WO2019229785A1 - 半導体装置の製造方法、基板処理装置およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置およびプログラム Download PDF

Info

Publication number
WO2019229785A1
WO2019229785A1 PCT/JP2018/020275 JP2018020275W WO2019229785A1 WO 2019229785 A1 WO2019229785 A1 WO 2019229785A1 JP 2018020275 W JP2018020275 W JP 2018020275W WO 2019229785 A1 WO2019229785 A1 WO 2019229785A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
substrate
processing chamber
film
wafer
Prior art date
Application number
PCT/JP2018/020275
Other languages
English (en)
French (fr)
Inventor
求 出貝
芦原 洋司
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2018/020275 priority Critical patent/WO2019229785A1/ja
Priority to CN201880093867.2A priority patent/CN112166489A/zh
Priority to SG11202011847TA priority patent/SG11202011847TA/en
Priority to KR1020237032274A priority patent/KR20230137501A/ko
Priority to JP2020521642A priority patent/JP6980106B2/ja
Priority to KR1020207034278A priority patent/KR102582496B1/ko
Priority to TW108118334A priority patent/TWI708281B/zh
Publication of WO2019229785A1 publication Critical patent/WO2019229785A1/ja
Priority to US17/104,244 priority patent/US20210098258A1/en
Priority to JP2021186527A priority patent/JP7110468B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0236Pretreatment of the material to be coated by cleaning or etching by etching with a reactive gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a program.
  • LSIs Large Scale Integrated Circuits
  • LSIs Large Scale Integrated Circuits
  • a hard mask or the like is used.
  • an epitaxial film such as silicon (Si) or silicon germanium (SiGe) is selectively grown on a substrate such as a silicon (Si) wafer (for example, Patent Document 1). , See Patent Document 2).
  • An object of the present invention is to provide a technique capable of selectively forming a film on a substrate.
  • a modifying gas containing an inorganic ligand to a substrate having a first surface and a second surface different from the first surface, and modifying the first surface;
  • a film can be selectively formed on a substrate.
  • FIG. 3 is a top sectional view of the processing furnace 202a shown in FIG.
  • FIG. 5 is a top sectional view of the processing furnace 202b shown in FIG.
  • FIG. 5 is a block diagram for demonstrating the structure of the control part of the substrate processing apparatus 10 which concerns on one Embodiment of this invention.
  • (A) is a figure which shows the timing of the gas supply which concerns on one Embodiment of this invention
  • (B) is a figure which shows the modification of (A).
  • (A) is SiO 2 layer before exposure by WF 6 gas, a model diagram showing a state of the wafer surface which SiN layer is formed
  • (B) the state immediately after exposure of the wafer surface by WF 6 gas
  • (C) is a model diagram showing the state of the wafer surface after exposure with WF 6 gas.
  • (A) is a model diagram showing the state of the wafer surface immediately after the TiCl 4 gas is supplied
  • (B) is a model diagram showing the state of the wafer surface after being exposed to the TiCl 4 gas.
  • FIG. 12 is a top sectional view of the processing furnace 302 shown in FIG. 11.
  • (A) is a diagram showing the relationship between the number of deposition cycles and the thickness of the TiN film formed on the SiN layer, (B), the film forming cycle of TiN film formed on the SiO 2 layer It is a figure which shows the relationship between a number and a film thickness. The dependence of T SiN on the number of pulses of WF 6 gas supply is shown.
  • (A) is a diagram showing the WF 6 supply method and the number of the deposition cycles of the gas and the thickness of the relationship between TiN film formed on the SiO 2 layer, (B), the SiO 2 layer, ZrO layer
  • FIG. 5 is a diagram showing the relationship between the number of film formation cycles and the film thickness of a TiN film formed on each of the HfO layers.
  • FIG. 5C is a diagram showing the film thicknesses of SiN films that are selectively grown on the SiN layer and the SiO 2 layer when the film forming process is performed after the reforming process, respectively.
  • FIG. it is a diagram showing the film thickness of the SiN film to be respectively selectively grown SiN layer on the SiO 2 layer on a case of performing twice and alternately processed.
  • FIG. 1 is a top sectional view of a substrate processing apparatus (hereinafter simply referred to as a substrate processing apparatus 10) for carrying out a semiconductor device manufacturing method.
  • the transfer device of the cluster type substrate processing apparatus 10 according to the present embodiment is divided into a vacuum side and an atmosphere side.
  • a FOUP (Front Opening Unified Pod) 100 is used as a carrier for transporting a wafer 200 as a substrate.
  • the substrate processing apparatus 10 includes a first transfer chamber 103 that can withstand a pressure (negative pressure) less than atmospheric pressure such as a vacuum state.
  • the casing 101 of the first transfer chamber 103 is, for example, a pentagon in plan view, and is formed in a box shape with both upper and lower ends closed.
  • a first substrate transfer machine 112 for transferring the wafer 200 is provided in the first transfer chamber 103.
  • Preliminary chambers (load lock chambers) 122 and 123 are connected to the side walls located on the front side of the five side walls of the casing 101 through gate valves 126 and 127, respectively.
  • the preliminary chambers 122 and 123 are configured to be able to use both the function of loading the wafer 200 and the function of unloading the wafer 200, and each has a structure capable of withstanding negative pressure.
  • a processing furnace 202a as a unit, a processing furnace 202b as a second process unit, a processing furnace 202c as a third process unit, and a processing furnace 202d as a fourth process unit are connected via gate valves 70a, 70b, 70c and 70d. Each is connected adjacently.
  • a second transfer chamber 121 that can transfer the wafer 200 under atmospheric pressure is connected to the front sides of the preliminary chambers 122 and 123 through gate valves 128 and 129.
  • a second substrate transfer machine 124 for transferring the wafer 200 is provided in the second transfer chamber 121.
  • a notch aligning device 106 is provided on the left side of the second transfer chamber 121.
  • the notch aligning device 106 may be an orientation flat aligning device.
  • a clean unit for supplying clean air is provided in the upper part of the second transfer chamber 121.
  • a substrate loading / unloading port 134 for loading / unloading the wafer 200 into / from the second transfer chamber 121 and a pod opener 108 are provided on the front side of the casing 125 of the second transfer chamber 121.
  • a load port (IO stage) 105 is provided on the opposite side of the pod opener 108 across the substrate loading / unloading port 134, that is, on the outside of the housing 125.
  • the pod opener 108 includes a closure capable of opening and closing the cap 100a of the pod 100 and closing the substrate loading / unloading port 134. By opening and closing the cap 100a of the pod 100 placed on the load port 105, the wafer 200 can be taken in and out of the pod 100.
  • the pod 100 is supplied to and discharged from the load port 105 by an in-process transfer device (OHT or the like) (not shown).
  • FIG. 2 is a longitudinal sectional view of a processing furnace 202a as a first process unit provided in the substrate processing apparatus 10
  • FIG. 3 is a top sectional view of the processing furnace 202a.
  • the film forming process is performed in the processing furnace 202b as the second process unit after the reforming process is performed in the processing furnace 202a as the first process unit.
  • the same substrate processing can be performed in the processing furnace 202c as the fourth processing unit and the processing furnace 202d as the fourth process unit.
  • the processing furnace 202a includes a heater 207 as a heating means (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • An outer tube 203 that constitutes a reaction vessel (processing vessel) concentrically with the heater 207 is disposed inside the heater 207.
  • the outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a manifold (inlet flange) 209 is disposed below the outer tube 203 concentrically with the outer tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape with an upper end and a lower end opened.
  • An O-ring 220a as a seal member is provided between the upper end portion of the manifold 209 and the outer tube 203. As the manifold 209 is supported by the heater base, the outer tube 203 is installed vertically.
  • An inner tube 204 that constitutes a reaction vessel is disposed inside the outer tube 203.
  • the inner tube 204 is made of a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a processing vessel (reaction vessel) is mainly constituted by the outer tube 203, the inner tube 204, and the manifold 209.
  • a processing chamber 201a as a first processing chamber is formed in a hollow cylindrical portion of the processing container (inside the inner tube 204).
  • the processing chamber 201a is configured to be capable of accommodating wafers 200 as substrates in a state where they are arranged in multiple stages in a vertical posture in a horizontal posture by a boat 217 described later.
  • a nozzle 410 is provided in the processing chamber 201 a so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • a gas supply pipe 310 is connected to the nozzle 410.
  • the processing furnace 202a of this embodiment is not limited to the above-mentioned form.
  • the gas supply pipe 310 is provided with a mass flow controller (MFC) 312 which is a flow rate controller (flow rate control unit) in order from the upstream side.
  • MFC mass flow controller
  • the gas supply pipe 310 is provided with a valve 314 that is an on-off valve.
  • a gas supply pipe 510 that supplies an inert gas is connected to a downstream side of the valve 314 of the gas supply pipe 310.
  • the gas supply pipe 510 is provided with an MFC 512 and a valve 514 in order from the upstream side.
  • a nozzle 410 is connected to the tip of the gas supply pipe 310.
  • the nozzle 410 is configured as an L-shaped nozzle, and a horizontal portion thereof is provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portion of the nozzle 410 is provided inside a channel-shaped (groove-shaped) spare chamber 205a that protrudes radially outward of the inner tube 204 and extends in the vertical direction. It is provided in the chamber 205a along the inner wall of the inner tube 204 (upward in the arrangement direction of the wafers 200).
  • the nozzle 410 is provided so as to extend from the lower region of the processing chamber 201a to the upper region of the processing chamber 201a, and a plurality of gas supply holes 410a are provided at positions facing the wafer 200.
  • the processing gas is supplied from the gas supply hole 410 a of the nozzle 410 to the wafer 200.
  • a plurality of the gas supply holes 410a are provided from the lower part to the upper part of the inner tube 204, have the same opening area, and are provided at the same opening pitch.
  • the gas supply hole 410a is not limited to the above-described form.
  • the opening area may be gradually increased from the lower part of the inner tube 204 toward the upper part. Thereby, the flow rate of the gas supplied from the gas supply hole 410a can be made more uniform.
  • a plurality of gas supply holes 410a of the nozzle 410 are provided at a height from the lower part to the upper part of the boat 217 described later. Therefore, the processing gas supplied from the gas supply hole 410 a of the nozzle 410 into the processing chamber 201 a is supplied to the entire area of the wafer 200 accommodated from the lower part to the upper part of the boat 217.
  • the nozzle 410 may be provided so as to extend from the lower region to the upper region of the processing chamber 201a, but is preferably provided so as to extend near the ceiling of the boat 217.
  • a reformed gas containing an inorganic ligand is supplied as a processing gas into the processing chamber 201 a through the MFC 312, the valve 314, and the nozzle 410.
  • a fluorine (F) -containing gas having a ligand which is the first halide and is electrically negative is used as the reformed gas.
  • tungsten hexafluoride (WF 6 ) is used as an example.
  • an inert gas for example, nitrogen (N 2 ) gas is supplied into the processing chamber 201a through the MFC 512, the valve 514, and the nozzle 410, respectively.
  • N 2 gas nitrogen
  • the inert gas include, in addition to N 2 gas, argon (Ar) gas, helium (He) gas, neon (Ne) gas, and xenon.
  • Ar argon
  • He helium
  • Ne neon
  • xenon xenon
  • a rare gas such as (Xe) gas may be used.
  • the reformed gas supply system as the first gas supply system is mainly configured by the gas supply pipe 310, the MFC 312, the valve 314, and the nozzle 410, only the nozzle 410 may be considered as the reformed gas supply system.
  • the reformed gas supply system may be referred to as a processing gas supply system, or simply referred to as a gas supply system.
  • the reformed gas supply system is mainly configured by the gas supply pipe 310, the MFC 312 and the valve 314, but the nozzle 410 may be included in the reformed gas supply system. Good.
  • an inert gas supply system is mainly configured by the gas supply pipe 510, the MFC 512, and the valve 514.
  • the gas supply method in the present embodiment is performed via a nozzle 410 disposed in a preliminary chamber 205a in an annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200. Gas is transported. Then, gas is ejected into the inner tube 204 from a plurality of gas supply holes 410 a provided at positions facing the wafer of the nozzle 410. More specifically, the reformed gas or the like is ejected in a direction parallel to the surface of the wafer 200 through the gas supply hole 410 a of the nozzle 410.
  • the exhaust hole (exhaust port) 204a is a through hole formed at a position facing the nozzle 410 on the side wall of the inner tube 204, and is, for example, a slit-like through hole that is elongated in the vertical direction.
  • the gas supplied into the processing chamber 201a from the gas supply hole 410a of the nozzle 410 and flowing on the surface of the wafer 200 consists of a gap formed between the inner tube 204 and the outer tube 203 via the exhaust hole 204a. It flows into the exhaust path 206.
  • the gas flowing into the exhaust path 206 flows into the exhaust pipe 231 and is discharged out of the processing furnace 202a.
  • the exhaust hole 204a is provided at a position facing the plurality of wafers 200, and the gas supplied from the gas supply hole 410a to the vicinity of the wafer 200 in the processing chamber 201a flows in the horizontal direction and then exhausts. It flows into the exhaust path 206 through the hole 204a.
  • the exhaust hole 204a is not limited to being configured as a slit-shaped through hole, and may be configured by a plurality of holes.
  • the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201a.
  • the exhaust pipe 231 includes, in order from the upstream side, a pressure sensor 245 serving as a pressure detector (pressure detector) for detecting the pressure in the processing chamber 201a, an APC (Auto Pressure Controller) valve 243, and a vacuum pump serving as a vacuum exhaust device. 246 is connected.
  • the APC valve 243 can open and close the vacuum pump 246 while the vacuum pump 246 is operated, and can stop the vacuum exhaust and the vacuum exhaust in the processing chamber 201a. Further, the APC valve 243 can be operated while the vacuum pump 246 is operated. By adjusting the opening, the pressure in the processing chamber 201a can be adjusted.
  • the exhaust system is mainly configured by the exhaust hole 204a, the exhaust path 206, the exhaust pipe 231, the APC valve 243, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209.
  • the seal cap 219 is configured to contact the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209.
  • a rotation mechanism 267 that rotates the boat 217 that accommodates the wafers 200 is installed on the seal cap 219 on the opposite side of the processing chamber 201a.
  • a rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the outer tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201a by moving the seal cap 219 up and down.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217 and the wafer 200 accommodated in the boat 217 into and out of the processing chamber 201a.
  • a boat 217 as a substrate support is configured to arrange a plurality of, for example, 25 to 200, wafers 200 in a horizontal posture and at an interval in the vertical direction with their centers aligned. .
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat resistant material such as quartz or SiC is supported in multiple stages (not shown) in a horizontal posture. With this configuration, heat from the heater 207 is not easily transmitted to the seal cap 219 side.
  • this embodiment is not limited to the above-mentioned form.
  • a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and by adjusting the energization amount to the heater 207 based on the temperature information detected by the temperature sensor 263,
  • the temperature in the processing chamber 201a is configured to have a desired temperature distribution.
  • the temperature sensor 263 is configured in an L shape like the nozzle 410, and is provided along the inner wall of the inner tube 204.
  • FIG. 4 is a longitudinal sectional view of a processing furnace 202b as a second process unit provided in the substrate processing apparatus 10, and FIG. 5 is a top sectional view of the processing furnace 202b.
  • the processing furnace 202b in the present embodiment is different from the processing furnace 202a described above in the processing chamber 201. In the processing furnace 202b, only parts different from the above-described processing furnace 202a will be described below, and description of the same parts will be omitted.
  • the processing furnace 202b includes a processing chamber 201b as a second processing chamber.
  • nozzles 420 and 430 are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • Gas supply pipes 320 and 330 are connected to the nozzles 420 and 430, respectively.
  • the processing furnace 202b of this embodiment is not limited to the above-mentioned form.
  • the gas supply pipes 320 and 330 are respectively provided with MFCs 322 and 332 from the upstream side.
  • the gas supply pipes 320 and 330 are provided with valves 324 and 334, respectively.
  • Gas supply pipes 520 and 530 for supplying an inert gas are connected to the downstream sides of the valves 324 and 334 of the gas supply pipes 320 and 330, respectively.
  • the gas supply pipes 520 and 530 are respectively provided with MFCs 522 and 532 and valves 524 and 534 in order from the upstream side.
  • Nozzles 420 and 430 are connected to the distal ends of the gas supply pipes 320 and 330, respectively.
  • the nozzles 420 and 430 are configured as L-shaped nozzles, and a horizontal portion thereof is provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portions of the nozzles 420 and 430 are provided inside a channel-shaped (groove-shaped) preliminary chamber 205b that protrudes radially outward of the inner tube 204 and extends in the vertical direction. In the preliminary chamber 205 b, it is provided upward (upward in the arrangement direction of the wafers 200) along the inner wall of the inner tube 204.
  • the nozzles 420 and 430 are provided so as to extend from the lower region of the processing chamber 201b to the upper region of the processing chamber 201b, and a plurality of gas supply holes 420a and 430a are provided at positions facing the wafer 200, respectively. Yes.
  • a plurality of gas supply holes 420a and 430a of the nozzles 420 and 430 are provided at positions from the bottom to the top of the boat 217 described later. Therefore, the processing gas supplied from the gas supply holes 420 a and 430 a of the nozzles 420 and 430 into the processing chamber 201 b is supplied to the entire area of the wafer 200 accommodated from the lower part to the upper part of the boat 217.
  • a raw material gas as a deposition gas is supplied into the processing chamber 201b through the MFC 322, the valve 324, and the nozzle 420 as a processing gas.
  • a Cl-containing gas containing chlorine (Cl) having a ligand which is a second halide and is electrically negative is used as the source gas.
  • TiCl 4 titanium tetrachloride
  • Gas can be used.
  • a reaction gas that reacts with a source gas as a deposition gas is supplied into the processing chamber 201 b through the MFC 332, the valve 334, and the nozzle 430 as a processing gas.
  • a reaction gas for example, an N-containing gas containing nitrogen (N) is used, and as an example, ammonia (NH 3 ) gas can be used.
  • nitrogen (N 2 ) gas as an inert gas is supplied into the processing chamber 201b through the MFCs 522 and 532, the valves 524 and 534, and the nozzles 420 and 430, respectively.
  • N 2 gas is used as the inert gas.
  • the inert gas include, in addition to N 2 gas, argon (Ar) gas, helium (He) gas, neon (Ne) gas, and xenon.
  • a rare gas such as (Xe) gas may be used.
  • the gas supply pipes 320 and 330, the MFCs 322 and 332, the valves 324 and 334, and the nozzles 420 and 430 constitute a deposition gas supply system as a second gas supply system, but only the nozzles 420 and 430 are used as the deposition gas. It may be considered a supply system.
  • the deposition gas supply system may be referred to as a processing gas supply system or simply a gas supply system.
  • the source gas supply system is mainly configured by the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 420 may be included in the source gas supply system.
  • the reaction gas supply system when a reaction gas is allowed to flow from the gas supply pipe 330, the reaction gas supply system is mainly configured by the gas supply pipe 330, the MFC 332, and the valve 334. However, the nozzle 430 may be included in the reaction gas supply system. .
  • the reaction gas supply system can also be referred to as a nitrogen-containing gas supply system.
  • an inert gas supply system is mainly configured by the gas supply pipes 520 and 530, the MFCs 522 and 532, and the valves 524 and 534.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via an internal bus.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of a semiconductor device manufacturing method described later, and the like are stored in a readable manner.
  • the process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 121 to execute each step (each step) in the semiconductor device manufacturing method described later, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to simply as a program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes MFCs 312, 322, 332, 512, 522, 532, valves 314, 324, 334, 514, 524, 534, a pressure sensor 245, an APC valve 243, which are included in the above-described processing furnaces 202a, 202b, respectively.
  • the vacuum pump 246, the heater 207, the temperature sensor 263, the rotation mechanism 267, the boat elevator 115, the gate valves 70a to 70d, the first substrate transfer machine 112, and the like are connected.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and to read a recipe and the like from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rates of various gases by the MFCs 312, 322, 332, 512, 522, and 532, the opening and closing operations of the valves 314, 324, 334, 514, 524, and 534, and the APC valve in accordance with the contents of the read recipe.
  • the controller 121 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or a DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card).
  • the above-mentioned program can be configured by installing it in a computer.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • the recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both.
  • the program may be provided to the computer using communication means such as the Internet or a dedicated line without using the external storage device 123.
  • Substrate processing step As one step of a semiconductor device (device) manufacturing process, a silicon oxide (SiO 2 ) layer as a first surface and silicon nitridation as a second surface different from the first surface (SiO 2 ) layer will be described with reference to FIG.
  • a process for modifying the surface of the SiO 2 layer on the wafer 200 is performed in the processing furnace 202a, and then a process for selectively growing a TiN film on the SiN layer on the wafer 200 is performed in the processing furnace 202b.
  • the carry-in / carry-in operation from the processing furnace 202a to the processing furnace 202b is omitted.
  • the operation of each part constituting the substrate processing apparatus 10 is controlled by the controller 121.
  • a tungsten hexafluoride (WF 6 ) gas as a modified gas containing an inorganic ligand is supplied to the wafer 200 having the SiO 2 layer as the first surface and the SiN layer as the second surface. Modifying the surface of the SiO 2 layer; A step of supplying a TiCl 4 gas as a source gas and an NH 3 gas as a reaction gas to the wafer 200 as a deposition gas and selectively growing a TiN film on the surface of the SiN layer.
  • WF 6 tungsten hexafluoride
  • the step of modifying the surface of the SiO 2 layer on the surface of the wafer 200 may be performed a plurality of times.
  • the process of modifying the surface of the SiO 2 layer on the surface of the wafer 200 is called a surface modification process or simply a modification process.
  • a process of selectively growing a TiN film on the surface of the SiN layer on the surface of the wafer 200 is called a film forming process.
  • wafer When the term “wafer” is used in this specification, it may mean “wafer itself” or “a laminate of a wafer and a predetermined layer or film formed on the surface”. is there.
  • wafer surface When the term “wafer surface” is used in this specification, it may mean “the surface of the wafer itself” or “the surface of a predetermined layer or film formed on the wafer”. is there.
  • substrate In this specification, the term “substrate” is also synonymous with the term “wafer”.
  • the processing furnace 202a as a first processing unit, carries the wafer 200 having a SiO 2 layer and the SiN layer on the surface, perform the modification treatment, the surface of the SiO 2 layer on the wafers 200 F Create a termination.
  • the processing chamber 201a is evacuated by a vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201a is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 keeps operating at least until the processing on the wafer 200 is completed. Further, the processing chamber 201a is heated by the heater 207 so as to have a desired temperature. At this time, the energization amount to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201a has a desired temperature distribution (temperature adjustment). Heating of the processing chamber 201a by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • A-1 [Reformed gas supply process] (WF 6 gas supply)
  • the valve 314 is opened, and the WF 6 gas that is the reformed gas is caused to flow into the gas supply pipe 310.
  • the flow rate of the WF 6 gas is adjusted by the MFC 312, supplied from the gas supply hole 410 a of the nozzle 410 into the processing chamber 201 a, and exhausted from the exhaust pipe 231.
  • WF 6 gas is supplied to the wafer 200.
  • the valve 514 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 510.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512, supplied into the processing chamber 201a together with the WF 6 gas, and exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201a is, for example, in the range of 1 to 1000 Pa.
  • the supply flow rate of the WF 6 gas controlled by the MFC 312 is, for example, a flow rate in the range of 1 to 1000 sccm.
  • the supply flow rate of N 2 gas controlled by the MFC 512 is, for example, a flow rate in the range of 100 to 10000 sccm.
  • the time for supplying the WF 6 gas to the wafer 200 is, for example, a time within a range of 1 to 3600 seconds.
  • the temperature of the heater 207 is set so that the temperature of the wafer 200 is, for example, 30 to 300 ° C., preferably 30 to 250 ° C., more preferably 50 to 200 ° C.
  • 30 to 300 ° C. means 30 ° C. or more and 300 ° C. or less.
  • the gases flowing into the processing chamber 201a are WF 6 gas and N 2 gas.
  • the bonding on the surface of the wafer 200 is broken, and F contained in the WF 6 gas is bonded to generate a halogen termination on the SiO 2 layer on the surface of the wafer 200.
  • no halogen termination is generated on the SiN layer on the surface of the wafer 200.
  • valve 314 of the gas supply pipe 310 is closed to stop the supply of WF 6 gas.
  • A-2 [Purge process] (Residual gas removal)
  • a purge process for exhausting the gas in the process chamber 201a is performed.
  • the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201a is evacuated by the vacuum pump 246, and the unreacted WF 6 gas remaining in the processing chamber 201a or the SiO 2 layer surface is terminated with halogen.
  • the later WF 4 gas is removed from the processing chamber 201a.
  • the valve 514 is kept open and the supply of N 2 gas into the processing chamber 201a is maintained.
  • the N 2 gas acts as a purge gas, and the effect of removing unreacted WF 6 gas or WF 4 gas remaining in the processing chamber 201a from the processing chamber 201a can be enhanced.
  • FIGS. 8A to 8C show a state in which a halogen termination is generated on such a SiO 2 layer and no halogen termination is generated on the SiN layer.
  • FIG. 8A is a model diagram showing a state of the surface of the wafer 200 on which the SiO 2 layer and the SiN layer before being exposed to the WF 6 gas are formed
  • FIG. 8B is a diagram showing the surface of the wafer 200 with the WF 6 gas
  • FIG. 8C is a model diagram showing the state of the surface of the wafer 200 after being exposed to WF 6 gas.
  • the surface of the SiO 2 layer on the wafer 200 is terminated by a fluorine component (halogen termination). It can also be seen that the SiN layer surface on the wafer 200 is not terminated by a fluorine component (halogen termination). That is, when exposed to WF 6 gas, adsorbed on SiO 2 layer off the F molecules of WF 6, the SiO 2 layer is brought repellent effect is F coating.
  • N 2 gas is supplied from the gas supply pipe 510 into the processing chamber 201 a and exhausted from the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, whereby the inside of the processing chamber 201a is purged with an inert gas, and the gas and by-products remaining in the processing chamber 201a are removed from the inside of the processing chamber 201a (after purge).
  • the atmosphere in the processing chamber 201a is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201a is returned to normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115 and the lower end of the reaction tube 203 is opened. Then, the modified wafer 200 is unloaded from the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217 (boat unloading). Thereafter, the modified wafer 200 is taken out from the boat 217 (wafer discharge).
  • the wafer 200 that has been modified in the processing furnace 202a is loaded into the processing furnace 202b as the second process unit. Then, pressure adjustment and temperature adjustment are performed to a desired pressure and a desired temperature distribution in the processing chamber 201b, and a film forming process is performed.
  • this process differs only in the process in the process furnace 202a mentioned above, and a gas supply process. Therefore, only the parts different from the process in the above-described processing furnace 202a will be described below, and the description of the same parts will be omitted.
  • TiCl 4 gas supply The valve 324 is opened and a TiCl 4 gas that is a raw material gas is caused to flow into the gas supply pipe 320.
  • the flow rate of the TiCl 4 gas is adjusted by the MFC 322, supplied from the gas supply hole 420 a of the nozzle 420 into the processing chamber 201 b, and exhausted from the exhaust pipe 231.
  • TiCl 4 gas is supplied to the wafer 200.
  • the valve 524 is opened, and an inert gas such as N 2 gas is allowed to flow into the gas supply pipe 520.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 520 is adjusted by the MFC 522, supplied to the processing chamber 201 b together with the TiCl 4 gas, and exhausted from the exhaust pipe 231.
  • the valve 534 is opened and N 2 gas is allowed to flow into the gas supply pipe 530.
  • the N 2 gas is supplied into the processing chamber 201 b through the gas supply pipe 330 and the nozzle 430 and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201b is, for example, a pressure within a range of 1 to 1000 Pa, for example, 100 Pa.
  • the supply flow rate of the TiCl 4 gas controlled by the MFC 322 is, for example, a flow rate in the range of 0.1 to 2 slm.
  • the supply flow rate of N 2 gas controlled by the MFCs 522 and 532 is set to a flow rate in the range of 1 to 10 slm, for example.
  • the time for supplying the TiCl 4 gas to the wafer 200 is, for example, a time within the range of 0.1 to 200 seconds.
  • the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 is, for example, in the range of 100 to 600 ° C., preferably 200 to 500 ° C., more preferably 200 to 400 ° C. .
  • the gases flowing into the processing chamber 201b are TiCl 4 gas and N 2 gas.
  • TiCl 4 gas does not adsorb on the SiO 2 layer whose surface is halogen-terminated in the above-described modification process, but adsorbs on the SiN layer.
  • the halogen (Cl) contained in the TiCl 4 gas and the halogen (F) on the SiO 2 layer are electrically negative ligands, so that they become repulsive factors and are difficult to adsorb. Because it is.
  • the incubation time becomes longer than on the SiO 2 layer, it is possible to selectively grown TiN film on the surface other than the SiO 2 layer.
  • the incubation time is the time until the film starts to grow on the wafer surface.
  • the raw material gas may be adsorbed on the wafer surface which is not desired to be formed, and unintended film formation may occur. This is a violation of selectivity.
  • This breaking of selectivity tends to occur when the adsorption probability of source gas molecules on the wafer is high. That is, lowering the adsorption probability of source gas molecules to a wafer that is not desired to be formed directly leads to an improvement in selectivity.
  • the adsorption of the source gas on the wafer surface is brought about by the source gas remaining on the wafer surface for a certain period of time due to the electrical interaction between the source molecules and the wafer surface. That is, the adsorption probability depends on both the exposure density of the source gas or its decomposition product to the wafer and the electrochemical factor of the wafer itself.
  • the electrochemical factor of the wafer itself often includes, for example, atomic level surface defects, charging due to polarization, electric field, and the like. That is, if the electrochemical factor on the wafer surface and the source gas are easily attracted to each other, it can be said that adsorption is likely to occur.
  • Si silicon, SiO 2 film, SiN film, and metal film are used.
  • control of selective growth in SiO film which is one of the most widely used materials.
  • the modifying gas for modifying the surface of the SiO 2 layer on the wafer 200 it is preferable to use a material containing molecules having a strong adsorptivity to the oxide film as the modifying gas for modifying the surface of the SiO 2 layer on the wafer 200. Moreover, it is preferable to use a material that does not etch the oxide film even if it is exposed to the oxide film at a low temperature as the modifying gas for modifying the surface of the SiO 2 layer on the wafer 200.
  • the N 2 gas is supplied into the processing chamber 201b together with the NH 3 gas, and is exhausted from the exhaust pipe 231.
  • the valve 524 is opened and N 2 gas is allowed to flow into the gas supply pipe 520.
  • the N 2 gas is supplied into the processing chamber 201 b through the gas supply pipe 320 and the nozzle 420 and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201b is set to a pressure in the range of 100 to 2000 Pa, for example, 800 Pa.
  • the supply flow rate of NH 3 gas controlled by the MFC 332 is set to a flow rate in the range of 0.5 to 5 slm, for example.
  • the supply flow rate of N 2 gas controlled by the MFCs 522 and 532 is set to a flow rate in the range of 1 to 10 slm, for example.
  • the time for supplying the NH 3 gas to the wafer 200 is, for example, a time within the range of 1 to 300 seconds.
  • the temperature of the heater 207 at this time is set to the same temperature as in the TiCl 4 gas supply step.
  • the gases flowing into the processing chamber 201 are only NH 3 gas and N 2 gas.
  • the NH 3 gas undergoes a substitution reaction with at least a part of the Ti-containing layer formed on the SiN layer of the wafer 200 in the first step described above.
  • Ti contained in the Ti-containing layer and N contained in the NH 3 gas are combined to form a TiN film containing Ti and N on the SiN layer on the wafer 200. That is, a TiN film is not formed on the SiO 2 layer on the wafer 200.
  • FIGS. 9A to 9C and FIG. 10 show how a TiN film is formed on such a SiO 2 layer without forming a halogen termination on the SiN layer. Shown in A).
  • FIG. 9A is a model diagram showing the state of the wafer surface immediately after the TiCl 4 gas is supplied
  • FIG. 9B is a model diagram showing the state of the wafer surface after being exposed to the TiCl 4 gas.
  • FIG. 9C is a model diagram showing the state of the wafer surface immediately after the NH 3 gas is supplied.
  • FIG. 10A is a model diagram showing the state of the wafer surface after exposure with NH 3 gas.
  • the surface of the SiO 2 layer on the wafer 200 is terminated by a fluorine component (halogen termination). It can also be seen that a TiN film containing Ti and N is formed on the surface of the SiN layer on the wafer 200. That is, it can be seen that the SiO 2 layer surface is halogen-terminated and no TiN film is formed.
  • a fluorine component halogen termination
  • TiCl 4 gas as a source gas and NH 3 gas as a reaction gas are alternately supplied so as not to be mixed with each other, and a cycle in which the above-described first to fourth steps are sequentially performed one or more times (predetermined number of times) (N times))
  • a TiN film having a predetermined thickness for example, 5 to 10 nm
  • the above cycle is preferably repeated multiple times.
  • FIG. 2 As shown in FIG. 2, after the reformed gas supply process (WF 6 gas supply) and the purge process (residual gas removal) are sequentially performed once in the process furnace 201a, The film forming process described above may be executed. In FIG. 7B as well, the carry-in / carry-in operation from the processing furnace 202a to the processing furnace 202b is omitted.
  • the film formation temperature is preferably lower than the self-decomposition temperature of the source gas, such as less than 800 ° C.
  • organic substances and inorganic substances can be considered as reforming gases for modifying the surface of the SiO 2 layer on the wafer 200, but surface modification with organic substances has low heat resistance, and breaks when the film forming temperature is 500 ° C. or higher. , Adsorption with Si is also lost. That is, the selectivity is broken when high-temperature film formation at 500 ° C. or higher is performed.
  • surface modification with an inorganic substance has high heat resistance, and even when the film forming temperature is 500 ° C. or higher, adsorption with Si does not come off.
  • fluorine (F) is a strong passivation agent and has a strong adsorption power.
  • an inorganic material containing an inorganic ligand as a modifying gas for modifying the surface of the SiO 2 layer on the wafer 200 for example, fluorine (F), chlorine (Cl), iodine (I), bromine ( By using a halide containing Br) or the like, it is possible to perform selective growth using a reformed gas even for a film which is formed at a high temperature of 500 ° C. or higher.
  • the reforming process can be performed at a low temperature of 250 ° C. or lower, and the film formation process as selective growth can be performed at a high temperature of 500 ° C. or higher.
  • the halides those having particularly high binding energy are preferred.
  • the F-containing gas has the highest binding energy among the halides and has a strong adsorption power.
  • a source gas having electrically negative molecules is used as a source gas used for selective growth.
  • the reformed gas for modifying the surface of the SiO 2 layer on the wafer 200 is an electrically negative halide, and thus repels each other and becomes difficult to bond.
  • the source gas preferably contains only one source molecule such as a metal element or silicon element. This is because when two or more raw material molecules are included, for example, when two Si are included, the Si—Si bond is broken, and Si and F are bonded, and the selectivity may be broken.
  • the SiO 2 layer surface is first halogen-terminated with a WF 6 gas containing a halide, and then a TiN film is formed on the surface of the SiN layer other than the SiO 2 layer with a TiCl 4 gas containing a halide. .
  • WF 6 gas is exposed, F molecules are adsorbed on the oxide film, and the surface of the oxide film is coated with F molecules.
  • This F molecule has a strong adsorption force, and does not come off even when the film forming temperature is a high temperature of 500 ° C. or higher.
  • the halogen (Cl) contained in the TiCl 4 gas and the halogen (F) on the SiO 2 layer are repulsive factors because they are electrically negative ligands, and the surface is halogen-terminated SiO 2 layer. It does not adsorb on the surface. Therefore, even when a high temperature film formation of 500 ° C. or higher is performed, the F coating on the oxide film can be selectively grown on a surface other than the SiO 2 layer surface without detachment.
  • the extension of the incubation time by the above-described reformed gas was shorter than that of the SiO 2 film. It was done. By utilizing this difference in incubation time, it is difficult to form a film on the SiO 2 film, and it is possible to form a film so as to be selectively formed on other films.
  • the reforming process is performed using the cluster type substrate processing apparatus 10 including the processing chamber 202a for performing the reforming process and the processing chamber 202b for performing the film forming process.
  • a reformed gas supply system and a deposition gas supply system are provided in one processing chamber 301 as shown in FIGS.
  • the present invention can be similarly applied to a configuration in which the substrate processing apparatus 300 is used to perform the modification process and the film formation process in the same processing chamber 201. That is, the present invention can be similarly applied to a configuration in which substrate processing is performed in situ. In this case, the reforming process and the film forming process can be performed continuously.
  • the film forming process can be continuously performed without carrying the wafer 200 out of the processing chamber after the reforming process. Therefore, as compared with the above-described embodiment, the film forming process can be performed while maintaining the F termination generated on the surface of the SiO 2 layer.
  • a reforming process As a reforming process, wafer carry-in, pressure adjustment and temperature adjustment are performed, a reformed gas supply process and a purge process are performed a predetermined number of times, after-purging is performed, and then continuously.
  • a reformed gas supply process and a purge process are performed a predetermined number of times, after-purging is performed, and then continuously.
  • the film forming process pressure adjustment and temperature adjustment are performed, and after performing the first to fourth steps a predetermined number of times, after purge and return to atmospheric pressure are performed, and the wafer is carried out.
  • the substrate processing process semiconductor device manufacturing process
  • a modified gas containing an inorganic ligand for example, WF 6 gas
  • a wafer 200 having a first surface (for example, SiO 2 layer) and a second surface (for example, SiN layer) Modifying the surface of 1; Supplying a source gas (eg, TiCl 4 gas) and a reactive gas (eg, NH 3 gas) as deposition gases to the wafer 200 and selectively growing a film (eg, a TiN film) on the second surface; , Are alternately performed a predetermined number of times.
  • a source gas eg, TiCl 4 gas
  • a reactive gas eg, NH 3 gas
  • the F termination generated on the first surface during the film forming process is gradually removed and a film is formed on the first surface. Even if the property is broken, it is possible to repair the formed F film by removing the formed film by etching with a reforming gas in a reforming process. That is, the second modification process also has an action as an etching process. The selectivity can be improved by repairing the detached F-termination and then performing the film forming process.
  • tungsten hexafluoride (WF 6 ) gas is used as the reforming gas.
  • the present invention is not limited to such a case. Even when other gases such as chlorine trifluoride (ClF 3 ) gas, nitrogen trifluoride (NF 3 ) gas, hydrogen fluoride (HF) gas, fluorine (F 2 ) gas are used as the reformed gas, the same applies.
  • gases such as chlorine trifluoride (ClF 3 ) gas, nitrogen trifluoride (NF 3 ) gas, hydrogen fluoride (HF) gas, fluorine (F 2 ) gas are used as the reformed gas, the same applies.
  • the present invention is applicable. When there is a concern about metal contamination, it is preferable to use a gas containing no metal element.
  • TiCl 4 gas used as the source gas used for selective growth
  • source gases halogen-containing silicon tetrachloride (SiCl 4 ), aluminum tetrachloride (AlCl 4 ), zirconium tetrachloride (ZrCl 4 ), hafnium tetrachloride (HfCl 4 ), tantalum pentachloride (TaCl 5 ), tungsten pentachloride
  • source gases halogen-containing silicon tetrachloride (SiCl 4 ), aluminum tetrachloride (AlCl 4 ), zirconium tetrachloride (ZrCl 4 ), hafnium tetrachloride (HfCl 4 ), tantalum pentachloride (TaCl 5 ), tungsten pentachloride
  • the present invention can be similarly applied when other gases such as (WCl 5 ), molybdenum pentachloride (MoC
  • NH 3 gas used as the reaction gas used for selective growth
  • the present invention is not limited to such a case.
  • gases such as hydrazine (N 2 H 4 ), water (H 2 O), oxygen (O 2 ), mixed gas of hydrogen (H 2 ) and oxygen (O 2 ) that react with the raw material gas are used as the reaction gas. Even when used, the present invention can be similarly applied.
  • SiN film is selectively grown at a high temperature of about 550 ° C. using silicon tetrachloride (SiCl 4 ) and NH 3 gas as source gases used for selective growth. It becomes possible. Further, by using silicon tetrachloride (SiCl 4 ) as source gas used for selective growth, H 2 O gas and a catalyst such as pyridine, the SiO 2 film can be selectively grown at an extremely low temperature of about 40 to 90 ° C. It becomes possible.
  • Example 1 Next, using the substrate processing apparatus 10 described above, using the substrate processing step described above, a WF 6 gas was exposed as a modifying gas to form a titanium nitride (TiN) film on the SiN layer.
  • TiN titanium nitride
  • the WF 6 gas is exposed in the substrate processing step described above to form a TiN film on the SiO 2 layer, and the WF 6 gas is not exposed.
  • the difference in the film thickness of the TiN film that is generated when the TiN film is formed on the SiO 2 layer will be described with reference to FIG.
  • T SiN deposition rate on SiN layer ⁇ (incubation time on SiO 2 layer ⁇ incubation time on SiN layer) ... (Formula 1)
  • T SiN 5.8 nm is calculated according to the above equation 1. That is, a TiN film having a thickness of 5.8 nm can be selectively formed on the SiN layer without forming a TiN film on the SiO 2 layer.
  • FIG. 14 shows the dependence of T SiN on the number of pulses of WF 6 gas supply.
  • T SiN shows a saturation tendency when the pulse supply of WF 6 gas is repeated about 60 times.
  • Example 3 Next, using the substrate processing apparatus 10 described above, (a) a TiN film is formed on the SiO 2 layer without exposing the WF 6 gas in the substrate processing step described above, and (b) WF A TiN film formed when a TiN film is formed on the SiO 2 layer by supplying 6 pulses of gas and (c) a TiN film is formed on the SiO 2 layer by continuously supplying WF 6 gas.
  • the difference in film thickness will be described with reference to FIG.
  • the pulse supply of WF 6 gas is 60 cycles (total exposure time of WF 6 gas is 10 minutes), and in the continuous supply of (c), the exposure time of WF 6 gas is 10 minutes, The total exposure time for (b) and (c) was the same.
  • the incubation time is 16 cycles, in the case of pulse supply of (b), the incubation time is 256 cycles, and in the case of continuous supply of (c), the incubation time is 168 cycles.
  • the incubation time was longer when the WF 6 gas of (b) and (c) was exposed than when the WF 6 gas of (a) was not exposed.
  • the incubation time is longer when the WF 6 gas of (b) is supplied by pulse than when the WF 6 gas of (c) is continuously supplied.
  • Example 4 using the substrate processing apparatus 10 described above, in the substrate processing step described above, WF 6 gas is pulsed onto the SiO 2 layer, the zirconium oxide (ZrO) layer, and the hafnium oxide (HfO) layer.
  • a TiN film is formed after the supply (60 cycles), and how much the thickness of the formed TiN film is different will be described with reference to FIG.
  • the TiN film formed on the ZrO layer and the HfO layer has a longer incubation time than the TiN film formed on the SiO 2 layer even when the WF 6 gas is exposed. It was confirmed that the incubation time was long. That is, the ZrO layer, incubation time on the HfO layer is shorter than the incubation time on the SiO 2 layer, the ZrO layer, preferentially forming a TiN layer against on the SiO 2 layer even on HfO layer It was confirmed that
  • FIG. 16A is a comparative example, and shows a film thickness of a SiN film that is selectively grown on the SiN layer and the SiO 2 layer when the film formation process is performed without performing the modification process.
  • FIG. 16B is a diagram showing the thickness of the SiN film selectively grown on the SiN layer and the SiO 2 layer when the film forming process is performed after the reforming process. Plots are made for cycles, 300 cycles, and 400 cycles.
  • FIG. 16C is a diagram showing the film thicknesses of SiN films that are selectively grown on the SiN layer and the SiO 2 layer, respectively, when the modification process and the film formation process are alternately performed twice. The case where each film-forming process was performed 200 cycles (400 cycles in total) is plotted.
  • FIG. 16A when the film formation process is performed without the modification process, there is no difference in the film thickness of the SiN film formed by the SiN layer and the SiO 2 layer. It was confirmed that little selectivity occurred.
  • FIGS. 16B and 16C by performing the reforming process before the film forming process, selectivity is generated between the SiN layer and the SiO 2 layer, alternately. It was confirmed that the selectivity is more remarkably generated by repeating a plurality of times.
  • Substrate processing apparatus 121 Controller 200 Wafer (substrate) 201a, 201b, 301 processing chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

基板上に膜を選択的に形成することができる技術を提供する。 第1の表面と、前記第1の表面とは異なる第2の表面を有する基板に対して、無機配位子を含む改質ガスを供給して、前記第1の表面を改質する工程と、前記基板に対して、堆積ガスを供給し、前記第2の表面に膜を選択成長させる工程と、を有する。

Description

半導体装置の製造方法、基板処理装置およびプログラム
 本発明は、半導体装置の製造方法、基板処理装置およびプログラムに関する。
 大規模集積回路(Large Scale Integrated Circuit:以下LSI)の微細化に伴って、パターニング技術の微細化も進んでいる。パターニング技術として、例えばハードマスク等が用いられるが、パターニング技術の微細化により、レジストを露光してエッチング領域と非エッチング領域を区分けする方法が適用しにくくなる。このため、シリコン(Si)ウエハなどの基板上に、シリコン(Si)、シリコンゲルマニウム(SiGe)などのエピタキシャル膜を、選択的に成長させて形成することが行われている(例えば、特許文献1、特許文献2参照)。
特開2003-100746号公報 特開2015-122481号公報
 本発明は、基板上に膜を選択的に形成することができる技術を提供することを目的とする。
 本発明の一態様によれば、
 第1の表面と、前記第1の表面とは異なる第2の表面を有する基板に対して、無機配位子を含む改質ガスを供給して、前記第1の表面を改質する工程と、
 前記基板に対して、堆積ガスを供給し、前記第2の表面に膜を選択成長させる工程と、
 を有する技術が提供される。
 本発明によれば、基板上に膜を選択的に形成することができる。
本発明の一実施形態に係る基板処理装置10を説明するための上面断面図である。 本発明の一実施形態に係る基板処理装置10の処理炉202aの構成を説明するための縦断面図である。 図2に示す処理炉202aの上面断面図である。 本発明の一実施形態に係る基板処理装置10の処理炉202bの構成を説明するための縦断面図である。 図4に示す処理炉202bの上面断面図である。 本発明の一実施形態に係る基板処理装置10の制御部の構成を説明するためのブロック図である。 (A)は、本発明の一実施形態に係るガス供給のタイミングを示す図であって、(B)は、(A)の変形例を示す図である。 (A)は、WF6ガスによる暴露前のSiO2層、SiN層が形成されたウエハ表面の様子を示すモデル図であり、(B)は、ウエハ表面をWF6ガスにより暴露した直後の状態を示すモデル図であり、(C)は、WF6ガスによる暴露後のウエハ表面の様子を示すモデル図である。 (A)は、TiCl4ガスが供給された直後のウエハ表面の状態を示すモデル図であり、(B)は、TiCl4ガスによる暴露後のウエハ表面の状態を示すモデル図であり、(C)は、NH3ガスが供給された直後のウエハ表面の状態を示すモデル図である。 (A)は、NH3ガスによる暴露後のウエハ表面の状態を示すモデル図であり、(B)は、本発明の一実施形態に係る基板処理工程を行った後のウエハ表面を示す図である。 本発明の他の実施形態に係る基板処理装置300の処理炉302を説明するための縦断面図である。 図11に示す処理炉302の上面断面図である。 (A)は、SiN層上に形成されるTiN膜の成膜サイクル数と膜厚の関係を示す図であって、(B)は、SiO2層上に形成されるTiN膜の成膜サイクル数と膜厚の関係を示す図である。 SiNのWF6ガス供給のパルス数に対する依存性を示している。 (A)は、SiO2層上に形成されるTiN膜のWF6ガスの供給方法と成膜サイクル数と膜厚の関係を示す図であって、(B)は、SiO2層、ZrO層、HfO層上にそれぞれ形成されるTiN膜の成膜サイクル数と膜厚の関係を示す図である。 (A)は、改質処理を行わずに成膜処理を行った場合にSiN層上とSiO2層上にそれぞれ選択成長されるSiN膜の膜厚を示す図であって、(B)は、改質処理後に成膜処理を行った場合にSiN層上とSiO2層上にそれぞれ選択成長されるSiN膜の膜厚を示す図であって、(C)は、改質処理と成膜処理とを交互に2回行った場合にSiN層上とSiO2層上にそれぞれ選択成長されるSiN膜の膜厚を示す図である。
 次に、本発明の好ましい実施形態について説明する。
 以下に、本発明の好ましい実施形態について図面を参照してより詳細に説明する。
(1)基板処理装置の構成
 図1は半導体デバイスの製造方法を実施するための基板処理装置(以下単に、基板処理装置10という)の上面断面図である。本実施形態にかかるクラスタ型の基板処理装置10の搬送装置は、真空側と大気側とに分かれている。また、基板処理装置10では、基板としてのウエハ200を搬送するキャリヤとして、FOUP(Front Opening Unified Pod:以下、ポッドという。)100が使用されている。
(真空側の構成)
 図1に示されているように、基板処理装置10は、真空状態などの大気圧未満の圧力(負圧)に耐え得る第1搬送室103を備えている。第1搬送室103の筐体101は平面視が例えば五角形であり、上下両端が閉塞した箱形状に形成されている。
 第1搬送室103内には、ウエハ200を移載する第1基板移載機112が設けられている。
 筐体101の五枚の側壁のうち前側に位置する側壁には、予備室(ロードロック室)122,123がそれぞれゲートバルブ126,127を介して連結されている。予備室122,123は、ウエハ200を搬入する機能とウエハ200を搬出する機能とを併用可能に構成され、それぞれ負圧に耐え得る構造で構成されている。
 第1搬送室103の筐体101の五枚の側壁のうち後ろ側(背面側)に位置する四枚の側壁には、基板を収容し、収容された基板に所望の処理を行う第1プロセスユニットとしての処理炉202aと、第2プロセスユニットとしての処理炉202b、第3プロセスユニットとしての処理炉202c、第4プロセスユニットとしての処理炉202dがゲートバルブ70a,70b,70c,70dを介してそれぞれ隣接して連結されている。
(大気側の構成)
 予備室122,123の前側には、大気圧下の状態でウエハ200を搬送することができる第2搬送室121がゲートバルブ128、129を介して連結されている。第2搬送室121には、ウエハ200を移載する第2基板移載機124が設けられている。
 第2搬送室121の左側にはノッチ合わせ装置106が設けられている。なお、ノッチ合わせ装置106は、オリエンテーションフラット合わせ装置であってもよい。また、第2搬送室121の上部にはクリーンエアを供給するクリーンユニットが設けられている。
 第2搬送室121の筐体125の前側には、ウエハ200を第2搬送室121に対して搬入搬出するための基板搬入搬出口134と、ポッドオープナ108と、が設けられている。基板搬入搬出口134を挟んでポッドオープナ108と反対側、すなわち筐体125の外側には、ロードポート(IOステージ)105が設けられている。ポッドオープナ108は、ポッド100のキャップ100aを開閉すると共に基板搬入搬出口134を閉塞可能なクロージャを備えている。ロードポート105に載置されたポッド100のキャップ100aを開閉することにより、ポッド100に対するウエハ200の出し入れを可能にする。また、ポッド100は図示しない工程内搬送装置(OHTなど)によって、ロードポート105に対して、供給および排出されるようになっている。
(処理炉202aの構成)
 図2は基板処理装置10が備える第1プロセスユニットとしての処理炉202aの縦断面図であって、図3は処理炉202aの上面断面図である。
 なお、本実施形態では、第1プロセスユニットとしての処理炉202aにおいて改質処理を行った後に、第2プロセスユニットとしての処理炉202bにおいて成膜処理を行う例について説明するが、第3プロセスユニットとしての処理炉202c、第4プロセスユニットとしての処理炉202dにおいて、同様の基板処理を行うことができる。
 処理炉202aは、加熱手段(加熱機構、加熱系)としてのヒータ207を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、例えば石英(SiO2)、炭化シリコン(SiC)などの耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)などの金属からなり、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。
 アウタチューブ203の内側には、反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、例えば石英(SiO2)、炭化シリコン(SiC)などの耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部(インナチューブ204の内側)には第1の処理室としての処理室201aが形成されている。
 処理室201aは、基板としてのウエハ200を後述するボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。
 処理室201a内には、ノズル410がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410には、ガス供給管310が接続されている。ただし、本実施形態の処理炉202aは上述の形態に限定されない。
 ガス供給管310には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)312が設けられている。また、ガス供給管310には、開閉弁であるバルブ314が設けられている。ガス供給管310のバルブ314の下流側には、不活性ガスを供給するガス供給管510が接続されている。ガス供給管510には、上流側から順に、MFC512及びバルブ514が設けられている。
 ガス供給管310の先端部にはノズル410が連結接続されている。ノズル410は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410の垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室205aの内部に設けられており、予備室205a内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。
 ノズル410は、処理室201aの下部領域から処理室201aの上部領域まで延在するように設けられており、ウエハ200と対向する位置に複数のガス供給孔410aが設けられている。これにより、ノズル410のガス供給孔410aからウエハ200に処理ガスを供給する。このガス供給孔410aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔410aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410aから供給されるガスの流量をより均一化することが可能となる。
 ノズル410のガス供給孔410aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル410のガス供給孔410aから処理室201a内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200の全域に供給される。ノズル410は、処理室201aの下部領域から上部領域まで延在するように設けられていればよいが、ボート217の天井付近まで延在するように設けられていることが好ましい。
 ガス供給管310からは、処理ガスとして、無機配位子を含む改質ガスが、MFC312、バルブ314、ノズル410を介して処理室201a内に供給される。改質ガスとしては、例えば第1のハロゲン化物であって、電気的に陰性である配位子を有するフッ素(F)含有ガス等が用いられ、その一例として六フッ化タングステン(WF6)を用いることができる。
 ガス供給管510からは、不活性ガスとして、例えば窒素(N2)ガスが、それぞれMFC512、バルブ514、ノズル410を介して処理室201a内に供給される。以下、不活性ガスとしてN2ガスを用いる例について説明するが、不活性ガスとしては、N2ガス以外に、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。
 主に、ガス供給管310、MFC312、バルブ314、ノズル410により第1のガス供給系としての改質ガス供給系が構成されるが、ノズル410のみを改質ガス供給系と考えてもよい。改質ガス供給系は、処理ガス供給系と称してもよく、単にガス供給系と称してもよい。ガス供給管310から改質ガスを流す場合、主に、ガス供給管310、MFC312、バルブ314により改質ガス供給系が構成されるが、ノズル410を改質ガス供給系に含めて考えてもよい。また、主に、ガス供給管510、MFC512、バルブ514により不活性ガス供給系が構成される。
 本実施形態におけるガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内の予備室205a内に配置したノズル410を経由してガスを搬送している。そして、ノズル410のウエハと対向する位置に設けられた複数のガス供給孔410aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル410のガス供給孔410aにより、ウエハ200の表面と平行方向に向かって改質ガス等を噴出させている。
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル410に対向した位置に形成された貫通孔であり、例えば、鉛直方向に細長く開設されたスリット状の貫通孔である。ノズル410のガス供給孔410aから処理室201a内に供給され、ウエハ200の表面上を流れたガスは、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間からなる排気路206内に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202a外へと排出される。
 排気孔204aは、複数のウエハ200と対向する位置に設けられており、ガス供給孔410aから処理室201a内のウエハ200の近傍に供給されたガスは、水平方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。
 マニホールド209には、処理室201a内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201a内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245,APC(Auto Pressure Controller)バルブ243,真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201a内の真空排気及び真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201a内の圧力を調整することができる。主に、排気孔204a、排気路206、排気管231、APCバルブ243及び圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219における処理室201aの反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201a内外に搬入及び搬出することが可能なように構成されている。ボートエレベータ115は、ボート217及びボート217に収容されたウエハ200を、処理室201a内外に搬送する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が水平姿勢で多段(図示せず)に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料からなる筒状の部材として構成された断熱筒を設けてもよい。
 図3に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201a内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410と同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。
(処理炉202bの構成)
 図4は基板処理装置10が備える第2プロセスユニットとしての処理炉202bの縦断面図であって、図5は処理炉202bの上面断面図である。
 本実施形態における処理炉202bは、上述した処理炉202aと処理室201内の構成が異なっている。処理炉202bにおいて、上述した処理炉202aと異なる部分のみ以下に説明し、同じ部分は説明を省略する。処理炉202bは、第2の処理室としての処理室201bを備えている。
 処理室201b内には、ノズル420,430がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル420,430には、ガス供給管320,330が、それぞれ接続されている。ただし、本実施形態の処理炉202bは上述の形態に限定されない。
 ガス供給管320,330には上流側から順にMFC322,332がそれぞれ設けられている。また、ガス供給管320,330には、バルブ324,334がそれぞれ設けられている。ガス供給管320,330のバルブ324,334の下流側には、不活性ガスを供給するガス供給管520,530がそれぞれ接続されている。ガス供給管520,530には、上流側から順に、MFC522,532及びバルブ524,534がそれぞれ設けられている。
 ガス供給管320,330の先端部にはノズル420,430がそれぞれ連結接続されている。ノズル420,430は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル420,430の垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室205bの内部に設けられており、予備室205b内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。
 ノズル420,430は、処理室201bの下部領域から処理室201bの上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔420a,430aが設けられている。
 ノズル420,430のガス供給孔420a,430aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル420,430のガス供給孔420a,430aから処理室201b内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200の全域に供給される。
 ガス供給管320からは、処理ガスとして、堆積ガスとしての原料ガスが、MFC322、バルブ324、ノズル420を介して処理室201b内に供給される。原料ガスとしては、例えば第2のハロゲン化物であって、電気的に陰性である配位子を有する塩素(Cl)を含むCl含有ガス等が用いられ、その一例として四塩化チタン(TiCl4)ガスを用いることができる。
 ガス供給管330からは、処理ガスとして、堆積ガスとしての原料ガスと反応する反応ガスが、MFC332、バルブ334、ノズル430を介して処理室201b内に供給される。反応ガスとしては、例えば窒素(N)を含むN含有ガスが用いられ、その一例としてアンモニア(NH3)ガスを用いることができる。
 ガス供給管520,530からは、不活性ガスとして、例えば窒素(N2)ガスが、それぞれMFC522,532、バルブ524,534、ノズル420,430を介して処理室201b内に供給される。以下、不活性ガスとしてN2ガスを用いる例について説明するが、不活性ガスとしては、N2ガス以外に、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。
 主に、ガス供給管320,330、MFC322,332、バルブ324,334、ノズル420,430により第2のガス供給系としての堆積ガス供給系が構成されるが、ノズル420,430のみを堆積ガス供給系と考えてもよい。堆積ガス供給系は処理ガス供給系や単にガス供給系と称してもよい。ガス供給管320から原料ガスを流す場合、主に、ガス供給管320、MFC322、バルブ324により原料ガス供給系が構成されるが、ノズル420を原料ガス供給系に含めて考えてもよい。また、ガス供給管330から反応ガスを流す場合、主に、ガス供給管330、MFC332、バルブ334により反応ガス供給系が構成されるが、ノズル430を反応ガス供給系に含めて考えてもよい。ガス供給管330から反応ガスとして窒素含有ガスを供給する場合、反応ガス供給系を窒素含有ガス供給系と称することもできる。また、主に、ガス供給管520,530、MFC522,532、バルブ524,534により不活性ガス供給系が構成される。
(制御部の構成)
 図6に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a,RAM(Random Access Memory)121b,記憶装置121c,I/Oポート121dを備えたコンピュータとして構成されている。RAM121b,記憶装置121c,I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピ及び制御プログラムの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述の処理炉202a,202bがそれぞれ備えるMFC312,322,332,512,522,532、バルブ314,324,334,514,524,534、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115、ゲートバルブ70a~70d、第1基板移載機112等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピ等を読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC312,322,332,512,522,532による各種ガスの流量調整動作、バルブ314,324,334,514,524,534の開閉動作、APCバルブ243の開閉動作及びAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動及び停止、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 半導体装置(デバイス)の製造工程の一工程として、第1の表面としてのシリコン酸化(SiO2)層と、第1の表面とは異なる第2の表面としてのシリコン窒化(SiN)層を有するウエハ200上のSiN層上に、窒化チタン(TiN)膜を形成する工程の一例について、図7(A)を用いて説明する。本工程では、処理炉202aにおいてウエハ200上のSiO2層の表面を改質する処理を行った後に、処理炉202bにおいてウエハ200上のSiN層上にTiN膜を選択成長させる処理を実行する。なお、図7(A)においては、処理炉202aから処理炉202bへの搬出搬入動作が省略されている。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
 本実施形態による基板処理工程(半導体装置の製造工程)では、
 第1の表面としてのSiO2層と、第2の表面としてのSiN層を有するウエハ200に対して、無機配位子を含む改質ガスとしての六フッ化タングステン(WF6)ガスを供給して、SiO2層の表面を改質する工程と、
 ウエハ200に対して、堆積ガスとして、原料ガスとしてのTiCl4ガスと、反応ガスとしてのNH3ガスを供給し、SiN層の表面上にTiN膜を選択成長させる工程と、を有する。
 なお、ウエハ200表面上のSiO2層の表面を改質する工程は、複数回実行するようにしてもよい。なお、このウエハ200表面上のSiO2層の表面を改質する工程を表面改質処理もしくは単に改質処理と呼ぶ。そして、ウエハ200表面上のSiN層の表面上にTiN膜を選択成長させる工程を成膜処理と呼ぶ。
 本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体」を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面」を意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
 A.改質処理(改質処理工程)
 先ず、第1プロセスユニットとしての処理炉202a内に、SiO2層とSiN層を表面に有するウエハ200を搬入し、改質処理を実行し、これらのウエハ200上のSiO2層の表面にF終端を生成する。
(ウエハ搬入)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図2に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201a内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。
(圧力調整および温度調整)
 処理室201a内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201a内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201a内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201a内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201a内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
A-1:[改質ガス供給工程]
(WF6ガス供給)
 バルブ314を開き、ガス供給管310内に改質ガスであるWF6ガスを流す。WF6ガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201a内に供給され、排気管231から排気される。このとき、ウエハ200に対してWF6ガスが供給される。これと並行してバルブ514を開き、ガス供給管510内にN2ガス等の不活性ガスを流す。ガス供給管510内を流れたN2ガスは、MFC512により流量調整され、WF6ガスと一緒に処理室201a内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201a内の圧力を、例えば1~1000Paの範囲内の圧力とする。MFC312で制御するWF6ガスの供給流量は、例えば1~1000sccmの範囲内の流量とする。MFC512で制御するN2ガスの供給流量は、例えば100~10000sccmの範囲内の流量とする。WF6ガスをウエハ200に対して供給する時間は、例えば1~3600秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば30~300℃であって、好ましくは30~250℃、より好ましくは50~200℃の温度となるように設定する。なお、例えば30~300℃は30℃以上300℃以下を意味する。以下、他の数値範囲についても同様である。ウエハ200の温度を30℃より高くするとSiO2層とWF6ガスに含まれるフッ素成分(F)との反応が起こりSiO2層上にハロゲン終端が生成されるが、30℃より低くすると、WF6ガスがウエハ200表面上のSiO2層と反応せず、SiO2層上にハロゲン終端が生成されない場合がある。ウエハ200の温度を300℃より高くすると、WF6ガスが顕著に分解されてしまう場合がある。
 このとき処理室201a内に流しているガスはWF6ガスとN2ガスである。WF6ガスの供給により、ウエハ200表面の結合が切断されてWF6ガスに含まれるFを結合させてウエハ200表面上のSiO2層上にハロゲン終端が生成される。このとき、ウエハ200表面上のSiN層上にはハロゲン終端が生成されない。
 そして、WF6ガスの供給を開始してから所定時間経過後に、ガス供給管310のバルブ314を閉じて、WF6ガスの供給を停止する。
A-2:[パージ工程]
(残留ガス除去)
 次に、WF6ガスの供給が停止されると、処理室201a内のガスを排気するパージ処理が行われる。このとき排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201a内を真空排気し、処理室201a内に残留する未反応のWF6ガスもしくはSiO2層表面をハロゲン終端した後のWF4ガスを処理室201a内から排除する。このときバルブ514は開いたままとして、N2ガスの処理室201a内への供給を維持する。N2ガスはパージガスとして作用し、処理室201a内に残留する未反応のWF6ガスもしくはWF4ガスを処理室201a内から排除する効果を高めることができる。
 このようなSiO2層上にはハロゲン終端が生成され、SiN層上にはハロゲン終端が生成されない様子を図8(A)~図8(C)に示す。図8(A)は、WF6ガスによる暴露前のSiO2層とSiN層が形成されたウエハ200表面の様子を示すモデル図であり、図8(B)は、ウエハ200表面をWF6ガスにより暴露した直後の状態を示すモデル図であり、図8(C)は、WF6ガスによる暴露後のウエハ200表面の様子を示すモデル図である。
 図8(C)を参照すると、WF6ガスによる暴露後のウエハ200表面では、ウエハ200上のSiO2層表面がフッ素成分により終端(ハロゲン終端)されているのが分かる。また、ウエハ200上のSiN層表面にはフッ素成分により終端(ハロゲン終端)されていないことが分かる。つまり、WF6ガスを暴露すると、WF6のF分子が外れてSiO2層に吸着し、SiO2層がFコーティングされて撥水効果をもたらしている。
(所定回数実施)
 上記した改質ガス供給工程およびパージ工程を順に行うサイクルを1回以上(所定回数(n回))行うことにより、ウエハ200上に形成されたSiO2層表面はハロゲン終端される。また、ウエハ200上に形成されたSiN層表面はハロゲン終端されない。
(アフターパージおよび大気圧復帰)
 ガス供給管510からN2ガスを処理室201a内へ供給し、排気管231から排気する。N2ガスはパージガスとして作用し、これにより処理室201a内が不活性ガスでパージされ、処理室201a内に残留するガスや副生成物が処理室201a内から除去される(アフターパージ)。その後、処理室201a内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201a内の圧力が常圧に復帰される(大気圧復帰)。
(ウエハ搬出)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、改質処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、改質処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
 B.成膜処理(選択成長工程)
 次に、第2プロセスユニットとしての処理炉202b内に、処理炉202a内で改質処理済みのウエハ200が搬入される。そして、処理室201b内が所望の圧力、所望の温度分布に圧力調整および温度調整がなされ、成膜処理が実行される。なお、本工程は、上述した処理炉202aにおける工程とガス供給工程のみ異なる。したがって、上述した処理炉202aにおける工程と異なる部分のみ以下に説明し、同じ部分は説明を省略する。
 B-1:[第1の工程]
 (TiCl4ガス供給)
 バルブ324を開き、ガス供給管320内に原料ガスであるTiCl4ガスを流す。TiCl4ガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201b内に供給され、排気管231から排気される。このとき、ウエハ200に対してTiCl4ガスが供給される。これと並行してバルブ524を開き、ガス供給管520内にN2ガス等の不活性ガスを流す。ガス供給管520内を流れたN2ガスは、MFC522により流量調整され、TiCl4ガスと一緒に処理室201b内に供給され、排気管231から排気される。このとき、ノズル430内へのTiCl4ガスの侵入を防止するために、バルブ534を開き、ガス供給管530内にN2ガスを流す。N2ガスは、ガス供給管330、ノズル430を介して処理室201b内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201b内の圧力を、例えば1~1000Paの範囲内の圧力、例えば100Paとする。MFC322で制御するTiCl4ガスの供給流量は、例えば0.1~2slmの範囲内の流量とする。MFC522,532で制御するN2ガスの供給流量は、それぞれ例えば1~10slmの範囲内の流量とする。TiCl4ガスをウエハ200に対して供給する時間は、例えば0.1~200秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば100~600℃の範囲内の温度であって、好ましくは200~500℃、より好ましくは200~400℃となるような温度に設定する。
 このとき処理室201b内に流しているガスは、TiCl4ガスとN2ガスである。TiCl4ガスは、上述した改質処理工程において表面をハロゲン終端したSiO2層上には吸着せず、SiN層上に吸着する。これは、TiCl4ガスに含まれるハロゲン(Cl)と、SiO2層上のハロゲン(F)が、それぞれ電気的に陰性の配位子であるために反発因子となり、吸着しにくい状態となっているためである。つまり、SiO2層上ではインキュベーションタイムが長くなり、SiO2層以外の表面にTiN膜を選択成長させることが可能となる。ここで、インキュベーションタイムとは、ウエハ表面上に膜が成長し始めるまでの時間である。
 ここで、薄膜を、特定のウエハ表面に対して選択的に成膜する場合、成膜したくないウエハ表面に対して原料ガスが吸着して、意図しない成膜が生じることがある。これが選択性の破れである。この選択性の破れは、ウエハに対する原料ガス分子の吸着確率が高い場合に生じ易い。すなわち、成膜したくないウエハに対する原料ガス分子の吸着確率を下げることが、選択性の向上に直結する。
 ウエハ表面の原料ガスの吸着は、原料分子とウエハ表面の電気的相互作用によって、原料ガスがある時間、ウエハ表面に留まることによってもたらされる。つまり、吸着確率は、原料ガスまたはその分解物のウエハに対する暴露密度と、ウエハ自体のもつ電気化学的な因子の双方に依存する。ここで、ウエハ自体のもつ電気化学的な因子とは、例えば、原子レベルの表面欠陥や、分極や電界等による帯電を差すことが多い。つまり、ウエハ表面上の電気化学的な因子と、原料ガスが相互に引き付けやすい関係であれば、吸着が起りやすいと言える。
 従来の半導体の成膜プロセスにおいては、原料ガス側においては、原料ガスの圧力を下げたり、ガス流速を上げる等によって、ウエハの吸着しやすい場所への滞在を極力抑える方法によって、選択的な成膜プロセスを実現してきた。しかしながら、半導体デバイスの表面積が、微細化や三次元化の進化によって増えるに伴い、原料ガスのウエハに対する暴露量を増やす方向に技術進化を遂げてきた。近年は、ガスを交互的に供給する方法によって、微細で、表面積の多いパターンに対しても、高い段差被覆性を得る方法が、主流となっている。即ち、原料ガス側での対策によって、選択的に成膜する目的を達しにくい状況にある。
 また、半導体デバイスにおいては、SiやSiO2膜、SiN膜、金属膜などの様々な薄膜が用いられており、特に、最も広範に用いられる材料の一つであるSiO膜における選択成長性の制御は、デバイス加工のマージンや自由度を上げることへの寄与が大きい。
 つまり、ウエハ200上のSiO2層表面を改質する改質ガスとして、酸化膜に対して強固な吸着性を持つ分子を含む材料を用いることが好ましい。また、ウエハ200上のSiO2層表面を改質する改質ガスとして、酸化膜に対して低温で暴露したとしも酸化膜をエッチングしない材料を用いることが好ましい。
 B-2:[第2の工程]
 (残留ガス除去)
 Ti含有層を形成した後、バルブ324を閉じて、TiCl4ガスの供給を停止する。
 そして、処理室201b内に残留する未反応もしくはTi含有層の形成に寄与した後のTiCl4ガスや反応副生成物を処理室201b内から排除する。
 B-3:[第3の工程]
 (NH3ガス供給)
 処理室201b内の残留ガスを除去した後、バルブ334を開き、ガス供給管330内に、反応ガスとしてNH3ガスを流す。NH3ガスは、MFC332により流量調整され、ノズル430のガス供給孔430aから処理室201b内に供給され、排気管231から排気される。このときウエハ200に対して、NH3ガスが供給される。これと並行してバルブ534を開き、ガス供給管530内にN2ガスを流す。ガス供給管530内を流れたN2ガスは、MFC532により流量調整される。N2ガスはNH3ガスと一緒に処理室201b内に供給され、排気管231から排気される。このとき、ノズル420内へのNH3ガスの侵入を防止するために、バルブ524を開き、ガス供給管520内にN2ガスを流す。N2ガスは、ガス供給管320、ノズル420を介して処理室201b内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201b内の圧力を、例えば100~2000Paの範囲内の圧力、例えば800Paとする。MFC332で制御するNH3ガスの供給流量は、例えば0.5~5slmの範囲内の流量とする。MFC522,532で制御するN2ガスの供給流量は、それぞれ例えば1~10slmの範囲内の流量とする。NH3ガスをウエハ200に対して供給する時間は、例えば1~300秒の範囲内の時間とする。このときのヒータ207の温度は、TiCl4ガス供給ステップと同様の温度に設定する。
 このとき処理室201内に流しているガスは、NH3ガスとN2ガスのみである。NH3ガスは、上述の第1の工程でウエハ200のSiN層上に形成されたTi含有層の少なくとも一部と置換反応する。置換反応の際には、Ti含有層に含まれるTiとNH3ガスに含まれるNとが結合して、ウエハ200上のSiN層上にTiとNとを含むTiN膜が形成される。すなわち、ウエハ200上のSiO2層上にはTiN膜が形成されない。
 B-4:[第4の工程]
 (残留ガス除去)
 TiN膜を形成した後、バルブ334を閉じて、NH3ガスの供給を停止する。
 そして、上述した第1の工程と同様の処理手順により、処理室201b内に残留する未反応もしくはTiN膜の形成に寄与した後のNH3ガスや反応副生成物を処理室201b内から排除する。
 このようなSiO2層上にはハロゲン終端が形成され、SiN層上にはハロゲン終端が形成されずにTiN膜が形成される様子を図9(A)~図9(C)及び図10(A)に示す。図9(A)は、TiCl4ガスが供給された直後のウエハ表面の状態を示すモデル図であり、図9(B)は、TiCl4ガスによる暴露後のウエハ表面の状態を示すモデル図であり、図9(C)は、NH3ガスが供給された直後のウエハ表面の状態を示すモデル図である。図10(A)は、NH3ガスによる暴露後のウエハ表面の状態を示すモデル図である。
 図10(A)を参照すると、ウエハ200表面では、ウエハ200上のSiO2層表面がフッ素成分により終端(ハロゲン終端)されているのが分かる。また、ウエハ200上のSiN層表面にはTiとNとを含むTiN膜が形成されているのが分かる。つまり、SiO2層表面は、ハロゲン終端されてTiN膜が形成されていないことが分かる。
(所定回数実施)
 そして、原料ガスとしてのTiCl4ガスと反応ガスとしてのNH3ガスとを互いに混合しないよう交互に供給し、上記した第1の工程~第4の工程を順に行うサイクルを1回以上(所定回数(n回))行うことにより、図10(B)に示されるように、ウエハ200のSiN層上に、所定の厚さ(例えば5~10nm)のTiN膜を形成する。上述のサイクルは、複数回繰り返すのが好ましい。
 なお、上述した改質処理では、改質ガス供給工程(WF6ガス供給)とパージ工程(残留ガス除去)とを交互に複数回行うパルス供給を行う構成について説明したが、図7(B)に示されているように、処理炉201a内において改質ガス供給工程(WF6ガス供給)とパージ工程(残留ガス除去)とを順に1回ずつ連続して行った後に、処理炉201b内において上述した成膜処理を実行するようにしてもよい。なお、図7(B)においても、処理炉202aから処理炉202bへの搬出搬入動作が省略されている。
 なお、上述では選択成長に用いる原料ガスとしてTiCl4ガスとNH3ガスを用いて、上述の成膜温度帯でTiN膜を選択成長させる例について説明したが、これに限らず、選択成長に用いる原料ガスとしての四塩化ケイ素(SiCl4)とNH3ガスを用いて、400~800℃の範囲内であって、たとえば500~600℃程度の高温の成膜温度でSiN膜を選択成長させてもよい。
 成膜温度には、形成する膜種や使用するガス種、求める膜質等によって最適なプロセスウィンドウが存在する。たとえば、使用するガスの反応温度が500℃以上の場合、成膜温度が500℃以上であれば良好な膜質を有する膜が得られる。しかし、500℃未満であれば、使用するガスの反応が起こらず、粗悪な膜質を有する膜となってしまったり、そもそも膜を形成できなかったりする場合がある。また、成膜温度が高すぎて原料ガスの自己分解温度より顕著に高くなってしまうと、成膜速度が速くなりすぎて選択性が破れてしまったり、膜厚の制御が困難となる可能性がある。たとえば、成膜温度を800℃以上等とすると、選択性が破れたり膜厚を制御できなくなる場合があるので、800℃未満等、原料ガスの自己分解温度より低い温度とすることが好ましい。
 また、ウエハ200上のSiO2層表面を改質する改質ガスとして、有機物と無機物が考えられるが、有機物による表面改質は耐熱性が低く、成膜温度が500℃以上になると壊れてしまい、Siとの吸着も外れてしまう。つまり、500℃以上の高温成膜を行う場合には、選択性が破れてしまう。一方、無機物による表面改質は耐熱性が高く、成膜温度が500℃以上になってもSiとの吸着が外れない。例えば、フッ素(F)は強力なパッシベーション剤であり、強固な吸着力を有する。
 よって、ウエハ200上のSiO2層表面を改質する改質ガスとして、無機配位子を含む無機系材料であって、例えばフッ素(F)、塩素(Cl)、ヨウ素(I)、臭素(Br)等を含むハロゲン化物を用いることにより、500℃以上の高温成膜を行う膜であっても、改質ガスを用いて選択成長を行うことが可能となる。例えば、高温成膜を行う場合は、改質処理を250℃以下の低温で行い、選択成長である成膜処理を500℃以上の高温で行うことができる。なお、ハロゲン化物のうち、特に結合エネルギーが高いものが好ましい。なお、F含有ガスは、ハロゲン化物の中でも最も結合エネルギーが高く、強い吸着力を有する。
 そして、選択成長に用いる原料ガスとして、電気的に陰性の分子を有する原料ガスを用いる。これにより、ウエハ200上のSiO2層表面を改質する改質ガスが、電気的に陰性のハロゲン化物であるため、反発し合って結合し難くなる。なお、原料ガスとして、金属元素、シリコン元素等の原料分子を1つだけ含むものが好ましい。原料分子を2つ以上含む場合に、例えばSiが2つ含まれるときは、Si-Si結合が切れて、SiとFが結合してしまい、選択性が破れる可能性があるためである。
(3)本発明の一実施形態による効果
 本実施形態では、先ずハロゲン化物を含むWF6ガスによりSiO2層表面をハロゲン終端して、その後にハロゲン化物を含むTiCl4ガスによりSiO2層以外のSiN層表面にTiN膜を形成している。その理由は、WF6ガスを暴露すると、F分子が酸化膜に吸着されて、酸化膜の表面がF分子でコーティングされる。このF分子は強固な吸着力を有し、成膜温度が500℃以上の高温であっても、外れない。また、TiCl4ガスに含まれるハロゲン(Cl)と、SiO2層上のハロゲン(F)は、それぞれ電気的に陰性の配位子であるために反発因子となり、表面をハロゲン終端したSiO2層表面上には吸着しない。そのため、500℃以上の高温成膜を行う場合であっても、酸化膜上のFコーティングが外れずに、SiO2層表面以外の表面に選択成長することができる。
 なお、発明者らの精査によれば、SiN膜、Si膜、金属膜、金属酸化膜に対しては、上述の改質ガスによるインキュベーションタイムの延長が、SiO2膜に比べて短いことが確認された。このインキュベーションタイムの差を利用すれば、SiO2膜上に対して成膜しにくく、その他の膜上では選択的に形成されるように膜を形成することが可能となる。
 すなわち、本実施形態によれば、基板上に膜を選択的に形成することができる技術を提供することができる。
(4)他の実施形態
 上述の実施形態では、改質処理を行う処理室202aと、成膜処理を行う処理室202bとを備えたクラスタ型の基板処理装置10を用いて、改質処理と成膜処理を別の処理室で行う構成について説明したが、図11及び図12に示されているように、1つの処理室301内に改質ガス供給系と堆積ガス供給系とを備えた基板処理装置300を用いて、改質処理及び成膜処理を同一処理室201内で行う構成においても同様に適用可能である。すなわち、インサイチュで基板処理を行う構成においても同様に適用可能である。この場合、改質処理と成膜処理とを連続して行うことができる。すなわち、改質処理後に処理室外へウエハ200を搬出することなく、続けて成膜処理を行うことができる。したがって、上述の実施形態と比較して、より、SiO2層の表面に生成されたF終端を維持したまま成膜処理を行うことが可能となる。
 具体的な基板処理工程としては、改質処理として、ウエハ搬入、圧力調整および温度調整を行い、改質ガス供給工程とパージ工程を所定回数実施した後、アフターパージを行い、その後、連続して、成膜処理として、圧力調整および温度調整を行い、第1~4の工程を所定回数実施した後、アフターパージおよび大気圧復帰を行い、ウエハ搬出を行う。
 また、上述の実施形態では、改質処理と成膜処理とを1回ずつ行う場合について説明したが、改質処理と成膜処理とを交互に複数回繰り返し行ってもよい。この場合、基板処理工程(半導体装置の製造工程)は、
 第1の表面(例えばSiO2層)と、第2の表面(例えばSiN層)を有するウエハ200に対して、無機配位子を含む改質ガス(例えばWF6ガス)を供給して、第1の表面を改質する工程と、
 ウエハ200に対して、堆積ガスとして、原料ガス(例えばTiCl4ガス)と、反応ガス(例えばNH3ガス)を供給し、第2の表面上に膜(例えばTiN膜)を選択成長させる工程と、
 を交互に所定回数実施する工程を有する。
 改質処理と成膜処理とを交互に複数回繰り返し行う場合、成膜処理中に第1の表面上に生成されたF終端が少しずつ外れて第1の表面上に膜が形成されて選択性が破れてしまったとしても、形成された膜を、改質処理にて改質ガスでエッチングして除去し、外れてしまったF終端を補修することが可能となる。すなわち、2回目の改質処理はエッチング処理としての作用も有する。外れてしまったF終端を補修してから成膜処理を行うことにより、選択性を改善させることが可能となる。
 なお、上記実施形態では、改質ガスとして、六フッ化タングステン(WF6)ガスを用いる場合について説明したが、本発明はこのような場合に限定されるものではない。改質ガスとして、三フッ化塩素(ClF3)ガス、三フッ化窒素(NF3)ガス、フッ化水素(HF)ガス、フッ素(F2)ガス等の他のガスを用いる場合でも同様に本発明を適用可能である。なお、金属汚染を懸念する場合には、金属元素非含有のガスの使用が好ましい。
 同様に、上記実施形態では、選択成長に用いる原料ガスとして、TiCl4ガスを用いる場合について説明したが、本発明はこのような場合に限定されるものではない。原料ガスとして、ハロゲンを含む四塩化ケイ素(SiCl4)、四塩化アルミニウム(AlCl4)、四塩化ジルコニウム(ZrCl4)、四塩化ハフニウム(HfCl4)、五塩化タンタル(TaCl5)、五塩化タングステン(WCl5)、五塩化モリブデン(MoCl5)、六塩化タングステン(WCl6)ガス等の他のガスを用いる場合でも同様に本発明を適用可能である。
 同様に、上記実施形態では、選択成長に用いる反応ガスとして、NH3ガスを用いる場合について説明したが、本発明はこのような場合に限定されるものではない。反応ガスとして、原料ガスと反応するヒドラジン(N24)、水(H2O)、酸素(O2)、水素(H2)と酸素(O2)の混合ガス等のほかのガスを用いる場合でも同様に本発明を適用可能である。
 なお、改質ガスとしてClF3ガスを用いる場合には、選択成長に用いる原料ガスとしての四塩化ケイ素(SiCl4)とNH3ガスを用いて、550℃程度の高温でSiN膜を選択成長させることが可能となる。また、選択成長に用いる原料ガスとしての四塩化ケイ素(SiCl4)とH2Oガスとピリジン等の触媒とを用いて、40~90℃程度の極低温でSiO2膜を選択成長させることが可能となる。
 以上、本発明の種々の典型的な実施形態を説明してきたが、本発明はそれらの実施形態に限定されず、適宜組み合わせて用いることもできる。
(5)実施例
(実施例1)
 次に、上記で説明した基板処理装置10を用いて、上記で説明した基板処理工程を用いて、改質ガスとしてWF6ガスを暴露してSiN層上に窒化チタン(TiN)膜を形成した場合と、WF6ガスを暴露しないでSiN層上にTiN膜を形成した場合とで、生成されるTiN膜の膜厚にどのような差があるかについて図13(A)に基づいて説明する。
 WF6を暴露した場合と、WF6を暴露しない場合とでは、下地膜であるSiN層表面は、図13(A)に示されるように、形成される膜厚にほとんど差がなく、処理サイクル数に応じてTiN膜の膜厚が厚くなることが確認された。すなわち、SiN層表面は、WF6の暴露の有無によらずにTiN膜が形成されることが確認された。これは、図8(C)に示されているように、SiN層表面がハロゲン終端されていないためであると考えられる。
 次に、上記で説明した基板処理装置10を用いて、上記で説明した基板処理工程でWF6ガスを暴露してSiO2層上にTiN膜を形成した場合と、WF6ガスを暴露しないでSiO2層上にTiN膜を形成した場合とで、生成されるTiN膜の膜厚にどのような差があるかについて図13(B)に基づいて説明する。
 SiO2層上にWF6を暴露した場合には、下地膜であるSiO2層表面は、上述した基板処理工程を256サイクル以上繰り返さなければ、TiN膜が形成されないことが確認された。一方で、SiO2層上にWF6ガスを暴露しない場合には、下地膜であるSiO2層表面は、上述した基板処理工程を16サイクル以上繰り返すと、TiN膜が形成されることが確認された。つまり、SiO2層上にWF6ガスを暴露することにより、インキュベーションタイムが長くなることが確認された。
(実施例2)
 次に、SiO2層に対してSiN層上に優先的にTiN膜を形成できる膜厚TSiNを以下の式で定義する。
siN=SiN層上の成膜レート
×(SiO2層上のインキュベーションタイム-SiN層上のインキュベーションタイム)
                    ・・・・・(式1)
 上述した図13(A)のWF6暴露有の場合を例にとると、SiN層上のTiN膜の成膜レートは0.26nm/cycle、SiN層上のインキュベーションタイムは33サイクル、SiO2層上のインキュベーションタイムは256サイクルなので、上記式1によりTSiN=5.8nmと算出される。すなわち、SiO2層上にTiN膜を形成せずにSiN層上に選択的に5.8nmのTiN膜を形成できることとなる。図14は、TSiNのWF6ガス供給のパルス数に対する依存性を示している。
 図14に示されているように、WF6ガスのパルス供給を60回程度繰り返すとTSiNは飽和傾向を示すことが分かる。
(実施例3)
 次に、上記で説明した基板処理装置10を用いて、上記で説明した基板処理工程で(a)WF6ガスを暴露しないでSiO2層上にTiN膜を形成した場合と、(b)WF6ガスをパルス供給してSiO2層上にTiN膜を形成した場合と、(c)WF6ガスを連続供給してSiO2層上にTiN膜を形成した場合と、で、形成されるTiN膜の膜厚にどのような差があるかについて図15(A)に基づいて説明する。(b)のパルス供給では、WF6ガスのパルス供給を60サイクル(WF6ガスの総暴露時間は10分)とし、(c)の連続供給では、WF6ガスの暴露時間を10分として、(b)と(c)の総暴露時間を同じとした。
 (a)のWF6ガスを暴露しない場合では、インキュベーションタイムが16サイクル、(b)のパルス供給の場合では、インキュベーションタイムが256サイクル、(c)の連続供給の場合では、インキュベーションタイムが168サイクルであって、(a)のWF6ガスを暴露無に比べると、(b)、(c)のWF6ガスを暴露した場合の方がインキュベーションタイムが長くなることが確認された。さらには、WF6ガスの総暴露量が同じであっても、(c)のWF6ガスを連続供給するのに比べて、(b)のWF6ガスをパルス供給した方がインキュベーションタイムが長くなることが確認された。これは、WF6ガスをパルス供給してWF6ガス暴露の間にパージ工程を挟むことにより、WF6ガスとSiO2層表面の反応副生成物がSiO2層表面から除去されるため表面の改質が進行し、同じ暴露量であってもインキュベーションタイムが長くなったと考えられる。
(実施例4)
 次に、上記で説明した基板処理装置10を用いて、上記で説明した基板処理工程で、SiO2層上、酸化ジルコニウム(ZrO)層上、酸化ハフニウム(HfO)層上にWF6ガスをパルス供給(60サイクル)した後にTiN膜を形成し、形成されるTiN膜の膜厚にどのくらい差があるかについて図15(B)に基づいて説明する。
 図15(B)に示されているように、WF6ガスを暴露してもSiO2層上に形成されるTiN膜のインキュベーションタイムよりもZrO層上、HfO層上に形成されるTiN膜のインキュベーションタイムが長いことが確認された。すなわち、ZrO層上、HfO層上のインキュベーションタイムは、SiO2層上のインキュベーションタイムよりも短く、ZrO層上、HfO層上においてもSiO2層上に対して優先的にTiN膜を形成することができることが確認された。
(実施例5)
 次に、上記で説明した基板処理装置10を用いて、上記で説明した基板処理工程で、改質ガスとしてClF3ガスを用いて250℃で改質処理を行い、SiN層とSiO2層とが表面に形成されたウエハのSiN層上に500℃でSiN膜を選択成長させる成膜処理を行った場合の選択性に対する改質処理の効果を図16(A)~図16(C)に基づいて説明する。図16(A)は、比較例であって、改質処理を行わずに成膜処理を行った場合にSiN層上とSiO2層上にそれぞれ選択成長されるSiN膜の膜厚を示す図であって、成膜処理を150サイクル行った場合と、300サイクル行った場合をプロットしている。図16(B)は、改質処理後に成膜処理を行った場合にSiN層上とSiO2層上にそれぞれ選択成長されるSiN膜の膜厚を示す図であって、成膜処理を200サイクル、300サイクル、400サイクル行った場合をプロットしている。図16(C)は、改質処理と成膜処理とを交互に2回行った場合にSiN層上とSiO2層上にそれぞれ選択成長されるSiN膜の膜厚を示す図であって、各成膜処理を200サイクルずつ(計400サイクル)行った場合をプロットしている。
 図16(A)に示されているように、改質処理を行わずに成膜処理を行った場合には、SiN層とSiO2層とで形成されるSiN膜の膜厚に差がなく選択性はほとんど生じていないことが確認された。また、図16(B)及び図16(C)に示されているように、成膜処理前に改質処理を行うことにより、SiN層とSiO2層上とで選択性が生じ、交互に複数回繰り返すことにより、より顕著に選択性が生じることが確認された。
 10,300  基板処理装置
 121  コントローラ
 200  ウエハ(基板)
 201a,201b,301  処理室

Claims (14)

  1.  第1の表面と、前記第1の表面とは異なる第2の表面を有する基板に対して、無機配位子を含む改質ガスを供給して、前記第1の表面を改質する工程と、
     前記基板に対して、堆積ガスを供給し、前記第2の表面に膜を選択成長させる工程と、
     を有する半導体装置の製造方法。
  2.  前記改質ガスは第1のハロゲン化物である請求項1記載の半導体装置の製造方法。
  3.  前記第1のハロゲン化物はフッ素含有ガスである請求項2記載の半導体装置の製造方法。
  4.  前記堆積ガスは、原料ガスと、前記原料ガスと反応する反応ガスを含み、
     前記第2の表面に膜を選択成長させる工程では、前記原料ガスと前記反応ガスとを互いに混合しないよう交互に供給する請求項1から3のいずれか記載の半導体装置の製造方法。
  5.  前記原料ガスは第2のハロゲン化物である請求項4記載の半導体装置の製造方法。
  6.  前記第2のハロゲン化物は塩素含有ガスである請求項5記載の半導体装置の製造方法。
  7.  前記改質ガスおよび前記原料ガスは、それぞれ電気的に陰性である配位子を有する請求項1記載の半導体装置の製造方法。
  8.  前記第2の表面に膜を選択成長させる工程は、前記基板を500℃以上で加熱しつつ行う請求項1に記載の半導体装置の製造方法。
  9.  前記第1の表面を改質する工程は、前記基板を300℃以下で加熱しつつ行う請求項1又は8記載の半導体装置の製造方法。
  10.  前記第1の表面はシリコン酸化層である請求項1記載の半導体装置の製造方法。
  11.  基板を収容する第1の処理室と、
     前記第1の処理室に、無機配位子を含む改質ガスを供給する第1のガス供給系と、
     基板を収容する第2の処理室と、
     前記第2の処理室に、堆積ガスを供給する第2のガス供給系と、
     基板を前記第1の処理室および前記第2の処理室に搬入出させる搬送系と、
     第1の表面と、前記第1の表面とは異なる第2の表面を有する基板を、前記第1の処理室に搬入する処理と、前記第1の処理室に前記改質ガスを供給して前記第1の表面を改質する処理と、前記基板を前記第1の処理室から搬出する処理と、前記基板を前記第2の処理室に搬入する処理と、前記第2の処理室に前記堆積ガスを供給して前記第2の表面に膜を選択成長させる処理と、前記第2の処理室から前記基板を搬出する処理と、を行うよう、前記第1のガス供給系、前記第2のガス供給系及び前記搬送系を制御するように構成される制御部と、
     を有する基板処理装置。
  12.  基板を収容する処理室と、
     前記処理室に、無機配位子を含む改質ガスを供給する第1のガス供給系と、
     前記処理室に、堆積ガスを供給する第2のガス供給系と、
     第1の表面と、前記第1の表面とは異なる第2の表面を有する基板を収容した前記処理室に前記改質ガスを供給して前記第1の表面を改質する処理と、前記処理室に前記堆積ガスを供給して前記第2の表面に膜を選択成長させる処理と、を行うよう、前記第1のガス供給系、前記第2のガス供給系を制御するように構成される制御部と、
     を有する基板処理装置。
  13.  基板処理装置の第1の処理室に、第1の表面と、前記第1の表面とは異なる第2の表面を有する基板を搬入する手順と、
     前記基板に対して、無機配位子を含む改質ガスを供給し、前記第1の表面を改質する手順と、
     前記第1の処理室から、前記基板を搬出する手順と、
     前記基板処理装置の第2の処理室に、前記基板を搬入する手順と、
     前記基板に対して、堆積ガスを供給し、前記第2の表面に膜を選択成長させる手順と、
    をコンピュータによって前記基板処理装置に実行させるプログラム。
  14.  基板処理装置の処理室に収容され、第1の表面と、前記第1の表面とは異なる第2の表面を有する基板に対して、無機配位子を含む改質ガスを供給して、前記第1の表面を改質する手順と、
     前記基板に対して、堆積ガスを供給し、前記第2の表面に膜を選択成長させる手順と、
     をコンピュータによって前記基板処理装置に実行させるプログラム。
PCT/JP2018/020275 2018-05-28 2018-05-28 半導体装置の製造方法、基板処理装置およびプログラム WO2019229785A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2018/020275 WO2019229785A1 (ja) 2018-05-28 2018-05-28 半導体装置の製造方法、基板処理装置およびプログラム
CN201880093867.2A CN112166489A (zh) 2018-05-28 2018-05-28 半导体器件的制造方法、衬底处理装置及程序
SG11202011847TA SG11202011847TA (en) 2018-05-28 2018-05-28 Method of manufacturing semiconductor device, substrate processing apparatus, and program
KR1020237032274A KR20230137501A (ko) 2018-05-28 2018-05-28 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP2020521642A JP6980106B2 (ja) 2018-05-28 2018-05-28 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法
KR1020207034278A KR102582496B1 (ko) 2018-05-28 2018-05-28 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
TW108118334A TWI708281B (zh) 2018-05-28 2019-05-28 半導體裝置的製造方法、基板處理裝置及程式
US17/104,244 US20210098258A1 (en) 2018-05-28 2020-11-25 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2021186527A JP7110468B2 (ja) 2018-05-28 2021-11-16 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020275 WO2019229785A1 (ja) 2018-05-28 2018-05-28 半導体装置の製造方法、基板処理装置およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/104,244 Continuation US20210098258A1 (en) 2018-05-28 2020-11-25 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Publications (1)

Publication Number Publication Date
WO2019229785A1 true WO2019229785A1 (ja) 2019-12-05

Family

ID=68696856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020275 WO2019229785A1 (ja) 2018-05-28 2018-05-28 半導体装置の製造方法、基板処理装置およびプログラム

Country Status (7)

Country Link
US (1) US20210098258A1 (ja)
JP (1) JP6980106B2 (ja)
KR (2) KR20230137501A (ja)
CN (1) CN112166489A (ja)
SG (1) SG11202011847TA (ja)
TW (1) TWI708281B (ja)
WO (1) WO2019229785A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113314393A (zh) * 2020-02-27 2021-08-27 株式会社国际电气 半导体器件的制造方法、衬底处理装置及记录介质
WO2022054216A1 (ja) * 2020-09-10 2022-03-17 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP2022144328A (ja) * 2021-03-18 2022-10-03 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、及びプログラム
JP2023049818A (ja) * 2021-09-29 2023-04-10 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、プログラム、及び基板処理装置
US11848203B2 (en) 2019-12-27 2023-12-19 Kokusai Electric Corporation Methods of processing substrate and manufacturing semiconductor device by forming film, substrate processing apparatus, and recording medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965942B2 (ja) * 2017-12-22 2021-11-10 株式会社村田製作所 成膜装置
JP6988916B2 (ja) 2017-12-22 2022-01-05 株式会社村田製作所 成膜装置
US10566194B2 (en) * 2018-05-07 2020-02-18 Lam Research Corporation Selective deposition of etch-stop layer for enhanced patterning
JP7175210B2 (ja) * 2019-02-04 2022-11-18 東京エレクトロン株式会社 排気装置、処理システム及び処理方法
KR20200108242A (ko) * 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
JP6860605B2 (ja) * 2019-03-18 2021-04-14 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
US20240052480A1 (en) * 2022-08-15 2024-02-15 Applied Materials, Inc. Methods for Selective Molybdenum Deposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357843A (ja) * 1999-06-15 2000-12-26 Nichia Chem Ind Ltd 窒化物半導体の成長方法
JP2017098539A (ja) * 2015-10-21 2017-06-01 ウルトラテック インク 自己組織化単分子層を用いたald抑制層の形成方法
JP2017528923A (ja) * 2014-07-03 2017-09-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 選択的堆積のための方法及び装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3761918B2 (ja) * 1994-09-13 2006-03-29 株式会社東芝 半導体装置の製造方法
JP2003100746A (ja) 2001-09-27 2003-04-04 Hitachi Ltd 半導体装置の製造方法
US20060199399A1 (en) * 2005-02-22 2006-09-07 Muscat Anthony J Surface manipulation and selective deposition processes using adsorbed halogen atoms
JP2015122481A (ja) 2013-11-22 2015-07-02 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US10047435B2 (en) * 2014-04-16 2018-08-14 Asm Ip Holding B.V. Dual selective deposition
US20160064275A1 (en) * 2014-08-27 2016-03-03 Applied Materials, Inc. Selective Deposition With Alcohol Selective Reduction And Protection
KR102185458B1 (ko) * 2015-02-03 2020-12-03 에이에스엠 아이피 홀딩 비.브이. 선택적 퇴적
TWI694167B (zh) * 2015-05-01 2020-05-21 美商應用材料股份有限公司 使用表面封端化學性質的薄膜介電質之選擇性沉積
WO2017052905A1 (en) * 2015-09-22 2017-03-30 Applied Materials, Inc. Apparatus and method for selective deposition
US9935005B2 (en) * 2015-11-13 2018-04-03 Applied Materials, Inc. Techniques for filling a structure using selective surface modification
US9716005B1 (en) * 2016-03-18 2017-07-25 Applied Materials, Inc. Plasma poisoning to enable selective deposition
JP6576277B2 (ja) * 2016-03-23 2019-09-18 東京エレクトロン株式会社 窒化膜の形成方法
US10580644B2 (en) * 2016-07-11 2020-03-03 Tokyo Electron Limited Method and apparatus for selective film deposition using a cyclic treatment
JP6671262B2 (ja) * 2016-08-01 2020-03-25 東京エレクトロン株式会社 窒化膜の形成方法および形成装置
JP6767885B2 (ja) * 2017-01-18 2020-10-14 東京エレクトロン株式会社 保護膜形成方法
US9911595B1 (en) * 2017-03-17 2018-03-06 Lam Research Corporation Selective growth of silicon nitride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357843A (ja) * 1999-06-15 2000-12-26 Nichia Chem Ind Ltd 窒化物半導体の成長方法
JP2017528923A (ja) * 2014-07-03 2017-09-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 選択的堆積のための方法及び装置
JP2017098539A (ja) * 2015-10-21 2017-06-01 ウルトラテック インク 自己組織化単分子層を用いたald抑制層の形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STEVENS, E ET AL.: "Area-Selective Atomic Layer Deposition of TiN, Ti02, and Hf02 on Silicon Nitride with inhibition on Amorphous Carbon", CHEMISTRY OF MATERIALS, vol. 30, 27 April 2018 (2018-04-27), pages 3223 - 3232 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11848203B2 (en) 2019-12-27 2023-12-19 Kokusai Electric Corporation Methods of processing substrate and manufacturing semiconductor device by forming film, substrate processing apparatus, and recording medium
KR20210109465A (ko) * 2020-02-27 2021-09-06 가부시키가이샤 코쿠사이 엘렉트릭 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
JP2021136349A (ja) * 2020-02-27 2021-09-13 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、及びプログラム
JP7072012B2 (ja) 2020-02-27 2022-05-19 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム
US11923193B2 (en) 2020-02-27 2024-03-05 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN113314393A (zh) * 2020-02-27 2021-08-27 株式会社国际电气 半导体器件的制造方法、衬底处理装置及记录介质
KR102559830B1 (ko) 2020-02-27 2023-07-27 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
WO2022054216A1 (ja) * 2020-09-10 2022-03-17 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP7431343B2 (ja) 2020-09-10 2024-02-14 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
US11521848B2 (en) 2021-03-18 2022-12-06 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP7339975B2 (ja) 2021-03-18 2023-09-06 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム
JP2022144328A (ja) * 2021-03-18 2022-10-03 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、及びプログラム
JP2023049818A (ja) * 2021-09-29 2023-04-10 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、プログラム、及び基板処理装置
JP7443312B2 (ja) 2021-09-29 2024-03-05 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、プログラム、及び基板処理装置

Also Published As

Publication number Publication date
SG11202011847TA (en) 2020-12-30
TWI708281B (zh) 2020-10-21
TW202004855A (zh) 2020-01-16
CN112166489A (zh) 2021-01-01
KR20230137501A (ko) 2023-10-04
KR102582496B1 (ko) 2023-09-26
KR20210002672A (ko) 2021-01-08
JP6980106B2 (ja) 2021-12-15
JPWO2019229785A1 (ja) 2021-05-20
US20210098258A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2019229785A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP5036849B2 (ja) 半導体装置の製造方法、クリーニング方法および基板処理装置
JP6995997B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法
WO2019058608A1 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
WO2020016914A1 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP6647260B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
CN107863289B (zh) 半导体装置的制造方法、基板处理装置和存储介质
US11621169B2 (en) Method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
KR100989028B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
TWI831062B (zh) 半導體裝置的製造方法,程式,基板處理方法及基板處理裝置
JP7110468B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法。
JP7372336B2 (ja) 基板処理方法、プログラム、基板処理装置及び半導体装置の製造方法
CN114250448A (zh) 半导体器件的制造方法、衬底处理方法、衬底处理装置及记录介质
WO2020054299A1 (ja) 半導体装置の製造方法、基板処理装置及び記録媒体
CN115989339A (zh) 半导体装置的制造方法、记录介质以及基板处理装置
JP6639691B2 (ja) 半導体装置の製造方法、プログラムおよび基板処理装置
JP7179962B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
TWI789622B (zh) 半導體裝置的製造方法,程式及基板處理裝置
JP2024016232A (ja) 基板処理方法、基板処理装置、半導体装置の製造方法、およびプログラム
CN116779534A (zh) 衬底处理方法、半导体器件的制造方法、记录介质及衬底处理装置
CN111095490A (zh) 半导体装置的制造方法、基板处理装置和程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521642

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207034278

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920631

Country of ref document: EP

Kind code of ref document: A1