WO2022054216A1 - 半導体装置の製造方法、基板処理装置、およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置、およびプログラム Download PDF

Info

Publication number
WO2022054216A1
WO2022054216A1 PCT/JP2020/034372 JP2020034372W WO2022054216A1 WO 2022054216 A1 WO2022054216 A1 WO 2022054216A1 JP 2020034372 W JP2020034372 W JP 2020034372W WO 2022054216 A1 WO2022054216 A1 WO 2022054216A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
substrate
forming
halogen
Prior art date
Application number
PCT/JP2020/034372
Other languages
English (en)
French (fr)
Inventor
隆治 山本
公彦 中谷
良知 橋本
崇之 早稲田
求 出貝
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2022548328A priority Critical patent/JP7431343B2/ja
Priority to KR1020237004872A priority patent/KR20230038256A/ko
Priority to PCT/JP2020/034372 priority patent/WO2022054216A1/ja
Priority to CN202080102612.5A priority patent/CN115868007A/zh
Priority to TW110126342A priority patent/TWI795844B/zh
Priority to TW112103951A priority patent/TW202323563A/zh
Publication of WO2022054216A1 publication Critical patent/WO2022054216A1/ja
Priority to US18/167,153 priority patent/US20230183864A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02137Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising alkyl silsesquioxane, e.g. MSQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment

Definitions

  • This disclosure relates to a semiconductor device manufacturing method, a substrate processing device, and a program.
  • a process of selectively growing and forming a film on the surface of a specific substrate among a plurality of types of substrates exposed on the surface of a substrate (hereinafter, this process is selectively grown or selected).
  • this process is selectively grown or selected).
  • Also referred to as film formation may be performed (see, for example, Japanese Patent Application Laid-Open No. 2013-243193).
  • a process of forming a film-forming inhibitory layer on the surface of the substrate on which the film is not desired to grow may be performed using a film-forming inhibitor.
  • the treatment temperature (film-forming temperature) at the time of selective growth is set in order to suppress the detachment of the film-forming inhibitory layer when the film is selectively grown. It cannot be raised, and the film quality of the formed film may deteriorate.
  • a step of removing the film-forming inhibitory layer may be required, which may deteriorate productivity.
  • the purpose of the present disclosure is to provide a technique capable of improving productivity while improving the film quality of the film formed by selective growth.
  • B A step of supplying a film-forming gas to the substrate after forming the film-forming inhibitory layer on the surface of the first substrate to form a film on the surface of the second substrate.
  • C A halogen-free substance that chemically reacts with the film-forming inhibitory layer and the film is supplied to the substrate after the film is formed on the surface of the second substrate in a non-plasma atmosphere. Process and The technology to do is provided.
  • FIG. 1 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in one aspect of the present disclosure, and is a diagram showing a portion 202 of the processing furnace in a vertical cross-sectional view.
  • FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in one aspect of the present disclosure, and is a diagram showing a portion 202 of the processing furnace in a cross-sectional view taken along the line AA of FIG.
  • FIG. 3 is a schematic configuration diagram of a controller 121 of a substrate processing apparatus preferably used in one aspect of the present disclosure, and is a diagram showing a control system of the controller 121 as a block diagram.
  • FIG. 1 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in one aspect of the present disclosure, and is a diagram showing a portion 202 of the processing furnace in a vertical cross-sectional view.
  • FIG. 2 is a schematic configuration diagram of a vertical processing furnace
  • FIG. 4 is a diagram showing a processing sequence in selective growth of one aspect of the present disclosure.
  • 5 (a) to 5 (d) are enlarged cross-sectional portions on the surface of the wafer 200 at each step in the selective growth of one aspect of the present disclosure.
  • FIG. 5A is an enlarged cross-sectional view of the surface of the wafer 200 in which the base 200a and the base 200b are exposed on the surface.
  • FIG. 5B is an enlarged cross-sectional portion of the surface of the wafer 200 after the film formation inhibitory layer 310 is formed on the surface of the substrate 200a by supplying the film formation inhibitory gas to the wafer 200.
  • FIG. 5C is an enlarged cross-sectional portion of the surface of the wafer 200 after the film 320 is formed on the surface of the base 200b by supplying the film forming gas to the wafer 200.
  • FIG. 5D shows that the film formation inhibitory layer 310 formed on the surface of the base 200a is removed from the surface of the base 200a by supplying the halogen-free substance to the wafer 200, and the surface of the base 200b is shown. It is an enlarged view of the cross section on the surface of the wafer 200 after changing the film 320 formed above into a film 330 having a film quality improved from that of the film 320.
  • 6 (a) to 6 (d) are enlarged cross-sectional portions on the surface of the wafer 200 at each step in the selective growth of the first modification of the present disclosure.
  • 6 (a) to 6 (c) are enlarged cross-sectional portions similar to those of FIGS. 5 (a) and 5 (c), respectively.
  • FIG. 6D shows that by supplying a halogen-free substance to the wafer 200, the film-forming inhibitory layer 310 formed on the surface of the base 200a is removed from the surface of the base 200a, and the surface of the base 200b is shown.
  • FIG. 7 (a) to 7 (d) are enlarged cross-sectional portions on the surface of the wafer 200 at each step in the selective growth of the second modification of the present disclosure.
  • 7 (a) to 7 (c) are enlarged cross-sectional portions similar to those of FIGS. 5 (a) and 5 (c), respectively.
  • FIG. 7 (a) to 7 (c) are enlarged cross-sectional portions similar to those of FIGS. 5 (a) and 5 (c), respectively.
  • FIG. 7 (d) shows that by supplying a halogen-free substance to the wafer 200, the film-forming inhibitory layer 310 formed on the surface of the base 200a is removed from the surface of the base 200a, and the surface of the base 200b is shown.
  • It is an enlarged view of the cross section in. 8 (a) to 8 (d) are enlarged cross-sectional portions on the surface of the wafer 200 at each step in the selective growth of the third modification of the present disclosure.
  • 8 (a) to 8 (c) are enlarged cross-sectional portions similar to those of FIGS.
  • FIG. 8D shows that the film formation inhibitory layer 310 formed on the surface of the base 200a is removed from the surface of the base 200a by supplying the halogen-free substance to the wafer 200, and the surface of the base 200b is shown. It is an enlarged view of the cross section on the surface of the wafer 200 after changing the film 320 formed above into a film 360 having a chemical structure different from that of the film 320.
  • 9 (a) to 9 (d) are enlarged cross-sectional portions on the surface of the wafer 200 at each step in the selective growth of the modified example 4 of the present disclosure.
  • 9 (a) to 9 (c) are enlarged cross-sectional portions similar to those of FIGS.
  • FIG. 9D shows that the film formation inhibitory layer 310 formed on the surface of the base 200a is removed from the surface of the base 200a by supplying the halogen-free substance to the wafer 200, and the surface of the base 200b is shown. It is an enlarged view of the cross section on the surface of the wafer 200 after the surface layer which is a part of the film 320 formed above is changed to the film 370 which has a chemical structure different from that of the film 320.
  • the drawings used in the following description are all schematic, and the dimensional relationship of each element, the ratio of each element, etc. shown in the drawings do not always match the actual ones. Further, even between the plurality of drawings, the relationship between the dimensions of each element, the ratio of each element, and the like do not always match.
  • the processing furnace 202 has a heater 207 as a temperature controller (heating unit).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation portion) for activating (exciting) the gas with heat.
  • a reaction tube 203 is arranged concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape in which the upper end is closed and the lower end is open.
  • a manifold 209 is arranged concentrically with the reaction tube 203.
  • the manifold 209 is made of a metal material such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends. The upper end of the manifold 209 is engaged with the lower end of the reaction tube 203 and is configured to support the reaction tube 203.
  • An O-ring 220a as a sealing member is provided between the manifold 209 and the reaction tube 203.
  • the reaction tube 203 is installed vertically like the heater 207.
  • a processing container (reaction container) is mainly composed of the reaction tube 203 and the manifold 209.
  • a processing chamber 201 is formed in the hollow portion of the cylinder of the processing container.
  • the processing chamber 201 is configured to accommodate the wafer 200 as a substrate.
  • the wafer 200 is processed in the processing chamber 201.
  • Nozzles 249a to 249c as first to third supply units are provided in the processing chamber 201 so as to penetrate the side wall of the manifold 209.
  • the nozzles 249a to 249c are also referred to as first to third nozzles, respectively.
  • the nozzles 249a to 249c are made of a heat-resistant material such as quartz or SiC.
  • Gas supply pipes 232a to 232c are connected to the nozzles 249a to 249c, respectively.
  • the nozzles 249a to 249c are different nozzles, and each of the nozzles 249a and 249c is provided adjacent to the nozzle 249b.
  • the gas supply pipes 232a to 232c are provided with mass flow controllers (MFCs) 241a to 241c which are flow rate controllers (flow control units) and valves 243a to 243c which are on-off valves, respectively, in order from the upstream side of the gas flow. ..
  • MFCs mass flow controllers
  • Gas supply pipes 232d and 232e are connected to the downstream side of the gas supply pipe 232a on the downstream side of the valve 243a, respectively.
  • Gas supply pipes 232f and 232h are connected to the downstream side of the gas supply pipe 232b on the downstream side of the valve 243b, respectively.
  • a gas supply pipe 232 g is connected to the downstream side of the valve 243c of the gas supply pipe 232c.
  • the gas supply pipes 232d to 232h are provided with MFCs 241d to 241h and valves 243d to 243h in order from the upstream side of the gas flow.
  • the gas supply pipes 232a to 232h are made of a metal material such as SUS.
  • the nozzles 249a to 249c are arranged in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper part of the inner wall of the reaction tube 203 from the lower part of the wafer 200.
  • Each is provided so as to stand upward in the arrangement direction. That is, the nozzles 249a to 249c are provided in the region horizontally surrounding the wafer array region on the side of the wafer array region in which the wafer 200 is arranged, so as to be along the wafer array region.
  • the nozzle 249b is arranged so as to face the exhaust port 231a, which will be described later, with the center of the wafer 200 carried into the processing chamber 201 interposed therebetween.
  • the nozzles 249a and 249c are arranged so as to sandwich a straight line L passing through the nozzle 249b and the center of the exhaust port 231a along the inner wall of the reaction tube 203 (the outer peripheral portion of the wafer 200) from both sides.
  • the straight line L is also a straight line passing through the nozzle 249b and the center of the wafer 200. That is, it can be said that the nozzle 249c is provided on the opposite side of the nozzle 249a with the straight line L interposed therebetween.
  • the nozzles 249a and 249c are arranged line-symmetrically with the straight line L as the axis of symmetry.
  • Gas supply holes 250a to 250c for supplying gas are provided on the side surfaces of the nozzles 249a to 249c, respectively. Each of the gas supply holes 250a to 250c is opened so as to face (face) the exhaust port 231a in a plan view, and gas can be supplied toward the wafer 200. A plurality of gas supply holes 250a to 250c are provided from the lower part to the upper part of the reaction tube 203.
  • the film forming inhibitory gas is supplied into the processing chamber 201 via the MFC 241a, the valve 243a, and the nozzle 249a.
  • the raw material gas is supplied into the processing chamber 201 via the MFC 241b, the valve 243b, and the nozzle 249b.
  • the reaction gas is supplied from the gas supply pipe 232c into the processing chamber 201 via the MFC 241c, the valve 243c, and the nozzle 249c. Since the reaction gas may contain a substance that acts as a halogen-free substance described later, even if the halogen-free substance is supplied into the processing chamber 201 via the MFC 241c, the valve 243c, and the nozzle 249c. good.
  • the catalyst gas is supplied into the processing chamber 201 via the MFC 241d, the valve 243d, the gas supply pipe 232a, and the nozzle 249a.
  • the inert gas is supplied into the processing chamber 201 via the MFC 241e to 241 g, the valve 243e to 243 g, the gas supply pipes 232a to 232c, and the nozzles 249a to 249c, respectively.
  • the halogen-free substance is supplied into the processing chamber 201 via the MFC 241h, the valve 243h, the gas supply pipe 232b, and the nozzle 249b.
  • the gas supply pipe 232a, MFC241a, and valve 243a constitute a film formation inhibitory gas supply system.
  • the raw material gas supply system is mainly composed of the gas supply pipe 232b, the MFC241b, and the valve 243b.
  • the reaction gas supply system is mainly composed of the gas supply pipe 232c, the MFC 241c, and the valve 243c.
  • the catalyst gas supply system is mainly composed of the gas supply pipe 232d, the MFC 241d, and the valve 243d.
  • the inert gas supply system is mainly composed of gas supply pipes 232e to 232 g, MFC 241e to 241 g, and valves 243e to 243 g.
  • a halogen-free substance supply system is mainly composed of a gas supply pipe 232h, an MFC 241h, and a valve 243h.
  • the raw material gas supply system, the reaction gas supply system, and the catalyst gas supply system can also be referred to as a film-forming gas supply system. ..
  • the reaction gas since the reaction gas may act as a halogen-free substance, the reaction gas supply system can also be referred to as a halogen-free substance supply system. That is, the halogen-free substance supply system may be configured by the gas supply pipe 232c, the MFC 241c, and the valve 243c.
  • any or all of the supply systems may be configured as an integrated supply system 248 in which valves 243a to 243h, MFC241a to 241h, and the like are integrated.
  • the integrated supply system 248 is connected to each of the gas supply pipes 232a to 232h, and supplies various gases into the gas supply pipes 232a to 232h, that is, the opening / closing operation of the valves 243a to 243h and the MFC 241a to 241h.
  • the flow rate adjustment operation and the like are configured to be controlled by the controller 121 described later.
  • the integrated supply system 248 is configured as an integrated or divided integrated unit, and can be attached to and detached from the gas supply pipes 232a to 232h in units of the integrated unit. It is configured so that maintenance, replacement, expansion, etc. can be performed on an integrated unit basis.
  • an exhaust port 231a for exhausting the atmosphere in the processing chamber 201 is provided below the side wall of the reaction tube 203. As shown in FIG. 2, the exhaust port 231a is provided at a position facing (facing) the nozzles 249a to 249c (gas supply holes 250a to 250c) with the wafer 200 interposed therebetween in a plan view.
  • the exhaust port 231a may be provided along the upper part of the side wall of the reaction tube 203 from the lower part, that is, along the wafer arrangement region.
  • An exhaust pipe 231 is connected to the exhaust port 231a.
  • the exhaust pipe 231 is provided via a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure regulator).
  • a vacuum pump 246 as a vacuum exhaust device is connected.
  • the APC valve 244 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, with the vacuum pump 246 operating, the APC valve 244 can perform vacuum exhaust and vacuum exhaust stop. By adjusting the valve opening degree based on the pressure information detected by the pressure sensor 245, the pressure in the processing chamber 201 can be adjusted.
  • the exhaust system is mainly composed of an exhaust pipe 231, an APC valve 244, and a pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is made of a metal material such as SUS and is formed in a disk shape.
  • An O-ring 220b as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 for rotating the boat 217 which will be described later, is installed below the seal cap 219.
  • the rotation shaft 255 of the rotation mechanism 267 penetrates the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lifting mechanism installed outside the reaction tube 203.
  • the boat elevator 115 is configured as a transport device (transport mechanism) for loading and unloading (transporting) the wafer 200 into and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • a shutter 219s is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209 in a state where the seal cap 219 is lowered and the boat 217 is carried out from the processing chamber 201.
  • the shutter 219s is made of a metal material such as SUS and is formed in a disk shape.
  • An O-ring 220c as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the shutter 219s.
  • the opening / closing operation of the shutter 219s (elevating / lowering operation, rotating operation, etc.) is controlled by the shutter opening / closing mechanism 115s.
  • the boat 217 as a substrate support supports a plurality of wafers, for example, 25 to 200 wafers 200 in a horizontal position and vertically aligned with each other, that is, to support them in multiple stages. It is configured to be arranged at intervals.
  • the boat 217 is made of a heat resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in multiple stages.
  • a temperature sensor 263 as a temperature detector is installed in the reaction tube 203. By adjusting the energization condition to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution.
  • the temperature sensor 263 is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like.
  • a control program for controlling the operation of the board processing device, a process recipe in which the procedure and conditions for board processing described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each procedure in the substrate processing described later and obtain a predetermined result, and functions as a program.
  • process recipes, control programs, etc. are collectively referred to simply as programs.
  • a process recipe is also simply referred to as a recipe.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
  • the I / O port 121d includes the above-mentioned MFC 241a to 241h, valves 243a to 243h, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, rotation mechanism 267, boat elevator 115, shutter opening / closing mechanism 115s, etc. It is connected to the.
  • the CPU 121a is configured to be able to read and execute a control program from the storage device 121c and read a recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241h, opens and closes the valves 243a to 243h, opens and closes the APC valve 244, and adjusts the pressure by the APC valve 244 based on the pressure sensor 245 so as to follow the contents of the read recipe.
  • the controller 121 can be configured by installing the above-mentioned program stored in the external storage device 123 in the computer.
  • the external storage device 123 includes, for example, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as MO, a USB memory, a semiconductor memory such as an SSD, and the like.
  • the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium may include only the storage device 121c alone, it may include only the external storage device 123 alone, or it may include both of them.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • Substrate processing step As one step of the manufacturing process of the semiconductor device (device) using the above-mentioned substrate processing apparatus, on the surface of a specific substrate among a plurality of types of substrates exposed on the surface of the wafer 200 as a substrate.
  • An example of a process sequence of selective growth (selective film formation) formed by selectively growing a film will be described mainly with reference to FIGS. 4 and 5 (a) to 5 (d).
  • the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
  • Step A to supply a film-forming inhibitory gas to the wafer 200 in which the substrate 200a as the first substrate and the substrate 200b as the second substrate are exposed on the surface to form the film-forming inhibitory layer 310 on the surface of the substrate 200a.
  • Step C of supplying the film-forming inhibitory layer 310 and the halogen-free substance that chemically reacts with the film 320 to the wafer 200 after the film 320 is formed on the surface of the substrate 200b in a non-plasma atmosphere. I do.
  • step A is also referred to as film formation inhibitory layer formation.
  • Step B is also referred to as selective growth.
  • Step C is also referred to as post treatment.
  • the film-forming gas used in step B includes a raw material gas, a reaction gas, and a catalyst gas.
  • step B the raw material gas, the reaction gas, and the catalyst gas are supplied to the wafer 200 as the film forming gas, respectively.
  • step B a cycle in which the step of supplying the raw material gas and the catalyst gas to the wafer 200 and the step of supplying the reaction gas and the catalyst gas to the wafer 200 are performed non-simultaneously is predetermined.
  • the process is performed a number of times (n times, n is an integer of 1 or more) to form a film on the surface of the substrate 200b.
  • the temperature of the wafer 200 in step B is set to be equal to or lower than the temperature of the wafer 200 in step A, preferably lower than the temperature of the wafer 200 in step A.
  • the temperature of the wafer 200 in step C is set to be equal to or higher than the temperature of the wafer 200 in step B, preferably higher than the temperature of the wafer 200 in step B.
  • the temperature of the wafer 200 in step C is set to be equal to or higher than the temperature of the wafer 200 in step A, preferably higher than the temperature of the wafer 200 in step A.
  • wafer When the word “wafer” is used in the present specification, it may mean the wafer itself or a laminate of a wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface When the term “wafer surface” is used in the present specification, it may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer.
  • the description of "forming a predetermined layer on a wafer” means that a predetermined layer is directly formed on the surface of the wafer itself, a layer formed on the wafer, or the like. It may mean forming a predetermined layer on top of it.
  • the use of the term “wafer” in the present specification is also synonymous with the use of the term “wafer”.
  • the shutter opening / closing mechanism 115s moves the shutter 219s to open the lower end opening of the manifold 209 (shutter open).
  • the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and carried into the processing chamber 201 (boat load).
  • the seal cap 219 is in a state of sealing the lower end of the manifold 209 via the O-ring 220b.
  • the surface of the wafer 200 loaded on the boat 217 has a plurality of types of substrates, here, as an example, an oxygen (O) -containing film, that is, a silicon oxide film (SiO film) as an oxide film. ), And the base 200b containing a silicon nitride film (SiN film) as a nitride film which is an O-free film, that is, a non-oxidizing film, are in a pre-exposed state.
  • the base 200a has a surface terminated with a hydroxyl group (OH group) over the entire area (entire surface). That is, the base 200a has an OH termination over the entire area (entire surface).
  • the base 200b has a surface in which many regions are not terminated with OH groups, that is, a surface in which some regions are terminated with OH groups.
  • vacuum exhaust (reduced exhaust) is performed by the vacuum pump 246 so that the inside of the processing chamber 201, that is, the space where the wafer 200 exists, has a desired pressure (vacuum degree).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
  • the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to have a desired processing temperature.
  • the state of energization to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution.
  • the rotation of the wafer 200 by the rotation mechanism 267 is started. Exhaust in the processing chamber 201, heating and rotation of the wafer 200 are all continuously performed at least until the processing of the wafer 200 is completed.
  • step A, step B, and step C are executed in this order.
  • step A, step B, and step C are executed in this order.
  • step A the film-forming inhibitory gas is supplied to the wafer 200 in the processing chamber 201, that is, the wafer 200 in which the substrate 200a and the substrate 200b are exposed on the surface, and the film-forming inhibitory layer 310 is applied to the surface of the substrate 200a. To form.
  • valve 243a is opened to supply the film forming inhibitory gas into the gas supply pipe 232a.
  • the flow rate of the film-forming inhibitory gas is adjusted by the MFC 241a, is supplied into the processing chamber 201 via the nozzle 249a, and is exhausted from the exhaust port 231a.
  • the film forming inhibitory gas is supplied to the wafer 200.
  • the valves 243e to 243g may be opened to supply the inert gas into the processing chamber 201 via each of the nozzles 249a to 249c.
  • the surface of the base 200a among the bases 200a and 200b is selectively (preferred).
  • the film-forming inhibitory gas can be chemically adsorbed, and the film-forming inhibitory layer 310 can be selectively (preferentially) formed on the surface of the substrate 200a.
  • the formed film-forming inhibitory layer 310 contains, for example, a hydrocarbon group termination.
  • the film-forming inhibitory layer 310 adsorbs the film-forming gas (raw material gas, reaction gas, etc.) on the surface of the substrate 200a, and the surface of the substrate 200a and the film-forming gas (raw material gas, reaction gas, etc.). It acts as a film forming inhibitor (adsorption inhibitor), that is, an inhibitor, which suppresses the reaction with and suppresses the progress of the film forming reaction on the surface of the substrate 200a.
  • the film-forming inhibitory layer 310 can also be referred to as an adsorption inhibitory layer or a reaction inhibitory layer because of its action.
  • the film-forming inhibitory layer 310 formed on the surface of the substrate 200a can also be referred to as an inhibitor, and the film-forming inhibitory gas itself supplied to the wafer 200 to form the film-forming inhibitory layer 310 is referred to as an inhibitor. You can also do it.
  • the term inhibitor when used, it may contain only the film-forming inhibitory layer 310, it may contain only the film-forming inhibitory gas, or it may contain both of them.
  • the supply of the film-forming inhibitory gas is stopped. Then, the inside of the processing chamber 201 is evacuated, and the gas or the like remaining in the processing chamber 201 is removed from the inside of the processing chamber 201. At this time, the inert gas is supplied into the processing chamber 201 via the nozzles 249a to 249c.
  • the inert gas supplied from the nozzles 249a to 249c acts as a purge gas, whereby the inside of the processing chamber 201 is purged (purge).
  • the processing conditions for supplying the film-forming inhibitory gas in step A include Treatment temperature: room temperature (25 ° C) to 500 ° C, preferably room temperature to 250 ° C Processing pressure: 1 to 2000 Pa, preferably 5 to 1000 Pa Film formation inhibition gas supply flow rate: 1 to 3000 sccm, preferably 1 to 500 sccm Film formation inhibition gas supply time: 1 second to 120 minutes, preferably 30 seconds to 60 minutes Inert gas supply flow rate (for each gas supply pipe): 0 to 20000 sccm Is exemplified.
  • the processing conditions for purging in step A include Treatment temperature: room temperature (25 ° C) to 500 ° C, preferably room temperature to 250 ° C Processing pressure: 1 to 30 Pa, preferably 1 to 20 Pa Inert gas supply flow rate (for each gas supply pipe): 500 to 20000 sccm The inert gas supply time: 10 to 30 seconds is exemplified.
  • the processing temperature means the temperature of the wafer 200
  • the processing pressure means the pressure in the processing chamber 201. The same applies to the following description.
  • Step A is preferably performed in a non-plasma atmosphere.
  • a non-plasma atmosphere plasma damage to the wafer 200, the substrates 200a and 200b on the surface of the wafer 200, and the film forming inhibitor layer 310 formed on the surface of the substrate 200a in step A is avoided. It becomes possible.
  • the film-forming inhibitory gas may be chemically adsorbed on a part of the surface of the base 200b.
  • the amount of chemical adsorption of the film-forming inhibitory gas on the surface of the substrate 200b is small, and the chemical deposition-inhibiting gas on the surface of the substrate 200a is chemical.
  • the amount of adsorption is overwhelmingly large.
  • the film-forming inhibitory gas for example, a hydrocarbon group-containing gas can be used.
  • a hydrocarbon group-containing gas As the film-forming inhibitory gas, it is possible to form the film-forming inhibitory layer 310 containing the hydrocarbon group termination.
  • the film formation inhibition layer 310 containing the hydrocarbon group termination is also referred to as a hydrocarbon group termination layer.
  • the hydrocarbon group in the hydrocarbon group-containing gas may contain only a single bond like an alkyl group, or may contain an unsaturated bond such as a double bond or a triple bond.
  • a gas containing an alkyl group can be used.
  • a gas containing an alkyl group for example, a gas containing an alkylsilyl group in which an alkyl group is coordinated with Si, that is, an alkylsilane-based gas can be used.
  • the alkyl group is a general term for the remaining atomic groups obtained by removing one hydrogen (H) atom from an alkane (chain saturated hydrocarbon represented by the general formula C n H 2n + 2 ), and is represented by the general formula C n H 2n + 1 . It is a functional group.
  • an alkyl group having 1 to 5 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • the alkyl group may be linear or branched.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and the like. Since the alkyl group is bonded to Si, which is the central atom of the alkylsilane molecule, the alkyl group in the alkylsilane can also be referred to as a ligand (ligand) or an alkyl ligand.
  • ligand ligand
  • the hydrocarbon group-containing gas may further contain an amino group. That is, the hydrocarbon group-containing gas may contain a hydrocarbon group and an amino group.
  • the hydrocarbon group and amino group-containing gas for example, an alkylaminosilane-based gas containing an alkyl group directly bonded to Si, which is a central atom, and an amino group directly bonded to Si, which is a central atom, can be used. ..
  • An amino group is a functional group in which one or two hydrocarbon groups are coordinated with one nitrogen (N) atom (one or both of the hydrogen (H) atoms of the amino group represented by -NH 2 are carbonized. It is a functional group substituted with a hydrogen group).
  • the two may be the same hydrocarbon group or different hydrocarbon groups. ..
  • the hydrocarbon group constituting a part of the amino group is the same as the above-mentioned hydrocarbon group.
  • the amino group may have a cyclic structure.
  • An amino group that directly binds to Si, which is the central atom of an alkylaminosilane, can also be referred to as a ligand or an amino ligand.
  • an alkyl group directly bonded to Si which is a central atom in an alkylaminosilane, can also be referred to as a ligand or an alkyl ligand.
  • alkylaminosilane gas for example, a gas of an aminosilane compound represented by the following formula [1] can be used.
  • A represents a hydrogen (H) atom, an alkyl group, or an alkoxy group
  • B represents an H atom or an alkyl group
  • x represents an integer of 1 to 3.
  • A represents an alkyl group
  • x is 2 or 3
  • at least one of A represents an alkyl group.
  • the alkyl group represented by A is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group represented by A may be linear or branched. Examples of the alkyl group represented by A include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and the like.
  • the alkoxy group represented by A is preferably an alkoxy group having 1 to 5 carbon atoms, and more preferably an alkoxy group having 1 to 4 carbon atoms.
  • the alkyl group in the alkoxy group represented by A is the same as the alkyl group represented by A above.
  • x is 2 or 3
  • the two or three A's may be the same or different.
  • the alkyl group represented by B is the same as the alkyl group represented by A above.
  • the two Bs may be the same or different, and when x is 1 or 2, the plurality of (NB 2 ) may be the same or different.
  • the two Bs may be bonded to form a ring structure, and the formed ring structure may further have a substituent such as an alkyl group.
  • alkylaminosilane-based gas for example, a gas of a compound containing one amino group and three alkyl groups in one molecule can be used. That is, a gas of a compound in which A in the formula [1] is an alkyl group and x is 3 can be used.
  • alkylaminosilane-based gas a (alkylamino) alkylsilane-based gas can be used.
  • one amino group (dimethylamino group or diethylamino group) is bonded to Si, which is the central atom of DMATMS, DEATMS, DEATES, DMATES, etc., and three alkyl groups (methyl group or ethyl group) are present. It is combined. That is, DMATMS, DEATMS, DEATES, DMATES and the like include one amino ligand and three alkyl ligands.
  • nitrogen (N 2 ) gas can be used, and in addition, a rare gas such as argon (Ar) gas, helium (He) gas, neon (Ne) gas, and xenone (Xe) gas can be used. Can be used. This point is the same in each step described later.
  • step B is performed.
  • the film-forming gas raw material gas, reaction gas, catalyst gas
  • the film-forming inhibitory layer 310 is formed on the surface of the base 200a. It is supplied to form a film on the surface of the substrate 200b.
  • step B the output of the heater 207 is adjusted so that the temperature of the wafer 200 is equal to or lower than the temperature of the wafer 200 in step A, preferably lower than the temperature of the wafer 200 in step A.
  • step B the raw material gas and the reaction gas are alternately supplied to the wafer 200 as the film forming gas, or the raw material gas and the reaction gas are alternately supplied to the wafer 200 as the film forming gas. It is preferable to supply and supply the catalyst gas together with at least one of the raw material gas and the reaction gas.
  • step B an example in which the raw material gas and the reaction gas are alternately supplied as the film forming gas and the catalyst gas is supplied together with the raw material gas and the reaction gas will be described.
  • step B the next steps B1 and B2 are sequentially executed.
  • Step B1 the raw material gas and the catalyst gas are supplied to the wafer 200 in the processing chamber 201, that is, the wafer 200 after the film formation inhibitory layer 310 is formed on the surface of the base 200a.
  • valves 243b and 243d are opened to supply the raw material gas into the gas supply pipe 232b and the catalyst gas into the gas supply pipe 232d, respectively.
  • the flow rate of the raw material gas and the catalyst gas is adjusted by the MFCs 241b and 241d, respectively, and the gas is supplied into the processing chamber 201 via the nozzles 249b and 249a, supplied into the processing chamber 201, mixed, and exhausted from the exhaust port 231a. Will be done.
  • the raw material gas and the catalyst gas are supplied to the wafer 200 (raw material gas + catalyst gas supply).
  • the valves 243e to 243g may be opened to supply the inert gas into the processing chamber 201 via each of the nozzles 249a to 249c.
  • the raw material gas is selectively applied to the surface of the base 200b while suppressing the chemisorption of the raw material gas on the surface of the base 200a. Priority), it becomes possible to chemically adsorb. As a result, the first layer is formed on the surface of the base 200b.
  • the above-mentioned reaction can be allowed to proceed in a non-plasma atmosphere and under low temperature conditions as described later.
  • the molecules constituting the film-forming inhibitory layer 310 formed on the surface of the substrate 200a by forming the first layer under a non-plasma atmosphere and under low temperature conditions as described later. And atoms can be maintained without disappearing (desorbing) from the surface of the substrate 200a.
  • the raw material gas is thermally decomposed (gas phase decomposition) in the processing chamber 201, that is, self. It is possible to prevent decomposition, prevent multiple accumulation of a part of the structure of the raw material gas on the surfaces of the bases 200a and 200b, and selectively adsorb the raw material gas on the surface of the base 200b. Is possible.
  • the supply of the raw material gas and the catalyst gas into the processing chamber 201 is stopped. Then, by the same treatment procedure and treatment conditions as in the purge in step A, the gas or the like remaining in the treatment chamber 201 is removed from the treatment chamber 201 (purge).
  • the processing temperature for purging is preferably the same as the processing temperature for supplying the raw material gas and the catalyst gas.
  • the processing conditions for supplying the raw material gas and the catalyst gas in step B1 are as follows. Treatment temperature: room temperature to 200 ° C, preferably room temperature to 120 ° C Processing pressure: 133 to 1333 Pa Raw material gas supply flow rate: 1 to 2000 sccm Raw material gas supply time: 1 to 60 seconds Catalyst gas supply flow rate: 1 to 2000 sccm Inert gas supply flow rate (for each gas supply pipe): 0 to 20000 sccm Is exemplified.
  • the raw material gas when the first layer is formed, the raw material gas may be adsorbed on a part of the surface of the base 200a, but the amount of adsorption is very small, and the raw material gas on the surface of the base 200b is very small. It is much smaller than the amount of adsorption.
  • the treatment conditions in this step are low temperature conditions as described above and the raw material gas does not undergo gas phase decomposition in the treatment chamber 201. Because it is. Further, it is because the film-forming inhibitory layer 310 is formed over the entire surface of the substrate 200a, whereas the film-forming inhibitory layer 310 is not formed in many regions of the surface of the substrate 200b.
  • Si and halogen-containing gas can be used as the raw material gas.
  • Halogen includes chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like.
  • the Si and halogen-containing gas preferably contain halogen in the form of a chemical bond between Si and the halogen.
  • the Si and halogen-containing gas may further contain C, in which case C is preferably contained in the form of a Si—C bond.
  • a silane-based gas containing Si, Cl and an alkylene group and having a Si—C bond that is, an alkylene chlorosilane-based gas can be used.
  • the alkylene group includes a methylene group, an ethylene group, a propylene group, a butylene group and the like.
  • the Si and halogen-containing gas for example, a silane gas containing Si, Cl and an alkyl group and having a Si—C bond, that is, an alkylchlorosilane gas can be used.
  • the alkylene chlorosilane-based gas and the alkylchlorosilane-based gas preferably contain Cl in the form of a Si—Cl bond and C in the form of a Si—C bond.
  • Si and halogen-containing gas examples include bis (trichlorosilyl) methane ((SiCl 3 ) 2 CH 2 , abbreviated as BTCSM) gas and 1,2-bis (trichlorosilyl) ethane ((SiCl 3 ) 2 C 2 H.
  • alkylene chlorosilane gas such as (abbreviation: BTCSE) gas, 1,1,2,2-tetrachloro-1,2-dimethyldisilane ((CH 3 ) 2 Si 2 Cl 4 , abbreviation: TCDMDS) gas, 1 , 2-Dichloro-1,1,2,2-tetramethyldisilane ((CH 3 ) 4 Si 2 Cl 2 , abbreviated as DCTMDS) gas and other alkylchlorosilane gas, 1,1,3,3-tetrachloro
  • a cyclic structure composed of Si and C, such as -1,3-disilacyclobutane (C 2 H 4 Cl 4 Si 2 , abbreviated as TCDSCB) gas, and a gas containing halogen can be used.
  • Si and halogen-containing gas examples include tetrachlorosilane (SiCl 4 , abbreviated as STC) gas, hexachlorodisilane (Si 2 Cl 6 , abbreviated as HCDS) gas, and octachlorotrisilane (Si 3 Cl 8 , abbreviated as OCTS).
  • STC tetrachlorosilane
  • HCDS hexachlorodisilane
  • OCTS octachlorotrisilane
  • Inorganic chlorosilane-based gas such as gas can also be used.
  • 4DMAS tris (dimethylamino) silane
  • 3DMAS 3DMAS
  • BDEAS bis (diethylamino
  • the aminosilane-based gas can also be used as one of the film-forming inhibitory gases in other embodiments described later.
  • the above-mentioned raw material gas supply system is configured to be able to supply the film-forming inhibitory gas, it also functions as a film-forming inhibitory gas supply system.
  • an amine-based gas containing C, N and H can be used.
  • the amine-based gas include pyridine gas (C 5 H 5 N, abbreviated as py) gas, amino pyridine (C 5 H 6 N 2 ) gas, picolin (C 6 H 7 N) gas, and rutidin (C 7 H).
  • Cyclic amine gas such as gas, piperazine (C 4 H 10 N 2 ) gas, piperidine (C 5 H 11 N) gas, triethylamine ((C 2 H 5 ) 3 N, abbreviation: TEA) gas, A chain amine-based gas such as diethylamine ((C 2 H 5 ) 2 NH, abbreviated as DEA) gas can be used. Above all, it is preferable to use py gas as the catalyst gas. This point is the same in step B2 described later.
  • Step B2 After the first layer is formed, a reaction gas such as an oxidizing agent and a catalyst gas are supplied to the wafer 200 in the processing chamber 201, that is, the first layer formed on the surface of the base 200b.
  • a reaction gas such as an oxidizing agent and a catalyst gas are supplied to the wafer 200 in the processing chamber 201, that is, the first layer formed on the surface of the base 200b.
  • valves 243c and 243d are opened to supply the reaction gas into the gas supply pipe 232c and the catalyst gas into the gas supply pipe 232d, respectively.
  • the flow rates of the reaction gas and the catalyst gas are adjusted by the MFCs 241c and 241d, respectively, and are supplied into the processing chamber 201 via the nozzles 249c and 249a, supplied into the processing chamber 201, mixed, and exhausted from the exhaust port 231a. Will be done.
  • the reaction gas and the catalyst gas are supplied to the wafer 200 (reaction gas + catalyst gas supply).
  • the valves 243e to 243g may be opened to supply the inert gas into the processing chamber 201 via each of the nozzles 249a to 249c.
  • step B1 By supplying a reaction gas such as an oxidizing agent and a catalyst gas to the wafer 200 under the treatment conditions described later, at least a part of the first layer formed on the surface of the base 200b in step B1 can be oxidized. It will be possible. As a result, a second layer formed by oxidizing the first layer is formed on the surface of the base 200b.
  • a reaction gas such as an oxidizing agent and a catalyst gas
  • the above-mentioned oxidation reaction can be allowed to proceed in a non-plasma atmosphere and under low temperature conditions as described later.
  • the supply of the reaction gas and the catalyst gas into the treatment chamber 201 is stopped. Then, by the same treatment procedure and treatment conditions as in the purge in step A, the gas or the like remaining in the treatment chamber 201 is removed from the treatment chamber 201 (purge).
  • the treatment temperature for purging in this step is preferably the same as the treatment temperature for supplying the reaction gas and the catalyst gas.
  • the treatment conditions for supplying the reaction gas and the catalyst gas in step B2 include Treatment temperature: room temperature to 200 ° C, preferably room temperature to 120 ° C Processing pressure: 133 to 1333 Pa Reaction gas supply flow rate: 1 to 2000 sccm Reaction gas supply time: 1 to 60 seconds Catalyst gas supply flow rate: 1 to 2000 sccm Inert gas supply flow rate (for each gas supply pipe): 0 to 20000 sccm Is exemplified.
  • O and H-containing gases can be used when forming an oxide film-based film.
  • an O-containing gas containing an O—H bond such as water vapor (H 2 O gas) and hydrogen peroxide (H 2 O 2 ) gas can be used.
  • O-H bond-free O-containing gas such as hydrogen (H 2 ) gas + oxygen (O 2 ) gas, H 2 gas + ozone (O 3 ) gas may be used.
  • the description of two gases such as "H 2 gas + O 2 gas” together means a mixed gas of H 2 gas and O 2 gas.
  • the two gases When supplying the mixed gas, the two gases may be mixed (premixed) in the supply pipe and then supplied into the processing chamber 201, or the two gases may be supplied separately from different supply pipes in the processing chamber 201. It may be supplied into the inside and mixed (post-mixed) in the processing chamber 201.
  • N and H-containing gases can be used when forming a nitride film-based film.
  • the N and H-containing gas include N and H-bonds such as ammonia (NH 3 ) gas, hydrazine (N 2 H 4 ) gas, diimide (N 2 H 2 ) gas, and N 3 H 8 gas.
  • H-containing gas can be used.
  • the above-mentioned oxidizing agent, oxidation, and oxidation reaction may be replaced with a nitride, nitriding, and nitriding reaction, respectively.
  • the surface of the wafer 200 is formed by performing the above-mentioned steps B1 and B2 non-simultaneously, that is, by performing a predetermined number of cycles (n times, n is an integer of 1 or more) without synchronization.
  • the film 320 can be selectively formed on the surface of the base 200b among the bases 200a and 200b exposed to the surface.
  • the above cycle is preferably repeated a plurality of times. That is, by making the thickness of the second layer formed per cycle thinner than the desired film thickness and laminating the second layer, the film thickness of the film 320 becomes the desired film thickness, as described above. It is preferable to repeat the cycle multiple times.
  • the film-forming inhibitory layer 310 formed on the surface of the base 200a is maintained on the surface of the base 200a without disappearing from the surface of the base 200a as described above. No film is formed. However, when the formation of the film-forming inhibitory layer 310 on the surface of the base 200a is insufficient for some reason, a very slight film may be formed on the surface of the base 200a. However, even in this case, the thickness of the film formed on the surface of the base 200a is much thinner than the thickness of the film formed on the surface of the base 200b.
  • "selectively forming a film on the surface of the base 200b" among the bases 200a and 200b is not only when no film is formed on the surface of the base 200a, but also as described above. It includes the case where a very thin film is formed on the surface of the base 200a.
  • step C After step B is completed, step C is performed.
  • the film forming inhibitor layer 310 and the film 320 are formed on the wafer 200 in the processing chamber 201, that is, the wafer 200 after the film 320 is formed on the surface of the substrate 200b, in a non-plasma atmosphere.
  • a halogen-free substance that chemically reacts is supplied.
  • step C the output of the heater 207 is adjusted so that the temperature of the wafer 200 is equal to or higher than the temperature of the wafer 200 in step B, preferably higher than the temperature of the wafer 200 in step B.
  • step C the output of the heater 207 is adjusted so that the temperature of the wafer 200 is equal to or higher than the temperature of the wafer 200 in step A, preferably higher than the temperature of the wafer 200 in step A. Is desirable.
  • the valve 243h is opened to supply a part or all of the halogen-free substance into the gas supply pipe 232h.
  • the halogen-free substance is flow-regulated by the MFC 241h, supplied into the processing chamber 201 via the nozzle 249b, and exhausted from the exhaust port 231a.
  • the halogen-free substance is supplied to the wafer 200 (halogen-free substance supply).
  • the valves 243e to 243g may be opened to supply the inert gas into the processing chamber 201 via each of the nozzles 249a to 249c.
  • the valve 243c may be further opened to supply a part or all of the halogen-free substance into the gas supply pipe 232c.
  • the halogen-free substances are flow-regulated by the MFCs 241h and 241c, respectively, are supplied into the processing chamber 201 via the nozzles 249b and 249c, are supplied into the processing chamber 201 and then mixed, and are mixed from the exhaust port 231a. It is exhausted.
  • the halogen-free substance is supplied to the wafer 200 (halogen-free substance supply).
  • the valves 243e to 243g may be opened to supply the inert gas into the processing chamber 201 via each of the nozzles 249a to 249c.
  • the invalidation of the function of the film-forming inhibitory layer 310 as an inhibitor is also simply referred to as the invalidation of the film-forming inhibitory layer 310. In some cases, a part of the film forming inhibitor layer 310 is removed and the other part is invalidated.
  • the film-forming inhibitory layer 310 may be removed and invalidated at the same time. That is, in this step, at least one of the removal and invalidation of the film-forming inhibitory layer 310 is performed. As a result, it is possible to reset the surface state of the base 200a and proceed with the film forming process on the surface of the base 200a in the subsequent steps.
  • the invalidation of the function of the film-forming inhibitory layer 310 as an inhibitor means that the molecular structure of the film-forming inhibitory layer 310 formed on the surface of the substrate 200a, the arrangement structure of atoms on the surface of the film-forming inhibitory layer 310, and the like.
  • the film-forming gas raw material gas, reaction gas, etc.
  • impurities such as Cl, H, a hydrocarbon compound, and water in the film 320 are removed by a chemical reaction between the film 320 formed on the surface of the substrate 200b and a halogen-free substance, and the film 320 is removed. It is possible to arrange the arrangement of the atoms constituting the above, shorten the distance between the bonds between the atoms, and strengthen the bonds. That is, in this step, impurities in the film 320 can be removed, the film 320 can be densified, and the film quality can be improved. As described above, in this step, as shown in FIG. 5D, the film 320 formed on the surface of the substrate 200b in step B is the film 330 having a better film quality than the film 320, that is, It is possible to change to a film 330 having a better film quality than the film 320.
  • the post treatment by this step is also referred to as a parallel post treatment.
  • the treatment chamber After performing at least one of the treatments of removing and invalidating the film forming inhibitor layer 310 formed on the surface of the base 200a and the modification treatment of the film 320 formed on the surface of the base 200b, the treatment chamber.
  • the supply of the halogen-free substance into 201 is stopped.
  • the gas or the like remaining in the treatment chamber 201 is removed from the treatment chamber 201 (purge).
  • the treatment temperature for purging in this step is preferably the same as the treatment temperature for supplying the halogen-free substance.
  • At least one of the removal and invalidation of the film forming inhibitor layer 310 formed on the surface of the base 200a can be treated, and the film 320 formed on the surface of the base 200b can be modified. It is preferable to carry out under treatment conditions that allow quality treatment.
  • the treatment conditions for supplying the halogen-free substance in step C include Treatment temperature: 200-1000 ° C, preferably 400-700 ° C Processing pressure: 1 to 120000 Pa, preferably 1 to 13300 Pa Halogen-free material supply flow rate: 1 to 30000 sccm, preferably 1 to 20000 sccm Halogen-free substance supply time: 1 to 18000 seconds, preferably 120 to 10800 seconds Inert gas supply flow rate (for each gas supply pipe): 0 to 20000 sccm Is exemplified.
  • an oxidizing gas oxidizing agent
  • an oxidizing gas oxidizing agent
  • the reforming process of 320 can be efficiently performed in parallel at the same time.
  • the oxidation gas which is an example of the halogen-free substance, preferably contains, for example, one or more of O and H-containing gas, O-containing gas, and O-containing gas + H-containing gas.
  • O and H-containing gas for example, H 2 O gas, H 2 O 2 gas, or the like can be used.
  • O-containing gas for example, O 2 gas, O 3 gas and the like can be used.
  • H-containing gas H 2 gas, NH 3 gas and the like can be used.
  • oxidation gas which is an example of a halogen-free substance
  • oxidation gas include H 2 O gas, H 2 O 2 gas, O 2 gas, O 3 gas, O 2 gas + H 2 gas, and O 3 gas + H 2 . It is preferable to contain one or more of gas, O 2 gas + NH 3 gas, and O 3 gas + NH 3 gas.
  • a nitride gas for example, a nitride gas (nitriding agent) can be used.
  • a nitride gas as the halogen-free substance, at least one of the treatments of removing and invalidating the film-forming inhibitory layer 310 formed on the surface of the substrate 200a, and the film formed on the surface of the substrate 200b.
  • the reforming process of 320 can be efficiently performed in parallel at the same time.
  • the nitriding gas which is an example of the halogen-free substance, preferably contains, for example, N and H-containing gas.
  • the nitride gas which is an example of a halogen-free substance, may specifically contain, for example, one or more of NH 3 gas, N 2 H 4 gas, N 2 H 2 gas, and N 3 H 8 gas. preferable.
  • the film 320 is, for example, silicon.
  • an oxide film SiO film
  • the composition ratio of the film 320 (SiO film) formed on the surface of the base 200b can be substantially maintained even after performing this step.
  • the membrane 320 is, for example, a carbonized silicon acid membrane (SiOC membrane), an oxidation gas such as an O-containing gas or an O-containing gas + H-containing gas is used as the halogen-free substance. Is preferable.
  • the composition ratio of the film 320 (SiOC film) formed on the surface of the base 200b can be substantially maintained even after performing this step.
  • the oxide gas as a halogen-free substance it is preferable to supply the oxide gas as a halogen-free substance to the wafer 200 under the treatment conditions in which the wafer is weakened.
  • treatment conditions are, for example, at least one of the treatment temperature, the treatment pressure, and the oxidation gas supply flow rate, as compared with the case where the oxidation gas is supplied to the membrane 320 (SiO membrane) as a halogen-free substance as described above. This can be achieved by reducing the pressure or by shortening the oxidation gas supply time.
  • the film 320 is, for example, a silicon nitride film (SiN film)
  • a nitride gas such as N and H-containing gas
  • the composition ratio of the film 320 (SiN film) formed on the surface of the base 200b can be substantially maintained even after performing this step.
  • the film 320 is, for example, a silicon carbonitriding film (SiCN film)
  • a nitride gas such as N and H-containing gas
  • the composition ratio of the film 320 (SiCN film) formed on the surface of the base 200b can be substantially maintained even after performing this step.
  • the processing conditions nitriding force that enable the Si—C bond contained in the membrane 320 (SiCN membrane) to be retained without being cut so that C does not desorb from the membrane 320 (SiCN membrane).
  • nitride gas as a halogen-free substance to the wafer 200 under the treatment conditions in which the wafer is weakened.
  • treatment conditions are, for example, at least one of the treatment temperature, the treatment pressure, and the nitriding gas supply flow rate, as compared with the case where the nitriding gas is supplied to the membrane 320 (SiN membrane) as a halogen-free substance as described above. This can be achieved by reducing the temperature or by shortening the nitriding gas supply time.
  • the inert gas is supplied into the processing chamber 201 from each of the nozzles 249a to 249c and exhausted from the exhaust port 231a.
  • the inert gas supplied from the nozzles 249a to 249c acts as a purge gas, whereby the inside of the treatment chamber 201 is purged, and the gas and reaction by-products remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201. Will be (after-purge).
  • the atmosphere in the processing chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to the normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115, and the lower end of the manifold 209 is opened. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the manifold 209 to the outside of the reaction tube 203 while being supported by the boat 217. After the boat is unloaded, the shutter 219s is moved and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter close). The processed wafer 200 is carried out of the reaction tube 203 and then taken out from the boat 217 (wafer discharge).
  • the treatment for the film forming inhibitor layer 310 formed on the surface of the base 200a and the treatment for the film 320 formed on the surface of the base 200b are performed simultaneously and in parallel, that is, two different treatment steps. Since the above can be performed at the same time, it is possible to increase the productivity of the substrate processing.
  • the film formation inhibitory layer formation, selective growth, and post-treatment are performed in a non-plasma atmosphere, respectively, to form the substrates 200a and 200b on the surfaces of the wafer 200 and the wafer 200, respectively. It is possible to avoid plasma damage to the films 320, 330 and the like formed on the surfaces of the film inhibiting layer 310 and the substrate 200b, and it is possible to apply this method to a process in which plasma damage is a concern.
  • Step C in this embodiment can be changed as in the modification shown below.
  • the processing procedure and processing conditions in each step of each modification can be the same as the processing procedure and processing conditions in each step of the above-mentioned substrate processing sequence.
  • the modified example shown below differs from the above-mentioned substrate processing sequence only in step C, and step A and step B in the modified example are the same as those in the above-mentioned substrate processing sequence. Therefore, in the description of the modification shown below, the description of step A and step B will be omitted.
  • step C the composition ratio of the film 320 may be changed by the modification treatment of the film 320 formed on the surface of the base 200b.
  • step C at least one of the treatments of removing and invalidating the film-forming inhibitory layer 310 formed on the surface of the substrate 200a by the action of the halogen-free substance, and forming on the surface of the substrate 200b.
  • the modification treatment for changing the composition ratio of the film 320 may be performed in parallel at the same time.
  • FIG. 6D shows, as an example, in step C, by supplying a halogen-free substance to the wafer 200, the film forming inhibitory layer 310 formed on the surface of the substrate 200a is removed from the surface of the substrate 200a. Moreover, the surface state of the wafer 200 after changing the composition ratio of the film 320 formed on the surface of the base 200b to change the film 320 to the film 340 having a composition ratio different from that of the film 320 is shown.
  • step C an oxidation gas such as an O-containing gas is used as the halogen-free substance, so that the film 340 (SiOC) is used.
  • the ratio of the C concentration (C / O ratio) to the O concentration of the film) can be made lower than the C / O ratio of the film 320 (SiOC film) before the step C is performed.
  • the membrane 320 is a SiOC membrane
  • the C / O ratio of the membrane 340 (SiOC membrane) is increased by using an oxidation gas such as O-containing gas + H-containing gas as the halogen-free substance in step C.
  • the C / O ratio of the film 340 (SiOC film) after the modification treatment using an oxidation gas such as an O-containing gas as a halogen-free substance can be further lowered. Will be.
  • the membrane 340 (SiCN membrane) is used.
  • the ratio of the C concentration to the N concentration can be made lower than the C / N ratio of the film 320 (SiCN film) before the step C is performed.
  • the membrane 320 is a silicon oxynitride membrane (SiON membrane)
  • a nitride gas such as N and H-containing gas is used as the halogen-free substance.
  • the ratio (N / O ratio) of the N concentration to the O concentration of the film 340 (SiON film) can be made higher than the N / O ratio of the film 320 (SiON film) before the step C is performed.
  • an oxidation gas such as an O-containing gas is used as the halogen-free substance to determine the N / O ratio of the membrane 340 (SiON membrane) in step C. It is possible to make the ratio lower than the N / O ratio of the film 320 (SiON film) before the above.
  • the same effect as the above-mentioned aspect can be obtained.
  • the composition of the film 320 formed on the surface of the base 200b while performing at least one of the treatments of removing and invalidating the film forming inhibitor layer 310 formed on the surface of the base 200a It is possible to control the ratio. This makes it possible to obtain a film 340 controlled to a desired composition ratio and to increase the productivity of substrate processing.
  • step C an element not contained in the film 320 (hereinafter, also referred to as another element) and a halogen-free substance is introduced into the film 320 by the modification treatment of the film 320 formed on the surface of the base 200b.
  • the elements contained in the above may be added (doping, doping). That is, in step C, another element may be doped into the film 320 formed by step B.
  • the process of doping another element in the film 320 is also referred to as addition of another element, doping of another element, or doping of another element.
  • step C at least one of the treatments of removing and invalidating the film-forming inhibitory layer 310 formed on the surface of the substrate 200a by the action of the halogen-free substance and the formation on the surface of the substrate 200b.
  • the modification process of doping the film 320 with another element may be performed in parallel at the same time.
  • FIG. 7 (d) shows, as an example, in step C, by supplying a halogen-free substance to the wafer 200, the film forming inhibitory layer 310 formed on the surface of the substrate 200a is removed from the surface of the substrate 200a.
  • another element not contained in the film 320 is added (doped) into the film 320 formed on the surface of the base 200b to form the film 320, and the film 350 obtained by adding the other element to the film 320.
  • the surface state of the wafer 200 after being changed to is shown.
  • step C a nitride gas such as N and H-containing gas is used as the halogen-free substance, whereby the film 320 is used.
  • a nitride gas such as N and H-containing gas
  • the film 320 can be changed to the film 350 (SiOC film doped with N).
  • step C when the film 320 is a SiO film, in step C, a nitride gas such as N and H-containing gas is used as the halogen-free substance to form the film 320 (SiO film).
  • a nitride gas such as N and H-containing gas
  • H-containing gas is used as the halogen-free substance to form the film 320 (SiO film).
  • the membrane 320 is a SiCN membrane
  • O is added to the membrane 320 (SiCN membrane) by using an oxidizing gas such as an O-containing gas as the halogen-free substance in step C.
  • an oxidizing gas such as an O-containing gas as the halogen-free substance in step C.
  • the film 320 formed on the surface of the substrate 200b is formed in the film 320 while performing at least one of the treatments of removing and invalidating the film forming inhibitor layer 310 formed on the surface of the substrate 200a. It is possible to add other elements. As a result, it becomes possible to obtain a film 350 doped with a desired other element, and it is possible to increase the productivity of substrate processing.
  • step C the film 320 is changed into a film having a chemical structure (for example, chemical composition, chemical composition, molecular structure, etc.) different from that of the film 320 by the modification treatment of the film 320 formed on the surface of the substrate 200b. You may do so.
  • a chemical structure for example, chemical composition, chemical composition, molecular structure, etc.
  • step C at least one of the treatments of removing and invalidating the film-forming inhibitory layer 310 formed on the surface of the substrate 200a by the action of the halogen-free substance, and forming on the surface of the substrate 200b.
  • the film 320 may be simultaneously subjected to a modification process for changing the film 320 into a film having a chemical structure different from that of the film 320.
  • FIG. 8D shows, as an example, in step C, by supplying a halogen-free substance to the wafer 200, the film forming inhibitory layer 310 formed on the surface of the substrate 200a is removed from the surface of the substrate 200a. Moreover, the surface state of the wafer 200 after the film 320 formed on the surface of the base 200b is changed to the film 360 having a chemical structure different from that of the film 320 is shown.
  • step C a nitride gas such as N and H-containing gas is used as the halogen-free substance, whereby the film 320 is used.
  • SiOC film can be changed to film 360 (SiOCN film).
  • step C by using a nitride gas such as N and H-containing gas as the halogen-free substance, the film 320 (SiO film). ) Can be changed to a film 360 (SiON film).
  • a nitride gas such as N and H-containing gas
  • the membrane 320 is a SiN membrane
  • the membrane 320 SiN membrane
  • an oxidizing gas such as an O-containing gas as the halogen-free substance. It is possible to change to a film 360 (SiON film).
  • step C an oxidation gas such as an O-containing gas or an O-containing gas + H-containing gas is used as the halogen-free substance.
  • the film 320 (SiN film) can be changed to the film 360 (SiO film).
  • the oxidizing power becomes stronger in step C than when the film 320 (SiN film) is changed to the film 360 (SiON film). Under the processing conditions, it is necessary to supply the oxide gas to the wafer 200.
  • the membrane 320 is a SiCN membrane
  • the membrane 320 SiCN membrane
  • an oxidizing gas such as an O-containing gas as the halogen-free substance. It is possible to change to a film 360 (SiOCN film).
  • the same effect as the above-mentioned aspect can be obtained.
  • the chemistry of the film 320 formed on the surface of the substrate 200b while performing at least one of the treatments of removing and invalidating the film forming inhibitor layer 310 formed on the surface of the substrate 200a It is possible to change the structure. This makes it possible to obtain a film 360 having a desired chemical structure and to increase the productivity of substrate processing.
  • step C a part of the surface of the film 320 (for example, the surface layer) is formed by the modification treatment of the film 320 formed on the surface of the base 200b, and the film 320 has a chemical structure (for example, chemical composition, chemical composition, etc.).
  • the molecular structure, etc. may be changed to a different material.
  • step C at least one of the treatments of removing and invalidating the film forming inhibitor layer 310 formed on the surface of the substrate 200a by the action of the halogen-free substance and the formation on the surface of the substrate 200b.
  • a modification process for changing a part of the surface of the film 320 to a material having a chemical structure different from that of the film 320 may be performed at the same time.
  • step C by supplying a halogen-free substance to the wafer 200, the film forming inhibitory layer 310 formed on the surface of the substrate 200a is removed from the surface of the substrate 200a. Moreover, the surface state of the wafer 200 after changing the surface layer, which is a part of the film 320 formed on the surface of the base 200b, to the film 370 having a chemical structure different from that of the film 320 is shown.
  • step C a nitride gas such as N and H-containing gas is used as the halogen-free substance, whereby the film 320 is used. It is possible to change a part of the surface of the (SiOC film) into a film 370 (SiOCN film). In this case, a part of the surface of the film 320 (SiOC film) becomes the film 370 (SiOCN film), but the part other than a part of the surface is maintained as the film 320 (SiOC film). That is, in this case, a laminated film formed by laminating a film 370 (SiOCN film) on the film 320 (SiOC film) is formed.
  • a nitride gas such as N and H-containing gas
  • the film 320 when the film 320 is a SiO film, in step C, by using a nitride gas such as N and H-containing gas as the halogen-free substance, the film 320 (SiO film). ) Can be partially transformed into a film 370 (SiON film). In this case, a part of the surface of the film 320 (SiO film) becomes the film 370 (SiON film), but the part other than a part of the surface is maintained as the film 320 (SiO film). That is, in this case, a laminated film formed by laminating a film 370 (SiON film) on the film 320 (SiO film) is formed.
  • a nitride gas such as N and H-containing gas
  • step C an oxidizing gas such as an O-containing gas is used as the halogen-free substance to form the membrane 320 (SiN membrane). It is possible to change a part of the surface into a film 370 (SiON film or SiO film). In this case, a part of the surface of the film 320 (SiN film) becomes the film 370 (SiON film or SiO film), but the part other than a part of the surface is maintained as the film 320 (SiN film). .. That is, in this case, a laminated film formed by laminating a film 370 (SiON film or SiO film) on the film 320 (SiN film) is formed.
  • a laminated film formed by laminating a film 370 (SiON film or SiO film) on the film 320 (SiN film) is formed.
  • the same effect as the above-mentioned aspect can be obtained.
  • the surface of the film 320 formed on the surface of the base 200b is treated while performing at least one of the treatments of removing and invalidating the film forming inhibitor layer 310 formed on the surface of the base 200a. It is possible to change the chemical structure of a part of. This makes it possible to obtain a film 320 having a film 370 having a desired chemical structure as a surface layer, that is, a laminated film in which the film 370 is laminated on the film 320, and to increase the productivity of substrate processing. Is possible.
  • an F-containing gas can also be used as the film forming inhibitor gas used in step A.
  • the F-containing gas By using the F-containing gas, it is possible to F-terminate the surface of the base 200a to form the film formation inhibition layer 310 containing the F-termination on the surface of the base 200a.
  • the film formation inhibition layer 310 including the F termination is also referred to as an F termination layer.
  • the F-containing gas can be supplied from the film formation inhibitory gas supply system in the above-described embodiment.
  • the F-containing gas is supplied.
  • a Si-containing gas such as an aminosilane-based gas may be supplied to the wafer 200.
  • purging in the processing chamber 201 is performed according to the same processing procedure and processing conditions as in the purging in step A, and then the F-containing gas is supplied to the wafer 200. It is preferable to supply.
  • the F-containing gas and the aminosilane-based gas can be supplied from the film-forming inhibitory gas supply system and the raw material gas supply system in the above-described embodiment.
  • the aminosilane-based gas and the F-containing gas are also referred to as a first film-forming inhibitory gas and a second film-forming inhibitory gas, respectively.
  • step A after forming the film forming inhibition layer 310 including the F termination on the surface of the base 200a, each treatment of step B and the treatment of step C in the above-described embodiment are performed in this order. Selective growth and parallel post-treatment similar to the embodiments can be performed.
  • the processing sequence of this embodiment can be shown as follows.
  • the halogen-free substance is supplied to the wafer 200 in step C after the selective growth, among the removal and nullification of the film forming inhibitor layer 310 formed on the surface of the substrate 200a. It is possible to modify the film 320 formed on the surface of the substrate 200b while performing at least one of the treatments. This makes it possible to obtain a film 330 having a higher film quality than that of the film 320, and to increase the productivity of substrate processing.
  • the first film-forming inhibitory gas that is, a Si-containing gas such as an aminosilane-based gas, for example, in the aminosilane compound represented by the above formula [1], for example, A in the formula [1] is an H atom.
  • X is 2 (ie, a compound containing two amino groups in one molecule), bisaminosilane (SiH 2 (NR 2 ) 2 , abbreviated as BAS) gas, and A in the formula [1].
  • TAS trisaminosilane
  • Examples of the MAS gas include (ethylmethylamino) silane (SiH 3 [N (CH 3 ) (C 2 H 5 )]) gas and (dimethylamino) silane (SiH 3 [N (CH 3 ) 2 ]) gas.
  • Examples of the second film-forming inhibitory gas that is, the F-containing gas, include fluorine (F 2 ) gas, chlorine trifluoride (ClF 3 ) gas, chlorine fluoride gas (ClF) gas, and nitrogen trifluoride (NF 3 ).
  • fluorine (F 2 ) gas chlorine trifluoride (ClF 3 ) gas
  • chlorine fluoride gas (ClF) gas chlorine fluoride gas
  • NF 3 nitrogen trifluoride
  • step A the supply of the film-forming inhibitory gas to the wafer 200 and the purging may be alternately repeated a plurality of times. That is, the film-forming inhibitory gas may be supplied to the wafer 200 intermittently with a purge in between.
  • the purging in this case can be performed according to the same processing procedure and processing conditions as the purging in step A.
  • the film formation on the surface of the substrate 200a is performed by purging to remove unnecessary physical adsorption components of the film formation inhibitory gas adsorbed on the surface of the wafer 200, the film formation inhibitory gas not adsorbed on the surface of the wafer 200, and the like. It becomes possible to form the inhibitory layer 310.
  • the film-forming inhibitory gas may be supplied to the wafer 200 in a state where the exhaust system is closed, that is, in a state where the APC valve 244 is fully closed. That is, in step A, the film-forming inhibitory gas may be contained in the processing chamber 201. In this case, the film-forming inhibitory gas can be spread over the entire area in the processing chamber 201 and the entire area within the plane of the wafer 200, and the surface of the base 200a in each wafer 200 is made uniform by the hydrocarbon group or F. It is possible to terminate it. As a result, it becomes possible to further enhance the selectivity in the selective growth in step B. In addition, it is possible to significantly reduce the amount of the film-forming inhibitory gas used.
  • step A the containment of the film-forming inhibitory gas in the treatment chamber 201 and the purging may be alternately repeated a plurality of times. That is, the film-forming inhibitory gas may be contained in the treatment chamber 201 intermittently with a purge in between.
  • the purging in this case can be performed according to the same processing procedure and processing conditions as the purging in step A.
  • the film formation inhibitory layer 310 is formed on the surface of the substrate 200a while removing unnecessary physical adsorption components adsorbed on the surface of the wafer 200, the film formation inhibitory gas not adsorbed on the surface of the wafer 200, and the like by purging. It becomes possible to do.
  • the catalyst gas is used in at least one of steps B1 and B2 as shown in the treatment sequence below. It is also possible to omit the supply of. Of course, it is also possible to omit the supply of the catalyst gas in both steps B1 and B2.
  • the processing sequence shown below is shown by extracting only steps B1 and B2 for convenience, and further shows steps B1 and B2 in the above-described embodiment.
  • the processing temperature in steps B1 and B2 is higher than the processing temperature in steps B1 and B2 of the above-described embodiment.
  • the treatment temperature in steps B1 and B2 can be set to a temperature within the range of 200 to 700 ° C, preferably 350 to 650 ° C, and more preferably 400 to 600 ° C.
  • Other processing conditions can be the same processing conditions as the processing conditions in the above-described embodiment. In these cases as well, the same effects as those described above can be obtained.
  • a silicon oxide film such as a SiOC film, a SiO film, a SiON film, or a SiOCN film, or a silicon nitride film (silicon nitride film system) such as a SiN film or a SiCN film is used.
  • silicon oxide film aluminum oxide film (AlO film), titanium oxide film (TiO film), hafnium oxide film (HfO film), zirconium oxide film (ZrO film), tantalum oxide film (TaO film), molybdenum.
  • Metallic oxide films such as oxide film (MoO) and tungsten oxide film (WO), aluminum nitride film (AlN film), titanium nitride film (TiN film), hafnium nitride film (HfN film), zirconium nitride film (ZrN film) ), Tantal nitride film (TaN film), molybdenum nitride film (MoN), tungsten nitride film (WN) and the like may be formed.
  • oxide film MoO
  • WO tungsten oxide film
  • AlN film aluminum nitride film
  • TiN film titanium nitride film
  • HfN film hafnium nitride film
  • ZrN film zirconium nitride film
  • Tantal nitride film TaN film
  • MoN molybdenum nitride film
  • WN tungsten nitride film
  • the above-mentioned film-forming inhibitory gas, the above-mentioned raw material gas containing metal elements such as Al, Ti, Hf, Zr, Ta, Mo, and W as the film-forming gas, the above-mentioned reaction gas, and the above-mentioned halogen-free Using the contained substance or the like, the film formation inhibitory layer formation, selective growth, and post-treatment can be performed according to the treatment procedure in the above-mentioned aspect and other embodiments, the same treatment procedure as the treatment conditions, and the treatment conditions. In these cases as well, the supply of the catalyst gas can be omitted depending on the treatment conditions, as in the other embodiments described above. In these cases as well, the same effects as those described above can be obtained.
  • the recipes used for each process are individually prepared according to the processing content and stored in the storage device 121c via a telecommunication line or an external storage device 123. Then, when starting each process, it is preferable that the CPU 121a appropriately selects an appropriate recipe from the plurality of recipes stored in the storage device 121c according to the processing content. This makes it possible to form films having various film types, composition ratios, film qualities, and film thicknesses with good reproducibility with one substrate processing device. In addition, the burden on the operator can be reduced, and each process can be started quickly while avoiding operation mistakes.
  • the above recipe is not limited to the case of newly creating, for example, it may be prepared by changing an existing recipe already installed in the board processing device.
  • the changed recipe may be installed on the substrate processing apparatus via a telecommunication line or a recording medium on which the recipe is recorded.
  • the input / output device 122 included in the existing board processing device may be operated to directly change the existing recipe already installed in the board processing device.
  • an example of forming a film using a batch type substrate processing apparatus that processes a plurality of substrates at one time has been described.
  • the present disclosure is not limited to the above-described embodiment, and can be suitably applied to, for example, a case where a film is formed by using a single-wafer type substrate processing apparatus that processes one or several substrates at a time.
  • an example of forming a film by using a substrate processing apparatus having a hot wall type processing furnace has been described.
  • the present disclosure is not limited to the above-mentioned embodiment, and can be suitably applied to the case where a film is formed by using a substrate processing apparatus having a cold wall type processing furnace.
  • each processing can be performed under the same processing procedure and processing conditions as those described above, and the same effects as those described above can be obtained.
  • the above-mentioned various aspects and modifications can be used in combination as appropriate.
  • the processing procedure and processing conditions at this time can be, for example, the same as the processing procedure and processing conditions of the above-described embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

(a)表面に第1下地と第2下地とが露出した基板に対して、成膜阻害ガスを供給し、第1下地の表面に成膜阻害層を形成する工程と、(b)第1下地の表面に成膜阻害層を形成した後の基板に対して、成膜ガスを供給し、第2下地の表面上に膜を形成する工程と、(c)第2下地の表面上に膜を形成した後の基板に対して、ノンプラズマの雰囲気下で、成膜阻害層および膜と化学反応するハロゲン非含有物質を供給する工程と、を行う技術。

Description

半導体装置の製造方法、基板処理装置、およびプログラム
 本開示は、半導体装置の製造方法、基板処理装置、およびプログラムに関する。
 半導体装置の製造工程の一工程として、基板の表面に露出した複数種類の下地のうち特定の下地の表面上に選択的に膜を成長させて形成する処理(以下、この処理を選択成長または選択成膜ともいう)が行われることがある(例えば、特開2013-243193号公報参照)。
 選択成長では、特定の下地の表面上に選択的に膜を成長させる前に、膜を成長させたくない下地の表面に成膜阻害剤を用いて成膜阻害層を形成する処理を行う場合がある。
 しかしながら、上記の成膜阻害層を形成する処理を行った後、膜を選択成長させる際に、成膜阻害層の脱離を抑制するために、選択成長時における処理温度(成膜温度)を高くすることができず、形成される膜の膜質が劣化することがある。また、選択成長後に、成膜阻害層を除去する工程が必要となる場合があり、生産性が悪化することがある。
 本開示の目的は、選択成長により形成する膜の膜質を改善させつつ生産性を向上させることができる技術を提供することにある。
 本開示の一態様によれば、
 (a)表面に第1下地と第2下地とが露出した基板に対して、成膜阻害ガスを供給し、前記第1下地の表面に成膜阻害層を形成する工程と、
 (b)前記第1下地の表面に前記成膜阻害層を形成した後の前記基板に対して、成膜ガスを供給し、前記第2下地の表面上に膜を形成する工程と、
 (c)前記第2下地の表面上に前記膜を形成した後の前記基板に対して、ノンプラズマの雰囲気下で、前記成膜阻害層および前記膜と化学反応するハロゲン非含有物質を供給する工程と、
 を行う技術が提供される。
 本開示によれば、選択成長により形成する膜の膜質を改善させつつ生産性を向上させることが可能となる。
図1は、本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉202部分を縦断面図で示す図である。 図2は、本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉202部分を図1のA-A線断面図で示す図である。 図3は、本開示の一態様で好適に用いられる基板処理装置のコントローラ121の概略構成図であり、コントローラ121の制御系をブロック図で示す図である。 図4は、本開示の一態様の選択成長における処理シーケンスを示す図である。 図5(a)~図5(d)は、本開示の一態様の選択成長における各ステップでのウエハ200の表面における断面部分拡大図である。図5(a)は、表面に下地200aと下地200bとが露出したウエハ200の表面における断面部分拡大図である。図5(b)は、ウエハ200に対して成膜阻害ガスを供給することで、下地200aの表面に成膜阻害層310を形成した後のウエハ200の表面における断面部分拡大図である。図5(c)は、ウエハ200に対して成膜ガスを供給することで、下地200bの表面上に膜320を形成した後のウエハ200の表面における断面部分拡大図である。図5(d)は、ウエハ200に対してハロゲン非含有物質を供給することで、下地200aの表面に形成された成膜阻害層310を下地200aの表面から除去し、かつ、下地200bの表面上に形成された膜320を、膜320よりも膜質が改善されてなる膜330へ変化させた後のウエハ200の表面における断面部分拡大図である。 図6(a)~図6(d)は、本開示の変形例1の選択成長における各ステップでのウエハ200の表面における断面部分拡大図である。図6(a)~図6(c)は、それぞれ、図5(a)~図5(c)と同様の断面部分拡大図である。図6(d)は、ウエハ200に対してハロゲン非含有物質を供給することで、下地200aの表面に形成された成膜阻害層310を下地200aの表面から除去し、かつ、下地200bの表面上に形成された膜320の組成比を変化させて、膜320を、膜320とは組成比が異なる膜340へ変化させた後のウエハ200の表面における断面部分拡大図である。 図7(a)~図7(d)は、本開示の変形例2の選択成長における各ステップでのウエハ200の表面における断面部分拡大図である。図7(a)~図7(c)は、それぞれ、図5(a)~図5(c)と同様の断面部分拡大図である。図7(d)は、ウエハ200に対してハロゲン非含有物質を供給することで、下地200aの表面に形成された成膜阻害層310を下地200aの表面から除去し、かつ、下地200bの表面上に形成された膜320中に、膜320に含まれていない他元素を添加して、膜320を、膜320に他元素が添加されてなる膜350へ変化させた後のウエハ200の表面における断面部分拡大図である。 図8(a)~図8(d)は、本開示の変形例3の選択成長における各ステップでのウエハ200の表面における断面部分拡大図である。図8(a)~図8(c)は、それぞれ、図5(a)~図5(c)と同様の断面部分拡大図である。図8(d)は、ウエハ200に対してハロゲン非含有物質を供給することで、下地200aの表面に形成された成膜阻害層310を下地200aの表面から除去し、かつ、下地200bの表面上に形成された膜320を、膜320とは化学構造が異なる膜360へ変化させた後のウエハ200の表面における断面部分拡大図である。 図9(a)~図9(d)は、本開示の変形例4の選択成長における各ステップでのウエハ200の表面における断面部分拡大図である。図9(a)~図9(c)は、それぞれ、図5(a)~図5(c)と同様の断面部分拡大図である。図9(d)は、ウエハ200に対してハロゲン非含有物質を供給することで、下地200aの表面に形成された成膜阻害層310を下地200aの表面から除去し、かつ、下地200bの表面上に形成された膜320の一部である表層を、膜320とは化学構造が異なる膜370へ変化させた後のウエハ200の表面における断面部分拡大図である。
<本開示の一態様>
 以下、本開示の一態様について、主に、図1~図4、図5(a)~図5(d)を参照しながら説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
(1)基板処理装置の構成
 図1に示すように、処理炉202は温度調整器(加熱部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス鋼(SUS)等の金属材料により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。反応管203はヒータ207と同様に垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。この処理室201内でウエハ200に対する処理が行われる。
 処理室201内には、第1~第3供給部としてのノズル249a~249cが、マニホールド209の側壁を貫通するようにそれぞれ設けられている。ノズル249a~249cを、それぞれ第1~第3ノズルとも称する。ノズル249a~249cは、例えば石英またはSiC等の耐熱性材料により構成されている。ノズル249a~249cには、ガス供給管232a~232cがそれぞれ接続されている。ノズル249a~249cはそれぞれ異なるノズルであり、ノズル249a,249cのそれぞれは、ノズル249bに隣接して設けられている。
 ガス供給管232a~232cには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a~241cおよび開閉弁であるバルブ243a~243cがそれぞれ設けられている。ガス供給管232aのバルブ243aよりも下流側には、ガス供給管232d,232eがそれぞれ接続されている。ガス供給管232bのバルブ243bよりも下流側には、ガス供給管232f,232hがそれぞれ接続されている。ガス供給管232cのバルブ243cよりも下流側には、ガス供給管232gが接続されている。ガス供給管232d~232hには、ガス流の上流側から順に、MFC241d~241hおよびバルブ243d~243hがそれぞれ設けられている。ガス供給管232a~232hは、例えば、SUS等の金属材料により構成されている。
 図2に示すように、ノズル249a~249cは、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a~249cは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。平面視において、ノズル249bは、処理室201内に搬入されるウエハ200の中心を挟んで後述する排気口231aと一直線上に対向するように配置されている。ノズル249a,249cは、ノズル249bと排気口231aの中心とを通る直線Lを、反応管203の内壁(ウエハ200の外周部)に沿って両側から挟み込むように配置されている。直線Lは、ノズル249bとウエハ200の中心とを通る直線でもある。すなわち、ノズル249cは、直線Lを挟んでノズル249aと反対側に設けられているということもできる。ノズル249a,249cは、直線Lを対称軸として線対称に配置されている。ノズル249a~249cの側面には、ガスを供給するガス供給孔250a~250cがそれぞれ設けられている。ガス供給孔250a~250cは、それぞれが、平面視において排気口231aと対向(対面)するように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a~250cは、反応管203の下部から上部にわたって複数設けられている。
 ガス供給管232aからは、成膜阻害ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。
 ガス供給管232bからは、原料ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。
 ガス供給管232cからは、反応ガスが、MFC241c、バルブ243c、ノズル249cを介して処理室201内へ供給される。反応ガスは、後述するハロゲン非含有物質として作用する物質を含む場合もあることから、ハロゲン非含有物質が、MFC241c、バルブ243c、ノズル249cを介して処理室201内へ供給されるようにしてもよい。
 ガス供給管232dからは、触媒ガスが、MFC241d、バルブ243d、ガス供給管232a、ノズル249aを介して処理室201内へ供給される。
 ガス供給管232e~232gからは、不活性ガスが、それぞれMFC241e~241g、バルブ243e~243g、ガス供給管232a~232c、ノズル249a~249cを介して処理室201内へ供給される。
 ガス供給管232hからは、ハロゲン非含有物質が、MFC241h、バルブ243h、ガス供給管232b、ノズル249bを介して処理室201内へ供給される。
 主に、ガス供給管232a、MFC241a、バルブ243aにより、成膜阻害ガス供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、原料ガス供給系が構成される。主に、ガス供給管232c、MFC241c、バルブ243cにより、反応ガス供給系が構成される。主に、ガス供給管232d、MFC241d、バルブ243dにより、触媒ガス供給系が構成される。主に、ガス供給管232e~232g、MFC241e~241g、バルブ243e~243gにより、不活性ガス供給系が構成される。主に、ガス供給管232h、MFC241h、バルブ243hにより、ハロゲン非含有物質供給系が構成される。
 ここで、原料ガス、反応ガス、および触媒ガスは、成膜ガスとして作用することから、原料ガス供給系、反応ガス供給系、および触媒ガス供給系を、成膜ガス供給系と称することもできる。また、反応ガスは、ハロゲン非含有物質として作用する場合もあることから、反応ガス供給系をハロゲン非含有物質供給系と称することもできる。すなわち、ガス供給管232c、MFC241c、バルブ243cにより、ハロゲン非含有物質供給系が構成されるようにしてもよい。
 上述の各種供給系のうち、いずれか、或いは、全ての供給系は、バルブ243a~243hやMFC241a~241h等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a~232hのそれぞれに対して接続され、ガス供給管232a~232h内への各種ガスの供給動作、すなわち、バルブ243a~243hの開閉動作やMFC241a~241hによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型供給システム248は、一体型、或いは、分割型の集積ユニットとして構成されており、ガス供給管232a~232h等に対して集積ユニット単位で着脱を行うことができ、集積型供給システム248のメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。
 反応管203の側壁下方には、処理室201内の雰囲気を排気する排気口231aが設けられている。図2に示すように、排気口231aは、平面視において、ウエハ200を挟んでノズル249a~249c(ガス供給孔250a~250c)と対向(対面)する位置に設けられている。排気口231aは、反応管203の側壁の下部より上部に沿って、すなわち、ウエハ配列領域に沿って設けられていてもよい。排気口231aには排気管231が接続されている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属材料により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送装置(搬送機構)として構成されている。
 マニホールド209の下方には、シールキャップ219を降下させボート217を処理室201内から搬出した状態で、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属材料により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えば、フラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241a~241h、バルブ243a~243h、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すことが可能なように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a~241hによる各種ガスの流量調整動作、バルブ243a~243hの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御することが可能なように構成されている。
 コントローラ121は、外部記憶装置123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。外部記憶装置123は、例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ、SSD等の半導体メモリ等を含む。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 上述の基板処理装置を用い、半導体装置(デバイス)の製造工程の一工程として、基板としてのウエハ200の表面に露出した複数種類の下地のうち特定の下地の表面上に、選択的に膜を成長させて形成する選択成長(選択成膜)の処理シーケンス例について、主に、図4、図5(a)~図5(d)を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
 図4に示す処理シーケンスでは、
 表面に第1下地としての下地200aと第2下地としての下地200bとが露出したウエハ200に対して、成膜阻害ガスを供給し、下地200aの表面に成膜阻害層310を形成するステップAと、
 下地200aの表面に成膜阻害層310を形成した後のウエハ200に対して、成膜ガス(原料ガス、反応ガス、触媒ガス)を供給し、下地200bの表面上に膜320を形成するステップBと、
 下地200bの表面上に膜320を形成した後のウエハ200に対して、ノンプラズマの雰囲気下で、成膜阻害層310および膜320と化学反応するハロゲン非含有物質を供給するステップCと、
 を行う。
 ここで、ステップAを成膜阻害層形成とも称する。ステップBを選択成長とも称する。ステップCをポストトリートメントとも称する。ステップBにて用いる成膜ガスは、上述のように、原料ガス、反応ガス、触媒ガスを含む。
 なお、図4に示す処理シーケンスでは、ステップBにて、ウエハ200に対して、成膜ガスとして、原料ガスと、反応ガスと、触媒ガスと、をそれぞれ供給する。具体的には、ステップBでは、ウエハ200に対して原料ガスと触媒ガスとを供給するステップと、ウエハ200に対して反応ガスと触媒ガスとを供給するステップと、を非同時に行うサイクルを所定回数(n回、nは1以上の整数)行い、下地200bの表面上に膜を形成する。
 また、図4に示す処理シーケンスでは、ステップBにおけるウエハ200の温度を、ステップAにおけるウエハ200の温度以下とした状態、好ましくは、ステップAにおけるウエハ200の温度よりも低くした状態としている。更に、図4に示す処理シーケンスでは、ステップCにおけるウエハ200の温度を、ステップBにおけるウエハ200の温度以上とした状態、好ましくは、ステップBにおけるウエハ200の温度よりも高くした状態としている。なお、図4に示す処理シーケンスでは、ステップCにおけるウエハ200の温度を、ステップAにおけるウエハ200の温度以上とした状態、好ましくは、ステップAにおけるウエハ200の温度よりも高くした状態としている。
 本明細書では、上述の処理シーケンスを、便宜上、以下のように示すこともある。以下の他の態様、変形例等の説明においても、同様の表記を用いる。
 成膜阻害ガス→(原料ガス+触媒ガス→反応ガス+触媒ガス)×n→ハロゲン非含有物質
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
 ボート217に装填されるウエハ200の表面には、図5(a)に示すように、複数種類の下地、ここでは一例として、酸素(O)含有膜すなわち酸化膜としてのシリコン酸化膜(SiO膜)を含む下地200aと、O非含有膜すなわち非酸化膜である窒化膜としてのシリコン窒化膜(SiN膜)を含む下地200bと、が予め露出した状態となっている。下地200aは全域(全面)にわたり水酸基(OH基)で終端された表面を有している。すなわち、下地200aは、全域(全面)にわたりOH終端を有している。一方で、下地200bは多くの領域がOH基で終端されていない表面、すなわち、一部の領域がOH基で終端された表面を有している。
(圧力調整および温度調整)
 その後、処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201内のウエハ200が所望の処理温度となるように、ヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。また、回転機構267によるウエハ200の回転を開始する。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
 その後、ステップA、ステップB、ステップCをこの順に実行する。以下、これらの各ステップについて説明する。
[ステップA(成膜阻害層形成)]
 ステップAでは、処理室201内のウエハ200、すなわち、表面に下地200aと下地200bとが露出したウエハ200に対して、成膜阻害ガスを供給し、下地200aの表面に、成膜阻害層310を形成する。
 具体的には、バルブ243aを開き、ガス供給管232a内へ成膜阻害ガスを供給する。成膜阻害ガスは、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対して成膜阻害ガスが供給される。このとき、バルブ243e~243gを開き、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 後述する処理条件下でウエハ200に対して成膜阻害ガスを供給することにより、図5(b)に示すように、下地200a,200bのうち下地200aの表面に、選択的に(優先的に)、成膜阻害ガスを化学吸着させることができ、下地200aの表面に、選択的に(優先的に)、成膜阻害層310を形成することが可能となる。形成された成膜阻害層310は、例えば、炭化水素基終端を含む。成膜阻害層310は、後述するステップBにおいて、下地200aの表面への成膜ガス(原料ガス、反応ガス等)の吸着や、下地200aの表面と成膜ガス(原料ガス、反応ガス等)との反応を抑制し、下地200aの表面上での成膜反応の進行を抑制する成膜抑制剤(吸着抑制剤)、すなわち、インヒビターとして作用する。成膜阻害層310を、その作用から、吸着阻害層、または、反応阻害層と称することもできる。
 なお、下地200aの表面に形成した成膜阻害層310をインヒビターと称することもでき、また、成膜阻害層310を形成するためにウエハ200に対して供給する成膜阻害ガスそのものをインヒビターと称することもできる。本明細書において、インヒビターという言葉を用いた場合は、成膜阻害層310のみを含む場合、成膜阻害ガスのみを含む場合、または、それらの両方を含む場合がある。
 下地200aの表面に成膜阻害層310を形成した後、成膜阻害ガスの供給を停止する。そして、処理室201内を真空排気し、処理室201内に残留するガス等を処理室201内から排除する。このとき、ノズル249a~249cを介して処理室201内へ不活性ガスを供給する。ノズル249a~249cより供給される不活性ガスは、パージガスとして作用し、これにより、処理室201内がパージされる(パージ)。
 ステップAにおいて成膜阻害ガスを供給する際の処理条件としては、
 処理温度:室温(25℃)~500℃、好ましくは室温~250℃
 処理圧力:1~2000Pa、好ましくは5~1000Pa
 成膜阻害ガス供給流量:1~3000sccm、好ましくは1~500sccm
 成膜阻害ガス供給時間:1秒~120分、好ましくは30秒~60分
 不活性ガス供給流量(ガス供給管毎):0~20000sccm
 が例示される。
 ステップAにおいてパージを行う際の処理条件としては、
 処理温度:室温(25℃)~500℃、好ましくは室温~250℃
 処理圧力:1~30Pa、好ましくは1~20Pa
 不活性ガス供給流量(ガス供給管毎):500~20000sccm
 不活性ガス供給時間:10~30秒
 が例示される。
 なお、本明細書における「1~2000Pa」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「1~2000Pa」とは「1Pa以上2000Pa以下」を意味する。他の数値範囲についても同様である。なお、処理温度とはウエハ200の温度のことを意味し、処理圧力とは処理室201内の圧力のことを意味する。以下の説明においても同様である。
 ステップAは、ノンプラズマの雰囲気下で行うことが好ましい。ノンプラズマの雰囲気下でステップAを行うことにより、ウエハ200、ウエハ200の表面の下地200a,200b、ステップAにて下地200aの表面に形成される成膜阻害層310へのプラズマダメージを回避することが可能となる。
 なお、ステップAでは、下地200bの表面の一部に、成膜阻害ガスが化学吸着することもある。ただし、下地200bの表面の多くの領域がOH終端を有していないため、下地200bの表面に対する成膜阻害ガスの化学吸着量は僅かであり、下地200aの表面への成膜阻害ガスの化学吸着量の方が圧倒的に多くなる。
 成膜阻害ガスとしては、例えば、炭化水素基含有ガスを用いることができる。成膜阻害ガスとして、炭化水素基含有ガスを用いることで、炭化水素基終端を含む成膜阻害層310を形成することが可能となる。炭化水素基終端を含む成膜阻害層310を炭化水素基終端層とも称する。
 炭化水素基含有ガスにおける炭化水素基は、アルキル基のように単結合のみを含んでいてもよく、二重結合や三重結合等の不飽和結合を含んでいてもよい。炭化水素基含有ガスとしては、例えば、アルキル基を含むガスを用いることができる。アルキル基を含むガスとしては、例えば、Siにアルキル基が配位したアルキルシリル基を含むガス、すなわち、アルキルシラン系ガスを用いることができる。アルキル基とは、アルカン(一般式C2n+2であらわされる鎖式飽和炭化水素)から水素(H)原子を1個除いた残りの原子団の総称であり、一般式C2n+1であらわされる官能基のことである。アルキル基としては、炭素数1~5のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。アルキル基は、直鎖状であってもよいし、分岐状であってもよい。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。アルキル基は、アルキルシラン分子の中心原子であるSiに結合していることから、アルキルシランにおけるアルキル基を、リガンド(配位子)またはアルキルリガンドと称することもできる。
 炭化水素基含有ガスは、更に、アミノ基を含んでいてもよい。すなわち、炭化水素基含有ガスは、炭化水素基と、アミノ基と、を含んでいてもよい。炭化水素基およびアミノ基含有ガスとしては、例えば、中心原子であるSiに直接結合したアルキル基と、中心原子であるSiに直接結合したアミノ基と、を含むアルキルアミノシラン系ガスを用いることができる。アミノ基とは、1つの窒素(N)原子に、炭化水素基が1つまたは2つ配位した官能基(-NHで表されるアミノ基の水素(H)原子の一方または両方を炭化水素基で置換した官能基)のことである。アミノ基の一部を構成する炭化水素基が1つのNに2つ配位している場合は、その2つが同一の炭化水素基であってもよいし、異なる炭化水素基であってもよい。アミノ基の一部を構成する炭化水素基は、上述の炭化水素基と同様である。また、アミノ基は環状構造を有していてもよい。アルキルアミノシランにおける中心原子であるSiに直接結合するアミノ基を、リガンドまたはアミノリガンドと称することもできる。また、アルキルアミノシランにおける中心原子であるSiに直接結合するアルキル基を、リガンドまたはアルキルリガンドと称することもできる。
 アルキルアミノシラン系ガスとしては、例えば、下記式[1]で表されるアミノシラン化合物のガスを用いることができる。
 SiA[(NB(4-x)]  [1]
 式[1]中、Aは、水素(H)原子、アルキル基、またはアルコキシ基を表し、Bは、H原子、またはアルキル基を表し、xは1~3の整数を表す。ただし、xが1の場合、Aはアルキル基を表し、xが2または3の場合、Aの少なくとも一方はアルキル基を表す。
 式[1]において、Aで表されるアルキル基は、炭素数1~5のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。Aで表されるアルキル基は、直鎖状であってもよいし、分岐状であってもよい。Aで表されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。Aで表されるアルコキシ基は、炭素数1~5のアルコキシ基が好ましく、炭素数1~4のアルコキシ基がより好ましい。Aで表されるアルコキシ基中のアルキル基は、上記Aで表されるアルキル基と同様である。xが2または3の場合、2つまたは3つのAは、同一であってよいし、異なっていてもよい。Bで表されるアルキル基は、上記Aで表されるアルキル基と同様である。また、2つのBは同一であってもよいし、異なっていてもよく、xが1または2の場合、複数の(NB)は同一であってもよいし、異なっていてもよい。更に、2つのBが結合して環構造を形成していてもよいし、形成された環構造は更にアルキル基等の置換基を有していてもよい。
 アルキルアミノシラン系ガスとしては、例えば、1分子中に1つのアミノ基と3つのアルキル基とを含む化合物のガスを用いることができる。すなわち、式[1]中のAがアルキル基であり、xが3である化合物のガスを用いることができる。アルキルアミノシラン系ガスとしては、(アルキルアミノ)アルキルシラン系ガスを用いることができ、具体的には、例えば、(ジメチルアミノ)トリメチルシラン((CHNSi(CH、略称:DMATMS)ガス、(ジエチルアミノ)トリメチルシラン((CNSi(CH、略称:DEATMS)ガス、(ジエチルアミノ)トリエチルシラン((CNSi(C、略称:DEATES)ガス、(ジメチルアミノ)トリエチルシラン((CHNSi(C、略称:DMATES)ガス等の(ジアルキルアミノ)トリアルキルシラン系ガスを用いることができる。なお、DMATMS,DEATMS,DEATES,DMATES等の中心原子であるSiには、1つのアミノ基(ジメチルアミノ基やジエチルアミノ基)が結合している他、3つのアルキル基(メチル基やエチル基)が結合している。すなわち、DMATMS,DEATMS,DEATES,DMATES等は、1つのアミノリガンドと、3つのアルキルリガンドと、を含んでいる。
 不活性ガスとしては、例えば、窒素(N)ガスを用いることができ、この他、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いることができる。この点は、後述する各ステップにおいても同様である。
[ステップB(選択成長)]
 ステップAが終了した後、ステップBを行う。ステップBでは、処理室201内のウエハ200、すなわち、下地200aの表面に成膜阻害層310が形成された後のウエハ200に対して、成膜ガス(原料ガス、反応ガス、触媒ガス)を供給し、下地200bの表面上に膜を形成する。
 なお、ステップBでは、ウエハ200の温度を、ステップAにおけるウエハ200の温度以下とするように、好ましくは、ステップAにおけるウエハ200の温度よりも低くするように、ヒータ207の出力を調整する。
 ステップBでは、ウエハ200に対して、成膜ガスとして、原料ガスと反応ガスとを交互に供給するか、もしくは、ウエハ200に対して、成膜ガスとして、原料ガスと反応ガスとを交互に供給し、原料ガスおよび反応ガスのうち少なくともいずれかと一緒に触媒ガスを供給することが好ましい。以下では、ステップBにおいて、成膜ガスとして、原料ガスと反応ガスとを交互に供給し、原料ガスおよび反応ガスのそれぞれと一緒に触媒ガスを供給する例について説明する。具体的には、ステップBでは、次のステップB1,B2を順次実行する。
 [ステップB1]
 このステップでは、処理室201内のウエハ200、すなわち、下地200aの表面に成膜阻害層310が形成された後のウエハ200に対して、原料ガスおよび触媒ガスを供給する。
 具体的には、バルブ243b,243dを開き、ガス供給管232b内へ原料ガスを、ガス供給管232d内へ触媒ガスを、それぞれ供給する。原料ガス、触媒ガスは、それぞれ、MFC241b,241dにより流量調整され、ノズル249b,249aを介して処理室201内へ供給され、処理室201内に供給された後に混合されて、排気口231aより排気される。このとき、ウエハ200に対して原料ガスおよび触媒ガスが供給される(原料ガス+触媒ガス供給)。このとき、バルブ243e~243gを開き、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 後述する処理条件下でウエハ200に対して原料ガスおよび触媒ガスを供給することにより、原料ガスの下地200aの表面への化学吸着を抑制しつつ、原料ガスを下地200bの表面に、選択的(優先的)に、化学吸着させることが可能となる。これにより、下地200bの表面上に、第1層が形成される。
 本ステップでは、触媒ガスを原料ガスとともに供給することにより、上述の反応を、ノンプラズマの雰囲気下で、また、後述するような低い温度条件下で進行させることが可能となる。このように、第1層の形成を、ノンプラズマの雰囲気下で、また、後述するような低い温度条件下で行うことにより、下地200aの表面に形成された成膜阻害層310を構成する分子や原子を、下地200aの表面から消滅(脱離)させることなく維持することが可能となる。
 また、第1層の形成を、ノンプラズマの雰囲気下で、また、後述するような低い温度条件下で行うことにより、処理室201内において原料ガスが熱分解(気相分解)、すなわち、自己分解しないようにすることができ、下地200a,200bの表面に、原料ガスの構造の一部が多重堆積することを抑制することができ、原料ガスを下地200bの表面に選択的に吸着させることが可能となる。
 下地200bの表面に第1層を選択的に形成した後、処理室201内への原料ガス、触媒ガスの供給をそれぞれ停止する。そして、ステップAにおけるパージと同様の処理手順、処理条件により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。なお、本ステップにおいて、パージを行う際の処理温度は、原料ガスおよび触媒ガスを供給する際の処理温度と同様とすることが好ましい。
 ステップB1において原料ガスおよび触媒ガスを供給する際の処理条件としては、
 処理温度:室温~200℃、好ましくは室温~120℃
 処理圧力:133~1333Pa
 原料ガス供給流量:1~2000sccm
 原料ガス供給時間:1~60秒
 触媒ガス供給流量:1~2000sccm
 不活性ガス供給流量(ガス供給管毎):0~20000sccm
 が例示される。
 なお、本ステップでは、第1層を形成する際、下地200aの表面の一部に原料ガスが吸着することもあるが、その吸着量は、ごく僅かであり、下地200bの表面への原料ガスの吸着量よりも遥かに少量となる。このような選択的(優先的)な吸着が可能となるのは、本ステップにおける処理条件を、上記のように低い温度条件であって、処理室201内において原料ガスが気相分解しない条件としているためである。また、下地200aの表面の全域にわたり成膜阻害層310が形成されているのに対し、下地200bの表面の多くの領域に成膜阻害層310が形成されていないためである。
 原料ガスとしては、例えば、Siおよびハロゲン含有ガスを用いることができる。ハロゲンには、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等が含まれる。Siおよびハロゲン含有ガスは、ハロゲンを、Siとハロゲンとの化学結合の形で含むことが好ましい。Siおよびハロゲン含有ガスは、更に、Cを含んでいてもよく、その場合、CをSi-C結合の形で含むことが好ましい。Siおよびハロゲン含有ガスとしては、例えば、Si、Clおよびアルキレン基を含み、Si-C結合を有するシラン系ガス、すなわち、アルキレンクロロシラン系ガスを用いることができる。ここで、アルキレン基には、メチレン基、エチレン基、プロピレン基、ブチレン基等が含まれる。また、Siおよびハロゲン含有ガスとしては、例えば、Si、Clおよびアルキル基を含み、Si-C結合を有するシラン系ガス、すなわち、アルキルクロロシラン系ガスを用いることができる。アルキレンクロロシラン系ガスやアルキルクロロシラン系ガスは、ClをSi-Cl結合の形で含み、CをSi-C結合の形で含むことが好ましい。
 Siおよびハロゲン含有ガスとしては、例えば、ビス(トリクロロシリル)メタン((SiClCH、略称:BTCSM)ガス、1,2-ビス(トリクロロシリル)エタン((SiCl、略称:BTCSE)ガス等のアルキレンクロロシラン系ガスや、1,1,2,2-テトラクロロ-1,2-ジメチルジシラン((CHSiCl、略称:TCDMDS)ガス、1,2-ジクロロ-1,1,2,2-テトラメチルジシラン((CHSiCl、略称:DCTMDS)ガス等のアルキルクロロシラン系ガスや、1,1,3,3-テトラクロロ-1,3-ジシラシクロブタン(CClSi、略称:TCDSCB)ガス等のSiとCとで構成される環状構造およびハロゲンを含むガス等を用いることができる。また、Siおよびハロゲン含有ガスとしては、テトラクロロシラン(SiCl、略称:STC)ガス、ヘキサクロロジシラン(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等の無機クロロシラン系ガスを用いることもできる。
 また、原料ガスとしては、Siおよびハロゲン含有ガスの代わりに、テトラキス(ジメチルアミノ)シラン(Si[N(CH、略称:4DMAS)ガス、トリス(ジメチルアミノ)シラン(Si[N(CHH、略称:3DMAS)ガス、ビス(ジエチルアミノ)シラン(Si[N(C、略称:BDEAS)ガス、ビス(ターシャリーブチルアミノ)シラン(SiH[NH(C)]、略称:BTBAS)ガス、(ジイソプロピルアミノ)シラン(SiH[N(C]、略称:DIPAS)ガス等のアミノシラン系ガスを用いることもできる。なお、アミノシラン系ガスは、後述する他の態様における成膜阻害ガスの1つとして用いることもできる。この場合、上述の原料ガス供給系は、成膜阻害ガスを供給することが可能なように構成されることから、成膜阻害ガス供給系としても機能することとなる。
 触媒ガスとしては、例えば、C、NおよびHを含むアミン系ガスを用いることができる。アミン系ガスとしては、例えば、ピリジンガス(CN、略称:py)ガス、アミノピリジン(C)ガス、ピコリン(CN)ガス、ルチジン(CN)ガス、ピペラジン(C10)ガス、ピペリジン(C11N)ガス等の環状アミン系ガスや、トリエチルアミン((CN、略称:TEA)ガス、ジエチルアミン((CNH、略称:DEA)ガス等の鎖状アミン系ガス等を用いることができる。中でも、触媒ガスとしては、pyガスを用いることが好ましい。この点は、後述するステップB2においても同様である。
[ステップB2]
 第1層が形成された後、処理室201内のウエハ200、すなわち、下地200bの表面に形成された第1層に対して、酸化剤等の反応ガスおよび触媒ガスを供給する。
 具体的には、バルブ243c,243dを開き、ガス供給管232c内へ反応ガスを、ガス供給管232d内へ触媒ガスを、それぞれ供給する。反応ガス、触媒ガスは、それぞれ、MFC241c,241dにより流量調整され、ノズル249c,249aを介して処理室201内へ供給され、処理室201内に供給された後に混合されて、排気口231aより排気される。このとき、ウエハ200に対して反応ガスおよび触媒ガスが供給される(反応ガス+触媒ガス供給)。このとき、バルブ243e~243gを開き、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 後述する処理条件下でウエハ200に対して酸化剤等の反応ガスおよび触媒ガスを供給することにより、ステップB1で下地200bの表面上に形成された第1層の少なくとも一部を酸化させることが可能となる。これにより、下地200bの表面に、第1層が酸化されてなる第2層が形成される。
 本ステップでは、触媒ガスを反応ガスとともに供給することにより、上述の酸化反応を、ノンプラズマの雰囲気下で、また、後述するような低い温度条件下で進行させることが可能となる。このように、第2層の形成を、ノンプラズマの雰囲気下で、また、後述するような低い温度条件下で行うことにより、下地200aの表面に形成された成膜阻害層310を構成する分子や原子を、下地200aの表面から消滅(脱離)させることなく維持することが可能となる。
 下地200bの表面に形成された第1層を酸化させて第2層へ変化(変換)させた後、処理室201内への反応ガス、触媒ガスの供給をそれぞれ停止する。そして、ステップAにおけるパージと同様の処理手順、処理条件により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。なお、本ステップにおいてパージを行う際の処理温度は、反応ガスおよび触媒ガスを供給する際の処理温度と同様とすることが好ましい。
 ステップB2において反応ガスおよび触媒ガスを供給する際の処理条件としては、
 処理温度:室温~200℃、好ましくは室温~120℃
 処理圧力:133~1333Pa
 反応ガス供給流量:1~2000sccm
 反応ガス供給時間:1~60秒
 触媒ガス供給流量:1~2000sccm
 不活性ガス供給流量(ガス供給管毎):0~20000sccm
 が例示される。
 反応ガスとしては、酸化膜系の膜を形成する場合は、OおよびH含有ガスを用いることができる。OおよびH含有ガスとしては、例えば、水蒸気(HOガス)、過酸化水素(H)ガス等のO-H結合を含むO含有ガスを用いることができる。また、OおよびH含有ガスとしては、水素(H)ガス+酸素(O)ガス、Hガス+オゾン(O)ガス等のO-H結合非含有のO含有ガスを用いることもできる。本明細書において「Hガス+Oガス」というような2つのガスの併記記載は、HガスとOガスとの混合ガスを意味している。混合ガスを供給する場合は、2つのガスを供給管内で混合(プリミックス)した後、処理室201内へ供給するようにしてもよいし、2つのガスを異なる供給管より別々に処理室201内へ供給し、処理室201内で混合(ポストミックス)させるようにしてもよい。
 なお、反応ガスとしては、窒化膜系の膜を形成する場合は、NおよびH含有ガスを用いることができる。NおよびH含有ガスとしては、例えば、アンモニア(NH)ガス、ヒドラジン(N)ガス、ジアゼン(N)ガス、Nガス等のN-H結合を含むNおよびH含有ガスを用いることができる。なお、窒化膜系の膜を形成する場合は、上述の酸化剤、酸化、酸化反応を、それぞれ、窒化剤、窒化、窒化反応に置き換えて考えればよい。
 [所定回数実施]
 上述したステップB1,B2を非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、図5(c)に示すように、ウエハ200の表面に露出した下地200a,200bのうち下地200bの表面に、膜320を選択的に形成することが可能となる。上述のサイクルは、複数回繰り返すことが好ましい。すなわち、1サイクルあたりに形成される第2層の厚さを所望の膜厚よりも薄くし、第2層を積層することで、膜320の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すことが好ましい。
 なお、ステップB1,B2を実施する際、下地200aの表面に形成された成膜阻害層310は、上述したように下地200aの表面から消滅することなく維持されることから、下地200aの表面には膜は形成されない。ただし、何らかの要因により、下地200aの表面への成膜阻害層310の形成が不充分となる場合等においては、下地200aの表面に、ごく僅かに膜が形成される場合もある。ただし、この場合であっても、下地200aの表面に形成される膜の厚さは、下地200bの表面に形成される膜の厚さに比べて、遥かに薄くなる。本明細書において、下地200a,200bのうち「下地200bの表面上に選択的に膜を形成する」とは、下地200aの表面上に膜を全く生成しない場合だけでなく、上述のように、下地200aの表面に、ごく薄い膜を形成する場合を含むものとする。
[ステップC(ポストトリートメント)]
 ステップBが終了した後、ステップCを行う。ステップCでは、処理室201内のウエハ200、すなわち、下地200bの表面上に膜320が形成された後のウエハ200に対して、ノンプラズマの雰囲気下で、成膜阻害層310および膜320と化学反応するハロゲン非含有物質を供給する。
 なお、ステップCでは、ウエハ200の温度を、ステップBにおけるウエハ200の温度以上とするように、好ましくは、ステップBにおけるウエハ200の温度よりも高くするように、ヒータ207の出力を調整する。なお、ステップCでは、ウエハ200の温度を、ステップAにおけるウエハ200の温度以上とするように、好ましくは、ステップAにおけるウエハ200の温度よりも高くするように、ヒータ207の出力を調整することが望ましい。
 本ステップでは、具体的には、バルブ243hを開き、ガス供給管232h内へハロゲン非含有物質の一部または全部を供給する。ハロゲン非含有物質は、MFC241hにより流量調整され、ノズル249bを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対してハロゲン非含有物質が供給される(ハロゲン非含有物質供給)。このとき、バルブ243e~243gを開き、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 このとき、更に、バルブ243cを開き、ガス供給管232c内へハロゲン非含有物質の一部または全部を供給するようにしてもよい。この場合、ハロゲン非含有物質は、それぞれ、MFC241h,241cにより流量調整され、ノズル249b,249cを介して処理室201内へ供給され、処理室201内に供給された後に混合され、排気口231aより排気される。このとき、ウエハ200に対してハロゲン非含有物質が供給される(ハロゲン非含有物質供給)。このときも、バルブ243e~243gを開き、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 後述する処理条件下でウエハ200に対してハロゲン非含有物質を供給することにより、図5(d)に示すように、下地200aの表面に形成された成膜阻害層310を構成する分子や原子を、ハロゲン非含有物質との化学反応により、下地200aの表面から脱離させて除去するか、もしくは、この成膜阻害層310におけるインヒビターとしての機能を無効化することが可能となる。成膜阻害層310のインヒビターとしての機能の無効化を、単に、成膜阻害層310の無効化とも称する。なお、成膜阻害層310の一部が除去され、他の一部が無効化される場合もある。すなわち、成膜阻害層310の除去および無効化が同時に行われる場合もある。つまり、本ステップでは、成膜阻害層310の除去および無効化のうち少なくともいずれかの処理が行われることとなる。これらにより、下地200aの表面状態をリセットさせ、その後の工程で、下地200aの表面上への成膜処理等を進行させることが可能となる。
 なお、成膜阻害層310のインヒビターとしての機能の無効化とは、下地200aの表面に形成されている成膜阻害層310の分子構造や成膜阻害層310の表面における原子の配列構造等を化学的に変化させ、下地200aの表面への成膜ガス(原料ガス、反応ガス等)の吸着や、下地200aの表面と成膜ガス(原料ガス、反応ガス等)との反応を可能とすることを意味する。
 また、本ステップでは、下地200bの表面上に形成された膜320とハロゲン非含有物質との化学反応により、膜320中のCl、H、炭化水素化合物、水分等の不純物を除去し、膜320を構成する原子の配列を整え、原子同士の結合の距離を短くし、それらの結合を強固なものにすることができる。すなわち、本ステップでは、膜320中の不純物を除去し、膜320を緻密化させて、膜質を向上させることが可能となる。このように、本ステップでは、図5(d)に示すように、ステップBにて下地200bの表面上に形成された膜320を、膜320よりも膜質が改善されてなる膜330、すなわち、膜320よりも膜質が向上した膜330へ変化させることが可能となる。
 このように、本ステップでは、ハロゲン非含有物質の作用により、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理と、下地200bの表面上に形成された膜320の改質処理と、を同時に並行して行う。つまり、このステップでは、ハロゲン非含有物質の作用により、下地200aの表面に形成された成膜阻害層310に対するトリートメントと、下地200bの表面に形成された膜320に対するトリートメントと、を同時かつ並行(パラレル)に、行うことが可能となる。このことから、本ステップによるポストトリートメントを、パラレルポストトリートメントとも称する。
 下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理、および、下地200bの表面上に形成された膜320の改質処理を行った後、処理室201内へのハロゲン非含有物質の供給を停止する。そして、ステップAにおけるパージと同様の処理手順、処理条件により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。なお、本ステップにおいてパージを行う際の処理温度は、ハロゲン非含有物質を供給する際の処理温度と同様とすることが好ましい。
 本ステップは、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理が可能であって、かつ、下地200bの表面上に形成された膜320の改質処理が可能な処理条件下で行うことが好ましい。
 ステップCにおいてハロゲン非含有物質を供給する際の処理条件としては、
 処理温度:200~1000℃、好ましくは400~700℃
 処理圧力:1~120000Pa、好ましくは1~13300Pa
 ハロゲン非含有物質供給流量:1~30000sccm、好ましくは1~20000sccm
 ハロゲン非含有物質供給時間:1~18000秒、好ましくは120~10800秒
 不活性ガス供給流量(ガス供給管毎):0~20000sccm
 が例示される。
 ハロゲン非含有物質としては、例えば、酸化ガス(酸化剤)を用いることができる。ハロゲン非含有物質として酸化ガスを用いることで、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理、および、下地200bの表面上に形成された膜320の改質処理を、効率的に、同時に並行して行うことが可能となる。
 ハロゲン非含有物質の一例である酸化ガスは、例えば、OおよびH含有ガス、O含有ガス、および、O含有ガス+H含有ガスのうち1以上を含むことが好ましい。ここで、OおよびH含有ガスとしては、例えば、HOガス、Hガス等を用いることができる。O含有ガスとしては、例えば、Oガス、Oガス等を用いることができる。H含有ガスとしては、Hガス、NHガス等を用いることができる。
 ハロゲン非含有物質の一例である酸化ガスは、具体的には、例えば、HOガス、Hガス、Oガス、Oガス、Oガス+Hガス、Oガス+Hガス、Oガス+NHガス、および、Oガス+NHガスのうち1以上を含むことが好ましい。
 また、ハロゲン非含有物質としては、例えば、窒化ガス(窒化剤)を用いることができる。ハロゲン非含有物質として窒化ガスを用いることで、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理、および、下地200bの表面上に形成された膜320の改質処理を、効率的に、同時に並行して行うことが可能となる。
 ハロゲン非含有物質の一例である窒化ガスは、例えば、NおよびH含有ガスを含むことが好ましい。ハロゲン非含有物質の一例である窒化ガスは、具体的には、例えば、NHガス、Nガス、Nガス、および、Nガスのうち1以上を含むことが好ましい。
 本ステップにおいて、下地200bの表面上に形成された膜320の組成比を実質的に変化させることなく、膜320中に含まれる不純物を効率よく除去するためには、膜320が、例えば、シリコン酸化膜(SiO膜)である場合は、ハロゲン非含有物質として、例えば、O含有ガスや、O含有ガス+H含有ガス等の酸化ガスを用いることが好ましい。この場合、下地200bの表面上に形成された膜320(SiO膜)の組成比を、本ステップを行った後においても実質的に維持することが可能となる。
 同様の理由から、膜320が、例えば、シリコン酸炭化膜(SiOC膜)である場合は、ハロゲン非含有物質として、例えば、O含有ガスや、O含有ガス+H含有ガス等の酸化ガスを用いることが好ましい。この場合、下地200bの表面上に形成された膜320(SiOC膜)の組成比を、本ステップを行った後においても実質的に維持することが可能となる。ただし、この場合、膜320(SiOC膜)からCが脱離しないよう、膜320(SiOC膜)に含まれるSi-C結合を切断することなく保持することが可能となる処理条件下(酸化力が弱くなる処理条件下)で、ウエハ200に対してハロゲン非含有物質として酸化ガスを供給することが好ましい。このような処理条件は、例えば、上述のように膜320(SiO膜)に対してハロゲン非含有物質として酸化ガスを供給する場合よりも、処理温度、処理圧力、酸化ガス供給流量のうち少なくともいずれかを低下させることで、または、酸化ガス供給時間を短くすることで、実現することができる。
 同様の理由から、膜320が、例えばシリコン窒化膜(SiN膜)である場合は、ハロゲン非含有物質として、例えば、NおよびH含有ガス等の窒化ガスを用いることが好ましい。この場合、下地200bの表面上に形成された膜320(SiN膜)の組成比を、本ステップを行った後においても実質的に維持することが可能となる。
 同様の理由から、膜320が、例えばシリコン炭窒化膜(SiCN膜)である場合は、ハロゲン非含有物質として、例えば、NおよびH含有ガス等の窒化ガスを用いることが好ましい。この場合、下地200bの表面上に形成された膜320(SiCN膜)の組成比を、本ステップを行った後においても実質的に維持することが可能となる。ただし、この場合、膜320(SiCN膜)からCが脱離しないよう、膜320(SiCN膜)に含まれるSi-C結合を切断することなく保持することが可能となる処理条件下(窒化力が弱くなる処理条件下)で、ウエハ200に対してハロゲン非含有物質として窒化ガスを供給することが好ましい。このような処理条件は、例えば、上述のように膜320(SiN膜)に対してハロゲン非含有物質として窒化ガスを供給する場合よりも、処理温度、処理圧力、窒化ガス供給流量のうち少なくともいずれかを低下させることで、または、窒化ガス供給時間を短くすることで、実現することができる。
(アフターパージおよび大気圧復帰)
 パラレルポストトリートメントが完了した後、ノズル249a~249cのそれぞれから不活性ガスを処理室201内へ供給し、排気口231aより排気する。ノズル249a~249cより供給される不活性ガスは、パージガスとして作用し、これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物等が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロードおよびウエハディスチャージ)
 その後、ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ウエハディスチャージ)。
(3)本態様による効果
 本態様によれば、以下に示す1つまたは複数の効果が得られる。
(a)選択成長の後、ポストトリートメントにおいて、ウエハ200に対して、ハロゲン非含有物質を供給することにより、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理を行いつつ、下地200bの表面上に形成された膜320の改質処理を行うことが可能となる。これにより、その後の工程において、下地200aの表面上への膜の形成等が可能となり、更に、下地200bの表面上に形成された膜320の膜中不純物を除去し、膜を緻密化させ、膜質を向上させることが可能となる。また、下地200aの表面に形成された成膜阻害層310に対するトリートメントと、下地200bの表面に形成された膜320に対するトリートメントと、を同時かつパラレルに、行うことから、つまり、2つの異なるトリートメント工程を、同時に行うことができることから、基板処理の生産性を高めることが可能となる。
(b)選択成長の後のポストトリートメントにおけるウエハ200の温度を、選択成長におけるウエハ200の温度以上とすることにより、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理の効率と、下地200bの表面に形成された膜320の改質処理の効率と、を高めることが可能となる。これにより、基板処理の生産性をより高めることが可能となる。
(c)選択成長の後、ポストトリートメントにおいて、ウエハ200に対して、ノンプラズマの雰囲気下で、ハロゲン非含有物質を供給することにより、ウエハ200やウエハ200の表面の下地200a,200bや、下地200bの表面上に形成された膜320等へのプラズマダメージを回避しつつ、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理と、下地200bの表面に形成された膜320の改質処理と、を同時かつパラレルに行うことが可能となる。
(d)成膜阻害層形成、選択成長、およびポストトリートメントを、それぞれノンプラズマの雰囲気下で行うことにより、ウエハ200、ウエハ200の表面の下地200a,200b、下地200aの表面に形成された成膜阻害層310、下地200bの表面上に形成された膜320,330等へのプラズマダメージを回避することが可能となり、本手法のプラズマダメージを懸念する工程への適用が可能となる。
(e)選択成長の後、ポストトリートメントにおいて、ウエハ200に対して、ハロゲン非含有物質を供給することにより、ウエハ200やウエハ200の表面の下地200a,200bや、下地200bの表面上に形成された膜320等へのハロゲンによるダメージ、ハロゲンの混入、残留等を回避しつつ、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理と、下地200bの表面に形成された膜320の改質処理と、を同時かつパラレルに行うことが可能となる。
(4)変形例
 本態様におけるステップCは、以下に示す変形例のように変更することができる。特に説明がない限り、各変形例の各ステップにおける処理手順、処理条件は、上述の基板処理シーケンスの各ステップにおける処理手順、処理条件と同様とすることができる。なお、以下に示す変形例は、上述の基板処理シーケンスとは、ステップCだけが異なり、変形例におけるステップAおよびステップBは、上述の基板処理シーケンスにおけるそれらと同様である。よって、以下に示す変形例の説明では、ステップAおよびステップBの説明を省略する。
(変形例1)
 ステップCでは、下地200bの表面上に形成された膜320の改質処理により、膜320の組成比を変化させるようにしてもよい。
 すなわち、ステップCでは、ハロゲン非含有物質の作用により、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理と、下地200bの表面上に形成された膜320の組成比を変化させる改質処理と、を同時に並行して行うようにしてもよい。
 図6(d)に、一例として、ステップCにおいて、ウエハ200に対してハロゲン非含有物質を供給することで、下地200aの表面に形成された成膜阻害層310を下地200aの表面から除去し、かつ、下地200bの表面上に形成された膜320の組成比を変化させて、膜320を、膜320とは組成比が異なる膜340へ変化させた後のウエハ200の表面状態を示す。
 本変形例では、具体的には、例えば、膜320がSiOC膜である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、O含有ガス等の酸化ガスを用いることで、膜340(SiOC膜)のO濃度に対するC濃度の割合(C/O比)を、ステップCを行う前の膜320(SiOC膜)のC/O比よりも低くすることが可能となる。同様に、膜320がSiOC膜である場合に、ステップCにおいて、ハロゲン非含有物質として、O含有ガス+H含有ガス等の酸化ガスを用いることで、膜340(SiOC膜)のC/O比を、ステップCにおいて、ハロゲン非含有物質として、O含有ガス等の酸化ガスを用いて改質処理を行った後の膜340(SiOC膜)のC/O比よりも、更に、低くすることが可能となる。
 また、具体的には、例えば、膜320がSiCN膜である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、NおよびH含有ガス等の窒化ガスを用いることで、膜340(SiCN膜)のN濃度に対するC濃度の割合(C/N比)を、ステップCを行う前の膜320(SiCN膜)のC/N比よりも低くすることが可能となる。
 また、具体的には、例えば、膜320がシリコン酸窒化膜(SiON膜)である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、NおよびH含有ガス等の窒化ガスを用いることで、膜340(SiON膜)のO濃度に対するN濃度の割合(N/O比)を、ステップCを行う前の膜320(SiON膜)のN/O比よりも高くすることが可能となる。同様に、膜320がSiON膜である場合に、ステップCにおいて、ハロゲン非含有物質として、O含有ガス等の酸化ガスを用いることで、膜340(SiON膜)のN/O比を、ステップCを行う前の膜320(SiON膜)のN/O比よりも低くすることが可能となる。
 本変形例においても上述の態様と同様な効果が得られる。更に、本変形例によれば、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理を行いつつ、下地200bの表面に形成された膜320の組成比の制御を行うことが可能となる。これにより、所望の組成比に制御された膜340を得ることが可能となるとともに、基板処理の生産性を高めることが可能となる。
(変形例2)
 ステップCでは、下地200bの表面上に形成された膜320の改質処理により、膜320中へ、膜320中に含まれていない元素(以下、他元素とも称する)であってハロゲン非含有物質に含まれる元素を添加(ドープ、ドーピング)するようにしてもよい。すなわち、ステップCでは、ステップBにより形成された膜320中に、他元素をドーピングするようにしてもよい。このように、膜320中に、他元素をドーピングする処理を、他元素添加、他元素ドーピング、または、他元素ドープとも称する。
 すなわち、ステップCでは、ハロゲン非含有物質の作用により、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理と、下地200bの表面上に形成された膜320中へ他元素をドーピングする改質処理と、を同時に並行して行うようにしてもよい。
 図7(d)に、一例として、ステップCにおいて、ウエハ200に対してハロゲン非含有物質を供給することで、下地200aの表面に形成された成膜阻害層310を下地200aの表面から除去し、かつ、下地200bの表面上に形成された膜320中に、膜320に含まれていない他元素を添加(ドープ)して、膜320を、膜320に他元素が添加されてなる膜350へ変化させた後のウエハ200の表面状態を示す。
 本変形例では、具体的には、例えば、膜320がSiOC膜である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、NおよびH含有ガス等の窒化ガスを用いることで、膜320(SiOC膜)にNを添加(ドープ)して、膜320(SiOC膜)を、膜350(NがドープされたSiOC膜)へ変化させることが可能となる。
 また、具体的には、例えば、膜320がSiO膜である場合に、ステップCにおいて、ハロゲン非含有物質として、NおよびH含有ガス等の窒化ガスを用いることで、膜320(SiO膜)にNを添加(ドープ)して、膜320(SiO膜)を、膜350(NがドープされたSiO膜)へ変化させることが可能となる。
 また、具体的には、例えば、膜320がSiCN膜である場合に、ステップCにおいて、ハロゲン非含有物質として、O含有ガス等の酸化ガスを用いることで、膜320(SiCN膜)にOを添加(ドープ)して、膜320(SiCN膜)を、膜350(OがドープされたSiCN膜)へ変化させることが可能となる。
 本変形例においても上述の態様と同様な効果が得られる。更に、本変形例によれば、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理を行いつつ、下地200bの表面に形成された膜320中に他元素を添加することが可能となる。これにより、所望の他元素がドープされた膜350を得ることが可能となるとともに、基板処理の生産性を高めることが可能となる。
(変形例3)
 ステップCでは、下地200bの表面上に形成された膜320の改質処理により、膜320を、膜320とは化学構造(例えば、化学成分、化学組成、分子構造等)が異なる膜へ変化させるようにしてもよい。
 すなわち、ステップCでは、ハロゲン非含有物質の作用により、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理と、下地200bの表面上に形成された膜320を、膜320とは化学構造が異なる膜へ変化させる改質処理と、を同時に並行して行うようにしてもよい。
 図8(d)に、一例として、ステップCにおいて、ウエハ200に対してハロゲン非含有物質を供給することで、下地200aの表面に形成された成膜阻害層310を下地200aの表面から除去し、かつ、下地200bの表面上に形成された膜320を、膜320とは化学構造が異なる膜360へ変化させた後のウエハ200の表面状態を示す。
 本変形例では、具体的には、例えば、膜320がSiOC膜である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、NおよびH含有ガス等の窒化ガスを用いることで、膜320(SiOC膜)を膜360(SiOCN膜)へ変化させることが可能となる。
 また、具体的には、例えば、膜320がSiO膜である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、NおよびH含有ガス等の窒化ガスを用いることで、膜320(SiO膜)を膜360(SiON膜)へ変化させることが可能となる。
 また、具体的には、例えば、膜320がSiN膜である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、O含有ガス等の酸化ガスを用いることで、膜320(SiN膜)を膜360(SiON膜)へ変化させることが可能となる。
 また、具体的には、例えば、膜320がSiN膜である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、O含有ガスや、O含有ガス+H含有ガス等の酸化ガスを用いることで、膜320(SiN膜)を膜360(SiO膜)へ変化させることが可能となる。なお、膜320(SiN膜)を膜360(SiO膜)へ変化させる場合は、膜320(SiN膜)を膜360(SiON膜)へ変化させる場合よりも、ステップCにおいて、酸化力が強くなる処理条件下で、ウエハ200に対して酸化ガスを供給する必要がある。
 また、具体的には、例えば、膜320がSiCN膜である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、O含有ガス等の酸化ガスを用いることで、膜320(SiCN膜)を膜360(SiOCN膜)へ変化させることが可能となる。
 本変形例においても上述の態様と同様な効果が得られる。更に、本変形例によれば、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理を行いつつ、下地200bの表面に形成された膜320の化学構造を変化させることが可能となる。これにより、所望の化学構造を有する膜360を得ることが可能となるとともに、基板処理の生産性を高めることが可能となる。
(変形例4)
 ステップCでは、下地200bの表面上に形成された膜320の改質処理により、膜320の表面の一部(例えば、表層)を、膜320とは化学構造(例えば、化学成分、化学組成、分子構造等)が異なる材料へ変化させるようにしてもよい。
 すなわち、ステップCでは、ハロゲン非含有物質の作用により、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理と、下地200bの表面上に形成された膜320の表面の一部を、膜320とは化学構造が異なる材料へ変化させる改質処理と、を同時に並行して行うようにしてもよい。
 図9(d)に、一例として、ステップCにおいて、ウエハ200に対してハロゲン非含有物質を供給することで、下地200aの表面に形成された成膜阻害層310を下地200aの表面から除去し、かつ、下地200bの表面上に形成された膜320の一部である表層を、膜320とは化学構造が異なる膜370へ変化させた後のウエハ200の表面状態を示す。
 本変形例では、具体的には、例えば、膜320がSiOC膜である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、NおよびH含有ガス等の窒化ガスを用いることで、膜320(SiOC膜)の表面の一部を膜370(SiOCN膜)に変化させることが可能となる。なお、この場合、膜320(SiOC膜)の表面の一部は膜370(SiOCN膜)となるが、表面の一部以外の部分は、膜320(SiOC膜)のまま維持される。すなわち、この場合、膜320(SiOC膜)上に膜370(SiOCN膜)が積層されてなる積層膜が形成されることとなる。
 また、具体的には、例えば、膜320がSiO膜である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、NおよびH含有ガス等の窒化ガスを用いることで、膜320(SiO膜)の表面の一部を膜370(SiON膜)に変化させることが可能となる。なお、この場合、膜320(SiO膜)の表面の一部は膜370(SiON膜)となるが、表面の一部以外の部分は、膜320(SiO膜)のまま維持される。すなわち、この場合、膜320(SiO膜)上に膜370(SiON膜)が積層されてなる積層膜が形成されることとなる。
 また、具体的には、例えば、膜320がSiN膜である場合に、ステップCにおいて、ハロゲン非含有物質として、例えば、O含有ガス等の酸化ガスを用いることで、膜320(SiN膜)の表面の一部を膜370(SiON膜またはSiO膜)に変化させることが可能となる。なお、この場合、膜320(SiN膜)の表面の一部は膜370(SiON膜またはSiO膜)となるが、表面の一部以外の部分は、膜320(SiN膜)のまま維持される。すなわち、この場合、膜320(SiN膜)上に膜370(SiON膜またはSiO膜)が積層されてなる積層膜が形成されることとなる。
 本変形例においても上述の態様と同様な効果が得られる。更に、本変形例によれば、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理を行いつつ、下地200bの表面に形成された膜320の表面の一部の化学構造を変化させることが可能となる。これにより、所望の化学構造を有する膜370を表層として有する膜320、すなわち、膜320上に膜370が積層されてなる積層膜を得ることが可能となるとともに、基板処理の生産性を高めることが可能となる。
<本開示の他の態様>
 以上、本開示の態様を具体的に説明した。しかしながら、本開示は上述の態様に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、ステップAにて用いる成膜阻害ガスとしては、F含有ガスを用いることもできる。F含有ガスを用いることで、下地200aの表面をF終端させて、下地200aの表面にF終端を含む成膜阻害層310を形成することが可能となる。F終端を含む成膜阻害層310をF終端層とも称する。この態様の場合、F含有ガスは、上述の態様における成膜阻害ガス供給系より供給することができる。
 なお、下地200aの表面にF終端を含む成膜阻害層310を効率よく形成するためには、表面に下地200aと下地200bとが露出したウエハ200に対してF含有ガスを供給する前に、かかるウエハ200に対してアミノシラン系ガス等のSi含有ガスを供給するようにしてもよい。この場合、ウエハ200に対してアミノシラン系ガスを供給した後、ステップAにおけるパージと同様の処理手順、処理条件により、処理室201内のパージを行い、その後、ウエハ200に対してF含有ガスを供給することが好ましい。この場合、F含有ガスやアミノシラン系ガスは、上述の態様における成膜阻害ガス供給系や原料ガス供給系より供給することができる。以下、アミノシラン系ガス、F含有ガスを、それぞれ、第1成膜阻害ガス、第2成膜阻害ガスとも称する。
 ステップAにて、下地200aの表面にF終端を含む成膜阻害層310を形成した後、上述の態様におけるステップBの各処理と、ステップCの処理と、をこの順に行うことで、上述の態様と同様の選択成長およびパラレルポストトリートメントを行うことができる。この態様の処理シーケンスは、以下のように示すことができる。
 第1成膜阻害ガス→第2成膜阻害ガス→(原料ガス+触媒ガス→反応ガス+触媒ガス)×n→ハロゲン非含有物質
 本態様においても、選択成長の後、ステップCにおいて、ウエハ200に対して、ハロゲン非含有物質を供給することから、下地200aの表面に形成された成膜阻害層310の除去および無効化のうち少なくともいずれかの処理を行いつつ、下地200bの表面に形成された膜320の改質処理を行うことが可能となる。これにより、膜320よりも膜質が向上した膜330を得ることが可能となるとともに、基板処理の生産性を高めることが可能となる。
 第1成膜阻害ガス、すなわち、アミノシラン系ガス等のSi含有ガスとしては、例えば、上記式[1]で表されるアミノシラン化合物中、例えば、式[1]中のAがH原子であり、xが3である(すなわち、1分子中に1つのアミノ基を含む化合物である)モノアミノシラン(SiH(NR)、略称:MAS)ガス、式[1]中のAがH原子であり、xが2である(すなわち、1分子中にアミノ基を2つ含む化合物である)ビスアミノシラン(SiH(NR、略称:BAS)ガス、および、式[1]中のAがH原子であり、xが1である(1分子中にアミノ基を3つ含む化合物である)トリスアミノシラン(SiH(NR、略称:TAS)ガスのうち1以上のアミノシラン化合物を用いることが好ましい。中でも、ASガスとしては、MASガスを用いることが好ましい。第1成膜阻害ガスとしてMASガスを用いることで、ステップAにおいて、下地200aの表面を、より均一に且つ充分にF終端させることが可能となる。
 MASガスとしては、例えば、(エチルメチルアミノ)シラン(SiH[N(CH)(C)])ガス、(ジメチルアミノ)シラン(SiH[N(CH])ガス、(ジイソプロピルアミノ)シラン(SiH[N(C])ガス、(ジセカンダリブチルアミノ)シラン(SiH[H(C])ガス、(ジメチルピペリジノ)シラン(SiH[NC(CH])ガス、(ジエチルピペリジノ)シラン(SiH[NC(C])ガス等を用いることができる。
 第2成膜阻害ガス、すなわち、F含有ガスとしては、例えば、フッ素(F)ガス、三フッ化塩素(ClF)ガス、フッ化塩素ガス(ClF)ガス、三フッ化窒素(NF)ガス、ClFガス+酸化窒素(NO)ガス、ClFガス+NOガス、Fガス+NOガス、NFガス+NOガス、六フッ化タングステン(WF)ガス、フッ化ニトロシル(FNO)ガスが挙げられる。
 また例えば、ステップAでは、ウエハ200への成膜阻害ガスの供給と、パージと、を交互に複数回繰り返すようにしてもよい。すなわち、ウエハ200への成膜阻害ガスの供給を、パージを間に挟んで間欠的に行うようにしてもよい。なお、この場合のパージは、ステップAにおけるパージと同様の処理手順、処理条件により行うことができる。この場合、パージにより、ウエハ200の表面に吸着した成膜阻害ガスの不要な物理吸着成分、ウエハ200の表面に吸着していない成膜阻害ガス等を除去しつつ、下地200aの表面に成膜阻害層310を形成することが可能となる。また、この場合、下地200aの表面における炭化水素基終端またはF終端の密度が高い成膜阻害層310を形成することが可能となる。結果として、ステップBでの選択成長における選択性をより高めることが可能となる。また、成膜阻害ガスの使用量を低減することも可能となる。
 また例えば、ステップAでは、排気系を閉塞した状態で、すなわち、APCバルブ244を全閉とした状態で、ウエハ200への成膜阻害ガスの供給を行うようにしてもよい。すなわち、ステップAでは、成膜阻害ガスを処理室201内に封じ込めるようにしてもよい。この場合、成膜阻害ガスを処理室201内の全域に、かつ、ウエハ200の面内の全域に行き渡らせることが可能となり、各ウエハ200における下地200aの表面を炭化水素基またはFにより、均一に、終端させることが可能となる。結果として、ステップBでの選択成長における選択性をより高めることが可能となる。また、成膜阻害ガスの使用量を大幅に低減することも可能となる。
 なお、ステップAでは、成膜阻害ガスの処理室201内への封じ込めと、パージと、を交互に複数回繰り返すようにしてもよい。すなわち、成膜阻害ガスの処理室201内への封じ込めを、パージを間に挟んで間欠的に行うようにしてもよい。なお、この場合のパージは、ステップAにおけるパージと同様の処理手順、処理条件により行うことができる。この場合、パージにより、ウエハ200の表面に吸着した不要な物理吸着成分、ウエハ200の表面に吸着していない成膜阻害ガス等を除去しつつ、下地200aの表面に成膜阻害層310を形成することが可能となる。また、この場合、下地200aの表面における炭化水素基終端またはF終端の密度が高い成膜阻害層310を形成することが可能となる。結果として、ステップBでの選択成長における選択性をより高めることが可能となる。
 また例えば、選択成長では、原料ガス、反応ガス等のガス種や処理温度等の処理条件によっては、以下に示す処理シーケンスのように、ステップB1,B2のうち少なくともいずれかのステップにおいて、触媒ガスの供給を省略することも可能である。勿論、ステップB1,B2の両方のステップにおいて、触媒ガスの供給を省略することも可能である。なお、以下に示す処理シーケンスは、便宜上、ステップB1,B2だけを抜き出して示したものであり、更に、上述の態様におけるステップB1,B2も含めて示したものである。
 (原料ガス+触媒ガス→反応ガス+触媒ガス)×n
 (原料ガス+触媒ガス→反応ガス)×n
 (原料ガス→反応ガス+触媒ガス)×n
 (原料ガス→反応ガス)×n
 これらの場合、ステップB1,B2における処理温度を、上述の態様のステップB1,B2における処理温度よりも高くすることが好ましい。例えば、ステップB1,B2における処理温度を、200~700℃、好ましくは350~650℃、より好ましくは400~600℃の範囲内の温度とすることができる。他の処理条件は、上述の態様における処理条件と同様の処理条件とすることができる。これらの場合においても上述の態様と同様の効果が得られる。
 また例えば、選択成長では、SiOC膜、SiO膜、SiON膜、SiOCN膜等のシリコン系酸化膜(シリコン酸化膜系の膜)や、SiN膜、SiCN膜等のシリコン系窒化膜(シリコン窒化膜系の膜)だけでなく、例えば、アルミニウム酸化膜(AlO膜)、チタニウム酸化膜(TiO膜)、ハフニウム酸化膜(HfO膜)、ジルコニウム酸化膜(ZrO膜)、タンタル酸化膜(TaO膜)、モリブデン酸化膜(MoO)、タングステン酸化膜(WO)等の金属系酸化膜や、アルミニウム窒化膜(AlN膜)、チタニウム窒化膜(TiN膜)、ハフニウム窒化膜(HfN膜)、ジルコニウム窒化膜(ZrN膜)、タンタル窒化膜(TaN膜)、モリブデン窒化膜(MoN)、タングステン窒化膜(WN)等の金属系窒化膜を形成するようにしてもよい。これらの場合、上述の成膜阻害ガスと、成膜ガスとしてのAl,Ti,Hf,Zr,Ta,Mo,W等の金属元素を含む原料ガスと、上述の反応ガスと、上述のハロゲン非含有物質等を用い、上述の態様や他の態様における処理手順、処理条件と同様の処理手順、処理条件により、成膜阻害層形成、選択成長、ポストトリートメントを行うことができる。これらの場合も、上述の他の態様と同様、処理条件によっては、触媒ガスの供給を省略することができる。これらの場合においても上述の態様と同様の効果が得られる。
 各処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各処理を迅速に開始できるようになる。
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更してもよい。
 上述の態様では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の態様では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。
 これらの基板処理装置を用いる場合においても、上述の態様と同様な処理手順、処理条件にて各処理を行うことができ、上述の態様と同様の効果が得られる。
 上述の各種態様や変形例は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の態様の処理手順、処理条件と同様とすることができる。

Claims (20)

  1.  (a)表面に第1下地と第2下地とが露出した基板に対して、成膜阻害ガスを供給し、前記第1下地の表面に成膜阻害層を形成する工程と、
     (b)前記第1下地の表面に前記成膜阻害層を形成した後の前記基板に対して、成膜ガスを供給し、前記第2下地の表面上に膜を形成する工程と、
     (c)前記第2下地の表面上に前記膜を形成した後の前記基板に対して、ノンプラズマの雰囲気下で、前記成膜阻害層および前記膜と化学反応するハロゲン非含有物質を供給する工程と、
     を有する半導体装置の製造方法。
  2.  (c)を、前記第1下地の表面に形成された前記成膜阻害層の除去および無効化のうち少なくともいずれかの処理が可能であって、かつ、前記第2下地の表面上に形成された前記膜の改質処理が可能な条件下で行う請求項1に記載の半導体装置の製造方法。
  3.  (c)では、前記ハロゲン非含有物質の作用により、前記第1下地の表面に形成された前記成膜阻害層の除去および無効化のうち少なくともいずれかの処理と、前記第2下地の表面上に形成された前記膜の改質処理と、を同時に並行して行う請求項1に記載の半導体装置の製造方法。
  4.  前記ハロゲン非含有物質は、酸化ガスを含む請求項1に記載の半導体装置の製造方法。
  5.  前記ハロゲン非含有物質は、酸素および水素含有ガス、酸素含有ガス、並びに、酸素含有ガス+水素含有ガスのうち1以上を含む請求項1に記載の半導体装置の製造方法。
  6.  前記ハロゲン非含有物質は、HO、H、O、O、O+H、O+H、O+NH、及び、O+NHのうち1以上を含む請求項1に記載の半導体装置の製造方法。
  7.  前記ハロゲン非含有物質は、窒化ガスを含む請求項1に記載の半導体装置の製造方法。
  8.  前記ハロゲン非含有物質は、窒素および水素含有ガスを含む請求項1に記載の半導体装置の製造方法。
  9.  前記ハロゲン非含有物質は、NH、N、N、Nのうち1以上を含む請求項1に記載の半導体装置の製造方法。
  10.  (c)では、前記改質処理により、前記膜中に含まれる不純物を除去する請求項2または3に記載の半導体装置の製造方法。
  11.  (c)では、前記改質処理により、前記膜の組成比を変化させる請求項2または3に記載の半導体装置の製造方法。
  12.  (c)では、前記改質処理により、前記膜中へ、前記膜中に含まれていない元素であって前記ハロゲン非含有物質に含まれる元素を添加する請求項2または3に記載の半導体装置の製造方法。
  13.  (c)では、前記改質処理により、前記膜を、前記膜とは化学構造が異なる膜へ変化させる請求項2または3に記載の半導体装置の製造方法。
  14.  (c)では、前記改質処理により、前記膜の表面の一部を、前記膜とは化学構造が異なる材料へ変化させる請求項2または3に記載の半導体装置の製造方法。
  15.  (c)における前記基板の温度を、(b)における前記基板の温度以上とする請求項1に記載の半導体装置の製造方法。
  16.  前記成膜阻害ガスは炭化水素基含有ガスを含み、前記成膜阻害層の表面には炭化水素基終端が形成される請求項1に記載の半導体装置の製造方法。
  17.  前記成膜阻害ガスはフッ素含有ガスを含み、前記成膜阻害層の表面にはフッ素終端が形成される請求項1に記載の半導体装置の製造方法。
  18.  (b)では、前記基板に対して、前記成膜ガスとして、原料ガスと、反応ガスと、を交互に供給するか、もしくは、前記基板に対して、前記成膜ガスとして、原料ガスと、反応ガスと、を交互に供給し、前記原料ガスおよび前記反応ガスのうち少なくともいずれかと一緒に触媒ガスを供給する請求項1に記載の半導体装置の製造方法。
  19.  基板が処理される処理室と、
     前記処理室内の基板に対して成膜阻害ガスを供給する成膜阻害ガス供給系と、
     前記処理室内の基板に対して成膜ガスを供給する成膜ガス供給系と、
     前記処理室内の基板に対してハロゲン非含有物質を供給するハロゲン非含有物質供給系と、
     前記処理室内において、(a)表面に第1下地と第2下地とが露出した基板に対して、前記成膜阻害ガスを供給し、前記第1下地の表面に成膜阻害層を形成する処理と、(b)前記第1下地の表面に前記成膜阻害層を形成した後の前記基板に対して、前記成膜ガスを供給し、前記第2下地の表面上に膜を形成する処理と、(c)前記第2下地の表面上に前記膜を形成した後の前記基板に対して、ノンプラズマの雰囲気下で、前記成膜阻害層および前記膜と化学反応する前記ハロゲン非含有物質を供給する処理と、を行わせるように、前記成膜阻害ガス供給系、前記成膜ガス供給系、および前記ハロゲン非含有物質供給系を制御することが可能なよう構成される制御部と、
     を有する基板処理装置。
  20.  基板処理装置の処理室内において、
     (a)表面に第1下地と第2下地とが露出した基板に対して、成膜阻害ガスを供給し、前記第1下地の表面に成膜阻害層を形成する手順と、
     (b)前記第1下地の表面に前記成膜阻害層を形成した後の前記基板に対して、成膜ガスを供給し、前記第2下地の表面上に膜を形成する手順と、
     (c)前記第2下地の表面上に前記膜を形成した後の前記基板に対して、ノンプラズマの雰囲気下で、前記成膜阻害層および前記膜と化学反応するハロゲン非含有物質を供給する手順と、
     をコンピュータによって前記基板処理装置に実行させるプログラム。
PCT/JP2020/034372 2020-09-10 2020-09-10 半導体装置の製造方法、基板処理装置、およびプログラム WO2022054216A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022548328A JP7431343B2 (ja) 2020-09-10 2020-09-10 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
KR1020237004872A KR20230038256A (ko) 2020-09-10 2020-09-10 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
PCT/JP2020/034372 WO2022054216A1 (ja) 2020-09-10 2020-09-10 半導体装置の製造方法、基板処理装置、およびプログラム
CN202080102612.5A CN115868007A (zh) 2020-09-10 2020-09-10 半导体器件的制造方法、衬底处理装置、及程序
TW110126342A TWI795844B (zh) 2020-09-10 2021-07-19 半導體裝置之製造方法、基板處理方法、基板處理裝置及程式
TW112103951A TW202323563A (zh) 2020-09-10 2021-07-19 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式
US18/167,153 US20230183864A1 (en) 2020-09-10 2023-02-10 Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034372 WO2022054216A1 (ja) 2020-09-10 2020-09-10 半導体装置の製造方法、基板処理装置、およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/167,153 Continuation US20230183864A1 (en) 2020-09-10 2023-02-10 Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Publications (1)

Publication Number Publication Date
WO2022054216A1 true WO2022054216A1 (ja) 2022-03-17

Family

ID=80631416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034372 WO2022054216A1 (ja) 2020-09-10 2020-09-10 半導体装置の製造方法、基板処理装置、およびプログラム

Country Status (6)

Country Link
US (1) US20230183864A1 (ja)
JP (1) JP7431343B2 (ja)
KR (1) KR20230038256A (ja)
CN (1) CN115868007A (ja)
TW (2) TWI795844B (ja)
WO (1) WO2022054216A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181289A1 (ja) * 2022-03-24 2023-09-28 株式会社Kokusai Electric 基板処理装置、基板処理方法、半導体装置の製造方法、およびプログラム
WO2024203371A1 (ja) * 2023-03-28 2024-10-03 東京エレクトロン株式会社 SiCN膜の形成方法及びプラズマ処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019023001A1 (en) * 2017-07-23 2019-01-31 Applied Materials, Inc. METHODS FOR SELECTIVE DEPOSITION ON SILICON-BASED DIELECTRICS
JP2019195059A (ja) * 2018-05-02 2019-11-07 エーエスエム アイピー ホールディング ビー.ブイ. 堆積および除去を使用した選択的層形成
WO2019229785A1 (ja) * 2018-05-28 2019-12-05 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
WO2020016915A1 (ja) * 2018-07-17 2020-01-23 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019023001A1 (en) * 2017-07-23 2019-01-31 Applied Materials, Inc. METHODS FOR SELECTIVE DEPOSITION ON SILICON-BASED DIELECTRICS
JP2019195059A (ja) * 2018-05-02 2019-11-07 エーエスエム アイピー ホールディング ビー.ブイ. 堆積および除去を使用した選択的層形成
WO2019229785A1 (ja) * 2018-05-28 2019-12-05 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
WO2020016915A1 (ja) * 2018-07-17 2020-01-23 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181289A1 (ja) * 2022-03-24 2023-09-28 株式会社Kokusai Electric 基板処理装置、基板処理方法、半導体装置の製造方法、およびプログラム
WO2024203371A1 (ja) * 2023-03-28 2024-10-03 東京エレクトロン株式会社 SiCN膜の形成方法及びプラズマ処理装置

Also Published As

Publication number Publication date
KR20230038256A (ko) 2023-03-17
CN115868007A (zh) 2023-03-28
JPWO2022054216A1 (ja) 2022-03-17
JP7431343B2 (ja) 2024-02-14
US20230183864A1 (en) 2023-06-15
TWI795844B (zh) 2023-03-11
TW202212604A (zh) 2022-04-01
TW202323563A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
JP6860605B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
KR102642772B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
JP7254044B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP2021027067A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
TWI814069B (zh) 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式
US20230183864A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20240170280A1 (en) Processing method, method of manufacturing semiconductor device, processing apparatus, and recording medium
WO2020188801A1 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
WO2017158848A1 (ja) 半導体装置の製造方法、基板処理装置、および記録媒体
KR20240043091A (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 시스템 및 프로그램
KR20240046217A (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP7087035B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP7374961B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
KR102719353B1 (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
WO2022264430A1 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP2023042424A (ja) 半導体装置の製造方法、基板処理方法、基板処理システム、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548328

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237004872

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953281

Country of ref document: EP

Kind code of ref document: A1