WO2019221004A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2019221004A1
WO2019221004A1 PCT/JP2019/018563 JP2019018563W WO2019221004A1 WO 2019221004 A1 WO2019221004 A1 WO 2019221004A1 JP 2019018563 W JP2019018563 W JP 2019018563W WO 2019221004 A1 WO2019221004 A1 WO 2019221004A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
positive electrode
negative electrode
current collector
Prior art date
Application number
PCT/JP2019/018563
Other languages
English (en)
French (fr)
Inventor
潔 田名網
覚久 田中
真太郎 青柳
奥野 一樹
細江 晃久
菊雄 妹尾
浩 竹林
Original Assignee
本田技研工業株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社, 住友電気工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2020519596A priority Critical patent/JPWO2019221004A1/ja
Priority to US17/054,697 priority patent/US11949111B2/en
Priority to CN201980028480.3A priority patent/CN112204799A/zh
Priority to EP19802623.9A priority patent/EP3796453B1/en
Publication of WO2019221004A1 publication Critical patent/WO2019221004A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • the active material has a first active material layer having a particle size of 0.1 ⁇ m or more and less than 5 ⁇ m, and a second active material layer having an active material particle size of 5 to 20 ⁇ m,
  • a lithium ion secondary battery including an electrode in which each active material layer has a thickness of 20 to 30 ⁇ m is known (see, for example, Patent Document 1).
  • the output density can be improved without reducing the energy density.
  • the lithium ion secondary battery described in Patent Document 1 has a problem that both the energy density and the output density cannot be improved, although the energy density is not reduced.
  • the applicant of the present invention has a positive electrode on a first positive electrode active material layer including a high-capacity active material formed on a current collector, and on the first positive electrode active material layer.
  • a lithium ion secondary battery including a formed second positive electrode active material layer containing a high-power active material is proposed (see Japanese Patent Application No. 2017-10187).
  • the first positive electrode active material layer includes a high-capacity active material, so that the energy density can be increased
  • the second positive electrode active material layer includes a high-power active material. Including the power density can be increased.
  • both the positive electrode and the negative electrode include a high capacity type active material formed on both surfaces of a current collector made of metal foil. And a second active material layer containing a high-power active material formed on the first active material layer, wherein the plurality of positive electrodes and the plurality of negative electrodes are alternately arranged. It is conceivable to provide a lithium ion secondary battery having a structure adjacent to each other via a separator.
  • the current collector hinders the movement of lithium ions.
  • the lithium ions generated in the first negative electrode active material layer and the second negative electrode active material layer move to the positive electrode side through the separator interposed between the positive electrode and the negative electrode, Most of them are consumed in the second positive electrode active material layer, and only the remaining lithium ions reach the first positive electrode active material layer and react with the high capacity positive electrode active material. As a result, the second positive electrode active material layer becomes resistant to the movement of lithium ions, and the output of the first positive electrode active material layer is reduced.
  • both the positive electrode and the negative electrode are a first active material layer containing a high-capacity active material formed on both surfaces of a current collector made of metal foil, and a high active material layer formed on the first active material layer.
  • each active material layer is coated with a paste containing each active material on the surface of the current collector and dried. It is formed. Therefore, the thickness of the active material layer is about 150 ⁇ m at the maximum, and there is a disadvantage that a sufficient energy density cannot be obtained.
  • both the positive electrode and the negative electrode are formed with a first active material layer containing a high-capacity active material formed on both surfaces of a current collector made of metal foil, and a high active material layer formed on the first active material layer.
  • the first active material layer and the second active material layer have different expansion / contraction rates, so that charging / discharging at a high rate is possible. If the above is repeated, the interface layer between the first active material layer and the second active material layer is likely to slip, and there is a disadvantage that sufficient charge / discharge cycle characteristics cannot be obtained.
  • An object of the present invention is to provide a lithium ion secondary battery that eliminates such inconvenience and has excellent energy density and output density and excellent charge / discharge cycle characteristics.
  • the lithium ion secondary battery of the present invention includes a positive electrode current collector made of a metal porous body having a three-dimensional network structure, and a high current held on one surface of the positive electrode current collector.
  • At least one positive electrode including a first positive electrode active material including a capacitive active material, a second positive electrode active material including a high-power active material held on the other surface of the positive electrode current collector, and three-dimensional
  • a negative electrode current collector made of a porous metal body having a network structure, a first negative electrode active material containing a high-capacity active material held on one surface of the negative electrode current collector, and the negative electrode current collector
  • the first positive electrode active material comprises a structure in which at least one negative electrode including a second negative electrode active material containing a high-power active material held on the other surface is alternately adjacent via a separator, Opposing to the first negative electrode active material adjacent through the first separator.
  • the second cathode active material is characterized in that is opposed to the second anode active
  • each of the positive electrode and the negative electrode uses the metal porous body as a current collector.
  • the metal porous body has a three-dimensional network structure in which columnar skeletons are three-dimensionally connected.
  • the first positive electrode active material is held on one surface of the current collector, and the second positive electrode active material is held on the other surface.
  • the first negative electrode active material is held on one surface of the electric body, and the second negative electrode active material is held on the other surface.
  • At least one of the positive electrodes and at least one of the negative electrodes have a structure in which the separators are alternately adjacent to each other, and the first positive electrode active material of the positive electrode Is opposed to the first negative electrode active material of the adjacent negative electrode through the first separator, and the second positive electrode active material is opposed to the second negative electrode active material of the adjacent negative electrode through the second separator.
  • the first positive electrode active material can exchange lithium ions with the first negative electrode active material via the first separator, and the second positive electrode active material can be transferred to the second positive electrode active material via the second separator.
  • the negative electrode active material can be exchanged with lithium ions.
  • lithium ions can be exchanged between the high-capacity active materials or the high-power active materials between the adjacent positive and negative electrodes.
  • the lithium ion secondary battery of the present invention it is possible to suppress a decrease in output, and battery reactions between high-capacity active materials or between high-power active materials occur in parallel between adjacent positive and negative electrodes. Output can be added, and an excellent power density can be obtained.
  • the first positive electrode active material or the second positive electrode active material is used in the positive electrode.
  • Either one or both of the materials, and in the negative electrode, either one or both of the first negative electrode active material or the second negative electrode active material can be made to have a thickness of 150 ⁇ m or more, and excellent energy Density can be obtained.
  • the first positive electrode active material can be obtained even when charging and discharging at a high rate are repeated. And an interface layer between the first positive electrode active material and the first negative electrode active material and the second negative electrode active material are prevented from slipping, and excellent charge / discharge cycle characteristics can be obtained.
  • the high-capacity active material contained in the first positive electrode active material includes Li (Ni 5/10 Co 2/10 Mn 3/10 ) O 2 , Li (Ni 6 / 10 Co 2/10 Mn 2/10 ) O 2 , Li (Ni 8/10 Co 1/10 Mn 1/10 ) O 2 , Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2
  • the high-power active material contained in the second positive electrode active material may be Li (Ni 1/6 Co 4/6 Mn 1/6 ) O 2. And at least one selected from the group consisting of Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 .
  • the high-capacity active material contained in the first negative electrode active material is at least one selected from the group consisting of artificial graphite, natural graphite, Si, and SiO.
  • the high-power active material contained in the second negative electrode active material include hard carbon.
  • first positive electrodes 2 and first negative electrodes 3 alternately have first separators 4 or second separators 5.
  • the second positive electrode 6 is disposed at one end, and the second negative electrode 7 is disposed at the other end.
  • the first positive electrode 2 includes a current collector (not shown), a first positive electrode active material 21 containing a high-capacity active material held on one surface of the current collector, and a high output held on the other surface.
  • a positive electrode active material 23 made of a second positive electrode active material 22 containing a mold active material, and a tab 24 connected to the current collector are provided.
  • the first negative electrode 3 includes a current collector (not shown), a first negative electrode active material 31 including a high capacity active material held on one surface of the current collector, and a high output held on the other surface.
  • a negative electrode active material 33 comprising a second negative electrode active material 32 containing a mold active material, and a tab 34 connected to the current collector are provided.
  • the current collector of the positive electrode 2 or the negative electrode 3 is composed of a porous metal body having a three-dimensional network structure in which columnar skeletons are three-dimensionally connected and having open cells.
  • the second positive electrode 6 has the same configuration as that of the first positive electrode 2 except that the positive electrode active material 23 includes only one of the first positive electrode active material 21 and the second positive electrode active material 22. It has.
  • FIG. 1 shows a case where the positive electrode active material 23 of the second positive electrode 6 includes the first positive electrode active material 21.
  • the second negative electrode 7 has the same configuration as that of the first negative electrode 3 except that the negative electrode active material 33 includes only one of the first negative electrode active material 31 and the second negative electrode active material 32. It has. 1 shows a case where the negative electrode active material 33 of the second negative electrode 7 includes the first negative electrode active material 31.
  • the first positive electrode active material 21 of the first positive electrode 2 faces the first negative electrode active material 31 of the adjacent first negative electrode 3 with the first separator 4 interposed therebetween, and the second positive electrode active material 22. Is opposed to the second negative electrode active material 32 of the adjacent first negative electrode 3 with the second separator 5 interposed therebetween.
  • the second positive electrode 6 is a positive electrode active material when the negative electrode active material 33 of the first negative electrode 3 adjacent via the first separator 4 or the second separator 5 is the first negative electrode active material 31.
  • the positive electrode active material 23 includes only the second positive electrode active material 22.
  • the second negative electrode 7 is a negative electrode when the positive electrode active material 23 of the first positive electrode 2 adjacent via the first separator 4 or the second separator 5 is the first positive electrode active material 21.
  • the active material 33 includes only the first negative electrode active material 31 and the positive electrode active material 23 is the second positive electrode active material 22, the negative electrode active material 33 includes only the second negative electrode active material 32.
  • the porous metal body constituting the current collector of the positive electrode 2 or 6 or the negative electrode 3 or 7 is made of a metal having conductivity such as aluminum, nickel, copper, stainless steel, titanium, and the porosity is 90 to 98%.
  • the number of holes (cells) is 46 to 50 per inch
  • the hole diameter is 0.4 to 0.6 mm
  • the specific surface area is 4500 to 5500 m 2 / m 3
  • the thickness is 0.8 to 1.2 mm.
  • the porous metal body is preferably made of aluminum when used as a positive electrode current collector, and preferably made of copper when used as a negative electrode current collector.
  • a carbon paint is applied to a urethane foam having open cells and subjected to a conductive treatment, and then 1-ethyl-3-methylimidazolium chloride and aluminum chloride (AlCl 3) are used.
  • AlCl 3 1-ethyl-3-methylimidazolium chloride and aluminum chloride
  • an aluminum layer of a predetermined amount is formed by electroplating in an inert atmosphere, and a range of 500 to 660 ° C. It can be produced by thermally decomposing and removing the urethane foam and the carbon coating under conditions that suppress excessive oxidation of the aluminum surface in an oxygen-containing atmosphere at a temperature.
  • the metal porous body is made of copper
  • a carbon paint is applied to a urethane foam having open cells to conduct a conductive treatment, and a predetermined amount of copper layer is formed by electroplating, and urethane foam is formed.
  • the oxidized copper layer can be produced by reduction treatment in a hydrogen gas atmosphere.
  • “Aluminum Celmet” registered trademark
  • Celmet registered trademark
  • the thickness of the first positive electrode active material 21 held on one surface of the current collector may be thicker than the thickness of the second positive electrode active material 22 held on the other surface.
  • the thickness of the first negative electrode active material 31 held on one surface of the current collector is thicker than the thickness of the second negative electrode active material 32 held on the other surface. It is preferable.
  • the first positive electrode active material 21 or the first negative electrode active material 31 preferably has a thickness in the range of 100 to 250 ⁇ m
  • the substance 32 preferably has a thickness in the range of 50 to 150 ⁇ m.
  • the high-capacity active material contained in the first positive electrode active material 21 is Li (Ni 5/10 Co 2/10 Mn 3/10 ) O 2 , Li ( Ni 6/10 Co 2/10 Mn 2/10 ) O 2 , Li (Ni 8/10 Co 1/10 Mn 1/10 ) O 2 , Li (Ni 0.8 Co 0.15 Al 0.05 ) O At least one selected from the group consisting of 2 may be mentioned.
  • Li (Ni 1/6 Co 4/6 Mn 1/6 ) examples thereof include at least one selected from the group consisting of O 2 , Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 , LiCoO 2 , and LiNiO 2 .
  • the high-capacity active material contained in the first negative electrode active material 31 is at least one selected from the group consisting of artificial graphite, natural graphite, Si, and SiO.
  • Examples of the high-power active material contained in the second negative electrode active material 32 include hard carbon and soft carbon.
  • first separator 4 or the second separator 5 for example, a microporous film made of polyethylene, polypropylene or the like can be used.
  • the first separator 4 and the second separator 5 may be made of the same material, or may be made of different materials.
  • Li (Ni 5/10 Co 2/10 Mn 3/10 ) O 2 , Li (Ni 6/10 Co 2/10 Mn 2/10 ) O 2 , Li (Ni 8 / 10 Co 1/10 Mn 1/10 ) O 2 , Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 , and polyvinylidene fluoride as a binder (PVDF) and carbon black as a conductive auxiliary agent, high-capacity active material: binder: conductive auxiliary agent 80 to 99: 0.5 to 19.5: mass of 0.5 to 19.5 A first slurry for positive electrode active material is prepared by mixing so that the total amount becomes 100 and diluting with an organic solvent such as N-methylpyrrolidone.
  • Li (Ni 1/6 Co 4/6 Mn 1/6 ) O 2 and Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 as a high-power active material.
  • At least one selected from the group consisting of polyvinylidene fluoride (PVDF) as a binder and carbon black as a conductive assistant, a high-power active material: a binder: a conductive assistant 80 to 99: 0.
  • PVDF polyvinylidene fluoride
  • a binder: a conductive assistant 80 to 99: 0.
  • the second positive electrode active material slurry was mixed by mixing so that the total amount became 100 at a mass ratio of 5 to 19.5: 0.5 to 19.5 and diluted with an organic solvent such as N-methylpyrrolidone. Prepare.
  • the first positive electrode active material slurry is applied to one surface of the current collector made of the metal porous body by, for example, extruding from a nozzle at a predetermined pressure.
  • the current collector made of the metal porous body coated with the first positive electrode active material slurry is dried in the atmosphere at a temperature in the range of 90 to 130 ° C. for 0.5 to 3 hours.
  • the second positive electrode active material slurry is applied to the other surface of the current collector made of the metal porous body by, for example, extruding from a nozzle at a predetermined pressure.
  • a current collector made of the porous metal body coated with the first positive electrode active material slurry and the second positive electrode active material slurry is heated in the atmosphere at a temperature in the range of 90 to 130 ° C.
  • a positive electrode active material 23 comprising a first positive electrode active material 21 held on one surface of a current collector and a second positive electrode active material 22 held on the other surface after being dried for 0.5 to 3 hours. Form and roll press so that each has a predetermined density.
  • the first positive electrode 2 is obtained by drying in a vacuum at a temperature in the range of 110 to 130 ° C. for 11 to 13 hours.
  • the first electrode except that only one of the first positive electrode active material slurry and the second positive electrode active material slurry is applied to one surface of the current collector made of the metal porous body.
  • the second positive electrode 6 is made exactly the same as the positive electrode 2 of FIG.
  • ⁇ Manufacture of negative electrode> at least one selected from the group consisting of artificial graphite, natural graphite, Si, and SiO as a high-capacity active material, and carboxymethyl cellulose, styrene butadiene rubber, sodium polyacrylate, polyfluoride as a binder
  • At least one selected from the group consisting of vinylidene and carbon black as a conductive assistant, a high-capacity active material: binder: conductive assistant 80 to 99.5: 0.5 to 20: 0
  • a first slurry for the negative electrode active material is prepared by mixing so that the total amount becomes 100 at a mass ratio of ⁇ 10 and diluting with an organic solvent such as N-methylpyrrolidone or pure water.
  • hard carbon as a high-capacity active material, at least one selected from the group consisting of carboxymethyl cellulose, styrene butadiene rubber, sodium polyacrylate, polyvinylidene fluoride as a binder, and a conductive auxiliary agent
  • Prepare a second slurry for negative electrode active material by diluting with an organic solvent such as methylpyrrolidone or pure water.
  • the first negative electrode active material slurry and the second negative electrode active material slurry are used instead of the first positive electrode active material slurry and the second positive electrode active material slurry. Except for the above, the same as in the case of the first positive electrode 2 or the second positive electrode 6, applied to the current collector made of the metal porous body, dried in the air, then roll-pressed, and further in vacuum To make the first negative electrode 3 or the second negative electrode 7.
  • first positive electrodes 2 and first negative electrodes 3 are alternately arranged via the first separator 4 or the second separator 5, and the second positive electrode 6 is disposed at one end.
  • the second negative electrode 7 is disposed at the other end.
  • the first positive electrode active material 21 of the first positive electrode 2 faces the first negative electrode active material 31 of the adjacent first negative electrode 3 with the first separator 4 interposed therebetween, and the second positive electrode active material. 22 opposes the 2nd negative electrode active material 32 of the 1st negative electrode 3 which adjoins through the 2nd separator 5.
  • one end of the first positive electrode 2 and the first negative electrode 3 that are alternately arranged via the first separator 4 or the second separator 5 is the first end of the first positive electrode 2.
  • the second negative electrode 7 including the negative electrode active material 33 made of only the first negative electrode active material 31 is disposed at the end portion via the first separator 4.
  • one end of the first positive electrode 2 and the first negative electrode 3 that are alternately arranged via the first separator 4 or the second separator 5 is the second end of the first positive electrode 2.
  • the second negative electrode 7 including the negative electrode active material 33 made of only the second negative electrode active material 32 is disposed at the end portion via the second separator 5.
  • the other end of the first positive electrode 2 and the first negative electrode 3 that are alternately arranged via the first separator 4 or the second separator 5 is the first end of the first negative electrode 3.
  • the second positive electrode 6 including the positive electrode active material 23 made of only the first positive electrode active material 21 is disposed at the end portion via the first separator 4.
  • the other end of the first positive electrode 2 and the first negative electrode 3 that are alternately arranged via the first separator 4 or the second separator 5 is the second end of the first negative electrode 3.
  • the second positive electrode 6 including the positive electrode active material 23 made of only the second positive electrode active material 22 is disposed at the end portion via the second separator 5.
  • the container is sealed so that the tabs 24 and 34 are exposed from the container, whereby the lithium ion secondary battery of this embodiment is sealed.
  • the secondary battery 1 is assumed.
  • Examples of the electrolyte include 0.1 to 3 mol / L of a supporting salt such as LiPF 6 , LiBF 4 , and LiClO 4 in a solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. In the range of 0.6 to 1.5 mol / L can be used.
  • a supporting salt such as LiPF 6 , LiBF 4 , and LiClO 4
  • a solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • a current collector made of a metal porous body having a three-dimensional network structure in which columnar skeletons are three-dimensionally connected (hereinafter abbreviated as “three-dimensional skeleton current collector”) is made of aluminum.
  • a first positive electrode 2 was prepared as follows.
  • a first positive electrode active material slurry containing a high-capacity active material was applied to a region of 80 mm length and 150 mm width at the center of one surface of the three-dimensional skeleton current collector.
  • a second positive electrode active material slurry containing a high-power active material is applied to a region corresponding to the region where the first positive electrode active material slurry is applied on the other surface of the three-dimensional skeleton current collector. did.
  • the three-dimensional skeleton current collector in which the first positive electrode active material slurry is applied to one surface and the second positive electrode active material slurry is applied to the other surface is heated to 120 ° C. in the atmosphere. After drying at a temperature of 12 hours, a roll press was performed, and further, drying was performed in a vacuum at a temperature of 120 ° C. for 12 hours.
  • the first positive electrode 2 was obtained by punching out the first positive electrode active material slurry and the tab 24 to which the second positive electrode active material slurry was not applied.
  • the first positive electrode 2 holds the first positive electrode active material 21 formed of the first positive electrode active material slurry on one surface of the three-dimensional skeleton current collector, and the second surface on the second surface.
  • the positive electrode active material layer 23 is formed by holding the second positive electrode active material 22 formed of the positive electrode active material slurry.
  • the first positive electrode active material 21 held on one surface of the three-dimensional skeleton current collector has a thickness of 0.225 mm and a volume density of 3.2 g / cm 3.
  • the held second positive electrode active material 22 has a thickness of 0.056 mm and a volume density of 3.2 g / cm 3 .
  • two first positive electrodes 2 were prepared.
  • the three-dimensional skeleton current collector is the same as the first positive electrode 2 except that only the first positive electrode active material slurry is applied to one surface of the three-dimensional skeleton current collector.
  • One second positive electrode 6 holding a positive electrode active material 23 made of only the first positive electrode active material 21 formed of the first positive electrode active material slurry was prepared on one surface of the first positive electrode active material.
  • the three-dimensional skeleton current collector is made of copper, has a porosity of 95%, a number of holes (cells) of 46 to 50 / inch, a hole diameter of 0.5 mm, a specific surface area of 5000 m 2 / m 3 , a thickness of 1
  • a first negative electrode 3 was prepared as follows using a 0.0 mm, 150 mm long, and 80 mm wide (Celmet (registered trademark) manufactured by Sumitomo Electric Industries, Ltd.).
  • a first negative electrode active material slurry containing a high-capacity active material was applied to a region of 70 mm length and 70 mm width at the center of one surface of the three-dimensional skeleton current collector.
  • a second negative electrode active material slurry containing a high-power active material is applied to a region corresponding to the region where the first negative electrode active material slurry is applied on the other surface of the three-dimensional skeleton current collector. did.
  • the three-dimensional skeleton current collector in which the first negative electrode active material slurry is applied to one surface and the second negative electrode active material slurry is applied to the other surface is heated to 120 ° C. in the atmosphere. After drying at a temperature of 12 hours, a roll press was performed, and further, drying was performed in a vacuum at a temperature of 120 ° C. for 12 hours.
  • the first negative electrode 3 of this example was obtained by punching into a shape composed of a first negative electrode active material slurry and a tab 34 to which the second negative electrode active material slurry was not applied.
  • the first negative electrode active material 31 formed of the first negative electrode active material slurry is held on one surface of the three-dimensional skeleton current collector, and the first surface is provided on the other surface.
  • the negative electrode active material 33 is formed by holding the second negative electrode active material 32 formed of the second negative electrode active material slurry.
  • the first negative electrode active material 31 held on one surface of the three-dimensional skeleton current collector has a thickness of 0.212 mm and a volume density of 1.7 g / cm 3.
  • the held second negative electrode active material layer 32 has a thickness of 0.082 mm and a volume density of 1.1 g / cm 3 .
  • two first negative electrodes 3 were prepared.
  • the three-dimensional skeleton current collector is the same as that of the first negative electrode 3 except that only the first negative electrode active material slurry is applied to one surface of the three-dimensional skeleton current collector.
  • One sheet of the second negative electrode 7 was prepared in which the negative electrode active material 33 made of only the first negative electrode active material 31 formed of the first negative electrode active material slurry was held on one surface thereof.
  • the first positive electrode 2 and the first negative electrode 3 are sandwiched in the aluminum laminate pouch, and the first separator 4 or the second separator 5 is sandwiched therebetween so that the tabs 24 and 34 come out of the pouch.
  • the second positive electrode 6 is disposed at one end
  • the first separator 4 is sandwiched between the adjacent first negative electrode 3
  • the tab 24 is disposed outside the pouch, and the other is disposed.
  • the second negative electrode 7 is disposed at the end portion, and the first separator 4 is sandwiched between the adjacent first positive electrode 2 so that the tab 34 comes out of the pouch.
  • the lithium ion secondary battery 1 provided with the structure shown in FIG. 1 was produced by vacuum-sealing.
  • a polyethylene microporous film having a thickness of 15 ⁇ m was used as the first separator 4 and the second separator 5.
  • LiPF 6 as a supporting salt was dissolved at a concentration of 1.2 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and diethyl carbonate were mixed at a volume ratio of 40:30:30. What was made to use was used.
  • the first positive electrode active material 21 of the first positive electrode 2 is the first negative electrode 3 or the first negative electrode 7 adjacent through the first separator 4.
  • the second positive electrode active material 22 is opposed to the second negative electrode active material 32 of the adjacent first negative electrode 3 with the second separator 5 interposed therebetween.
  • the first negative electrode active material 31 of the first negative electrode 3 is opposed to the first positive electrode active material 21 of the adjacent first positive electrode 2 or second positive electrode 6 through the first separator 4. .
  • the temporary capacity of the positive electrode at a temperature of 25 ° C. was calculated from the active material amounts of the first positive electrode active material 21 and the second positive electrode active material 22. .
  • a current value (0.2 C) that can be discharged in 5 hours was determined.
  • the lithium ion secondary battery 1 manufactured in this example was charged at a constant current up to 4.2 V at 0.2 C, charged at a constant voltage of 4.2 V for 1 hour, and then up to 2.4 V at 0.2 C.
  • a constant current was discharged. While the capacity at the time of constant current discharge is set as the rated capacity (mAh / g), the voltage at the time of 1/2 of the rated capacity in the charge / discharge curve at the time of constant current discharge is set as the average voltage (V), The energy density (Wh / g) was calculated from the formula (1).
  • the resistance R is the slope of a straight line obtained when the current value is plotted on the horizontal axis and the voltage with respect to each current value is plotted on the vertical axis.
  • the lithium ion secondary battery 11 of this comparative example has a structure in which the same number of first positive electrodes 12 and first negative electrodes 13 are alternately adjacent to each other with separators 14 therebetween.
  • a second positive electrode 16 is disposed at the end of the second electrode, and a second negative electrode 17 is disposed at the other end.
  • the first positive electrode 12 includes a current collector 18 made of aluminum foil, a first positive electrode active material layer 21 including a high-capacity active material located on both surfaces of the current collector 18, and both surfaces of the current collector 18.
  • a positive electrode active material layer 23 comprising a second positive electrode active material layer 22 containing a high-power active material located on the first positive electrode active material layer 21, and from the positive electrode active material layer 23 of the current collector 18.
  • the exposed part is a tab.
  • the first negative electrode 13 includes a current collector 19 made of copper foil, a first negative electrode active material layer 31 containing a high-capacity active material located on both surfaces of the current collector 19, and both surfaces of the current collector 19.
  • a negative electrode active material layer 33 comprising a second negative electrode active material layer 32 containing a high-power active material located on the first negative electrode active material layer 31, and from the negative electrode active material layer 33 of the current collector 19.
  • the exposed part is a tab.
  • the second positive electrode 16 has the same configuration as that of the first positive electrode 12 except that the positive electrode active material layer 23 is provided only on one surface of the current collector 18, and the second negative electrode 17. Has the same configuration as that of the first negative electrode 13 except that the negative electrode active material layer 33 is provided only on one surface of the current collector 19.
  • the first positive electrode active material layer 21 of the first positive electrode 12 is opposed to the first negative electrode active material layer 31 of the first negative electrode 13 or the second negative electrode 17 adjacent to the second negative electrode 17 with the separator 14 interposed therebetween.
  • the first positive electrode active material layer 21 of the positive electrode 16 is opposed to the first negative electrode active material layer 31 of the adjacent first negative electrode 13 with the separator 4 interposed therebetween.
  • the lithium ion secondary battery 11 having the configuration shown in FIG. 2 was manufactured as follows.
  • a positive electrode was prepared using an aluminum foil having a width of 20 cm, a length of 1 m, and a thickness of 15 ⁇ m as follows.
  • a first positive electrode active material slurry containing a high-capacity positive electrode active material is applied to a region of 10 cm in the center of the aluminum foil, dried at a temperature of 130 ° C. for 10 minutes, and then heated at a temperature of 130 ° C.
  • the first positive electrode active material layer was formed by pressing with a load of 15 tons.
  • a second positive electrode active material slurry containing a high-power positive electrode active material is applied on the first positive electrode active material layer, dried at 130 ° C. for 10 minutes, and then heated to 130 ° C.
  • the second positive electrode active material layer was formed by pressing at a load of 5 tons.
  • the aluminum foil was punched into a shape consisting of a coating area of 30 mm length and 40 mm width and a tab area of 15 mm length and 30 mm width in contact with the coating area to obtain a positive electrode.
  • the first positive electrode active material layer 21 has a thickness of 0.042 mm and a volume density of 3.30 g / cm 3
  • the second positive electrode active material layer 22 has a thickness of 0.016 mm and a volume density of 2.65 g / cm 3 .
  • four first positive electrodes 2 were prepared.
  • the positive electrode active material layer 23 is formed only on one surface of the current collector 18, the positive electrode active material layer 23 is formed on only one surface of the current collector 18 in exactly the same manner as the first positive electrode 12.
  • a second positive electrode 16 provided was obtained. In this comparative example, one second positive electrode 16 was prepared.
  • a negative electrode was prepared as follows using a copper foil having a width of 20 cm, a length of 1 m, and a thickness of 8 ⁇ m.
  • a first negative electrode active material slurry containing a high-capacity negative electrode active material is applied to a region of 10 cm in the center of the copper foil, and dried at a temperature of 130 ° C. for 10 minutes.
  • the first negative electrode active material layer was formed by pressing with a load of 15 tons.
  • a second negative electrode active material slurry containing a high-power negative electrode active material is applied and dried at a temperature of 130 ° C. for 10 minutes, and then a temperature of 130 ° C.
  • the second negative electrode active material layer was formed by pressing at a load of 5 tons.
  • the copper foil was punched into a shape consisting of a 34 mm long and 44 mm wide coating region and a 15 mm long and 30 mm wide tab region in contact with the coating region to obtain a negative electrode.
  • the first negative electrode active material layer 31 has a thickness of 0.039 mm and a volume density of 1.55 g / cm 3
  • the second negative electrode active material layer 32 has a thickness of 0.024 mm and a volume density of 1.00 g / cm 3 .
  • four first negative electrodes 13 were prepared.
  • the negative electrode active material layer 33 is formed only on one surface of the current collector 19
  • the negative electrode active material layer 33 is formed on only one surface of the current collector 8 in exactly the same manner as the first negative electrode 13.
  • a second negative electrode 17 provided was obtained. In this comparative example, one second negative electrode 17 was prepared.
  • a first positive electrode 12 and a first negative electrode 13 were placed in an aluminum laminate pouch, with a separator 14 interposed therebetween, and a tab was placed outside the pouch.
  • the second positive electrode 16 is disposed at one end
  • the separator 14 is sandwiched between the adjacent first negative electrode 13, and the tab is disposed outside the pouch, and the other end is disposed at the other end.
  • the separator 14 was sandwiched between the second negative electrode 17 and the adjacent first positive electrode 12, and the tabs were disposed outside the pouch. And after impregnating the electrolyte solution in the separator 14, it vacuum-sealed, and the lithium ion secondary battery 11 provided with the structure shown in FIG. 2 was produced.
  • a polyethylene microporous film having a thickness of 15 ⁇ m was used as the separator 14.
  • LiPF 6 as a supporting salt was dissolved at a concentration of 1.2 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and diethyl carbonate were mixed at a volume ratio of 40:30:30. What was made to use was used.
  • the capacity of the lithium ion secondary battery 11 of this comparative example was the same as that of the lithium ion secondary battery 1 of Example 1 as a lithium ion secondary battery.
  • Example 2 the energy density and the output density were calculated in exactly the same manner as in Example 1 except that the lithium ion secondary battery 11 obtained in this comparative example was used.
  • the energy density is shown in FIG. 3, and the output density is shown in FIG.
  • FIG. 5 shows the change in capacity retention rate with respect to the number of cycles
  • FIG. 6 shows the internal resistance before the start of operation (0 cycle) and after 200 cycles when measuring the capacity maintenance rate for the resistance increase rate.
  • the lithium ion secondary battery 1 of Example 1 is superior in both energy density and output density to the lithium ion secondary battery 11 of Comparative Example 1, and is also excellent in charge / discharge cycle characteristics. It is clear that
  • the basis weight of the positive electrode active material layer 23 or the negative electrode active material layer 33 per electrode is increased by using the three-dimensional skeleton current collector. be able to. Therefore, according to the lithium ion secondary battery 1 of Example 1, compared with the lithium ion secondary battery 11 of Comparative Example 1, the number of electrodes can be reduced, and the mass as a lithium ion secondary battery is reduced. Energy density can be improved.
  • SYMBOLS 1 Lithium ion secondary battery, 2 ... 1st positive electrode, 3 ... 1st negative electrode, 6 ... 2nd positive electrode, 7 ... 2nd negative electrode, 21 ... 1st positive electrode active material, 22 ... 2nd Positive electrode active material, 23 ... positive electrode active material, 31 ... first negative electrode active material, 32 ... second negative electrode active material, 33 ... negative electrode active material.

Abstract

優れたエネルギー密度と出力密度とを備え、かつ、優れた充放電サイクル特性を備えるリチウムイオン二次電池を提供する。リチウムイオン二次電池1は、正極2と負極3とが、交互にセパレータ4、5を介して隣接する。正極2は、金属多孔体からなる正極集電体と、正極集電体の一方の面に保持された第1の正極活物質21と、他方の面に保持された第2の正極活物質22とからなる。負極3は、金属多孔体からなる負極集電体と、負極集電体の一方の面に保持された第1の負極活物質31と、他方の面に保持された第2の負極活物質32とからなる。第1の正極活物質21は第1の負極活物質31と対向し、正極活物質22は第2の負極活物質32と対向している。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池に関する。
 従来、集電体上に、活物質の粒径が0.1μm以上5μm未満の第1の活物質層と、活物質の粒径が5~20μmである第2の活物質層とを備え、各活物質層の厚さが20~30μmである電極を備えるリチウムイオン二次電池が知られている(例えば、特許文献1参照)。
 特許文献1には、前記電極を備えるリチウムイオン二次電池によれば、エネルギー密度を低下させることなく出力密度を向上させることができるとされている。
特開2002-151055号公報
 しかしながら、特許文献1記載のリチウムイオン二次電池によれば、エネルギー密度を低下させることはないものの、エネルギー密度と出力密度との両方を向上させることができないという問題がある。
 前記問題を解決するために、本出願人は、正極が、集電体上に形成された高容量型活物質を含む第1の正極活物質層と、該第1の正極活物質層上に形成された高出力型活物質を含む第2の正極活物質層とを備えるリチウムイオン二次電池を提案している(特願2017-101887号参照)。前記リチウムイオン二次電池によれば、第1の正極活物質層が高容量型活物質を含むことによりエネルギー密度を大きくすることができ、第2の正極活物質層が高出力型活物質を含むことにより出力密度を大きくすることができる。
 そこで、さらにリチウムイオン二次電池のエネルギー密度及び出力密度を向上させるために、正極と負極との双方を、金属箔からなる集電体の両面に形成された高容量型活物質を含む第1の活物質層と、該第1の活物質層上に形成された高出力型活物質を含む第2の活物質層とを備える構成とし、複数の該正極と複数の該負極とが、交互にセパレータを介して隣接する構造を備えるリチウムイオン二次電池とすることが考えられる。
 ところが、金属箔からなる集電体の両面に形成された高容量型活物質を含む第1の活物質層と、該第1の活物質層上に形成された高出力型活物質を含む第2の活物質層とを備える正極又は負極では、該集電体がリチウムイオンの移動を妨げるという不都合がある。
 このため、例えば放電時には、第1の負極活物質層及び第2の負極活物質層で生成したリチウムイオンは、正極と負極との間に介在するセパレータを介して正極側に移動したときに、そのほとんどが第2の正極活物質層で消費されてしまい、第1の正極活物質層に到達して高容量型正極活物質と反応するのは残余のリチウムイオンのみとなる。この結果、第2の正極活物質層がリチウムイオンの移動に対する抵抗となり、第1の正極活物質層における出力が低下してしまう。
 また、正極及び負極の双方が、金属箔からなる集電体の両面に形成された高容量型活物質を含む第1の活物質層と、該第1の活物質層上に形成された高出力型活物質を含む第2の活物質層とを備えるリチウムイオン二次電池では、各活物質層は、前記集電体の表面に各活物質を含むペーストを塗工して乾燥させることにより形成される。そこで、前記活物質層の厚さは最大でも150μm程度となり、十分なエネルギー密度を得ることができないという不都合がある。
 さらに、正極及び負極の双方が、金属箔からなる集電体の両面に形成された高容量型活物質を含む第1の活物質層と、該第1の活物質層上に形成された高出力型活物質を含む第2の活物質層とを備えるリチウムイオン二次電池では、第1の活物質層と第2の活物質層との膨張収縮率が異なるので、高レートでの充放電を繰り返すと第1の活物質層と第2の活物質層との界面層の滑落が生じやすく、十分な充放電サイクル特性を得ることができないという不都合もある。
 本発明は、かかる不都合を解消して、優れたエネルギー密度と出力密度とを備え、かつ、優れた充放電サイクル特性を備えるリチウムイオン二次電池を提供することを目的とする。
 かかる目的を達成するために、本発明のリチウムイオン二次電池は、三次元網目状構造を有する金属多孔体からなる正極集電体と、前記正極集電体の一方の面に保持された高容量型活物質を含む第1の正極活物質と、前記正極集電体の他方の面に保持された高出力型活物質を含む第2の正極活物質を備える少なくとも一つの正極と、三次元網目状構造を有する金属多孔体からなる負極集電体と、前記負極集電体の一方の面に保持された高容量型活物質を含む第1の負極活物質と、前記負極集電体の他方の面に保持された高出力型活物質を含む第2の負極活物質を備える少なくとも一つの負極とが、交互にセパレータを介して隣接する構造を備え、前記第1の正極活物質は、第1のセパレータを介して隣接する前記第1の負極活物質と対向し、前記第2の正極活物質は、第2のセパレータを介して隣接する前記負極の第2の負極活物質と対向していることを特徴とする。
 本発明のリチウムイオン二次電池によれば、前記正極及び前記負極は、いずれも前記金属多孔体を集電体としている。前記金属多孔体は、柱状の骨格が三次元に連なった三次元網目状構造を有している。そして、前記正極においては、前記集電体の一方の面に前記第1の正極活物質が保持され、他方の面に第2の正極活物質が保持されており、前記負極においては、前記集電体の一方の面に前記第1の負極活物質が保持され、他方の面に第2の負極活物質が保持されている。この結果、前記正極及び前記負極では、リチウムイオンが集電体に妨げられることなく電極内で自由に移動することができる。
 ここで、本発明のリチウムイオン二次電池では、少なくとも1つの前記正極と、少なくとも1つの前記負極とが、交互にセパレータを介して隣接する構造を備えており、正極の第1の正極活物質は第1のセパレータを介して隣接する負極の第1の負極活物質と対向し、第2の正極活物質は第2のセパレータを介して隣接する負極の第2の負極活物質と対向している。
 この結果、第1の正極活物質は第1のセパレータを介して第1の負極活物質とリチウムイオンの授受を行うことができ、第2の正極活物質は第2のセパレータを介して第2の負極活物質とリチウムイオンの授受を行うことができる。換言すれば、本発明のリチウムイオン二次電池では、隣接する正極と負極との間で、高容量型活物質同士又は高出力型活物質同士でリチウムイオンの授受を行うことができる。
 従って、本発明のリチウムイオン二次電池では、出力の低下を抑制でき、隣接する正極と負極との間で、高容量型活物質同士又は高出力型活物質同士の電池反応が並行して生じることによる出力が追加され、優れた出力密度を得ることができる。
 また、本発明のリチウムイオン二次電池では、前記金属多孔体に前記正極活物質又は前記負極活物質が保持されているので、正極においては前記第1の正極活物質又は前記第2の正極活物質のいずれか1つまたは両方を、負極においては前記第1の負極活物質又は前記第2の負極活物質のいずれか1つまたは両方を、150μm以上の厚さとすることができ、優れたエネルギー密度を得ることができる。
 さらに、本発明のリチウムイオン二次電池では、前記正極活物質又は前記負極活物質が前記金属多孔体に保持されているので、高レートでの充放電を繰り返しても、第1の正極活物質と第2の正極活物質との界面層又は、第1の負極活物質と第2の負極活物質との界面層の滑落が抑制され、優れた充放電サイクル特性を得ることができる。
 本発明のリチウムイオン二次電池において、前記第1の正極活物質に含まれる高容量型活物質としては、Li(Ni5/10Co2/10Mn3/10)O、Li(Ni6/10Co2/10Mn2/10)O、Li(Ni8/10Co1/10Mn1/10)O、Li(Ni0.8Co0.15Al0.05)Oからなる群から選択される少なくとも1種を挙げることができ、前記第2の正極活物質に含まれる高出力型活物質としては、Li(Ni1/6Co4/6Mn1/6)O、Li(Ni1/3Co1/3Mn1/3)Oからなる群から選択される少なくとも1種を挙げることができる。
 また、本発明のリチウムイオン二次電池において、前記第1の負極活物質に含まれる高容量型活物質としては、人工黒鉛、天然黒鉛、Si、SiOからなる群から選択される少なくとも1種を挙げることができ、前記第2の負極活物質に含まれる高出力型活物質としては、ハードカーボンを挙げることができる。
本発明のリチウムイオン二次電池の一構成例を示す説明的断面図。 従来のリチウムイオン二次電池の一構成例を示す説明的断面図。 本発明の一実施例のリチウムイオン二次電池におけるエネルギー密度を示すグラフ。 本発明の一実施例のリチウムイオン二次電池における出力密度を示すグラフ。 本発明の一実施例のリチウムイオン二次電池におけるサイクル数に対する容量維持率の変化を示すグラフ。 本発明の一実施例のリチウムイオン二次電池におけるサイクル数に対する内部抵抗の変化を示すグラフ。
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。
 図1に示すように、本実施形態のリチウムイオン二次電池1は、同数の第1の正極2と、第1の負極3とが、交互に第1のセパレータ4又は第2のセパレータ5を介して隣接する構造を備え、一方の端部には第2の正極6が配設され、他方の端部には第2の負極7が配設されている。
 第1の正極2は、図示しない集電体と、該集電体の一方の面に保持された高容量型活物質を含む第1の正極活物質21と他方の面に保持された高出力型活物質を含む第2の正極活物質22とからなる正極活物質23と、該集電体に連設されたタブ24とを備える。
 第1の負極3は、図示しない集電体と、該集電体の一方の面に保持された高容量型活物質を含む第1の負極活物質31と他方の面に保持された高出力型活物質を含む第2の負極活物質32とからなる負極活物質33と、該集電体に連設されたタブ34とを備える。正極2又は負極3の前記集電体は、柱状の骨格が三次元に連なった三次元網目状構造を有し連続気泡を備える金属多孔体からなる。
 また、第2の正極6は、正極活物質23が第1の正極活物質21又は第2の正極活物質22のいずれか一方のみを備えること以外は、第1の正極2と全く同一の構成を備えている。尚、図1では第2の正極6の正極活物質23が第1の正極活物質21を備える場合について示している。
 また、第2の負極7は、負極活物質33が第1の負極活物質31又は第2の負極活物質32のいずれか一方のみを備えること以外は、第1の負極3と全く同一の構成を備えている。尚、図1では第2の負極7の負極活物質33が第1の負極活物質31を備える場合について示している。
 そして、第1の正極2の第1の正極活物質21は第1のセパレータ4を介して隣接する第1の負極3の第1の負極活物質31と対向し、第2の正極活物質22は第2のセパレータ5を介して隣接する第1の負極3の第2の負極活物質32と対向している。また、第2の正極6は、第1のセパレータ4又は第2のセパレータ5を介して隣接する第1の負極3の負極活物質33が第1の負極活物質31である場合は、正極活物質23が第1の正極活物質21のみを備え、負極活物質33が第2の負極活物質32である場合は、正極活物質23が第2の正極活物質22のみを備える。
 同様に、第2の負極7は、第1のセパレータ4又は第2のセパレータ5を介して隣接する第1の正極2の正極活物質23が第1の正極活物質21である場合は、負極活物質33が第1の負極活物質31のみを備え、正極活物質23が第2の正極活物質22である場合は、負極活物質33が第2の負極活物質32のみを備える。
 正極2,6又は負極3,7の前記集電体を構成する前記金属多孔体は、例えば、アルミニウム、ニッケル、銅、ステンレス、チタン等の導電性を備える金属からなり、気孔率90~98%、空孔(セル)数46~50個/インチ、空孔径0.4~0.6mm、比表面積4500~5500m/m、厚さ0.8~1.2mmのものを好適に用いることができる。前記金属多孔体は、正極集電体とする場合にはアルミニウムからなることが好ましく、負極集電体とする場合には、銅からなることが好ましい。
 前記金属多孔体は、アルミニウムからなる場合には、連続気泡を有するウレタン発泡体にカーボン塗料を塗布し導電化処理を行った後、1-エチル-3-メチルイミダゾリウムクロリドと塩化アルミニウム(AlCl)とを33:67のモル比で含み、さらに少量のフェナントロリンを含むメッキ浴を用い、不活性雰囲気中で電気メッキを行うことにより所定量のアルミニウム層を形成し、500~660℃の範囲の温度の酸素含有雰囲気中、アルミニウム表面の過剰な酸化が抑制される条件下にウレタン発泡体とカーボン塗料とを熱分解させて除去することにより製造することができる。また、前記金属多孔体は、銅からなる場合には、連続気泡を有するウレタン発泡体にカーボン塗料を塗布し導電化処理を行って、電気メッキにて所定量の銅層を形成し、ウレタン発泡体とカーボン塗料とを熱分解させて除去した後、酸化された銅層を水素ガス雰囲気下で還元処理することにより製造することができる。このようにして製造される金属多孔体として、住友電気工業株式会社製の「アルミセルメット」(登録商標)や銅またはニッケルの「セルメット」(登録商標)を用いることができる。
 正極活物質23において、集電体の一方の面に保持される第1の正極活物質21の厚さは、他方の面に保持される第2の正極活物質22の厚さよりも厚いことが好ましく、負極活物質33において、集電体の一方の面に保持される第1の負極活物質31の厚さは、他方の面に保持される第2の負極活物質32の厚さよりも厚いことが好ましい。この場合、具体的には、第1の正極活物質21又は第1の負極活物質31は100~250μmの範囲の厚さとすることが好ましく、第2の正極活物質22又は第2の負極活物質32は50~150μmの範囲の厚さとすることが好ましい。
 本実施形態のリチウムイオン二次電池1において、第1の正極活物質21に含まれる高容量型活物質としては、Li(Ni5/10Co2/10Mn3/10)O、Li(Ni6/10Co2/10Mn2/10)O、Li(Ni8/10Co1/10Mn1/10)O、Li(Ni0.8Co0.15Al0.05)Oからなる群から選択される少なくとも1種を挙げることができ、第2の正極活物質22に含まれる高出力型活物質としては、Li(Ni1/6Co4/6Mn1/6)O、Li(Ni1/3Co1/3Mn1/3)O、LiCoO、LiNiOからなる群から選択される少なくとも1種を挙げることができる。
 また、本実施形態のリチウムイオン二次電池1において、第1の負極活物質31に含まれる高容量型活物質としては、人工黒鉛、天然黒鉛、Si、SiOからなる群から選択される少なくとも1種を挙げることができ、第2の負極活物質32に含まれる高出力型活物質としては、ハードカーボン又はソフトカーボンを挙げることができる。
 また、第1のセパレータ4又は第2のセパレータ5としては、例えば、ポリエチレン、ポリプロピレン等からなる微多孔性のフィルムを用いることができる。第1のセパレータ4と第2のセパレータ5とは、互いに同一の材料からなるものであってよく、異なる材料からなるものであってもよい。
 次に、本実施形態のリチウムイオン二次電池の製造方法について説明する。
 <正極の製造>
 まず、高容量型活物質としてのLi(Ni5/10Co2/10Mn3/10)O、Li(Ni6/10Co2/10Mn2/10)O、Li(Ni8/10Co1/10Mn1/10)O、Li(Ni0.8Co0.15Al0.05)Oからなる群から選択される少なくとも1種と、結着剤としてのポリフッ化ビニリデン(PVDF)と、導電助剤としてのカーボンブラックとを、高容量型活物質:結着剤:導電助剤=80~99:0.5~19.5:0.5~19.5の質量比で全量が100となるように混合し、N-メチルピロリドン等の有機溶剤で希釈することにより、第1の正極活物質用スラリーを調製する。
 次に、高出力型活物質としてのLi(Ni1/6Co4/6Mn1/6)O、Li(Ni1/3Co1/3Mn1/3)Oからなる群から選択される少なくとも1種と、結着剤としてのポリフッ化ビニリデン(PVDF)と、導電助剤としてのカーボンブラックとを、高出力型活物質:結着剤:導電助剤=80~99:0.5~19.5:0.5~19.5の質量比で全量が100となるように混合し、N-メチルピロリドン等の有機溶剤で希釈することにより、第2の正極活物質用スラリーを調製する。
 次に、前記金属多孔体からなる集電体の一方の面に、前記第1の正極活物質用スラリーを、例えば、ノズルから所定の圧力で押し出すことにより塗布する。次に、前記第1の正極活物質用スラリーが塗布された前記金属多孔体からなる集電体を、大気中で90~130℃の範囲の温度で0.5~3時間乾燥させる。次いで、前記金属多孔体からなる集電体の他方の面に、前記第2の正極活物質用スラリーを、例えば、ノズルから所定の圧力で押し出すことにより塗布する。
 次に、前記第1の正極活物質用スラリーと前記第2の正極活物質用スラリーとが塗布された前記金属多孔体からなる集電体を、大気中で90~130℃の範囲の温度で0.5~3時間乾燥させて集電体の一方の面に保持される第1の正極活物質21と他方の面に保持される第2の正極活物質22とからなる正極活物質23を形成し、それぞれ所定の密度となるようにロールプレスする。そして、真空中で110~130℃の範囲の温度で11~13時間乾燥させることにより、第1の正極2とする。
 また、前記金属多孔体からなる集電体の一方の面に、前記第1の正極活物質用スラリーと前記第2の正極活物質用スラリーとのいずれか一方のみを塗布する以外は、第1の正極2の場合と全く同一にして第2の正極6とする。
 <負極の製造>
 まず、高容量型活物質としての人工黒鉛、天然黒鉛、Si、SiOかからなる群から選択される少なくとも1種と、結着剤としてのカルボキシメチルセルロース、スチレンブタジエンゴム、ポリアクリル酸ナトリウム、ポリフッ化ビニリデンからなる群から選択される少なくとも1種と、導電助剤としてのカーボンブラックとを、高容量型活物質:結着剤:導電助剤=80~99.5:0.5~20:0~10の質量比で全量が100となるように混合し、N-メチルピロリドン等の有機溶剤又は純水で希釈することにより、第1の負極活物質用スラリーを調製する。
 次に、高容量型活物質としてのハードカーボンと、結着剤としてのカルボキシメチルセルロース、スチレンブタジエンゴム、ポリアクリル酸ナトリウム、ポリフッ化ビニリデンからなる群から選択される少なくとも1種と、導電助剤としてのカーボンブラックとを、高容量型活物質:結着剤:導電助剤=80~99.5:0.5~20:0~10の質量比で全量が100となるように混合し、N-メチルピロリドン等の有機溶剤又は純水で希釈することにより、第2の負極活物質用スラリーを調製する。
 次に、前記第1の正極活物質用スラリーと前記第2の正極活物質用スラリーとに代えて、前記第1の負極活物質用スラリーと前記第2の負極活物質用スラリーとを用いること以外は、第1の正極2又は第2の正極6の場合と全く同一にして、前記金属多孔体からなる集電体に塗布し、大気中で乾燥させた後、ロールプレスし、さらに真空中で乾燥させることにより、第1の負極3又は第2の負極7とする。
 <リチウムイオン二次電池の製造>
 次に、同数の第1の正極2と第1の負極3とを、第1のセパレータ4又は第2のセパレータ5を介して交互に配設し、一方の端部には第2の正極6を配設し、他方の端部には第2の負極7を配設する。このとき、第1の正極2の第1の正極活物質21は第1のセパレータ4を介して隣接する第1の負極3の第1の負極活物質31と対向し、第2の正極活物質22は第2のセパレータ5を介して隣接する第1の負極3の第2の負極活物質32と対向するようにする。
 また、第1のセパレータ4又は第2のセパレータ5を介して交互に配設された第1の正極2と第1の負極3との一方の端部が、第1の正極2の第1の正極活物質21である場合には、該端部に第1のセパレータ4を介して、第1の負極活物質31のみからなる負極活物質33を備える第2の負極7を配設する。また、第1のセパレータ4又は第2のセパレータ5を介して交互に配設された第1の正極2と第1の負極3との一方の端部が、第1の正極2の第2の正極活物質22である場合には、該端部に第2のセパレータ5を介して、第2の負極活物質32のみからなる負極活物質33を備える第2の負極7を配設する。
 一方、第1のセパレータ4又は第2のセパレータ5を介して交互に配設された第1の正極2と第1の負極3との他方の端部が、第1の負極3の第1の負極活物質31である場合には、該端部に第1のセパレータ4を介して、第1の正極活物質21のみからなる正極活物質23を備える第2の正極6を配設する。また、第1のセパレータ4又は第2のセパレータ5を介して交互に配設された第1の正極2と第1の負極3との他方の端部が、第1の負極3の第2の負極活物質32である場合には、該端部に第2のセパレータ5を介して、第2の正極活物質22のみからなる正極活物質23を備える第2の正極6を配設する。
 次に、第1のセパレータ4及び第2のセパレータ5に電解液を含浸させた後、タブ24、34が容器から露出するようにして、容器を封止することにより本実施形態のリチウムイオン二次電池1とする。
 前記電解液としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の溶媒に、LiPF、LiBF、LiClO等の支持塩を、0.1~3モル/Lの範囲の濃度、好ましくは0.6~1.5モル/Lの範囲の濃度で溶解させたものを用いることができる。
 次に、本発明の実施例及び比較例を示す。
 〔実施例1〕
 本実施例では、まず、柱状の骨格が三次元に連なった三次元網目状構造を有する金属多孔体からなる集電体(以下、「三次元骨格集電体」と略記する)として、アルミニウムからなり、気孔率95%、空孔(セル)数46~50個/インチ、空孔径0.5mm、比表面積5000m/m、厚さ1.0mm、縦150mm、横200mmのもの(住友電気工業株式会社製セルメット(登録商標))を用いて、次のようにして第1の正極2を作成した。
 まず、前記三次元骨格集電体の一方の面の中央部の縦80mm、横150mmの領域に、高容量型活物質を含む第1の正極活物質用スラリーを塗布した。次いで、前記三次元骨格集電体の他方の面の前記第1の正極活物質用スラリーを塗布した領域に対応する領域に、高出力型活物質を含む第2の正極活物質用スラリーを塗布した。
 前記第1の正極活物質用スラリーは、高容量型活物質としてのLi(Ni5/10Co2/10Mn3/10)Oと、結着剤としてのポリフッ化ビニリデン(PVDF)と、導電助剤としてのカーボンブラックとを、高容量型活物質:結着剤:導電助剤=94:2:4の質量比となるように秤量し、N-メチルピロリドンに混合することにより調製した。また、前記第2の正極活物質用スラリーは、高出力型活物質としてのLi(Ni1/6Co4/6Mn1/6)Oと、結着剤としてのポリフッ化ビニリデン(PVDF)と、導電助剤としてのカーボンブラックとを、高出力型活物質:結着剤:導電助剤=94:2:4の質量比となるように秤量し、N-メチルピロリドンに混合することにより調製した。
 次に、一方の面に前記第1の正極活物質用スラリーを塗布し、他方の面に前記第2の正極活物質用スラリーを塗布した前記三次元骨格集電体を、大気中、120℃の温度で12時間乾燥させた後、ロールプレスを行い、さらに、真空中、120℃の温度で12時間乾燥させた。
 次に、縦30mm、横40mmの前記第1の正極活物質用スラリー及び前記第2の正極活物質用スラリーが塗布された塗工領域と、該塗工領域に接する縦15mm、横30mmの前記第1の正極活物質用スラリー及び前記第2の正極活物質用スラリーが塗布されていないタブ24とからなる形状に打ち抜くことにより、第1の正極2を得た。
 第1の正極2は、前記三次元骨格集電体の一方の面に前記第1の正極活物質用スラリーにより形成された第1の正極活物21が保持され、他方の面に前記第2の正極活物質用スラリーにより形成された第2の正極活物質22が保持されて、正極活物質層23が形成されている。本実施例では、前記三次元骨格集電体の一方の面に保持された第1の正極活物質21は、厚さ0.225mm、体積密度3.2g/cmであり、他方の面に保持された第2の正極活物質22は、厚さ0.056mm、体積密度3.2g/cmである。本実施例では、第1の正極2を2枚用意した。
 また、前記三次元骨格集電体の一方の面に前記第1の正極活物質用スラリーのみを塗布した以外は、第1の正極2の場合と全く同一にして、前記三次元骨格集電体の一方の面に、前記第1の正極活物質用スラリーにより形成された第1の正極活物質21のみからなる正極活物質23が保持されている第2の正極6を1枚用意した。
 次に、三次元骨格集電体として、銅からなり、気孔率95%、空孔(セル)数46~50個/インチ、空孔径0.5mm、比表面積5000m/m、厚さ1.0mm、縦150mm、横80mmのもの(住友電気工業株式会社製セルメット(登録商標))を用いて、次のようにして第1の負極3を作成した。
 まず、前記三次元骨格集電体の一方の面の中央部の縦70mm、横70mmの領域に、高容量型活物質を含む第1の負極活物質用スラリーを塗布した。次いで、前記三次元骨格集電体の他方の面の前記第1の負極活物質用スラリーを塗布した領域に対応する領域に、高出力型活物質を含む第2の負極活物質用スラリーを塗布した。
 前記第1の負極活物質用スラリーは、高容量型活物質としての天然黒鉛と、結着剤としてのカルボキシメチルセルロースとスチレンブタジエンゴムとの混合物と、導電助剤としてのカーボンブラックとを、高容量型活物質:結着剤:導電助剤=96.5:2.5:1の質量比となるように秤量し、純水に混合することにより調製した。また、前記第2の負極活物質用スラリーは、導電助剤を全く用いることなく、高出力型活物質としてのハードカーボンと、結着剤としてのポリフッ化ビニリデン(PVDF)とを、高出力型活物質:結着剤=98:2の質量比となるように秤量し、N-メチルピロリドンに混合することにより調製した。
 次に、一方の面に前記第1の負極活物質用スラリーを塗布し、他方の面に前記第2の負極活物質用スラリーを塗布した前記三次元骨格集電体を、大気中、120℃の温度で12時間乾燥させた後、ロールプレスを行い、さらに、真空中、120℃の温度で12時間乾燥させた。
 次に、縦34mm、横44mmの前記第1の負極活物質用スラリー及び前記第2の負極活物質用スラリーが塗布された塗工領域と、該塗工領域に接する縦15mm、横30mmの前記第1の負極活物質用スラリー及び前記第2の負極活物質用スラリーが塗布されていないタブ34とからなる形状に打ち抜くことにより、本実施例の第1の負極3を得た。
 第1の負極3は、前記三次元骨格集電体の一方の面に、前記第1の負極活物質用スラリーにより形成された第1の負極活物質31が保持され、他方の面に前記第2の負極活物質用スラリーにより形成された第2の負極活物質32が保持されて、負極活物質33が形成されている。本実施例では、前記三次元骨格集電体の一方の面に保持された第1の負極活物質31は、厚さ0.212mm、体積密度1.7g/cmであり、他方の面に保持された前記第2の負極活物質層32は、厚さ0.082mm、体積密度1.1g/cmである。本実施例では、第1の負極3を2枚用意した。
 また、前記三次元骨格集電体の一方の面に前記第1の負極活物質用スラリーのみを塗布した以外は、第1の負極3の場合と全く同一にして、前記三次元骨格集電体の一方の面に前記第1の負極活物質用スラリーにより形成された第1の負極活物質31のみからなる負極活物質33が保持されている第2の負極7を1枚用意した。
 次に、アルミニウムラミネートのパウチ内に、第1の正極2と第1の負極3とを、間に第1のセパレータ4又は第2のセパレータ5を挟み、タブ24、34がパウチ外に出るようにして配設した。また、一方の端部には第2の正極6を、隣接する第1の負極3との間に第1のセパレータ4を挟み、タブ24がパウチ外に出るようにして配設し、他方の端部には第2の負極7を、隣接する第1の正極2との間に第1のセパレータ4を挟み、タブ34がパウチ外に出るようにして配設した。そして、第1のセパレータ4及び第2のセパレータ5に電解液を含浸させた後、真空封止することにより、図1に示す構成を備えるリチウムイオン二次電池1を作製した。
 第1のセパレータ4及び第2のセパレータ5としては、厚さ15μmのポリエチレン製微多孔性フィルムを用いた。また、前記電解液としては、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとを40:30:30の容積比で混合した混合溶媒に、支持塩としてのLiPFを1.2モル/Lの濃度で溶解させたものを用いた。
 本実施例のリチウムイオン二次電池1では、第1の正極2の第1の正極活物質21は第1のセパレータ4を介して隣接する第1の負極3又は第2の負極7の第1の負極活物質31と対向し、第2の正極活物質22は第2のセパレータ5を介して隣接する第1の負極3の第2の負極活物質32と対向している。また、第1の負極3の第1の負極活物質31は第1のセパレータ4を介して隣接する第1の正極2又は第2の正極6の第1の正極活物質21と対向している。
 <エネルギー密度の算出>
 次に、本実施例で作製したリチウムイオン二次電池1について、第1の正極活物質21及び第2の正極活物質22の活物質量から、25℃の温度における正極の仮容量を算出した。次に、前記仮容量に基づき、5時間で放電できる(0.2C)電流値を決定した。
 次に、本実施例で作製したリチウムイオン二次電池1について、0.2Cで4.2Vまで定電流充電し、4.2Vで1時間定電圧充電した後、0.2Cで2.4Vまで定電流放電した。前記定電流放電時の容量を定格容量(mAh/g)とする一方、該定電流放電時の充放電曲線において該定格容量の1/2の容量時の電圧を平均電圧(V)とし、次式(1)からエネルギー密度(Wh/g)を算出した。
  エネルギー密度(Wh/g)=定格容量(mAh/g)×平均電圧(V)   ・・・(1)
 結果を図3に示す。尚、図3では、後述の比較例1のリチウムイオン二次電池11におけるエネルギー密度(Wh/g)を1とし、これに対する比の値として示している。
 <出力密度の算出>
 次に、25℃の温度で、前記定格電流に対し充電率(SOC)が50%となる容量にするために0.2Cで2.5時間充電し、このときの開路電圧(OCV)をEとした。
 次に、所定の電流値で10秒間放電し、そのときの電圧を測定した後、0.2Cで放電分の容量を充電する操作を、該所定の電流値を0.5Cから0.5Cずつ3.0Cまで変量して繰り返した。そして、横軸に電流値、縦軸に各電流値に対する電圧をプロットしたときに得られる直線の傾きを抵抗Rとした。
 次に、カットオフ電圧Ecutoffを2.4Vとし、前記抵抗Rと、前記開路電圧Eとを用いて、次式(2)から出力密度Wを算出した。
  W=(|Ecutoff-E|/R)×Ecutoff   ・・・(2)
 結果を図4に示す。尚、図4では、後述の比較例1のリチウムイオン二次電池における出力密度を1とし、これに対する比の値として示している。
 <耐久性の評価:容量維持率>
 次に、前記定格容量に対し、0.5Cで4.2Vまで定電流充電し、0.5Cで2.4Vまで定電流放電を行う操作を1サイクルとし、45℃において該操作を200サイクル繰り返した。サイクル数に対する容量維持率の変化を図5に示す。
 <耐久性の評価:抵抗上昇率>
 本実施例で作製したリチウムイオン二次電池11について、前記容量維持率の測定時に、前記操作の開始前(0サイクル)と、200サイクル後との内部抵抗を測定した。結果を図6に示す。
 〔比較例1〕
 図2に示すように、本比較例のリチウムイオン二次電池11は、同数の第1の正極12と、第1の負極13とが、交互にセパレータ14を介して隣接する構造を備え、一方の端部には第2の正極16が配設され、他方の端部には第2の負極17が配設されている。
 第1の正極12は、アルミニウム箔からなる集電体18と、集電体18の両面に位置する高容量型活物質を含む第1の正極活物質層21と、集電体18の両面の第1の正極活物質層21上に位置する高出力型活物質を含む第2の正極活物質層22とからなる正極活物質層23とを備え、集電体18の正極活物質層23から露出する部分がタブとなっている。
 第1の負極13は、銅箔からなる集電体19と、集電体19の両面に位置する高容量型活物質を含む第1の負極活物質層31と、集電体19の両面の第1の負極活物質層31上に位置する高出力型活物質を含む第2の負極活物質層32とからなる負極活物質層33とを備え、集電体19の負極活物質層33から露出する部分がタブとなっている。
 また、第2の正極16は、集電体18の一方の面のみに正極活物質層23を備えること以外は、第1の正極12と全く同一の構成を備えており、第2の負極17は、集電体19の一方の面のみに負極活物質層33を備えること以外は、第1の負極13と全く同一の構成を備えている。
 そして、第1の正極12の第1の正極活物質層21はセパレータ14を介して隣接する第1の負極13又は第2の負極17の第1の負極活物質層31と対向し、第2の正極16の第1の正極活物質層21はセパレータ4を介して隣接する第1の負極13の第1の負極活物質層31と対向している。
 本比較例では、次のようにして、図2に示す構成を備えるリチウムイオン二次電池11を製造した。
 まず、幅20cm、長さ1m、厚さ15μmのアルミニウム箔を用いて、次のようにして正極を作成した。
 まず、前記アルミニウム箔の中央部10cmの領域に、高容量型正極活物質を含む第1の正極活物質用スラリーを塗布し、130℃の温度で10分間乾燥させた後、130℃の温度のロールプレスを用い、荷重15トンでプレスして第1の正極活物質層を形成した。前記第1の正極活物質用スラリーは、高容量型活物質:結着剤:導電助剤=95:2.5:2.5の質量比となるように秤量した以外は、実施例1の第1の正極活物質用スラリーと全く同一にして調製した。
 次に、前記第1の正極活物質層上に、高出力型正極活物質を含む第2の正極活物質用スラリーを塗布し、130℃の温度で10分間乾燥させた後、130℃の温度のロールプレスを用い、荷重5トンでプレスして第2の正極活物質層を形成した。前記第2の正極活物質用スラリーは、高出力型活物質:結着剤:導電助剤=95:2.5:2.5の質量比となるように秤量した以外は、実施例1の第2の正極活物質用スラリーと全く同一にして調製した。
 次に、前記アルミニウム箔を、縦30mm、横40mmの塗工領域と、該塗工領域に接する縦15mm、横30mmのタブ領域とからなる形状に打ち抜いて正極を得た。
 本比較例では、集電体18の一方の面において、第1の正極活物質層21は、厚さ0.042mm、体積密度3.30g/cmであり、第2の正極活物質層22は、厚さ0.016mm、体積密度2.65g/cmである。本比較例では、第1の正極2を4枚用意した。
 また、集電体18の一方の面のみに正極活物質層23を形成した以外は、第1の正極12と全く同一にして、集電体18の一方の面のみに正極活物質層23を備える第2の正極16を得た。本比較例では、第2の正極16を1枚用意した。
 次に、幅20cm、長さ1m、厚さ8μmの銅箔を用いて、次のようにして負極を作成した。
 まず、前記銅箔の中央部10cmの領域に、高容量型負極活物質を含む第1の負極活物質用スラリーを塗布し、130℃の温度で10分間乾燥させた後、130℃の温度のロールプレスを用い、荷重15トンでプレスして第1の負極活物質層を形成した。前記第1の負極活物質用スラリーは、高容量型活物質としての天然黒鉛と、結着剤としてのカルボキシメチルセルロースとスチレンブタジエンゴムとの混合物と、導電助剤としてのカーボンブラックとを、高容量型活物質:結着剤:導電助剤=96.5:2.5:1の質量比となるように秤量し、純水に混合することにより調製した。
 次に、前記第1の負極活物質層上に、高出力型負極活物質を含む第2の負極活物質用スラリーを塗布し、130℃の温度で10分間乾燥させた後、130℃の温度のロールプレスを用い、荷重5トンでプレスして第2の負極活物質層を形成した。前記第2の負極活物質用スラリーは、導電助剤を全く用いることなく、高出力型活物質としてのハードカーボンと、結着剤としてのカルボキシメチルセルロースとスチレンブタジエンゴムとの混合物と、高出力型活物質:結着剤=98:2の質量比となるように秤量し、純水に混合することにより調製した。
 次に、前記銅箔を、縦34mm、横44mmの塗工領域と、該塗工領域に接する縦15mm、横30mmのタブ領域とからなる形状に打ち抜いて負極を得た。
 本比較例では、集電体19の一方の面において、第1の負極活物質層31は、厚さ0.039mm、体積密度1.55g/cmであり、第2の負極活物質層32は、厚さ0.024mm、体積密度1.00g/cmである。本比較例では、第1の負極13を4枚用意した。
 また、集電体19の一方の面のみに負極活物質層33を形成した以外は、第1の負極13と全く同一にして、集電体8の一方の面のみに負極活物質層33を備える第2の負極17を得た。本比較例では、第2の負極17を1枚用意した。
 次に、アルミニウムラミネートのパウチ内に、第1の正極12と第1の負極13とを、間にセパレータ14を挟み、タブがパウチ外に出るようにして配設した。また、一方の端部には第2の正極16を、隣接する第1の負極13との間にセパレータ14を挟み、タブがパウチ外に出るようにして配設し、他方の端部には第2の負極17を、隣接する第1の正極12との間にセパレータ14を挟み、タブがパウチ外に出るようにして配設した。そして、セパレータ14に電解液を含浸させた後、真空封止することにより、図2に示す構成を備えるリチウムイオン二次電池11を作製した。
 セパレータ14としては、厚さ15μmのポリエチレン製微多孔性フィルムを用いた。また、前記電解液としては、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとを40:30:30の容積比で混合した混合溶媒に、支持塩としてのLiPFを1.2モル/Lの濃度で溶解させたものを用いた。
 本比較例のリチウムイオン二次電池11は、リチウムイオン二次電池として容量が、実施例1のリチウムイオン二次電池1と同一になるようにした。
 次に、本比較例で得られたリチウムイオン二次電池11を用いた以外は、実施例1と全く同一にしてエネルギー密度及び出力密度を算出した。エネルギー密度を図3に、出力密度を図4にそれぞれ示す。
 次に、本比較例で得られたリチウムイオン二次電池11を用いた以外は、実施例1と全く同一にして耐久性の評価を行った。サイクル数に対する容量維持率の変化を図5に、抵抗上昇率について、容量維持率の測定時の操作開始前(0サイクル)と、200サイクル後との内部抵抗を図6に示す。
 図3~6から、実施例1のリチウムイオン二次電池1は、比較例1のリチウムイオン二次電池11に対して、エネルギー密度及び出力密度の両方に優れ、充放電サイクル特性にも優れていることが明らかである。
 また、実施例1のリチウムイオン二次電池1によれば、前記三次元骨格集電体を使用することにより電極1枚当たりの正極活物質層23又は負極活物質層33の目付量を増加させることができる。従って、実施例1のリチウムイオン二次電池1によれば、比較例1のリチウムイオン二次電池11に比較して、電極数を削減することができ、リチウムイオン二次電池としての質量を低減することができるので、エネルギー密度を向上させることができる。
 1…リチウムイオン二次電池、 2…第1の正極、 3…第1の負極、 6…第2の正極、 7…第2の負極、 21…第1の正極活物質、 22…第2の正極活物質、 23…正極活物質、 31…第1の負極活物質、 32…第2の負極活物質、 33…負極活物質。

Claims (3)

  1.  三次元網目状構造を有する金属多孔体からなる正極集電体と、前記正極集電体の一方の面に保持された高容量型活物質を含む第1の正極活物質と、前記正極集電体の他方の面に保持された高出力型活物質を含む第2の正極活物質を備える少なくとも一つの正極と、
     三次元網目状構造を有する金属多孔体からなる負極集電体と、前記負極集電体の一方の面に保持された高容量型活物質を含む第1の負極活物質と、前記負極集電体の他方の面に保持された高出力型活物質を含む第2の負極活物質を備える少なくとも一つの負極とが、交互にセパレータを介して隣接する構造を備え、
     前記第1の正極活物質は、第1のセパレータを介して隣接する前記第1の負極活物質と対向し、前記第2の正極活物質は、第2のセパレータを介して隣接する前記負極の第2の負極活物質と対向していることを特徴とするリチウムイオン二次電池。
  2.  請求項1記載のリチウムイオン二次電池において、前記第1の正極活物質は、Li(Ni5/10Co2/10Mn3/10)O、Li(Ni6/10Co2/10Mn2/10)O、Li(Ni8/10Co1/10Mn1/10)O、Li(Ni0.8Co0.15Al0.05)Oからなる群から選択される少なくとも1種を含み、
     前記第2の正極活物質は、Li(Ni1/6Co4/6Mn1/6)O、Li(Ni1/3Co1/3Mn1/3)Oからなる群から選択される少なくとも1種を含むことを特徴とするリチウムイオン二次電池。
  3.  請求項1記載のリチウムイオン二次電池において、前記第1の負極活物質は、人工黒鉛、天然黒鉛、Si、SiOからなる群から選択される少なくとも1種を含み、
     前記第2の負極活物質は、ハードカーボンを含むことを特徴とするリチウムイオン二次電池。
PCT/JP2019/018563 2018-05-17 2019-05-09 リチウムイオン二次電池 WO2019221004A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020519596A JPWO2019221004A1 (ja) 2018-05-17 2019-05-09 リチウムイオン二次電池
US17/054,697 US11949111B2 (en) 2018-05-17 2019-05-09 Lithium ion secondary battery
CN201980028480.3A CN112204799A (zh) 2018-05-17 2019-05-09 锂离子二次电池
EP19802623.9A EP3796453B1 (en) 2018-05-17 2019-05-09 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018095344 2018-05-17
JP2018-095344 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019221004A1 true WO2019221004A1 (ja) 2019-11-21

Family

ID=68540247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018563 WO2019221004A1 (ja) 2018-05-17 2019-05-09 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US11949111B2 (ja)
EP (1) EP3796453B1 (ja)
JP (1) JPWO2019221004A1 (ja)
CN (1) CN112204799A (ja)
WO (1) WO2019221004A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151055A (ja) 2000-08-28 2002-05-24 Nissan Motor Co Ltd リチウムイオン二次電池
JP2009032444A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp リチウム二次電池
JP2013020735A (ja) * 2011-07-07 2013-01-31 Gs Yuasa Corp 非水電解質二次電池およびその製造方法
JP2014225430A (ja) * 2013-05-14 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池
JP2015037024A (ja) * 2013-08-12 2015-02-23 住友電気工業株式会社 リチウムイオン二次電池、充放電システムおよび充放電方法
JP2017501535A (ja) * 2013-12-03 2017-01-12 エルジー・ケム・リミテッド 出力及び容量特性が異なる電極を含んでいるハイブリッド型二次電池
JP2017101887A (ja) 2015-12-03 2017-06-08 クボタ空調株式会社 調湿装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696557B2 (ja) 2005-01-06 2011-06-08 日本電気株式会社 リチウム二次電池用活物質材料、その製造方法及びこれに用いる原材料並びにリチウム二次電池
US20110311854A1 (en) * 2007-01-03 2011-12-22 Greatbatch Ltd. Electrochemical Cell Electrode With Sandwich Cathode And Method For Making Same
WO2010013405A1 (ja) 2008-07-29 2010-02-04 パナソニック株式会社 非水電解質二次電池用集電体、非水電解質二次電池用電極、及びそれらの製造方法、並びに非水電解質二次電池
JP2011204563A (ja) * 2010-03-26 2011-10-13 Nissan Motor Co Ltd 非水二次電池の製造方法
JP2012256584A (ja) * 2011-02-18 2012-12-27 Sumitomo Electric Ind Ltd 電気化学素子
KR101375158B1 (ko) * 2011-11-17 2014-03-17 주식회사 샤인 전극 조립체, 이의 제조 방법, 및 전지의 충전 및 방전 방법
DE112013001595T5 (de) * 2012-03-22 2015-01-08 Sumitomo Electric Industries, Ltd. Festkörper-Lithiumsekundärbatterie
WO2013140940A1 (ja) * 2012-03-22 2013-09-26 住友電気工業株式会社 リチウム二次電池
KR101353262B1 (ko) * 2013-04-19 2014-01-23 주식회사 셀모티브 리튬이차전지 전극용 메탈폼, 상기 메탈폼의 제조방법 및 상기 메탈폼을 포함하는 리튬이차전지
KR101558774B1 (ko) 2013-05-23 2015-10-08 주식회사 엘지화학 다층의 활물질층을 포함하는 리튬 이차전지
JP6056703B2 (ja) * 2013-08-12 2017-01-11 トヨタ自動車株式会社 リチウムイオン二次電池
KR20160005555A (ko) 2014-07-07 2016-01-15 삼성에스디아이 주식회사 리튬전지
JP2016058257A (ja) * 2014-09-10 2016-04-21 三菱マテリアル株式会社 リチウムイオン二次電池用正極及びリチウムイオン二次電池
PL3451421T3 (pl) * 2016-06-14 2022-03-21 Lg Chem, Ltd. Elektroda do baterii akumulatorowej i zawierająca ją litowa bateria akumulatorowa
JP6895105B2 (ja) 2016-08-01 2021-06-30 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子の製造方法、および非水系電解質二次電池用正極活物質の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151055A (ja) 2000-08-28 2002-05-24 Nissan Motor Co Ltd リチウムイオン二次電池
JP2009032444A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp リチウム二次電池
JP2013020735A (ja) * 2011-07-07 2013-01-31 Gs Yuasa Corp 非水電解質二次電池およびその製造方法
JP2014225430A (ja) * 2013-05-14 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池
JP2015037024A (ja) * 2013-08-12 2015-02-23 住友電気工業株式会社 リチウムイオン二次電池、充放電システムおよび充放電方法
JP2017501535A (ja) * 2013-12-03 2017-01-12 エルジー・ケム・リミテッド 出力及び容量特性が異なる電極を含んでいるハイブリッド型二次電池
JP2017101887A (ja) 2015-12-03 2017-06-08 クボタ空調株式会社 調湿装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3796453A4

Also Published As

Publication number Publication date
CN112204799A (zh) 2021-01-08
EP3796453A1 (en) 2021-03-24
US11949111B2 (en) 2024-04-02
EP3796453A4 (en) 2021-07-07
US20210075020A1 (en) 2021-03-11
EP3796453B1 (en) 2022-11-09
JPWO2019221004A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
EP3573149B1 (en) Battery and testing method of active specific surface area of electrode plate
RU2361326C2 (ru) Аккумуляторная батарея с улучшенной подвижностью ионов лития и улучшенной емкостью элементов
JP7254875B2 (ja) リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
WO2003088404A1 (en) Nonaqueous electrolyte secondary battery
WO2019230322A1 (ja) リチウムイオン二次電池用負極
JP2016091984A (ja) 蓄電素子
JP2019160782A (ja) 負極及びリチウムイオン二次電池
JP2013254647A (ja) リチウムイオン−リチウム空気複合二次電池、リチウムイオン−リチウム空気複合二次電池を用いた充放電方法、およびリチウムイオン−リチウム空気複合二次電池用正極材料
KR20110019101A (ko) 리튬 분말과 실리콘 옥사이드 이중층 음극, 그 제조 방법 및 이를 이용한 리튬 이차 전지
JP4839117B2 (ja) 円筒型リチウム二次電池
JPH1131534A (ja) 非水電解液二次電池およびこれに用いる電極板の製造方法
US20200403224A1 (en) Lithium molybdate anode material
JP2018198132A (ja) リチウムイオン二次電池用正極及びそれを用いるリチウムイオン二次電池
JPH06260168A (ja) リチウム二次電池
KR20020094530A (ko) 금속이 피복된 집전체, 이를 이용한 전극 및 이들 전극을포함하는 리튬전지
WO2019221004A1 (ja) リチウムイオン二次電池
JP6613952B2 (ja) 正極活物質、及びそれを用いた正極ならびにリチウムイオン二次電池
KR20140048010A (ko) 리튬이온 이차전지용 양극 및 이를 포함하는 리튬이온 이차전지
WO2019220985A1 (ja) リチウムイオン二次電池用電極
KR20000075095A (ko) 리튬 이차 전지용 양극판, 이의 제조 방법 및 이를 사용하여 제조한 리튬 이차 전지
JP2004234994A (ja) リチウム二次電池とその組電池及びその電極
JP3048953B2 (ja) 非水電解質二次電池
CN113036225B (zh) 锂离子电池的制造方法
WO2021100225A1 (ja) 非水電解質二次電池
JPH0684545A (ja) 薄形非水電解液二次電池の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519596

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019802623

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019802623

Country of ref document: EP

Effective date: 20201217