WO2023181289A1 - 基板処理装置、基板処理方法、半導体装置の製造方法、およびプログラム - Google Patents

基板処理装置、基板処理方法、半導体装置の製造方法、およびプログラム Download PDF

Info

Publication number
WO2023181289A1
WO2023181289A1 PCT/JP2022/014081 JP2022014081W WO2023181289A1 WO 2023181289 A1 WO2023181289 A1 WO 2023181289A1 JP 2022014081 W JP2022014081 W JP 2022014081W WO 2023181289 A1 WO2023181289 A1 WO 2023181289A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorption
supply
region
inhibiting
Prior art date
Application number
PCT/JP2022/014081
Other languages
English (en)
French (fr)
Inventor
俊 松井
貴史 横川
有人 小川
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2022/014081 priority Critical patent/WO2023181289A1/ja
Priority to TW112101119A priority patent/TW202338990A/zh
Publication of WO2023181289A1 publication Critical patent/WO2023181289A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • a processing container includes a first region for processing a substrate, a second region in which the substrate is not placed, and a first region for supplying processing gas to the first region of the processing container.
  • a supply unit a second supply unit that supplies the adsorption-inhibiting gas to the second region of the processing container; a first supply system capable of supplying the processing gas to the first supply unit; a second supply system capable of supplying the adsorption-inhibiting gas to the supply unit; an adsorption-inhibiting gas supplying step of supplying the adsorption-inhibiting gas to the second region; and after the adsorption-inhibiting gas supplying step,
  • the substrate processing apparatus of the present disclosure it is possible to provide a configuration that can suppress film formation on members within the processing container.
  • FIG. 1 is a longitudinal cross-sectional view for explaining the configuration of a substrate processing apparatus according to an embodiment of the present disclosure.
  • 2 is a cross-sectional view taken along line AA of the substrate processing apparatus shown in FIG. 1.
  • FIG. FIG. 1 is a block diagram showing a control configuration of a substrate processing apparatus according to an embodiment of the present disclosure.
  • FIG. 1 is a longitudinal cross-sectional view for explaining the configuration of a substrate processing apparatus according to an embodiment of the present disclosure.
  • FIGS. 1 to 3 A substrate processing apparatus 10 according to an embodiment of the present disclosure will be described using FIGS. 1 to 3. Note that the drawings used in the following explanation are all schematic, and the dimensional relationship of each element, the ratio of each element, etc. shown in the drawings do not necessarily match the reality. Moreover, the dimensional relationship of each element, the ratio of each element, etc. do not necessarily match between a plurality of drawings.
  • the substrate processing apparatus 10 includes a heater 207 as a heating means (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) serving as a holding plate.
  • an outer tube 203 constituting a reaction container (processing container) is arranged concentrically with the heater 207.
  • the outer tube 203 is made of a non-metallic material such as quartz (SiO2) or silicon carbide (SiC), and has a cylindrical shape with a closed upper end and an open lower end. Note that materials such as SiO and SiC are also called heat-resistant materials.
  • a manifold (inlet flange) 209 is arranged below the outer tube 203 and concentrically with the outer tube 203 .
  • the manifold 209 is made of a metal material such as stainless steel (SUS), and has a cylindrical shape with open upper and lower ends.
  • An O-ring 220a serving as a sealing member is provided between the upper end of the manifold 209 and the outer tube 203.
  • An inner tube 204 that constitutes a reaction container as an example of a processing container is disposed inside the outer tube 203.
  • the inner tube 204 is made of a non-metallic material such as quartz (SiO2) or silicon carbide (SiC), and has a cylindrical shape with a closed upper end and an open lower end.
  • a processing container is mainly composed of an outer tube 203, an inner tube 204, and a manifold 209.
  • a processing chamber 201e is formed in the cylindrical hollow part of the processing container (inside the inner tube 204).
  • the processing chamber 201e is configured to be able to accommodate wafers 200, which are an example of a substrate, arranged horizontally in multiple stages in the vertical direction by a boat 217, which is an example of a substrate support unit, which will be described later.
  • wafers 200 which are an example of a substrate, arranged horizontally in multiple stages in the vertical direction by a boat 217, which is an example of a substrate support unit, which will be described later.
  • a process area PA hereinafter also referred to as PA or PA area
  • the area where the wafer 200 is not placed is called the upper substrate non-placement area UA (hereinafter also referred to as UA or UA area), and the area below the process area PA where the wafer 200 is not placed is called the lower substrate non-placement area LA (hereinafter also referred to as LA or LA area). ).
  • the PA area is an example of the first area.
  • the UA area and the LA area are examples of the second area. Note that the UA area may be referred to as a second area, and the LA area may be referred to as a third area.
  • nozzle 410 that is a pipe-shaped member as an example of a second supply section
  • nozzle 420 that is a pipe-shaped member as an example of the first supply section
  • nozzle 420 that is a pipe-shaped member as an example of the second supply section
  • a nozzle 430 which is a pipe-shaped member, is provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the "first supply section”, “second supply section”, and “nozzle” refer to a member having an opening (hole) for ejecting gas. Therefore, it does not need to be a pipe-shaped member as shown in the present disclosure.
  • a gas supply pipe 310 is connected to the nozzle 410.
  • the gas supply pipe 310 is provided with a mass flow controller (MFC) 312, which is a flow rate controller (flow rate control unit), and a valve 314, which is an on-off valve, in this order from the upstream side.
  • MFC mass flow controller
  • a gas supply pipe 510 that supplies inert gas is connected to the downstream side of the valve 314 of the gas supply pipe 310.
  • the gas supply pipe 510 is provided with an MFC 512 and a valve 514 in this order from the upstream side.
  • a nozzle 410 is connected to the tip of the gas supply pipe 310.
  • the nozzle 410 is configured as an L-shaped nozzle, and its horizontal portion is provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical part of the nozzle 410 is provided inside a channel-shaped (groove-shaped) preliminary chamber 205e that projects outward in the radial direction of the inner tube 204 and extends in the vertical direction. It extends toward the top of the device along the inner wall of the inner tube 204 within the chamber 205e.
  • the opening at the tip of the nozzle 410 is located inside the LA region, and the nozzle 410 is provided so that the gas flows upwardly and laterally in the LA region.
  • the nozzle 410 is also called a second supply section, and also called a lower supply section of the second supply section that supplies gas to the LA region.
  • the adsorption inhibiting gas is supplied from the gas supply pipe 310 into the processing chamber 201e via the MFC 312, the valve 314, and the nozzle 410.
  • the gas supply pipe 310, MFC 312, and valve 314 are an example of a second supply system.
  • an inert gas such as nitrogen (N 2 ) gas is supplied into the LA region of the processing chamber 201e via the MFC 512, the valve 514, and the nozzle 410, respectively.
  • N 2 gas nitrogen
  • examples of inert gas include argon (Ar) gas, helium (He) gas, neon (Ne) gas, and xenon gas.
  • Ar argon
  • He helium
  • Ne neon
  • xenon gas xenon gas
  • a rare gas such as (Xe) gas may also be used.
  • the nozzle 420 is provided so as to extend to the height of the upper end of the PA area, and a plurality of gas supply holes 420a are provided at a position facing the wafer 200.
  • the processing gas is supplied laterally (horizontally) from the gas supply hole 420a of the nozzle 420 toward the wafer 200.
  • a plurality of gas supply holes 420a are provided from the lower end to the upper end of the PA region, each having the same opening area, and further provided at the same opening pitch.
  • the gas supply hole 420a is not limited to the above-mentioned form.
  • the opening area may be gradually increased from the bottom to the top of the inner tube 204. This makes it possible to make the flow rate of gas supplied from the gas supply hole 420a more uniform.
  • the plurality of gas supply holes 420a are an example of a plurality of openings that open in the first region.
  • a gas supply pipe 320 is connected to the nozzle 420.
  • a gas supply pipe 352 and a gas supply pipe 354 are connected to the upstream end of the gas supply pipe 320 via a gas switching valve 350.
  • a mass flow controller (MFC) 322 which is a flow rate controller (flow rate control unit)
  • a valve 324 which is an on-off valve
  • a gas supply pipe 520 that supplies inert gas is connected to the gas supply pipe 320 on the downstream side of the valve 324 .
  • the gas supply pipe 520 is provided with an MFC 522 and a valve 524 in this order from the upstream side.
  • the gas supply pipe 320, mass flow controller (MFC) 322, valve 324, gas supply pipe 352, and gas supply pipe 354 are an example of the first supply system.
  • a source gas as a processing gas is supplied to the gas supply pipe 352, and a reaction gas as a processing gas is supplied to the gas supply pipe 354.
  • a gas supply pipe 330 is connected to the nozzle 430.
  • the gas supply pipe 330 is provided with a mass flow controller (MFC) 332, which is a flow rate controller (flow rate control unit), and a valve 334, which is an on-off valve, in order from the upstream side.
  • MFC mass flow controller
  • a gas supply pipe 530 that supplies inert gas is connected to the gas supply pipe 330 on the downstream side of the valve 334 .
  • the gas supply pipe 530 is provided with an MFC 532 and a valve 534 in this order from the upstream side.
  • the adsorption inhibiting gas is supplied from the gas supply pipe 330 into the processing chamber 201e via the MFC 332, the valve 334, and the nozzle 430.
  • the gas supply pipe 330, MFC 332, and valve 334 are an example of a second supply system.
  • an inert gas such as nitrogen (N 2 ) gas is supplied into the UA region of the processing chamber 201e through the MFC 532, the valve 534, and the nozzle 430, respectively.
  • the nozzle 430 is also called a second supply section, and also called an upper supply section of the second supply section that supplies gas to the UA region.
  • a nozzle 430 is connected to the tip of the gas supply pipe 330.
  • the nozzle 430 is configured as an L-shaped nozzle, and its horizontal portion is provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portion of the nozzle 430 is provided inside the preliminary chamber 205e of the inner tube 204, and extends upward in the apparatus along the inner wall of the inner tube 204 within the preliminary chamber 205e.
  • the opening at the tip of the nozzle 430 is located inside the upper substrate non-arrangement area UA, and supplies adsorption inhibiting gas or inert gas into the upper substrate non-arrangement area UA.
  • the nozzle 430 is preferably provided so as to spray gas onto the ceiling of the inner tube 204.
  • the method of supplying the processing gas in this embodiment is via a nozzle 420 arranged in a preliminary chamber 205e in an annular vertically elongated space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200.
  • gas is transported. Then, gas is ejected into the inner tube 204 from a plurality of gas supply holes 420a provided in the nozzle 420 at a position facing the wafer 200. More specifically, gas is ejected from the gas supply hole 420a of the nozzle 420 in a direction parallel to the surface of the wafer 200.
  • the exhaust hole (exhaust port) 204a is a through hole formed in the side wall of the inner tube 204 at a position opposite to the nozzle 420, and is, for example, a slit-shaped through hole that is elongated in the vertical direction.
  • Gas is supplied into the processing chamber 201e from the gas supply hole 420a of the nozzle 420 and flows over the surface of the wafer 200 through the gap formed between the inner tube 204 and the outer tube 203 via the exhaust hole 204a. It flows into the exhaust passage 206. The gas that has flowed into the exhaust path 206 then flows into the exhaust pipe 231 and is discharged to the outside of the processing furnace 202e.
  • the exhaust hole 204a is provided at a position facing the plurality of wafers 200, and the gas supplied from the gas supply hole 410a to the vicinity of the wafers 200 in the processing chamber 201e flows horizontally and then is exhausted. It flows into the exhaust path 206 through the hole 204a.
  • the exhaust hole 204a is not limited to being configured as a slit-like through hole, but may be configured as a plurality of holes.
  • the manifold 209 is provided with an exhaust pipe 231 that exhausts the atmosphere inside the processing chamber 201e.
  • the exhaust pipe 231 includes, in order from the upstream side, a pressure sensor 245 as a pressure detector (pressure detection unit) that detects the pressure inside the processing chamber 201e, an APC (Auto Pressure Controller) valve 243, and a vacuum pump as a vacuum evacuation device. 246 is connected.
  • the APC valve 243 can perform evacuation and stop evacuation of the processing chamber 201e by opening and closing the valve while the vacuum pump 246 is operating. By adjusting the opening degree, the pressure inside the processing chamber 201e can be adjusted.
  • the exhaust system is mainly composed of the exhaust hole 204a, the exhaust path 206, the exhaust pipe 231, the APC valve 243, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system. Note that the exhaust pipe 231, APC valve 243, and vacuum pump 246 are an example of an exhaust section, and the APC valve 243 and vacuum pump 246 are controlled by the controller 121, which will be described later.
  • a seal cap 219 is provided below the manifold 209 as a furnace mouth cover that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is configured to abut the lower end of the manifold 209 from below in the vertical direction.
  • the seal cap 219 is made of a metal material such as SUS, and has a disk shape.
  • An O-ring 220b serving as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 that rotates the boat 217 that accommodates the wafers 200 is installed on the opposite side of the seal cap 219 from the processing chamber 201e.
  • the rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation shaft 255 is an example of a support shaft.
  • the rotating shaft 255 is made of a metallic material such as SUS or a non-metallic material such as quartz.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 serving as a lifting mechanism installed vertically outside the outer tube 203.
  • the boat elevator 115 is configured to be able to carry the boat 217 into and out of the processing chamber 201e by raising and lowering the seal cap 219.
  • the boat elevator 115 is configured as a transport device (transport mechanism) that transports the boat 217 and the wafers 200 accommodated in the boat 217 into and out of the processing chamber 201e.
  • the boat 217 serving as a substrate support is configured to arrange a plurality of wafers 200, for example, 25 to 200 wafers, in a horizontal position and with their centers aligned with each other at intervals in the vertical direction. .
  • the boat 217 may be made of a non-metallic material such as quartz or SiC, or may be made of a metallic material such as SUS.
  • a heat insulating section 218 made of a non-metallic material such as quartz or SiC is provided at the bottom of the boat 217. This configuration makes it difficult for the heat from the heater 207 to be transmitted to the seal cap 219 side.
  • the heat insulating portion 218 is configured by, for example, heat insulating plates formed in a plate shape being provided in multiple stages (not shown) in a horizontal position.
  • this embodiment is not limited to the above-mentioned form.
  • the heat insulating portion 218 may be configured as a heat insulating tube configured as a cylindrical member made of a non-metallic material such as quartz or SiC.
  • the lower substrate non-arrangement area LA is an area where the heat insulating section 218 is arranged, the lower substrate non-arrangement area LA can be rephrased as a heat insulation area.
  • a metal material is a material containing a transition metal of Group 3 to Group 11 of the periodic table, or a material containing a semimetal material of Group 14 as a main component.
  • a metallic material may mean a material having metallic properties.
  • metallic properties mean, for example, having electrical conductivity.
  • the nonmetallic material is a material containing elements from Groups 14 to 16 of the periodic table. For example, it is a material containing at least one of oxide, nitride, and carbide.
  • nonmetallic materials may be referred to as heat-resistant materials, but metallic materials may also have heat resistance.
  • a gas ejection hole 440 that vertically penetrates the seal cap 219 is formed in the seal cap 219 at a position closer to the rotating shaft 255 that rotates the boat 217 than the outer peripheral portion of the inner tube 204 .
  • the gas ejection hole 440 supplies adsorption inhibiting gas or inert gas, which will be described later, to the vicinity of the rotating shaft 255 in the LA region.
  • the gas ejection hole 440 is an example of a second supply section and an example of a support shaft side supply section.
  • a gas supply pipe 340 is connected to the gas ejection hole 440 .
  • the gas supply pipe 340 is provided with a mass flow controller (MFC) 342, which is a flow rate controller (flow rate control unit), and a valve 344, which is an on-off valve, in order from the upstream side.
  • MFC mass flow controller
  • a gas supply pipe 540 that supplies inert gas is connected to the downstream side of the valve 344 of the gas supply pipe 340 .
  • the gas supply pipe 540 is provided with an MFC 542 and a valve 544 in this order from the upstream side.
  • the adsorption inhibiting gas is supplied from the gas supply pipe 340 into the LA region of the processing chamber 201e via the MFC 342, the valve 344, and the gas ejection hole 440.
  • the gas supply pipe 340, MFC 342, and valve 344 are an example of a second supply system.
  • an inert gas such as nitrogen (N 2 ) gas is supplied into the LA region of the processing chamber 201e through the MFC 542, the valve 544, and the gas ejection hole 440, respectively.
  • a temperature sensor 263 as a temperature detector is installed inside the inner tube 204, and by adjusting the amount of current to the heater 207 based on the temperature information detected by the temperature sensor 263,
  • the temperature inside the processing chamber 201e is configured to have a desired temperature distribution.
  • the temperature sensor 263 is configured in an L-shape like the nozzle 410 and the like, and is provided along the inner wall of the inner tube 204.
  • the controller 121 which is an example of a control unit (control means), is a computer equipped with a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I/O port 121d. It is configured as.
  • the RAM 121b, storage device 121c, and I/O port 121d are configured to be able to exchange data with the CPU 121a via an internal bus.
  • An input/output device 122 configured as, for example, a touch panel is connected to the controller 121 .
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe in which procedures and conditions of a method for manufacturing a semiconductor device, which will be described later, are described, and the like are stored in a readable manner.
  • the process recipe is a combination of processes (steps) in a method for manufacturing a semiconductor device, which will be described later, to be executed by the controller 121 to obtain a predetermined result, and functions as a program.
  • the process recipe, control program, etc. will be collectively referred to as simply a program.
  • the word program When the word program is used in this specification, it may include only a single process recipe, only a single control program, or a combination of a process recipe and a control program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, etc. read by the CPU 121a are temporarily held.
  • the I/O port 121d includes the first substrate transfer device 112, gate valves 70a to 70d, rotation mechanism 36, switching units 15a to 15c, MFCs 312, 322, 332, 342, 512, 522, 532, 542, valve 314, 324, 334, 344, 350, 514, 524, 534, 544, pressure sensor 245, APC valve 243, vacuum pump 246, heater 207, temperature sensor 263, rotation mechanism 267, boat elevator 115, etc.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and read recipes and the like from the storage device 121c in response to input of operation commands from the input/output device 122.
  • the CPU 121a is configured to be able to control each part of the device in accordance with the contents of the read recipe.
  • the CPU 121a performs flow rate adjustment operations for various gases by the MFCs 312, 322, 332, 342, 512, 522, 532, 542, valves 314, 324, 334, 344, 350, 514 in accordance with the contents of the read recipe.
  • controller 121 is configured to be able to control the boat elevator 115, the rotation mechanism 267, the gas supply system and gas exhaust system of the processing furnace 202e, and the like.
  • the controller 121 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card).
  • the above-mentioned program can be configured by installing it on a computer.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these will be collectively referred to as simply recording media.
  • the recording medium may include only the storage device 121c, only the external storage device 123, or both.
  • the program may be provided to the computer using communication means such as the Internet or a dedicated line, without using the external storage device 123.
  • the inside of the processing chamber 201e is evacuated by the vacuum pump 246 to a desired pressure (degree of vacuum).
  • the pressure within the processing chamber 201e is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled (pressure adjustment) based on the measured pressure information.
  • the inside of the processing chamber 201e is heated by the heater 207 to reach a desired temperature.
  • the amount of electricity supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201e has a desired temperature distribution (temperature adjustment).
  • the heating in the processing chamber 201e by the heater 207 continues at least until the processing on the wafer 200 is completed.
  • the raw material gas is flowed into the processing chamber 201e of the inner tube 204 to process the wafer 200.
  • the raw material gas is supplied into the processing chamber 201e from the gas supply hole 420a of the nozzle 420, and is exhausted from the exhaust pipe 231.
  • source gas is supplied to the wafer 200.
  • the valve 524 is opened to flow an inert gas such as N 2 gas into the gas supply pipe 520.
  • the N 2 gas flowing therein is supplied into the processing chamber 201e together with the raw material gas, and is exhausted from the exhaust pipe 231.
  • the source gas includes, for example, monochlorosilane (SiH 3 Cl, abbreviation: MCS) gas, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas, trichlorosilane (SiHCl 3 , abbreviation: TCS) gas, tetrachlorosilane.
  • Chlorosilane gas such as (SiCl 4 , abbreviation: STC) gas, hexachlorodisilane gas (Si 2 Cl 6 , abbreviation: HCDS) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas can be used.
  • STC hexachlorodisilane
  • HCDS hexachlorodisilane
  • OCTS octachlorotrisilane
  • raw material gases include, for example, fluorosilane gases such as tetrafluorosilane (SiF 4 ) gas and difluorosilane (SiH 2 F 2 ) gas, tetrabromosilane (SiBr 4 ) gas, and dibromosilane (SiH 2 Bromosilane gas such as Br 2 ) gas, iodosilane gas such as tetraiodosilane (SiI 4 ) gas, and diiodosilane (SiH 2 I 2 ) gas can also be used.
  • fluorosilane gases such as tetrafluorosilane (SiF 4 ) gas and difluorosilane (SiH 2 F 2 ) gas
  • tetrabromosilane (SiBr 4 ) gas tetrabromosilane
  • dibromosilane gas SiH 2 Bromosilane gas
  • iodosilane gas such as tetraio
  • a gas containing a metal element and a halogen may be used.
  • gases containing metal elements and halogen elements include: Titanium tetrachloride (TiCl 4 ) gas, molybdenum chloride (MoCl 5 ) gas, hafnium chloride (HfCl 4 ) gas, zirconium chloride (ZrCl 4 ) gas, and aluminum chloride (AlCl 3 ) gas can be used.
  • the source gas can be selected depending on the type of film to be formed on the wafer 200. In this disclosure, an example will be described in which a silicon nitride film containing Si and N is formed on a wafer 200.
  • a reaction gas such as NH 3 gas as an example
  • the valve 534 is opened to flow N 2 gas into the gas supply pipe 530.
  • the reaction gas and N 2 gas supplied into the processing chamber 201e are exhausted from the exhaust pipe 231.
  • a SiN film containing Si and N is formed on the SiN layer on the wafer 200.
  • a SiN film with a predetermined thickness can be formed by performing the cycle of supplying the raw material gas and the reaction gas one or more times.
  • the source gas may be adsorbed to the member on which the film is not desired to be formed, and a film may be formed on the member on which the film is not desired to be formed.
  • the members on which film formation is not desired are members (locations) other than the wafer 200, such as the inner surface of the inner tube 204, the seal cap 219, the rotating shaft 255, and the like.
  • an adsorption-inhibiting gas is supplied to members such as the inner tube 204, the seal cap 219, and the rotating shaft 255.
  • members such as the inner tube 204, the seal cap 219, and the rotating shaft 255.
  • Possible adsorption-inhibiting gases include organic substances and inorganic substances.
  • inorganic substances have higher heat resistance than organic substances. Therefore, as an example, when forming a film at a high temperature of 500° C. or higher, an inorganic material containing at least one of F, Cl, Br, I or a halogen gas can be used as the adsorption inhibiting gas.
  • Examples include hydrogen (HBr) gas, hydrogen iodide (HI) gas, chlorine trifluoride (ClF 3 ) gas, nitrogen trifluoride (NF 3 ) gas, and tungsten hexafluoride (WF 6 ) gas.
  • the adsorption-inhibiting gas is also referred to as a reformed gas or a surface-modified gas because it improves the characteristics of the surface of the target member.
  • the halogen-based gas is also referred to as a halogen-based adsorption inhibiting gas or a halogen-based reformed gas. Note that it is preferable to use a material with relatively high molecular polarity as the halogen gas.
  • it is a gas containing a halogen element and an element other than the halogen element, such as HCl or WF 6 .
  • Gas molecules with such high molecular polarity are characterized by being easily adsorbed.
  • a material with relatively high molecular polarity it is possible to increase the amount of adsorption of some of the molecules of the halogen-based gas (for example, halogen elements) onto the member.
  • halogen-based gases those having particularly high binding energy are preferred.
  • a material with high electronegativity is used.
  • the adsorption of the source gas can be suppressed by using a source gas with the same polarity as the molecules and ligands of the adsorption-inhibiting gas.
  • a gas containing hydrocarbons or a gas that forms a self-assembled monolayer (SAM) can be used as the gas that inhibits the adsorption of organic matter.
  • R-PO 3 H As these gases, for example, general formula R-PO 3 H, HMDS (hexamethyldisilazane), etc. can be used.
  • R-PO 3 H (R is a group containing an alkyl group, specifically, there are the following three groups. (1) CH 3 (CH 2 ) 6 CH 2 -P(O)(OH) 2 (2) CF 3 (CF 2 ) 5 CH 2 -CH 2 -P(O)(OH) 2 (3) CH 3 (CH 2 ) 16 CH 2 )-P(O)(OH) 2
  • the organic adsorption inhibiting gas and the inorganic adsorption inhibiting gas may be used depending on the processing conditions of the wafer 200. Furthermore, both an organic adsorption-inhibiting gas and an inorganic adsorption-inhibiting gas may be used as necessary.
  • the type of adsorption-inhibiting gas is appropriately selected depending on the material that adsorbs the adsorption-inhibiting component.
  • R-PO 3 H when adsorbing an adsorption-inhibiting component onto a metal member, R-PO 3 H can be used as an example of an adsorption-inhibiting gas that is easily adsorbed onto the metal member.
  • ClF 3 , WF 6 , HCl, HMDSN, etc. can be used as examples of adsorption-inhibiting gases that are easily adsorbed on the quartz member.
  • a halogen for example, F
  • Si 2 Cl 6 gas as a raw material gas
  • Cl contained in Si 2 Cl 6 gas as a raw material gas has an electrically negative ligand with F on the quartz member. Therefore, it becomes a repulsive factor and becomes difficult to adsorb onto a quartz member on which F is adsorbed.
  • a gas containing a methyl group such as HMDSN
  • a ligand containing a methyl group (-CH 3 also simply referred to as Me
  • HMDSN is supplied, for example, a -Si-Me 3 ligand is adsorbed. Since the methyl group is also electrically negative, it repels Cl contained in Si 2 Cl 6 as the source gas, and can suppress adsorption of molecules of the source gas to the member.
  • an adsorption inhibiting gas that is easily adsorbed to quartz is supplied from the nozzle 430 to the UA region near the ceiling of the inner tube 204 formed of quartz, and the inner tube 204 exposed to the UA region is supplied with an adsorption-inhibiting gas that is easily adsorbed to quartz.
  • the adsorption-inhibiting component is adsorbed onto the surface.
  • an adsorption inhibiting gas that is easily adsorbed to metal members is supplied from a nozzle 410 and a gas ejection hole 440 to the lower substrate non-arrangement area LA where the seal cap 219 formed of metal and the rotating shaft 255 are arranged.
  • the adsorption-inhibiting component is adsorbed onto the surfaces of the seal cap 219 and the rotating shaft 255.
  • the adsorption-inhibiting component includes at least one of the material itself of the adsorption-inhibiting gas and a part (atom, ligand) of the material of the adsorption-inhibiting gas. This can prevent unnecessary films from being formed on the inner tube 204, the seal cap 219, and the rotating shaft 255.
  • the above-mentioned adsorption-inhibiting gas supply step can be performed under the control of the controller 121.
  • the step of supplying the adsorption-inhibiting gas can be performed at least once before, during, or after the processing of the wafer 200.
  • a process of supplying Si 2 Cl 6 gas as a raw material gas and NH 3 gas as a reaction gas in order so as not to mix them with each other may be performed a predetermined number of times.
  • the above-mentioned adsorption-inhibiting gas supply step can be performed.
  • the adsorption-inhibiting gas may be supplied somewhere during this process.
  • the adsorption-inhibiting gas when carrying out a cycle process in which raw material gas and reaction gas are sequentially supplied, the adsorption-inhibiting gas may be supplied before (after) each cycle, or the adsorption-inhibiting gas may be supplied once in multiple cycles.
  • the above-mentioned before and after processing the wafers 200 refer to timings when the wafers 200 are not placed on the boat 217, but if the processing of the wafers 200 is not significantly affected, The wafer 200 may be placed on the boat 217.
  • the adsorption inhibiting gas By supplying the adsorption inhibiting gas while no wafer 200 is placed on the boat 217, the adsorption inhibiting gas can also be supplied to the portion of the boat 217 that comes into contact with the wafer 200.
  • it is necessary to transport the boat 217 on which the wafers 200 are not placed into the processing container 201 resulting in a problem that the overall processing speed of the substrate processing apparatus is reduced.
  • inert gas may be supplied to the UA region and the LA region at least once when supplying the source gas to the process region PA and when supplying the reaction gas. Thereby, it is possible to suppress diffusion of at least one of the source gas and the reaction gas into the UA region and the LA region.
  • an inert gas is supplied to at least one of the gas supply pipe 310 and the gas supply pipe 330. This is done by
  • dielectric members for example, supply locations (nozzles) for adsorption-inhibiting gas adsorbed to the inner tube 204 and boat 217 and adsorption-inhibiting gas adsorbed to metal members may be provided in locations close to each member. preferable.
  • supply parts (nozzles) for different adsorption-inhibiting gases near members made of different materials, it is possible to promote adsorption of the adsorption-inhibiting gas to be adsorbed to each member made of different materials.
  • the dielectric member is, for example, an oxide material (SiO, AlO, etc.), a nitride material (SiN, AlN, etc.), and the metal member is SUS, Al, etc.
  • an inert gas may be supplied to the PA region.
  • the adsorption-inhibiting gas can be supplied mainly to the upper UA region and LA region.
  • an inert gas may be supplied to the PA region during the supply of the adsorption-inhibiting gas.
  • the adsorption-inhibiting gas can be allowed to stay in the UA region and the LA region, and the adsorption of the adsorption-inhibiting component of the adsorption-inhibiting gas in the regions can be promoted. Note that at the timing when the inert gas is not supplied to the PA region, the adsorption-inhibiting gas is also supplied to the PA region.
  • the adsorption-inhibiting gas By supplying the adsorption-inhibiting gas to the PA region, the adsorption-inhibiting gas is also supplied to the inner surface of the inner tube 204 corresponding to the PA region and the pillars of the boat 217, and the adsorption-inhibiting gas is adsorbed on the surfaces of these members. I can do it. Thereby, it is possible to suppress adsorption of the source gas to each part.
  • Two or more types of adsorption-inhibiting gases may be prepared as adsorption-inhibiting gases, and the two or more types of adsorption-inhibiting gases may be supplied simultaneously or sequentially under the control of the controller 121. This makes it possible to form a layer in which two or more types of adsorption-inhibiting components are mixed, and in addition to suppressing the adhesion of unnecessary films, it also prevents by-products generated during wafer processing. It is also possible to suppress the adhesion of products generated by decomposition of the treated gas material (liquid of the treated gas material).
  • the adsorption-inhibiting gas is supplied to the UA region and the LA region, but the adsorption-inhibiting gas may be supplied to the entire inner tube 204 as long as it does not significantly affect the processing of the wafer 200. Furthermore, the adsorption-inhibiting gas may be supplied while the wafer 200 is placed, as long as it does not significantly affect the processing of the wafer 200.
  • the influence on the processing of the wafer 200 means, for example, that molecules (atoms, ligands) adsorbed to the member are detached during the processing of the wafer 200 and incorporated into the film formed on the wafer 200, and the wafer 200 is This means that the characteristics of the film formed at 200 deviate from the desired film characteristics.
  • controller 121 controls the APC valve so that when supplying the adsorption-inhibiting gas into the inner tube 204, the amount of exhaust of the atmosphere inside the inner tube 204 is made smaller than the amount of exhaust during processing on the wafer 200.
  • 243 and vacuum pump 246 can be controlled. Further, the controller 121 can control the APC valve 243 and the vacuum pump 246 so that when supplying the adsorption-inhibiting gas into the inner tube 204, the exhaustion of the atmosphere inside the inner tube 204 is stopped. .
  • the pressure of the adsorption-inhibiting gas within the inner tube 204 can be increased, and the adsorption-inhibiting gas can be supplied to every corner of the inner tube 204. Furthermore, by increasing the pressure of the adsorption-inhibiting gas in the inner tube 204, multiple adsorption of the adsorption-inhibiting gas (multiple molecules are adsorbed to one location) can occur, and the adsorption-inhibiting gas can be absorbed during wafer processing. Desorption can be suppressed.
  • adsorbing the adsorption-inhibiting gas multiple times even if the adsorption-inhibiting gas is desorbed during wafer processing, a portion of the adsorption-inhibiting gas can remain, and film deposition can be suppressed.
  • the present invention is not limited to this effect.
  • the amount of raw material gas consumed by each member (the amount of raw material gas adsorbed to each member) can be reduced. Thereby, the amount of raw material gas supplied to the wafer 200 can be increased.
  • the source gas that has been consumed (adsorbed) by each member is supplied to the wafer 200.
  • the processing quality of the wafer 200 can be improved.
  • the amount of gas required for film formation is increasing.
  • the amount of gas supplied to the wafer 200 can be increased, and the quality of the film formed on the wafer 200 can be improved.
  • a dummy substrate dummy wafer
  • an adsorption-inhibiting gas is supplied to the dummy substrate, and molecules (ligands) of the adsorption-inhibiting gas are adsorbed onto the dummy substrate. It is possible to reduce the gas consumption amount and increase the amount of gas supplied to the wafer 200 to be processed.
  • the present invention is not limited to this.
  • the adsorption inhibiting gas may also be supplied from the nozzle 420. That is, the second supply system for supplying the adsorption-inhibiting gas is also connected to the gas supply pipe 320.
  • a gas supply pipe 701 connecting the gas supply pipe 320 and the gas supply pipe 330 is provided, and a valve 702 is provided on the gas supply pipe 701. By opening and closing the valve 702 and the valve 334, the adsorption inhibiting gas can be supplied from the second supply system to the gas supply pipe 320.
  • the adsorption-inhibiting gas is supplied to the PA region, and while supplying the adsorption-inhibiting gas to the inner tube 204 and the pillar of the boat 217, it is also possible to supply the adsorption-inhibiting gas to the UA region and the LA region. I can do it.
  • the adsorption-inhibiting gas can be supplied to each of the support pins that support the wafers 200 of the boat 217, making it possible to supply the adsorption-inhibiting gas to each of the support pins. Become.
  • the adsorption-inhibiting gas can be adsorbed inside the nozzle 420, and the adsorption of the raw material gas inside the nozzle 420 can be suppressed, that is, the consumption of the raw material gas inside the nozzle 420 can be suppressed. Since the adsorption of the source gas inside is suppressed, it is possible to suppress the reaction between the source gas adsorbed inside the nozzle 420 and the reaction gas that will be supplied later.
  • the present invention is not limited to this, and the raw material gas and the reaction gas may be supplied from separate nozzles. You can configure it as you like. By supplying the raw material gas and the reaction gas from separate nozzles, it is possible to prevent one gas remaining in the nozzle from reacting with the other gas to be supplied later.
  • the first supply section includes a nozzle that supplies source gas and a nozzle that supplies reaction gas.
  • NH 3 gas is used as the reaction gas
  • the reaction gas is not limited to this.
  • at least one hydrogen nitride gas such as ammonia (NH 3 ) gas, diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, etc. can be used.
  • a nitride film can be formed on the wafer 200.
  • not only hydrogen nitride-based gas but also a gas containing oxygen can be used.
  • the gas containing oxygen at least one of oxygen (O 2 ) gas, water (H 2 O) gas, and ozone (O 3 ) gas can be used.
  • the processing container is composed of the outer tube 203, the inner tube 204, and the manifold 209
  • the present invention is not limited to this.
  • it may be configured with an outer tube 203 and a manifold 209. With this configuration, the processing chamber 201e is formed inside the outer tube 203. Even in such a case, at least one or more effects shown in the present disclosure can be obtained.
  • the vertical substrate processing apparatus 10 has been described, but the present disclosure is also applicable to a single-wafer type apparatus that holds the wafers 200 on a susceptor and processes them one by one.
  • the upper supply section may be provided above the susceptor, and the lower supply section may be provided below the susceptor.
  • gas ejection holes 440 may be provided near the support of the pillars that support the susceptor.

Abstract

基板を処理する第1領域と、基板を配置しない第2領域を有する処理容器と、第1領域に処理ガスを供給する第1供給部と、処理容器内の第2領域に吸着阻害ガスを供給する第2供給部と、第1供給部に処理ガスを供給することが可能な第1供給システムと、第2供給部に吸着阻害ガスを供給することが可能な第2供給システムと、第2領域に吸着阻害ガスを供給する吸着阻害ガス供給工程と、吸着阻害ガス供給処理の後で、処理ガスを第1領域に供給する処理ガス供給工程と、を行わせるように第1供給システムと第2供給システムとを制御することが可能な制御部と、を有する。

Description

基板処理装置、基板処理方法、半導体装置の製造方法、およびプログラム
 本開示は、基板処理装置、基板処理方法、半導体装置の製造方法、およびプログラムに関する。
 基板に成膜を行う基板処理装置がある。例えば、国際特許出願WO2020-01695号。
国際特許出願WO2020-01695号
 ところで、この種の基板処理装置では、処理容器内の部材に意図しない成膜が生じることがある。
 本開示は、処理容器内の部材への成膜を抑制可能な構成を提供する。
 本開示の一態様によれば、基板を処理する第1領域と、前記基板を配置しない第2領域と、を有する処理容器と、前記処理容器の前記第1領域に処理ガスを供給する第1供給部と、前記処理容器の前記第2領域に吸着阻害ガスを供給する第2供給部と、前記第1供給部に前記処理ガスを供給することが可能な第1供給システムと、前記第2供給部に前記吸着阻害ガスを供給することが可能な第2供給システムと、前記第2領域に前記吸着阻害ガスを供給する吸着阻害ガス供給工程と、前記吸着阻害ガス供給工程の後で、前記処理ガスを前記第1領域に供給する処理ガス供給工程と、を行わせるように前記第1供給システムと前記第2供給システムとを制御することが可能な制御部と、を有する技術が提供される。
 本開示の基板処理装置によれば、処理容器内の部材への成膜を抑制可能な構成を提供することが可能となる。
本開示の一実施形態に係る基板処理装置の構成を説明するための縦断面図である。 図1に示す基板処理装置のA-A線断面図である。 本開示の一実施形態に係る基板処理装置の制御構成を示すブロック図である。 本開示の一実施形態に係る基板処理装置の構成を説明するための縦断面図である。
 図1~図3を用いて、本開示の一実施形態に係る基板処理装置10について説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
 図1に示すように、基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
(アウタチューブ)
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、例えば石英(SiO2)、炭化シリコン(SiC)などの非金属性材料で構成され、上端が閉塞し下端が開口した円筒形状に形成されている。なお、SiOやSiCの様な材料は、耐熱性材料とも呼ぶ。
(マニホールド)
 アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)などの金属材料で構成され、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。
(インナチューブ)
 アウタチューブ203の内側には、処理容器の一例としての反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、例えば石英(SiO2)、炭化シリコン(SiC)などの非金属材料で構成され、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器が構成されている。処理容器の筒中空部(インナチューブ204の内側)には処理室201eが形成されている。
 処理室201eは、基板の一例としてのウエハ200を、後述する基板支持部の一例としてのボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。
 インナチューブ204の内部は、ボート217に収容されたウエハ200が配置されて処理される領域がプロセス領域PA(以下、PA、PA領域とも呼ぶ)とされ、プロセス領域PAの上側でウエハ200が配置されない領域が上部基板非配置領域UA(以下、UA、UA領域とも呼ぶ)とされ、プロセス領域PAの下側でウエハ200が配置されない領域が下部基板非配置領域LA(以下、LA、LA領域とも呼ぶ)とされている。
 なお、PA領域は、第1領域の一例である。UA領域、及びLA領域は、第2領域の一例である。なお、UA領域を第2領域、LA領域を第3領域と別々に称しても良い。
 処理室201e内には、第2供給部の一例としてのパイプ状の部材であるノズル410、第1供給部の一例としてのパイプ状の部材であるノズル420、及び第2供給部の一例としてのパイプ状の部材であるノズル430がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。なお、本実施形態において、「第1供給部」、「第2供給部」、「ノズル」とは、ガスを噴出する開口(孔)を有した部材を意味する。それ故、本開示に示す様なパイプ状の部材で無くても良い。
(ノズル410)
 ノズル410には、ガス供給管310が接続されている。
 ガス供給管310には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)312、開閉弁であるバルブ314が設けられている。ガス供給管310のバルブ314の下流側には、不活性ガスを供給するガス供給管510が接続されている。ガス供給管510には、上流側から順に、MFC512及びバルブ514が設けられている。
 ガス供給管310の先端部にノズル410が連結接続されている。ノズル410は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410の垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室205eの内部に設けられており、予備室205e内にてインナチューブ204の内壁に沿って装置上方に向かって延びている。ノズル410の先端の開口は、LA領域の内部に位置しており、ノズル410は、ガスがLA領域で上方向、および横方向にも流れるように設けられている。なお、ノズル410は、第2供給部とも呼び、第2供給部の内、LA領域にガスを供給する下方供給部とも呼ぶ。
 ガス供給管310からは、吸着阻害ガスがMFC312、バルブ314、ノズル410を介して処理室201e内に供給される。
 なお、ガス供給管310、MFC312、及びバルブ314は、第2供給システムの一例である。
 ガス供給管510からは、不活性ガスとして、例えば窒素(N)ガスが、それぞれMFC512、バルブ514、ノズル410を介して処理室201eのLA領域内に供給される。以下、不活性ガスとしてNガスを用いる例について説明するが、不活性ガスとしては、Nガス以外に、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。
(ノズル420)
 ノズル420は、PA領域の上端の高さまで延在するように設けられており、ウエハ200と対向する位置に複数のガス供給孔420aが設けられている。これにより、ノズル420のガス供給孔420aからウエハ200に向けて処理ガスを横向きに(水平に)供給する。このガス供給孔420aは、PA領域の下端から上端にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔420aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔420aから供給されるガスの流量をより均一化することが可能となる。なお、複数のガス供給孔420aは、第1領域に開口する複数の開口の一例である。
 ノズル420には、ガス供給管320が接続されている。
 ガス供給管320には上流側端部には、ガス切換用のバルブ350を介してガス供給管352、及びガス供給管354が接続されている。ガス供給管320の途中には、上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)322、開閉弁であるバルブ324が設けられている。ガス供給管320のバルブ324の下流側には、不活性ガスを供給するガス供給管520が接続されている。ガス供給管520には、上流側から順に、MFC522及びバルブ524が設けられている。
 なお、ガス供給管320、マスフローコントローラ(MFC)322、バルブ324、ガス供給管352、及びガス供給管354は、第1供給システムの一例である。
 ガス供給管352には、処理ガスとしての原料ガスが供給され、ガス供給管354には、処理ガスとしての反応ガスが供給される。
(ノズル430)
 ノズル430には、ガス供給管330が接続されている。
 ガス供給管330には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)332、開閉弁であるバルブ334が設けられている。ガス供給管330のバルブ334の下流側には、不活性ガスを供給するガス供給管530が接続されている。ガス供給管530には、上流側から順に、MFC532及びバルブ534が設けられている。
 ガス供給管330からは、吸着阻害ガスがMFC332、バルブ334、ノズル430を介して処理室201e内に供給される。
 なお、ガス供給管330、MFC332、及びバルブ334は、第2供給システムの一例である。
 ガス供給管530からは、不活性ガスとして、例えば窒素(N)ガスが、それぞれMFC532、バルブ534、ノズル430を介して処理室201eのUA領域内に供給される。なお、ノズル430は、第2供給部とも呼び、第2供給部の内、UA領域にガスを供給する上方供給部とも呼ぶ。
 ガス供給管330の先端部にノズル430が連結接続されている。ノズル430は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル430の垂直部は、インナチューブ204の予備室205eの内部に設けられており、予備室205e内にてインナチューブ204の内壁に沿って装置上方に向かって延びている。ノズル430の先端の開口は、上部基板非配置領域UAの内部に位置しており、吸着阻害ガス、または不活性ガスを上部基板非配置領域UA内に供給する。なお、ノズル430は、ガスをインナチューブ204の天井に吹き付けるように設けることが好ましい。
 本実施形態における処理ガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内の予備室205e内に配置したノズル420を経由してガスを搬送している。そして、ノズル420のウエハ200と対向する位置に設けられた複数のガス供給孔420aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル420のガス供給孔420aにより、ウエハ200の表面と平行方向に向かってガスを噴出させている。
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル420に対向した位置に形成された貫通孔であり、例えば、鉛直方向に細長く開設されたスリット状の貫通孔である。ノズル420のガス供給孔420aから処理室201e内に供給され、ウエハ200の表面上を流れたガスは、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間からなる排気路206内に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202e外へと排出される。
 排気孔204aは、複数のウエハ200と対向する位置に設けられており、ガス供給孔410aから処理室201e内のウエハ200の近傍に供給されたガスは、水平方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。
 マニホールド209には、処理室201e内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201e内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245,APC(Auto Pressure Controller)バルブ243,真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201e内の真空排気及び真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201e内の圧力を調整することができる。主に、排気孔204a、排気路206、排気管231、APCバルブ243及び圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。なお、排気管231、APCバルブ243、及び真空ポンプ246は、排気部の一例であり、APCバルブ243、及び真空ポンプ246は、後述するコントローラ121によって制御される。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属材料で構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。
 シールキャップ219における処理室201eの反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。なお、回転軸255は、支持軸の一例である。また、回転軸255は、SUS等の金属材料または石英等の非金属材料で構成される。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201e内外に搬入及び搬出することが可能なように構成されている。ボートエレベータ115は、ボート217及びボート217に収容されたウエハ200を、処理室201e内外に搬送する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の非金属材料で構成される場合と、SUS等の金属材料で構成される場合がある。ボート217の下部には、例えば石英やSiC等の非金属材料で構成される断熱部218が設けられている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。断熱部218は、例えば、板状に形成された断熱板が水平姿勢で多段(図示せず)に設けられて構成される。ただし、本実施形態は上述の形態に限定されない。例えば、断熱部218を、石英やSiC等の非金属材料で構成される筒状の部材として構成された断熱筒で構成してもよい。
 なお、下部基板非配置領域LAには断熱部218が配置される領域であるため、下部基板非配置領域LAは断熱領域と言い換えることができる。
なお、本開示において、金属材料とは、周期律表の第3族~第11族の遷移金属を含む材料、第14族の半金属材料を主成分とする材料である。本開示において、金属材料とは、金属的な性質を有する材料を意味する場合がある。ここで、金属的な性質とは、例えば、導電性を有することを意味する。また、非金属材料は、周期律表の第14族~第16族の元素を含む材料である。例えば、酸化物、窒化物、炭化物の少なくとも1つ以上を含む材料である。また、本開示において、非金属材料は、耐熱性材料と称する場合があるが、金属材料も耐熱性を有する場合もある。
(シールキャップ219のガス噴出孔) 
 シールキャップ219には、インナチューブ204の外周部分よりもボート217を回転させる回転軸255に近い位置に、シールキャップ219を上下方向に貫通するガス噴出孔440が形成されている。ガス噴出孔440は、LA領域における回転軸255の近傍に後述する吸着阻害ガス、または不活性ガスを供給する。なお、ガス噴出孔440は、第2供給部の一例であり、かつ支持軸側供給部の一例である。
 ガス噴出孔440には、ガス供給管340が接続されている。
 ガス供給管340には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)342、開閉弁であるバルブ344が設けられている。ガス供給管340のバルブ344の下流側には、不活性ガスを供給するガス供給管540が接続されている。ガス供給管540には、上流側から順に、MFC542及びバルブ544が設けられている。
 ガス供給管340からは、吸着阻害ガスがMFC342、バルブ344、ガス噴出孔440を介して処理室201eのLA領域内に供給される。
 なお、ガス供給管340、MFC342、及びバルブ344は、第2供給システムの一例である。
 ガス供給管540からは、不活性ガスとして、例えば窒素(N)ガスが、それぞれMFC542、バルブ544、ガス噴出孔440を介して処理室201eのLA領域内に供給される。
 図2に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201e内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410等と同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。
(コントローラ121の構成)
 図3に示すように、制御部(制御手段)の一例であるコントローラ121は、CPU(Central Processing Unit)121a,RAM(Random Access Memory)121b,記憶装置121c,I/Oポート121dを備えたコンピュータとして構成されている。RAM121b,記憶装置121c,I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピ及び制御プログラムの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、第1基板移載機112、ゲートバルブ70a~70d、回転機構36、切替部15a~15c、MFC312,322,332,342,512,522,532,542、バルブ314,324,334,344,350,514,524,534,544、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピ等を読み出すように構成されている。
 CPU121aは、読み出したレシピの内容に沿うように、装置各部を制御することが可能なように構成されている。
 また、CPU121aは、読み出したレシピの内容に沿うように、MFC312,322,332,342,512,522,532,542による各種ガスの流量調整動作、バルブ314,324,334,344,350,514,524,534,544の開閉動作、APCバルブ243の開閉動作及びAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動及び停止、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御することが可能なように構成されている。
 すなわち、コントローラ121は、ボートエレベータ115、回転機構267、処理炉202eのガス供給系及びガス排気系等を制御することが可能なように構成されている。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(基板処理工程)
 以下、半導体装置(デバイス)の製造工程の一工程の一例として、ウエハ200上、SiN膜を形成する工程について説明する。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
(ウエハ搬入)
 本実施形態の基板処理装置10では、複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201e内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介してアウタチューブ203の下端開口を閉塞した状態となる。
 次に、処理室201e内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201e内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。また、処理室201e内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201e内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201e内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
 (原料ガス供給)
 次に、インナチューブ204の処理室201e内に原料ガス(を流し、ウエハ200を処理する。原料ガスは、ノズル420のガス供給孔420aから処理室201e内に供給され、排気管231から排気される。このとき、ウエハ200に対して原料ガスが供給される。また、これと並行してバルブ524を開き、ガス供給管520内にNガス等の不活性ガスを流す。ガス供給管520内を流れたNガスは、原料ガスと一緒に処理室201e内に供給され、排気管231から排気される。
なお、原料ガスとしては、例えば、モノクロロシラン(SiHCl、略称:MCS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、ヘキサクロロジシランガス(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等のクロロシランガスを用いることができる。原料ガスとしては、これらのうち1以上を用いることができる。
 原料ガスとしては、クロロシランガスの他、例えば、テトラフルオロシラン(SiF)ガス、ジフルオロシラン(SiH)ガス等のフルオロシランガスや、テトラブロモシラン(SiBr)ガス、ジブロモシラン(SiHBr)ガス等のブロモシランガスや、テトラヨードシラン(SiI)ガス、ジヨードシラン(SiH)ガス等のヨードシランガスを用いることもできる。原料ガスとしては、これらのうち1以上を用いることができる。
 このようなシリコン(Si)元素とハロゲンを含むガスの他、金属元素とハロゲンを含むガスであっても良い。金属元素とハロゲン元素を含むガスとしては、例えば、
四塩化チタニウム(TiCl)ガス、塩化モリブデン(MoCl)ガス、塩化ハフニウム(HfCl)ガス、塩化ジルコニウム(ZrCl)ガス、塩化アルミニウム(AlCl)ガスを用いることができる。ウエハ200に形成する膜の種類に応じて、原料ガスを選択することができる。本開示では、ウエハ200にSiとNを含む窒化シリコン膜を形成する例について説明する。
 原料ガスを供給してウエハ200の処理を行った後、処理室201e内の残留ガスを除去し、その後、処理室201e内に反応ガス(一例としてNHガス等)をノズル420から流す。また、これと並行してバルブ534を開き、ガス供給管530内にNガスを流す。処理室201e内に供給された反応ガス、及びNガスは、排気管231から排気される。
 これにより、ウエハ200上のSiN層上にSiとNとを含むSiN膜が形成される。なお、原料ガスと反応ガスの供給を行うサイクルを1回以上行うことにより、所定の厚さのSiN膜を形成することができる。
(吸着阻害ガス供給工程:吸着阻害ガスによる成膜抑制処理)
 ところで、ウエハ200に対して成膜を行う場合、成膜させたくない部材に対して、原料ガスが吸着して、成膜させたくない部材に膜が形成されることがある。ここで、成膜させたくない部材とは、ウエハ200以外の部材(箇所)であって、一例として、インナチューブ204の内面、シールキャップ219、回転軸255、等がある。
 このため、本実施形態の基板処理装置10では、ウエハ200に所定の成膜を行う工程の前に、インナチューブ204、シールキャップ219、回転軸255等の部材に対して吸着阻害ガスを供給し、該部材表面を改質する、言い換えれば該部材表面に吸着阻害ガスの吸着阻害成分を吸着させることで、これらの部材表面への原料ガスの吸着を抑制する。この結果としてこれらの部材表面への意図しない成膜を抑制することができる。
 吸着阻害ガスとしては、有機物と無機物が考えられる。なお、無機物は、有機物に比較して耐熱性が高い。
 よって、一例として、500℃以上の高温で成膜を行う場合に、吸着阻害ガスとして、無機系材料であって、一例として、F、Cl、Br、Iの少なくとも1つ以上含むもハロゲン系ガスを用いることができる。具体的には、フッ素(F)ガス、塩素(Cl)ガス、臭素(Br)ガス、ヨウ素(I)ガス、塩化水素(HCl)ガス、フッ化水素(HF)ガス、臭化水素(HBr)ガス、ヨウ化水素(HI)ガス、三フッ化塩素(ClF)ガス、三フッ化窒素(NF)ガス、六フッ化タングステン(WF)ガス、等がある。なお、本開示において、吸着阻害ガスは、対象の部材表面の特性を改善させることから、改質ガス、表面改質ガス、とも称する。また、ハロゲン系ガスは、ハロゲン系の吸着阻害ガス、ハロゲン系の改質ガスとも称する。なお、ハロゲン系ガスとしては、分子極性が比較的大きい材料を用いることが好ましい。例えば、HClや、WFの様に、ハロゲン元素とハロゲン元素以外の元素を含むガスである。このような分子極性の高いガスの分子は、吸着し易いという特徴がある。分子極性が比較的大きい材料を用いることにより、部材へのハロゲン系ガスの分子の一部(例えばハロゲン元素)の吸着量を増加させることができる。なお、ハロゲン系ガスのうち、特に結合エネルギーが高いものが好ましい。また、好ましくは、電気的陰性度が高い材料が好ましい。結合エネルギーが高いガスを用いることで、部材への吸着(表面との結合)力を強くすることができ、ウエハ200の処理中に吸着阻害ガスの分子や、リガンドが脱離することを抑制できる。また、電気的陰性度が高い材料を用いることにより、吸着阻害ガスの分子やリガンドの極性と、同じ極性の原料ガスを用いることにより、原料ガスの吸着を抑制することができる。
 なお、有機物の吸着阻害ガスとして炭化水素を含むガス、自己組織化単分子膜(SAM)を形成するガスを用いることができる。これらのガスとしては、例えば、一般式R-POH、HMDS(ヘキサメチルジシラザン)、等を用いることができる。一般式:R-POH(Rは、アルキル基を含む基であり、具体的には以下の3つがある。
(1)CH(CHCH―P(O)(OH)
(2)CF(CFCH-CH-P(O)(OH)
(3)CH(CH16CH)―P(O)(OH)
 有機物の吸着阻害ガスと無機物の吸着阻害ガスとは、ウエハ200の処理条件に応じて使い分ければよい。また、必要に応じて有機物の吸着阻害ガスと無機物の吸着阻害ガスの両方を用いてもよい。
 吸着阻害ガスは、吸着阻害成分を吸着させる材料に応じてその種類が適宜選択される。
 例えば、金属部材上に吸着阻害成分を吸着させる場合には、金属部材に吸着し易い吸着阻害ガスの一例としてR-POHを用いることができる。
 また、石英部材上に吸着阻害成分を吸着させる場合には、石英部材に吸着し易い吸着阻害ガスの一例として、ClF、WF、HCl、HMDSN等を用いることができる。
 一例として、石英部材上にハロゲン(例えば、F)が吸着されていると、原料ガスとしてのSiClガスに含まれるClは、石英部材上のFとそれぞれ電気的に陰性の配位子であるために反発因子となり、表面にFが吸着された石英部材上には吸着し難くなる。また、石英部材上に、HMDSNの様なメチル基を含むガスを吸着させた場合、表面にメチル基(―CH:単にMeとも呼ぶ)を含むリガンドが部材の表面に吸着する。ここで、HMDSNを供給した場合には、例えば、―Si-Meのリガンドが吸着する。メチル基も電気的に陰性であるため、原料ガスとしてのSiClに含まれるClと反発し合い、部材への原料ガスの分子が吸着することを抑制できる。
 したがって、本実施形態では、石英で形成されたインナチューブ204の天井付近のUA領域には、石英に吸着し易い吸着阻害ガスをノズル430から供給して、UA領域に露出しているインナチューブ204の表面に吸着阻害成分を吸着させる。また、金属で形成されたシールキャップ219、及び回転軸255が配置されている下部基板非配置領域LAには、金属部材に吸着し易い吸着阻害ガスをノズル410、及びガス噴出孔440から供給して、シールキャップ219、及び回転軸255の表面に吸着阻害成分を吸着させる。ここで、吸着阻害成分とは、吸着阻害ガスの材料そのものや、吸着阻害ガスの材料の一部(原子、リガンド)の少なくとも一つ以上を含む。
 これにより、インナチューブ204、シールキャップ219、及び回転軸255に不要な膜が成膜されることが抑制できる。
 なお、コントローラ121の制御により、上記吸着阻害ガス供給工程を行うことができる。吸着阻害ガスの供給工程は、ウエハ200の処理を行う前、処理の間、処理の後の少なくとも1つ以上タイミングで行うことができる。ウエハ200の処理は、例えば、原料ガスとしてのSiClガスと反応ガスとしてのNHガスとを互いに混合しないよう順番に供給する処理を所定回行う場合がある。この処理間に上記吸着阻害ガス供給工程を行うことができる。吸着阻害ガスは、この処理途中のどこかで供給すればよい。例えば、原料ガスと反応ガスを順番に供給する処理をサイクル処理行う場合、毎サイクル前(後)に吸着阻害ガスを供給してもよく、複数サイクルに1回吸着阻害ガスを供給してもよい。また、上述のウエハ200の処理を行う前と処理の後とは、ボート217にウエハ200を載置していない状態のタイミングを意味するが、ウエハ200の処理に大きな影響を与えない場合は、ボート217にウエハ200を載置した状態であっても良い。ボート217にウエハ200を載置していない状態で吸着阻害ガスを供給することにより、ボート217のウエハ200と接触する部分にも吸着阻害ガスを供給することができる。一方で、ウエハ200を載置していないボート217を処理容器201内に搬送する必要があり、基板処理装置の全体の処理速度が低下する課題を生じる。
 コントローラ121の制御により、プロセス領域PAに原料ガスを供給する際と、反応ガスを供給する際の少なくとも1つ以上で、UA領域、及びLA領域に不活性ガスを供給してもよい。これにより、UA領域、及びLA領域に原料ガスと、反応ガスとの少なくとも1つ以上が拡散することを抑制できる。具体的には、ガス供給管352に原料ガスと反応ガスの少なくとも1つ以上を供給している際に、ガス供給管310とガス供給管330の少なくとも1つ以上に、不活性ガスを供給することにより行われる。
 なお、誘電体の部材で、例えば、インナチューブ204、ボート217に吸着する吸着阻害ガスと、金属部材に吸着する吸着阻害ガスの供給場所(ノズル)を、それぞれの部材が近い場所に設けることが好ましい。これにより、それぞれ異なる吸着阻害ガスの供給部分(ノズル)を、材料が異なる部材の近くに設けることで、材料の異なる部材それぞれに対して、吸着させたい吸着阻害ガスの吸着を促進することができる。ここで、誘電体の部材とは、例えば、酸化物材料(SiO、AlO等)や窒化物材料(SiN、AlN等)、等であり、金属部材は、SUS,Al等である。
 コントローラ121の制御により、UA領域、及びLA領域に吸着阻害ガスを供給する際に、PA領域に不活性ガスを供給してもよい。これにより、PA領域に吸着阻害ガスが拡散することを抑制できる。即ち、上部UA領域とLA領域に重点的に、吸着阻害ガスを供給することができる。
 なお、吸着阻害ガスの供給途中から、PA領域に不活性ガスを供給してもよい。PA領域に不活性ガスを供給することで、UA領域、及びLA領域に吸着阻害ガスを滞留させることができ、該領域における吸着阻害ガスの吸着阻害成分の吸着を促進することができる。なお、PA領域に不活性ガス供給しないタイミングでは、PA領域にも吸着阻害ガスが供給されることになる。PA領域に吸着阻害ガスを供給することにより、インナチューブ204のPA領域に対応する内面や、ボート217の柱にも吸着阻害ガスを供給し、これらの部材の表面に吸着阻害ガスを吸着させることができる。これにより、各部への原料ガスの吸着を抑制することができる。
 吸着阻害ガスとして2種類以上の吸着阻害ガスを用意し、コントローラ121の制御により、2種類以上の吸着阻害ガスを同時に供給してもよく、順番に供給するようにしてもよい。これにより、2種類以上の吸着阻害成分がミックスされた層を形成することができ、不要な膜の付着の抑制の他に、ウエハ処理中に生成される副生産物(副生成物)や、処理ガス材料の分解で生じた生産物(処理ガス材料のリカンド)の付着を抑制することもできる。
 上記実施形態では、UA領域、及びLA領域に吸着阻害ガスを供給したが、ウエハ200の処理に大きな影響がなければ、インナチューブ204内全体に吸着阻害ガスを供給してもよい。また、ウエハ200の処理に大きな影響がなければ、ウエハ200が配置された状態で吸着阻害ガスを供給してもよい。ここで、ウエハ200の処理への影響とは、例えば、部材に吸着した分子(原子、リガンド)が、ウエハ200の処理中に脱離して、ウエハ200に形成される膜中に取り込まれ、ウエハ200に形成される膜の特性が、所望の膜特性から外れてしまうことを意味する。
 なお、コントローラ121は、インナチューブ204内に吸着阻害ガスを供給する際に、インナチューブ204内の雰囲気の排気量をウエハ200への処理時の排気量よりも小さくした状態で行う様にAPCバルブ243、及び真空ポンプ246を制御することができる。また、コントローラ121は、インナチューブ204内に吸着阻害ガスを供給する際に、インナチューブ204内の雰囲気の排気を停止した状態で行う様にAPCバルブ243、及び真空ポンプ246を制御することができる。
 これにより、インナチューブ204内の吸着阻害ガスの圧力を高めることができ、吸着阻害ガスをインナチューブ204の隅々まで供給することができる。また、インナチューブ204内の吸着阻害ガスの圧力が高まることにより、吸着阻害ガスの多重吸着(一つの箇所に複数の分子が吸着)を発生させることができ、ウエハ処理中の、吸着阻害ガスの脱離を抑制することができる。また、吸着阻害ガスが多重吸着することにより、ウエハ処理中に吸着阻害ガスが脱離しても吸着阻害ガスの一部を残すことができ、膜の堆積を抑制することができる。
 なお、上述では、吸着阻害ガスを各部材に供給することにより、各部材への原料ガスの吸着を抑制できる効果について記したが、この効果に限るものでは無い。各部材で消費される原料ガス量(各部材に吸着する原料ガスの量)を低減することができる。これにより、ウエハ200に供給する原料ガスの量を増加させることができる。例えば、各部材で消費(吸着)されていた原料ガスが、ウエハ200に供給されることになる。この結果として、ウエハ200の処理品質を向上させることができる。特に、3Dデバイスの様な複雑な凹凸形状(パターン)が形成された基板では、膜形成に必要なガスの量の増大している。本開示の技術によれば、ウエハ200に供給するガス量を増加させることができ、ウエハ200に形成する膜の品質を向上させることができる。また、ボート217にダミー基板(ダミーウエハ)を載置している場合には、このダミー基板に吸着阻害ガスを供給し、吸着阻害ガスの分子(リガンド)をダミー基板に吸着することにより、ダミー基板でのガス消費量を低減し、処理対象のウエハ200へのガス供給量を増加させることができる。
 なお、上述では、ノズル410とノズル430から、吸着阻害ガスを供給する例を示したが、これに限るものでは無い。ノズル420からも吸着阻害ガスを供給する様に構成しても良い。即ち、吸着阻害ガスを供給する第2供給システムが、ガス供給管320にも接続した構成とする。例えば、図4に示す様に、ガス供給管320とガス供給管330とを接続するガス供給管701と、ガス供給管701にバルブ702とを設ける。このバルブ702とバルブ334とを開閉させることにより、第2供給システムから、ガス供給管320へ吸着阻害ガスを供給することができる。この様に構成することによりPA領域にも吸着阻害ガスを供給し、インナチューブ204や、ボート217の柱に吸着阻害ガスを供給しながら、UA領域とLA領域にも吸着阻害ガスを供給することができる。特に、ノズル420から吸着阻害ガスを供給する場合、ボート217のウエハ200を支持する支持ピンそれぞれに、吸着阻害ガスを供給することができ、支持ピンそれぞれに吸着阻害ガスを供給することが可能になる。さらには、ノズル420の内部に吸着阻害ガスを吸着させることができ、ノズル420内部への原料ガスの吸着を抑制、すなわち、ノズル420内での原料ガスの消費を抑制できる、また、ノズル420の内部での原料ガスの吸着が抑制されるため、ノズル420内に吸着した原料ガスと、後で供給される反応ガスとの反応を抑制することができる。
 なお、上述では、原料ガスと、反応ガスとを同じガス供給管320から、処理容器に供給する構成を示したが、これに限らず、原料ガスと反応ガスをそれぞれ、別々のノズルから供給する様に構成しても良い。原料ガスと反応ガスをそれぞれ別々のノズルから供給することで、ノズル内に残留する一方のガスと、後で供給する他方のガスとがノズル内で反応することを抑制できる。例えば、第1供給部を、原料ガスを供給するノズルと、反応ガスを供給するノズルとで、構成する。
 なお、上述では、反応ガスとしては、NHガスを用いる例を示したがこれに限るものでは無い。例えば、アンモニア(NH)ガス、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス、等の少なくとも1つ以上の窒化水素系ガスを用いることができる。このようなガスを用いることにより、ウエハ200上に窒化物膜を形成することができる。また、窒化水素系のガスに限らず、酸素を含むガスを用いることができる。酸素を含むガスとしては、酸素(O)ガス、水(HO)ガス、オゾン(O)ガスの少なくとも1つ以上のガスを用いることができる。
 なお、上述では、処理容器をアウタチューブ203と、インナチューブ204と、マニホールド209とで構成した例について記したが、これに限る物では無い。例えば、アウタチューブ203と、マニホールド209で構成しても良い。この様に構成した場合、処理室201eはアウタチューブ203の内側に形成されることになる。このような場合であっても、本開示に示す少なくとも1つ以上の効果を得ることができる。
[その他の実施形態]
 以上、本開示の一実施形態について説明したが、本開示は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
 上記実施形態では、縦型の基板処理装置10について説明したが、本開示は、ウエハ200をサセプタに保持して、一枚ずつ処理する枚葉型装置にも適用可能である。例えば、サセプタよりも上方側に上方供給部を設け、サセプタよりも下方側に下方供給部を設ければ良い。また、サセプタを支持する柱の保持付近にガス噴出孔440を設ければ良い。

Claims (28)

  1.  基板を処理する第1領域と、前記基板を配置しない第2領域と、を有する処理容器と、
     前記処理容器の前記第1領域に処理ガスを供給する第1供給部と、
     前記処理容器の前記第2領域に吸着阻害ガスを供給する第2供給部と、
     前記第1供給部に前記処理ガスを供給することが可能な第1供給システムと、
     前記第2供給部に前記吸着阻害ガスを供給することが可能な第2供給システムと、
     前記第2領域に前記吸着阻害ガスを供給する吸着阻害ガス供給工程と、前記吸着阻害ガス供給工程の後で、前記処理ガスを前記第1領域に供給する処理ガス供給工程と、を行わせるように前記第1供給システムと前記第2供給システムとを制御することが可能な制御部と、
    を有する基板処理装置。
  2.  前記第2領域は、前記第1領域の上方に設けられている、
     請求項1に記載の基板処理装置。
  3.  前記第2領域は、前記第1領域の下方に設けられている、
     請求項1に記載の基板処理装置。
  4.  前記第2領域は、前記第1領域の上方と下方の両方に設けられ、
     前記第2供給部は、前記第1領域の上方側に設けられた前記第2領域に前記吸着阻害ガスを供給する上方供給部と、前記第1領域の下方に設けられた前記第2領域に前記吸着阻害ガスを供給する下方供給部とを備え、
     前記制御部は、前記吸着阻害ガス供給工程において、前記第1領域の上方の前記第2領域と前記第1領域の下方の前記第2領域に前記吸着阻害ガスを供給する様に第2供給システムを制御可能に構成される、
    請求項1に記載の基板処理装置。
  5.  前記第2供給部は、先端に開口を有するノズルであり、
     前記ノズルは、前記開口が前記上方供給部に位置するように設けられている、
     請求項4に記載の基板処理装置。
  6.  前記第2供給部は、先端に開口を有するノズルであり、
     前記ノズルは、前記開口が前記下方供給部に位置するように設けられている、
     請求項4に記載の基板処理装置。
  7.  第1供給部は、前記第1領域に位置する複数の開口を有している、
     請求項1~請求項6の何れか1項に記載の基板処理装置。
  8.  前記処理容器内に設けられ、前記基板を支持する基板支持部と、
     前記基板支持部を支持する支持軸と、
     を備え、
     前記第2供給部は、前記第1領域の下方に設けられた前記第2領域の外周側よりも前記支持軸側に配置され、該第2領域に前記吸着阻害ガスを供給する支持軸側供給部を有している、
     請求項1~請求項7の何れか1項に記載の基板処理装置。
  9.  前記第2供給システムは、前記第2供給部に不活性ガスを供給可能に構成され、
     前記制御部は、前記処理ガス供給工程で前記第2供給部に前記不活性ガスを供給する様に前記第2供給システムを制御することが可能に構成される、
    請求項1~請求項8の何れか1項に記載の基板処理装置。
  10.  前記第1供給システムは、前記第1供給部に不活性ガスを供給可能に構成され、
     前記制御部は、前記第1供給部に前記不活性ガスを供給する様に前記第1供給システムを制御することが可能に構成される、
    請求項1~請求項8の何れか1項に記載の基板処理装置。
  11.  前記制御部は、前記吸着阻害ガスを前記第2供給部へ供給する際に前記不活性ガスを前記第1領域に供給するように前記第1供給システムと前記第2供給システムとを制御することが可能に構成される、
    請求項10に記載の基板処理装置。
  12.  前記制御部は、前記吸着阻害ガスの供給を前記第2供給部への供給を開始した後に、前記不活性ガスを前記第1領域に供給するように前記第1供給システムと前記第2供給システムを制御することが可能に構成される、
    請求項10または請求項11に記載の基板処理装置。
  13.  前記第2供給システムは、前記第1供給部に前記吸着阻害ガスを供給可能に構成され、
     前記制御部は、前記第1供給部に前記吸着阻害ガスを供給する様に前記第2供給システムを制御することが可能に構成される、
    請求項1~請求項8の何れか1項に記載の基板処理装置。
  14.  前記第1供給システムは、前記第1供給部に反応ガスを供給可能とされ、
     前記制御部は、前記処理ガス供給工程において、前記第1領域に前記処理ガスと前記反応ガスとを順に1回以上供給するように前記第1供給システムを制御することが可能に構成される、
    請求項1~請求項13の何れか1項に記載の基板処理装置。
  15.  前記制御部は、前記処理ガス供給工程において、前記処理ガスと前記反応ガスとを順に繰り返し供給する間に、前記第2領域に前記吸着阻害ガスを供給する様に前記第1供給システムと前記第2供給システムとを制御することが可能に構成される、
    請求項14に記載の基板処理装置。
  16.  前記制御部は、前記吸着阻害ガス供給工程を、前記処理容器内に前記基板が存在しない状態で行い、前記処理ガス供給工程を、前記処理容器内に前記基板が存在する状態で行うように前記第2供給システムを制御することが可能に構成される、
    請求項1~請求項15の何れか1項に記載の基板処理装置。
  17.  前記吸着阻害ガスとして、2種類以上の吸着阻害ガスが用いられている、
     請求項1~請求項16の何れか1項に記載の基板処理装置。
  18.  前記吸着阻害ガスとして、2種類の有機系吸着阻害ガスが用いられている、
    請求項17に記載の基板処理装置。
  19.  前記吸着阻害ガスとして、2種類の無機系吸着阻害ガスが用いられている、
    請求項17に記載の基板処理装置。
  20.  前記吸着阻害ガスとして、有機系吸着阻害ガスと無機系吸着阻害ガスとが用いられている、
    請求項17に記載の基板処理装置。
  21.  前記制御部は、複数種類の前記吸着阻害ガスを順に供給するように前記第2供給システムを制御することが可能に構成される、
     請求項17~請求項20の何れか1項に記載の基板処理装置。
  22.  前記制御部は、複数種類の前記吸着阻害ガスを同時に供給するように前記第2供給システムを制御することが可能に構成される、
    請求項17~請求項20の何れか1項に記載の基板処理装置。
  23.  前記第2供給システムは、2種類以上の前記吸着阻害ガスの内、1つ以上を前記上方供給部に供給可能に構成されると共に、2種類以上の前記吸着阻害ガスの内、他方を前記下方供給部に供給可能に構成されている、
    請求項4に従属する請求項17に記載の基板処理装置。
  24.  前記処理容器内の雰囲気を排気する排気部を有し、
     前記制御部は、前記処理容器内に前記吸着阻害ガスを供給する際に、前記処理容器内の雰囲気の排気量を前記基板の処理時の排気量よりも小さくした状態で行う様に前記排気部を制御することが可能に構成される、
    請求項1~請求項23の何れか1項に記載の基板処理装置。
  25.  前記処理容器内の雰囲気を排気する排気部を有し、
     前記制御部は、前記処理容器内に前記吸着阻害ガスを供給する際に、前記処理容器内の雰囲気の排気を停止した状態で行う様に前記排気部を制御することが可能に構成される、
    請求項1~請求項23の何れか1項に記載の基板処理装置。
  26.  基板を処理する第1領域と、前記基板を配置しない第2領域とを有する処理容器の前記第2領域に吸着阻害ガスを供給する吸着阻害ガス供給工程と、
     前記吸着阻害ガス供給工程の後で、前記第1領域に処理ガスを供給する処理ガス供給工程と、
    を有する基板処理方法。
  27.  基板を処理する第1領域と、前記基板を配置しない第2領域とを有する処理容器の前記第2領域に吸着阻害ガスを供給する吸着阻害ガス供給工程と、
     前記吸着阻害ガス供給工程の後で前記第1領域に処理ガスを供給し、前記第1領域に配置した前記基板を処理する基板処理工程と、
    を有する半導体装置の製造方法。
  28.  基板を処理する第1領域と、前記基板を配置しない第2領域とを有する処理容器の前記第2領域に吸着阻害ガスを供給する吸着阻害ガス供給工程と、
     前記吸着阻害ガス供給工程の後で前記第1領域に処理ガスを供給し、前記第1領域に配置した前記基板を処理する基板処理工程と、
     をコンピュータによって請求項1~請求項23の何れか1項に記載の基板処理装置に実行させるプログラム。
PCT/JP2022/014081 2022-03-24 2022-03-24 基板処理装置、基板処理方法、半導体装置の製造方法、およびプログラム WO2023181289A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/014081 WO2023181289A1 (ja) 2022-03-24 2022-03-24 基板処理装置、基板処理方法、半導体装置の製造方法、およびプログラム
TW112101119A TW202338990A (zh) 2022-03-24 2023-01-11 基板處理裝置、基板處理方法、半導體裝置之製造方法及程式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014081 WO2023181289A1 (ja) 2022-03-24 2022-03-24 基板処理装置、基板処理方法、半導体装置の製造方法、およびプログラム

Publications (1)

Publication Number Publication Date
WO2023181289A1 true WO2023181289A1 (ja) 2023-09-28

Family

ID=88100738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014081 WO2023181289A1 (ja) 2022-03-24 2022-03-24 基板処理装置、基板処理方法、半導体装置の製造方法、およびプログラム

Country Status (2)

Country Link
TW (1) TW202338990A (ja)
WO (1) WO2023181289A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093331A (ja) * 2012-10-31 2014-05-19 Tokyo Electron Ltd 重合膜の成膜方法、成膜装置の環境維持方法、成膜装置、並びに電子製品の製造方法
JP2017069407A (ja) * 2015-09-30 2017-04-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、ガス供給システムおよびプログラム
JP2018018882A (ja) * 2016-07-26 2018-02-01 株式会社日立国際電気 基板処理装置、蓋部カバーおよび半導体装置の製造方法
WO2019188037A1 (ja) * 2018-03-30 2019-10-03 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム
WO2020188857A1 (ja) * 2019-03-20 2020-09-24 株式会社Kokusai Electric 基板処理装置、反応容器、半導体装置の製造方法および記録媒体
JP2021052034A (ja) * 2019-09-20 2021-04-01 東京エレクトロン株式会社 金属酸化物膜の形成方法及び成膜装置
JP2021108335A (ja) * 2019-12-27 2021-07-29 東京エレクトロン株式会社 成膜方法及び成膜装置
WO2022054216A1 (ja) * 2020-09-10 2022-03-17 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093331A (ja) * 2012-10-31 2014-05-19 Tokyo Electron Ltd 重合膜の成膜方法、成膜装置の環境維持方法、成膜装置、並びに電子製品の製造方法
JP2017069407A (ja) * 2015-09-30 2017-04-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、ガス供給システムおよびプログラム
JP2018018882A (ja) * 2016-07-26 2018-02-01 株式会社日立国際電気 基板処理装置、蓋部カバーおよび半導体装置の製造方法
WO2019188037A1 (ja) * 2018-03-30 2019-10-03 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム
WO2020188857A1 (ja) * 2019-03-20 2020-09-24 株式会社Kokusai Electric 基板処理装置、反応容器、半導体装置の製造方法および記録媒体
JP2021052034A (ja) * 2019-09-20 2021-04-01 東京エレクトロン株式会社 金属酸化物膜の形成方法及び成膜装置
JP2021108335A (ja) * 2019-12-27 2021-07-29 東京エレクトロン株式会社 成膜方法及び成膜装置
WO2022054216A1 (ja) * 2020-09-10 2022-03-17 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム

Also Published As

Publication number Publication date
TW202338990A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
US10081868B2 (en) Gas supply nozzle, substrate processing apparatus, and non-transitory computer-readable recording medium
US10513775B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20190311898A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US11469083B2 (en) Plasma generating device, substrate processing apparatus, and method of manufacturing semiconductor device
US9601326B2 (en) Method of manufacturing semiconductor device, including film having uniform thickness
US10090149B2 (en) Method of manufacturing semiconductor device by forming and modifying film on substrate
US20160376699A1 (en) Substrate processing apparatus, and storage medium
JP2016072587A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US10032626B2 (en) Method of manufacturing semiconductor device by forming a film on a substrate, substrate processing apparatus, and recording medium
US20200312632A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
WO2018088003A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2016157871A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US10287680B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2023101578A (ja) 半導体装置の製造方法、プログラム、基板処理装置および基板処理方法
WO2020053960A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP7307038B2 (ja) 半導体装置の製造方法、プログラム、基板処理装置および基板処理方法
WO2023181289A1 (ja) 基板処理装置、基板処理方法、半導体装置の製造方法、およびプログラム
JP7065178B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
WO2019181603A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2018163399A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6654232B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US11961715B2 (en) Substrate processing apparatus, substrate retainer and method of manufacturing semiconductor device
WO2021181450A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2023188014A1 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
US20210301396A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933429

Country of ref document: EP

Kind code of ref document: A1