WO2010013405A1 - 非水電解質二次電池用集電体、非水電解質二次電池用電極、及びそれらの製造方法、並びに非水電解質二次電池 - Google Patents

非水電解質二次電池用集電体、非水電解質二次電池用電極、及びそれらの製造方法、並びに非水電解質二次電池 Download PDF

Info

Publication number
WO2010013405A1
WO2010013405A1 PCT/JP2009/003412 JP2009003412W WO2010013405A1 WO 2010013405 A1 WO2010013405 A1 WO 2010013405A1 JP 2009003412 W JP2009003412 W JP 2009003412W WO 2010013405 A1 WO2010013405 A1 WO 2010013405A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
current collector
material layer
secondary battery
electrolyte secondary
Prior art date
Application number
PCT/JP2009/003412
Other languages
English (en)
French (fr)
Inventor
別所邦彦
末次大輔
加藤誠一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009801258376A priority Critical patent/CN102084525A/zh
Priority to US13/054,146 priority patent/US20110111277A1/en
Publication of WO2010013405A1 publication Critical patent/WO2010013405A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery typified by a lithium ion secondary battery, and more particularly to a technique for improving the supportability of an active material of a current collector used therein.
  • Lithium ion secondary batteries use a carbonaceous material capable of occluding and releasing lithium as the negative electrode active material, and a composite oxide of lithium and a transition metal such as LiCoO 2 (lithium cobaltate) as the positive electrode active material. (Lithium-containing transition metal oxide) is used.
  • LiCoO 2 lithium cobaltate
  • electrodes positive electrode and negative electrode
  • electrodes that are power generation elements of a lithium ion secondary battery are manufactured as follows.
  • a positive electrode active material or a negative electrode active material, a binder, and a conductive material added as necessary are dispersed in a dispersion medium to prepare a mixture paint.
  • the prepared mixture paint is applied to one or both sides of the current collector and dried to form an active material layer.
  • the current collector on which the active material layer is formed is pressed so that the entire thickness becomes a predetermined thickness.
  • One of the causes of the characteristic deterioration accompanying the charge / discharge cycle of the electrode produced by the above process is a decrease in the binding force of the active material layer to the current collector. More specifically, as the active material layer repeatedly expands and contracts with charge and discharge, the binding force weakens at the interface between the active material layer and the current collector, and the active material layer falls off the current collector. Battery characteristics deteriorate.
  • the binding force between the current collector and the active material layer is required. It is effective to increase the area.
  • the surface of the current collector is roughened by etching the surface of the current collector by electrolysis or by depositing the constituent metal of the current collector on the surface of the current collector by electrodeposition. Is generally done.
  • the metal foil is irradiated with laser light to form irregularities so that the surface roughness is an arithmetic average roughness of 0.5 to 10 ⁇ m (see Patent Document 2).
  • the surface of the current collector is provided with irregularities by a pair of guide rollers immediately before the mixture paint is applied to the current collector unwound from the unwinding roller by a coating device (patent) Reference 3).
  • a carbonaceous material for example, graphite
  • the battery capacity is already reaching its limit at present. Therefore, in order to achieve further increase in capacity, it is necessary to form the negative electrode active material from other materials, and alloy-based materials are attracting attention as such materials (see Patent Document 7).
  • Alloy materials can occlude a large amount of lithium, and thus can increase the capacity, but the degree of expansion and contraction when absorbing and releasing lithium ions accompanying charging and discharging is large. Thus, the thickness of the electrode changes greatly with charge / discharge.
  • a large number of protrusions 202 are formed on the surface of the negative electrode current collector 200 made of a metal foil, and columnar bodies 204 are formed on the protrusions 202, respectively.
  • a material layer 206 is formed.
  • the columnar bodies 204 are separated from each other, and the gap 208 between them becomes wider in the thickness direction of the active material layer 206 as it goes downward from the surface of the active material layer 206. In this way, by configuring the active material layer from a large number of columnar bodies having voids between them, it is possible to suppress fluctuations in the thickness of the active material layer due to expansion and contraction of the active material accompanying charge / discharge. it can.
  • a metal foil is irradiated with a laser and locally heated to evaporate the metal to form a recess.
  • the temperature along the line is equal to or higher than the melting point. It may be heated up to.
  • defects, such as a wave, a wrinkle, and a curvature generate
  • the current collector of the lithium ion secondary battery is generally composed of a metal foil having a thickness of 20 ⁇ m or less. When laser processing is performed on such a metal foil, the output of the laser is reduced. There is a risk that a hole may be formed in the metal foil due to variation.
  • the current collector and the active material layer are obtained by subtracting the surface roughness (Ra) of the current collector from the surface roughness (Ra) of the active material layer to 0.1 ⁇ m or less. It stabilizes the binding force.
  • the binding force between the current collector and the active material layer is weakened, wrinkles occur in the electrode, and charge / discharge cycle characteristics deteriorate. May cause.
  • the active material layer is composed of a large number of columnar bodies having voids between them, thereby absorbing stress due to expansion of the active material during charging. Therefore, it is possible to suppress at least the initial stage that the active material layer falls off or wrinkles are generated in the current collector along with the charge / discharge cycle.
  • lithium ion secondary batteries which are representative of nonaqueous electrolyte secondary batteries
  • a simple manufacturing process is indispensable.
  • a thin strip process such as a vapor deposition method, a sputtering method, or a CVD method is used, while feeding a long strip current collector in the longitudinal direction, A can-roll system in which an active material layer is continuously formed on the surface is usually used.
  • the columnar body constituting the active material layer gradually grows in the plane direction as the active material layer grows in the thickness direction. For this reason, the phenomenon that a columnar body becomes thick toward the front end side of a columnar body, ie, the surface side of an active material layer, arises. As a result, in the vicinity of the surface of the active material layer, the gap between adjacent columnar bodies is reduced. For this reason, when charging / discharging is repeated, there is a disadvantage that the columnar body is cracked by the compressive force between the adjacent columnar bodies.
  • the volume expansion coefficient of a negative electrode active material made of silicon with respect to full discharge when fully charged reaches 400%.
  • the stress increases, and this suppresses the generation of wrinkles on the current collector and the falling off of the active material layer. It becomes difficult.
  • the lithium supplement to the negative electrode active material layer can be performed, for example, by depositing lithium on the surface of the negative electrode active material layer by a vacuum deposition method.
  • the lithium undergoes a solid phase reaction with the negative electrode active material and is occluded by the negative electrode active material.
  • the columnar bodies of the active material thereby expand, so that the adjacent columnar bodies are in contact with each other, and stress is generated between them.
  • the active material layer is formed on both sides of the current collector, if the amount of the active material carried on one surface and the other surface is non-uniform, the stress is unevenly distributed, Problems such as ripples occur.
  • the present invention has been made in view of the above-mentioned problems, and can suppress the occurrence of defects such as undulation, wrinkling, and warping in the electrode, and suppress the falling off of the active material layer accompanying charge / discharge.
  • An object of the present invention is to provide a current collector for a non-aqueous electrolyte secondary battery.
  • Another object of the present invention is to provide a highly safe electrode for a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery using such a current collector for a nonaqueous electrolyte secondary battery.
  • this invention aims at providing the manufacturing method of the collector for such a nonaqueous electrolyte secondary battery, and the electrode for nonaqueous electrolyte secondary batteries.
  • the present invention provides a metal foil, A plurality of protrusions formed on at least one surface of the metal foil, When the projection is viewed from a direction perpendicular to the surface of the metal foil, both ends of two orthogonal axial directions protrude outward, and an intermediate portion of the ends adjacent to each other in the circumferential direction is the inner side.
  • a current collector for a non-aqueous electrolyte secondary battery formed to recede is provided.
  • the protrusions are provided in a staggered arrangement on the surface of the metal foil.
  • the protrusions have the same height at both ends in each of two axial directions, and both in one axial direction. Is higher than both ends in the other axial direction.
  • the protrusion has a height between both ends in the one axial direction.
  • the main upper surface portion is higher than that, and both ends in the other axial direction are disposed on both sides of the main upper surface portion.
  • the main upper surface portion is at least partially at a position corresponding to both ends in the other axial direction.
  • a hollow portion having a spherical shape is formed.
  • the protrusion is inclined so that at least a side surface of the intermediate portion is retracted inward as the tip portion is approached. ing.
  • the protrusion is formed by compressing the metal foil, and the upper surface of the protrusion is subjected to the compression process. The surface roughness of the previous metal foil is maintained.
  • the present invention also includes a metal foil, A plurality of protrusions formed on at least one surface of the metal foil, The protrusion provides a current collector for a non-aqueous electrolyte secondary battery having a plurality of protrusions on the upper surface.
  • the protrusions are regularly arranged on the upper surface of the protrusion.
  • the protrusions are irregularly arranged on the upper surface of the protrusion.
  • the height of the convex portion is 1 to 5 ⁇ m.
  • the interval between adjacent protrusions is 1 to 5 ⁇ m.
  • the present invention is configured such that a positive electrode active material including a lithium-containing transition metal oxide or a negative electrode active material including a material capable of holding lithium is supported on the current collector for a non-aqueous electrolyte secondary battery.
  • An electrode for a non-aqueous electrolyte secondary battery is provided.
  • the present invention comprises an electrode group configured by laminating or winding a positive electrode, a negative electrode, and a separator interposed between both electrodes, A non-aqueous electrolyte, A battery case having an opening for housing the electrode group and the non-aqueous electrolyte; A sealing body that seals the opening, Provided is a nonaqueous electrolyte secondary battery in which at least one of the positive electrode and the negative electrode is composed of the electrode for a nonaqueous electrolyte secondary battery.
  • the present invention also includes (a) a step of compressing a metal foil with a pair of rollers having a plurality of recesses formed on at least one to form a plurality of protrusions on at least one surface of the metal foil; b) The metal foil is compressed by a pair of rollers having a plurality of recesses formed on at least one of them, and a protrusion having a diameter larger than that of the protrusion is formed on the surface of the metal foil on which the protrusion is formed.
  • the manufacturing method of the electrical power collector for nonaqueous electrolyte secondary batteries including a process is provided.
  • the recess is selected from the group consisting of laser processing, etching processing, dry etching processing, and blast processing in the roller. It is formed by at least one kind.
  • the present invention is a metal foil and a current collector having a plurality of protrusions formed in a predetermined arrangement on both surfaces of the metal foil, An active material layer formed on both sides of the current collector, The active material layer is composed of an assembly of columnar bodies of active material formed on the protrusions, Provided is a nonaqueous electrolyte secondary battery electrode in which the thickness of the active material layer on one surface of the current collector is larger than the thickness of the active material layer on the other surface.
  • the active material layer contains a compound containing silicon and oxygen, or a compound containing tin and oxygen.
  • the columnar body extends in an oblique direction with respect to a direction perpendicular to the surface of the metal foil from the upper surface of the protrusion.
  • the thickness of the active material layer on one surface of the current collector is 5 than the thickness of the active material layer on the other surface. Larger by ⁇ 10%.
  • an electrode group configured by winding a positive electrode, a negative electrode, and a separator interposed between both electrodes, A non-aqueous electrolyte, A battery case having an opening for housing the electrode group and the non-aqueous electrolyte; A sealing body that seals the opening,
  • the negative electrode is composed of the nonaqueous electrolyte secondary battery electrode,
  • the electrode group is configured by winding the negative electrode so that the active material layer on the one surface is on the outer peripheral side and the active material layer on the other surface is on the inner peripheral side. battery.
  • the positive electrode has an active material layer formed on both sides and an active material contained in the active material layer on one side Is less than the amount of active material contained in the active material layer on the other side,
  • the electrode group is configured by winding the positive electrode so that the active material layer on the one surface is on the outer peripheral side and the active material layer on the other surface is on the inner peripheral side.
  • the present invention provides (a) a step of preparing a current collector in which a plurality of protrusions are formed in a predetermined arrangement on both surfaces of a long strip-shaped metal foil; (B) preparing an active material containing silicon or tin; (C) a step of evaporating the active material from a vapor deposition source in a vacuum vapor deposition tank; (D) sending the current collector in the longitudinal direction in the vacuum deposition tank; (E) supplying oxygen in the vicinity of the current collector in the vacuum deposition tank; and (f) forming an active material layer by depositing the active material on the current collector.
  • a method for producing a nonaqueous electrolyte secondary battery electrode comprising: When forming an active material layer on both sides of the current collector, The active material is made so that the thickness of the active material layer formed on one surface of the current collector is larger than the thickness of the active material layer formed on the other surface of the current collector.
  • a method for producing an electrode for a non-aqueous electrolyte secondary battery deposited on the current collector is provided.
  • the active material layer when the active material layer is formed on one surface of the current collector, the active surface is formed on the other surface of the current collector.
  • the current collector is fed at a lower speed than when the material layer is formed.
  • the active material layer when the active material layer is formed on one surface of the current collector, the other surface of the current collector is formed.
  • the vapor deposition source is heated with a larger heating amount than when the active material layer is formed.
  • the protrusions formed on the surface of the metal foil in a predetermined arrangement are two orthogonal when viewed from a direction perpendicular to the surface of the metal foil. Both end portions in the axial direction protrude outward, and an intermediate portion between the two adjacent protrusions in the circumferential direction retreats inward.
  • the flexibility is improved by providing a large number of protrusions on the current collector.
  • compression processing is performed after the active material layer is formed on the surface of the current collector, it is possible to prevent the current collector from causing defects such as waving, wrinkling, and warping.
  • an active material is deposited in a columnar shape on the protrusions by vapor deposition to form a columnar body of the active material, and an active material layer is formed from the aggregate of the columnar body. This shape also follows the shape of the protrusion.
  • the interval between the adjacent columnar bodies becomes the smallest (the direction in which the protrusions are diagonally arranged in the staggered arrangement).
  • the gap between the columnar bodies can be made larger. Therefore, when the nonaqueous electrolyte secondary battery is charged, the active material expands, and the compressive stress generated by the contact between the columnar bodies can be alleviated. As a result, the current collector can be prevented from wrinkling, and the active material layer can be prevented from falling off the electrode.
  • a plurality of protrusions are formed on at least one surface of the metal foil, and a plurality of protrusions are formed on the upper surface of the protrusions.
  • the non-aqueous electrolyte secondary battery electrode and the non-aqueous electrolyte secondary are less susceptible to characteristic deterioration due to charge / discharge cycles and more reliable.
  • a secondary battery can be obtained.
  • the active material layer is formed on both surfaces of the current collector configured by forming a plurality of protrusions in a predetermined arrangement on both surfaces of the metal foil.
  • the active material layer is an aggregate of active material columnar bodies formed on the protrusions, and the thickness of the active material layer on one side of the current collector is larger than the thickness of the active material layer on the other side. .
  • the non-aqueous electrolyte secondary battery current collector of the present invention the non-aqueous electrolyte secondary battery electrode and the non-aqueous electrolyte secondary are less susceptible to characteristic deterioration due to charge / discharge cycles and more reliable. A secondary battery can be obtained.
  • FIG. 6 It is sectional drawing which shows schematic structure of the nonaqueous electrolyte secondary battery comprised using the collector for nonaqueous electrolyte secondary batteries of each said embodiment. It is the one part enlarged perspective view which shows schematic structure of the collector for nonaqueous electrolyte secondary batteries which concerns on Embodiment 6 of this invention. It is the perspective view which expanded a part of example of the roller used in order to manufacture an electrical power collector same as the above. It is the perspective view which expanded a part of other example of the roller used in order to manufacture an electrical power collector same as the above. It is a perspective view which shows schematic structure of the manufacturing apparatus containing the said roller used in order to manufacture a collector same as the above.
  • FIG. 1 is a plan view showing a schematic configuration of a current collector for a nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged perspective view of a part thereof.
  • the current collector 10 in the illustrated example includes a long strip-shaped metal foil 11 and a large number of protrusions 12 formed in a predetermined arrangement on at least one surface of the metal foil 11.
  • the protrusion 12 is formed in a substantially rhombus shape in plan view. More specifically, when viewed from a direction perpendicular to the surface of the metal foil 11, the protrusion 12 has both ends in the major axis direction (hereinafter referred to as major axis direction ends) 12a and both in the minor axis direction. An end portion (hereinafter referred to as a short-axis direction end portion) 12b is formed so as to protrude outward while being rounded. Further, the protrusion 12 is formed such that an intermediate portion 12c between the long-axis direction end portion 12a and the short-axis direction end portion 12b is retreated inward while being rounded.
  • the arrangement of the protrusions 12 is preferably a zigzag alignment as shown in FIG.
  • the postures of the protrusions 12 in the arrangement it is preferable that the short axis direction and the long axis direction described above coincide with the vertical direction and the horizontal direction of the staggered arrangement.
  • the intervals between the protrusions 12 arranged in the oblique direction are all equal.
  • the minimum interval between the adjacent projections 12 is the interval L between the projections 12 arranged in the oblique direction.
  • the protrusions 12 are mainly provided to form an active material columnar body 20 by depositing an active material in a columnar shape by a vacuum process such as vapor deposition. .
  • a thin film of active material composed of a large number of columnar bodies 20 can be formed on the surface of the current collector 10.
  • the thin film constitutes the active material layer 21.
  • the interval L can be further increased.
  • the columnar body 20 of the active material formed on the protrusion 12 is also formed so that the cross-sectional shape is recessed while the portion corresponding to the intermediate portion 12c of the protrusion 12 is rounded.
  • the columnar body 20 has a shape in which the side surface is depressed at a position where the interval between the adjacent columnar bodies 20 is the narrowest, and the gap 23 therebetween can be increased.
  • the upper surface 12d of the protrusion 12 has a rounded shape in which the central portion is high and becomes lower toward the peripheral portion.
  • the protrusion 12 is preferably formed by compressing the metal foil 11 so that the surface roughness of the upper surface 12d maintains the surface roughness of the metal foil 11 that is the material. Thereby, the binding force between the columnar body 20 formed on the protrusion 12 and the upper surface 12d can be further increased. Further, since the upper surface 12 d of the protrusion 12 maintains the surface roughness of the metal foil 11 before the compression processing, the durability of the current collector 10 is improved, and the protrusion 12 is formed on the surface of the current collector 10. It is possible to prevent the current collector 10 from being locally deformed or bent in the process or the step of supporting the active material on the current collector 10.
  • the protrusion 12 has a taper shape with a thick root portion and a narrower end. Accordingly, as described later, when the protrusion 12 is formed by compression processing, the protrusion 12 is punched (specifically, the protrusion 12 is extracted from the recess 22 provided on the surface of the roller 16 or 18). Can be performed smoothly. Further, by forming the protrusion 12 in such a shape, the width of the upper surface 12d of the protrusion 12 becomes smaller than the cross section of the root portion of the protrusion 12, and the width of the columnar body 20 becomes narrower toward the tip. It can be set as the taper shape which becomes. Thereby, the space
  • the side surface of the intermediate portion 12c of the protrusion 12 is also inclined so as to recede toward the inside as it approaches the tip, the side surface of the columnar body 20 corresponding to the intermediate portion 12c can be depressed more reliably. As a result, the above-described effect can be achieved more reliably.
  • the protrusion 12 can be formed by compressing the metal foil 11 with a pair of rollers 16 and 18 disposed above and below.
  • the shape of the protrusion 12 is simplified in FIG.
  • the recesses 22 having a shape corresponding to the protrusions 12 as shown in FIG. 4 correspond to the arrangement of the protrusions 12 on both the upper and lower rollers 16 and 18.
  • the metal foil 11 is compression processed using the rollers 16 and 18 formed in an array.
  • the protrusion 12 is formed only on one surface of the metal foil 11, for example, the recess 22 is formed only on the upper roller 16, while the lower roller 18 keeps the surface flat, 18 is used to compress the metal foil 11.
  • the protrusion 12 is not limited to a method using a roller, and may be formed by compressing the metal foil 11 between an upper mold and a lower mold using, for example, a mold.
  • the material of the rollers 16 and 18 it is preferable to use a metal roller whose surface is coated with ceramics such as CrO (chromium oxide), WC (tungsten carbide) and TiN (titanium nitride).
  • the recess 22 is formed from above the coating.
  • the formation method is preferably by laser processing.
  • the recess 22 can be formed by etching, dry etching, blasting, or the like.
  • the shape of the recess 22 can be various shapes depending on the shape of the projection 12 to be formed.
  • the shape of the recess 22 may be a substantially rectangular shape, a substantially square shape, a substantially regular hexagonal shape, or the like.
  • FIGS. 5A and 5B show a series of processes in the case of forming protrusions by compression using a roller.
  • the case where the protrusion 12 is formed only on one surface of the metal foil 11 using the upper roller 16 in which the concave portion 22 is formed and the lower roller 18 having a flat surface will be described.
  • the shapes of the protrusions 12 and the recesses 22 are simplified.
  • the protrusion 12 is formed by the constituent metal of the metal foil 11 that has moved into the recess 22 due to plastic deformation.
  • the upper surface 12d of the protrusion 12 has a rounded shape such that the center as described above slightly rises due to plastic deformation.
  • the depth or the like of the recess 22 is set so that the upper surface 12 d of the protrusion 12 and the bottom surface 22 a of the recess 22 are separated from each other. As a result, the surface roughness of the upper surface 12d of the protrusion 12 is maintained as it is.
  • the surface of the metal foil 11 compressed at a portion other than the concave portion 22 of the upper roller 16 is leveled by the compression, and the surface roughness is reduced. In this way, the base plane 10a having a smaller surface roughness than the upper surface 12d of the protrusion 12 is formed.
  • the current collector 10 since the surface roughness of the upper surface 12d of the protrusion 12 is larger than the surface roughness of the base plane 10a, the current collector 10 has an active material with a greater binding force due to the upper surface 12d of the protrusion 12. Can be supported.
  • the concave portion 22 has a tapered shape in which the width of the concave portion 22 is narrowed in the depth direction in order to improve the workability of the protrusion 12 and improve the releasability of the protrusion 12.
  • the taper shape corresponds to the taper shape of the protrusion 12 described above.
  • an electrode for a nonaqueous electrolyte secondary battery produced by supporting a positive electrode active material or a negative electrode active material on the current collector 10 will be described.
  • the electrode is a positive electrode
  • a foil or non-woven fabric made of aluminum or an aluminum alloy can be used as a material for the positive electrode current collector.
  • the thickness can be 5 ⁇ m to 30 ⁇ m.
  • a positive electrode mixture paint is applied to one or both surfaces of the positive electrode current collector using a die coater, dried, and then rolled by a press until the total thickness reaches a predetermined thickness to produce a positive electrode.
  • the positive electrode mixture paint is prepared by mixing and dispersing a positive electrode active material, a positive electrode conductive material, and a positive electrode binder in a dispersion medium using a dispersing machine such as a planetary mixer.
  • Examples of the positive electrode active material include lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (in which a part of nickel is replaced with cobalt). Etc.), lithium-containing transition metal oxides such as lithium manganate and modified products thereof can be used.
  • the positive electrode conductive material for example, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and other carbon black, and various graphites can be used alone or in combination.
  • the positive electrode binder for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), and rubber particles having an acrylate unit can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • rubber particles having an acrylate unit can be used.
  • an acrylate monomer or an acrylate oligomer into which a reactive functional group is introduced can be mixed in the binder.
  • the electrode is a negative electrode, rolled copper foil, electrolytic copper foil, or the like can be used as a material for the negative electrode current collector. Its thickness can be 5 ⁇ m to 25 ⁇ m.
  • a negative electrode mixture paint is applied to one side or both sides of the negative electrode current collector using a die coater, dried, and then rolled to a predetermined thickness by a press to obtain a negative electrode.
  • the negative electrode mixture paint is prepared by mixing and dispersing a negative electrode active material, a negative electrode binder, and, if necessary, a negative electrode conductive material and a thickener in a dispersion medium using a disperser such as a planetary mixer.
  • carbon materials such as graphite, alloy materials, and the like are preferably used.
  • alloy material silicon oxide, silicon, silicon alloy, tin oxide, tin, tin alloy and the like can be used. Of these, silicon oxide is particularly preferable.
  • the silicon oxide is represented by the general formula SiO x and desirably has a composition satisfying 0 ⁇ x ⁇ 2, preferably 0.01 ⁇ x ⁇ 1.
  • the metal element other than silicon in the silicon alloy is preferably a metal element that does not form an alloy with lithium, such as titanium, copper, or nickel.
  • the negative electrode binder various binders including PVdF and modified products thereof can be used. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof can also be used.
  • SBR styrene-butadiene copolymer rubber particles
  • a material having viscosity when used as an aqueous solution such as polyethylene oxide (PEO) and polyvinyl alcohol (PVA) can be used, and is not particularly limited.
  • PEO polyethylene oxide
  • PVA polyvinyl alcohol
  • the active material can be selectively supported on a specific portion on the current collector 10.
  • the active material is preferably deposited in a columnar shape on the upper surface 12 d of the protrusion 12. This is because by configuring the active material layer from the columnar body 20 of the active material, it is possible to expect an effect of alleviating the influence of volume expansion when the active material occludes lithium. Furthermore, by not compressing the upper surface 12d of the protrusion 12, the initial planar accuracy can be maintained without being affected by processing distortion or the like. As a result, when the active material is deposited on the upper surface 12d of the protrusion 12, it is possible to form an active material layer in which the amount and thickness of the active material contained are controlled with high accuracy.
  • a vacuum process is not specifically limited, Dry processes, such as a vapor deposition method, a sputtering method, and CVD method, can be used.
  • a simple substance or alloy of Si, Sn, Ge (germanium), and Al (aluminum) an oxide such as SiO x (silicon oxide) and SnO x (tin oxide), and SiS x Sulfides such as (silicon sulfide) and SnS (tin sulfide) can be used. They are preferably amorphous or low crystalline.
  • the thickness of the active material layer varies depending on the required characteristics of the nonaqueous electrolyte secondary battery to be produced, but is preferably in the range of 5 to 30 ⁇ m, and more preferably in the range of 10 to 25 ⁇ m.
  • FIG. 6 shows a case where the negative electrode active material is deposited on the protrusions.
  • an evaporation source 24 charged with an active material material containing Si is heated by an electron beam (not shown) to obtain an active material.
  • the material is evaporated and deposited on the protrusions 12.
  • the evaporation source 24 and the current collector 10 are arranged so that the evaporated active material is parallel to the paper surface of FIG. 6 and reaches the surface of the current collector 10 (or the base plane 10a) from an oblique direction. Set the positional relationship.
  • an obliquely inclined columnar body 20 is formed.
  • An active material layer 21 is formed by the aggregate of the columnar bodies 20.
  • another vapor deposition source 24A that generates lithium vapor is disposed at a predetermined position.
  • the posture of the vapor deposition source 24 ⁇ / b> A is set according to the inclination of the central axis of the columnar body 20.
  • the direction in which the lithium vapor proceeds coincides with the direction of the central axis of the columnar body 20.
  • lithium can be selectively deposited on the columnar body 20, and lithium vapor can be prevented from being deposited on the base surface 10a of the current collector 10.
  • the method of forming the active material layer is not limited to this, and for example, the columnar body can be formed so that the central axis is perpendicular to the base surface 10a.
  • the columnar body 20 can be formed in several stages (four in the illustrated example). In this case, the first-stage central axis is inclined by a predetermined angle, and the second-stage central axis is inclined in a different direction to form a folded columnar body.
  • FIG. 7 is an enlarged perspective view of a part of the current collector according to Embodiment 2 of the present invention.
  • the protrusion 26 protrudes outward while the long-axis direction end portion 26 a and the short-axis direction end portion 26 b are rounded.
  • the intermediate portion 26c between the long-axis direction end portion 26a and the short-axis direction end portion 26b is all retreated inward while being rounded.
  • the current collector 10A in FIG. 7 is different from the current collector 10 in FIG. 2 in that the height of the long-axis direction end portion 26a of the protrusion 26 is higher than the height of the short-axis direction end portion 26b. is there.
  • a main upper surface portion 26d having a height equal to or higher than the end portions 26a is formed between the two long-axis direction end portions 26a.
  • auxiliary upper surface portions 26e corresponding to the two short-axis direction end portions 26b are respectively formed.
  • the main upper surface portion 26d is the highest at the central portion, and gradually becomes lower toward the peripheral portion.
  • the protrusions 26 are different between the long-axis direction end part 26a and the short-axis direction end part 26b, it becomes possible to change the shape of the upper surface of the protrusion 26.
  • the columnar body 20 of the active material can be held on the protrusion 26 more firmly. Thereby, dropping of the active material layer from the current collector 10 can be more reliably suppressed.
  • FIG. 8 is an enlarged perspective view of a part of the current collector according to Embodiment 3 of the present invention.
  • the protrusions 28 protrude outward while the long-axis direction end portion 28a and the short-axis direction end portion 28b are rounded.
  • the intermediate portion 28c between the long-axis direction end portion 28a and the short-axis direction end portion 28b is all retreated inward while being rounded.
  • the height of the long-axis direction end portion 28a is higher than the height of the short-axis direction end portion 28b, and the height between the two long-axis direction end portions 28a is the same as those of the end portions 28a.
  • a main upper surface portion 28d higher than that is formed.
  • auxiliary upper surface portions 26e corresponding to the two short-axis direction end portions 26b are respectively formed.
  • the current collector 10B of FIG. 8 is different from the current collector 10A of FIG. 7 in that the protrusion 28 is a recess that is at least partially spherical at a location adjacent to the auxiliary upper surface portion 26e on the side surface of the main upper surface portion 28d. That is, the portions 28f are formed.
  • the shape of the side surface of the columnar body 20 of the active material formed on the projection 28 is also recessed.
  • the gap 23 between the adjacent columnar bodies 20 can be made larger. Therefore, the compressive stress generated when the columnar bodies of the active material come into contact with each other can be relieved by the expansion and contraction of the electrode active material when charging and discharging the nonaqueous electrolyte secondary battery.
  • FIG. 9 shows a part of the current collector according to Embodiment 4 of the present invention.
  • the protrusions 30 basically have the same shape as the protrusions 26 of the current collector 10A in FIG.
  • the current collector 10C is different from the current collector 10A of FIG. 7 in that the heights of the short-axis direction end portions 30b of the protrusions 30 are different from each other.
  • the heights of the short axis direction end portions 30b are different from each other, so that the vapor of the active material reaches the surface of the current collector 10C in an oblique direction, as indicated by arrows in the drawing, thereby
  • the vapor of the active material does not reach the base surface 10a between the protrusions 30 because it is behind the higher auxiliary upper surface portion 30e1 among the auxiliary upper surface portions 30e1 and 30e2.
  • the gap 23 can be reliably provided between the columnar bodies 20 formed on the protrusion 30. Therefore, the compressive stress generated inside the active material layer due to the expansion and contraction of the active material when charging and discharging the nonaqueous electrolyte secondary battery can be more reliably alleviated.
  • FIG. 10 shows a part of the current collector according to Embodiment 5 of the present invention.
  • the protrusion 32 has the same shape as the protrusion 26 of the current collector 10A in FIG.
  • the current collector 10D is different from the current collector 10B of FIG. 7 in that the base surface 10a between the protrusions 32 is inclined from one protrusion 32 toward another adjacent protrusion 32.
  • FIG. 11 shows an example of such a nonaqueous electrolyte secondary battery.
  • the illustrated secondary battery 70 includes a positive electrode 75 having a positive electrode active material layer formed on a positive electrode current collector and a negative electrode 76 having a negative electrode active material layer formed on a negative electrode current collector, with a separator 77 interposed therebetween. And an electrode group 80 wound in a spiral shape.
  • a positive electrode lead 75 a is bonded to the positive electrode 75, and a negative electrode lead 76 a is bonded to the negative electrode 76.
  • the electrode group 80 is housed inside a bottomed cylindrical battery case 71 with the insulating plates 78A and 78B arranged on the top and bottom.
  • the negative electrode lead 76 a led out from the lower part of the electrode group 80 is connected to the bottom of the battery case 71.
  • the positive electrode lead 75 a led out from the upper part of the electrode group 80 is connected to a sealing body 72 that seals the opening of the battery case 71.
  • a predetermined amount of non-aqueous electrolyte (not shown) is injected into the battery case 71.
  • the nonaqueous electrolytic solution is injected after the electrode group 80 is stored in the battery case 71.
  • a sealing body 72 having a sealing gasket 73 attached to the periphery is inserted into the opening of the battery case 71, and the opening of the battery case 71 is crimped so as to be bent inward.
  • a lithium ion secondary battery 70 is configured.
  • the separator 77 is not particularly limited as long as it has a composition that can be used as a separator for a non-aqueous electrolyte secondary battery, but a microporous film of an olefin-based resin such as polyethylene or polypropylene may be used alone or in combination. It is generally used and preferred as an embodiment.
  • the thickness of the separator 77 is not particularly limited, but may be 10 to 25 ⁇ m.
  • the non-aqueous electrolyte can use various lithium compounds such as LiPF 6 and LIBF 4 as electrolyte salts. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. In addition, in order to form a good film on the surface of the positive electrode 75 or the negative electrode 76, or to ensure stability during overcharge, vinylene carbonate (VC), cyclohexylbenzene (CHB), and a modified product thereof are used as a nonaqueous electrolytic solution. It is also preferable to add to.
  • VC vinylene carbonate
  • CHB cyclohexylbenzene
  • Example 1 A lithium ion secondary battery was produced as follows. An aluminum foil having a thickness of 15 ⁇ m was prepared as a material for the positive electrode current collector. The aluminum foil is compressed using a pair of rollers having recesses with a depth of 4 ⁇ m formed on the surface in a staggered arrangement, and projections having a shape as shown in FIG. Were formed in a staggered arrangement. As described above, a positive electrode current collector having a total thickness of 18 ⁇ m was produced.
  • the length in the major axis direction of the protrusion was 17 ⁇ m, and the length in the minor axis direction was 10 ⁇ m.
  • a roller made of metal more specifically, a roller made of super steel material was used as the roller for compression processing.
  • the surface was coated with ceramic, more specifically with chromium oxide.
  • lithium cobaltate in which a part of cobalt was substituted with nickel and manganese was used.
  • a positive electrode mixture paint was prepared by stirring and kneading in a kneader. This positive electrode mixture paint was applied to the surface of the positive electrode current collector and dried to form an active material layer having a thickness of 85 ⁇ m on each side of the positive electrode current collector. The positive electrode current collector was pressed to a total thickness of 146 ⁇ m to obtain a positive electrode precursor in which an active material layer having a thickness of 64.0 ⁇ m was formed on both surfaces. It was slitted to a specified width to produce a positive electrode.
  • a copper foil having a thickness of 26 ⁇ m was prepared as a material for the negative electrode current collector.
  • This copper foil is compressed by using a pair of rollers having concave portions with a depth of 10 ⁇ m formed on the surface in a staggered arrangement, and projections having a shape as shown in FIG. Were formed in a staggered arrangement.
  • a negative electrode current collector having a total thickness of 26 ⁇ m was produced.
  • the length in the major axis direction of the protrusion was 17 ⁇ m, and the length in the minor axis direction was 10 ⁇ m.
  • As the roller for compression processing a roller having the same material and the same coating as those used for producing the positive electrode current collector was used.
  • the negative electrode active material layer was formed on the negative electrode current collector as follows. Si having a purity of 99.9999% was heated by an electron beam, and vapor deposition was performed in four steps while introducing oxygen having a purity of 99.7% on both sides of the negative electrode current collector. In these four times, the vapor deposition direction was set so that the columnar body was grown in the same direction on the protrusion. In this way, an active material layer made of SiO 0.5 having a thickness of 23 ⁇ m was formed on the surface of the negative electrode current collector. Thereafter, lithium was vapor-deposited on the active material layer using lithium as a vapor deposition material so that the scattering direction of lithium vapor scattered from the vapor deposition source coincided with the growth direction of the columnar body. Then, the negative electrode was produced by slitting to a specified width.
  • a lithium ion secondary battery as shown in FIG. 11 was produced using the produced electrode group.
  • protrusions are formed in a predetermined arrangement on the positive electrode current collector and the negative electrode current collector, and the current collector is sufficient for the tensile stress applied in the longitudinal direction. It had a good endurance stress. For this reason, in the positive electrode current collector, when the positive electrode active material layer is formed on the positive electrode current collector to produce the positive electrode, or when the positive electrode is slit to a predetermined width, the positive electrode current collector is localized. It was possible to prevent deformation and bending. Moreover, dropping of the positive electrode active material layer could be suppressed.
  • lithium is not attached or precipitated between the protrusions of the negative electrode current collector, and there is no lithium that reacts with moisture in the air. We were able to handle it safely.
  • a gap is formed between the protrusions of the negative electrode current collector, excessive compressive stress is generated inside the active material layer even when the negative electrode active material expands due to occlusion of lithium ions during charging. I was able to prevent it. As a result, the stress applied to the negative electrode current collector during charging could be reduced.
  • the active material layer in particular the negative electrode active material layer, is composed of a columnar body formed on the protrusions of the negative electrode current collector, so that stress due to expansion and contraction of the negative electrode active material accompanying charge and discharge is obtained. It is thought that this is because the generation of slag could be alleviated and the negative electrode active material layer could be prevented from falling off.
  • Example 1 the current collector having protrusions was used for both the positive electrode and negative electrode current collectors. However, for example, it is possible to use a current collector that does not have protrusions for the positive electrode current collector and to form protrusions only on the negative electrode current collector. Since the rate of expansion and contraction of the positive electrode active material is much smaller than that of the negative electrode active material, the above-described effects can be achieved even in this way.
  • FIG. 12 is a perspective view showing a schematic configuration of a current collector for a nonaqueous electrolyte secondary battery according to Embodiment 6 of the present invention.
  • the current collector 10E of the illustrated example has a plurality of protrusions 34 provided on at least one surface, and further, a plurality of fine protrusions 36 are provided on the upper surface of the protrusion 34, respectively. Since the plurality of fine protrusions 36 are provided on the upper surface of the protrusion 34, the contact area between the active material and the current collector 10E is increased. Thereby, an anchor effect works with respect to the active material, and it becomes possible to further increase the binding force at the interface between the current collector 10E and the active material layer. In addition, the strength against bending stress can be increased when an electrode group is produced by winding an electrode using the current collector 10E. Thereby, dropping of the active material from the current collector 10E can be suppressed. Therefore, it is possible to provide an electrode for a non-aqueous electrolyte secondary battery with high safety and good quality.
  • the protrusions 34 are arranged in a line at equal pitches P1 in the width direction (left-right direction in the drawing) of the long strip-shaped current collector 10E.
  • the protrusions 34 arranged in a line are referred to as a row unit L1.
  • the row units L1 are arranged at equal pitches P2 in the longitudinal direction (vertical direction in the drawing) of the current collector 10E. Further, the protrusions 34 included in the adjacent row unit L1 are offset from each other in the width direction of the current collector 10E by a half of the pitch P1. Note that this deviation distance can be arbitrarily changed.
  • the height of the convex portion 36 provided on the upper surface of the protrusion 34 is preferably 1 to 5 ⁇ m. If the height of the convex portion 36 is smaller than 1 ⁇ m, it is difficult to improve the binding force without greatly increasing the contact area between the active material and the current collector 10E. On the other hand, when the height of the convex portion 36 exceeds 5 ⁇ m, for example, when the convex portion 36 is formed by compression processing using a roller, it is necessary to form a concave portion having a depth larger than 5 ⁇ m on the surface of the roller. is there.
  • the diameter of the concave portion is very small, for example, when the concave portion is formed by laser processing, it is necessary to focus the beam small, and the depth of focus becomes shallow. For this reason, it becomes difficult to process the recess on the roller surface deeper than 5 ⁇ m.
  • the pitch of the convex portions 36 is preferably 1 to 5 ⁇ m. If the pitch of the convex portions 36 is smaller than 1 ⁇ m, the diameter of the convex portions 36 themselves needs to be very small. As a result, the strength of the convex portion 36 itself becomes weak and it is difficult to maintain the shape. On the other hand, when the pitch of the convex portions 36 exceeds 5 ⁇ m, the density of the convex portions 36 becomes too small, and the contact area between the active material and the current collector 10E cannot be increased so much that the binding force can be improved. It becomes difficult.
  • the strength of the electrode manufactured using the current collector 10E against bending stress when the electrode group is formed by winding the electrode 10E is increased. Can do.
  • the binding force between the current collector 10E and the active material is increased, it is possible to suppress the falling off of the active material layer and to provide a safe and high-quality electrode for a nonaqueous electrolyte secondary battery. .
  • the arrangement of the convex portions 36 can be regular as shown in FIG. 16 described later, or irregular as shown in FIG. 17 described later.
  • FIG. 13 is an enlarged view of the surface of a roller that is preferably used for forming the convex portions 36 in a regular arrangement by compression processing.
  • concave portions 40 corresponding to the convex portions 36 are formed in a regular arrangement.
  • the arrangement of the recesses 40 has the same pattern as the arrangement of the protrusions 34 shown in FIG.
  • FIG. 14 is an enlarged view of the surface of a roller preferable for use in forming the convex portions 36 in an irregular arrangement by compression processing.
  • concave portions 44 corresponding to the convex portions 36 are formed in an irregular arrangement.
  • the concave portions 44 are formed in an irregular arrangement on the surface of the roller 42, it is preferable to perform etching, dry etching, blasting, or the like.
  • the binding force between the active material and the current collector 10E can be made uniform. Therefore, the electrode for nonaqueous electrolyte secondary batteries with stable quality can be provided.
  • the protrusions 36 on the projections 34 in an irregular arrangement, even when a force that peels or drops the active material layer is applied, it becomes difficult for the force to propagate, Peeling or dropping can be suppressed. Therefore, it is possible to provide an electrode for a non-aqueous electrolyte secondary battery with high safety and good quality.
  • a pair of rollers 46A and 46B in which a concave portion 40 or 44 corresponding to the convex portion 36 is formed on at least one surface is arranged on the upstream side in the feeding direction of the metal foil 11 indicated by an arrow in the drawing. Yes. Thereby, the fine convex part 36 is previously formed in the single side
  • FIG. 16 shows the surface of the metal foil 11 immediately after being subjected to compression processing using rollers 46A and 46B in which concave portions 40 are formed in a regular arrangement on at least one side.
  • convex portions 36 are arranged on the surface of the metal foil 11 in a regular arrangement corresponding to the arrangement of the concave portions 40 in FIG.
  • FIG. 17 shows the surface of the metal foil 11 immediately after being subjected to compression processing using rollers 46A and 46B in which concave portions 44 are formed in an irregular arrangement on at least one side.
  • convex portions 36 are arranged on the surface of the metal foil 11 in an irregular arrangement corresponding to the arrangement of the concave portions 44 in FIG.
  • a pair of rollers 48A and 48B in which the concave portions 22 corresponding to the protrusions 34 are formed on at least one surface are arranged on the downstream side in the feeding direction of the metal foil 11 indicated by arrows.
  • the protrusion 34 is formed on one surface or both surfaces of the metal foil 11 on which the fine convex portions 36 are formed first.
  • the convex portion 36 in the region corresponding to the upper surface of the protrusion 34 remains without being crushed, but the convex portion 36 in other regions is compressed by the rollers 48A and 48B and disappears.
  • the fine protrusions 36 are first formed on the surface of the metal foil 11 by compression processing, and then the larger protrusions 34 are formed by compression processing. It is possible to form fine convex portions 36 on the upper surface.
  • the protrusions 34 and the protrusions 36 can be formed by using a mold or the like instead of the compression processing by the roller.
  • the method of manufacturing the positive electrode or the negative electrode and the nonaqueous electrolyte secondary battery using the current collector 10E is the same as in each of the first to fifth embodiments.
  • the convex portion 36 is formed on the upper surface of the protrusion 34.
  • the upper surface of the protrusion 34 is roughened by performing surface treatment such as etching, dry etching, and blasting, for example. It is possible to increase the binding force between the active material and the current collector to some extent.
  • the binding force between the current collector 10E and the active material layer can be precisely controlled, so that the active material layer can be more reliably detached from the current collector. Can be prevented.
  • Example 2 A negative electrode of a lithium ion secondary battery was prepared as described below.
  • a copper foil having a thickness of 20 ⁇ m was used as the metal foil of the current collector.
  • Protrusions and projections as shown in FIG. 12 were formed on both surfaces of the metal foil.
  • two pairs of rollers as shown in FIG. 15 were used to form protrusions and projections by compression processing.
  • convex portions having a height of 3 ⁇ m were formed on both surfaces of the metal foil.
  • the horizontal pitch (P3) and the vertical pitch (P4) in the figure were both 3 ⁇ m to form convex portions.
  • the pair of rollers (rollers 46A and 46B in FIG. 15) used to form the convex portions were formed with concave portions by laser processing.
  • the shape of the opening and the cross section of the recess was substantially circular.
  • the metal foil having convex portions formed on both sides was compressed by a pair of rollers (rollers 48A and 48B in FIG. 15) to form protrusions in an arrangement as shown in FIG.
  • the pitch (P1) in the width direction (lateral direction in the figure) of the current collector and the pitch (P2) in the longitudinal direction (vertical direction in the figure) of the current collector were both 20 ⁇ m.
  • the shape of the opening and the cross section of the concave portion formed on the surface of the roller was substantially elliptical, and the major axis direction was made to coincide with the width direction of the current collector.
  • a negative electrode current collector having a total thickness of 28 ⁇ m was produced.
  • Example 3 200 negative electrodes were produced in the same manner as in Example 2 except that the height and pitch of the protrusions formed on the upper surface of the protrusions were 1 ⁇ m.
  • Example 4 200 negative electrodes were produced in the same manner as in Example 2 except that the height and pitch of the protrusions formed on the upper surface of the protrusions were 5 ⁇ m.
  • the negative electrode was cut to a size of 50 ⁇ 50 mm and attached to a flat support base.
  • a double-sided tape is attached to the entire surface of the tip of the probe having a 10 ⁇ 10 mm square tip, and the tip of the probe is bonded to the negative electrode active material layer on the upper surface of the negative electrode supported by the support base. did.
  • the measuring element was retracted so as to be separated from the negative electrode. At that time, the maximum stress until the negative electrode active material layer was peeled was measured as the peel strength.
  • Examples 2 to 4 and Comparative Examples 1 to 3 100 negative electrodes were taken out, and 100 coin-type lithium ion secondary batteries were manufactured using them. These batteries were charged and discharged for 100 cycles under the same conditions as in Example 1. Thereafter, all cells were disassembled, and the presence or absence of peeling from the negative electrode current collector of the negative electrode active material layer was investigated. . The results are shown in Table 1.
  • the electrodes of Examples 2 to 4 in which the height and pitch of the protrusions are 1 to 5 ⁇ m have a peel strength of the active material layer of 245 N / cm 2 or more. Moreover, the coin-type cell produced using these electrodes does not have the active material layer peeled after 100 cycles of charge and discharge, and has excellent cycle characteristics.
  • Example 2 to 4 and Comparative Examples 1 to 3 the case where the convex portions are formed in a regular arrangement is shown, but the same result is obtained when the convex portions are formed in an irregular arrangement. It is estimated that In each of Examples 2 to 4 and Comparative Examples 1 to 3, since the major axis direction of the substantially elliptical protrusion was matched with the width direction of the current collector, it was parallel to the longitudinal direction of the negative electrode current collector. By depositing the negative electrode active material obliquely from any direction, the active material could be efficiently attached on the protrusions.
  • Example 2 in which convex portions having a height of 3 ⁇ m were regularly formed on the upper surface of the protrusion at a pitch of 3 ⁇ m, the peel strength of the active material layer from the negative electrode current collector was maximized.
  • the height of the convex portions is 3 ⁇ m, and the pitch is 3 ⁇ m.
  • Example 5 A lithium ion secondary battery was produced as follows. An aluminum foil having a thickness of 15 ⁇ m was used as a material for the positive electrode current collector. Moreover, lithium cobaltate which substituted a part of cobalt with nickel and manganese was used for the positive electrode active material. 100 parts by weight of the positive electrode active material, 2 parts by weight of acetylene black as a conductive material, and 2 parts by weight of polyvinylidene fluoride as a binder, together with an appropriate amount of N-methyl-2-pyrrolidone A positive electrode mixture paint was prepared by stirring and kneading in a kneader.
  • the positive electrode mixture paint was applied to the surface of the positive electrode current collector and dried to form an active material layer having a thickness of 82 ⁇ m on each side of the positive electrode current collector.
  • the positive electrode current collector was pressed to a total thickness of 126 ⁇ m to obtain a positive electrode precursor in which an active material layer having a thickness of 55.5 ⁇ m was formed on both surfaces. It was slitted to a specified width to produce a positive electrode. As described above, 200 positive electrodes were produced.
  • Example 2 In the same manner as in Example 2, 200 negative electrodes were produced. 100 lithium ion secondary batteries were produced in the same manner as in Example 1 using 100 positive electrodes and 100 negative electrodes. The 100 lithium ion secondary batteries produced as described above and the remaining 100 positive electrodes and negative electrodes were evaluated as follows.
  • the 100 lithium ion secondary batteries produced as described above were charged and discharged for 300 cycles under the same conditions as in Example 1. As a result, the battery characteristics were hardly deteriorated. In addition, when 100 lithium ion secondary batteries that had been charged and discharged for 300 cycles were disassembled and the positive electrode and the negative electrode were observed, no defects such as lithium deposition or dropping of the active material layer were observed.
  • FIG. 18 is a cross-sectional view illustrating a schematic configuration of a nonaqueous electrolyte secondary battery electrode according to Embodiment 7 of the present invention.
  • the electrode of the illustrated example is a negative electrode 50 of a lithium ion secondary battery, a current collector 10F having protrusions 52 formed in a predetermined arrangement on both surfaces, negative electrode active material layers 54 and 56 formed on both surfaces, Is included.
  • a copper foil can be used as the metal foil as the material of the current collector 10F.
  • the negative electrode active material layers 54 and 56 are composed of negative electrode active material columns 20A and 20B formed on the upper surface of the protrusion 52, respectively.
  • the negative electrode active material layers 54 and 56 are subjected to the lithium filling process described above.
  • As the negative electrode active material a compound containing silicon and oxygen, a compound containing tin and oxygen, or the like can be used.
  • the columnar bodies 20A and 20B are formed in an oblique direction with respect to the surface of the current collector 10F, and appropriate gaps 53A and 53B are provided between them. Thereby, when performing a lithium filling process, it can suppress that a negative electrode active material expand
  • the thickness L1 of the active material layer 54 formed on one surface (the upper surface in the drawing) of the current collector 10F is formed on the other surface (the lower surface in the drawing) of the current collector 10F.
  • the thickness is greater than the thickness L2 of the active material layer 56.
  • the ratio of reducing the thickness L2 of the negative electrode active material layer 56 with respect to the thickness L1 of the negative electrode active material layer 54 so as to reduce the curling of the negative electrode 50 as much as possible while suppressing large undulations of the negative electrode 50 is as follows: A range of 5 to 10% is preferable.
  • the method for forming the active material columnar bodies 20A and 20B is not particularly limited, but it is preferable to use a dry process such as a vapor deposition method, a sputtering method, or a CVD method.
  • a dry process such as a vapor deposition method, a sputtering method, or a CVD method.
  • the vapor deposition method is excellent in productivity, it is preferable to apply it to a method for manufacturing an electrode for a non-aqueous electrolyte secondary battery that requires mass production.
  • FIG. 19 is a partial cross-sectional view showing a schematic configuration of a vapor deposition apparatus for forming an active material layer on a current collector by a vapor deposition method.
  • the vapor deposition apparatus 58 in the illustrated example includes a vacuum chamber 60 and an exhaust pump 62 that exhausts air in the vacuum chamber 60.
  • an unwinding roll 64, a can roll 66, and a winding roll 68 for unwinding the current collector 10F are installed in a predetermined arrangement, and a vapor deposition source 80, an oxygen supply nozzle 82, and A mask 84 is installed in a predetermined arrangement.
  • the vapor deposition source 80 is formed of a crucible, and an active material such as silicon or tin is accommodated in the inside of the vapor deposition source 80 in the case of manufacturing a negative electrode. These active material materials are heated to vapor by resistance heating or electron beam irradiation.
  • the oxygen supply nozzle 82 is for supplying oxygen supplied from an oxygen gas cylinder (not shown) into the vacuum chamber 60 via an orifice valve and a mass flow controller. By supplying a certain amount of oxygen gas around the can roll 66 through the oxygen supply nozzle 82, vapor deposition is performed in an oxygen atmosphere of a predetermined concentration. Further, the oxygen supply nozzle 82 is preferably arranged so that oxygen is evenly distributed to the vapor of the active material from the vapor deposition source 80.
  • the oxygen supply amount should be appropriately changed depending on the manufacturing conditions such as the shape of the vacuum chamber 60, the exhaust capacity of the exhaust pump, the evaporation rate of the active material, and the width of the active material layer formed on the current collector. Can do.
  • the amount of oxygen gas to be supplied by the oxygen supply nozzle 82 is At 25 ° C. and 1 atm, the pressure is preferably 0.0005 to 0.005 m 3 / s.
  • the current collector 10 ⁇ / b> F unwound from the unwinding roll 64 is given a predetermined tension by the tension rollers 86 and 88, and is sent in the longitudinal direction in contact with the peripheral surface of the can roll 66. Only the vapor of the active material from the vapor deposition source 80 that has passed through the mask 84 reaches the surface of the current collector 10F. As a result, a negative electrode active material layer made of a silicon oxide or a tin oxide is formed on the surface of the current collector 10F in an oxygen atmosphere.
  • the current collector 10 ⁇ / b> F having the negative electrode active material layer formed on the surface thereof is taken up by the take-up roll 68.
  • the current collector 10F is turned upside down and set on the unwinding roll 64, and the active material is again formed on the other surface. To form a negative electrode active material layer.
  • the negative electrode active material layer 56 it is preferable to form the negative electrode active material layer 56 first among the negative electrode active material layers 54 and 56.
  • the reason is that, since the vapor of the active material from the vapor deposition source 80 is very high, how to cool the negative electrode 50 containing the deposited negative electrode active material is to suppress wrinkles and undulations of the negative electrode 50. It becomes important. At this time, by forming the thin negative electrode active material layer 56 with high cooling efficiency first, wrinkles and undulations of the negative electrode plate can be suppressed.
  • the current collector 10F When the formation of the negative electrode active material layers on both sides of the current collector 10F is completed, a predetermined amount of lithium is deposited on the negative electrode active material layers on both sides of the current collector 10F using another vacuum vapor deposition apparatus. Thereafter, the current collector 10F is slitted to a specified width and length to obtain the negative electrode 50.
  • the thickness of the negative electrode active material layers on both sides of the current collector 10F can be controlled by adjusting at least one of the heating amount of the vapor deposition source 80 and the feeding speed of the current collector 10F. If the heating amount of the vapor deposition source 80 is increased, the thickness of the negative electrode active material layer is increased, and if the heating amount is decreased, the thickness of the negative electrode active material layer is decreased. Further, if the feeding speed of the current collector 10F is decreased, the thickness of the negative electrode active material layer is increased, and if the feeding speed is increased, the thickness of the negative electrode active material layer is decreased.
  • the thickness of the foil is preferably 4 to 30 ⁇ m, more preferably 5 to 10 ⁇ m.
  • Projections having a surface roughness (arithmetic mean roughness Ra (Japanese Industrial Standards: JIS B0601-1994); the same shall apply hereinafter) on the surface of the foil to increase the binding force of the negative electrode active material layer is about 0.1 to 4 ⁇ m.
  • 52 is preferably provided.
  • a more preferable surface roughness is 0.4 to 2.5 ⁇ m. Such surface roughness can be measured by, for example, a surface roughness meter.
  • FIG. 20 is a partial cross-sectional view of the nonaqueous electrolyte secondary battery of the present embodiment.
  • a positive electrode 90 using a lithium-containing transition metal oxide as a positive electrode active material and a negative electrode 50 shown in FIG. 18 are spirally wound with a separator 94 interposed therebetween.
  • An electrode group 96 is configured.
  • the negative electrode 50 is wound so that the thick negative electrode active material layer 54 is on the outer peripheral side and the thin negative electrode active material layer 56 is on the inner peripheral side. This makes it possible to relieve the internal stress of the other negative electrode active material layer 56 on the inner peripheral side that receives a larger compressive stress due to the difference in curvature during the lithium supplementation process or during charging. As a result, breakage and buckling of the negative electrode 50 can be suppressed.
  • FIG. 21 is a partial cross-sectional view showing a schematic configuration of a nonaqueous electrolyte secondary battery according to Embodiment 8 of the present invention.
  • the negative electrode 50 has the same configuration as the battery 89 of FIG.
  • the positive electrode 95 the amount of the positive electrode active material contained in the positive electrode active material layer 98 on the inner peripheral side is between the positive electrode active material layers 98 and 100 formed on both surfaces of the current collector 10G.
  • the amount of the positive electrode active material contained in the positive electrode active material layer 100 is larger.
  • the thickness of the negative electrode active material layer 56 on the inner peripheral side of the negative electrode 50 is small, the amount of the positive electrode active material is small in the positive electrode active material layer 100 on the outer peripheral side of the positive electrode 95 facing the negative electrode active material layer 56.
  • the negative electrode active material layer 56 on the outer peripheral side of the negative electrode 50 has a large thickness, the positive electrode active material layer 98 on the inner peripheral side of the positive electrode 95 facing the positive electrode active material layer 98 has a large amount of positive electrode active material.
  • a negative electrode was produced as follows.
  • a negative electrode current collector a negative electrode current collector having the same configuration as that of the current collector 10F shown in FIG. 18 was prepared.
  • a copper foil was used as the metal foil as the material for the negative electrode current collector.
  • the surface roughness (arithmetic average roughness Ra, the same applies hereinafter) was 0.8 ⁇ m.
  • the thickness of the negative electrode current collector including the surface protrusions was 10 ⁇ m.
  • the vapor deposition apparatus 58 shown in FIG. 19 is formed so that the negative electrode active material layer is first formed on one surface (the upper surface of the current collector 10F in FIG. 18) of the unwinding roll on which the negative electrode current collector is set. It set in the vapor deposition apparatus of the same structure.
  • the vacuum chamber of the vapor deposition apparatus had a volume of 0.4 m 3 and was evacuated until the degree of vacuum reached 5 ⁇ 10 ⁇ 5 Pa by an evacuation pump having an evacuation speed of 2.2 m 3 / s. Thereafter, in the vacuum chamber, the negative electrode current collector unwound from the unwinding roll was sent in the longitudinal direction at a speed of 1 cm / min while being brought into contact with the peripheral surface of the can roll.
  • a crucible made of a carbon material charged with silicon having a purity of 99.998% as a negative electrode active material was used as a deposition source. This was heated to 1800 ° C. by an electron beam, and at the same time, 0.001 m 3 / s of oxygen at 25 ° C. and 1 atmosphere was introduced into the vacuum chamber through an oxygen supply nozzle.
  • the opening position of the mask is set so that the vapor of the negative electrode active material reaches the surface of the negative electrode current collector from an oblique direction on the same side, and the thickness of the other surface of the negative electrode current collector is 10 ⁇ m ( Theoretical negative electrode active material layer was formed. As described above, the negative electrode current collector having the active material layer formed on one surface was wound on a winding roll.
  • the vacuum chamber is returned to atmospheric pressure, and the negative electrode wound up so as to form a negative electrode active material layer on the other surface of the negative electrode current collector (the lower surface of the current collector 10F in FIG. 18).
  • the current collector was set in a vacuum chamber and evacuated until the degree of vacuum reached 5 ⁇ 10 ⁇ 5 Pa again. Thereafter, a negative electrode active material layer having a thickness of 9.5 ⁇ m (theoretical value) was formed on the other surface of the negative electrode current collector in the same manner as described above while feeding the negative electrode current collector in the longitudinal direction at a speed of 1.05 cm / min.
  • the negative electrode having the negative electrode active material layer formed on both sides was set in another vapor deposition apparatus in which lithium was charged as a vapor deposition source.
  • the vapor deposition source was heated to 400 ° C. by resistance heating, and lithium was vapor-deposited on both surfaces of the negative electrode.
  • the negative electrode was taken out from the vapor deposition apparatus, and then slitted to a specified width to prepare 10 negative electrodes for a nonaqueous electrolyte secondary battery having a length of 1 m.
  • Example 7 The feeding speed of the negative electrode current collector was set to 1.07 cm / min, and the thickness of the other surface of the negative electrode current collector (the lower surface of the current collector 10F in FIG. 18) was 9.3 ⁇ m (theoretical value). ) Negative electrode active material layer was formed. Other than that was carried out similarly to Example 6, and produced the negative electrode for nonaqueous electrolyte secondary batteries of 1 m in length.
  • Example 8 The feeding speed of the negative electrode current collector was set to 1.09 cm / min, and the thickness of the other surface of the negative electrode current collector (the lower surface of the current collector 10F in FIG. 18) was 9.1 ⁇ m (theoretical value). ) Negative electrode active material layer was formed. Other than that was carried out similarly to Example 6, and produced the negative electrode for nonaqueous electrolyte secondary batteries of 1 m in length.
  • Example 9 The feeding speed of the negative electrode current collector is set to 1.1 cm / min, and the thickness of 9 ⁇ m (theoretical value) is formed on the other surface of the negative electrode current collector (the lower surface of the current collector 10F in FIG. 18). A negative electrode active material layer was formed. Other than that was carried out similarly to Example 6, and produced the negative electrode for nonaqueous electrolyte secondary batteries of 1 m in length.
  • the feeding speed of the negative electrode current collector is set to 1.0 cm / min, and the other surface of the negative electrode current collector (the lower surface of the current collector 10F in FIG. 18) has a thickness of 10 ⁇ m (theoretical value).
  • a negative electrode active material layer was formed. Other than that was carried out similarly to Example 6, and produced the negative electrode for nonaqueous electrolyte secondary batteries of 1 m in length.
  • Negative Example 5 The feeding speed of the negative electrode current collector was set to 1.01 cm / min, and the thickness of the other surface of the negative electrode current collector (the lower surface of the current collector 10F in FIG. 18) was 9.9 ⁇ m (theoretical value). ) Negative electrode active material layer was formed. Other than that was carried out similarly to Example 6, and produced the negative electrode for nonaqueous electrolyte secondary batteries of 1 m in length.
  • Negative Example 7 The feeding speed of the negative electrode current collector was set to 1.11 cm / min, and the thickness of the other surface of the negative electrode current collector (the lower surface of the current collector 10F in FIG. 18) was 8.9 ⁇ m (theoretical value). ) Negative electrode active material layer was formed. Other than that was carried out similarly to Example 6, and produced the negative electrode for nonaqueous electrolyte secondary batteries of 1 m in length.
  • Example 8 The feeding speed of the negative electrode current collector was set to 1.12 cm / min, and a negative electrode active material layer having a thickness of 8.8 ⁇ m (theoretical value) was formed on one surface of the negative electrode current collector. Other than that was carried out similarly to Example 6, and produced the negative electrode for nonaqueous electrolyte secondary batteries of 1 m in length.
  • the thickness (L2) of the negative electrode active material layer on the other surface of the negative electrode current collector was set to the thickness (L1) of the negative electrode active material layer on one surface.
  • the ratio (D) of being smaller than the above was calculated.
  • the results are shown in Table 2.
  • the presence or absence of undulation was observed by observing the electrodes placed on the surface plate 102 as shown in FIGS.
  • the curl amount for the negative electrode 50 curled in a uniform direction, as shown in FIGS. 22 and 23, the height h1 or h2 of the highest point when the electrode is placed on the surface plate 102 is measured.
  • the negative electrode 50 curled in a wavy shape was also obtained by measuring the height h3 of the highest point when the negative electrode 50 was placed on the surface plate 102.
  • the thickness of the active material layer is not uniform at each position on the electrode.
  • the magnitude relationship between the amount of expansion of the active material layer on one surface and the amount of expansion of the active material layer on the other surface fluctuates irregularly, resulting in undulation.
  • the ratio D is 5% or more, the amount of expansion of the active material layer on one surface is always larger than the amount of expansion of the active material layer on the other surface. Can be configured.
  • the ratio D was in the range of 0 to 5%, the curl amount decreased as the difference increased. This is due to a decrease in the amount of curl as the waviness decreases.
  • the ratio D is preferably in the range of 5 to 10% in order to suppress the amount of curling while preventing the undulation from occurring on the electrode.
  • Example 10 A lithium ion secondary battery was produced as follows. In the same manner as in Example 7, a negative electrode having a negative electrode active material layer having a thickness of 10 ⁇ m formed on one surface and a negative electrode active material layer having a thickness of 9.1 ⁇ m formed on the other surface was produced.
  • a positive electrode mixture paint was prepared by stirring and kneading in a double-arm kneader. Next, this positive electrode mixture paint was applied to the surface of a positive electrode current collector made of an aluminum foil having a thickness of 15 ⁇ m and dried to form an active material layer having a thickness of 85 ⁇ m on both surfaces of the positive electrode current collector.
  • the positive electrode current collector was pressed to a total thickness of 143 ⁇ m to obtain a positive electrode precursor in which an active material layer having a thickness of 64.0 ⁇ m was formed on both surfaces. It was slitted to a specified width to produce a positive electrode.
  • a lithium ion secondary battery as shown in FIG. 11 was produced using the negative electrode and the positive electrode produced as described above. More specifically, the positive electrode and the negative electrode were wound in a spiral shape with a separator made of a polyethylene microporous film having a thickness of 20 ⁇ m interposed therebetween to constitute an electrode group. At this time, the negative electrode was wound so that the negative electrode active material layer having a thickness of 10.0 ⁇ m was on the outer peripheral side and the negative electrode active material layer having a thickness of 9.1 ⁇ m was on the inner peripheral side. Except for the above, 100 lithium ion secondary batteries were produced in the same manner as in Example 1.
  • Example 11 In the same manner as in Example 10, a negative electrode and a positive electrode were produced. Here, a positive electrode mixture paint was applied so that the positive electrode active material layer on one side had a thickness of 70 ⁇ m and the active material layer on the other side had a thickness of 100 ⁇ m. By pressing the positive electrode current collector so as to have a total thickness of 143 ⁇ m, the thickness of the positive electrode active material layer on one surface was 60.7 ⁇ m, and the thickness of the other surface was 67.4 ⁇ m.
  • a lithium ion secondary battery as shown in FIG. 11 was produced using the negative electrode and the positive electrode produced as described above. More specifically, the positive electrode and the negative electrode were spirally wound with a separator made of a polyethylene microporous film having a thickness of 20 ⁇ m interposed therebetween. At this time, the negative electrode was wound so that the negative electrode active material layer having a thickness of 10.0 ⁇ m was on the outer peripheral side and the negative electrode active material layer having a thickness of 9.1 ⁇ m was on the inner peripheral side. The positive electrode was wound so that the positive electrode active material layer having a thickness of 67.4 ⁇ m was on the inner peripheral side and the positive electrode active material layer having a thickness of 60.6 ⁇ m was on the outer peripheral side. Except for the above, 100 lithium ion secondary batteries were produced in the same manner as in Example 1.
  • Example 10 (Comparative Example 10) In the same manner as in Example 6, a negative electrode was produced. At this time, the thickness of the negative electrode active material layer on one surface was 9.5 ⁇ m, and the thickness of the negative electrode active material layer on the other surface was also 9.5 ⁇ m. Further, a positive electrode was produced in the same manner as in Example 10. At this time, the thickness of both surfaces of the positive electrode current collector was 64 ⁇ m. Except for these, 100 lithium ion secondary batteries were produced in the same manner as in Example 10.
  • Example 10 For the above Examples 10 and 11 and Comparative Example 10, the initial capacity was measured, and then charging and discharging were repeated 500 cycles. The capacity retention rate was calculated by comparing the capacity and the initial capacity when charging and discharging were repeated 500 cycles under the same conditions as in Example 1, and the average value was calculated. Further, the lithium ion secondary battery after 500 cycles of charge / discharge was disassembled, and it was examined whether or not defects such as breakage, buckling, lithium deposition, and dropping of the active material layer occurred in the negative electrode. . The results are shown in Table 4.
  • both Examples 10 and 11 achieved a good capacity retention rate after 500 cycles. Further, in Examples 10 and 11, no defects such as breakage, buckling, lithium precipitation, and dropping of the active material layer were observed in the negative electrode. In addition, even after 500 cycles of charging / discharging, defects such as fracture, buckling, lithium deposition, and loss of the negative electrode active material layer were not observed in the negative electrode.
  • the electrode group was configured such that the thickness of the negative electrode active material layer on the inner peripheral side was reduced, and the stress difference due to the difference in curvature between the inner side and the outer side of the electrode could be alleviated. .
  • the thickness by reducing the thickness by reducing the thickness of the negative electrode active material layer on the inner peripheral side that receives a larger compressive stress during charging, it is possible to suppress breakage or buckling of the electrode. This is probably because the capacity after 500 cycles could be maintained.
  • Example 11 is particularly excellent in the capacity retention rate after 500 cycles of charge and discharge. This is because the thickness of the positive electrode active material layer is increased or decreased in accordance with the thickness of the opposing negative electrode active material layer, thereby improving the balance of electric capacity between the positive electrode and the negative electrode and balancing the expansion and contraction of the positive electrode and the negative electrode. This is thought to be because of
  • Comparative Example 10 in which the thicknesses of the active material layers on both sides of each of the negative electrode and the positive electrode were made equal, the capacity retention rate after 500 cycles of charge / discharge was higher than that in Examples 10 and 11 as shown in Table 4. Inferior. In addition, defects such as fracture, buckling, lithium deposition, and loss of the active material layer were observed in the negative electrode.
  • the current collector for a non-aqueous electrolyte secondary battery according to the present invention can be handled safely during handling, and by using this current collector, the influence of the stress inside the electrode caused by charging and discharging is reduced.
  • a highly safe electrode for a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery can be obtained. Therefore, the present invention is suitable for application to a portable power source or the like that is desired to have a higher capacity in accordance with the multi-functionalization of electronic devices and communication devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 集電体は、金属箔の片面または両面に、突起が所定の配列で形成されている。突起は、略菱形状であり、千鳥配列で並んでいる。また、突起は、直交する2軸方向のそれぞれの両端部が外側に突出している。一方、各端部の中間部は内側に後退している。これにより、突起の上に活物質の柱状体を形成して、活物質層を構成する場合に、各突起の間隔が最も小さくなる箇所で、各突起の間の空隙を大きくすることができる。その結果、電池の充放電の際に発生する活物質層の内部応力を緩和することができ、電池の長寿命化等が図れる。

Description

非水電解質二次電池用集電体、非水電解質二次電池用電極、及びそれらの製造方法、並びに非水電解質二次電池
 本発明は、リチウムイオン二次電池に代表される非水電解質二次電池に関し、特に、それに使用される集電体の活物質の担持性を改良する技術に関する。
 近年、携帯用電子機器の電源としてリチウムイオン二次電池が広く利用されている。リチウムイオン二次電池は、負極活物質に、リチウムの吸蔵及び放出が可能な炭素質材料等を使用し、正極活物質に、LiCoO2(コバルト酸リチウム)等の遷移金属とリチウムとの複合酸化物(リチウム含有遷移金属酸化物)を使用している。これにより、リチウムイオン二次電池においては、高電圧かつ高放電容量の電池特性を実現することが可能である。
 しかしながら、近年、電子機器及び通信機器は益々多機能化している。それに伴って、リチウムイオン二次電池等の二次電池の電池特性の更なる向上が求められており、特に、充放電の繰り返し(以下、充放電サイクルという)に伴う特性劣化についての更なる改善が望まれている。
 以下、リチウムイオン二次電池の充放電サイクルに伴う特性劣化について概説する。
 一般的に、リチウムイオン二次電池の発電要素である電極(正極及び負極)は以下の通りにして作製される。
 正極活物質または負極活物質、結着材、並びに必要に応じて加えた導電材を分散媒に分散させて合剤塗料を調製する。調製された合剤塗料を、集電体の片面もしくは両面に塗布し、乾燥させて、活物質層を形成する。活物質層が形成された集電体を、全体の厚みが所定厚となるようにプレスする。
 以上のような工程で作製される電極の充放電サイクルに伴う特性劣化の要因の一つとして、活物質層の集電体との結着力の低下が挙げられる。より詳しくは、充放電に伴って、活物質層が膨張と収縮を繰り返し、それにより活物質層と集電体との界面で結着力が弱まり、活物質層が集電体から脱落することにより、電池特性が劣化する。
 したがって、充放電サイクルに伴う特性劣化を抑えるためには、集電体と活物質層との間の結着力を高める必要があり、そのためには、集電体と活物質層との界面における接触面積を増大させることが効果的である。具体的には、電解により集電体の表面をエッチングしたり、電着により集電体の表面に集電体の構成金属を析出させたりして、集電体の表面を粗面化することが一般に行われている。
 また、圧延銅箔の表面に微粒子を高速で衝突させて、表面に微小な凹凸を形成することが提案されている(特許文献1参照)。
 また、金属箔にレーザ光を照射して表面粗さが算術平均粗さで0.5~10μmとなるように凹凸を形成することが提案されている(特許文献2参照)。
 また、巻き出しローラから巻出された集電体に塗工装置により合剤塗料を塗工する直前に、一対のガイドローラにより集電体の表面に凹凸を設けることが提案されている(特許文献3参照)。
 また、集電体と活物質層との結着力及び電気伝導性を向上させるために、集電体の両面に、片側の面が窪んでいるとき反対側の面が突出するような態様で、規則的に凹凸を設けることが提案されている(特許文献4参照)。
 また、集電体にエンボス加工を施すことにより凹凸を形成することが提案されている(特許文献5参照)。
 また、リチウム二次電池の発電要素である電極を作製する別の方法として、集電体の上に電解メッキ法や真空蒸着法等により活物質層を形成する方法が知られている。この方法においても、集電体と活物質層との結着力を高めることが安定した電池を得るために必要である。このため、活物質層の表面粗さ(Ra)から集電体の表面粗さ(Ra)を減算した値を0.1μm以下とすることが提案されている(特許文献6参照)。
 なお、現状では、リチウムイオン二次電池の負極活物質には主に炭素質材料(例えば黒鉛)が使用されている。その材料の理論容量に鑑みて、電池容量は現状で既に限界に達しようとしている。したがって、さらなる高容量化を達成するために、負極活物質を他の材料から構成する必要があり、そのような材料として合金系材料が注目されている(特許文献7参照)。
 合金系材料は、リチウムを大量に吸蔵することが可能であり、それにより高容量化を図ることができる反面、充放電に伴ってリチウムイオンを吸収及び放出するときの膨張及び収縮の程度も大きくなり、充放電に伴って、電極の厚みが大きく変化する。
 そのため、活物質の集電体からの剥離、集電体におけるしわの発生、及び充放電反応の不均一化、並びに充放電サイクル特性の低下等を引き起こすことが懸念されている。
 合金系材料の充放電に伴う大幅な膨張及び収縮に起因するこのような不都合に対処するために、図25に示すような電極構造が提案されている(特許文献8参照)。
 ここでは、金属箔からなる負極集電体200の表面に多数の突起202を形成するとともに、その突起202の上に、それぞれ柱状体204を形成し、これら柱状体204の集合体からなる負極活物質層206を形成している。柱状体204は、互いに分離されており、それらの間の空隙208は、活物質層206の厚み方向において、活物質層206の表面から下に向かうにつれて幅が広くなっている。
 このように、活物質層を、相互の間に空隙を有する多数の柱状体から構成することにより、充放電に伴う活物質の膨張及び収縮により活物質層の厚みが変動するのを抑えることができる。
特開2002-79466号公報 特開2003-258182号公報 特開平8-195202号公報 特開2002-270186号公報 特開2005-32642号公報 特開2002-279974号公報 特開2002-83594号公報 特開2002-313319号公報
 しかしながら、上述した従来技術は、いずれも、金属箔からなる集電体の一方の面が凹であると、他方の面は必ず凸となるような態様で凹凸を形成している。したがって、集電体に、波打ち、しわ、及び反り等の不具合が発生するのを防止するのが困難である。
 また、特許文献2の従来技術では、金属箔にレーザを照射し、局部的に加熱して金属を蒸発させることで凹部を形成する。このとき、金属箔の全面に凹凸を形成するように、金属箔に対してレーザの照射を連続的に行う場合に、レーザを線状に走査すると、その線に沿った部分が融点以上の温度にまで加熱されることがある。これにより、金属箔に波打ち、しわ、及び反りなどの不具合が発生する。さらには、リチウムイオン二次電池の集電体は、20μm以下の厚みの金属箔から構成されるのが一般的であり、そのような金属箔にレーザ加工を施す場合には、レーザの出力のバラツキにより金属箔に穴が開いてしまうおそれがある。
 特許文献3及び4の従来技術では、金属箔の表面が凹部であると、その裏面は必ず凸部となることは避けられず、金属箔に波打ち、しわ、及び反り等の不具合が発生するのを防止することは困難である。
 特許文献5の従来技術では、開口率20%以下のパンチングメタルにエンボス加工により凹凸を形成している。このため、集電体の強度が低下し、電極が切れる等の不具合を引き起こすおそれがある。
 特許文献6の従来技術では、活物質層の表面粗さ(Ra)から集電体の表面粗さ(Ra)を減算した値を0.1μm以下とすることにより、集電体と活物質層との結着力を安定化させている。しかしながら、リチウムがインターカレーションすると活物質層の膨張率が大きくなる金属においては、集電体と活物質層との結着力が弱くなり、電極にしわが発生し、充放電サイクル特性が劣化する不具合を引き起こすおそれがある。
 特許文献7の従来技術では、活物質層を、相互の間に空隙を有する多数の柱状体から構成することにより、充電時の活物質の膨張による応力を吸収している。したがって、充放電サイクルに伴って、活物質層が脱落したり、集電体にしわが発生したりするのを、少なくとも初期には抑制することができる。
 しかしながら、非水電解質二次電池の代表であるリチウムイオン二次電池は、大量生産が要望されるために、簡易な製造プロセスが不可欠である。このため、合金系材料を使用して負極活物質層を形成する場合には、蒸着法、スパッタ法、またはCVD法などの薄膜プロセスにより、長尺帯状の集電体を長手方向に送りながら、その表面に活物質層を連続的に形成するキャンロール方式が通常使用されている。
 ところが、キャンロール方式による場合には、活物質層を構成する柱状体は、活物質層の厚み方向への成長に伴い、面方向にも徐々に成長する。このため柱状体の先端側、すなわち活物質層の表面側に向かって、柱状体が太くなるという現象が生じる。その結果、活物質層の表面近傍では、隣り合う柱状体の間の空隙が小さくなる。このため、充放電を繰り返すと、隣り合う柱状体相互の圧縮力によって、柱状体に割れを生じる等の不都合がある。
 例えばケイ素からなる負極活物質の満充電時の完全放電時に対する体積膨張率は400%に達する。特に、高容量化のために活物質層の厚みを大きくした場合には、上記応力が大きくなるために、これにより、集電体へのしわの発生や活物質層の脱落を抑制することが困難となる。
 また、活物質層を構成する柱状体の間に空隙が形成されているために、少なくとも初期状態では、充電時の活物質層内部の応力を抑えることができる。しかしながら、充放電を繰り返すと、柱状体が次第に膨張するために、長期的には、上記応力を抑えることが困難となる。
 また、負極活物質として合金系材料を用いた場合の課題として、大きな不可逆容量を有することが挙げられる。負極の不可逆容量が大きいと、正極の可逆容量の多くが負極の不可逆容量に費やされてしまう。そのため、合金系材料を使用して、高容量な非水電解質二次電池を実現するためには、リチウムを負極活物質層に補填することが必要となる。
 負極活物質層へのリチウムの補填は、例えば、真空蒸着法によりリチウムを負極活物質層の表面に蒸着させることにより行うことができる。そのリチウムは、負極活物質と固相反応し、負極活物質に吸蔵される。しかしながら、負極活物質にリチウムを補填すると、それにより活物質の柱状体が膨張するために、隣接する柱状体同士が相互に接して、それらの間に応力が発生する。その結果、集電体の両面に活物質層を形成する場合に、一方の面と他方の面とに担持させた活物質の量が不均一であると、上記応力が偏在して、電極が波打つ等の不具合が発生する。
 本発明は上記問題点に鑑みてなされたものであり、電極に、波打ち、しわ、及び反り等の不具合が発生するのを抑制することができるとともに、充放電に伴う活物質層の脱落を抑制することができる非水電解質二次電池用集電体を提供することを目的としている。また、本発明は、そのような非水電解質二次電池用集電体を使用した安全性の高い非水電解質二次電池用電極及び非水電解質二次電池を提供することを目的としている。また、本発明は、そのような非水電解質二次電池用集電体及び非水電解質二次電池用電極の製造方法を提供することを目的としている。
 上記問題点を解決するために、本発明は、金属箔と、
 前記金属箔の少なくとも一方の面に形成された複数の突起と、を備え、
 前記突起が、前記金属箔の表面と垂直な方向から見たときに、直交する2つの軸方向のそれぞれの両方の端部が外側に突出し、周方向に隣り合う前記端部の中間部が内側に後退するように形成されている非水電解質二次電池用集電体を提供する。
 本発明の非水電解質二次電池用集電体の好ましい形態においては、前記突起が、前記金属箔の表面に千鳥配列に設けられている。
 本発明の非水電解質二次電池用集電体の別の好ましい形態においては、前記突起は、2つの軸方向のそれぞれの両方の端部の高さが互いに等しいとともに、一方の軸方向の両方の端部の高さが、他方の軸方向の両方の端部の高さよりも高くなっている。
 本発明の非水電解質二次電池用集電体のさらに別の好ましい形態においては、前記突起は、前記一方の軸方向の両方の端部の間に、高さがそれらの端部と同じかそれよりも高い主上面部を有しており、前記主上面部の両側に、前記他方の軸方向の両方の端部がそれぞれ配設されている。
 本発明の非水電解質二次電池用集電体のさらに別の好ましい形態においては、前記主上面部は、前記他方の軸方向の両方の端部と対応する箇所に、それぞれ、少なくとも一部が球面状である窪み部が形成されている。
 本発明の非水電解質二次電池用集電体のさらに別の好ましい形態においては、前記突起は、少なくとも前記中間部の側面が、先端部に近づくほどに内側に向かって後退するように傾斜している。
 本発明の非水電解質二次電池用集電体のさらに別の好ましい形態においては、前記突起は、前記金属箔を圧縮加工して形成されており、前記突起の上面が、前記圧縮加工を施す前の前記金属箔の表面粗さを保持している。
 また、本発明は、金属箔と、
 前記金属箔の少なくとも一方の面に形成された複数の突起と、を備え、
 前記突起が、上面に複数の凸部を有している非水電解質二次電池用集電体を提供する。
 本発明の非水電解質二次電池用集電体の好ましい形態においては、前記凸部が、前記突起の上面に規則的に配列されている。
 本発明の非水電解質二次電池用集電体の別の好ましい形態においては、前記凸部が、前記突起の上面に不規則に配列されている。
 本発明の非水電解質二次電池用集電体のさらに別の好ましい形態においては、前記凸部の高さが1~5μmである。
 本発明の非水電解質二次電池用集電体のさらに別の好ましい形態においては、隣り合う前記突部相互の間隔が1~5μmである。
 また、本発明は、リチウム含有遷移金属酸化物を含む正極活物質、またはリチウムを保持し得る材料を含む負極活物質を、上記非水電解質二次電池用集電体に担持させて構成された非水電解質二次電池用電極を提供する。
 さらに、本発明は、正極、負極及び両電極の間に介在されるセパレータを積層または巻回して構成された電極群と、
 非水電解質と、
 前記電極群及び非水電解質を収納する、開口部を有する電池ケースと、
 前記開口部を封口する封口体と、を備え、
 前記正極及び負極の少なくとも一方が、上記非水電解質二次電池用電極から構成される非水電解質二次電池を提供する。
 また、本発明は、(a)少なくとも一方に複数の凹部が形成された一対のローラにより金属箔を圧縮して、前記金属箔の少なくとも一方の面に複数の凸部を形成する工程、並びに
 (b)少なくとも一方に複数の凹部が形成された一対のローラにより金属箔を圧縮して、前記金属箔の、前記凸部が形成された面に、前記凸部よりも径の大きい突起を形成する工程、を含む非水電解質二次電池用集電体の製造方法を提供する。
 本発明の非水電解質二次電池用集電体の製造方法の好ましい形態においては、前記ローラに、前記凹部を、レーザ加工、エッチング加工、ドライエッチング加工、及びブラスト加工よりなる群から選択される少なくとも1種により形成する。
 また、本発明は、金属箔並びにその金属箔の両面に所定の配列で形成された複数の突起を有する集電体と、
 前記集電体の両面に形成された活物質層と、を備え、
 前記活物質層は、前記突起の上に形成される活物質の柱状体の集合体からなり、
 前記集電体の一方の面の前記活物質層の厚みが、他方の面の前記活物質層の厚みよりも大きい非水電解質二次電池用電極を提供する。
 本発明の非水電解質二次電池用電極の好ましい形態においては、前記活物質層が、ケイ素及び酸素を含む化合物、またはスズ及び酸素を含む化合物を含む。
 本発明の非水電解質二次電池用電極の別の好ましい形態においては、前記柱状体が、前記突起の上面から前記金属箔の表面に垂直な方向に対して斜め方向に延びている。
 本発明の非水電解質二次電池用電極のさらに別の好ましい形態においては、前記集電体の一方の面の前記活物質層の厚みが、他方の面の前記活物質層の厚みよりも5~10%だけ大きい。
 本発明の非水電解質二次電池用電極のさらに別の好ましい形態においては、正極、負極及び両電極の間に介在されるセパレータを巻回して構成された電極群と、
 非水電解質と、
 前記電極群及び非水電解質を収納する、開口部を有する電池ケースと、
 前記開口部を封口する封口体と、を備え、
 前記負極が、上記非水電解質二次電池用電極から構成されるとともに、
 前記電極群は、前記負極を、前記一方の面の活物質層が外周側となり、前記他方の面の活物質層が内周側となるように巻回して、構成される非水電解質二次電池。
 本発明の非水電解質二次電池用電極のさらに別の好ましい形態においては、前記正極が、両方の面に活物質層が形成されるとともに、その一方の面の活物質層に含まれる活物質の量が、他方の面の活物質層に含まれる活物質の量よりも少なくなっており、
 前記電極群は、前記正極を、前記一方の面の活物質層が外周側となり、前記他方の面の活物質層が内周側となるように巻回して、構成される。
 また、本発明は、(a)長尺帯状の金属箔の両面に所定の配列で複数の突起が形成された集電体を準備する工程、
 (b)ケイ素またはスズを含む活物質材料を準備する工程、
 (c)真空蒸着槽内で、前記活物質材料を蒸着源から蒸散させる工程、
 (d)前記真空蒸着槽内で、前記集電体を長手方向に送る工程、
 (e)前記真空蒸着槽内で、前記集電体の近傍に酸素を供給する工程、並びに
 (f)前記集電体に前記活物質材料を蒸着させて、活物質層を形成する工程、を含む非水電解質二次電池用電極の製造方法であって、
 前記集電体の両面に活物質層を形成するときに、
 前記集電体の一方の面に形成される前記活物質層の厚みが、前記集電体の他方の面に形成される前記活物質層の厚みよりも大きくなるように、前記活物質材料を前記集電体に蒸着する非水電解質二次電池用電極の製造方法を提供する。
 本発明の非水電解質二次電池用電極の製造方法の好ましい形態においては、前記集電体の一方の面に前記活物質層を形成するときに、前記集電体の他方の面に前記活物質層を形成するときよりも小さい速度で前記集電体を送る。
 本発明の非水電解質二次電池用電極の製造方法の別の好ましい形態においては、前記集電体の一方の面に前記活物質層を形成するときに、前記集電体の他方の面に前記活物質層を形成するときよりも大きい加熱量で前記蒸着源を加熱する。
 本発明の非水電解質二次電池用集電体によれば、所定の配置で金属箔の表面に形成される突起は、金属箔の表面と垂直な方向から見たときに、直交する2つの軸方向のそれぞれの両方の端部が外側に突出するとともに、周方向に隣接する2つの前記突出部の間の中間部が内側に後退するように形成される。このように、集電体に多数の突起を設けることで、柔軟性が向上する。また、集電体の表面に活物質層を形成した後に圧縮加工を行う場合に、集電体に波打ち、しわ、及び反り等の不具合が発生するのを防止することができる。
 また、例えば蒸着法により突起の上に活物質を柱状に堆積させて、活物質の柱状体を形成し、その柱状体の集合体により活物質層を形成するものとすると、柱状体の横断面の形状も突起の形状に倣うことになる。
 このとき、突起を千鳥配列に設けるとともに、突起の2つの軸方向を千鳥配列の縦横と一致させると、隣り合う柱状体の間隔が最も小さくなる方向(各突起が千鳥配列において斜めに並ぶ方向)の、柱状体相互の間の空隙をより大きくすることができる。したがって、非水電解質二次電池を充電するときに活物質が膨張して、柱状体同士が接触することにより発生する圧縮応力を緩和することができる。また、その結果、集電体にしわが発生したり、活物質層が電極から脱落したりするのを抑制することができる。
 したがって、本発明の非水電解質二次電池用集電体を使用することによって、充放電サイクルに伴う特性劣化が小さく、信頼性の高い非水電解質二次電池用電極及び非水電解質二次電池を得ることができる。
 また、本発明の非水電解質二次電池用集電体によれば、金属箔の少なくとも一方の面に複数の突起が形成されるとともに、突起の上面に複数の凸部が形成される。このように、突起の上面に複数の凸部を設けることで、集電体と活物質層との間の結着力を高めることができる。その結果、充放電における活物質層の脱落を抑制することができる。
 したがって、本発明の非水電解質二次電池用集電体を使用することによって、充放電サイクルに伴う特性劣化がより小さく、信頼性のより高い非水電解質二次電池用電極及び非水電解質二次電池を得ることができる。
 また、本発明の非水電解質二次電池用電極によれば、金属箔の両面に所定の配列で複数の突起を形成して構成された集電体の両面に活物質層が形成されている。活物質層は、突起の上に形成される活物質の柱状体の集合体からなり、集電体の一方の面の活物質層の厚みが、他方の面の活物質層の厚みよりも大きい。
 これにより、集電体に担持された活物質の量にばらつきがある場合にも、例えばリチウムを負極活物質に補填する際に負極に波打ちが発生するのを防止することができる。
 また、例えば電極を巻回して電極群を構成する場合に、内周側に厚みの小さい活物質層が配され、外周側に厚みの大きい活物質層が配されるように電極が巻回される。その結果、リチウム補填時もしくは充電時に、より大きく膨張する、内周側の活物質にかかる圧縮応力を緩和することが可能となる。
 したがって、本発明の非水電解質二次電池用集電体を使用することによって、充放電サイクルに伴う特性劣化がより小さく、信頼性のより高い非水電解質二次電池用電極及び非水電解質二次電池を得ることができる。
本発明の実施形態1に係る非水電解質二次電池用集電体の概略構成を示す平面図である。 同上の集電体の一部を拡大した斜視図である。 同上の集電体を製造するための製造装置の一部を示す斜視図である。 同上の製造装置に使用されるローラの一部を拡大した斜視図である。 同上の製造装置を使用して上記集電体を製造する工程の一過程を示す、断面図である。 同上の工程の別の過程を示す、断面図である。 同上の工程のさらに別の過程を示す、断面図である。 本発明の実施形態2に係る非水電解質二次電池用集電体の概略構成を示す、一部を拡大した斜視図である。 本発明の実施形態3に係る非水電解質二次電池用集電体の概略構成を示す、一部を拡大した斜視図である。 本発明の実施形態4に係る非水電解質二次電池用集電体の概略構成を示す、一部を拡大した断面図である。 本発明の実施形態5に係る非水電解質二次電池用集電体の概略構成を示す、一部を拡大した断面図である。 上記各実施形態の非水電解質二次電池用集電体を使用して構成した、非水電解質二次電池の概略構成を示す断面図である。 本発明の実施形態6に係る非水電解質二次電池用集電体の概略構成を示す、一部を拡大した斜視図である。 同上の集電体を製造するために使用するローラの一例の一部を拡大した斜視図である。 同上の集電体を製造するために使用するローラの他の一例の一部を拡大した斜視図である。 同上の集電体を製造するために使用する、上記ローラを含む製造装置の概略構成を示す斜視図である。 同上の製造装置により表面に凸部が形成された集電体の一例を示す斜視図である。 同上の製造装置により表面に凸部が形成された集電体の他の一例を示す斜視図である。 本発明の実施形態7に係る非水電解質二次電池用集電体の概略構成を示す断面図である。 同上の集電体の製造装置の概略構成を示す一部断面図である。 同上の集電体を使用して構成した非水電解質二次電池の一部断面図である。 本発明の実施形態8に係る非水電解質二次電池用集電体の概略構成を示す断面図である。 上記実施形態7及び8に関する実施例の評価方法の一例を示す模式図である。 上記実施形態7及び8に関する実施例の評価方法の他の一例を示す模式図である。 上記実施形態7及び8に関する実施例の評価方法のさらに他の一例を示す模式図である。 従来の非水電解質二次電池用集電体の一例を示す断面図である。
 以下、本発明の実施形態を、図面を参照しながら説明する。
 (実施形態1)
 図1に、本発明の実施形態1に係る非水電解質二次電池用集電体の概略構成を平面図により示す。図2に、その一部を拡大して、斜視図により示す。
 図示例の集電体10は、長尺帯状の金属箔11と、その金属箔11の少なくとも一方の面に所定の配列で形成された多数の突起12とを含んでいる。
 図2に示すように、突起12は、平面視で略菱形状に形成されている。より詳細には、突起12は、金属箔11の表面と垂直な方向から見たときに、長軸方向の両方の端部(以下、長軸方向端部という)12a及び短軸方向の両方の端部(以下、短軸方向端部という)12bが丸みを帯びながら外側に突出するように形成されている。また、突起12は、長軸方向端部12aと短軸方向端部12bとの中間部12cが、丸みを帯びながら内側に後退するように形成されている。
 突起12の配列は、図1に示すような千鳥配列(zigzag alignment)とするのが好ましい。その配列における突起12の姿勢は、上述した短軸方向及び長軸方向が千鳥配列の縦方向及び横方向と一致しているのが好ましい。このとき、斜め方向に並ぶ突起12の間隔は全て等しくするのが好ましい。
 ここで、隣り合う突起12の最小間隔は、斜め方向に並ぶ各突起12の間隔Lとなっている。
 突起12は、主に、後掲の図6に示すように、その上に、蒸着法等の真空プロセスにより活物質を柱状に堆積させて、活物質の柱状体20を形成するために設けられる。突起12を、上記千鳥配列のような適宜の配列で設けることによって、集電体10の表面に、多数の柱状体20から構成された、活物質の薄膜を形成することができる。その薄膜が、すなわち活物質層21を構成している。
 突起12を、長軸方向端部12aと短軸方向端部12bとの中間部12cが、丸みを帯びながら後退するように形成することにより、上記間隔Lをより大きくすることができる。
 その結果、突起12の上に形成される活物質の柱状体20も、横断面の形状が、突起12の中間部12cと対応する部分が丸みを帯びながら窪むように形成される。
 その結果、柱状体20は、隣り合う柱状体20同士の間隔が最も狭くなる箇所で、側面が窪むような形状となり、その間の空隙23を大きくすることが可能となる。
 これにより、非水電解質二次電池の充放電に伴う活物質の膨張及び収縮により、柱状体20同士が接触して、その間に圧縮応力が発生するときに、その応力が最大となる箇所で、応力の発生を抑制することができる。その結果、柱状体20の体積を減ずる量をできるだけ小さくしながら、すなわち集電体10に担持させる活物質の量を最大限に多くしながら、集電体10のしわの発生、及び活物質層の集電体10からの脱落を抑制することができる。
 また、突起12の上面12dは、中央部が高く、周縁部にいくにしたがって低くなるような、丸みを帯びた形状となっている。突起12の上面12dをそのような形状とすることによって、例えば蒸着法により活物質層21を形成するときに、突起12の上面12dに最も多く活物質を担持させることができる。これにより、隣接する柱状体20同士の間の空隙23を大きくすることができる。したがって、充放電時の活物質の膨張及び収縮による柱状体20同士の接触により発生する活物質層の内部応力を緩和することができる。
 また、突起12は、上面12dの表面粗さが、その素材である金属箔11の表面粗さを維持するように、金属箔11を圧縮加工して、形成するのが好ましい。これにより、突起12の上に形成される柱状体20と上面12dとの間の結着力をより大きくすることが可能となる。
 また、突起12の上面12dが圧縮加工前の金属箔11の表面粗さを維持していることから、集電体10の耐久性が向上し、集電体10の表面に突起12を形成する工程や集電体10に活物質を担持させる工程で集電体10に局所的な変形や撓みが発生するのを防止することができる。
 さらに、突起12は、根本部分が太く、先端に向かって細くなるようなテーパ形状を有している。これにより、後掲のように、突起12を圧縮加工により形成する際に、突起12の型抜き(具体的には、ローラ16または18の表面に設けられた凹部22からの突起12の引き抜き)をスムーズに行うことが可能となる。
 また、突起12をそのような形状とすることにより、突起12の上面12dの幅が、突起12の根本部分の横断面よりも小さくなり、柱状体20の形状を先端に行くにしたがって幅が狭くなるテーパ形状とすることができる。これにより、隣接する柱状体20同士の間の空隙を大きくすることができる。したがって、充放電時の活物質の膨張及び収縮に起因して発生する応力を緩和することができる。
 また、突起12の中間部12cの側面も先端に近づくほどに内側に後退するように傾斜していることから、中間部12cに対応する柱状体20の側面をより確実に窪ませることができる。その結果、上述した効果をより確実に達成することができる。
 次に、突起12の形成方法を説明する。
 図3に示すように、突起12は、上下に配置された一対のローラ16及び18により金属箔11を圧縮加工して、形成することができる。なお、視認性を考慮して、図4においては、突起12の形状を簡略化している。
 金属箔11の両面に突起12を形成する場合には、上下のローラ16及び18の両方に、図4に示すような、突起12と対応する形状の凹部22を、突起12の配列と対応する配列で形成し、それらのローラ16及び18を使用して、金属箔11を圧縮加工する。
 一方、金属箔11の一方の面にのみ突起12を形成する場合には、例えば上ローラ16のみに凹部22を形成する一方、下ローラ18は、表面を平坦なままとし、それらのローラ16及び18を使用して、金属箔11を圧縮加工する。なお、突起12は、ローラを使用する方法に限らず、例えば金型等を使用して、金属箔11を上型と下型との間に挟んで圧縮加工することによっても形成し得る。
 ここで、ローラ16及び18の素材には、金属製のローラの表面をCrO(酸化クロム)、WC(炭化タングステン)及びTiN(窒化チタン)等のセラミックスによりコーティングしたものを使用するのが好ましい。このとき、凹部22は、コーティングの上から形成される。その形成方法は、レーザ加工によるのが好ましい。それ以外に、エッチング加工、ドライエッチング加工、及びブラスト加工等によっても凹部22を形成することができる。
 また、凹部22の形状は、形成しようとする突起12の形状に応じて、様々な形状とすることができる。例えば、凹部22の形状は、略長方形、略正方形、及び略正六角形等とすることができる。
 図5A及び5Bに、ローラを使用した圧縮加工により突起を形成する場合の一連の過程を示す。ここでは、凹部22が形成された上ローラ16と、表面が平坦な下ローラ18とを使用して、金属箔11の一方の面にのみ突起12を形成する場合を説明する。なお、視認性を考慮して、図5A及び5Bにおいては、突起12及び凹部22の形状を簡略化している。
 図5Aに示すように、所定の間隙で配置された上ローラ16と下ローラ18との間に金属箔11を通すと、金属箔11は、厚みが薄くなる方向に圧縮される。これにより、図に矢印で示すように、凹部22の側面に沿って凹部22の内部に金属箔11の構成金属が移動するような塑性変形が起こり始める。
 図5Bに示すように、圧縮加工がさらに進むと、塑性変形により凹部22の内部に移動した金属箔11の構成金属により突起12が形成される。このとき、突起12の上面12dは、塑性変形により、上述したような中央が少し盛り上がるような丸みを帯びた形状となる。
 また、凹部22の深さ等は、突起12の上面12dと、凹部22の底面22aとの間が離れるように設定されている。その結果、突起12の上面12dの表面粗さは、金属箔11の表面粗さがそのまま維持される。一方、上ローラ16の凹部22以外の部分で圧縮された金属箔11の表面は、圧縮により均されて、表面粗さは小さくなる。このようにして、突起12の上面12dよりも表面粗さの小さいベース平面10aが形成される。
 このように、集電体10は、突起12の上面12dの表面粗さが、ベース平面10aの表面粗さよりも大きくなっていることから、突起12の上面12dにより、より大きな結着力で活物質を担持させることができる。
 また、集電体10の表面に多数の突起12が形成されることから、集電体10の伸びや局所的な応力の発生を抑えることができる。その結果、集電体10に波打ち、しわ及び反り等の不具合が発生するのを抑えることができる。また、集電体10の強度を向上させることもできる。
 また、凹部22は、突起12の加工性を向上させると共に、突起12の離型性を向上させるために、深さ方向に凹部22の幅が狭くなるようなテーパ形状を有している。そのテーパ形状は、上述した突起12のテーパ形状と対応している。
 次に、集電体10の上に正極活物質または負極活物質を担持させて作製される非水電解質二次電池用電極について説明する。
 まず、塗布法により集電体10の上に活物質層を形成して、非水電解質二次電池用電極を作製する場合を説明する。
 電極が正極であれば、正極集電体の素材として、アルミニウムまたはアルミニウム合金製の箔または不織布を用いることができる。その厚みは5μm~30μmとすることができる。正極集電体の片面または両面に、ダイコーターを用いて、正極合剤塗料を塗布し、乾燥した後、プレスにより、全体の厚みが所定厚みとなるまで圧延して、正極が作製される。正極合剤塗料は、正極活物質、正極導電材、及び正極結着材を分散媒中にプラネタリーミキサー等の分散機により混合分散させて調製される。
 正極活物質としては、例えばコバルト酸リチウム及びその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウム及びその変性体(ニッケルの一部をコバルトと置換させたものなど)、マンガン酸リチウム及びその変性体などのリチウム含有遷移金属酸化物を使用することができる。
 正極導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、並びに各種グラファイトを単独あるいは組み合わせて使用することができる。
 正極結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、及びアクリレート単位を有するゴム粒子を用いることができる。この際に、反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着材中に混入させることも可能である。
 電極が負極であれば、負極集電体の素材として、圧延銅箔、及び電解銅箔等を用いることができる。その厚みは、5μm~25μmとすることができる。負極集電体の片面または両面に、ダイコーターを用いて負極合剤塗料を塗布し、乾燥した後、プレスにより全体の厚みが所定厚みとなるように圧延して、負極が得られる。負極合剤塗料は、負極活物質、負極結着材、並びに必要に応じて負極導電材及び増粘剤を分散媒中にプラネタリーミキサー等の分散機により混合分散させて調製される。
 負極活物質としては、黒鉛などの炭素材料、並びに合金系材料などが好ましく用いられる。合金系材料としては、ケイ素酸化物、ケイ素、ケイ素合金、スズ酸化物、スズ、スズ合金などを用いることができる。なかでも特に、ケイ素酸化物が好ましい。ケイ素酸化物は、一般式SiOで表され、0<x<2、好ましくは0.01≦x≦1を満たす組成を有することが望ましい。ケイ素合金中のケイ素以外の金属元素は、リチウムと合金を形成しない金属元素、例えばチタン、銅、ニッケルが望ましい。
 負極結着材としては、PVdF及びその変性体をはじめとする各種バインダーを用いることができる。リチウムイオン受入れ性向上の観点からは、スチレン-ブタジエン共重合体ゴム粒子(SBR)及びその変性体を用いることもできる。
 増粘剤としては、ポリエチレンオキシド(PEO)及びポリビニルアルコール(PVA)等の水溶液としたときに粘性を有する材料を使用することができ、特に限定されない。しかしながら、合剤塗料の分散性及び増粘性の観点からは、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂及びその変性体を使用するのが好ましい。
 次に、真空プロセスにより、集電体10に活物質を担持させる方法を説明する。真空プロセスによれば、集電体10上の特定部位に選択的に活物質を担持させることが可能である。
 この場合には、活物質を、突起12の上面12dに柱状に堆積させるのが好ましい。活物質層を活物質の柱状体20から構成することで、活物質がリチウムを吸蔵したときの体積膨張による影響を緩和する効果が期待できるからである。
 さらに、突起12の上面12dを圧縮加工しないことによって、加工歪などの影響を受けることなく、初期の平面精度を維持させることができる。その結果、突起12の上面12dに活物質を堆積させる場合に、含まれる活物質の量や層厚が精度良く制御された活物質層を形成することができる。
 真空プロセスは、特に限定されないが、蒸着法、スッパッタリング法、及びCVD法等のドライプロセスを用いることができる。このとき、負極活物質であれば、Si、Sn、Ge(ゲルマニウム)、及びAl(アルミニウム)の単体または合金、SiO(酸化ケイ素)及びSnO(酸化スズ)等の酸化物、並びにSiS(硫化ケイ素)及びSnS(硫化スズ)等の硫化物を用いることができる。それらは、非晶質または低結晶性であることが好ましい。
 活物質層の厚みは、作製すべき非水電解質二次電池の要求特性によっても異なるが、5~30μmの範囲が好ましく、さらに10~25μmの範囲であることがより好ましい。
 図6に、負極活物質を突起の上に蒸着させる場合を示す。同図に示すように、集電体10上の突起12の近傍に図示しない酸素を供給しながら、図示しない電子ビームにより、Siを含む活物質材料を投入した蒸着源24を加熱し、活物質材料を蒸発させて、突起12の上に蒸着させる。このとき、蒸発した活物質材料が、図6の紙面と平行、かつ集電体10の表面(またはベース平面10a)に対して斜めの方向から到達するように蒸着源24と集電体10の位置関係を設定する。
 その結果、図6に示すように、斜めに傾いた柱状体20が形成される。そして、柱状体20の集合体により活物質層21が形成される。このとき、図1の上下方向(集電体10の長手方向)と図6の左右方向とが一致している。
 また、図6に示すように、活物質層を形成した後、リチウム蒸気を発生する、別の蒸着源24Aを所定位置に配設する。このとき、柱状体20の中心軸の傾斜に合わせて蒸着源24Aの姿勢を設定する。これにより、リチウム蒸気の進む方向が柱状体20の中心軸の方向と一致する。その結果、柱状体20にリチウムを選択的に蒸着させることができるとともに、集電体10のベース面10a上にリチウム蒸気が蒸着するのを抑制することができる。
 なお、活物質層の形成方法は、これに限定されず、例えば、中心軸がベース面10aに対して垂直となるように柱状体を形成することも可能である。また、図6に示すように何段(図示例では4段)かに分けて柱状体20を形成することもできる。この場合には、1段目の中心軸を所定角度だけ傾斜させ、2段目の中心軸を異なった方向に傾斜させるようにして、つづら折れ状の柱状体を形成することも可能である。
 (実施形態2)
 次に、本発明の実施形態2を説明する。図7に本発明の実施形態2に係る集電体の一部を拡大して、斜視図により示す。
 図7に示す集電体10Aにおいては、図2に示した集電体10と同様に、突起26は、長軸方向端部26a及び短軸方向端部26bが丸みを帯びながら外側に突出する一方で、長軸方向端部26aと短軸方向端部26bとの中間部26cは全て丸みを帯びながら内側に後退している。
 図7の集電体10Aが、図2の集電体10と異なるのは、突起26の長軸方向端部26aの高さが短軸方向端部26bの高さよりも高くなっていることである。
 また、2つの長軸方向端部26aの間には、高さがそれらの端部26aと同じかそれよりも高い主上面部26dが形成されている。主上面部26dの両側には、2つの短軸方向端部26bのそれぞれに対応する補助上面部26eがそれぞれ形成されている。主上面部26dは、中央部が最も高く、周縁部に行くにしたがって次第に低くなっている。
 このように、長軸方向端部26aと短軸方向端部26bとの間で高さが異なるように突起26を形成することで、突起26の上面の形状に変化を持たせることが可能となり、活物質の柱状体20をより強固に突起26に保持させることができる。これにより、活物質層の集電体10からの脱落をより確実に抑制することができる。
 (実施形態3)
 次に、本発明の実施形態3を説明する。図8に本発明の実施形態3に係る集電体の一部を拡大して、斜視図により示す。
 図8に示す集電体10Bにおいては、図7に示した集電体10Aと同様に、突起28は、長軸方向端部28a及び短軸方向端部28bが丸みを帯びながら外側に突出する一方で、長軸方向端部28aと短軸方向端部28bとの中間部28cは全て丸みを帯びながら内側に後退している。また、長軸方向端部28aの高さは短軸方向端部28bの高さよりも高くなっており、2つの長軸方向端部28aの間には、高さがそれらの端部28aと同じかそれよりも高い主上面部28dが形成されている。主上面部26dの両側には、2つの短軸方向端部26bのそれぞれに対応する補助上面部26eがそれぞれ形成されている。
 図8の集電体10Bが、図7の集電体10Aと異なるのは、突起28が、主上面部28dの側面の補助上面部26eと隣接する箇所に、少なくとも一部が球面である窪み部28fがそれぞれ形成されていることである。
 このように、窪み部28fを主上面部28dの側面に形成することにより、突起28の上に形成される活物質の柱状体20の側面の形状も、それに倣って窪む。その結果、隣り合う柱状体20の間の空隙23をより大きくすることが可能となる。したがって、非水電解質二次電池を充放電するときの電極活物質の膨張及び収縮により、活物質の柱状体同士が接触して発生する圧縮応力を緩和することができる。
 (実施形態4)
 次に、本発明の実施形態4を説明する。図9に本発明の実施形態4に係る集電体の一部を示す。
 図9に示す集電体10Cにおいては、突起30は、基本的には、図7の集電体10Aの突起26と同じ形状をしている。集電体10Cが図7の集電体10Aと異なるのは、突起30の短軸方向端部30bの高さが互いに異なることである。
 このように、短軸方向端部30bの高さが互いに異なることにより、図に矢印で示すように、集電体10Cの表面に対して斜め方向に活物質材料の蒸気を到達させて、活物質層21を形成するときに、補助上面部30e1及び30e2の内、高い方の補助上面部30e1の陰になって、活物質材料の蒸気が、突起30同士の間のベース面10aに届かなくなる。その結果、突起30の上に形成される柱状体20同士の間により確実に空隙23を設けることが可能となる。
 したがって、非水電解質二次電池を充放電するときの活物質の膨張及び収縮に起因して活物質層の内部に発生する圧縮応力をより確実に緩和することができる。
 (実施形態5)
 次に、本発明の実施形態5を説明する。図10に本発明の実施形態5に係る集電体の一部を示す。
 図10に示す集電体10Dにおいては、突起32は、図7の集電体10Aの突起26と同じ形状をしている。集電体10Dが図7の集電体10Bと異なるのは、突起32同士の間のベース面10aが、1つの突起32から隣り合う他の突起32に向かって傾斜している点である。
 このように突起32同士の間のベース面10aを傾斜させることによって、図に矢印で示すように、集電体10Dの表面に対して斜め方向に活物質を蒸着させるときに、突起32同士の間のベース面10aに活物質が蒸着し難くなる。その結果、突起32の上に形成される柱状体20同士の間により確実に空隙を設けることが可能となる。
 したがって、非水電解質二次電池を充放電するときの活物質の膨張及び収縮に起因して活物質層の内部に発生する圧縮応力をより確実に緩和することができる。
 次に、上述した実施形態1~5の非水電解質二次電池用集電体を使用して構成した非水電解質二次電池を説明する。
 図11に、そのような非水電解質二次電池の一例を示す。図示例の二次電池70は、正極集電体上に正極活物質層が形成された正極75と、負極集電体上に負極活物質層が形成された負極76とを、セパレータ77を間に介在させて、渦巻状に巻回した電極群80を含んでいる。また、正極75には正極リード75aが接合され、負極76には負極リード76aが接合されている。
 電極群80は、上下に絶縁板78A及び78Bを配した状態で、有底円筒形の電池ケース71の内部に収納される。電極群80の下部より導出した負極リード76aは、電池ケース71の底部に接続される。一方、電極群80の上部より導出した正極リード75aは、電池ケース71の開口部を封口する封口体72に接続される。また、電池ケース71には、所定量の非水電解液(図示せず)が注液される。非水電解液は、電極群80を電池ケース71に収納した後に注液される。非水電解液の注液が終了すると、電池ケース71の開口部に、封口ガスケット73を周縁に取り付けた封口体72を挿入し、電池ケース71の開口部を内方向に折り曲げるようにかしめて、リチウムイオン二次電池70が構成される。
 ここで、セパレータ77は、非水電解質二次電池用セパレータとしての使用に耐えうる組成であれば特に限定されないが、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的であり、また態様として好ましい。セパレータ77の厚みは特に限定されないが、10~25μmとすれば良い。
 非水電解液は、電解質塩としてLiPF及びLIBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、及びメチルエチルカーボネート(MEC)を単独または組み合わせて用いることができる。また、正極75または負極76の表面に良好な皮膜を形成させる、あるいは過充電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)及びその変性体を非水電解液に添加することも好ましい。
 次に、上記実施形態1~5に関する実施例を説明する。本発明は、これら実施例に限定されるものではない。
 (実施例1)
 以下のようにして、リチウムイオン二次電池を作製した。
 正極集電体の素材として、厚さみ15μmのアルミニウム箔を準備した。このアルミニウム箔を、表面に深さが4μmの凹部を千鳥配列で形成した一対のローラを使用して圧縮加工し、その両面に、高さが3μmの、図2に示したような形状の突起を千鳥配列で形成した。以上のようにして、総厚みが18μmの正極集電体を作製した。
 突起の長軸方向の長さは17μm、短軸方向の長さは10μmとした。圧縮加工用のローラには金属製、より具体的には、超鋼材料から構成されたローラを使用した。そして、その表面はセラミック、より具体的には、酸化クロムによりコーティングした。
 正極活物質には、コバルトの一部をニッケル及びマンガンで置換したコバルト酸リチウムを使用した。その正極活物質の100重量部と、導電材としてのアセチレンブラックの2重量部と、結着材としてのポリフッ化ビニリデンの2重量部とを、適量のN-メチル-2-ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を調製した。この正極合剤塗料を正極集電体の表面に塗布し、乾燥させて、正極集電体の両面にそれぞれ厚み85μmの活物質層を形成した。その正極集電体を、総厚みが146μmとなるようにプレスすることで、両面に厚み64.0μmの活物質層がそれぞれ形成された正極の前駆体を得た。それを、規定の幅にスリッタ加工して、正極を作製した。
 負極集電体の素材として、厚さが26μmの銅箔を準備した。この銅箔を、表面に深さが10μmの凹部を千鳥配列で形成した一対のローラを使用して圧縮加工し、その両面に、高さが8μmの、図2に示したような形状の突起を千鳥配列で形成した。このようにして、総厚みが26μmの負極集電体を作製した。突起の長軸方向の長さは17μm、短軸方向の長さは10μmとした。圧縮加工用のローラには、正極集電体の作製に使用したのと同じ素材及び同じコーティングのローラを使用した。
 負極集電体への負極活物質層の形成は、以下のようにして行った。
 純度99.9999%のSiを電子ビームにより加熱し、負極集電体の両面に純度99.7%の酸素を導入しながら4回に分けて蒸着を行った。この4回とも、突起の上に同一方向に柱状体を成長させるように蒸着の方向を設定した。このようにして、厚みが23μmのSiO0.5からなる活物質層を負極集電体の表面に形成した。
 その後、蒸着材料としてリチウムを用い、蒸着源から飛散するリチウム蒸気の飛散方向を柱状体の成長方向と一致させるようにして、活物質層にリチウムを蒸着した。その後、規定の幅にスリッタ加工して負極を作製した。
 次に、正極と負極とを、セパレータを間に介在させながら渦巻状に巻回して、電極群を作製した。作製された電極群を用いて、図11に示したようなリチウムイオン二次電池を作製した。
 以上のようにして作製されたリチウムイオン二次電池においては、正極集電体及び負極集電体に所定配列で突起が形成されており、長手方向に加わる引張応力に対して集電体が十分な耐久応力を有していた。このため、正極集電体においては、正極集電体上に正極活物質層を形成して正極を製造する際、あるいは正極を所定の幅にスリット加工する際に正極集電体に局部的な変形や撓みが生じるのを防止することができた。また、正極活物質層の脱落を抑制することができた。
 また、負極においては、負極集電体の突起同士の間にリチウムが付着または析出しておらず、大気中の水分とも反応するリチウムが存在しないために、水素が発生することもなく、負極を安全に取り扱うことができた。また、負極集電体の突起同士の間に空隙が形成されているため、充電時のリチウムイオンの吸蔵により負極活物質が膨張したときにも、活物質層の内部で過大な圧縮応力が発生するのを防止することができた。その結果、充電時に負極集電体にかかる応力を低減することができた。
 また、電極群を作製した後に、それを再び解体して観察したところ、正極及び負極ともに電極板の切れや活物質の脱落などの不具合は認められなかった。
 さらに、上述のようにして作製されたリチウムイオン二次電池に対して300サイクルの充放電を行った。このとき、20℃の環境下において、0.7Cで4.2Vまで定電流充電した後、終止電圧0.05Cまで定電圧充電し、0.2Cで2.5Vまで定電流放電した。このときの放電容量を初回放電容量とした。その後、放電時の電流値を1Cとし充放電サイクルを繰り返す、という条件で充放電を行った。
 しかしながら、著しい電池特性の劣化は生じなかった。その状態で電極群を解体したところ、リチウム金属の析出や活物質層の脱落等の不具合も認められなかった。
 これは、活物質層、特に負極活物質層を、負極集電体の突起の上に形成された柱状体の集合体から構成したことで、充放電に伴う負極活物質の膨張及び収縮による応力の発生を緩和することができ、負極活物質層の脱落等を抑えることができたからであると考えられる。
 なお、上記実施例1においては、正極及び負極の両方の集電体に、突起を有する集電体を使用した。しかしながら、例えば正極集電体には突起を有しない集電体を用い、負極集電体のみに突起を形成することも可能である。正極活物質の膨張及び収縮の割合は、負極活物質よりも遙かに小さいために、このようにしても、上述した効果を達成し得る。
 (実施形態6)
 図12に、本発明の実施形態6に係る非水電解質二次電池用集電体の概略構成を斜視図により示す。
 図示例の集電体10Eは、少なくとも一方の面に、複数の突起34が設けられており、さらに、突起34の上面に、それぞれ微細な複数の凸部36が設けられている。
 突起34の上面に、微細な複数の凸部36が設けられていることから、活物質と集電体10Eとの間の接触面積が拡大される。これにより、活物質に対してアンカー効果が働き、集電体10Eと活物質層との界面における結着力をさらに高めることが可能となる。
 また、集電体10Eを使用した電極を巻回して電極群を作製するときの曲げ応力に対する強度を大きくすることができる。これにより、活物質の集電体10Eからの脱落を抑制することができる。したがって、安全性が高く、品質の良好な非水電解質二次電池用電極を提供することができる。
 ここで、集電体10Eにおいては、突起34は、長尺帯状の集電体10Eの幅方向(図の左右方向)に等間隔のピッチP1で一列に並ぶように配設されている。この一列に並ぶ突起34を行単位L1と称する。
 さらに、集電体10Eにおいては、行単位L1は、集電体10Eの長手方向(図の上下方向)に等間隔のピッチP2で配設されている。また、隣り合う行単位L1に含まれる突起34は、集電体10Eの幅方向の位置が互いに、ピッチP1の2分の1だけずれている。なお、このずれる距離は任意に変更することが可能である。
 突起34の上面に設けられる凸部36の高さは、1~5μmが好ましい。凸部36の高さが1μmよりも小さいと、活物質と集電体10Eとの間の接触面積をあまり拡大できずに結着力の向上を図ることが困難となる。一方、凸部36の高さが5μmを超えると、例えば凸部36を、ローラを使用した圧縮加工により形成する場合に、そのローラの表面に深さが5μmよりも大きい凹部を形成する必要がある。このとき、凹部の径は、非常に小さなものであるために、例えばレーザ加工によりその凹部を形成すると、ビームを小さく集光させる必要があり、焦点深度は浅くなる。このため、ローラ表面の凹部を5μmよりも深く加工することは困難となる。
 また、凸部36のピッチは、1~5μmとするのが好ましい。凸部36のピッチを1μmよりも小さくすると、凸部36自体の径を非常に小さくする必要がある。その結果、凸部36自身の強度が弱くなり形状維持が困難となる。一方、凸部36のピッチが5μmを超えると、凸部36の存在密度が小さくなりすぎて、活物質と集電体10Eとの接触面積をあまり拡大できずに結着力の向上を図ることが困難となる。
 このように、突起34の上面に微細な凸部36を設けることにより、集電体10Eを使用して作製される電極の、巻回して電極群を構成するときの曲げ応力に対する強度を高めることができる。また、集電体10Eと活物質との結着力が大きくなることから、活物質層の脱落を抑制することができ、安全で品質の高い非水電解質二次電池用電極を提供することができる。
 ここで、凸部36の配列は、後掲の図16に示すように、規則的なものとしたり、後掲の図17に示すように、不規則なものとしたりすることができる。
 図13に、圧縮加工により規則的な配列で凸部36を形成するために使用するのに好ましいローラの表面を、拡大して示す。このローラ38の表面には、規則的な配列で凸部36と対応する凹部40が形成されている。凹部40の配列は、図12に示した突起34の配列と同様のパターンとなっている。
 図14に、圧縮加工により不規則な配列で凸部36を形成するために使用するのに好ましいローラの表面を、拡大して示す。このローラ42の表面には、不規則な配列で凸部36と対応する凹部44が形成されている。
 このように、ローラ42の表面に不規則な配列で凹部44を形成する場合は、エッチング加工、ドライエッチング加工及びブラスト加工等によるのが好ましい。
 凸部36の配列を規則的なものとすることによって、活物質と集電体10Eとの間の結着力を均一にすることができる。したがって、品質の安定した非水電解質二次電池用電極を提供することができる。
 一方、不規則な配列で突起34に凸部36を形成することによって、活物質層を剥離または脱落させるような力が加わったときにも、その力が伝播し難くくなり、活物質層の剥離または脱落を抑えることができる。したがって、安全性が高く、品質の良好な非水電解質二次電池用電極を提供することができる。
 次に、ローラを使用した圧縮加工により集電体の表面に突起及び凸部を形成する手順を具体的に説明する。
 図15に示すように、片面または両面に突起34及び凸部36が形成された集電体10Eを作製するためには、2組のローラ46A及び46B、並びに48A及び48Bを使用して、金属箔11を圧縮加工するのが好ましい。
 図示例では、図に矢印により示す金属箔11の送りの方向の上流側に、少なくとも一方の表面に凸部36に対応する凹部40または44が形成された一対のローラ46A及び46Bを配している。これにより、金属箔11の片面または両面に微細な凸部36が先に形成される。
 図16に、少なくとも一方に規則的な配列により凹部40が形成されたローラ46A及び46Bを使用して圧縮加工を施した直後の金属箔11の表面を示す。ここでは、金属箔11の表面に、図13における凹部40の配列に対応した規則的な配列で凸部36が並んでいる。
 図17に、少なくとも一方に不規則な配列により凹部44が形成されたローラ46A及び46Bを使用して圧縮加工を施した直後の金属箔11の表面を示す。ここでは、金属箔11の表面に、図14における凹部44の配列に対応した不規則な配列で凸部36が並んでいる。
 そして、図15に、矢印により示す金属箔11の送りの方向の下流側に、少なくとも一方の表面に突起34に対応する凹部22が形成された一対のローラ48A及び48Bを配している。これにより、微細な凸部36が先に形成された金属箔11の片面または両面に突起34が形成される。このとき、突起34の上面に対応する領域の凸部36は、潰されずに残るが、それ以外の領域の凸部36は、ローラ48A及び48Bにより圧縮されて消滅する。
 以上のように、金属箔11の表面に先に微細な凸部36を圧縮加工により形成し、その後でより大きな突起34を圧縮加工により形成するようにすることにより、任意の形状の突起34の上面に微細な凸部36を形成することが可能となる。
 なお、図12の集電体10Eにおいても、ローラによる圧縮加工の代わりに金型等を用いて、突起34及び凸部36を形成できる。
 また、集電体10Eを使用して正極または負極、並びに非水電解質二次電池を作製する方法も上述した各実施形態1~5と同様である。
 なお、上記実施形態では、突起34の上面に凸部36を形成したが、突起34の上面を、例えばエッチング加工、ドライエッチング加工、及びブラスト加工等の表面処理を施すことにより粗面化して、活物質と集電体との結着力をある程度高めることは可能である。
 しかしながら、突起34の上面に凸部36を設けることによって、集電体10Eと活物質層との結着力を精密に制御し得るので、より確実に活物質層が集電体から脱落するのを防止することができる。
 次に、本発明の実施形態6に係る実施例を説明する。本発明は、この実施例に限定されない。
 (実施例2)
 以下に説明するようにして、リチウムイオン二次電池の負極を作製した。
 集電体の素材の金属箔として、厚さ20μmの銅箔を使用した。その金属箔の両面に、図12に示したような突起及び凸部を形成した。このとき、図15に示したような2組の一対のローラを使用して、圧縮加工により突起及び凸部を形成した。
 先ず高さ3μmの凸部を金属箔の両面に形成した。このとき、図13に示したような、規則的な配列で、図の横方向のピッチ(P3)及び縦方向のピッチ(P4)はともに3μmとして凸部を形成した。凸部を形成するために使用した一対のローラ(図15のローラ46A及び46B)には、レーザ加工により凹部を形成した。その凹部の開口部及び横断面の形状は、略円形とした。
 その後、両面に凸部が形成された金属箔を、一対のローラ(図15のローラ48A及び48B)により圧縮加工して、図12に示したような配列で突起を形成した。このとき、集電体の幅方向(図の横方向)のピッチ(P1)及び集電体の長手方向(図の縦方向)のピッチ(P2)は、ともに20μmとした。ローラの表面に形成された凹部の開口部及び横断面の形状は略楕円形とし、その長軸方向を集電体の幅方向と一致させた。
 以上のようにして、総厚が28μmである負極集電体を作製した。
 次いで、ターゲットとして純度99.9999%の珪素を用い、電子ビーム加熱手段を具備した蒸着装置により上記負極集電体の両面に純度99.7%の酸素を導入しながら、蒸着を行った。これにより、負極集電体の両面に、それぞれ、厚みが10μmのSiO0.5からなる負極活物質層を形成した。
 その後、その負極集電体を規定の幅にスリッタ加工して、200個のリチウムイオン二次電池用負極を得た。
 (実施例3)
 突起の上面に形成する凸部の高さ及びピッチを、1μmとしたこと以外は、実施例2と同様にして、200個の負極を作製した。
 (実施例4)
 突起の上面に形成する凸部の高さ及びピッチを、5μmとしたこと以外は、実施例2と同様にして、200個の負極を作製した。
 (比較例1~3)
 突起の上面に形成する凸部の高さ及びピッチを、0.5μm(比較例1)、8μm(比較例2)、及び10μm(比較例3)とした。それ以外は、実施例2と同様にして、それぞれ、200個の負極を作製した。
 以上の実施例2~4及び比較例1~3について、それぞれ100個ずつの負極を取り出し、それらの負極活物質層の負極集電体からの剥離強度を測定し、その平均値を得た。その結果を表1に示す。ここで、その剥離強度は、以下のようにして測定した。
 負極を50×50mmのサイズに切断し、平坦な支持台に貼り付けた。先端部の形状が10×10mmの正方形である測定子の先端部の全面に両面テープを貼り付け、測定子の先端部と、支持台に支持させた負極の上面の負極活物質層とを接着した。測定子を所定の荷重でその負極に押し付けた後、負極から引き離すように測定子を後退させた。そのとき、負極活物質層が剥がれるまでの最大の応力を剥離強度として測定した。
 また、実施例2~4及び比較例1~3について、それぞれ100個ずつの負極を取り出し、それらを使用して100個ずつのコイン型リチウムイオン二次電池を作製した。それらの電池に対して、実施例1と同じ条件で、100サイクルの充放電を行い、その後、全てのセルを分解して、負極活物質層の負極集電体からのはがれの有無を調査した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、凸部の高さ及びピッチが1~5μmである実施例2~4の電極は、245N/cm以上の活物質層の剥離強度を有している。また、それらの電極を使用して作製されたコイン型セルは、100サイクルの充放電の後にも活物質層のはがれが発生しておらず、優れたサイクル特性を有している。
 これに対して、凸部の高さ及びピッチがそれぞれ0.5、8または10μmである比較例1~3は、活物質層の剥離強度が205.8または186.2N/cmであり、実施例2~4よりも小さかった。その結果、それらの電極を使用して作製されたコイン型リチウムイオン二次電池には、100サイクルの充放電の後に活物質層のはがれが発生したものがあり、サイクル特性に劣っていた。
 なお、実施例2~4及び比較例1~3においては、凸部を規則的な配列で形成する場合を示したが、不規則な配列で凸部を形成した場合にも同様の結果が得られるものと推測される。
 また、実施例2~4及び比較例1~3においては、いずれも略楕円形である突起の長軸方向を集電体の幅方向と一致させたために、負極集電体の長手方向と平行な方向から斜めに負極活物質を蒸着することで、突起の上に効率良く活物質を付着させることができた。
 また、突起の上面に、高さ3μmの凸部を3μmのピッチで規則的に形成した実施例2において、活物質層の負極集電体からの剥離強度は最大となった。結着力を高くするためには、微細な凸部を所定の間隔を保つように規則的な配列で多数個形成することが必要であり、凸部の高さを3μmとし、そのピッチを3μmとすることにより、非常に良い結果を得た。
 (実施例5)
 以下のようにして、リチウムイオン二次電池を作製した。
 正極集電体の素材として、厚さみ15μmのアルミニウム箔を使用した。また、正極活物質には、コバルトの一部をニッケル及びマンガンで置換したコバルト酸リチウムを使用した。その正極活物質の100重量部と、導電材としてのアセチレンブラックの2重量部と、結着材としてのポリフッ化ビニリデンの2重量部とを、適量のN-メチル-2-ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を調製した。
 この正極合剤塗料を正極集電体の表面に塗布し、乾燥させて、正極集電体の両面にそれぞれ厚み82μmの活物質層を形成した。その正極集電体を、総厚みが126μmとなるようにプレスすることで、両面に厚み55.5μmの活物質層がそれぞれ形成された正極の前駆体を得た。それを、規定の幅にスリッタ加工して、正極を作製した。以上のようにして、200個の正極を作製した。
 実施例2と同様にして、負極を200個作製した。
 上記正極の100個と、負極の100個とを使用し、実施例1と同様にして、100個のリチウムイオン二次電池を作製した。
 以上のようにして、作製した100個のリチウムイオン二次電池、並びに100個ずつの残りの正極及び負極を、以下のようにして評価した。
 まず、残りの100個ずつの正極及び負極を解体し、観察した。その結果、正極及び負極ともに、集電体の切れや活物質層の脱落等の不具合は認められなかった。
 また、上記作製した100個のリチウムイオン二次電池に対して、実施例1と同じ条件で、300サイクルの充放電を行った。その結果、電池特性の劣化はほとんど認められなかった。また、上記300サイクルの充放電を行った100個のリチウムイオン二次電池を解体し、正極及び負極を観察したところ、リチウム析出や活物質層の脱落等の不具合は認められなかった。
 これは、充放電に伴う膨張及び収縮が、正極と比較すると遙かに大きい負極において、集電体の上面に所定の配列で突起を形成し、さらに凸部の上面に規則的な配列で高さ3μmの凸部を3μmのピッチで形成したためであると考えられる。これにより、蒸着法により負極活物質の柱状体を形成して、活物質層を形成するときに、活物質層と負極集電体との間の接触面積が増大し、活物質層と負極集電体との結着力が増大したからである。
 なお、上記突起の上面の凸部を不規則な配列で設けた場合にも、凸部の高さ及び存在密度を上記実施例と同程度とすることにより、同様の結果が得られるものと推測される。
 (実施形態7)
 次に、本発明の実施形態7を説明する。
 図18に、本発明の実施形態7に係る非水電解質二次電池用電極の概略構成を、断面図により示す。
 図示例の電極は、リチウムイオン二次電池の負極50であり、両面に所定の配列で突起52が形成された集電体10Fと、その両面に形成された負極活物質層54及び56と、を含んでいる。集電体10Fの素材としての金属箔には、例えば銅箔を使用することができる。
 負極活物質層54及び56は、それぞれ、突起52の上面に形成された負極活物質の柱状体20A及び20Bから構成される。そして、負極活物質層54及び56に対しては、上述したリチウム補填処理がなされている。負極活物質としては、ケイ素と酸素とを含む化合物またはスズと酸素とを含む化合物等を使用することができる。
 柱状体20A及び20Bは、集電体10Fの表面に対して斜め方向に形成されるとともに、相互の間に適度の空隙53A及び53Bが設けられている。これにより、リチウム補填処理を行うときに、負極活物質が膨張し、柱状体20A及び20B同士が接触して、活物質層54及び56に割れが発生するのを抑制することができる。
 また、集電体10Fの一方の面(図の上側の面)に形成される活物質層54の厚みL1は、集電体10Fの他方の面(図の下側の面)に形成される活物質層56の厚みL2よりも大きくなっている。その結果、負極活物質層54及び56に含まれる負極活物質の量のばらつきにより、リチウム補填処理の際に負極活物質層54及び56の内部で不規則な応力が発生し、負極50が大きく波打つのを防止することができる。つまり、負極50においては、常に、負極活物質層54の内部応力が負極活物質層56の内部応力よりも大きくなるために、負極50は小さくカールするだけだからである。
 このとき、負極50の大きな波打を抑える一方で、負極50のカールをできるだけ小さくするように、負極活物質層56の厚みL2を負極活物質層54の厚みL1に対して小さくする割合は、5~10%の範囲とするのが好ましい。
 また、活物質の柱状体20A及び20Bの形成方法は、特に限定されないが、蒸着法、スパッタ法、及びCVD法などのドライプロセスによるのが好ましい。特に蒸着法は生産性に優れているために、大量生産が求められる非水電解質二次電池用電極の製造方法に適用するのに好ましい。
 次に、図19を参照して、活物質層54及び56の形成方法を説明する。
 図19は、蒸着法により集電体上に活物質層を形成するための蒸着装置の概略構成を示す一部断面図である。
 図示例の蒸着装置58は、真空槽60、及び真空槽60内の空気を排気する排気ポンプ62を備えている。真空槽60内には、集電体10Fを巻出すための巻き出しロール64、キャンロール66、及び巻き取りロール68が所定の配置で設置されるとともに、蒸着源80、酸素供給ノズル82、及びマスク84が所定の配置で設置されている。蒸着源80は、坩堝からなり、その内部には、負極の製造であれば、ケイ素またはスズ等の活物質材料が収容される。これらの活物質材料は、抵抗加熱法や電子ビームの照射により加熱されて蒸気となる。
 活物質材料としてケイ素またはスズを使用する場合には、その純度は高いほど望ましい。酸素供給ノズル82は、図示しない酸素ガスボンベから供給される酸素を、オリフィスバルブやマスフローコントローラを経由して真空槽60内に供給するためのものである。酸素供給ノズル82を介して一定量の酸素ガスをキャンロール66の周囲に供給することにより、所定濃度の酸素雰囲気下での蒸着が行われる。また、酸素供給ノズル82は、蒸着源80からの活物質材料の蒸気に万遍なく酸素が行き渡るように配置するのが好ましい。
 また、酸素の供給量は、真空槽60の形状、排気ポンプの排気能力、活物質材料の蒸発速度、及び集電体上に形成される活物質層の幅等の製造条件によって適宜変更することができる。例えば、真空槽60の容積を0.4mとし、排気ポンプ62として排気速度が2.2m/sである油拡散ポンプを使用すると、酸素供給ノズル82により供給すべき酸素ガスの量は、25℃、1気圧において、概ね0.0005~0.005m/sとするのがよい。
 巻き出しロール64から巻出された集電体10Fは、テンションローラ86及び88により所定の張力が与えられて、キャンロール66の周面と接触した状態で長手方向に送られる。蒸着源80からの活物質材料の蒸気は、マスク84を通過したものだけが集電体10Fの表面に到達する。その結果、酸素雰囲気中で、ケイ素の酸化物またはスズの酸化物からなる負極活物質層が集電体10Fの表面に形成される。負極活物質層が表面に形成された集電体10Fは巻き取りロール68により巻き取られる。
 以上のようにして、集電体10Fの一方の面に負極活物質層が形成されると、集電体10Fを裏返しにして、巻き出しロール64にセットし、他方の面に再度活物質材料の蒸着を行って、負極活物質層を形成する。
 このとき、負極活物質層54及び56のうち、負極活物質層56を先に形成するのが好ましい。その理由は、蒸着源80からの活物質材料の蒸気は非常に高温であるために、蒸着した負極活物質を含む負極50をいかに冷却するかが負極50のしわ及び波打ちを抑制するためには重要となる。このとき、最初に冷却効率の高い、厚みの薄い負極活物質層56を形成することで、負極板のしわ及び波打ちを抑制することができるからである。
 集電体10Fの両面における負極活物質層の形成が終了すると、他の真空蒸着装置を使用して、所定量のリチウムを集電体10Fの両面の負極活物質層に蒸着する。その後、集電体10Fを規定の幅及び長さにスリッタ加工して負極50が得られる。
 ここで、集電体10Fの両面の負極活物質層の厚みは、蒸着源80の加熱量及び集電体10Fの送りの速度の少なくとも一方を調節することにより制御し得る。蒸着源80の加熱量を大きくすれば負極活物質層の厚みは大きくなり、加熱量を小さくすれば負極活物質層の厚みは小さくなる。また、集電体10Fの送りの速度を小さくすれば負極活物質層の厚みは大きくなり、送りの速度を大きくすれば負極活物質層の厚みは小さくなる。
 また、集電体10Fの素材には、銅及びニッケル等の箔を用いるのが好ましい。強度、電池としての体積効率、並びに取り扱いの容易性等の観点から、箔の厚みは4~30μmが好ましく、より好ましくは5~10μmである。
 箔の表面には負極活物質層の結着力を高めるために、表面粗さ(算術平均粗さRa(日本工業規格:JIS B0601―1994)。以下同じ)が0.1~4μm程度である突起52を設けるのが好ましい。より好ましい表面粗さは、0.4~2.5μmである。そのような表面粗さは、例えば表面粗さ計等により測定することができる。
 次に、本実施形態の電極を使用して構成した非水電解質二次電池を説明する。
 図20に、本実施形態の非水電解質二次電池を一部断面図により示す。図示例の電池89においては、リチウム含有遷移金属酸化物を正極活物質として使用した正極90と、図18に示した負極50とを、間にセパレータ94を介在させて、渦巻状に巻回して電極群96が構成されている。
 このとき、負極50は、厚みの大きい負極活物質層54が外周側となり、厚みの小さい負極活物質層56が内周側となるように巻回される。これにより、リチウム補填処理時または充電時に、曲率の差に起因して、より大きな圧縮応力を受ける内周側の他方負極活物質層56の内部応力を緩和することが可能となる。その結果、負極50の破断及び座屈を抑制することができる。
 (実施形態8)
 図21に、本発明の実施形態8に係る非水電解質二次電池の概略構成を一部断面図により示す。図示例の電池92においては、負極50は、図20の電池89と同様の構成である。一方、正極95は、集電体10Gの両面に形成された各正極活物質層98及び100の間で、内周側の正極活物質層98に含まれる正極活物質の量が、外周側の正極活物質層100に含まれる正極活物質の量よりも多くなっている。つまり、負極50の内周側の負極活物質層56は厚みが小さいので、これと対向する正極95の外周側の正極活物質層100は、正極活物質の量が少なくなっている。一方、負極50の外周側の負極活物質層56は厚みが大きいので、これと対向する正極95の内周側の正極活物質層98は、正極活物質の量が多くなっている。
 以上のような構成とすることで、正極95と負極50との間の電気容量のバランスをとることが可能となる。これにより、充放電サイクルに伴う正極95及び負極50の劣化を緩和することができる。したがって、より効果的に電極の破断及び座屈を抑制することができる。
 次に、実施形態7及び8に関する実施例を説明する。本発明は、これらの実施例に限定されない。
 (実施例6)
 以下のようにして、負極を作製した。
 負極集電体として、図18に示した集電体10Fと同様構成の負極集電体を準備した。負極集電体の素材としての金属箔には銅箔を使用した。表面粗さ(算術平均粗さRa。以下同じ)は、0.8μmとした。表面の突起を含む、負極集電体の厚みは10μmとした。
 その負極集電体をセットした巻き出しロールを、一方の面(図18の集電体10Fの上側の面)に負極活物質層を先に形成するように、図19に示した蒸着装置58と同様構成の蒸着装置にセットした。
 その蒸着装置の真空槽は、容積が0.4mであり、排気速度2.2m/sの排気ポンプにより真空度5×10-5Paに到達するまで排気した。その後、真空槽中において、巻き出しロールから巻出された負極集電体を、キャンロールの周面と接触させながら、速度1cm/minで長手方向に送った。
 負極活物質材料としての純度99.998%のケイ素を投入した炭素材からなる坩堝を蒸着源として使用した。これを、電子ビームにより1800℃に加熱し、同時に酸素供給ノズルを介して25℃、1気圧換算で0.001m/sの酸素を真空槽内に導入した。負極活物質材料の蒸気が、負極集電体の表面に、同じ側の斜めの方向から到達するように、マスクの開口位置を設定して、負極集電体の他方の面に厚みが10μm(理論値)の負極活物質層を形成した。
 以上のようにして、一方の面に活物質層が形成された負極集電体を巻き取りロールに巻き取った。
 次に、真空槽を大気圧に戻し、負極集電体の他方の面(図18の集電体10Fの下側の面)に負極活物質層を形成するように、上記巻き取られた負極集電体を真空槽内にセットし、再び真空度5×10-5Paに到達するまで排気した。その後、速度1.05cm/minで負極集電体を長手方向に送りながら上記と同様にして負極集電体の他方の面に厚み9.5μm(理論値)の負極活物質層を形成した。
 以上のようにして、両面に負極活物質層が形成された負極を、蒸着源にリチウムを投入した、別の蒸着装置にセットした。その蒸着源を抵抗加熱により400℃に加熱し、上記負極の両面にリチウムを蒸着した。その負極を蒸着装置から取り出した後、規定の幅にスリッタ加工して、長さ1mの非水電解質二次電池用負極を10個作製した。
 (実施例7)
 負極集電体の送りの速度を、1.07cm/minに設定して、負極集電体の他方の面(図18の集電体10Fの下側の面)に厚み9.3μm(理論値)の負極活物質層を形成した。それ以外は、実施例6と同様にして、長さ1mの非水電解質二次電池用負極を10個作製した。
 (実施例8)
 負極集電体の送りの速度を、1.09cm/minに設定して、負極集電体の他方の面(図18の集電体10Fの下側の面)に厚み9.1μm(理論値)の負極活物質層を形成した。それ以外は、実施例6と同様にして、長さ1mの非水電解質二次電池用負極を10個作製した。
 (実施例9)
 負極集電体の送りの速度を、1.1cm/minに設定して、負極集電体の他方の面(図18の集電体10Fの下側の面)に厚み9μm(理論値)の負極活物質層を形成した。それ以外は、実施例6と同様にして、長さ1mの非水電解質二次電池用負極を10個作製した。
 (比較例4)
 負極集電体の送りの速度を、1.0cm/minに設定して、負極集電体の他方の面(図18の集電体10Fの下側の面)に厚み10μm(理論値)の負極活物質層を形成した。それ以外は、実施例6と同様にして、長さ1mの非水電解質二次電池用負極を10個作製した。
 (比較例5)
 負極集電体の送りの速度を、1.01cm/minに設定して、負極集電体の他方の面(図18の集電体10Fの下側の面)に厚み9.9μm(理論値)の負極活物質層を形成した。それ以外は、実施例6と同様にして、長さ1mの非水電解質二次電池用負極を10個作製した。
 (比較例6)
 負極集電体の送りの速度を、1.02cm/minに設定して、負極集電体の他方の面(図18の集電体10Fの下側の面)に厚み9.8μm(理論値)の負極活物質層を形成した。それ以外は、実施例6と同様にして、長さ1mの非水電解質二次電池用負極を10個作製した。
 (比較例7)
 負極集電体の送りの速度を、1.11cm/minに設定して、負極集電体の他方の面(図18の集電体10Fの下側の面)に厚み8.9μm(理論値)の負極活物質層を形成した。それ以外は、実施例6と同様にして、長さ1mの非水電解質二次電池用負極を10個作製した。
 (比較例8)
 負極集電体の送りの速度を、1.12cm/minに設定して、負極集電体の一方の面に厚み8.8μm(理論値)の負極活物質層を形成した。それ以外は、実施例6と同様にして、長さ1mの非水電解質二次電池用負極を10個作製した。
 以上の実施例6~9、及び比較例4~8の各10枚の非水電解質二次電池用負極について、波打の有無、及びカール量を調べた。その結果を、表2に示す。
 また、実施例6~9、及び比較例4~8のそれぞれについて、負極集電体の他方の面の負極活物質層の厚み(L2)が、一方の面の負極活物質層の厚み(L1)に対して小さくなっている割合(D)を算出した。その結果を、表2に示す。
 ここで、上記割合(D)は、下記式(1)により算出した。
 D=100×(L1-L2)/L1                   (1)
 また、波打の有無は、図22~24に示すような定盤102の上に電極を載置した状態で観察することにより行った。
 カール量は、一様な方向にカールした負極50については、図22及び図23に示すように、定盤102の上に電極を載置したときの最高点の高さh1またはh2を測定することにより求めた。波打状にカールした負極50についても、図24に示すように、定盤102の上に負極50を載置したときの最高点の高さh3を測定することにより求めた。
 また、実施例6~9、及び比較例4~8の各10個の非水電解質二次電池用負極について、1個あたり任意の10点の活物質層の厚みを実際に測定した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2から明らかなように、割合Dが5%よりも小さい比較例4~6においては、波打の発生している電極が存在した。その発生確率は、上記割合Dが大きくなるほどに減少している。そして、上記割合Dが5%以上である実施例6~9、並びに比較例7及び8においては、波打ちの発生している負極は存在しなかった。
 電極に波打が生じるのは、表3に示すように、電極上の各位置において活物質層の厚みが不均一なものとなっているからである。その結果、電極上の各位置において、一方の面の活物質層の膨張量と他方の面の活物質層の膨張量との大小関係が不規則に変動するために、波打が生じる。
 上記割合Dが5%以上になると、常に一方の面の活物質層の膨張量が他方の面の活物質層の膨張量よりも大きくなるために、変形方向が一定となり、波打のない電極を構成することができる。
 また、上記割合Dが0~5%の範囲においては、その差が大きくなるにしたがって、カール量は減少した。これは、波打ちの減少に伴ってカール量が減少したことによるものである。
 これに対して、上記割合Dが5%を超える実施例7~9、並びに比較例7及び8においては、上記割合Dが大きくなるにしたがって、カール量も増加している。これは、上記割合Dが大きくなるにしたがって、両方の活物質層の間の膨張量の差も大きくなるからである。
 以上のことから、電極に波打が発生するのを防止しながら、カール量を抑えるためには、上記割合Dを5~10%の範囲とするのが好ましいことが分かる。
 (実施例10)
 以下のようにして、リチウムイオン二次電池を作製した。
 実施例7と同様にして、一方の面に厚み10μmの負極活物質層が形成され、他方の面に厚み9.1μmの負極活物質層が形成された負極を作製した。
 正極活物質としてのコバルト酸リチウムを100重量部と、導電剤としてのアセチレンブラックを2重量部と、結着材としてのポリフッ化ビニリデンを2重量部とを適量のN-メチル-2-ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を調製した。
 次に、この正極合剤塗料を厚み15μmのアルミニウム箔からなる正極集電体の表面に塗布し、乾燥させて、正極集電体の両面にそれぞれ厚み85μmの活物質層を形成した。
 その正極集電体を、総厚みが143μmとなるようにプレスすることで、両面に厚み64.0μmの活物質層がそれぞれ形成された正極の前駆体を得た。それを、規定の幅にスリッタ加工して、正極を作製した。
 以上のようにして作製した負極と正極とを用いて、図11に示したようなリチウムイオン二次電池を作製した。より具体的には、正極と負極とを、間に厚み20μmのポリエチレン微多孔フィルムからなるセパレータを介在させて渦巻き状に巻回し、電極群を構成した。このとき、負極は、厚み10.0μmの負極活物質層が外周側となり、厚み9.1μmの負極活物質層が内周側となるように巻回した。
 以上のこと以外は、実施例1と同様にして、100個のリチウムイオン二次電池を作製した。
 (実施例11)
 実施例10と同様にして、負極及び正極を作製した。ここで、正極は、一方の面の正極活物質層は厚みが70μm、他方の面の活物質層は厚みが100μmとなるように正極合剤塗料を塗布した。その正極集電体を、総厚みが143μmとなるようにプレスすることで、一方の面の正極活物質層の厚みは60.7μmとなり、他方の面の厚みは67.4μmとなった。
 以上のようにして作製した負極と正極とを用いて、図11に示すようなリチウムイオン二次電池を作製した。より具体的には、正極と負極とを、間に厚み20μmのポリエチレン微多孔フィルムからなるセパレータを介在させて渦巻き状に巻回した。このとき、負極は、厚み10.0μmの負極活物質層が外周側となり、厚み9.1μmの負極活物質層が内周側となるように巻回した。正極は、厚み67.4μmの正極活物質層が内周側となり、厚み60.6μmの正極活物質層が外周側となるように巻回した。
 以上のこと以外は、実施例1と同様にして、100個のリチウムイオン二次電池を作製した。
 (比較例10)
 実施例6と同様にして、負極を作製した。このとき、一方の面の負極活物質層の厚みは9.5μmとし、他方の面の負極活物質層の厚みも9.5μmとした。
 また、実施例10と同様にして、正極を作製した。このとき、正極集電体の両面の厚みは、それぞれ、64μmとした。
 これらのこと以外は実施例10と同様にして、100個のリチウムイオン二次電池を作製した。
 以上の実施例10及び11、並びに比較例10について、初期容量を測定した後、充放電を500サイクル繰り返した。充放電を実施例1と同様の条件で500サイクル繰り返したときの容量と初期容量とを比較するようにして、容量維持率を算出し、その平均値を算出した。
 さらに、充放電を500サイクル繰り返した後のリチウムイオン二次電池を解体し、負極に、破断、座屈、リチウム析出、及び活物質層の脱落等の不具合が発生しているか否かを調べた。
 以上の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、実施例10及び11はいずれも、良好な500サイクル後の容量維持率を達成した。また、実施例10及び11においては、負極に、破断、座屈、リチウム析出、及び活物質層の脱落等の不具合の発生は認められなかった。また、充放電を500サイクル繰り返した後にも、負極に、破断、座屈、リチウム析出、及び負極活物質層の脱落などの不具合は認められなかった。
 これは、内周側の負極活物質層の厚みが小さくなるように電極群を構成したために、電極の巻き内側と巻き外側の曲率の差に起因した応力差を緩和できたためであると考えられる。また、充電時に、より大きな圧縮応力を受ける内周側にある負極活物質層の厚みを薄くすることで応力を緩和したことにより、電極の破断または座屈を抑制することができ、その結果、500サイクル後の容量を維持することができたためであると考えられる。
 また、実施例11は特に、充放電の500サイクル後の容量維持率が優れている。これは、正極活物質層の厚みを、対向する負極活物質層の厚みに合わせて増減させたことにより、正極と負極との電気容量のバランスが向上し、かつ正極と負極の膨張収縮のバランスが取れているためであると考えられる。
 一方、負極及び正極のそれぞれの両面の活物質層の厚みを等しくした比較例10においては、表4に示すように、充放電の500サイクル後の容量維持率が実施例10及び11に比べて劣っている。また、負極に、破断、座屈、リチウム析出、及び活物質層の脱落などの不具合が観察された。
 以上のことから、充放電における膨張収縮の応力を緩和するために、負極の両面の間に活物質層の厚みに差を持たせることは、非水電解質二次電池のサイクル特性、及び負極の破断等の不具合を防止する効果が大きいと言える。
 本発明に係る非水電解質二次電池用集電体は、ハンドリングの際に安全に取り扱うことができると共に、この集電体を使用して、充放電に伴う電極内部の応力による影響が緩和された、安全性の高い非水電解質二次電池用電極及び非水電解質二次電池が得られる。したがって、本発明は、電子機器及び通信機器の多機能化に伴って高容量化が望まれている携帯用電源等に適用するのに好適である。
 10 集電体
 12、34 突起
 20 柱状体
 36 凸部
 70 電池
 72 封口体
 75 正極
 76 負極
 77 セパレータ

Claims (25)

  1.  金属箔と、
     前記金属箔の少なくとも一方の面に形成された複数の突起と、を備え、
     前記突起が、前記金属箔の表面と垂直な方向から見たときに、直交する2つの軸方向のそれぞれの両方の端部が外側に突出し、周方向に隣り合う前記端部の中間部が内側に後退するように形成されている非水電解質二次電池用集電体。
  2.  前記突起が、前記金属箔の表面に千鳥配列に設けられている請求項1記載の非水電解質二次電池用集電体。
  3.  前記突起は、2つの軸方向のそれぞれの両方の端部の高さが互いに等しいとともに、一方の軸方向の両方の端部の高さが、他方の軸方向の両方の端部の高さよりも高くなっている請求項1記載の非水電解質二次電池用集電体。
  4.  前記突起は、前記一方の軸方向の両方の端部の間に、高さがそれらの端部と同じかそれよりも高い主上面部を有しており、前記主上面部の両側に、前記他方の軸方向の両方の端部がそれぞれ配設されている請求項3記載の非水電解質二次電池用集電体。
  5.  前記主上面部は、前記他方の軸方向の両方の端部と対応する箇所に、それぞれ、少なくとも一部が球面状である窪み部が形成されている請求項3記載の非水電解質二次電池用集電体。
  6.  前記突起は、少なくとも前記中間部の側面が、先端に近づくほどに内側に後退するように傾斜している請求項1記載の非水電解質二次電池用集電体。
  7.  前記突起は、前記金属箔を圧縮加工して形成されており、前記突起の上面が、前記圧縮加工を施す前の前記金属箔の表面粗さを保持している請求項1記載の非水電解質二次電池用集電体。
  8.  金属箔と、
     前記金属箔の少なくとも一方の面に形成された複数の突起と、を備え、
     前記突起が、上面に複数の凸部を有している非水電解質二次電池用集電体。
  9.  前記凸部が、前記突起の上面に規則的に配列されている請求項8記載の非水電解質二次電池用集電体。
  10.  前記凸部が、前記突起の上面に不規則に配列されている請求項8記載の非水電解質二次電池用集電体。
  11.  前記凸部の高さが1~5μmである請求項8記載の非水電解質二次電池用集電体。
  12.  隣り合う前記突部相互の間隔が1~5μmである請求項8記載の非水電解質二次電池用集電体。
  13.  リチウム含有遷移金属酸化物を含む正極活物質、またはリチウムを保持し得る材料を含む負極活物質を、請求項1記載の非水電解質二次電池用集電体に担持させて構成された非水電解質二次電池用電極。
  14.  正極、負極及び両電極の間に介在されるセパレータを積層または巻回して構成された電極群と、
     非水電解質と、
     前記電極群及び非水電解質を収納する、開口部を有する電池ケースと、
     前記開口部を封口する封口体と、を備え、
     前記正極及び負極の少なくとも一方が、請求項13に記載の非水電解質二次電池用電極から構成される非水電解質二次電池。
  15.  (a)少なくとも一方に複数の凹部が形成された一対のローラにより金属箔を圧縮して、前記金属箔の少なくとも一方の面に複数の凸部を形成する工程、並びに
     (b)少なくとも一方に複数の凹部が形成された一対のローラにより金属箔を圧縮して、前記金属箔の、前記凸部が形成された面に、前記凸部よりも径の大きい突起を形成する工程、を含む非水電解質二次電池用集電体の製造方法。
  16.  前記ローラに、前記凹部を、レーザ加工、エッチング加工、ドライエッチング加工、及びブラスト加工よりなる群から選択される少なくとも1種により形成する請求項15記載の非水電解質二次電池用集電体の製造方法。
  17.  金属箔並びにその金属箔の両面に所定の配列で形成された複数の突起を有する集電体と、
     前記集電体の両面に形成された活物質層と、を備え、
     前記活物質層は、前記突起の上に形成される活物質の柱状体の集合体からなり、
     前記集電体の一方の面の前記活物質層の厚みが、他方の面の前記活物質層の厚みよりも大きい非水電解質二次電池用電極。
  18.  前記活物質層が、ケイ素及び酸素を含む化合物、またはスズ及び酸素を含む化合物を含む請求項17記載の非水電解質二次電池用電極。
  19.  前記柱状体が、前記突起の上面から前記金属箔の表面に垂直な方向に対して斜め方向に延びている請求項17記載の非水電解質二次電池用電極。
  20.  前記集電体の一方の面の前記活物質層の厚みが、他方の面の前記活物質層に含まれる活物質層の厚みよりも5~10%だけ小さい請求項17記載の非水電解質二次電池用電極。
  21.  正極、負極及び両電極の間に介在されるセパレータを巻回して構成された電極群と、
     非水電解質と、
     前記電極群及び非水電解質を収納する、開口部を有する電池ケースと、
     前記開口部を封口する封口体と、を備え、
     前記負極が、請求項17記載の非水電解質二次電池用電極から構成されるとともに、
     前記電極群は、前記負極を、前記一方の面の活物質層が内周側となり、前記他方の面の活物質層が外周側となるように巻回して、構成される非水電解質二次電池。
  22.  前記正極が、両方の面に活物質層が形成されるとともに、その一方の面の活物質層に含まれる活物質の量が、他方の面の活物質層に含まれる活物質の量よりも少なくなっており、
     前記電極群は、前記正極を、前記一方の面の活物質層が外周側となり、前記他方の面の活物質層が内周側となるように巻回して、構成される請求項21記載の非水電解質二次電池。
  23.  (a)長尺帯状の金属箔の両面に所定の配列で複数の突起が形成された集電体を準備する工程、
     (b)ケイ素またはスズを含む活物質材料を準備する工程、
     (c)真空蒸着槽内で、前記活物質材料を蒸着源により蒸発させる工程、
     (d)前記真空蒸着槽内で、前記集電体を長手方向に送る工程、
     (e)前記真空蒸着槽内で、前記集電体の近傍に酸素を供給する工程、並びに
     (f)前記集電体の表面に前記活物質材料を蒸着させて、活物質層を形成する工程、を含む非水電解質二次電池用電極の製造方法であって、
     前記集電体の両面に活物質層を形成するときに、
     前記集電体の一方の面に形成される前記活物質層の厚みが、前記集電体の他方の面に形成される前記活物質層の厚みよりも小さくなるように、前記活物質材料を前記集電体に蒸着する非水電解質二次電池用電極の製造方法。
  24.  前記集電体の一方の面に前記活物質層を形成するときに、前記集電体の他方の面に前記活物質層を形成するときよりも大きい速度で前記集電体を送る工程を含む請求項23記載の非水電解質二次電池用電極の製造方法。
  25.  前記集電体の一方の面に前記活物質層を形成するときに、前記集電体の他方の面に前記活物質層を形成するときよりも小さい加熱量で前記蒸着源を加熱する請求項23記載の非水電解質二次電池用電極の製造方法。
PCT/JP2009/003412 2008-07-29 2009-07-21 非水電解質二次電池用集電体、非水電解質二次電池用電極、及びそれらの製造方法、並びに非水電解質二次電池 WO2010013405A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801258376A CN102084525A (zh) 2008-07-29 2009-07-21 非水电解质二次电池用集电体、非水电解质二次电池用电极及它们的制造方法、以及非水电解质二次电池
US13/054,146 US20110111277A1 (en) 2008-07-29 2009-07-21 Current collector for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, production methods thereof, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008194474 2008-07-29
JP2008-194474 2008-07-29
JP2008-219164 2008-08-28
JP2008219164 2008-08-28

Publications (1)

Publication Number Publication Date
WO2010013405A1 true WO2010013405A1 (ja) 2010-02-04

Family

ID=41610120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003412 WO2010013405A1 (ja) 2008-07-29 2009-07-21 非水電解質二次電池用集電体、非水電解質二次電池用電極、及びそれらの製造方法、並びに非水電解質二次電池

Country Status (5)

Country Link
US (1) US20110111277A1 (ja)
JP (1) JP5153734B2 (ja)
KR (1) KR20110038038A (ja)
CN (1) CN102084525A (ja)
WO (1) WO2010013405A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740071A (zh) * 2020-07-27 2020-10-02 江西星盈科技有限公司 一种具有电解液促扩散功能的二次电池

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737980B2 (ja) * 2010-02-05 2015-06-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 整列したサイクル耐性の構造を有するLiバッテリ用のカソード構造体及びその製造方法
TWI542539B (zh) * 2011-06-03 2016-07-21 半導體能源研究所股份有限公司 單層和多層石墨烯,彼之製法,含彼之物件,以及含彼之電器裝置
US11296322B2 (en) 2011-06-03 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
CN102593415A (zh) * 2012-03-05 2012-07-18 山东省科学院能源研究所 锂离子电池正极的制备方法
KR101519711B1 (ko) * 2012-05-03 2015-05-12 현대자동차주식회사 이차전지용 집전체
US20140099539A1 (en) * 2012-10-05 2014-04-10 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
WO2014178590A1 (ko) 2013-04-29 2014-11-06 주식회사 엘지화학 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2014182060A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
KR101470558B1 (ko) * 2013-05-07 2014-12-10 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
JP6037579B2 (ja) 2013-05-07 2016-12-07 エルジー・ケム・リミテッド ケーブル型二次電池
CN104393324B (zh) 2013-05-07 2017-08-15 株式会社Lg化学 线缆型二次电池
KR101465166B1 (ko) 2013-05-07 2014-11-25 주식회사 엘지화학 케이블형 이차전지 및 그의 제조방법
KR101470557B1 (ko) * 2013-05-07 2014-12-10 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182063A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
EP2846381B1 (en) * 2013-05-07 2018-02-28 LG Chem, Ltd. Electrode for secondary battery, method for manufacturing same, and secondary battery and cable-type secondary battery including same
WO2014182064A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
CN103811768B (zh) * 2014-02-22 2015-09-23 深圳市旭冉电子有限公司 凹坑锂离子电池集流体及其制作方法和设备
JP6608668B2 (ja) * 2015-10-23 2019-11-20 日産自動車株式会社 電極およびその製造方法
US9837682B1 (en) * 2016-08-29 2017-12-05 Microsoft Technology Licensing, Llc Variable layer thickness in curved battery cell
CN110495024B (zh) * 2017-04-04 2023-09-15 日本电气株式会社 制造二次电池用电极的方法和制造二次电池的方法
JP6863258B2 (ja) * 2017-12-12 2021-04-21 トヨタ自動車株式会社 二次電池システムおよび二次電池の活物質の応力推定方法
WO2019167559A1 (ja) * 2018-02-28 2019-09-06 パナソニック株式会社 二次電池用の電極、及び、これを用いた二次電池
CN108448059A (zh) * 2018-04-17 2018-08-24 星恒电源股份有限公司 一种锂离子电池用硅负极及其制备方法
EP3796453B1 (en) * 2018-05-17 2022-11-09 Honda Motor Co., Ltd. Lithium ion secondary battery
EP3576196A1 (en) * 2018-05-31 2019-12-04 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
EP3576185B1 (en) * 2018-05-31 2023-02-01 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
EP3576186B1 (en) * 2018-05-31 2023-05-31 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
EP3576191B1 (en) * 2018-05-31 2022-10-05 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
EP3576183B1 (en) * 2018-05-31 2023-05-31 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
EP3576184B1 (en) * 2018-05-31 2023-05-31 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
CN111276668B (zh) * 2018-12-05 2023-03-10 丰田自动车株式会社 全固体电池用电极层叠体及其制造方法
CN112970136A (zh) * 2018-12-28 2021-06-15 松下知识产权经营株式会社 电池
KR102538690B1 (ko) * 2019-01-14 2023-06-01 주식회사 엘지에너지솔루션 이차전지용 탑 캡, 이차전지 및 그 이차전지의 제조방법
JP7148479B2 (ja) * 2019-11-14 2022-10-05 三洋化成工業株式会社 リチウムイオン電池用集電体及びリチウムイオン電池用電極
JP7148489B2 (ja) * 2019-12-25 2022-10-05 三洋化成工業株式会社 リチウムイオン電池用集電体、リチウムイオン電池用集電体の製造方法及びリチウムイオン電池用電極
US20220407082A1 (en) * 2019-11-14 2022-12-22 Apb Corporation Lithium ion battery current collector, production method for lithium ion battery current collector, and lithium ion battery electrode
JP7097399B2 (ja) * 2020-03-10 2022-07-07 三洋化成工業株式会社 リチウムイオン電池用集電体及びリチウムイオン電池用電極
CN112743243A (zh) * 2021-01-07 2021-05-04 中国科学院力学研究所 一种表面毛化、穿孔集流体箔材的制备方法及装置
CN112756790B (zh) * 2021-01-07 2022-03-25 喆烯新材(北京)科技有限公司 一种基于错位毛化轧制的穿孔集流体箔材制备方法及装置
CN114094115A (zh) * 2021-10-13 2022-02-25 中国长江三峡集团有限公司 柱状铜阵列集流体及其制备方法和应用
WO2023205403A1 (en) * 2022-04-22 2023-10-26 Lyten, Inc. Cylindrical lithium-sulfur batteries
TWI815669B (zh) * 2022-09-20 2023-09-11 利紳科技股份有限公司 集流體

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059936A1 (fr) * 2006-11-15 2008-05-22 Panasonic Corporation Collecteur pour un accumulateur non aqueux, électrode plane d'accumulateur non aqueux et accumulateur non aqueux utilisant le collecteur
JP2008124003A (ja) * 2006-10-19 2008-05-29 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを含むリチウム二次電池
JP2008135376A (ja) * 2006-10-26 2008-06-12 Matsushita Electric Ind Co Ltd 電池用電極板およびそれを用いるリチウム二次電池
WO2008078755A1 (ja) * 2006-12-27 2008-07-03 Panasonic Corporation 電池、電極およびこれらに用いる集電体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7951000A (en) * 1999-10-22 2001-05-08 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
US6887623B2 (en) * 2001-04-09 2005-05-03 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US20050064291A1 (en) * 2003-09-18 2005-03-24 Matsushita Electric Industrial Co., Ltd. Battery and non-aqueous electrolyte secondary battery using the same
EP2077596A4 (en) * 2006-10-19 2012-02-01 Panasonic Corp NEGATIVE ELECTRODE FOR A LITHIUM SECONDARY BATTERY AND LITHIUM CYCLE BATTERY THEREWITH
US7851089B2 (en) * 2006-10-26 2010-12-14 Panasonic Corporation Electrode plate for battery and lithium secondary battery including the same
KR101142589B1 (ko) * 2006-11-15 2012-05-10 파나소닉 주식회사 비수계 이차전지용 집전체, 및 그것을 사용한 비수계 이차전지용 전극판 및 비수계 이차전지
US8067115B2 (en) * 2007-02-13 2011-11-29 Panasonic Corporation Non-aqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124003A (ja) * 2006-10-19 2008-05-29 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを含むリチウム二次電池
JP2008135376A (ja) * 2006-10-26 2008-06-12 Matsushita Electric Ind Co Ltd 電池用電極板およびそれを用いるリチウム二次電池
WO2008059936A1 (fr) * 2006-11-15 2008-05-22 Panasonic Corporation Collecteur pour un accumulateur non aqueux, électrode plane d'accumulateur non aqueux et accumulateur non aqueux utilisant le collecteur
WO2008078755A1 (ja) * 2006-12-27 2008-07-03 Panasonic Corporation 電池、電極およびこれらに用いる集電体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740071A (zh) * 2020-07-27 2020-10-02 江西星盈科技有限公司 一种具有电解液促扩散功能的二次电池

Also Published As

Publication number Publication date
JP2010080432A (ja) 2010-04-08
JP5153734B2 (ja) 2013-02-27
CN102084525A (zh) 2011-06-01
US20110111277A1 (en) 2011-05-12
KR20110038038A (ko) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5153734B2 (ja) 非水電解質二次電池用集電体
JP2010080432A5 (ja)
JP4364298B2 (ja) 集電体、電極および非水電解質二次電池
US8202642B2 (en) Current collector for non-aqueous secondary battery, electrode plate for non-aqueous secondary battery using the same, and non-aqueous secondary battery
US20100003599A1 (en) Method for producing current collector for non-aqueous electrolyte secondary battery, method for producing electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4036889B2 (ja) 電池
JP5095863B2 (ja) リチウムイオン電池用負極およびその製造方法、ならびにリチウムイオン電池
US8389156B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8236454B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
US20110039140A1 (en) Positive electrode for nonaqueous battery, electrode group for nonaqueous battery and method for producing the same, and rectangular nonaqueous secondary battery and method for producing the same
WO2008044683A1 (fr) Électrode négative pour accumulateur secondaire à électrolyte non aqueux
WO2007015419A1 (ja) リチウム二次電池用負極およびその製造方法
WO2008029719A1 (fr) Cellule secondaire électrolytique non aqueuse
KR20090074175A (ko) 이차전지 및 그 제조 방법
KR20090129504A (ko) 전기 화학 소자용 전극 및 그것을 이용한 전기 화학 소자
JPWO2009019869A1 (ja) リチウム二次電池用電極およびそれを備えたリチウム二次電池
JP2008098157A (ja) リチウムイオン二次電池用負極およびそれを用いるリチウムイオン二次電池
US20100330405A1 (en) Nonaqueous electrolyte secondary battery
JP2011023131A (ja) 非水系二次電池用負極板およびこれを用いた非水系二次電池
WO2011043026A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2008059936A1 (fr) Collecteur pour un accumulateur non aqueux, électrode plane d'accumulateur non aqueux et accumulateur non aqueux utilisant le collecteur
JP5084165B2 (ja) リチウム二次電池用電極の製造方法及びリチウム二次電池
JP2009199973A (ja) 非水系二次電池用集電体およびこれを用いた非水系二次電池用電極板と非水系二次電池
JP2008123939A (ja) 非水系二次電池用電極板およびこれを用いた非水系二次電池
WO2008059937A1 (fr) Procédé de fabrication d'un collecteur pour un accumulateur non aqueux, procédé de fabrication d'une électrode pour un accumulateur non aqueux et accumulateur non aqueux

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125837.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117001090

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13054146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802654

Country of ref document: EP

Kind code of ref document: A1