WO2020053960A1 - 基板処理装置、半導体装置の製造方法およびプログラム - Google Patents

基板処理装置、半導体装置の製造方法およびプログラム Download PDF

Info

Publication number
WO2020053960A1
WO2020053960A1 PCT/JP2018/033627 JP2018033627W WO2020053960A1 WO 2020053960 A1 WO2020053960 A1 WO 2020053960A1 JP 2018033627 W JP2018033627 W JP 2018033627W WO 2020053960 A1 WO2020053960 A1 WO 2020053960A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction tube
supplying
inert gas
substrate
Prior art date
Application number
PCT/JP2018/033627
Other languages
English (en)
French (fr)
Inventor
原 大介
橘 八幡
剛 竹田
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to CN201880097170.2A priority Critical patent/CN112640061B/zh
Priority to KR1020217006049A priority patent/KR20210036965A/ko
Priority to PCT/JP2018/033627 priority patent/WO2020053960A1/ja
Priority to JP2020546578A priority patent/JP7027565B2/ja
Publication of WO2020053960A1 publication Critical patent/WO2020053960A1/ja
Priority to US17/186,498 priority patent/US20210180185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3322Problems associated with coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Definitions

  • the present invention relates to a substrate processing apparatus, a method of manufacturing a semiconductor device, and a program.
  • a processing gas is supplied to a substrate housed in a reaction tube to perform a process (for example, a film forming process) on the substrate.
  • a process for example, a film forming process
  • An object of the present invention is to provide a technique capable of suppressing generation of deposits on an inner wall of a reaction tube.
  • a substrate supporting portion for supporting the substrate A reaction tube that accommodates the substrate support and processes the substrate, A processing gas supply system for supplying a processing gas into the reaction tube, An inert gas supply system for supplying an inert gas into the reaction tube, An exhaust system for exhausting the atmosphere in the reaction tube,
  • the inert gas supply system includes a first jet port for jetting the inert gas toward the center of the substrate, and a second jet port for jetting the inert gas toward an inner wall of the reaction tube.
  • FIG. 1 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, and is a diagram illustrating a processing furnace portion in a vertical sectional view.
  • FIG. 2 is a schematic configuration diagram of a vertical processing furnace of the substrate processing apparatus suitably used in the embodiment of the present invention, and is a diagram showing a processing furnace portion in a cross-sectional view taken along line AA of FIG. 1.
  • It is a schematic structure figure of a nozzle structure of a substrate processing device used suitably for an embodiment of the present invention, and is a figure showing a nozzle structure part in a longitudinal section.
  • FIG. 1 is a schematic configuration diagram of a buffer structure of a substrate processing apparatus suitably used in an embodiment of the present invention, wherein (a) is an enlarged cross-sectional view for explaining a buffer structure, and (b) is a diagram for explaining a buffer structure It is a schematic diagram.
  • FIG. 1 is a schematic configuration diagram of a controller of a substrate processing apparatus suitably used in an embodiment of the present invention, and is a diagram illustrating a control system of the controller in a block diagram.
  • 4 is a flowchart of a substrate processing step according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating gas supply timing in a substrate processing step according to the embodiment of the present invention.
  • the processing furnace 202 is a so-called vertical furnace capable of housing substrates in multiple stages in the vertical direction, and has a heater 207 as a heating device (heating mechanism).
  • the heater 207 has a cylindrical shape, and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) the gas with heat, as described later.
  • a reaction tube 203 is disposed concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC) or silicon nitride (SiN), and is formed in a cylindrical shape having a closed upper end and an open lower end.
  • a manifold (inlet flange) 209 is provided concentrically with the reaction tube 203.
  • the manifold 209 is made of, for example, a metal such as stainless steel (SUS) and is formed in a cylindrical shape having upper and lower ends opened.
  • a processing vessel mainly includes the reaction tube 203 and the manifold 209.
  • a processing chamber 201 is formed in a hollow cylindrical portion inside the processing container. The processing chamber 201 is configured to accommodate a plurality of wafers 200 as substrates. Note that the processing vessel is not limited to the above configuration, and only the reaction tube 203 may be referred to as a processing vessel.
  • nozzles 249a and 249b are provided so as to penetrate the side wall of the manifold 209.
  • Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively.
  • the reaction tube 203 is provided with the two nozzles 249a and 249b and the two gas supply tubes 232a and 232b, and can supply a plurality of types of gases into the processing chamber 201. Has become.
  • the gas supply pipes 232a and 232b are provided with mass flow controllers (MFC) 241a and 241b, which are flow controllers (flow control units), and valves 243a and 243b, which are on-off valves, respectively, in order from the upstream side of the gas flow.
  • MFC mass flow controllers
  • valves 243a and 243b which are on-off valves, respectively, in order from the upstream side of the gas flow.
  • Gas supply pipes 232c and 232d for supplying an inert gas are connected to the gas supply pipes 232a and 232b on the downstream side of the valves 243a and 243b, respectively.
  • the gas supply pipes 232c and 232d are provided with MFCs 241c and 241d and valves 243c and 243d, respectively, in order from the upstream side of the gas flow.
  • the nozzle 249a rises in the space between the inner wall of the reaction tube 203 and the wafer 200, from the lower part of the inner wall of the reaction tube 203, to the upper side in the loading direction of the wafer 200. It is provided in. That is, the nozzle 249a is provided in a region horizontally surrounding the wafer arrangement region on the side of the wafer arrangement region (mounting region) in which the wafers 200 are arranged (placed), along the wafer arrangement region. . That is, the nozzle 249a is provided in a direction perpendicular to the surface (flat surface) of the wafer 200 on the side of the end (peripheral edge) of each wafer 200 loaded into the processing chamber 201.
  • a first ejection port 250a and a second ejection port 250b are provided as gas supply holes for supplying gas.
  • the first ejection port 250a is open toward the center of the reaction tube 203 (wafer 200), and can supply (eject) a gas (in particular, an inert gas) to the wafer 200. I have. That is, the first ejection port 250a is provided on one side surface of the nozzle 249a so as to eject an inert gas or the like toward the center of the wafer 200.
  • a gas in particular, an inert gas
  • the second outlet 250b is opened so as to face the inner wall of the reaction tube 203, so that a gas (in particular, an inert gas) can be supplied (spouted) to the inner wall of the reaction tube. That is, the second ejection port 250b is provided on another side surface of the nozzle 249a (on the side facing the first ejection port 250a) so as to eject an inert gas or the like to the inner wall of the reaction tube 203. Is provided.
  • the nozzle 249a has the first ejection port 250a that ejects an inert gas or the like toward the center of the wafer 200 and the second ejection port that ejects the inert gas or the like toward the inner wall of the reaction tube 203.
  • An outlet 250b is provided at a position facing each other.
  • a plurality of first jet ports 250a and second jet ports 250b are provided from the lower part to the upper part of the reaction tube 203. More specifically, a plurality of first ejection ports 250a are provided from the lower part to the upper part of the reaction tube 203 along the height direction of the nozzle 249a, have the same opening area, and are further provided at a first predetermined interval. I have. A plurality of second ejection ports 250b are provided from the lower part to the upper part of the reaction tube 203 along the height direction of the nozzle 249a, have the same opening area, and are wider than the first predetermined interval. They are provided at predetermined intervals.
  • a plurality of first ejection ports 250a are provided at a first predetermined interval in the height direction of the nozzle 249a, and a plurality of second ejection ports 250b are provided at a first predetermined interval in the height direction of the nozzle 249a.
  • a plurality is provided at a wide second predetermined interval.
  • the number of the first jet ports 250a and the second jet ports 250b is determined by the following equation: the number of the first jet ports 250a> the second jet port. 250b.
  • the first ejection port 250a and the second ejection port 250b are provided, for example, in a ratio of 2.5: 1.
  • the opening diameter of the first ejection port 250a and the second ejection port 250b is such that the opening diameter of the first ejection port 250a> the opening diameter of the second ejection port 250b.
  • the opening diameter of the first ejection port 250a and the opening diameter of the second ejection port 250b are provided, for example, at a ratio of 2: 1.
  • each ratio mentioned here is only a specific example, and is not necessarily limited thereto.
  • the opening shapes of the first ejection port 250a and the second ejection port 250b are preferably circular, but are not necessarily limited to this, and may be other shapes such as an elliptical shape. It does not matter.
  • a nozzle 249b is connected to the tip of the gas supply pipe 232b.
  • the nozzle 249b is provided in a buffer chamber 237 that is a gas dispersion space.
  • the buffer chamber 237 is provided in the annular space between the inner wall of the reaction tube 203 and the wafer 200 in a plan view, and in a portion extending from a lower portion of the inner wall of the reaction tube 203 to an upper portion.
  • the buffer chamber 237 is formed by the buffer structure 300 in a region horizontally surrounding the wafer arrangement region on the side of the wafer arrangement region and along the wafer arrangement region.
  • the buffer structure 300 is made of an insulating material such as quartz, and gas supply ports 302 and 304 for supplying gas are formed on an arc-shaped wall of the buffer structure 300.
  • the gas supply ports 302 and 304 are provided between the rod-shaped electrodes 269 and 270 and between the rod-shaped electrodes 270 and 271 to face the plasma generation regions 224a and 224b, respectively, of the reaction tube 203 as shown in FIGS.
  • the opening is directed to the center, and gas can be supplied toward the wafer 200.
  • a plurality of gas supply ports 302 and 304 are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
  • the nozzle 249 b is provided so as to rise upward from the lower portion of the inner wall of the reaction tube 203 in the loading direction of the wafer 200.
  • the nozzle 249b is provided inside the buffer structure 300 and in a region that horizontally surrounds the wafer arrangement region on the side of the wafer arrangement region where the wafers 200 are arranged, along the wafer arrangement region. . That is, the nozzle 249 b is provided on the side of the end of the wafer 200 carried into the processing chamber 201 in a direction perpendicular to the surface of the wafer 200.
  • a gas supply hole 250c for supplying gas is provided on a side surface of the nozzle 249b.
  • the gas supply hole 250c is opened to face a wall surface formed in a radial direction with respect to a wall surface formed in an arc shape of the buffer structure 300, so that gas can be supplied toward the wall surface. I have. As a result, the reaction gas is dispersed in the buffer chamber 237 and is not directly sprayed on the rod-shaped electrodes 269 to 271, thereby suppressing generation of particles. Like the gas supply hole 250a, a plurality of gas supply holes 250c are provided from the lower portion to the upper portion of the reaction tube 203.
  • the gas is conveyed via nozzles 249 a and 249 b and a buffer chamber 237 arranged in a cylindrical space. Then, gas is ejected into the reaction tube 203 for the first time in the vicinity of the wafer 200 from the gas supply holes 250a, 250b, 250c and the gas supply ports 302, 304 opened in the nozzles 249a, 249b and the buffer chamber 237, respectively.
  • the main flow of the gas in the reaction tube 203 is in a direction parallel to the surface of the wafer 200, that is, in a horizontal direction.
  • the gas can be uniformly supplied to each wafer 200, and the uniformity of the film thickness formed on each wafer 200 can be improved.
  • the gas flowing on the surface of the wafer 200, that is, the residual gas after the reaction flows toward an exhaust port, that is, an exhaust pipe 231 described later.
  • the direction of the flow of the residual gas is appropriately specified by the position of the exhaust port, and is not limited to the vertical direction.
  • a silane raw material gas containing silicon (Si) as a predetermined element as a raw material containing a predetermined element is supplied into the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a.
  • the raw material gas refers to a gaseous raw material, for example, a gas obtained by vaporizing a raw material that is in a liquid state at normal temperature and normal pressure, a raw material that is in a gaseous state at normal temperature and normal pressure, and the like.
  • raw material when used in the present specification, it means “liquid raw material in a liquid state”, means “raw gas in a gas state”, or means both of them. There is.
  • the silane source gas for example, a source gas containing Si and a halogen element, that is, a halosilane source gas can be used.
  • the halosilane raw material is a silane raw material having a halogen group.
  • the halogen element includes at least one selected from the group consisting of chlorine (Cl), fluorine (F), bromine (Br), and iodine (I). That is, the halosilane raw material contains at least one halogen group selected from the group consisting of a chloro group, a fluoro group, a bromo group, and an iodo group.
  • the halosilane raw material can be said to be a kind of halide.
  • halosilane source gas for example, a source gas containing Si and Cl, that is, a chlorosilane source gas can be used.
  • a chlorosilane source gas for example, dichlorosilane (SiH 2 Cl 2 , abbreviated as DCS) gas can be used.
  • a reactant (reactant) containing an element different from the above-described predetermined element for example, a nitrogen (N) -containing gas as a reaction gas is supplied through the MFC 241b, the valve 243b, and the nozzle 249b. It is configured to be supplied into 201.
  • a nitrogen (N) -containing gas for example, a hydrogen nitride-based gas can be used.
  • the hydrogen nitride-based gas can be said to be a substance composed of only two elements, N and H, and acts as a nitriding gas, that is, an N source.
  • an ammonia (NH 3 ) gas can be used as the hydrogen nitride-based gas.
  • nitrogen (N 2 ) gas is supplied as an inert gas through the MFCs 241c and 241d, the valves 243c and 243d, the gas supply pipes 232a and 232b, and the processing chambers through the nozzles 249a and 249b, respectively. It is supplied into 201.
  • a material supply system as a first gas supply system is mainly configured by the gas supply pipe 232a, the MFC 241a, and the valve 243a.
  • a reactant supply system (reactant supply system) as a second gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b.
  • processing gas supply system processing gas supply unit
  • the source gas and the reaction gas are also collectively referred to as a processing gas.
  • An inert gas supply system is mainly configured by the gas supply pipes 232c and 232d, the MFCs 241c and 241d, and the valves 243c and 243d.
  • the inert gas supply system may include a nozzle 249a connected to the gas supply pipe 232c via the gas supply pipe 232a. In that case, the inert gas supply system will have the nozzle 249a including the first ejection port 250a and the second ejection port 250b.
  • gas supply system gas supply unit
  • three rod-shaped electrodes 269, 270, and 271 which are conductors and have an elongated structure are provided on the wafer 200 over the upper portion of the reaction tube 203 from the lower portion. They are arranged along the stacking direction. Each of the bar electrodes 269, 270, 271 is provided in parallel with the nozzle 249b. Each of the rod-shaped electrodes 269, 270, and 271 is protected by being covered by an electrode protection tube 275 from below to above.
  • the rod-shaped electrodes 269, 270, 271 are connected to a high-frequency power supply 273 via a matching unit 272, and the rod-shaped electrodes 270 are connected to ground, which is a reference potential, and are grounded. ing. That is, the rod-shaped electrodes connected to the high-frequency power supply 273 and the rod-shaped electrodes to be grounded are alternately arranged, and the rod-shaped electrode 270 disposed between the rod-shaped electrodes 269 and 271 connected to the high-frequency power supply 273 is grounded.
  • the rod-shaped electrodes are commonly used for the rod-shaped electrodes 269 and 271.
  • the grounded rod-shaped electrode 270 is disposed so as to be sandwiched between the rod-shaped electrodes 269 and 271 connected to the adjacent high-frequency power supply 273, and the rod-shaped electrode 269 and the rod-shaped electrode 270, and similarly, the rod-shaped electrode 271 and the rod-shaped electrode 270 Are configured to form a pair, respectively, to generate plasma. That is, the grounded rod-shaped electrode 270 is commonly used for the rod-shaped electrodes 269 and 271 connected to two high-frequency power supplies 273 adjacent to the rod-shaped electrode 270.
  • the rod-shaped electrodes 269, 270, 271 and the electrode protection tube 275 constitute a plasma generator (plasma generator) as a plasma source.
  • the matching unit 272 and the high-frequency power supply 273 may be included in the plasma source.
  • the plasma source functions as a plasma excitation unit (activation mechanism) that excites the gas into plasma, that is, excites (activates) the gas into a plasma state.
  • the electrode protection tube 275 has a structure in which each of the rod-shaped electrodes 269, 270, and 271 can be inserted into the buffer chamber 237 in a state where it is isolated from the atmosphere in the buffer chamber 237.
  • the rod-shaped electrodes 269,270,271 which are respectively inserted into the electrode protection tube 275, due to the heat from the heater 207 It will be oxidized.
  • the inside of the electrode protection tube 275 is purged with an inert gas such as N 2 gas using an inert gas purge mechanism This can reduce the O 2 concentration inside the electrode protection tube 275 and prevent the rod-shaped electrodes 269, 270, 271 from being oxidized.
  • the reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • the exhaust pipe 231 is provided with a pressure sensor 245 serving as a pressure detector (pressure detecting unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 serving as an exhaust valve (pressure adjusting unit).
  • a vacuum pump 246 as a vacuum exhaust device is connected.
  • the APC valve 244 can perform evacuation and stop evacuation of the processing chamber 201 by opening and closing the valve while the vacuum pump 246 is operating.
  • the valve is configured such that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
  • An exhaust system mainly includes the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • the exhaust pipe 231 is not limited to being provided in the reaction tube 203, and may be provided in the manifold 209 similarly to the nozzles 249a and 249b.
  • a seal cap 219 is provided as a furnace port lid capable of hermetically closing the lower end opening of the manifold 209.
  • the seal cap 219 is configured to contact the lower end of the manifold 209 from below in the vertical direction.
  • the seal cap 219 is made of, for example, a metal such as SUS and is formed in a disk shape.
  • an O-ring 220b is provided as a seal member that contacts the lower end of the manifold 209.
  • a rotation mechanism 267 for rotating a boat 217 described later is installed on the opposite side of the seal cap 219 from the processing chamber 201.
  • the rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the boat 217 to rotate the wafer 200.
  • the seal cap 219 is configured to be vertically moved up and down by a boat elevator 115 as an elevating mechanism vertically installed outside the reaction tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafer 200, into and out of the processing chamber 201.
  • a shutter 219s is provided as a furnace port lid that can hermetically close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115.
  • the shutter 219s is made of a metal such as SUS, for example, and is formed in a disk shape.
  • An O-ring 220c is provided on the upper surface of the shutter 219s as a seal member that contacts the lower end of the manifold 209. The opening / closing operation of the shutter 219s (elevation operation, rotation operation, etc.) is controlled by the shutter opening / closing mechanism 115s.
  • a boat 217 as a substrate support is configured such that a plurality of, for example, 25 to 200 wafers 200 are vertically aligned in a horizontal posture and aligned with each other in a multi-stage manner. It is configured to support, that is, to arrange at a predetermined interval.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in multiple stages below the boat 217.
  • a temperature sensor 263 as a temperature detector is installed inside the reaction tube 203.
  • the temperature in the processing chamber 201 is set to a desired temperature distribution.
  • the temperature sensor 263 is provided along the inner wall of the reaction tube 203 similarly to the nozzles 249a and 249b.
  • the controller 121 which is a control unit (control device), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe in which a procedure and conditions of a film forming process described later are described, and the like are readablely stored.
  • the process recipe is a combination of various procedures (film formation processing) to be described later, which causes the controller 121 to execute the procedure and obtain a predetermined result, and functions as a program.
  • process recipes, control programs, and the like are collectively referred to simply as programs. Further, the process recipe is simply referred to as a recipe.
  • the word program When the word program is used in this specification, it may include only a recipe alone, may include only a control program, or may include both of them.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the MFCs 241a to 241d, the valves 243a to 243d, the pressure sensor 245, the APC valve 244, the vacuum pump 246, the heater 207, the temperature sensor 263, the matching device 272, the high frequency power supply 273, the rotating mechanism 267, and the boat. It is connected to an elevator 115, a shutter opening / closing mechanism 115s, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a controls the rotation mechanism 267, adjusts the flow rates of various gases by the MFCs 241a to 241d, opens and closes the valves 243a to 243d, adjusts the high-frequency power supply 273 based on impedance monitoring, and performs APC according to the contents of the read recipe.
  • Opening and closing operation of the valve 244 pressure adjustment operation by the APC valve 244 based on the pressure sensor 245, start and stop of the vacuum pump 246, temperature adjustment operation of the heater 207 based on the temperature sensor 263, forward / reverse rotation of the boat 217 by the rotation mechanism 267, It is configured to control a rotation angle and rotation speed adjustment operation, a lifting / lowering operation of the boat 217 by the boat elevator 115, and the like.
  • the controller 121 installs the above-described program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, and a semiconductor memory such as a USB memory) 123 in a computer.
  • an external storage device for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, and a semiconductor memory such as a USB memory
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively simply referred to as a recording medium.
  • the term “recording medium” may include only the storage device 121c, include only the external storage device 123, or include both of them.
  • the provision of the program to the computer may be performed using communication means such as the Internet or a dedicated line without using the external storage device 123.
  • the step of supplying the DCS gas as the source gas and the step of supplying the plasma-excited NH 3 gas as the reaction gas are performed non-simultaneously, that is, a predetermined number of times (one or more times) without synchronization.
  • a silicon nitride film SiN film
  • a predetermined film may be formed on the wafer 200 in advance.
  • a predetermined pattern may be formed in advance on the wafer 200 or a predetermined film.
  • the term “wafer” may mean the wafer itself or may refer to a laminate of the wafer and predetermined layers or films formed on the surface thereof.
  • the term “surface of the wafer” may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer.
  • the phrase "forming a predetermined layer on a wafer” means that a predetermined layer is directly formed on the surface of the wafer itself, or a layer formed on the wafer. It may mean forming a predetermined layer on the substrate. Any use of the term “substrate” in this specification is synonymous with the use of the term "wafer”.
  • Step S1 When a plurality of wafers 200 are loaded into the boat 217 (wafer charging), the shutter 219s is moved by the shutter opening / closing mechanism 115s, and the lower end opening of the manifold 209 is opened (shutter open). Thereafter, as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 is in a state where the lower end of the manifold 209 is sealed via the O-ring 220b.
  • the wafer 200 in the processing chamber 201 is heated by the heater 207 to a desired temperature.
  • the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution.
  • Heating of the inside of the processing chamber 201 by the heater 207 is continuously performed at least until the later-described film forming step ends.
  • the film formation step is performed under a temperature condition equal to or lower than room temperature
  • heating of the processing chamber 201 by the heater 207 may not be performed.
  • the heater 207 becomes unnecessary, and the heater 207 does not need to be installed in the substrate processing apparatus. In this case, the configuration of the substrate processing apparatus can be simplified.
  • the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is started.
  • the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the film forming step is completed.
  • step S3 DCS gas is supplied to the wafer 200 in the processing chamber 201.
  • the valve 243a is opened to flow DCS gas into the gas supply pipe 232a.
  • the flow rate of the DCS gas is adjusted by the MFC 241a, supplied to the processing chamber 201 from the first ejection port 250a and the second ejection port 250b via the nozzle 249a, and exhausted from the exhaust pipe 231.
  • the valve 243c is opened at the same time, and N 2 gas flows into the gas supply pipe 232c.
  • the flow rate of the N 2 gas is adjusted by the MFC 241 c, supplied to the processing chamber 201 together with the DCS gas, and exhausted from the exhaust pipe 231.
  • the valve 243d is opened, and the N 2 gas flows into the gas supply pipe 232d.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 232b and the nozzle 249b, and is exhausted from the exhaust pipe 231.
  • the supply flow rate of the DCS gas controlled by the MFC 241a is, for example, 1 sccm or more and 6000 sccm or less, preferably 2000 sccm or more and 3000 sccm or less.
  • the supply flow rate of the N 2 gas controlled by the MFCs 241c and 241d is, for example, in a range of 100 sccm or more and 10,000 sccm or less.
  • the pressure in the processing chamber 201 is, for example, 1 Pa or more and 2666 Pa or less, preferably 665 Pa or more and 1333 Pa or less.
  • the supply time of the DCS gas is, for example, 1 second or more and 10 seconds or less, preferably 1 second or more and 3 seconds or less.
  • the supply time of the N 2 gas is, for example, 1 second or more and 10 seconds or less, preferably 1 second or more and 3 seconds or less.
  • the temperature of the heater 207 is such that the temperature of the wafer 200 is, for example, in a range from 0 ° C. to 700 ° C., preferably from room temperature (25 ° C.) to 550 ° C., and more preferably from 40 ° C. to 500 ° C. Set to temperature.
  • the amount of heat applied to the wafer 200 can be reduced, and the thermal history of the wafer 200 Can be satisfactorily controlled.
  • a Si-containing layer is formed on the wafer 200 (underlying film on the surface).
  • the Si-containing layer may include Cl and H in addition to the Si layer.
  • the Si-containing layer is formed on the outermost surface of the wafer 200 by physically adsorbing DCS, chemically adsorbing a substance obtained by partially decomposing DCS, depositing Si by thermal decomposition of DCS, and the like. Is done. That is, the Si-containing layer may be an adsorption layer (physical adsorption layer or chemical adsorption layer) of DCS or a substance in which DCS is partially decomposed, or may be a Si deposition layer (Si layer).
  • the valve 243a is closed, and the supply of the DCS gas into the processing chamber 201 is stopped.
  • the APC valve 244 is kept open, and the inside of the processing chamber 201 is evacuated by the vacuum pump 246 to remove unreacted or remaining DCS gas in the processing chamber 201 or contribute to the formation of the Si-containing layer. Products and the like are excluded from the processing chamber 201.
  • N 2 gas supply step: S4 At this time, the supply of the N 2 gas into the processing chamber 201 is maintained while the valves 243c and 243d are kept open. N 2 gas acts as a purge gas. Since the nozzle 249a connected to the valve 243c has the first ejection port 250a and the second ejection port 250b, the purge gas is applied not only to the wafer 200 supported by the boat 217 but also to the inner wall of the reaction tube 203. It is supplied (spouted) (S4). At this time, the supply flow rate of the N 2 gas controlled by the MFC 241c is, for example, a flow rate within a range of 1000 sccm or more and 5000 sccm or less.
  • the supply flow rate of the N 2 gas supplied from the first ejection port 250a of the nozzle 249a is, for example, in a range from 900 sccm to 4500 sccm.
  • the supply flow rate of the N 2 gas supplied from the second ejection port 250b of the nozzle 249a is, for example, in a range from 100 sccm to 500 sccm.
  • the relationship between the supply flow rates of the N 2 gas from the first ejection port 250a and the second ejection port 250b may be adjusted by the number of installations and the opening diameter. For example, if the number of the first ejection ports 250a and the number of the second ejection ports 250b are 2.5: 1, and the respective opening diameters are 2: 1, the above relationship of N The supply flow rate of two gases can be used.
  • the N 2 gas (inert gas) as the purge gas is supplied to the wafer 200 from the first ejection port 250a and supplied to the inner wall of the reaction tube 203 from the second ejection port 250b.
  • This step is performed after the supply of the DCS gas as the raw material gas is stopped and before the supply of the reactive gas described later is started, that is, between the raw gas supply step and the reactive gas supply step.
  • the flow rate of the N 2 gas supplied from the first ejection port 250a is greater than the flow rate of the N 2 gas supplied from the second ejection port 250b, as described above.
  • a rare gas such as an Ar gas, a He gas, a Ne gas, a Xe gas or the like can be used in addition to the N 2 gas.
  • reaction gas supply step S5
  • a plasma-excited NH 3 gas as a reaction gas is supplied to the wafer 200 in the processing chamber 201 (S5).
  • the opening / closing control of the valves 243b to 243d is performed in the same procedure as the opening / closing control of the valves 243a, 243c, 243d in step S3.
  • the flow rate of the NH 3 gas is adjusted by the MFC 241b, and is supplied into the buffer chamber 237 through the nozzle 249b.
  • high-frequency power is supplied between the rod-shaped electrodes 269, 270, 271.
  • the NH 3 gas supplied into the buffer chamber 237 is excited into a plasma state (activated by being turned into plasma), supplied to the processing chamber 201 as active species (NH 3 * ), and exhausted from the exhaust pipe 231.
  • the supply flow rate of the NH 3 gas controlled by the MFC 241b is, for example, 100 sccm or more and 10000 sccm or less, preferably 1000 sccm or more and 2000 sccm or less.
  • the high frequency power applied to the rod-shaped electrodes 269, 270, 271 is, for example, a power within a range of 50 W or more and 600 W or less.
  • the pressure in the processing chamber 201 is, for example, in a range of 1 Pa or more and 500 Pa or less. The use of plasma makes it possible to activate the NH 3 gas even when the pressure in the processing chamber 201 is set at such a relatively low pressure range.
  • the time for supplying the active species obtained by exciting the NH 3 gas with plasma to the wafer 200 is, for example, 1 second or more and 180 seconds or less, preferably 1 second or more. The time is within a range of 60 seconds or less.
  • Other processing conditions are the same as those in S3 described above.
  • the Si-containing layer formed on the wafer 200 is plasma-nitrided.
  • the Si—Cl bond and the Si—H bond of the Si-containing layer are broken by the energy of the NH 3 gas excited by the plasma.
  • Cl and H that have been separated from the bond with Si are desorbed from the Si-containing layer.
  • the Si in the Si-containing layer which has dangling bonds due to the desorption of Cl and the like, bonds with N contained in the NH 3 gas to form a Si—N bond.
  • the Rukoto As the reaction proceeds, the Si-containing layer is changed (modified) into a layer containing Si and N, that is, a silicon nitride layer (SiN layer).
  • the valve 243b is closed and the supply of the NH 3 gas is stopped. Also, the supply of high-frequency power between the rod-shaped electrodes 269, 270, 271 is stopped. Then, NH 3 gas and reaction by-products remaining in the processing chamber 201 are excluded from the processing chamber 201 by the same processing procedure and processing conditions as those in step S4.
  • step S6 N 2 gas (inert gas) as a purge gas is supplied to the wafer 200 from the first ejection port 250a, and to the inner wall of the reaction tube 203. It is supplied from the second ejection port 250b.
  • This step is performed after the supply of the plasma-excited NH 3 gas as the reaction gas is stopped, that is, after the step of supplying the reaction gas.
  • the flow rate of the N 2 gas supplied from the first ejection port 250a is greater than the flow rate of the N 2 gas supplied from the second ejection port 250b, as described above.
  • nitriding agent that is, the NH 3 -containing gas to be plasma-excited
  • NH 3 gas, diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, or the like may be used.
  • the inert gas for example, various rare gases exemplified in Step S4 can be used in addition to the N 2 gas.
  • Predetermined number of times S7
  • the above-described steps S3, S4, S5, and S6 are performed non-simultaneously in this order, that is, without synchronization, as one cycle, and this cycle is performed a predetermined number of times (n times), that is, one or more times (S7).
  • n times a predetermined number of times
  • S7 a SiN film having a predetermined composition and a predetermined thickness
  • the above cycle is preferably repeated a plurality of times. That is, the thickness of the SiN layer formed per cycle is made smaller than the desired film thickness, and the above-described steps are performed until the thickness of the SiN film formed by stacking the SiN layers reaches the desired film thickness.
  • the cycle is repeated a plurality of times.
  • N 2 gas inert gas
  • the opening and closing control of the valve 243c is performed, and the first ejection port 250a and the second ejection port 250b of the nozzle 249a are thereafter performed.
  • N 2 gas inert gas
  • the opening and closing control of the valve 243c is performed, and the first ejection port 250a and the second ejection port 250b of the nozzle 249a are thereafter performed.
  • N 2 gas inert gas
  • the opening and closing control of the valve 243c is performed, and the first ejection port 250a and the second ejection port 250b of the nozzle 249a are thereafter performed.
  • N 2 gas inert gas
  • the nozzle 249a includes the first ejection port 250a and the second ejection port 250b, and the N 2 gas (inert gas) serving as a purge gas is supplied to the first ejection port 250a.
  • the wafer 250 is supplied to the wafer 200 from 250a, and is supplied (spouted) from the second ejection port 250b to the inner wall of the reaction tube 203. That is, the N 2 gas (inert gas) as a purge gas is supplied (spouted) not only to the wafer 200 but also to the inner wall of the reaction tube 203.
  • the purging is performed on the inner wall of the reaction tube 203 at the same time as the purging of the wafer 200, so that the adhesion of the reaction by-product to the inner wall of the reaction tube 203 can be effectively suppressed. If the generation of deposits on the inner wall of the reaction tube 203 can be suppressed, it is also possible to suppress the generation of foreign substances (particles) due to the deposits (reaction by-products and the like). Quality deterioration can be avoided beforehand.
  • the installation interval (second predetermined interval) of the second ejection port 250b is wider than the installation interval (first predetermined interval) of the first ejection port 250a.
  • the flow rate of N 2 gas (inert gas) as a purge gas supplied from the ejection port 250a is larger than the flow rate of N 2 gas (inert gas) as a purge gas supplied from the second ejection port 250b.
  • the attached matter on the inner wall of the reaction tube 203 can be efficiently removed with a flow rate smaller than the flow rate of the purge gas ejected toward the center of the wafer 200. Therefore, even when purging the wafer 200 and the inner wall of the reaction tube 203, each purging can be efficiently performed at an appropriate gas flow rate.
  • the first ejection port 250a and the second ejection port 250b are provided at positions facing each other. Therefore, the purging can be effectively performed also on the back side of the nozzle 249a when viewed from the wafer 200 side, that is, on the location where the gas accumulates between the nozzle 249a and the inner wall of the reaction tube 203. This is very useful in suppressing the generation of deposits on the inner wall of the tube 203.
  • the nozzle 249a having the configuration in which the second ejection port 250b is provided at a position facing the first ejection port 250a has been described in detail.
  • the ejection is performed as the second ejection port 250b.
  • a plurality of ejection ports having different directions are provided in the nozzle 249a. Therefore, the N 2 gas (inert gas) for the inner wall of the reaction tube 203 is supplied (spouted) from the plurality of second spouts 250 b having different spouting directions.
  • the second ejection ports 250b are provided at, for example, two locations.
  • the angle ⁇ between the ejection direction of each second ejection port 250b and the direction along the first ejection port 250a is in a range of 45 ° or more and 90 ° or less ( FIG. 8B). If the angle ⁇ is less than 45 °, the effect of the purge on the inner wall of the reaction tube 203 is substantially the same as when only one second jet port 250b is provided (that is, in the case of the above-described embodiment). . If the angle ⁇ exceeds 90 °, the efficiency of removing the deposits on the back side of the nozzle 249a may be reduced.
  • angle ⁇ is in the range of not less than 45 ° and not more than 90 °, it is possible to effectively purge the back side of the nozzle 249a and efficiently remove the deposits on the inner wall of the reaction tube 203 over a wide range. It is possible to do.
  • the N 2 gas (inert gas) as a purge gas is supplied (spouted) from the plurality of second spouts 250 b having different spouting directions to the inner wall of the reaction tube 203. I do. Therefore, the deposits on the inner wall of the reaction tube 203 can be efficiently removed over a wide range.
  • the purging can be effectively performed also on the back side of the nozzle 249a, that is, the location where the gas accumulates between the nozzle 249a and the inner wall of the reaction tube 203.
  • the first ejection port 250a and the second ejection port 250b are provided at different positions in the height direction of the nozzle 249a. That is, unlike the case of the above-described embodiment (see FIG. 3), there is no second outlet 250b provided at the same height position as the first outlet 250a.
  • the positions at which the first ejection ports 250a and the second ejection ports 250b are provided differ in the height direction of the nozzles 249a. Therefore, as compared with the case of the basic configuration in the above-described embodiment (see FIG. 3), it is easier to control the flow rate of the purge gas supplied (spouted) from the first ejection port 250a and the second ejection port 250b. There are benefits. In other words, it is very suitable for efficiently purging the wafer 200 and the inner wall of the reaction tube 203 at an appropriate gas flow rate.
  • the purge gas nozzle 249a-1 is provided with a first ejection port 250a and a second ejection port 250b.
  • the second ejection port 250b is arranged at a position facing the first ejection port 250a.
  • the second ejection ports 250b may be arranged at a plurality of locations having different ejection directions.
  • the first ejection port 250a and the second ejection port 250b may be arranged at different positions in the height direction of the nozzle 249a-1. .
  • the nozzle 249a-1 since the nozzle 249a-1 includes the first ejection port 250a and the second ejection port 250b, not only the wafer 200 but also the inner wall of the reaction tube 203 is provided. even against, the N 2 gas (inert gas) as the purge gas supplying (jetting). Therefore, the purging is performed on the inner wall of the reaction tube 203 at the same time as the purging of the wafer 200, so that the adhesion of the reaction by-product to the inner wall of the reaction tube 203 can be effectively suppressed.
  • the N 2 gas inert gas
  • the purge gas nozzle 249a-1 is provided separately from the processing gas nozzle 249a-2, and therefore, compared to the above-described embodiment (that is, the case where the nozzle is shared). This is very suitable for improving the versatility of the purge gas supply control and for optimizing the control contents.
  • the present invention is not limited to such an embodiment, and the supply order of the reactant gas and the reactant gas may be reversed. That is, the source gas may be supplied after the supply of the reaction gas. By changing the supply order, the film quality and composition ratio of the formed film can be changed.
  • the present invention is not limited to such an embodiment, and the plasma generation unit is not provided.
  • the present invention can be applied to a substrate processing apparatus. That is, the plasma generation unit (buffer chamber) is not an essential component, and the present invention is applied to a substrate processing apparatus without a plasma generation unit as long as the substrate processing apparatus has a dedicated nozzle for supplying a purge gas. It is possible.
  • the SiN film is formed on the wafer 200 has been described.
  • the present invention is not limited to such an embodiment, and a silicon oxide film (SiO film), a silicon oxycarbide film (SiOC film), a silicon oxycarbonitride film (SiOCN film), a silicon oxynitride film (SiON film) ), A silicon carbonitride film (SiCN film), a silicon boronitride film (SiBN film), a silicon borocarbonitride film (SiBCN film), a borocarbonitride film
  • the present invention is also suitably applicable to the case of forming a Si-based nitride film such as a (BCN film).
  • a C-containing gas such as C 3 H 6
  • an N-containing gas such as NH 3
  • a B-containing gas such as BCl 3
  • the present invention provides a method in which titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), and tungsten (W) are formed on the wafer 200.
  • the present invention can be suitably applied to the case of forming an oxide film or a nitride film containing a metal element such as, for example, a metal oxide film or a metal nitride film.
  • tetrakis (dimethylamino) titanium (Ti [N (CH 3 ) 2 ] 4 abbreviated to TDMAT) gas and tetrakis (ethylmethylamino) hafnium (Hf [N (C 2 H 5) ) (CH 3 )] 4
  • abbreviation: TEMAH tetrakis (ethylmethylamino) zirconium (Zr [N (C 2 H 5 ) (CH 3 )] 4
  • TEMAZ trimethylaluminum
  • Al (CH) 3 ) 3 (abbreviation: TMA) gas titanium tetrachloride (TiCl 4 ) gas, hafnium tetrachloride (HfCl 4 ) gas, or the like
  • TMA trimethylaluminum
  • TiCl 4 titanium tetrachloride
  • HfCl 4 hafnium tetrachloride
  • the reaction gas the above-described
  • the present invention can be suitably applied to the case of forming a metalloid film containing a metalloid element or a metal film containing a metal element.
  • the processing procedure and processing conditions of these film forming processes can be the same processing procedures and processing conditions as those of the film forming processes described in the above-described embodiments and the modifications. Also in these cases, the same effects as those of the above-described embodiment and modified examples can be obtained.
  • recipes used for the film forming process are individually prepared according to the processing contents, and stored in the storage device 121c via the electric communication line or the external storage device 123. Then, when starting various processes, it is preferable that the CPU 121a appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the content of the process.
  • a single substrate processing apparatus can form thin films of various film types, composition ratios, film qualities, and film thicknesses in a general-purpose manner and with good reproducibility. Further, the burden on the operator can be reduced, and various processes can be started quickly while avoiding operation errors.
  • the above-described recipe is not limited to the case where the recipe is newly created, and may be prepared by, for example, changing an existing recipe already installed in the substrate processing apparatus.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded.
  • the input / output device 122 provided in the existing substrate processing apparatus may be operated to directly change the existing recipe already installed in the substrate processing apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

基板を支持する基板支持部と、基板支持部を収容し基板を処理する反応管と、反応管内に処理ガスを供給する処理ガス供給系と、反応管内に不活性ガスを供給する不活性ガス供給系と、反応管内の雰囲気を排気する排気系と、を有し、不活性ガス供給系は、基板の中央に向けて不活性ガスを噴出する第1の噴出口と、反応管の内壁に向けて不活性ガスを噴出する第2の噴出口とを備えるノズルを有する技術が提供される。

Description

基板処理装置、半導体装置の製造方法およびプログラム
 本発明は、基板処理装置、半導体装置の製造方法およびプログラムに関する。
 半導体装置(デバイス)の製造工程の一工程として、反応管内に収容された基板に処理ガスを供給して、その基板に対する処理(例えば、成膜処理)を行うことがある。このとき、反応管の内壁に反応副生成物が付着すると、その反応副生成物に起因して異物(パーティクル)が発生し、基板に対する処理の品質が低下してしまう(例えば、特許文献1参照)。
特開2016-184685号公報
 本発明は、反応管の内壁への付着物の発生を抑制することが可能な技術を提供することを目的とする。
 本発明の一態様によれば、
 基板を支持する基板支持部と、
 前記基板支持部を収容し、前記基板を処理する反応管と、
 前記反応管内に処理ガスを供給する処理ガス供給系と、
 前記反応管内に不活性ガスを供給する不活性ガス供給系と、
 前記反応管内の雰囲気を排気する排気系と、を有し、
 前記不活性ガス供給系は、前記基板の中央に向けて前記不活性ガスを噴出する第1の噴出口と、前記反応管の内壁に向けて前記不活性ガスを噴出する第2の噴出口とを備えるノズルを有する技術が提供される。
 本発明によれば、反応管の内壁への付着物の発生を抑制可能な技術を提供することができる。
本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA-A線断面図で示す図である。 本発明の実施形態で好適に用いられる基板処理装置のノズル構造の概略構成図であり、ノズル構造部分を縦断面で示す図である。 本発明の実施形態で好適に用いられる基板処理装置のバッファ構造の概略構成図であり、(a)はバッファ構造を説明するための横断面拡大図、(b)はバッファ構造を説明するための模式図である。 本発明の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本発明の実施形態に係る基板処理工程のフローチャートである。 本発明の実施形態に係る基板処理工程におけるガス供給のタイミングを示す図である。 本発明の実施形態で好適に用いられる基板処理装置のノズル構造の変形例1を説明するための概略構成図であり、(a)はノズル構造部分の横断面拡大図、(b)はノズルにおけるガス供給孔部分の横断面拡大図である。 本発明の実施形態で好適に用いられる基板処理装置のノズル構造の変形例2を説明するための概略構成図であり、ノズル構造部分を縦断面で示す図である。 本発明の実施形態で好適に用いられる基板処理装置のノズル構造の変形例3を説明するための概略構成図であり、ノズル構造部分を横断面で示す図である。
<本発明の実施形態>
 以下、本発明の一実施形態について図1から図7を参照しながら説明する。
(1)基板処理装置の構成(加熱装置)
 図1に示すように、処理炉202は基板を垂直方向多段に収容することが可能な、いわゆる縦型炉であり、加熱装置(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、後述するようにガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
(処理室)
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)や窒化シリコン(SiN)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、反応管203は垂直に据え付けられた状態となる。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成されている。処理容器の内側である筒中空部には処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を収容可能に構成されている。なお、処理容器は上記の構成に限らず、反応管203のみを処理容器と称する場合もある。
 処理室201内には、ノズル249a,249bが、マニホールド209の側壁を貫通するように設けられている。ノズル249a,249bには、ガス供給管232a,232bが、それぞれ接続されている。このように、反応管203には2本のノズル249a,249bと、2本のガス供給管232a,232bとが設けられており、処理室201内へ複数種類のガスを供給することが可能となっている。
 ガス供給管232a,232bには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、不活性ガスを供給するガス供給管232c,232dがそれぞれ接続されている。ガス供給管232c,232dには、ガス流の上流側から順に、MFC241c,241dおよびバルブ243c,243dがそれぞれ設けられている。
 ノズル249aは、図2に示すように、反応管203の内壁とウエハ200との間における空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、ノズル249aは、ウエハ200が配列(載置)されるウエハ配列領域(載置領域)の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。すなわち、ノズル249aは、処理室201内へ搬入された各ウエハ200の端部(周縁部)の側方にウエハ200の表面(平坦面)と垂直となる方向に設けられている。
 ノズル249aの側面には、図2および図3に示すように、ガスを供給するガス供給孔として、第1の噴出口250aと第2の噴出口250bとが設けられている。
 第1の噴出口250aは、反応管203(ウエハ200)の中心を向くように開口しており、ウエハ200に対してガス(特に不活性ガス)を供給(噴出)することが可能となっている。すなわち、第1の噴出口250aは、ウエハ200の中央に向けて不活性ガス等を噴出するように、ノズル249aの一側面に設けられている。
 第2の噴出口250bは、反応管203の内壁に向くように開口しており、反応管内壁に対してガス(特に不活性ガス)を供給(噴出)することが可能となっている。すなわち、第2の噴出口250bは、反応管203の内壁に対して不活性ガス等を噴出するように、ノズル249aの他の一側面(第1の噴出口250aと対向する側の面)に設けられている。
 このように、ノズル249aには、ウエハ200の中央に向けて不活性ガス等を噴出する第1の噴出口250aと、反応管203の内壁に向けて不活性ガス等を噴出する第2の噴出口250bとが、互いに対向する位置に設けられている。
 第1の噴出口250aおよび第2の噴出口250bは、いずれも、反応管203の下部から上部にわたって複数設けられている。詳しくは、第1の噴出口250aは、ノズル249aの高さ方向に沿って反応管203の下部から上部にわたって複数設けられ、同一の開口面積を有し、更に第1の所定間隔で設けられている。また、第2の噴出口250bは、ノズル249aの高さ方向に沿って反応管203の下部から上部にわたって複数設けられ、同一の開口面積を有し、更に第1の所定間隔より広い第2の所定間隔で設けられている。すなわち、第1の噴出口250aはノズル249aの高さ方向に対して第1の所定間隔で複数設けられ、第2の噴出口250bはノズル249aの高さ方向に対して第1の所定間隔より広い第2の所定間隔で複数設けられている。
 第1の所定間隔よりも第2の所定間隔のほうが広いことから、第1の噴出口250aと第2の噴出口250bの設置数は、第1の噴出口250aの個数>第2の噴出口250bの個数となる。具体的には、第1の噴出口250aと第2の噴出口250bとは、例えば、2.5個:1個の割合で設けられている。また、第1の噴出口250aと第2の噴出口250bの開口径は、第1の噴出口250aの開口径>第2の噴出口250bの開口径であるものとする。具体的には、第1の噴出口250aの開口径と第2の噴出口250bの開口径は、例えば、2:1の割合で設けられている。なお、ここで挙げたそれぞれの割合は、単なる一具体例に過ぎず、必ずしもこれに限定されるものではない。また、第1の噴出口250aと第2の噴出口250bの開口形状は、円形状とすることが好ましいが、必ずしもこれに限定されるものではなく、例えば楕円形状のような他の形状であっても構わない。
 また、図1および図2に示すように、ガス供給管232bの先端部には、ノズル249bが接続されている。ノズル249bは、ガス分散空間であるバッファ室237内に設けられている。バッファ室237は、図2に示すように、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、また、反応管203の内壁の下部より上部にわたる部分に、ウエハ200の積載方向に沿って設けられている。すなわち、バッファ室237は、ウエハ配列領域の側方のウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにバッファ構造300によって形成されている。バッファ構造300は、石英などの絶縁物によって構成されており、バッファ構造300の円弧状に形成された壁面には、ガスを供給するガス供給口302,304が形成されている。ガス供給口302,304は、図2および図4に示すように、後述する棒状電極269,270間、棒状電極270,271間のプラズマ生成領域224a,224bに対向する位置にそれぞれ反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給口302,304は、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。
 ノズル249bは、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、ノズル249bは、バッファ構造300の内側であって、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。すなわち、ノズル249bは、処理室201内へ搬入されたウエハ200の端部の側方にウエハ200の表面と垂直となる方向に設けられている。ノズル249bの側面には、ガスを供給するガス供給孔250cが設けられている。ガス供給孔250cは、バッファ構造300の円弧状に形成された壁面に対して径方向に形成された壁面に向くように開口しており、壁面に向けてガスを供給することが可能となっている。これにより、反応ガスがバッファ室237内で分散され、棒状電極269~271に直接吹き付けることがなくなり、パーティクルの発生が抑制される。ガス供給孔250cは、ガス供給孔250aと同様に、反応管203の下部から上部にわたって複数設けられている。
 このように、本実施形態では、反応管203の側壁の内壁と、反応管203内に配列された複数枚のウエハ200の端部で定義される平面視において円環状の縦長の空間内、すなわち、円筒状の空間内に配置したノズル249a,249bおよびバッファ室237を経由してガスを搬送している。そして、ノズル249a,249bおよびバッファ室237にそれぞれ開口されたガス供給孔250a,250b,250c,ガス供給口302,304から、ウエハ200の近傍で初めて反応管203内にガスを噴出させている。そして、反応管203内におけるガスの主たる流れを、ウエハ200の表面と平行な方向、すなわち、水平方向としている。このような構成とすることで、各ウエハ200に均一にガスを供給でき、各ウエハ200に形成される膜の膜厚の均一性を向上させることが可能となる。ウエハ200の表面上を流れたガス、すなわち、反応後の残ガスは、排気口、すなわち、後述する排気管231の方向に向かって流れる。但し、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。
 ガス供給管232aからは、所定元素を含む原料として、例えば、所定元素としてのシリコン(Si)を含むシラン原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。
 原料ガスとは、気体状態の原料、例えば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。本明細書において「原料」という言葉を用いた場合は、「液体状態である液体原料」を意味する場合、「気体状態である原料ガス」を意味する場合、または、それらの両方を意味する場合がある。
 シラン原料ガスとしては、例えば、Siおよびハロゲン元素を含む原料ガス、すなわち、ハロシラン原料ガスを用いることができる。ハロシラン原料とは、ハロゲン基を有するシラン原料のことである。ハロゲン元素は、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)からなる群より選択される少なくとも1つを含む。すなわち、ハロシラン原料は、クロロ基、フルオロ基、ブロモ基、ヨード基からなる群より選択される少なくとも1つのハロゲン基を含む。ハロシラン原料は、ハロゲン化物の一種ともいえる。
 ハロシラン原料ガスとしては、例えば、SiおよびClを含む原料ガス、すなわち、クロロシラン原料ガスを用いることができる。クロロシラン原料ガスとしては、例えば、ジクロロシラン(SiHCl、略称:DCS)ガスを用いることができる。
 ガス供給管232bからは、上述の所定元素とは異なる元素を含むリアクタント(反応体)として、例えば、反応ガスとしての窒素(N)含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給されるように構成されている。N含有ガスとしては、例えば、窒化水素系ガスを用いることができる。窒化水素系ガスは、NおよびHの2元素のみで構成される物質ともいえ、窒化ガス、すなわち、Nソースとして作用する。窒化水素系ガスとしては、例えば、アンモニア(NH)ガスを用いることができる。
 ガス供給管232c,232dからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれMFC241c,241d、バルブ243c,243d、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給される。
 主に、ガス供給管232a、MFC241a、バルブ243aにより、第1のガス供給系としての原料供給系が構成される。また、主に、ガス供給管232b、MFC241b、バルブ243bにより、第2のガス供給系としての反応体供給系(リアクタント供給系)が構成される。これら原料供給系および反応体供給系を総称して処理ガス供給系(処理ガス供給部)とも称する。また、原料ガスと反応ガスを総称して処理ガスとも称する。
 主に、ガス供給管232c,232d、MFC241c,241d、バルブ243c,243dにより、不活性ガス供給系が構成される。不活性ガス供給系には、ガス供給管232aを介してガス供給管232cと接続するノズル249aを含めてもよい。その場合、不活性ガス供給系は、第1の噴出口250aと第2の噴出口250bとを備えるノズル249aを有することになる。
 以上の説明した原料供給系、反応体供給系および不活性ガス供給系を総称して単にガス供給系(ガス供給部)とも称する。
(プラズマ生成部)
 バッファ室237内には、図2および図4に示すように、導電体であって、細長い構造を有する3本の棒状電極269,270,271が、反応管203の下部より上部にわたりウエハ200の積層方向に沿って配設されている。棒状電極269,270,271のそれぞれは、ノズル249bと平行に設けられている。棒状電極269,270,271のそれぞれは、上部より下部にわたって電極保護管275により覆われることで保護されている。棒状電極269,270,271のうち両端に配置される棒状電極269,271は、整合器272を介して高周波電源273に接続され、棒状電極270は、基準電位であるアースに接続され、接地されている。すなわち、高周波電源273に接続される棒状電極と、接地される棒状電極と、が交互に配置され、高周波電源273に接続された棒状電極269,271の間に配置された棒状電極270は、接地された棒状電極として、棒状電極269,271に対して共通して用いられている。換言すると、接地された棒状電極270は、隣り合う高周波電源273に接続された棒状電極269,271に挟まれるように配置され、棒状電極269と棒状電極270、同じく、棒状電極271と棒状電極270がそれぞれ対となるように構成されてプラズマを生成する。つまり、接地された棒状電極270は、棒状電極270に隣り合う2本の高周波電源273に接続された棒状電極269,271に対して共通して用いられている。そして、高周波電源273から棒状電極269,271に高周波(RF)電力を印加することで、棒状電極269,270間のプラズマ生成領域224a、棒状電極270,271間のプラズマ生成領域224bにプラズマが生成される。主に、棒状電極269,270,271、電極保護管275によりプラズマ源としてのプラズマ生成部(プラズマ生成装置)が構成される。整合器272、高周波電源273をプラズマ源に含めて考えてもよい。プラズマ源は、後述するように、ガスをプラズマ励起、すなわち、プラズマ状態に励起(活性化)させるプラズマ励起部(活性化機構)として機能する。
 電極保護管275は、棒状電極269,270,271のそれぞれをバッファ室237内の雰囲気と隔離した状態でバッファ室237内へ挿入できる構造となっている。電極保護管275の内部のO濃度が外気(大気)のO濃度と同程度であると、電極保護管275内へそれぞれ挿入された棒状電極269,270,271は、ヒータ207による熱で酸化されてしまう。このため、電極保護管275の内部にNガス等の不活性ガスを充填しておくか、不活性ガスパージ機構を用いて電極保護管275の内部をNガス等の不活性ガスでパージすることで、電極保護管275の内部のO濃度を低減させ、棒状電極269,270,271の酸化を防止することができる。
(排気部)
 図1および図2に示すように、反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および排気バルブ(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。排気管231は、反応管203に設ける場合に限らず、ノズル249a,249bと同様にマニホールド209に設けてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の処理室201と反対側には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、ボートエレベータ115によりシールキャップ219を降下させている間、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
(基板支持具)
 図1に示すように、基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、所定の間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。
 図2に示すように、反応管203の内部には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度を所望の温度分布とする。温度センサ263は、ノズル249a,249bと同様に反応管203の内壁に沿って設けられている。
(制御装置)
 次に制御装置について図5を用いて説明する。図5に示すように、制御部(制御装置)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する成膜処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する各種処理(成膜処理)における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241a~241d、バルブ243a~243d、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、整合器272、高周波電源273、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、回転機構267の制御、MFC241a~241dによる各種ガスの流量調整動作、バルブ243a~243dの開閉動作、インピーダンス監視に基づく高周波電源273の調整動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の正逆回転、回転角度および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 次に、基板処理装置を使用して、半導体装置の製造工程の一工程として、ウエハ200上に薄膜を形成する工程について、図6および図7を参照しながら説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
 ここでは、原料ガスとしてDCSガスを供給するステップと、反応ガスとしてプラズマ励起させたNHガスを供給するステップとを非同時に、すなわち同期させることなく所定回数(1回以上)行うことで、ウエハ200上に、SiおよびNを含む膜として、シリコン窒化膜(SiN膜)を形成する例について説明する。また、例えば、ウエハ200上には、予め所定の膜が形成されていてもよい。また、ウエハ200または所定の膜には予め所定のパターンが形成されていてもよい。
 本明細書では、図7に示す成膜処理のプロセスフローを、便宜上、以下のように示すこともある。以下の変形例や他の実施形態の説明においても、同様の表記を用いることとする。
 (DCS→NH )×n ⇒ SiN
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(搬入ステップ:S1)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(圧力・温度調整ステップ:S2)
 処理室201の内部、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。真空ポンプ246は、少なくとも後述する成膜ステップが終了するまでの間は常時作動させた状態を維持する。
 また、処理室201内のウエハ200が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。ヒータ207による処理室201内の加熱は、少なくとも後述する成膜ステップが終了するまでの間は継続して行われる。ただし、成膜ステップを室温以下の温度条件下で行う場合は、ヒータ207による処理室201内の加熱は行わなくてもよい。なお、このような温度下での処理だけを行う場合には、ヒータ207は不要となり、ヒータ207を基板処理装置に設置しなくてもよい。この場合、基板処理装置の構成を簡素化することができる。
 続いて、回転機構267によるボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくとも成膜ステップが終了するまでの間は継続して行われる。
(成膜ステップ:S3,S4,S5,S6)
 その後、ステップS3,S4,S5,S6を順次実行することで成膜ステップを行う。
(原料ガス供給ステップ:S3)
 ステップS3では、処理室201内のウエハ200に対してDCSガスを供給する。
 バルブ243aを開き、ガス供給管232a内へDCSガスを流す。DCSガスは、MFC241aにより流量調整され、ノズル249aを介して第1の噴出口250aおよび第2の噴出口250bから処理室201内へ供給され、排気管231から排気される。このとき同時にバルブ243cを開き、ガス供給管232c内へNガスを流す。Nガスは、MFC241cにより流量調整され、DCSガスと一緒に処理室201内へ供給され、排気管231から排気される。
 また、ノズル249b内へのDCSガスの侵入を抑制するため、バルブ243dを開き、ガス供給管232d内へNガスを流す。Nガスは、ガス供給管232b、ノズル249bを介して処理室201内へ供給され、排気管231から排気される。
 MFC241aで制御するDCSガスの供給流量は、例えば1sccm以上、6000sccm以下、好ましくは2000sccm以上、3000sccm以下の範囲内の流量とする。MFC241c、241dで制御するNガスの供給流量は、それぞれ例えば100sccm以上、10000sccm以下の範囲内の流量とする。処理室201内の圧力は、例えば1Pa以上、2666Pa以下、好ましくは665Pa以上、1333Pa以下の範囲内の圧力とする。DCSガスの供給時間は、例えば1秒以上、10秒以下、好ましくは1秒以上、3秒以下の範囲内の時間とする。また、Nガスの供給時間は、例えば1秒以上、10秒以下、好ましくは1秒以上、3秒以下の範囲内の時間とする。
 ヒータ207の温度は、ウエハ200の温度が、例えば0℃以上700℃以下、好ましくは室温(25℃)以上550℃以下、より好ましくは40℃以上500℃以下の範囲内の温度となるような温度に設定する。本実施形態のように、ウエハ200の温度を700℃以下、さらには550℃以下、さらには500℃以下とすることで、ウエハ200に加わる熱量を低減させることができ、ウエハ200が受ける熱履歴の制御を良好に行うことができる。
 上述の条件下でウエハ200に対してDCSガスを供給することにより、ウエハ200(表面の下地膜)上に、Si含有層が形成される。Si含有層はSi層の他、ClやHを含み得る。Si含有層は、ウエハ200の最表面に、DCSが物理吸着したり、DCSの一部が分解した物質が化学吸着したり、DCSが熱分解することでSiが堆積したりすること等により形成される。すなわち、Si含有層は、DCSやDCSの一部が分解した物質の吸着層(物理吸着層や化学吸着層)であってもよく、Siの堆積層(Si層)であってもよい。
 Si含有層が形成された後、バルブ243aを閉じ、処理室201内へのDCSガスの供給を停止する。このとき、APCバルブ244を開いたままとし、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはSi含有層の形成に寄与した後のDCSガスや反応副生成物等を処理室201内から排除する。
(パージガス供給ステップ:S4)
 また、このとき、バルブ243c,243dは開いたままとして、処理室201内へのNガスの供給を維持する。Nガスはパージガスとして作用する。パージガスは、バルブ243cに繋がるノズル249aが第1の噴出口250aと第2の噴出口250bとを備えることから、ボート217に支持されたウエハ200のみならず、反応管203の内壁に対しても供給(噴出)されることになる(S4)。このときのMFC241cで制御するNガスの供給流量は、例えば1000sccm以上、5000sccm以下の範囲内の流量とする。このとき、ノズル249aの第1の噴出口250aが供給するNガスの供給流量は、例えば900sccm以上、4500sccm以下の範囲とする。また、ノズル249aの第2の噴出口250bが供給するNガスの供給流量は、例えば100sccm以上、500sccm以下の範囲とする。第1の噴出口250aおよび第2の噴出口250bからのNガスの供給流量の関係は、それぞれの設置数と開口径で調整すればよい。例えば、第1の噴出口250aと第2の噴出口250bの設置数が2.5個:1個の割合であり、それぞれの開口径が2:1の割合であれば、上述した関係のNガスの供給流量とすることができる。
 つまり、ここでは、パージガスとしてのNガス(不活性ガス)を、ウエハ200に対して第1の噴出口250aから供給し、反応管203の内壁に対して第2の噴出口250bから供給する。この工程は、原料ガスとしてのDCSガスの供給停止後、後述する反応ガスの供給開始前、すなわち原料ガスの供給工程と反応ガスの供給工程との間に行う。なお、このときに第1の噴出口250aから供給されるNガスの流量は、上述したように、第2の噴出口250bから供給されるNガスの流量よりも多い。
 原料ガスとしては、DCSガスのほか、テトラキスジメチルアミノシラン(Si[N(CH、略称:4DMAS)ガス、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガス、ビスジメチルアミノシラン(Si[N(CH、略称:BDMAS)ガス、ビスジエチルアミノシラン(Si[N(C、略称:BDEAS)、ビスターシャリーブチルアミノシラン(SiH[NH(C)] 、略称:BTBAS)ガス、ジメチルアミノシラン(DMAS)ガス、ジエチルアミノシラン(DEAS)ガス、ジプロピルアミノシラン(DPAS)ガス、ジイソプロピルアミノシラン(DIPAS)ガス、ブチルアミノシラン(BAS)ガス、ヘキサメチルジシラザン(HMDS)ガス等の各種アミノシラン原料ガスや、モノクロロシラン(SiHCl、略称:MCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、ヘキサクロロジシラン(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等の無機系ハロシラン原料ガスや、モノシラン(SiH、略称:MS)ガス、ジシラン(Si、略称:DS)ガス、トリシラン(Si、略称:TS)ガス等のハロゲン基非含有の無機系シラン原料ガスを好適に用いることができる。
 不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。
(反応ガス供給ステップ:S5)
 原料ガス供給ステップが終了した後、処理室201内のウエハ200に対して反応ガスとしてのプラズマ励起させたNHガスを供給する(S5)。
 このステップでは、バルブ243b~243dの開閉制御を、ステップS3におけるバルブ243a,243c,243dの開閉制御と同様の手順で行う。NHガスは、MFC241bにより流量調整され、ノズル249bを介してバッファ室237内へ供給される。このとき、棒状電極269,270,271間に高周波電力を供給する。バッファ室237内へ供給されたNHガスはプラズマ状態に励起され(プラズマ化して活性化され)、活性種(NH )として処理室201内へ供給され、排気管231から排気される。
 MFC241bで制御するNHガスの供給流量は、例えば100sccm以上、10000sccm以下、好ましくは1000sccm以上、2000sccm以下の範囲内の流量とする。棒状電極269,270,271に印加する高周波電力は、例えば50W以上、600W以下の範囲内の電力とする。処理室201内の圧力は、例えば1Pa以上、500Pa以下の範囲内の圧力とする。プラズマを用いることで、処理室201内の圧力をこのような比較的低い圧力帯としても、NHガスを活性化させることが可能となる。NHガスをプラズマ励起することにより得られた活性種をウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1秒以上、180秒以下、好ましくは1秒以上、60秒以下の範囲内の時間とする。その他の処理条件は、上述のS3と同様な処理条件とする。
 上述の条件下でウエハ200に対してNHガスを供給することにより、ウエハ200上に形成されたSi含有層がプラズマ窒化される。この際、プラズマ励起されたNHガスのエネルギーにより、Si含有層が有するSi-Cl結合、Si-H結合が切断される。Siとの結合を切り離されたCl、Hは、Si含有層から脱離することとなる。そして、Cl等が脱離することで未結合手(ダングリングボンド)を有することとなったSi含有層中のSiが、NHガスに含まれるNと結合し、Si-N結合が形成されることとなる。この反応が進行することにより、Si含有層は、SiおよびNを含む層、すなわち、シリコン窒化層(SiN層)へと変化させられる(改質される)。
 なお、Si含有層をSiN層へと改質させるには、NHガスをプラズマ励起させて供給する必要がある。NHガスをノンプラズマの雰囲気下で供給しても、上述の温度帯では、Si含有層を窒化させるのに必要なエネルギーが不足しており、Si含有層からClやHを充分に脱離させたり、Si含有層を充分に窒化させてSi-N結合を増加させたりすることは、困難なためである。
 Si含有層をSiN層へ変化させた後、バルブ243bを閉じ、NHガスの供給を停止する。また、棒状電極269,270,271間への高周波電力の供給を停止する。そして、ステップS4と同様の処理手順、処理条件により、処理室201内に残留するNHガスや反応副生成物を処理室201内から排除する。
(パージガス供給ステップ:S6)
 そして、このときも、ステップS4の場合と同様に、パージガスとしてのNガス(不活性ガス)を、ウエハ200に対して第1の噴出口250aから供給し、反応管203の内壁に対して第2の噴出口250bから供給する。この工程は、反応ガスとしてのプラズマ励起させたNHガスの供給停止後、すなわち反応ガスを供給する工程の後に行う。なお、このときに第1の噴出口250aから供給されるNガスの流量は、上述したように、第2の噴出口250bから供給されるNガスの流量よりも多い。
 窒化剤、すなわち、プラズマ励起させるNH含有ガスとしては、NHガスの他、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等を用いてもよい。
 不活性ガスとしては、Nガスの他、例えば、ステップS4で例示した各種希ガスを用いることができる。
(所定回数実施:S7)
 上述したS3,S4,S5,S6をこの順番に沿って非同時に、すなわち、同期させることなく行うことを1サイクルとし、このサイクルを所定回数(n回)、すなわち、1回以上行う(S7)ことにより、ウエハ200上に、所定組成および所定膜厚のSiN膜を形成することができる。上述のサイクルは、複数回繰り返すことが好ましい。すなわち、1サイクルあたりに形成されるSiN層の厚さを所望の膜厚よりも小さくし、SiN層を積層することで形成されるSiN膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すことが好ましい。
 所定回数(n回)のサイクル(図7における「nthcycle」参照)が終了したら、その後、バルブ243cの開閉制御を行って、ノズル249aにおける第1の噴出口250aと第2の噴出口250bとのそれぞれから、パージガスとしてのNガス(不活性ガス)を所定時間噴出するようにしてもよい。その場合には、上述したステップS4においてNガスを供給する時間、または、上述したステップS6においてNガスを供給する時間の少なくとも一方を、サイクル終了後の不活性ガス供給がない場合に比べて短縮することが可能となる。
(大気圧復帰ステップ:S8)
 上述の成膜処理が完了したら、ガス供給管232c,232dのそれぞれから不活性ガスとしてのNガスを処理室201内へ供給し、排気管231から排気する。これにより、処理室201内が不活性ガスでパージされ、処理室201内に残留するガス等が処理室201内から除去される(不活性ガスパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(S8)。
(搬出ステップ:S9)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される(S9)。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出されることとなる(ウエハディスチャージ)。なお、ウエハディスチャージの後は、処理室201内へ空のボート217を搬入するようにしてもよい。
(3)本実施形態による効果
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(a)本実施形態によれば、ノズル249aが第1の噴出口250aと第2の噴出口250bとを備えており、パージガスとしてのNガス(不活性ガス)を、第1の噴出口250aからウエハ200に対して供給し、第2の噴出口250bから反応管203の内壁に対して供給(噴出)する。つまり、ウエハ200のみならず、反応管203の内壁に対しても、パージガスとしてのNガス(不活性ガス)を供給(噴出)する。したがって、ウエハ200に対するパージと同時に反応管203の内壁に対してもパージを行うことになり、反応管203の内壁への反応副生成物の付着を有効に抑制することができる。反応管203の内壁への付着物発生が抑制可能であれば、その付着物(反応副生成物等)に起因する異物(パーティクル)の発生についても抑制することが可能となり、ウエハ200に対する処理の品質低下を未然に回避することができる。
(b)本実施形態によれば、第1の噴出口250aの設置間隔(第1の所定間隔)より第2の噴出口250bの設置間隔(第2の所定間隔)のほうが広く、第1の噴出口250aから供給されるパージガスとしてのNガス(不活性ガス)の流量が第2の噴出口250bから供給されるパージガスとしてのNガス(不活性ガス)の流量よりも多い。換言すると、ウエハ200の中央に向けて噴出するパージガスの流量よりも少ない流量で、反応管203の内壁の付着物を効率よく除去することができる。したがって、ウエハ200と反応管203の内壁とにパージを行う場合であっても、それぞれのパージを適切なガス流量で効率的に行うことができる。
(c)本実施形態によれば、第1の噴出口250aと第2の噴出口250bとが互いに対向する位置に設けられている。したがって、ウエハ200の側からみた場合のノズル249aの裏側、すなわちノズル249aと反応管203の内壁との間のガスの溜まり場となる箇所に対しても、有効にパージを行うことが可能となり、反応管203の内壁への付着物発生を抑制する上で非常に有用なものとなる。
(変形例1)
 次に、本実施形態の変形例1を図8に基づいて説明する。本変形例1において、上述した実施形態と異なる部分のみ以下に説明し、同じ部分は説明を省略する。
 上述した実施形態では、第1の噴出口250aと対向する位置に第2の噴出口250bを設けた構成のノズル249aについて詳述したが、本変形例1では、第2の噴出口250bとして噴出方向が異なる複数の噴出口がノズル249aに設けられている。したがって、反応管203の内壁に対するNガス(不活性ガス)は、噴出向きが異なる複数の第2の噴出口250bから供給(噴出)されることになる。
 本変形例1において、第2の噴出口250bは、例えば2箇所に設けられている。その場合に、それぞれの第2の噴出口250bの噴出向きと、第1の噴出口250aに沿った方向とのなす角度θは、45°以上、90°以下の範囲内にあるものとする(図8(b)参照)。角度θが45°未満であると、反応管203の内壁に対するパージの効果が、第2の噴出口250bを1つだけ設けた場合(すなわち、上述した実施形態の場合)と実質的に変わらない。また、角度θが90°を超えてしまうと、ノズル249aの裏側における付着物を除去する効率が低下してしまうおそれがある。角度θが45°以上、90°以下の範囲内にあれば、ノズル249aの裏側に対しても有効なパージを施すことを可能にしつつ、反応管203の内壁の付着物を広範囲にわたって効率よく除去することが可能となる。
 以上のように、本変形例1によれば、噴出向きが異なる複数の第2の噴出口250bから反応管203の内壁に対してパージガスとしてのNガス(不活性ガス)を供給(噴出)する。したがって、反応管203の内壁の付着物を広範囲にわたって効率よく除去することができる。しかも、ノズル249aの裏側、すなわちノズル249aと反応管203の内壁との間のガスの溜まり場となる箇所に対しても、有効にパージを行うことが可能となる。
(変形例2)
 次に、本実施形態の変形例2を図9に基づいて説明する。本変形例2においても、上述した実施形態と異なる部分のみ以下に説明し、同じ部分は説明を省略する。
 本変形例2において、第1の噴出口250aと第2の噴出口250bとは、ノズル249aの高さ方向に対して、高さが異なる位置に設けられている。すなわち、上述した実施形態の場合(図3参照)とは異なり、第2の噴出口250bは、第1の噴出口250aと同じ高さ位置に設けられたものがない。
 このように、本変形例2によれば、第1の噴出口250aと第2の噴出口250bとが、ノズル249aの高さ方向に対して、設けられる位置が異なっている。したがって、上述した実施形態における基本構成の場合に比べて(図3参照)、第1の噴出口250aと第2の噴出口250bとから供給(噴出)されるパージガスの流量を制御し易くなるというメリットがある。つまり、ウエハ200と反応管203の内壁とのそれぞれのパージを適切なガス流量で効率的に行う上で非常に好適である。
(変形例3)
 次に、本実施形態の変形例3を図10に基づいて説明する。本変形例3においても、上述した実施形態と異なる部分のみ以下に説明し、同じ部分は説明を省略する。
 本変形例3では、パージガスとしてのNガス(不活性ガス)を供給するノズル249a-1と、処理ガスとしてのDCSガス(原料ガス)を供給するノズル249a-2とが、それぞれ別体で反応管203内に配置されている。すなわち、処理ガスとパージガスでノズル249aを共用する上述した実施形態の場合(図1、2参照)とは異なり、処理ガス用(ただし、キャリアガスとしての不活性ガスを合わせて供給するものであってもよい。)のノズル249a-2とは別に、パージガス用のノズル249a-1が反応管203内に設けられている。
 パージガス用のノズル249a-1には、第1の噴出口250aと第2の噴出口250bとが設けられている。第2の噴出口250bは、第1の噴出口250aと対向する位置に配置されている。ただし、上述した変形例1のように、噴出方向が異なる複数箇所に第2の噴出口250bが配置されていてもよい。また、上述した変形例2のように、第1の噴出口250aと第2の噴出口250bとは、ノズル249a―1の高さ方向に対して、高さが異なる位置に配置されてもよい。
 このような構成の本変形例3によれば、ノズル249a-1が第1の噴出口250aと第2の噴出口250bとを備えているので、ウエハ200のみならず、反応管203の内壁に対しても、パージガスとしてのNガス(不活性ガス)を供給(噴出)する。したがって、ウエハ200に対するパージと同時に反応管203の内壁に対してもパージを行うことになり、反応管203の内壁への反応副生成物の付着を有効に抑制することができる。
 しかも、本変形例3によれば、処理ガス用のノズル249a-2とは別にパージガス用のノズル249a-1を備えているので、上述した実施形態の場合(すなわち、ノズル共用の場合)に比べて、パージガス供給の制御の汎用性を向上させたり制御内容の適切化を図ったりする上で非常に好適である。
<本発明の他の実施形態>
 以上、本発明の実施形態について具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、上述の実施形態では、原料ガスを供給した後に反応ガスを供給する例について説明したが、本発明はこのような態様に限定されず、原料ガス、反応ガスの供給順序は逆でもよい。すなわち、反応ガスを供給した後に原料ガスを供給するようにしてもよい。供給順序を変えることにより、形成される膜の膜質や組成比を変化させることが可能となる。
 また、上述の実施形態では、反応ガスをプラズマ状態に励起(活性化)させるプラズマ生成部を備えた構成例について説明したが、本発明はこのような態様に限定されず、プラズマ生成部がない基板処理装置にも適用することが可能である。すなわち、プラズマ生成部(バッファ室)は必須の構成ではなく、プラズマ生成部がない基板処理装置であっても、パージガスを供給する専用のノズルを備える基板処理装置であれば、本発明を適用することが可能である。
 また、上述の実施形態等では、ウエハ200上にSiN膜を形成する例について説明した。本発明はこのような態様に限定されず、ウエハ200上に、シリコン酸化膜(SiO膜)、シリコン酸炭化膜(SiOC膜)、シリコン酸炭窒化膜(SiOCN膜)、シリコン酸窒化膜(SiON膜)等のSi系酸化膜を形成する場合や、ウエハ200上にシリコン炭窒化膜(SiCN膜)、シリコン硼窒化膜(SiBN膜)、シリコン硼炭窒化膜(SiBCN膜)、硼炭窒化膜(BCN膜)等のSi系窒化膜を形成する場合にも、好適に適用可能である。これらの場合、反応ガスとしては、O含有ガスの他、C等のC含有ガスや、NH等のN含有ガスや、BCl等のB含有ガスを用いることができる。
 また、本発明は、ウエハ200上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等の金属元素を含む酸化膜や窒化膜、すなわち、金属系酸化膜や金属系窒化膜を形成する場合においても、好適に適用可能である。すなわち、本発明は、ウエハ200上に、TiO膜、TiN膜、TiOC膜、TiOCN膜、TiON膜、TiBN膜、TiBCN膜、ZrO膜、ZrN膜、ZrOC膜、ZrOCN膜、ZrON膜、ZrBN膜、ZrBCN膜、HfO膜、HfN膜、HfOC膜、HfOCN膜、HfON膜、HfBN膜、HfBCN膜、TaO膜、TaOC膜、TaOCN膜、TaON膜、TaBN膜、TaBCN膜、NbO膜、NbN膜、NbOC膜、NbOCN膜、NbON膜、NbBN膜、NbBCN膜、AlO膜、AlN膜、AlOC膜、AlOCN膜、AlON膜、AlBN膜、AlBCN膜、MoO膜、MoN膜、MoOC膜、MoOCN膜、MoON膜、MoBN膜、MoBCN膜、WO膜、WN膜、WOC膜、WOCN膜、WON膜、MWBN膜、WBCN膜等を形成する場合にも、好適に適用することが可能となる。
 これらの場合、例えば、原料ガスとして、テトラキス(ジメチルアミノ)チタン(Ti[N(CH、略称:TDMAT)ガス、テトラキス(エチルメチルアミノ)ハフニウム(Hf[N(C)(CH)]、略称:TEMAH)ガス、テトラキス(エチルメチルアミノ)ジルコニウム(Zr[N(C)(CH)]、略称:TEMAZ)ガス、トリメチルアルミニウム(Al(CH、略称:TMA)ガス、チタニウムテトラクロライド(TiCl)ガス、ハフニウムテトラクロライド(HfCl)ガス等を用いることができる。反応ガスとしては、上述の反応ガスを用いることができる。
 すなわち、本発明は、半金属元素を含む半金属系膜や金属元素を含む金属系膜を形成する場合に、好適に適用することができる。これらの成膜処理の処理手順、処理条件は、上述の実施形態や変形例に示す成膜処理と同様な処理手順、処理条件とすることができる。これらの場合においても、上述の実施形態や変形例と同様の効果が得られる。
 成膜処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各種処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各種処理を迅速に開始できるようになる。
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
 200…ウエハ、203…反応管、217…ボート、231…排気管、232a,232b,232c…ガス供給管、249a…ノズル、250a…第1の噴出口、250b…第2の噴出口

Claims (13)

  1.  基板を支持する基板支持部と、
     前記基板支持部を収容し、前記基板を処理する反応管と、
     前記反応管内に処理ガスを供給する処理ガス供給系と、
     前記反応管内に不活性ガスを供給する不活性ガス供給系と、
     前記反応管内の雰囲気を排気する排気系と、を有し、
     前記不活性ガス供給系は、前記基板の中央に向けて前記不活性ガスを噴出する第1の噴出口と、前記反応管の内壁に向けて前記不活性ガスを噴出する第2の噴出口とを備えるノズルを有する基板処理装置。
  2.  前記第1の噴出口と前記第2の噴出口とは、対向する位置に設けられる請求項1に記載の基板処理装置。
  3.  前記第1の噴出口と前記第2の噴出口とは、前記ノズルの高さ方向に対して高さが異なる位置に設けられる請求項1に記載の基板処理装置。
  4.  前記ノズルには、噴出方向が異なる複数の前記第2の噴出口が設けられる請求項1に記載の基板処理装置。
  5.  前記第1の噴出口は、前記ノズルの高さ方向に対して第1の所定間隔で複数設けられ、
     前記第2の噴出口は、前記ノズルの高さ方向に対して前記第1の所定間隔より広い第2の所定間隔で複数設けられる請求項1から請求項4のうち、いずれか1項に記載の基板処理装置。
  6.  基板を反応管内に搬入する工程と、
     前記反応管内に処理ガスを供給する工程と、
     前記基板の中央に向けて不活性ガスを噴出する第1の噴出口と、前記反応管の内壁に向けて前記不活性ガスを噴出する第2の噴出口と、を有するノズルの前記第1の噴出口から前記基板に対して前記不活性ガスを供給し、前記第2の噴出口から前記反応管の内壁に対して前記不活性ガスを供給する工程と、
     前記基板を前記反応管から搬出する工程と、
    を有する半導体装置の製造方法。
  7.  前記処理ガスを供給する工程は、前記反応管内に原料ガスを供給する工程と、前記反応管内に反応ガスを供給する工程と、を有し、
     前記不活性ガスを供給する工程は、前記原料ガスを供給する工程と前記反応ガスを供給する工程との間と、前記反応ガスを供給する工程の後に行われる請求項6に記載の半導体装置の製造方法。
  8.  前記不活性ガスを供給する工程では、前記第1の噴出口から供給される前記不活性ガスの流量を、前記第2の噴出口から供給される前記不活性ガスの流量よりも多くする請求項6に記載の半導体装置の製造方法。
  9.  前記不活性ガスを供給する工程では、前記第2の噴出口から供給される前記不活性ガスは、噴出向きが異なる複数の前記第2の噴出口から前記反応管の内壁に対して供給される請求項6に記載の半導体装置の製造方法。
  10.  基板を基板処理装置の反応管内に搬入する手順と、
     前記反応管内に処理ガスを供給する手順と、
     前記基板の中央に向けて不活性ガスを噴出する第1の噴出口と、前記反応管の内壁に向けて前記不活性ガスを噴出する第2の噴出口と、を有するノズルの前記第1の噴出口から前記基板に対して前記不活性ガスを供給し、前記第2の噴出口から前記反応管の内壁に対して前記不活性ガスを供給する手順と、
     前記基板を前記反応管から搬出する手順と、
    をコンピュータを用いて前記基板処理装置に実行させるプログラム。
  11.  前記処理ガスを供給する手順は、前記反応管内に原料ガスを供給する手順と、前記反応管内に反応ガスを供給する手順と、を有し、
     前記不活性ガスを供給する手順は、前記原料ガスを供給する手順と前記反応ガスを供給する手順との間と、前記反応ガスを供給する手順の後に行われる請求項10に記載のプログラム。
  12.  前記不活性ガスを供給する手順では、前記第1の噴出口から供給される前記不活性ガスの流量を、前記第2の噴出口から供給される前記不活性ガスの流量よりも多くする請求項10に記載のプログラム。
  13.  前記不活性ガスを供給する手順では、前記第2の噴出口から供給される前記不活性ガスは、噴出向きが異なる複数の前記第2の噴出口から前記反応管の内壁に対して供給される請求項10に記載のプログラム。
PCT/JP2018/033627 2018-09-11 2018-09-11 基板処理装置、半導体装置の製造方法およびプログラム WO2020053960A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880097170.2A CN112640061B (zh) 2018-09-11 2018-09-11 基板处理装置、半导体装置的制造方法及存储介质
KR1020217006049A KR20210036965A (ko) 2018-09-11 2018-09-11 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
PCT/JP2018/033627 WO2020053960A1 (ja) 2018-09-11 2018-09-11 基板処理装置、半導体装置の製造方法およびプログラム
JP2020546578A JP7027565B2 (ja) 2018-09-11 2018-09-11 基板処理装置、半導体装置の製造方法およびプログラム
US17/186,498 US20210180185A1 (en) 2018-09-11 2021-02-26 Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033627 WO2020053960A1 (ja) 2018-09-11 2018-09-11 基板処理装置、半導体装置の製造方法およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/186,498 Continuation US20210180185A1 (en) 2018-09-11 2021-02-26 Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium

Publications (1)

Publication Number Publication Date
WO2020053960A1 true WO2020053960A1 (ja) 2020-03-19

Family

ID=69776742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033627 WO2020053960A1 (ja) 2018-09-11 2018-09-11 基板処理装置、半導体装置の製造方法およびプログラム

Country Status (5)

Country Link
US (1) US20210180185A1 (ja)
JP (1) JP7027565B2 (ja)
KR (1) KR20210036965A (ja)
CN (1) CN112640061B (ja)
WO (1) WO2020053960A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804058B (zh) * 2021-02-26 2023-06-01 日商國際電氣股份有限公司 基板處理裝置,電漿生成裝置,半導體裝置的製造方法,基板處理方法,及程式

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202335039A (zh) * 2022-02-07 2023-09-01 日商國際電氣股份有限公司 氣體供給部、處理裝置及半導體裝置之製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240376A (ja) * 1994-02-28 1995-09-12 Sumitomo Sitix Corp 縦型気相成長装置
JP2002299327A (ja) * 2001-03-30 2002-10-11 Tokyo Electron Ltd 熱処理装置及び熱処理方法
KR20070069902A (ko) * 2005-12-28 2007-07-03 동부일렉트로닉스 주식회사 수소 퍼지 장치를 가지는 반도체 장치 제조 장비
JP2010118462A (ja) * 2008-11-12 2010-05-27 Hitachi Kokusai Electric Inc 基板処理装置
JP2014175494A (ja) * 2013-03-08 2014-09-22 Hitachi Kokusai Electric Inc 基板処理装置、基板処理方法、半導体装置の製造方法および基板の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316208A (ja) * 1989-06-14 1991-01-24 Nec Corp シリコンエピタキシャル成長装置
JP3684011B2 (ja) * 1996-12-12 2005-08-17 キヤノン株式会社 プラズマcvd法による堆積膜形成方法及び装置
JP4983063B2 (ja) * 2006-03-28 2012-07-25 東京エレクトロン株式会社 プラズマ処理装置
JP5157100B2 (ja) * 2006-08-04 2013-03-06 東京エレクトロン株式会社 成膜装置及び成膜方法
JP5658463B2 (ja) * 2009-02-27 2015-01-28 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
JP2012049349A (ja) * 2010-08-27 2012-03-08 Hitachi Kokusai Electric Inc 基板処理装置
US20130068161A1 (en) * 2011-09-15 2013-03-21 Applied Materials, Inc. Gas delivery and distribution for uniform process in linear-type large-area plasma reactor
JP5788448B2 (ja) * 2013-09-09 2015-09-30 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及びプログラム
JP6460874B2 (ja) 2015-03-26 2019-01-30 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP6538582B2 (ja) * 2016-02-15 2019-07-03 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム
EP3483302B1 (en) * 2016-07-07 2022-03-16 MOLDINO Tool Engineering, Ltd. Hard coating-covered tool, and method for producing
JP6737215B2 (ja) * 2017-03-16 2020-08-05 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240376A (ja) * 1994-02-28 1995-09-12 Sumitomo Sitix Corp 縦型気相成長装置
JP2002299327A (ja) * 2001-03-30 2002-10-11 Tokyo Electron Ltd 熱処理装置及び熱処理方法
KR20070069902A (ko) * 2005-12-28 2007-07-03 동부일렉트로닉스 주식회사 수소 퍼지 장치를 가지는 반도체 장치 제조 장비
JP2010118462A (ja) * 2008-11-12 2010-05-27 Hitachi Kokusai Electric Inc 基板処理装置
JP2014175494A (ja) * 2013-03-08 2014-09-22 Hitachi Kokusai Electric Inc 基板処理装置、基板処理方法、半導体装置の製造方法および基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804058B (zh) * 2021-02-26 2023-06-01 日商國際電氣股份有限公司 基板處理裝置,電漿生成裝置,半導體裝置的製造方法,基板處理方法,及程式

Also Published As

Publication number Publication date
JP7027565B2 (ja) 2022-03-01
US20210180185A1 (en) 2021-06-17
CN112640061B (zh) 2024-05-14
CN112640061A (zh) 2021-04-09
JPWO2020053960A1 (ja) 2021-08-30
KR20210036965A (ko) 2021-04-05

Similar Documents

Publication Publication Date Title
JP7464638B2 (ja) 基板処理装置、プラズマ生成装置、反応管、プラズマ生成方法、基板処理方法、半導体装置の製造方法およびプログラム
KR102387812B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JP2023165711A (ja) 基板処理装置、プラズマ生成装置、半導体装置の製造方法およびプログラム
US20210180185A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP6867548B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6937894B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP7457818B2 (ja) 基板処理装置、半導体装置の製造方法、プログラム、補助プレートおよび基板保持具
JP7058338B2 (ja) 基板処理装置、基板保持部、半導体装置の製造方法およびプログラム
WO2021181450A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2022054855A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546578

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217006049

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933047

Country of ref document: EP

Kind code of ref document: A1