional example was indexed as an index 100. The higher the index, the higher the performance.
  • the traveling time when traveling on a predetermined range of the wet road surface on which the rainy weather conditions were reproduced was measured, and the reciprocal was indexed. The reciprocal of the measured travel time of the conventional example was taken as the index 100. Therefore, the higher the index, the higher the performance.
  • pattern noise a sensory evaluation of the magnitude of pattern noise heard by the driver when the vehicle was run at a predetermined speed condition was performed. For evaluation, the conventional example was indexed as an index of 100. The higher the index, the lower the pattern noise.
  • the pneumatic tire T manufactured as an experiment had a tire structure shown in FIG.
  • the tread pattern of the pneumatic tire of the conventional example there is no first sipe 30, 31 and it is a lug groove.
  • the groove width of the lug groove was 4.6 mm.
  • the distance in the sipe main-body part 40 in each Example and comparative example 1, 2 which are demonstrated below was mutually made the same.
  • the sipe depth of the first sipe 30, 31 is 5.7 mm
  • the distance between the sipe wall surfaces in the sipe body 40 is 0.6 mm
  • the inclination angle ⁇ of the chamfered surfaces 42A, 42B in Comparative Example 2 and each example is The inclination angle ⁇ of the chamfered surface 42C was 45 degrees.
  • the maximum distance between the opposing sipe wall surfaces in the sipe chamfered portion 42 is 5.5 mm.
  • the “L-shape” in the first sipe shape of the first embodiment means a shape obtained by bending the shape of the extension portion 44 by 90 degrees. By making it "L-shaped", the extending direction after bending was closer to the circumferential direction of the tire than the extending direction before bending. Tables 1 to 3 show the specifications and the evaluation results.
  • the steering stability on a wet road surface can be achieved by setting the length in the sipe depth direction of the sipe chamfered portion 42 to 15 to 80% of the length in the sipe depth direction of the sipe body 40 Is more effectively improved.
  • the present invention is not limited to the above-mentioned embodiment, of course in the range which does not deviate from the main point of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

空気入りタイヤのトレッドパターンは、第1の側及び第2の側の各半トレッド領域に設けられた連続陸部と、外側周方向主溝と、前記外側周方向主溝それぞれから、タイヤ幅方向内側に延びて、前記連続陸部の領域の途中で閉塞する、面取りサイプの構成の第1サイプと、を備える。前記第1の側の第1サイプaの縁形状は、延在方向が一定でタイヤ幅方向内側に延びる第1延在部と、前記第1延在部の端部に接続して設けられ、前記縁形状が、前記第1延在部の延在方向からタイヤ周方向に近づく方向に屈曲して延びる屈曲部と、を有し、前記第1サイプaの前記第1延在部及び前記屈曲部のいずれの部分にも、前記サイプ本体部と前記サイプ面取り部が設けられる。前記第2の側の第1サイプbの縁形状は、第1サイプaと同じ形態の第2延在部を有し、前記第1サイプbは、前記第2延在部の端部を閉塞端部として有する。

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関する。
 空気入りタイヤにおいて、トレッド部にタイヤ周方向に延びる複数本の主溝を設け、これらの主溝により複数列の陸部を区画したトレッドパターンが採用されている。このような空気入りタイヤにおいて、トレッド部の各陸部にタイヤ幅方向に延びる複数本のラグ溝を設けることにより良好な排水性能が達成される。
 しかしながら、トレッド部におけるラグ溝の本数を増加させた場合、トレッド部の剛性(トレッド剛性)が低下し、ドライ路面における操縦安定性能が低下することになる。逆に、トレッド部におけるラグ溝の本数を減少させた場合、排水性能が低下し、ウェット路面における操縦安定性が低下する。このようにドライ路面における操縦安定性とウェット路面における操縦安定性とは二律背反関係にある。また、ラグ溝を設けることにより、パターンノイズは増大する。
 例えば、ドライ路面における操縦安定性とウェット路面における操縦安定性とを両立しつつ、更に耐偏摩耗性を向上することを可能にした空気入りタイヤが知られている(特許文献1)。
 当該空気入りタイヤは、トレッド部にタイヤ周方向に沿ってジグザグ形状を成してタイヤ周方向に延びるセンター主溝とセンター主溝の外側でタイヤ周方向に延びるショルダー主溝を備える。さらに、空気入りタイヤは、センター主溝とショルダー主溝との間の陸部にショルダー主溝からタイヤ幅方向内側に向かって延びてセンター主溝に連通することなく終端する複数本のラグ溝を備える。各ラグ溝の終端側にタイヤ周方向の一方側に向かって屈曲した屈曲部が形成される。この陸部に屈曲部に対して連通することなくタイヤ周方向に沿って間欠的に延在する複数本の細溝が形成されている。この細溝はジグザグ形状を有するセンター主溝に対して実質的に平行に配置される。
特開2017-30556号公報
 上記空気入りタイヤは、ドライ路面における操縦安定性能とウェット路面における操縦安定性能とを両立しつつ、更に耐偏摩耗性能を向上することが可能であるが、陸部に設けられたラグ溝に起因してパターンノイズは低減されずパターンノイズは依然として大きい。ラグ溝が陸部に設けられない場合、ウェット路面における操縦安定性能は低下し易い。
 そこで、本発明は、ドライ路面における操縦安定性能及びウェット路面における操縦安定性能を従来に比べて向上させ、かつパターンノイズを抑制することができる空気入りタイヤを提供することを目的とする。
 本発明の一態様は、空気入りタイヤである。当該空気入りタイヤは、タイヤ周方向に延びて環状を成し、トレッドパターンを備えたトレッド部を備える。
 前記トレッドパターンは、
 タイヤ赤道線に対して第1の側及び第2の側の半トレッド領域それぞれに設けられ、タイヤ周方向に連続して一周する連続陸部と、
 前記半トレッド領域それぞれの前記連続陸部をタイヤ幅方向外側から区画するタイヤ周方向に連続して延びる外側周方向主溝と、
 前記外側周方向主溝それぞれから、タイヤ幅方向内側に延びて、前記連続陸部の領域の途中で閉塞する第1サイプと、を備える。
 前記第1サイプは、前記第1サイプの深さ方向のサイプ底側において対向するサイプ壁面間の距離が前記サイプ深さ方向で一定であるサイプ本体部と、前記第1サイプの前記トレッド表面の側において対向するサイプ壁面間の距離が前記トレッド表面に向かうにつれて大きくなるように傾斜したサイプ面取り部と、を備える。
 前記第1サイプのうち、前記第1の側の第1サイプaは、前記トレッド表面から見た縁形状が、前記第1の側の外側周方向主溝から、一定の延在方向にあるいは延在方向を滑らかに変化させてタイヤ幅方向内側に延びる第1延在部と、前記第1延在部の前記タイヤ幅方向内側の端部に接続して設けられ、前記縁形状が、前記第1延在部の延在方向からタイヤ周方向に近づく方向に屈曲して延びる屈曲部と、を有し、前記第1サイプaの前記第1延在部及び前記屈曲部のいずれの部分にも、前記サイプ本体部と前記サイプ面取り部が設けられる。
 前記第1サイプのうち前記第2の側の第1サイプbは、前記トレッド表面から見た縁形状が、前記第2の側の外側周方向主溝から、一定の延在方向にあるいは延在方向を滑らかに変化させてタイヤ幅方向内側に延びる第2延在部を有し、前記第1サイプbは、前記第2延在部の端部を前記第1のサイプbの閉塞端部として有する。
 前記トレッド表面からみた前記屈曲部の縁形状は、前記第1延在部の前記タイヤ幅方向内側の端部における延在方向に矢の先端が向いた矢印形状であり、
 前記矢印形状は、
 前記第1延在部が前記屈曲部と接続する接続部分における前記第1サイプaのサイプ幅方向の中心位置から前記先端に向く矢印方向仮想線に対して前記サイプ幅方向の一方の側の領域に、前記矢印方向仮想線に対して傾斜して延びる第1の縁と、前記第1の縁に比べて前記矢印方向仮想線に対する傾斜が小さく、前記先端に向かって延びる第2の縁と、を有し、
 前記矢印方向仮想線に対して前記サイプ幅方向の他方の側の領域に、前記第1延在部の縁から延長するように前記先端に向かって延びる第3の縁と、を有する、ことが好ましい。
 前記第1の縁は、前記接続部分の縁から、直接、あるいは曲線又は直線を介在して、延びている、ことが好ましい。
 また、前記第1の縁の端と前記第2の縁の端は、直接、あるいは曲線又は直線を介在して接続している、ことが好ましい。
 前記延在部における前記サイプ面取り部の、互いに対向する面取り面における面取りの傾斜角度は互いに同じであり、
 前記屈曲部における前記サイプ面取り部の、互いに対向する面取り面における一部では、面取りの傾斜角度が互いに異なる、ことが好ましい。
 前記第1の側の第1サイプaにおいて、前記サイプ本体部は、前記矢印形状の先端に向かって延びており、
 前記屈曲部における、前記矢印方向仮想線に対して前記第1の縁及び前記第2の縁の側の前記サイプ面取り部の面取り面は、前記第1延在部における面取り面から延長して延びた第1面取り面と、前記第1面取り面と異なる面取り傾斜角度を持ち、前記第1面取り面と稜線を形成するように接続し、前記トレッド表面に位置する前記第1の縁部を通る平面である第2面取り面と、を備え、
 前記屈曲部における、前記矢印方向仮想線に対して前記第3の縁の側の前記サイプ面取り部の面取り面は、前記第1延在部における面取り面が延長して延びた面である、ことが好ましい。
 前記稜線は、前記先端において前記サイプ本体部のサイプ壁面と前記第1面取り面とが接続する位置を通る、ことが好ましい。
 前記第1面取り面の面取り幅及び第2面取り面の面取り幅は、前記先端に進むに連れて狭くなる、ことが好ましい。
 前記屈曲部は、前記第2の縁を通り、前記第2面取り面と接続する平面の先端壁面を備え、前記壁面は、前記サイプ面取り部の面取り面の傾斜に比べてタイヤ径方向に傾斜した傾斜角度でサイプ深さ方向に延びる、ことが好ましい。
 このとき、前記先端壁面は、前記サイプ本体部のサイプ壁面と前記第1面取り面とが接続する位置を通る、ことが好ましい。
 前記第1サイプbの前記閉塞端部は、前記サイプ面取り部の面取り面の傾斜に比べてタイヤ径方向に向いた傾斜角度でサイプ深さ方向に延びた、前記第1サイプbの前記サイプ面取り部における前記面取り面と接続した平面の壁面を備える、ことが好ましい。
 前記連続陸部を中間連続陸部というとき、
 前記トレッドパターンは、前記中間連続陸部をタイヤ幅方向内側から区画するタイヤ周方向に連続して延びる2つの内側周方向主溝を備え、
 前記2つの内側周方向主溝で区画されるセンター連続陸部及び前記中間連続陸部の領域にはラグ溝が設けられず、
 前記内側周方向主溝のうち前記第1の側に位置する1つの内側周方向主溝の一対の縁は、前記トレッド部のトレッド表面から見てジグザグ形状をなすように面取り幅がタイヤ周方向で変化する溝面取り部を備える、ことが好ましい。
 前記中間連続陸部のうち、前記第1の側の中間連続陸部αの領域には、前記屈曲部に連通しない細溝が、タイヤ周方向に間欠的に設けられ、前記細溝の延在方向は、前記屈曲部の前記センター連続陸部側の縁の延在方向に平行である、ことが好ましい。
 前記中間連続陸部のうちの前記第2の側の中間連続陸部βの領域には、前記内側周方向主溝のうち前記第2の側の内側周方向主溝から延びて前記外側周方向主溝に連通することなく閉塞する第2サイプが設けられ、
 前記センター連続陸部の領域には、前記2つの内側周方向主溝のうち、前記第2の側の内側周方向主溝から、他の内側周方向主溝に向かって延びて、前記他の内側周方向主溝に連通することなく閉塞する第3サイプが設けられ、
 前記第2サイプが前記第3サイプの延長線上に位置するように、前記第2サイプ及び前記第3サイプのタイヤ幅方向に対する傾斜の向きとタイヤ周上の位置は設定されている、ことが好ましい。
 前記第1サイプのうち、前記第2の側に設けられる第1サイプbと、前記第2サイプは、前記トレッド表面からみて、タイヤ幅方向の同じ側(例えば前記第1の側)の方向に対して、お互いにタイヤ周方向の異なる側に傾斜している、ことが好ましい。
 前記第1の側及び前記第2の側に設けられる前記第1サイプは、前記トレッド表面からみて、お互いに、前記タイヤ幅方向の同じ側(例えば前記第1の側)の方向に対してタイヤ周方向の同じ側に傾斜している、ことが好ましい。
 前記外側周方向主溝のうち前記第2の側の外側周方向主溝のタイヤ幅方向外側には、ショルダー陸部が設けられ、
 前記ショルダー陸部の領域には、タイヤ周方向に一周する周方向補助溝と、タイヤ幅方向の外側からタイヤ幅方向に延びて前記第2の側の外側周方向主溝に連通することなく閉塞したショルダーラグ溝と、が設けられ、前記ショルダーラグ溝は、前記周方向補助溝と交差する、ことが好ましい。
 前記サイプ面取り部のサイプ深さ方向の長さは、前記サイプ本体部のサイプ深さ方向の長さの15~80%である、ことが好ましい。
 前記トレッドパターンは、タイヤ赤道線に対してタイヤ幅方向の両側に、溝面積比率がお互いに異なる半トレッド領域を有し、前記半トレッド領域のうち第1の側の半トレッド領域の溝面積比率が、第2の側の半トレッド領域の溝面積比率に比べて小さい、ことが好ましい。
 前記空気入りタイヤは、前記第1の側が車両外側に位置するように、車両に対する装着の向きが指定されている、ことが好ましい。
 上述の空気入りタイヤによれば、ドライ路面における操縦安定性能及びウェット路面における操縦安定性能を従来に比べて向上させ、かつパターンノイズを抑制することができる。
本発明の一実施形態の空気入りタイヤのプロファイル断面図である。 一実施形態の空気入りタイヤのトレッドパターンの一例を示す展開図である。 (a),(b)は、図2に示す第1サイプの一例を拡大して示す平面図である。 (a),(b)は、図3(a)に示す第1サイプの一例の断面図である。 図3(a)に示す第1サイプをサイプ中心線に沿って切断したときの第1サイプの一例の斜視図である。 図2に示すトレッドパターンの要部を拡大して示す平面図である。
 以下、本実施形態の空気入りタイヤについて詳細に説明する。
 本明細書においてタイヤ幅方向とは、空気入りタイヤの回転中心軸方向をいい、タイヤ周方向とは、タイヤ回転中心軸を中心にタイヤを回転させたときにできるトレッド表面の回転方向をいう。タイヤ径方向とは、タイヤ回転中心軸から放射状に向く方向をいう。タイヤ径方向外側とは、タイヤ回転中心軸から遠ざかる側をいい、タイヤ径方向内側とは、タイヤ回転中心軸に近づく側をいう。また、タイヤ幅方向外側とは、タイヤ赤道線からタイヤ幅方向において遠ざかる側をいい、タイヤ幅方向内側とは、タイヤ幅方向においてタイヤ赤道線に近づく側をいう。
 図1は、一実施形態の空気入りタイヤのプロファイル断面図である。図1に示す空気入りタイヤTは、タイヤ周方向に延在して環状をなすトレッド部1と、トレッド部1の両側に配置された一対のサイドウォール部2,2と、これらサイドウォール部2のタイヤ径方向内側に配置された一対のビード部3,3とを備える。
 一対のビード部3,3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りにタイヤ内側から外側へ折り返されている。ビードコア5の外周上にはタイヤ径方向外側に延びる断面が三角形状のゴム組成物からなるビードフィラー6が配置されている。
 一方、トレッド部1におけるカーカス層4のタイヤ径方向外側には複数層のベルト層7が埋設されている。これらベルト層7はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。ベルト層7の補強コードとしては、スチールコードが好ましく使用される。ベルト層7の外周側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して例えば5°以下の角度で配列してなる少なくとも1層(図1では、2層)のベルトカバー層8が配置されている。ベルトカバー層8の補強コードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。
 なお、上述したタイヤ内部構造は空気入りタイヤにおける代表的な例を示すものであるが、これに限定されるものではない。
 図2は、一実施形態の空気入りタイヤTのトレッドパターン10の一例を示す展開図である。トレッドパターン10を有する空気入りタイヤTは、乗用車用タイヤに好適に用いることができる。
 図2において、符号CLはタイヤ赤道線(センターライン)を示す。
 トレッドパタンーン10は、センター主溝11,12と、ショルダー主溝13,14と、センター連続陸部21と、中間連続陸部22,23と、第1サイプ30,31と、を主に備える。ここで、トレッドパタンーン10の、タイヤ赤道線(センターライン)CLに対してタイヤ幅方向の両側にある半トレッド領域のうちタイヤ幅方向の第1の側にある半トレッド領域の溝面積比率は、第1の側と反対側の第2の側の半トレッド領域の溝面積比率に比べて小さいことが好ましい。すなわち、トレッドパターン10の溝面積比率は、第1の側の半トレッド領域と第2の側の半トレッド領域とでお互いに異なることが好ましい。
 センター主溝11,12は、タイヤ赤道線(センターライン)CLに対してタイヤ幅方向の両側に設けられて、タイヤ周方向にトレッド部1を一周する。センター主溝12は、第1の側に設けられ、センター主溝11は、第2の側に設けられる。センター主溝12の溝両側の縁は、トレッド部1のトレッド表面から見てジグザグ形状をなすように面取り幅がタイヤ周方向で変化する溝面取り部12A,12Bを備える。センター主溝12の溝両側の縁では、1つの溝面取り部12A,12Bが、タイヤ周方向の一方の側に進むにつれて面取り幅が徐々に大きくなって所定の幅で終了し、その終了位置と略同じ位置で、さらに別の溝面取り部12A,12Bが始まり、面取り幅ゼロから面取り幅が徐々に大きくなって所定の幅で終了する。溝面取り部12A,12Bは、これを繰り返してタイヤ周方向に沿ってセンター主溝12を一周する。タイヤ周方向の略同じ位置において、センター主溝12の溝の一方の縁では、面取りを開始するための面取り幅がゼロであり、他方の縁ではタイヤ周方向の面取りが終了して面取り幅がゼロになるので、センター主溝12は、トレッド表面から見てジグザグ形状に見える。このとき、センター主溝12の溝幅を一定に維持してセンター主溝12を一周する。このジグザグ形状における、1つの溝面取り部12A,12Bが終了し、別の溝面取り部12A,12Bが始まる位置における、タイヤ幅方向の縁の段差の寸法(タイヤ幅方向に沿った長さ)は、センター主溝12の溝幅の、例えば15~35%である。
 センター主溝11には、センター主溝12に設けられるような面取り部は設けられず、センター主溝11の溝両側の縁は、タイヤ周方向に直線状に延びてタイヤを一周する。
 ショルダー主溝13,14は、センター主溝11,12をタイヤ幅方向内側に挟むように設けられて、タイヤ周方向に屈曲あるいは湾曲することなく真っ直ぐに延びてトレッド部1を一周する。
 センター主溝11,12及びショルダー主溝13,14の溝幅は、例えば5.0~15.0mmであり、溝深さは6.5~9.0mmである。
 センター連続陸部21は、センター主溝11,12に挟まれて形成され、タイヤ周方向に連続して一周する。センター連続陸部21上を、タイヤ赤道線(センターライン)CLが通る。
 中間連続陸部22は、センター主溝11及びショルダー主溝13に挟まれて形成され、センター連続陸部21のタイヤ幅方向の外側(第2の側)でタイヤ周方向にトレッド部1を連続して一周する。中間連続陸部23も、センター主溝12及びショルダー主溝14に挟まれて形成され、センター連続陸部21のタイヤ幅方向の外側(第1の側)でタイヤ周方向にトレッド部1を連続して一周する。
 センター連続陸部21及び中間連続陸部22,23の領域にはラグ溝が一切設けられず、サイプが設けられているだけである。ラグ溝とは、ラグ溝の延在方向が、タイヤ周方向よりもタイヤ幅方向に近い溝であり、サイプと寸法において区別される。
 第1サイプ30は、中間連続陸部23の領域に設けられ、ショルダー主溝14からタイヤ幅方向内側に延びて、センター主溝12に接続することなく中間連続陸部23の領域内で閉塞する。第1サイプ31は、中間連続陸部22の領域に設けられ、ショルダー主溝13からタイヤ幅方向内側に延びて、センター主溝11に接続することなく中間連続陸部22の領域内で閉塞する。
 ショルダー主溝13,14のタイヤ幅方向外側には、ショルダー陸部24,25が設けられている。ショルダー陸部24,25のそれぞれの領域には、タイヤ幅方向の両側のトレッドパターンエンドからタイヤ幅方向内側に向かって延び、ショルダー主溝13,14に接続することなくショルダー陸部24,25の領域内で閉塞するタイヤ周方向に所定の間隔で複数配置されたショルダーラグ溝35,36が設けられている。タイヤ周方向に隣り合うショルダーラグ溝35,36の間には、ショルダーサイプ37,38が設けられている。ショルダーサイプ37,38は、ショルダー陸部24,25の領域からタイヤ幅方向内側に向かってショルダーラグ溝35,36に並行するように設けられ、ショルダー主溝13,14に接続している。
 このように、トレッドパターン10は、中間連続陸部22,23(連続陸部)と、半トレッド領域それぞれの中間連続陸部22,23をタイヤ幅方向外側から区画するタイヤ周方向に連続して延びるショルダー主溝13,14(外側周方向主溝)と、ショルダー主溝13,14それぞれから、タイヤ幅方向内側に延びて、中間連続陸部の領域の途中で閉塞する第1サイプ30(第1サイプa)及び第1サイプ31(第1サイプb)と、を備える。
 第1サイプ30,31は、図2に示すように、ショルダー主溝13,14からセンター連続陸部21の側に向かって、タイヤ幅方向に傾斜するように延びて、中間連続陸部22,23の領域内で閉塞するように設けられている。
 図3(a),(b)は、第1サイプ30,31の一例を拡大して示す平面図である。図4(a),(b)は、図3(a)に示す第1サイプ30,31の一例の断面図である。図5は、図3(a)に示す第1サイプ30をサイプ中心45(図3(a)参照)に沿って切断したときの一例の斜視図である。図6はトレッドパターン10の要部を拡大して示す平面図である。
 第1サイプ30,31は、第1サイプ30,31の深さ方向のサイプ底側においてサイプ壁面の距離がサイプ深さ方向で一定であるサイプ本体部40(図4(a)参照)と、第1サイプ30,31のトレッド表面の側においてサイプ壁面間の距離がトレッド表面に向かうにつれて大きくなるように傾斜したサイプ面取り部42(図4(a)参照)と、を備える。すなわち、第1サイプ30,31は、いわゆる、面取りサイプである。
 第1の側にある第1サイプ30(第1サイプa)は、トレッド表面から見た縁形状に関して、図3(a)に示すように、延在部44と、屈曲部46と、を備える。延在部44は、上記縁形状が、ショルダー主溝14(外側周方向主溝)から、一定の延在方向にあるいは延在方向を滑らかに変化させて(湾曲して)タイヤ幅方向内側に延びる部分である。屈曲部46は、延在部44のタイヤ幅方向内側の端部に接続して設けられ、上記縁形状が、延在部44の延在方向からタイヤ周方向に近づく方向に屈曲して延びる部分である。第1サイプ30の延在部44及び屈曲部46のいずれの部分にも、サイプ本体部40とサイプ面取り部42が設けられている。
 一実施形態によれば、第1サイプ30(第1サイプa)の縁形状が、直角あるいは鋭角的に曲がる形状となるように、屈曲部46が形成されることが好ましい。また、延在部44がタイヤ周方向の一方の側に延びる場合、一実施形態によれば、延在部44の延びるタイヤ周方向の一方の側と反対側の方向に縁形状が屈曲して延びるような屈曲部46を設けることが好ましい。
 一方、第2の側にある第1サイプ31(第1サイプb)は、ショルダー主溝13(外側周方向主溝)から、一定の延在方向にあるいは延在方向を滑らかに変化させて(湾曲して)タイヤ幅方向内側に延びる、延在部44と同じ形態の延在部を有し、この延在部の端部を第1のサイプ31の閉塞端部として有する。
 第1サイプ31には、屈曲部46のような屈曲部が設けられておらず、第1サイプ31はショルダー主溝13から延在方向が一定あるいは滑らかに変化して延びてセンター主溝11に接続することなく中間連続陸部22の領域内で閉塞している。このとき、サイプ深さ方向においては、延在部44と同じ断面形状でサイプ本体部40とサイプ面取り部42が閉塞端部まで延びている。サイプ面取り部42における面取り面42A、42B(図4(a)参照)のサイプ深さ方向に対する傾斜角度も変化せず一定の角度を維持している。
 第1サイプ30,31の深さは、例えば5.5~8.5mmである。第1サイプ30,31は、センター主溝11,12およびショルダー主溝13,14の溝深さに比べて浅く、サイプ本体部40におけるサイプ壁面間の距離は、例えば0.3~0.9mmである。一般的に、サイプのサイプ壁面間の距離は、サイプ壁面同士が並行である場合、0.3~0.9mmである。この距離は、センター主溝11,12およびショルダー主溝13,14等の主溝の溝幅に比べて狭い。サイプと溝とは、平行なサイプ壁面間の距離と溝幅の寸法の相違によって区別され得る。センター主溝11,12およびショルダー主溝13,14あるいは周知のラグ溝の溝幅は、0.9mmよりも大きい。
 延在部44における、サイプ面取り部42の面取り面の幅は、例えば0.6~2.0mmである。
 このように、中間連続陸部22,23の領域に、第1サイプ30,31が設けられ、第1サイプ30,31は、いずれも中間連続陸部22,23の領域内で閉塞するので、中間連続陸部22,23のトレッド剛性の低下はラグ溝が中間連続陸部22,23に設けられる場合に比べて抑制され、ドライ路面における操縦安定性能が向上する。さらに、センター陸部21の領域にもラグ溝が無くトレッド剛性の低下が抑制されるので、ドライ路面における操舵初期の操縦性能も向上する。一方、中間連続陸部22,23に設けられる第1サイプ30,31は面取りサイプであるので、サイプ面取り部42では、水が流れ易く、また、面取りサイプ部42の一部はエッジとして機能するので、ウェット路面における操縦安定性能が向上する。また、中間連続陸部22,23の領域に設けられる第1サイプ30,31は、面取りサイプであるので、ウェット路面における操縦安定性能を維持させつつ、ラグ溝を設けた場合に比べてパターンノイズを低減させることができる。また、第1の側の半トレッド領域の溝面積比率が第2の側に比べて小さい場合、この第1の側の半トレッド領域に設けられる第1サイプ30は屈曲部46が、溝面積率が低いことによるウェット路面における操縦安定性能の不足を補うことができる。
 これにより、ドライ路面における操縦安定性能及びウェット路面における操縦安定性能を従来に比べて向上させ、かつパターンノイズを抑制することができる。
 ウェット路面における操縦安定性能をより向上させるためには、第1サイプ30,31における面取り面42A,42Bのサイプ深さ方向に対する傾斜角度θ(図4(a),(b)参照)は、例えば20~80度であることが好ましい。第1サイプ30,31において、サイプ面取り部42のサイプ深さ方向の長さは、第1サイプ30,31の延在方向の位置に拠らず一定であることが好ましい。したがって、第1サイプ30,31において、サイプ面取り部42とサイプ本体部40との接続位置のサイプ深さ方向の位置は、第1サイプ30,31の延在方向の位置に拠らず一定であることが好ましい。
 サイプ面取り部42のサイプ深さ方向の長さは、サイプ本体部40のサイプ深さ方向の長さの15~80%であることが好ましい。サイプ面取り部42のサイプ深さ方向の長さは、サイプ本体部40のサイプ深さ方向の長さの15%未満の場合、ウェット路面における操縦安定性能の向上が小さく、80%超の場合、トレッド剛性が低下し、ドライ路面における操縦安定性能の向上が小さくなる。
 一実施形態によれば、第1サイプ30における、トレッド表面からみた屈曲部46の縁形状は、延在部44のタイヤ幅方向内側の端部における延在方向に矢の先端が向いた矢印形状である。具体的には、この矢印形状は、図3(a)に示すように、延在部44が屈曲部46と接続する接続部分のサイプ幅方向の中心位置から矢印形状の矢の先端に向く矢印方向仮想線(図3(a)に示すサイプ中心45を通る線)に対してサイプ幅方向の一方の側の領域(図3(a)では、左上の側の領域)に、第1の縁42Fと、第2の縁42Gと、を備え、矢印方向仮想線(図3(a)に示すサイプ中心45を通る線)に対してサイプ幅方向の他方の側の領域(図3(a)では、右下の側の領域)に、第3の縁42Hを備える。第1の縁42F、第2の縁42G、及び、第3の縁42Hは、直線形状である。
 第1の縁42Fは、上記矢印方向仮想線に対してサイプ幅方向の一方の側(図3(a)では、左上側)の領域に、上記矢印方向仮想線に対して傾斜して延びる。第2の縁42Gは、上記矢印方向仮想線に対して傾斜して延びるが、第1の縁42Fに比べて矢印方向仮想線に対する傾斜が小さく、先端に向かって延びる。
 図3(a)に示す例では、第1の縁42Fは、延在部44が屈曲部46と接続する接続部分の縁から直接延びている。しかし、第1の縁42Fは、延在部44が屈曲部46と接続する接続部分の縁から、短い曲線あるいは直線を介在して延びてもよい。介在する部分のペリフェリ長さは、第1の縁42Fの長さの4分の1以下であることが好ましい。
 また、図3(a)に示す例では、第1の縁42Fの端と第2の縁42Gの端は、短い曲線を介在して接続されているが、このような介在する部分は、曲線ではなく直線であってもよい。また、第1の縁42Fの端と第2の縁42Gの端は、直接接続してもよい。すなわち、第1の縁42Fの端と第2の縁42Gの端は、直接、あるいは曲線又は直線を介在して接続することができる。第1の縁42Fの端と第2の縁42Gの端との間に介在する部分がある場合、この介在する部分のペリフェリ長さは、第1の縁42Fあるいは第2の縁42Gの長さのうち長いほうの長さの4分の1以下であることが好ましい。
 第3の縁42Hは、延在部44の縁から延長するように先端に向かって延びる。
 このような屈曲部46の形状により、サイプ面取り部42の領域を増加させ、屈曲部46の縁が増加し、エッジ効果が高まり、ウェット路面における操縦安定性能が向上する。
 また、一実施形態によれば、延在部44におけるサイプ面取り部42の、対向する面取り面42A,42Bでは、面取り面の傾斜角度は互いに同じである。一方、屈曲部46におけるサイプ面取り部42の、互いに対向する面取り面における一部では、面取り面の傾斜角度が互いに異なる。例えば、屈曲部46における面取り面42Aの傾斜角度と面取り面42Bの傾斜角度は、図4(b)に示すように同じであるが、図4(b)に示す面取り面42Cの傾斜角度θを、面取り面42Bの傾斜角度より大きくする。このように、屈曲部46において面取り面42Bと面取り面42Cの傾斜角度を異ならせることで、屈曲部46の縁形状に合わせてサイプ面取り部42の空間体積を調整する(大きくする)ことができるので、屈曲部46における排水の作用を高めることができ、ウェット路面における操縦安定性能が向上する。
 一実施形態によれば、サイプ本体部40は、図5に示すように、矢印形状の先端に向かって延びている。屈曲部46における第1の縁42F及び第2の縁42Gを有する側のサイプ面取り部42は、面取り面42A(第1面取り面)と、面取り面42C(第2面取り面)と、を備える。
 面取り面42A(第1面取り面)は、延在部44における面取り面42Aから延長して延びた面取り面である。
 面取り面42C(第2面取り面)は、面取り面42Aと異なる面取りの傾斜角度θを持ち、面取り面42Aと稜線42Eを形成するように接続し、トレッド表面に位置する第1の縁部42Fを通る平面である。屈曲部46における、矢印方向仮想線に対して第3の縁42Hの側の面取り面42Bは、延在部44における面取り面42Bが延長して延びた面(平面)である。
 このように、面取り面42Cは、第1の縁部42Fでトレッド表面と接続した傾斜面であるので、第1の縁部42F近傍の陸部の領域のトレッド剛性を高く維持することができる。このため、ドライ路面における操縦安定性能を向上させることができる。
 一実施形態によれば、面取り面42Aと面取り面42Cの接続部分である稜線42Eは、先端において、サイプ本体部40のサイプ壁面と面取り面42Aとが接続する位置を通る。このように、面取り面42Cは傾斜面となって、面取り面42Aと面取り面42Cの、先端における接続部分まで延びるので、サイプ面取り部42において排水のための空間を確保できる。この結果、ウェット路面における操縦安定性能が向上する。
 このとき、一実施形態によれば、面取り面42Aの面取り幅及び面取り面42Cの面取り幅は、矢印形状に合わせて先端に進むに連れて狭くすることができ、面取りサイプの効果を先端に向けて緩やかに小さくすることができる。
 また、一実施形態によれば、屈曲部46は、第2の縁42Gを通り、面取り面42Cと接続する平面の先端壁面42Dを備える。先端壁面42Dは、サイプ面取り部42の面取り面42A及び面取り面42Cの傾斜に比べてタイヤ径方向に向いた傾斜角度でサイプ深さ方向に延びる。したがって、第2の縁42Gは、急傾斜の先端壁面42D上に位置するので、エッジ効果を高くすることができる。先端壁面42Dのトレッド表面に対する傾斜角度は、例えば80~110度であり、85~95度である。即ち、先端壁面42Dは、タイヤ径方向に略平行に延びている。また、一実施形態によれば、先端壁面42Dは、図5に示すように、サイプ本体部40のサイプ壁面と面取り面42A(第1面取り面)とが接続する位置を通る、ことが好ましい。
 一実施形態によれば、第1サイプ31(第1サイプb)の閉塞端部は、壁面42I(図3(b)参照)を備える。壁面42Iは、サイプ面取り部42の面取り面42A,42Bの傾斜に比べてタイヤ径方向に傾斜した傾斜角度でサイプ深さ方向に延びる壁面である。壁面42Iは、第1サイプ31の面取り面42Aと接続する。このように、屈曲部46の無い第1サイプ31は壁面42Iで閉塞する構成である。壁面42Iは、図3(b)に示すように、刀形状のようにサイプ中心に対して一方向に傾斜して非対称形状に設けられてもよい。壁面42Iのトレッド表面に対する傾斜角度は、例えば80~110度であり、85~95度である。即ち、壁面42Iは、タイヤ径方向に略平行に延びている。
 トレッドパターン10において、図2に示すように、2つのセンター主溝11,12(内側周方向主溝)で区画されるセンター連続陸部21、及び中間連続陸部22,23の領域には、ラグ溝が設けられず、センター主溝11,12のうち、第1の側にあるセンター主溝12の両側の縁は、トレッド部のトレッド表面から見てジグザグ形状をなすように面取り幅がタイヤ周方向で変化する溝面取り部12A,12Bを備える。第1の側の半トレッド領域における溝面積比率が、第2の側の半トレッド領域における溝面積比率に比べて低い場合、第1の側の半トレッド領域におけるウェット路面における操縦安定性能は、第2の側の半トレッド領域に比べて不足し易い。この不足部分は、センター主溝12のジグザグ形状によるエッジ効果と第1サイプ30の屈曲部46によるエッジ効果及び排水性により、補うことができる。しかも、センター連続陸部21及び中間連続陸部22,23の領域にはラグ溝が設けられないので、センター連続陸部21及び中間連続陸部22,23のトレッド剛性が低下せず、また、パターンノイズは低減する。
 図2あるいは図6に示すように、第1の側にある中間連続陸部23(中間連続陸部α)の領域には、屈曲部46に連通しない細溝60が、タイヤ周方向に間欠的に設けられている。この細溝60の延在方向は、屈曲部46のセンター連続陸部21側の第2の縁42Gの延在方向に平行である。第2の縁42Gのエッジと細溝60のエッジを互いに平行にしてエッジ成分の方向を揃えることできるので、エッジ効果は増大する。このため、ウェット路面における操縦安定性能を向上させることができる。
 空気入りタイヤTは、第1の側が車両外側に位置するように、車両に対する装着の向きが指定されていることが好ましい。この装着向きの指定は、空気入りタイヤTのサイドウォール表面に設けられた文字や記号等により情報として付される。これにより、コーナリングの際に高荷重がかかり操縦安定性能に大きな影響を与えるコーナリング外側の第1の側の半トレッド領域では、空気入りタイヤTの、タイヤ赤道線(センターライン)CLに対して車両外側に位置するジグザグ形状のセンター主溝12、第1サイプ30、及び細溝60のエッジによりウェット路面における操縦安定性能がより一層向上する。
 図2に示すように、第2の側の中間連続陸部22(中間連続陸部β)の領域には、センター主溝11(内側周方向主溝)から延びて外側周方向主溝に連通することなく閉塞する第2サイプ32が設けられている。また、センター連続陸部21の領域には、第2の側の中間連続陸部22に接するセンター主溝11(内側周方向主溝)から、センター主溝12に向かって延びて、センター主溝12に連通することなく閉塞する第3サイプ33が設けられている。このとき、第2サイプ32が第3サイプ33の延長線上に位置するように、第2サイプ32及び第3サイプ33のタイヤ幅方向に対する傾斜の向きとタイヤ周上の位置は設定されていることが好ましい。これにより、第2サイプ32及び第3サイプ33が1つのサイプのように作用して、エッジ効果が集中するので、ウェット路面における制駆動性能を向上させることができる。第2サイプ32及び第3サイプ33は、対向するサイプ壁面間の距離がサイプ深さ方向のいずれの位置においても一定であり、サイプ壁面は互いに平行になっている構成のサイプである。
 中間連続陸部31の領域に設けられる第1サイプ31(第1サイプb)と、第2サイプ32は、トレッド表面からみて、タイヤ幅方向の同じ側の方向、例えば第1の側の方向に対して、お互いにタイヤ周方向の異なる側に傾斜している。すなわち、第1サイプ31と第2サイプ32は、ハの字形状を成している。これにより、空気入りタイヤTに、正のスリップ角がついても、負のスリップ角がついても、ウェット路面における操縦安定性能及び制駆動性能を効果的に発揮させることができる。
 第1サイプ30,31は、トレッド表面からみて、お互いに、タイヤ幅方向の同じ側の方向、例えば第1の側の方向に対してタイヤ周方向の同じ側に傾斜している。図2に示す例では、第1サイプ30,31は、紙面上で左下から右上方向へ、あるいは右上方向から左下方向に延びている。第1サイプ30,31の延在部44の延在方向のタイヤ周方向に対する傾斜角度は、25~75度であることが好ましい。傾斜角度が25度未満では、第1サイプ30,31がショルダー主溝13,14と接続する接続部分近傍において、中間連続陸部23のトレッド剛性が局部的に低下し、ドライ路面での操縦安定性能が低下し易く、偏摩耗の発生の核となり易い。傾斜角度が75度より大きいと、中間連続陸部23のタイヤ周方向のトレッド剛性が低下してドライ路面における操縦安定性能が低下し易い。
 図2に示すように、ショルダー陸部24の領域には、タイヤ周方向に一周する周方向補助溝39と、ショルダーラグ溝36が設けられている。ショルダーラグ溝36は、タイヤ幅方向の外側からタイヤ幅方向に延びてショルダー主溝13に連通することなく閉塞している。このとき、ショルダーラグ溝36は、周方向補助溝39と交差することが好ましい。周方向補助溝39は、ショルダー陸部24のトレッド剛性が高くなり過ぎることを抑制し、ショルダー陸部24の接地面積を調整する。特に、ショルダー陸部24が車両内側に向くように車両に装着される場合、キャンバーの効果(ネガティブキャンバー)によりタイヤの接地面積を大きくして接地圧力を低下させることができるので、ショルダー陸部24の摩耗を抑制することができる。
 周方向補助溝39の溝幅は、例えば0.8~3.0mmであり、溝深さは1.0~4.mmである。
(実験例)
 実施形態の空気入りタイヤTの効果を確認するために、種々のトレッドパターンを備える空気入りタイヤを試作して性能を評価した。具体的には、試作した空気入りタイヤのタイヤサイズは、225/50R17 98Wとした。試作した空気入りタイヤをリム(リムサイズ17×7.5J)に装着し、空気圧230kPaの条件で試験車両(排気量2400ccの四輪駆動車)に装着した。試験車両を、テストコース路面上に走行させて、ドライ路面における操縦安定性能及びウェット路面における操縦安定性能の評価、及びパターンノイズの大小の評価を行った。
 ドライ路面における操縦安定性能の評価では、ドライバーがドライ路面上で操舵を行いながら操舵に対する応答の評価を官能評価で行い、従来例を指数100として指数化した。指数が高いほど性能が高いことを示す。
 ウェット路面における操縦安定性能の評価では、雨天条件を再現したウェット路面の所定の範囲を走行したときの走行時間を計測し、その逆数を指数化した。従来例の計測した走行時間の逆数を指数100とした。したがって、指数が高いほど性能が高いことを示す。
 パターンノイズの評価では、所定の速度条件で車両を走行させたときにドライバーが聞くパターンノイズの大きさの官能評価を行った。評価については、従来例を指数100として指数化した。指数が高いほどパターンノイズが低いことを示す。
 試作した空気入りタイヤTは、図1に示すタイヤ構造を用いた。従来例の空気入りタイヤのトレッドパターンでは、第1サイプ30,31がなく、ラグ溝とした。ラグ溝の溝幅は、4.6mmとした。
 比較例1では、第1サイプ30,31を有するが、サイプ面取り部42がなく、対向するサイプ壁面間の距離がサイプ深さ方向で一定であるサイプ本体部40で構成されたサイプ(非面取りサイプ)とした。サイプ壁面の距離については、以下に説明する各実施例、比較例1,2におけるサイプ本体部40における距離は、互いに同じにした。第1サイプ30,31のサイプ深さは5.7mmとし、サイプ本体部40におけるサイプ壁面間の距離は0.6mmとし、比較例2及び各実施例における面取り面42A,42Bの傾斜角度θは30度、面取り面42Cの傾斜角度θは45度とした。屈曲部46を有する実施例では、サイプ面取り部42における対向するサイプ壁面間の最大距離を5.5mmとした。実施例1の第1サイプ形状における「L字形状」とは、延在部44の形状を90度折り曲げた形状を意味する。「L字形状」とすることにより、屈曲後の延在方向は、屈曲前の延在方向に比べてタイヤ周方向に近づけた。
 下記表1~3に各仕様とその評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 表1より、中間連続陸部22,23の領域に、面取りサイプである第1サイプ30,31を設け、中間連続陸部23に屈曲部46を設けることで、従来例に対して、ドライ路面及びウェット路面における操縦安定性を向上させ、かつパターンノイズを抑制することができることがわかる。
 特に、表1,2より、第1サイプ30,31のトレッド表面から見た屈曲部46を矢印形状にすることにより、ウェット路面における操縦安定性がより向上することがわかる。
 また、表2,3より、サイプ面取り部42のサイプ深さ方向の長さは、サイプ本体部40のサイプ深さ方向の長さの15~80%とすることにより、ウェット路面における操縦安定性がより効果的に向上することがわかる。
 以上、本発明の空気入りタイヤについて詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更してもよいのはもちろんである。
1 トレッド部
2 サイドウォール部
3 ビード部
4 カーカス層
5 ビードコア
6 ビードフィラー
7 ベルト層
8 ベルトカバー層
10 トレッドパターン
11,12 センター主溝
13,14 ショルダー主溝
21 センター連続陸部
22,23 中間連続陸部
24,25 ショルダー陸部
30,31 第1サイプ
32 第2サイプ
33 第3サイプ
35,36 ショルダーラグ溝
37,38 ショルダーサイプ
39 周方向補助溝
40 サイプ本体部
42 サイプ面取り部
42A,42B,42C 面取り面
42D 先端壁面
42E 稜線
42F 第1の縁
42G 第2の縁 
42H 第3の縁
42I 壁面
44 延在部
45 サイプ中心
46 屈曲部
60 細溝

Claims (20)

  1.  空気入りタイヤであって、
     タイヤ周方向に延びて環状を成し、トレッドパターンを備えたトレッド部を備え、
     前記トレッドパターンは、
     タイヤ赤道線に対して第1の側及び第2の側の半トレッド領域それぞれに設けられ、タイヤ周方向に連続して一周する連続陸部と、
     前記半トレッド領域それぞれの前記連続陸部をタイヤ幅方向外側から区画するタイヤ周方向に連続して延びる外側周方向主溝と、
     前記外側周方向主溝それぞれから、タイヤ幅方向内側に延びて、前記連続陸部の領域の途中で閉塞する第1サイプと、を備え、
     前記第1サイプは、前記第1サイプの深さ方向のサイプ底側において対向するサイプ壁面間の距離が前記サイプ深さ方向で一定であるサイプ本体部と、前記第1サイプの前記トレッド表面の側において対向するサイプ壁面間の距離が前記トレッド表面に向かうにつれて大きくなるように傾斜したサイプ面取り部と、を備え、
     前記第1サイプのうち、前記第1の側の第1サイプaは、前記トレッド表面から見た縁形状が、前記第1の側の外側周方向主溝から、一定の延在方向にあるいは延在方向を滑らかに変化させてタイヤ幅方向内側に延びる第1延在部と、前記第1延在部の前記タイヤ幅方向内側の端部に接続して設けられ、前記縁形状が、前記第1延在部の前記端部における延在方向からタイヤ周方向に近づく方向に屈曲して延びる屈曲部と、を有し、前記第1サイプaの前記第1延在部及び前記屈曲部のいずれの部分にも、前記サイプ本体部と前記サイプ面取り部が設けられ、
     前記第1サイプのうち前記第2の側の第1サイプbは、前記トレッド表面から見た縁形状が、前記第2の側の外側周方向主溝から、一定の延在方向にあるいは延在方向を滑らかに変化させてタイヤ幅方向内側に延びる第2延在部を有し、前記第1サイプbは、前記第2延在部の端部を前記第1のサイプbの閉塞端部として有する、ことを特徴とする空気入りタイヤ。
  2.  前記トレッド表面からみた前記屈曲部の縁形状は、前記第1延在部の前記タイヤ幅方向内側の端部における延在方向に矢の先端が向いた矢印形状であり、
     前記矢印形状は、
     前記第1延在部が前記屈曲部と接続する接続部分における前記第1サイプaのサイプ幅方向の中心位置から前記先端に向く矢印方向仮想線に対して前記サイプ幅方向の一方の側の領域に、前記矢印方向仮想線に対して傾斜して延びる第1の縁と、前記第1の縁に比べて前記矢印方向仮想線に対する傾斜が小さく、前記先端に向かって延びる第2の縁と、を有し、
     前記矢印方向仮想線に対して前記サイプ幅方向の他方の側の領域に、前記第1延在部の縁から延長するように前記先端に向かって延びる第3の縁と、を有する、請求項1に記載の空気入りタイヤ。
  3.  前記第1の縁は、前記接続部分の縁から、直接、あるいは曲線又は直線を介在して延びている、請求項2に記載の空気入りタイヤ。
  4.  前記第1の縁の端と前記第2の縁の端は、直接、あるいは曲線又は直線を介在して接続している、請求項2または3に記載の空気入りタイヤ。
  5.  前記第1延在部における前記サイプ面取り部の、互いに対向する面取り面における面取りの傾斜角度は互いに同じであり、
     前記屈曲部における前記サイプ面取り部の、互いに対向する面取り面における一部では、面取りの傾斜角度が互いに異なる、請求項2~4のいずれか1項に記載の空気入りタイヤ。
  6.  前記第1の側の第1サイプaにおいて、前記サイプ本体部は、前記矢印形状の先端に向かって延びており、
     前記屈曲部における、前記矢印方向仮想線に対して前記第1の縁及び前記第2の縁の側の前記サイプ面取り部の面取り面は、前記第1延在部における面取り面から延長して延びた第1面取り面と、前記第1面取り面と異なる面取り傾斜角度を持ち、前記第1面取り面と稜線を形成するように接続し、前記トレッド表面に位置する前記第1の縁部を通る平面である第2面取り面と、を備え、
     前記屈曲部における、前記矢印方向仮想線に対して前記第3の縁の側の前記サイプ面取り部の面取り面は、前記第1延在部における面取り面が延長して延びた面である、請求項2~5のいずれか1項に記載の空気入りタイヤ。
  7.  前記稜線は、前記先端において前記サイプ本体部のサイプ壁面と前記第1面取り面とが接続する位置を通る、請求項6に記載の空気入りタイヤ。
  8.  前記第1面取り面の面取り幅及び第2面取り面の面取り幅は、前記先端に進むに連れて狭くなる、請求項6または7に記載の空気入りタイヤ。
  9.  前記屈曲部は、前記第2の縁を通り、前記第2面取り面と接続する平面の先端壁面を備え、前記壁面は、前記サイプ面取り部の面取り面の傾斜に比べてタイヤ径方向に傾斜した傾斜角度でサイプ深さ方向に延びる、請求項6~8のいずれか1項に記載の空気入りタイヤ。
  10.  前記先端壁面は、前記サイプ本体部のサイプ壁面と前記第1面取り面とが接続する位置を通る、請求項9に記載の空気入りタイヤ。
  11.  前記第1サイプbの前記閉塞端部は、前記サイプ面取り部の面取り面の傾斜に比べてタイヤ径方向に向いた傾斜角度でサイプ深さ方向に延びた、前記第1サイプbの前記サイプ面取り部における前記面取り面と接続した平面の壁面を備える、請求項1~10のいずれか1項に記載の空気入りタイヤ。
  12.  前記連続陸部を中間連続陸部というとき、
     前記トレッドパターンは、前記中間連続陸部をタイヤ幅方向内側から区画するタイヤ周方向に連続して延びる2つの内側周方向主溝を備え、
     前記2つの内側周方向主溝で区画されるセンター連続陸部及び前記中間連続陸部の領域にはラグ溝が設けられず、
     前記内側周方向主溝のうち前記第1の側に位置する1つの内側周方向主溝の一対の縁は、前記トレッド部のトレッド表面から見てジグザグ形状をなすように面取り幅がタイヤ周方向で変化する溝面取り部を備える、請求項1~11のいずれか1項に記載の空気入りタイヤ。
  13.  前記中間連続陸部のうち、前記第1の側の中間連続陸部αの領域には、前記屈曲部に連通しない細溝が、タイヤ周方向に間欠的に設けられ、前記細溝の延在方向は、前記屈曲部の前記センター連続陸部側の縁の延在方向に平行である、請求項12に記載の空気入りタイヤ。
  14.  前記中間連続陸部のうちの前記第2の側の中間連続陸部βの領域には、前記内側周方向主溝のうち前記第2の側の内側周方向主溝から延びて前記外側周方向主溝に連通することなく閉塞する第2サイプが設けられ、
     前記センター連続陸部の領域には、前記2つの内側周方向主溝のうち、前記第2の側の内側周方向主溝から、他の内側周方向主溝に向かって延びて、前記他の内側周方向主溝に連通することなく閉塞する第3サイプが設けられ、
     前記第2サイプが前記第3サイプの延長線上に位置するように、前記第2サイプ及び前記第3サイプのタイヤ幅方向に対する傾斜の向きとタイヤ周上の位置は設定されている、請求項12または13に記載の空気入りタイヤ。
  15.  前記第1サイプのうち、前記第2の側に設けられる第1サイプbと、前記第2サイプは、前記トレッド表面からみて、タイヤ幅方向の同じ側の方向に対して、お互いにタイヤ周方向の異なる側に傾斜している、請求項14に記載の空気入りタイヤ。
  16.  前記第1の側及び前記第2の側に設けられる前記第1サイプは、前記トレッド表面からみて、お互いに、前記タイヤ幅方向の同じ側の方向に対してタイヤ周方向の同じ側に傾斜している、請求項1~15のいずれか1項に記載の空気入りタイヤ。
  17.  前記外側周方向主溝のうち前記第2の側の外側周方向主溝のタイヤ幅方向外側には、ショルダー陸部が設けられ、
     前記ショルダー陸部の領域には、タイヤ周方向に一周する周方向補助溝と、タイヤ幅方向の外側からタイヤ幅方向に延びて前記第2の側の外側周方向主溝に連通することなく閉塞したショルダーラグ溝と、が設けられ、前記ショルダーラグ溝は、前記周方向補助溝と交差する、請求項1~16のいずれか1項に記載の空気入りタイヤ。
  18.  前記サイプ面取り部のサイプ深さ方向の長さは、前記サイプ本体部のサイプ深さ方向の長さの15~80%である、請求項1~17のいずれか1項に記載の空気入りタイヤ。
  19.  前記トレッドパターンは、タイヤ赤道線に対してタイヤ幅方向の両側に、溝面積比率がお互いに異なる半トレッド領域を有し、前記半トレッド領域のうち第1の側の半トレッド領域の溝面積比率が、第2の側の半トレッド領域の溝面積比率に比べて小さい、請求項1~18のいずれか1項に記載の空気入りタイヤ。
  20.  前記空気入りタイヤは、前記第1の側が車両外側に位置するように、車両に対する装着の向きが指定されている、請求項1~19のいずれか1項に記載の空気入りタイヤ。
PCT/JP2018/042299 2017-11-17 2018-11-15 空気入りタイヤ WO2019098277A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018560697A JP6711421B2 (ja) 2017-11-17 2018-11-15 空気入りタイヤ
DE112018005596.5T DE112018005596T5 (de) 2017-11-17 2018-11-15 Luftreifen
CN201880064031.XA CN111183048B (zh) 2017-11-17 2018-11-15 充气轮胎
US16/763,961 US11685195B2 (en) 2017-11-17 2018-11-15 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017222033 2017-11-17
JP2017-222033 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019098277A1 true WO2019098277A1 (ja) 2019-05-23

Family

ID=66540136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042299 WO2019098277A1 (ja) 2017-11-17 2018-11-15 空気入りタイヤ

Country Status (5)

Country Link
US (1) US11685195B2 (ja)
JP (1) JP6711421B2 (ja)
CN (1) CN111183048B (ja)
DE (1) DE112018005596T5 (ja)
WO (1) WO2019098277A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD913204S1 (en) 2020-03-25 2021-03-16 Omni United (S) Pte Ltd. Tire tread
WO2021054261A1 (ja) * 2019-09-20 2021-03-25 株式会社ブリヂストン タイヤ
CN113939410A (zh) * 2019-06-04 2022-01-14 横滨橡胶株式会社 充气轮胎

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135331B2 (ja) * 2018-02-14 2022-09-13 横浜ゴム株式会社 空気入りタイヤ
JP7172289B2 (ja) * 2018-08-29 2022-11-16 横浜ゴム株式会社 空気入りタイヤ
CN113334995A (zh) * 2021-06-23 2021-09-03 厦门正新橡胶工业有限公司 自驻车用充气轮胎胎面花纹结构

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169306A (ja) * 1989-03-18 1990-06-29 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
JP2012236455A (ja) * 2011-05-10 2012-12-06 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2013139193A (ja) * 2011-12-29 2013-07-18 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2014205396A (ja) * 2013-04-11 2014-10-30 住友ゴム工業株式会社 空気入りタイヤ
JP2015134581A (ja) * 2014-01-17 2015-07-27 横浜ゴム株式会社 空気入りタイヤ
EP3009275A1 (de) * 2014-10-16 2016-04-20 Continental Reifen Deutschland GmbH Fahrzeugluftreifen
JP2016074256A (ja) * 2014-10-02 2016-05-12 横浜ゴム株式会社 空気入りタイヤ
JP2016088469A (ja) * 2014-11-11 2016-05-23 株式会社ブリヂストン 空気入りタイヤ
JP2016113003A (ja) * 2014-12-15 2016-06-23 横浜ゴム株式会社 空気入りタイヤ
JP2016132358A (ja) * 2015-01-20 2016-07-25 横浜ゴム株式会社 空気入りタイヤ
JP2017030557A (ja) * 2015-07-31 2017-02-09 横浜ゴム株式会社 空気入りタイヤ
JP2017030556A (ja) * 2015-07-31 2017-02-09 横浜ゴム株式会社 空気入りタイヤ
WO2017145681A1 (ja) * 2016-02-26 2017-08-31 横浜ゴム株式会社 空気入りタイヤ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3531047A1 (de) * 1985-08-30 1987-03-05 Uniroyal Englebert Gmbh Fahrzeugluftreifen
JP4274355B2 (ja) * 2003-04-09 2009-06-03 東洋ゴム工業株式会社 空気入りタイヤ
JP4894968B1 (ja) * 2011-01-19 2012-03-14 横浜ゴム株式会社 空気入りタイヤ
JP5062344B1 (ja) * 2011-04-12 2012-10-31 横浜ゴム株式会社 空気入りタイヤ
JP4905599B1 (ja) * 2011-04-27 2012-03-28 横浜ゴム株式会社 空気入りタイヤ
JP5664825B2 (ja) * 2012-06-27 2015-02-04 横浜ゴム株式会社 空気入りタイヤ
JP5630594B1 (ja) * 2013-03-06 2014-11-26 横浜ゴム株式会社 空気入りタイヤ
JP6333520B2 (ja) * 2013-06-07 2018-05-30 株式会社ブリヂストン 空気入りタイヤ
JP2015051753A (ja) * 2013-09-09 2015-03-19 横浜ゴム株式会社 空気入りタイヤ
JP5796655B1 (ja) * 2014-03-28 2015-10-21 横浜ゴム株式会社 空気入りタイヤ
JP5993407B2 (ja) * 2014-06-10 2016-09-14 住友ゴム工業株式会社 空気入りタイヤ
US10603961B2 (en) * 2014-10-07 2020-03-31 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP6114731B2 (ja) * 2014-10-31 2017-04-12 住友ゴム工業株式会社 空気入りタイヤ
EP3656580B1 (en) * 2015-02-04 2021-03-31 Bridgestone Corporation Pneumatic tire
JP6473393B2 (ja) * 2015-07-13 2019-02-20 住友ゴム工業株式会社 空気入りタイヤ
JP6534905B2 (ja) * 2015-10-14 2019-06-26 Toyo Tire株式会社 空気入りタイヤ

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169306A (ja) * 1989-03-18 1990-06-29 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
JP2012236455A (ja) * 2011-05-10 2012-12-06 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2013139193A (ja) * 2011-12-29 2013-07-18 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2014205396A (ja) * 2013-04-11 2014-10-30 住友ゴム工業株式会社 空気入りタイヤ
JP2015134581A (ja) * 2014-01-17 2015-07-27 横浜ゴム株式会社 空気入りタイヤ
JP2016074256A (ja) * 2014-10-02 2016-05-12 横浜ゴム株式会社 空気入りタイヤ
EP3009275A1 (de) * 2014-10-16 2016-04-20 Continental Reifen Deutschland GmbH Fahrzeugluftreifen
JP2016088469A (ja) * 2014-11-11 2016-05-23 株式会社ブリヂストン 空気入りタイヤ
JP2016113003A (ja) * 2014-12-15 2016-06-23 横浜ゴム株式会社 空気入りタイヤ
JP2016132358A (ja) * 2015-01-20 2016-07-25 横浜ゴム株式会社 空気入りタイヤ
JP2017030557A (ja) * 2015-07-31 2017-02-09 横浜ゴム株式会社 空気入りタイヤ
JP2017030556A (ja) * 2015-07-31 2017-02-09 横浜ゴム株式会社 空気入りタイヤ
WO2017145681A1 (ja) * 2016-02-26 2017-08-31 横浜ゴム株式会社 空気入りタイヤ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113939410A (zh) * 2019-06-04 2022-01-14 横滨橡胶株式会社 充气轮胎
WO2021054261A1 (ja) * 2019-09-20 2021-03-25 株式会社ブリヂストン タイヤ
CN114423625A (zh) * 2019-09-20 2022-04-29 株式会社普利司通 轮胎
CN114423625B (zh) * 2019-09-20 2023-11-14 株式会社普利司通 轮胎
USD913204S1 (en) 2020-03-25 2021-03-16 Omni United (S) Pte Ltd. Tire tread

Also Published As

Publication number Publication date
US11685195B2 (en) 2023-06-27
JP6711421B2 (ja) 2020-06-17
CN111183048A (zh) 2020-05-19
CN111183048B (zh) 2022-05-27
DE112018005596T5 (de) 2020-07-09
US20200384810A1 (en) 2020-12-10
JPWO2019098277A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2019098277A1 (ja) 空気入りタイヤ
JP5146564B2 (ja) 空気入りタイヤ
US8752600B2 (en) Pneumatic tire with tread having land portions defining drop lengths
WO2016125814A1 (ja) 空気入りタイヤ
US10800211B2 (en) Pneumatic tire
WO2015005194A1 (ja) 空気入りタイヤ
JP6624299B2 (ja) 空気入りタイヤ
JP2012218633A (ja) 空気入りタイヤ
US20170190222A1 (en) Pneumatic Tire
JP2018024420A (ja) 空気入りタイヤ
JP6549472B2 (ja) 空気入りタイヤ
WO2016143477A1 (ja) 空気入りタイヤ
JP2010247549A (ja) 空気入りタイヤ
CN112399924B (zh) 充气轮胎
JP6819774B2 (ja) 空気入りタイヤ
JP6439416B2 (ja) 空気入りタイヤ
WO2018047763A1 (ja) 空気入りタイヤ
WO2018047764A1 (ja) 空気入りタイヤ
JP7119529B2 (ja) 空気入りタイヤ
JP7207304B2 (ja) 空気入りタイヤ
WO2020171223A1 (ja) 空気入りタイヤ
JP6711441B1 (ja) 空気入りタイヤ
JP7189800B2 (ja) 空気入りタイヤ
US20220305848A1 (en) Tire
JP2017210169A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560697

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879364

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18879364

Country of ref document: EP

Kind code of ref document: A1