WO2011043026A1 - リチウムイオン二次電池用負極およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2011043026A1
WO2011043026A1 PCT/JP2010/005789 JP2010005789W WO2011043026A1 WO 2011043026 A1 WO2011043026 A1 WO 2011043026A1 JP 2010005789 W JP2010005789 W JP 2010005789W WO 2011043026 A1 WO2011043026 A1 WO 2011043026A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
secondary battery
ion secondary
active material
Prior art date
Application number
PCT/JP2010/005789
Other languages
English (en)
French (fr)
Inventor
紀幸 内田
則晶 天羽
大輔 末次
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080003421XA priority Critical patent/CN102232252A/zh
Priority to JP2011535267A priority patent/JPWO2011043026A1/ja
Priority to US13/140,706 priority patent/US20110250501A1/en
Publication of WO2011043026A1 publication Critical patent/WO2011043026A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the same. Specifically, the present invention relates to improvement of a negative electrode using an alloy-based active material.
  • a lithium ion secondary battery is a battery that satisfies such requirements.
  • the lithium ion secondary battery includes a positive electrode and a negative electrode that occlude and release lithium ions, a separator that separates the positive electrode and the negative electrode, and an electrolyte having lithium ion conductivity.
  • the negative electrode is usually formed by supporting a negative electrode active material layer on the surface of a negative electrode current collector such as a copper foil.
  • carbon-based negative electrode active materials such as graphite have been used as the negative electrode active material contained in the negative electrode active material layer.
  • alloy-based negative electrode active materials are also known as negative electrode active materials having higher capacity and higher energy density than carbon-based negative electrode active materials.
  • the alloy-based negative electrode active material includes, for example, a simple substance, an oxide, or an alloy of silicon or tin.
  • the alloy-based negative electrode active material When charging and discharging a lithium ion secondary battery, the alloy-based negative electrode active material reversibly occludes or releases lithium ions.
  • the alloy-based negative electrode active material reversibly expands by being alloyed with lithium by occlusion of lithium ions, and dealloyed and contracted by releasing lithium ions.
  • the negative electrode active material expands significantly by occlusion of lithium ions.
  • the expansion rate of the alloy-based negative electrode active material by occlusion of lithium ions is significantly higher than that of the carbon-based negative electrode active material.
  • the negative electrode current collector itself cannot deform sufficiently following the significant expansion of the alloy-based negative electrode active material. For this reason, the negative electrode current collector may be partially damaged or the negative electrode active material layer may be partially peeled from the negative electrode current collector during charging. In this case, a gap is formed between the negative electrode current collector and the negative electrode active material layer, and there is a concern that charge / discharge characteristics may be deteriorated due to a decrease in electrical conductivity between the two.
  • a negative electrode in which a void is provided inside the negative electrode active material layer is known.
  • a silicon thin film is formed on a flat surface of a negative electrode current collector, and a silicon columnar convex portion is formed by partially removing the formed silicon thin film.
  • voids can be formed between adjacent columnar convex portions of silicon, thereby relieving internal stress of the alloy-based active material generated during expansion. It discloses that generation of soot can be suppressed.
  • the present invention relates to a lithium ion secondary battery using a high capacity alloy-based negative electrode active material, in which a reduction in cycle characteristics is suppressed by reducing the occurrence of cracks due to repeated charge and discharge, and a high capacity lithium
  • An object is to provide an ion secondary battery.
  • a negative electrode for a lithium ion secondary battery includes a current collector sheet and a negative electrode active material layer supported by the current collector sheet, and the current collector sheet has a pattern having regular intervals.
  • Each of the convex portions has a surface comprising a plurality of convex portions arranged along the plurality of convex portions and a plurality of flat portions existing between the plurality of convex portions, and the negative electrode active material layer is made of an alloy-based negative electrode active material.
  • the central portion of two adjacent columnar bodies and a virtual straight line passing through the central portion of the raised body sandwiched between the two columnar bodies are collected.
  • the ratio of the cross-sectional area of the raised body to the cross-sectional area of the space defined by the line segment connecting the closest positions of the two columnar bodies, the surface of the flat portion, and the side surfaces of the two columnar bodies is an average of 25%. That's it.
  • the columnar body and the raised body that are expanded during charging of the battery come into contact with each other to disperse the internal stress generated in the negative electrode active material layer and The expansion of the material is limited. Thereby, it can suppress that a crack etc. generate
  • the raised body arranged in the space formed between the plurality of columnar bodies contributes to securing the capacity of the battery. Therefore, when the same amount of the alloy-based negative electrode active material is supported on the current collector, the space can be used effectively, so that concentration of internal stress generated in the negative electrode active material layer can be suppressed.
  • a lithium ion secondary battery includes a negative electrode for a lithium ion secondary battery, a positive electrode that absorbs and releases lithium ions, a separator that separates the negative electrode and the positive electrode, and an electrolyte having lithium ion conductivity. And comprising.
  • Such a lithium ion secondary battery has a high capacity and excellent cycle characteristics.
  • a high-capacity lithium ion secondary battery excellent in cycle characteristics can be provided.
  • FIG. 1 is a schematic top view of a negative electrode for a lithium ion secondary battery in the present embodiment.
  • 2 is a schematic cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a schematic vertical cross-sectional view of one surface of the negative electrode 10 during charging of the lithium ion secondary battery.
  • FIG. 4 is a schematic diagram illustrating an example of a vapor deposition apparatus for forming the negative electrode active material layer.
  • FIG. 5 is an explanatory diagram for explaining the formation of a raised body.
  • FIG. 6 is a schematic vertical cross-sectional view of the stacked lithium ion secondary battery in the present embodiment.
  • FIG. 1 is a schematic top view of one surface of the negative electrode 10.
  • FIG. 2 is a schematic diagram of a longitudinal section taken along line II-II in FIG.
  • FIG. 3 is a schematic cross-sectional view of one surface of the negative electrode 10 during charging of a lithium ion secondary battery (hereinafter also simply referred to as a battery).
  • the negative electrode 10 includes a negative electrode current collector 1 and a negative electrode active material layer 2 supported on both surfaces of the negative electrode current collector 1. As shown in FIG.
  • the negative electrode current collector 1 has a plurality of convex portions 1a having a height H3 arranged along a pattern having regular intervals on both surfaces thereof, and the convex portions 1a. It is a metal sheet which has the flat part 1b in between.
  • the negative electrode active material layer 2 is made of an alloy-based negative electrode active material that absorbs and releases lithium ions (hereinafter also simply referred to as a negative electrode active material).
  • the negative electrode active material layer 2 includes a substantially spindle-shaped columnar body 2a having a height H1 supported by the convex portion 1a of the current collector 1 and a raised central portion supported by the flat portion 1b of the current collector 1. And a raised body 2b having a height H2.
  • FIG.1 and FIG.2 the mode of the negative electrode active material layer 2 of a discharge state is shown.
  • the alloy-based negative electrode active material conventionally known materials that form an alloy with lithium ions, such as simple substances, oxides, and alloys of silicon and tin, are used without particular limitation.
  • silicon oxide represented by SiO x (0 ⁇ x ⁇ 1.5) is particularly preferable from the viewpoint of maintaining a high capacity.
  • x exceeds 1.5, it is necessary to form a thicker negative electrode active material layer 2 in order to ensure capacity, and in this case, the negative electrode current collector 1 tends to warp.
  • x is more preferably 0.3 or more and 1.2 or less. When x is 0.3 or more, expansion and contraction of the negative electrode active material accompanying charge / discharge is smaller than that of silicon alone, and a change in stress generated during expansion and contraction can be reduced.
  • the raised body 2b is present on the surface of the flat portion 1b sandwiched between the adjacent columnar bodies 2a.
  • the raised body 2b is obtained by vertically cutting along a straight line passing through the central part of the raised body 2b when the negative electrode 10 is viewed from above and the central parts of the two columnar bodies 2a adjacent to the raised body 2b.
  • the imaginary longitudinal section it exists in the space B defined by the line segment A connecting the closest positions of the columnar bodies 2a, the surface of the flat portion 1b, and the side surfaces of the two columnar bodies 2a.
  • the space B is an area surrounded by a broken line.
  • the “discharge state” means a discharge state in a charge / discharge period (break-in / discharge) in an initial stage of use of the lithium ion secondary battery in which the negative electrode 10 is incorporated.
  • the ratio of the cross-sectional area of the raised body 2b to the cross-sectional area of the space B is determined by taking out the negative electrode 10 from the discharged lithium ion secondary battery and observing the negative electrode 10 from any cross-section or horizontal direction with a scanning electron microscope (SEM) It is obtained by taking an image of the measured surface, measuring the cross-sectional area of the space B and the cross-sectional area of the raised body 2b, and calculating the cross-sectional area of the raised body 2b with respect to the cross-sectional area of the space B.
  • SEM scanning electron microscope
  • a raised body 2b made of a negative electrode active material that contributes to the charge / discharge reaction is formed in a space formed between the plurality of columnar bodies 2a.
  • the negative electrode active material layer 2 having such a raised body 2b when the negative electrode active material is expanded, as shown in FIG. 3, the expanded raised body 2b and the expanded columnar body 2a come into contact with each other. The internal stress generated in the negative electrode active material layer 2 is dispersed. Further, when the battery is charged, the columnar body 2a and the raised body 2b are occluded and swelled with lithium ions. The expanded columnar body 2a is supported by contacting the expanded bulge 2b.
  • the ratio of the cross-sectional area of the raised body 2b to the cross-sectional area of the space B is 25% or more, preferably 30 to 60%, more preferably 30 to 40%.
  • the ratio of the cross-sectional area of the raised body 2b to the cross-sectional area of the space B is less than 25%, the contribution of the raised body 2b for securing the capacity is reduced, and cracks are caused by excessive expansion of the negative electrode active material. Occur.
  • the upper limit of the ratio of the area of the raised body 2b to the area of the space B is not particularly limited, but if it is too high, the effect of stress relaxation due to the space existing between the columnar bodies 2a tends to be low.
  • the lithium ion secondary battery in which the negative electrode 10 in the initial stage of use is incorporated is charged. For example, in the environment of 20 ° C., constant current charging is performed until the battery voltage becomes 4.2 V at a charging rate of 1 C, and then constant voltage charging is performed until the current value becomes 0.05 C. Then, the charged lithium ion secondary battery is discharged. Discharge is performed at a discharge rate of 0.2 C and constant current discharge until the battery voltage reaches 2.5V. Such a state after the constant current discharge in the initial use of the lithium ion secondary battery is referred to as an “initial discharge state”.
  • the electrode plate group including the negative electrode 10 is taken out from the lithium ion secondary battery in the initial discharge state. And the negative electrode 10 is taken out from the taken-out electrode plate group. Then, an arbitrary cross section or a horizontal plane of the obtained negative electrode 10 is observed with a scanning electron microscope (SEM), for example, at a magnification of 2000 times. Then, a line segment A connecting the closest positions of the two columnar bodies 2a is drawn from the obtained SEM image. And the cross-sectional area of the space B which is the area
  • SEM scanning electron microscope
  • the cross-sectional area of the raised body 2b existing in the space B is measured from the same SEM image.
  • the occupation ratio of the cross-sectional area of the protruding body 2b with respect to the cross-sectional area of the measured space B is calculated.
  • several points, for example, five points are calculated for the cross-sectional area of the raised body 2b with respect to the cross-sectional area of the space B, and the area ratio of each point is arithmetically averaged. In this way, the occupation ratio of the cross-sectional area of the raised body 2b to the cross-sectional area of the space B of the negative electrode 10 in the initial discharge state is calculated.
  • the cross-sectional shape of the columnar body 2a in a discharged state is a substantially spindle shape whose side surfaces are partially expanded, and preferably a substantially spindle shape that is expanded above the center portion.
  • the height H1 of the columnar body 2a is preferably about 20 to 30 ⁇ m, more preferably about 22 to 24 ⁇ m, as the height from the flat portion 1b of the negative electrode current collector 1 to the top thereof.
  • the expanded columnar bodies 2a come into close contact with each other, so that the expansion is regulated between the columnar bodies 2a.
  • the height H2 of the top of the raised body 2b in the discharge state is preferably about 3 to 6 ⁇ m, more preferably about 3 to 4 ⁇ m, as the height from the surface of the flat portion 1b of the negative electrode current collector 1 to the top. .
  • the height H2 of the top of the raised body 2b in the discharged state is preferably 10 to 30%, more preferably 10 to 25% with respect to the height H1 of the top of the columnar body 2a.
  • the ratio of the height H2 of the top of the raised body 2b is too low with respect to the height H1 of the top of the columnar body 2a, the effect of securing the capacity by the raised body 2b is reduced, and the height 2 is in contact with the columnar body 2a. The effect of restricting the expansion due to this tends to be small.
  • the proportion of the height of the raised body 2b is too high, the effect of stress relaxation due to the space existing between the columnar bodies 2a tends to be reduced.
  • the shape of the raised body 2 b in the discharge state is that the central part is raised in a hill shape rather than the surrounding area, and the shape along the lower part of the substantially spindle-shaped columnar body. It is preferable because there is.
  • the height of the top portion of the central portion of the raised body 2b is preferably 1.3 times or more, more preferably 1.3 to 2.5 times the height of the end portion 2c.
  • the porosity of the negative electrode active material layer 2 in the initial discharge state is preferably about 20 to 70%, more preferably about 30 to 40%. When the porosity is too high, the density of the negative electrode active material tends to be small, and when the porosity is too low, the effect of stress relaxation due to the space existing between the columnar bodies 2a tends to be low.
  • the porosity of the negative electrode active material layer 2 can be determined, for example, by measurement using a mercury porosimeter.
  • the volume ratio of the raised body 2b in the negative electrode active material layer 2 tends to be low. That is, between the adjacent columnar bodies 2a, there is a tendency that the raised body 2b having a sufficient volume that sufficiently contributes to securing the capacity is not formed.
  • the porosity of the active material layer 2 is too low, the volume ratio of the raised bodies 2b in the negative electrode active material layer 2 tends to be high. In such a case, the stress relaxation effect due to the space existing between the columnar bodies 2a tends to be low.
  • the negative electrode 10 uses, for example, a vapor-phase thin film formation method such as a vapor deposition process on the surface of the negative electrode current collector 1 having a plurality of convex portions 1a and flat portions 2b arranged along a regular pattern.
  • a vapor-phase thin film formation method such as a vapor deposition process on the surface of the negative electrode current collector 1 having a plurality of convex portions 1a and flat portions 2b arranged along a regular pattern.
  • the growth rate of the alloy-based negative electrode active material in the convex portion 1a and the growth rate of the alloy-based negative electrode active material in the flat portion 1b that is shaded by the convex portion 1a are controlled. However, it is obtained by growing the columnar body 2a and the raised body 2b.
  • the negative electrode current collector 1 can be formed, for example, by pressing a sheet-shaped current collector material with a steel roller having a concave portion corresponding to the shape of the convex portion 1a on the surface.
  • the current collector material include copper foil, copper alloy foil, and nickel foil.
  • Specific examples of the copper alloy foil include a copper alloy foil in which 0.2% by mass of chromium, tin, zinc, silicon, nickel and the like are added to copper, and 0.05 to 0.2% by mass of tin with respect to copper. % Copper alloy foil, copper alloy foil in which zirconium is added in an amount of 0.02 to 0.2 mass%, copper alloy foil in which titanium is added in an amount of 1 to 4 mass%, and the like.
  • the height H3 of the convex portion 1a is not particularly limited, but is preferably 3 to 15 ⁇ m, more preferably 5 to 10 ⁇ m.
  • a shadowing effect that controls the deposition rate on the flat portion 1b when depositing the alloy-based negative electrode active material by the shielding effect of the convex portion 1a appears.
  • the alloy-based active material grows too much on the flat portion 1b.
  • the shadowing effect becomes too high, and the raised body 2b tends not to be formed on the surface of the flat part 1b.
  • each convex part 1a is not specifically limited, Specifically, column shape, such as a rhombus shape, cone shape, trapezoid shape, etc. are mentioned, for example. Among these, a rhombus shape is preferable from the viewpoint of ease of processing. Further, the regular arrangement pattern of the convex portions 1a is not particularly limited, and specific examples thereof include a lattice arrangement and a staggered arrangement. Among these, the staggered arrangement is preferable from the viewpoint of excellent stress relaxation because the porosity after deposition is appropriate.
  • the area ratio of the flat portion 1b occupying the surface of the negative electrode current collector 1 is preferably 30 to 50%, more preferably 30 to 35%.
  • the area ratio of the flat portion 1b is too low, a sufficient space cannot be maintained between the adjacent columnar bodies 2a, and the shadowing effect during the vapor deposition process described later becomes too high, resulting in a bulge.
  • the body 2b tends to be difficult to be formed.
  • the area ratio of the flat part 1b is too high, the space between adjacent columnar bodies 2a becomes too large, and therefore, the shadowing effect during the vapor deposition process described later becomes too low, There is a tendency that a space is hardly formed between the adjacent columnar bodies 2a.
  • the columnar body 2a and the raised body 2b are formed by vapor deposition of an alloy-based negative electrode active material source under a predetermined condition (hereinafter also referred to as oblique vapor deposition process) from the oblique direction with respect to the surface of the negative electrode current collector 1.
  • a predetermined condition hereinafter also referred to as oblique vapor deposition process
  • the flat part 1b becomes the shade of the convex part 1a at the time of vapor deposition. Therefore, the growth rate of the alloy type active material in the flat part 1b becomes lower than the growth rate of the alloy type active material in the convex part 1a.
  • the columnar body 2a and the raised body 2b smaller than the columnar body 2a are formed.
  • a raised body 2b having a shape in which the central part protrudes compared to the periphery thereof is formed.
  • the oblique vapor deposition process is performed by, for example, multi-stage vapor deposition using a vapor deposition apparatus 40 as shown in FIG. 4 while vapor-depositing while changing the angle of the negative electrode current collector 1 with respect to the target 45.
  • the vapor deposition apparatus 40 is composed of a vacuum chamber 41, a nozzle 43 for supplying a raw material gas and the like, a fixing base 44 for fixing the negative electrode current collector 1, silicon, tin, oxides or alloys thereof, and the like.
  • a target 45 which is a vapor deposition source and an electron beam gun 46 for evaporating the target are provided.
  • the fixed base 44 is movable in the direction indicated by the arrow in FIG.
  • the negative electrode current collector 1 is fixed to the fixing base 44.
  • the angle ⁇ 1 formed with the horizontal direction of the fixing base 44 is set to 50 to 72 °, for example, so that the vapor from the target 45 contacts the surface of the negative electrode current collector 1 from an oblique direction. Is preferably adjusted to be in the range of about 60 to 65 °.
  • gas is flowed from the nozzle 43 with a predetermined
  • the gas include a carrier gas that is an inert gas such as helium (He), argon (Ar), and nitrogen, in addition to a source gas such as oxygen for forming silicon oxide.
  • the pressure in the vacuum chamber 41 is adjusted to a predetermined pressure by a regulator (not shown).
  • the target 45 made of silicon or the like is evaporated by irradiating the target 45 with the electron beam while adjusting the acceleration voltage of the electron beam gun 46.
  • the evaporated material of the target 45 and the source gas such as oxygen supplied from the nozzle 43 are deposited on the surface of the negative electrode current collector 1.
  • Such a vapor deposition process is performed for a predetermined time.
  • the flat portion 1 b formed between the convex portions 1 a with respect to the direction of the target 45 is partially Is shaded.
  • the growth of the vapor deposition film on one side of the convex portion 1a is accelerated, and the growth of the vapor deposition film on the surface of the flat portion 1b which is the shadow portion is delayed.
  • the effect of adjusting the growth rate of the deposited film by using the shade of the convex portion 1a is called a shadowing effect. In this way, the first stage vapor deposition is performed.
  • the flow rate of the gas supplied from the nozzle 43 is relatively increased, the pressure in the vacuum chamber 41 is relatively increased, or the acceleration voltage of the electron beam gun 46 is increased. It is preferable to increase the collision frequency between the source atoms 50 evaporated from the target 45 and the gas 51 supplied from the nozzle 43 by appropriately changing it. Thereby, as shown in FIG. 5, it is possible to change the incident direction of the source atoms 50 evaporated from the target 45 with respect to the surface of the negative electrode current collector 1. As a result, it is possible to adjust the amount of source atoms 50 and gas 51 deposited on the flat portion 1b that is a shadow of the convex portion 1a.
  • the inside of the vacuum chamber 41 is reduced to, for example, 7 ⁇ 10 ⁇ 3 Pa (abs) or less, and then an inert gas is introduced, for example, 1 ⁇ 10 6.
  • the pressure is adjusted to about -2 to 5 ⁇ 10 -2 Pa (abs). According to such conditions, since the collision frequency of molecules increases, it is possible to promote the growth of the deposited film on the flat portion 1b.
  • the inclination of the surface of the negative electrode current collector 1 with respect to the target 45 is adjusted to an angle ⁇ 2 formed with the horizontal direction by moving the fixed base 44.
  • the angle ⁇ 2 is normally adjusted to be ⁇ 1 degree with respect to the horizontal direction with respect to the angle ⁇ 1 adjusted in the first step.
  • the vapor deposition process is performed under the same conditions as the first-stage vapor deposition conditions. In this way, the second stage vapor deposition is performed.
  • the columnar body 2 a and the raised body 2 b are formed on the surface of the negative electrode current collector 1. Is done. In this way, the negative electrode 10 is obtained.
  • the laminated lithium ion secondary battery 11 includes an electrode group including a negative electrode 10, a positive electrode 12, and a separator 13 that separates them, and an electrolyte having lithium ion conductivity.
  • the electrode group and the electrolyte are accommodated in the outer case 14.
  • the negative electrode 10 includes a negative electrode current collector 1 and a negative electrode active material layer 2 formed on the negative electrode current collector 1.
  • the positive electrode 12 includes a positive electrode current collector 17 and a positive electrode active material layer 18 formed on the positive electrode current collector 17.
  • One end of a negative electrode lead 19 and a positive electrode lead 20 is connected to the negative electrode current collector 1 and the positive electrode current collector 17, respectively, and the other end of each lead 19, 20 is led out of the exterior case 14.
  • the exterior case 14 is a laminate film in which an aluminum foil is laminated on a resin film, and the opening 21 is sealed with a gasket 22 made of a resin material.
  • the positive electrode 12 can be obtained, for example, by applying a positive electrode mixture liquid in which a positive electrode active material, a conductive agent, a binder, and the like are dispersed in a dispersion medium, and drying and rolling the positive electrode current collector plate.
  • a positive electrode active material include, for example, lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (partially replacing nickel with cobalt) Composite oxides such as lithium manganate and modified products thereof. These may be used alone or in combination of two or more.
  • the conductive agent include carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, and various graphites.
  • the binder include, for example, polyvinylidene fluoride, polytetrafluoroethylene, rubber particles having an acrylate unit, and the like. These may be used alone or in combination of two or more.
  • the separator and the non-aqueous electrolyte in the present embodiment are not particularly limited, and various materials known in this field can be used.
  • Example 1 Production of negative electrode current collector A negative electrode current collector having convex portions on both surfaces by rolling an alloy copper foil using a pair of steel rollers having a plurality of circular concave portions on the surface of one roller.
  • the alloy copper foil an alloy copper foil having a thickness of 26 ⁇ m (Zr content: 0.02 mass%, manufactured by Hitachi Cable, Ltd.) was used.
  • the linear pressure of rolling was 1000 kgf / cm (about 9.81 kN / cm).
  • each convex portion had a height of about 7 ⁇ m and a diameter of about 10 ⁇ m. Further, the center-to-center distance between adjacent convex portions was 30 ⁇ m. The area ratio of the flat portion of the negative electrode current collector was 30 to 40%.
  • Silicon having a purity of 99.9999% was used as a target as a deposition source.
  • the obtained negative electrode current collector was placed on the fixing base 44 of the vapor deposition apparatus 40, and the angle ⁇ 1 formed between the surface of the negative electrode current collector and the horizontal direction was adjusted to 60 °.
  • the pressure in the vacuum chamber 41 was reduced to 7 ⁇ 10 ⁇ 3 Pa (abs).
  • oxygen gas and He gas were supplied into the vacuum chamber 41 from the nozzle 43.
  • the flow rate of oxygen gas was set to 400 sccm (25 ° C.), and the flow rate of He gas was set to 80 sccm (25 ° C.).
  • the pressure in the vacuum chamber 41 was adjusted to 5 ⁇ 10 ⁇ 2 Pa (abs) by supplying gas and adjusting the regulator. Then, the first stage deposition was performed by irradiating the target with an electron beam from an electron beam gun under the conditions of an acceleration voltage of ⁇ 8 kV and an emission of 500 mA. The vapor deposition time was 5 seconds. By this first-stage vapor deposition, a silicon oxide layer having a thickness of 80 nm was formed on the surface of the convex portion.
  • the angle ⁇ 2 formed between the surface of the negative electrode current collector and the horizontal direction was adjusted to 60 ° by moving the fixed base 44. Then, the second-stage vapor deposition was performed under the same conditions as the first-stage vapor deposition. Furthermore, the odd-stage deposition is the same as the first stage, the even-stage deposition is the same as the second stage, and alternately changing the angle between the surface of the negative electrode current collector and the horizontal direction, A total of 8 stages of vapor deposition were performed.
  • negative electrode A1 was obtained.
  • a raised body with a raised central portion was formed.
  • the columnar body had a substantially spindle shape that swelled above the center part, and the diameter of the swelled part was about 25 ⁇ m.
  • the height of the raised body was lower than the height of the closest position of the adjacent columnar body.
  • An electrode group was produced by laminating a negative electrode, a positive electrode, and a separator interposed between the negative electrode A1 and the positive electrode.
  • a separator a polyethylene microporous membrane (trade name: Hypore, thickness 20 ⁇ m, manufactured by Asahi Kasei Corporation) was used.
  • a nickel negative electrode lead on which a gasket tab made of polypropylene was formed was welded to the lead mounting portion of the negative electrode A1.
  • one end of an aluminum positive electrode lead on which a gasket tab made of polypropylene was formed was welded to the lead mounting portion of the positive electrode.
  • the electrode group was inserted in the exterior case which consists of an aluminum laminate sheet. Further, an electrolytic solution was injected into the outer case.
  • an electrolytic solution a nonaqueous electrolytic solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent containing ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate in a volume ratio of 3: 5: 2 was used. .
  • the negative electrode A1 was taken out from the battery A in the initial discharge state. Then, the surface and cross-sectional state of the negative electrode A1 in the initial discharge state were observed with an SEM.
  • the height of the columnar body in the initial discharge state was 23 ⁇ m on the average, and the height of the raised body was 6 ⁇ m on the average. Therefore, the height of the raised body in the initial discharge state was about 26% of the height of the columnar body. Further, the height of the central portion of the raised body in the initial discharge state was about 2.5 times the height of the end of the raised body.
  • the height of the raised body was lower than the height of the closest position between the adjacent columnar bodies, and existed in the space formed between the adjacent columnar bodies. Further, in the discharged state, the columnar body and the raised body were not in contact with each other.
  • the section of the space B defined by the line segment connecting the closest positions of two adjacent columnar bodies, the surface of the flat portion, and the side surfaces of the columnar bodies.
  • the area and the cross-sectional area of the raised body were obtained, and the ratio of the cross-sectional area of the raised body to the cross-sectional area of the space B was obtained.
  • the ratio of the cross-sectional area of the raised body to the cross-sectional area of the space B was obtained by averaging the data measured at 5 points selected uniformly.
  • the cross-sectional area of the raised body with respect to the cross-sectional area of the space B of the negative electrode A1 during the initial discharge obtained was 60% on average.
  • the columnar body and the raised body were significantly expanded.
  • the adjacent columnar bodies are in contact with each other, and the upper portion of the bulging body that has expanded in the space formed between the adjacent columnar bodies is in contact with the lower portion of the adjacent columnar bodies.
  • the discharge capacity W 1 [mAh] at the first cycle and the discharge capacity W 100 [mAh] at the 100th cycle were measured, and the cycle capacity retention rate [%] was calculated by the formula of W 100 / W 1 ⁇ 100. .
  • the cycle capacity maintenance rate of battery A was 90%. Further, almost no cracks were observed in the columnar body and the raised body of the negative electrode A1 after the evaluation of the cycle capacity retention rate.
  • Example 2 Implementation was performed except that the pressure after gas supply was adjusted to 1 ⁇ 10 ⁇ 2 Pa (abs) instead of adjusting the pressure after gas supply to 5 ⁇ 10 ⁇ 2 Pa (abs) in “Preparation of negative electrode (2)”.
  • a negative electrode B1 was produced.
  • battery B was produced like Example 1 except having used negative electrode B1 instead of negative electrode A1. Then, in the same manner as in Example 1, the negative electrode and the battery were evaluated.
  • the height of the columnar body was about 23 ⁇ m
  • the height of the raised body was about 3 ⁇ m
  • the ratio of the height of the raised body to the height of the columnar body was about 13%.
  • the cross-sectional area of the raised body of the negative electrode B1 was 30% of the cross-sectional area of the space. Further, the cycle capacity retention rate of the battery B was 85%. Further, almost no cracks were observed in the columnar body and the raised body of the negative electrode B1 after the evaluation of the cycle capacity retention rate.
  • Example 3 Implementation was performed except that the pressure after gas supply was adjusted to 2 ⁇ 10 ⁇ 2 Pa (abs) instead of adjusting the pressure after gas supply to 5 ⁇ 10 ⁇ 2 Pa (abs) in “Preparation of negative electrode (2)”.
  • a negative electrode C1 was produced in the same manner as in Example 1.
  • the battery C was produced like Example 1 except having used the negative electrode C1 instead of the negative electrode A1. Then, in the same manner as in Example 1, the negative electrode and the battery were evaluated.
  • the height of the columnar body was about 23 ⁇ m
  • the height of the raised body was about 4.9 ⁇ m
  • the ratio of the height of the raised body to the height of the columnar body was about 21%.
  • the cross-sectional area of the raised body of the negative electrode C1 was 40% of the cross-sectional area of the space.
  • the cycle capacity retention rate of the battery C was 87%. Further, almost no cracks were observed in the columnar body and the raised body of the negative electrode C1 after the evaluation of the cycle capacity retention rate.
  • the height of the columnar body was about 23 ⁇ m
  • the height of the raised body was about 2.6 ⁇ m
  • the ratio of the height of the raised body to the height of the columnar body was about 11%.
  • the cross-sectional area of the raised body of the negative electrode D1 was 20% of the cross-sectional area of the space.
  • the cycle capacity maintenance rate of the battery C was 80%.
  • both the columnar body and the raised body were expanded. The adjacent columnar bodies were in contact with each other, but the columnar bodies and the upper portions of the raised bodies were hardly in contact with each other.
  • cracks were observed in the columnar body. This is considered to be caused by the columnar body expanding too much due to the internal stress generated in the columnar body.
  • the growth of the coating film of the alloy-based negative electrode active material on the flat portion can be adjusted by adjusting the degree of vacuum in the vacuum chamber 41 during the deposition of the alloy-based negative electrode active material.
  • the present inventors have found that this phenomenon is caused by adjusting the degree of decompression during vapor deposition, thereby changing the mobility of evaporated silicon atoms and the like, and changing the amount of source gas entering the space formed between the convex portions. I think it depends on what you do.
  • cycle capacity retention rate is greatly improved by forming a predetermined raised body and equalizing the stress in the active material.
  • the negative electrode for a lithium ion secondary battery of the present invention is useful as a negative electrode for providing a lithium ion secondary battery having a high charge / discharge capacity that is characteristic of an alloy-based active material and having excellent charge / discharge cycle characteristics. Moreover, the negative electrode for lithium ion secondary batteries of this invention is applicable also to the use of the negative electrode in a lithium ion capacitor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

 充放電の繰り返しによる発生するクラックを低減させることにより、サイクル特性の低下が抑制された、高容量のリチウムイオン二次電池を提供する。集電体シートと、集電体シートに支持された負極活物質層とを備え、集電体シートは、規則的なパターンに沿って配置された凸部と、凸部間に存在する平坦部とを有し、負極活物質層は、合金系負極活物質からなる、各凸部に支持された略紡錘状の柱状体と平坦部に支持された隆起体とを備え、隆起体の高さは、隣接する柱状体の最近接位置の高さよりも低く、隣接する2つの柱状体及び柱状体間に挟まれた隆起体の中央部を通過する仮想直線から、集電体シートの表面に向けて仮想切断した鉛直断面において、隣接する2つの柱状体同士の最近接位置を結ぶ線分と平坦部の表面と2つの柱状体の側面とによって規定される空間の断面積に対して、隆起体の断面積が占める割合が平均25%以上であるリチウムイオン二次電池用負極。

Description

リチウムイオン二次電池用負極およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極およびそれを用いたリチウムイオン二次電池に関する。詳しくは、本発明は、合金系活物質を用いた負極の改良に関する。
 近年、ポータブルコンピュータや携帯電話機などのポータブル機器に用いられる電池の需要が増大している。ポータブル機器用の電池には、高容量、高エネルギー密度、及び優れたサイクル特性が求められる。リチウムイオン二次電池はこのような要求を満たす電池である。
 リチウムイオン二次電池は、リチウムイオンを吸蔵および放出する正極及び負極と、正極と負極とを隔離するセパレータと、リチウムイオン伝導性を有する電解質と、を備える。負極は通常、銅箔などの負極集電体の表面に負極活物質層が支持されて形成されている。負極活物質層に含まれる負極活物質として、従来から、黒鉛などの炭素系負極活物質が用いられている。近年、炭素系負極活物質よりも高容量、高エネルギー密度の負極活物質として、所謂、合金系負極活物質も知られている。合金系負極活物質は、例えば、ケイ素やスズの、単体,酸化物,又はこれらの合金を含む。リチウムイオン二次電池を充放電する際には、合金系負極活物質はリチウムイオンを可逆的に吸蔵または放出する。合金系負極活物質は、可逆的に、リチウムイオンを吸蔵することによりリチウムと合金化して膨張し、リチウムイオンを放出することにより脱合金化して収縮する。
 負極活物質はリチウムイオンを吸蔵することにより顕著に膨張する。リチウムイオンの吸蔵による合金系負極活物質の膨張率は、炭素系負極活物質の膨張率に比べて著しく高い。充電時には、負極集電体自身は、合金系負極活物質の著しい膨張に対して充分に追従して変形することができない。このために、充電時に、負極集電体が部分的に損傷したり、負極集電体から負極活物質層が部分的に剥離したりするおそれがあった。この場合には、負極集電体と負極活物質層との間に隙間ができて、両者間の電気伝導性が低下することにより充放電特性が低下するおそれがあった。また、充放電を繰り返した場合には、集電体に皺、うねり、歪み等が生じるおそれもあった。この場合には、セパレータおよび正極との間に隙間が生じることにより、充放電反応が電池内で不均一になり、局部的な電池の特性低下を引き起こすおそれもあった。
 膨張の際に発生する合金系活物質の内部応力を緩和するために、負極活物質層の内部に空隙を設けた負極が知られている。具体的には、例えば、下記特許文献1は、負極集電体の平坦な表面にシリコン薄膜を形成し、形成されたシリコン薄膜を部分的に除去することによりシリコンの柱状凸部を形成させることを開示している。特許文献1は、このような負極によれば、隣接するシリコンの柱状凸部間に空隙を形成することができ、それにより、膨張の際に発生する合金系活物質の内部応力を緩和して皺の発生等を抑制できることを開示している。
特開2003-303586号公報
 特許文献1に開示された電極においては、平坦な集電体の表面に下地層を介して柱状のシリコンが形成されている。このような柱状のシリコンは、充電に伴う正極からのリチウムイオンの吸収により著しく膨張する。そして、膨張しすぎたシリコンは膨張に耐えられなくなり、クラックが発生する。クラックにより露出する面は、活性が高いために電解質を分解させる。従って、このようなクラックの発生は、サイクル特性を低下させる原因になる。
 本発明は、高容量の合金系負極活物質を用いたリチウムイオン二次電池において、充放電の繰り返しによるクラックの発生等を低減させることにより、サイクル特性の低下が抑制された、高容量のリチウムイオン二次電池を提供することを目的とする。
 本発明の一局面のリチウムイオン二次電池用負極は、集電体シートと、集電体シートに支持された負極活物質層とを備え、集電体シートは、規則的な間隔を有するパターンに沿って配置された複数の凸部と、複数の凸部間に存在する複数の平坦部と、からなる表面を有し、負極活物質層は、合金系負極活物質からなる、各凸部に支持された複数の略紡錘状の柱状体と各平坦部に支持された複数の隆起体とを備え、各隆起体の高さは、隣接する柱状体の最近接位置の高さよりも低く、リチウムイオン二次電池の放電状態において、上面視した場合における、隣接する2つの柱状体のそれぞれの中央部及び2つの柱状体間に挟まれた隆起体の中央部を通過する仮想直線から、集電体シートの表面に向けて仮想切断した鉛直断面において、隣接する2つの柱状体同士の最近接位置を結ぶ線分と平坦部の表面と2つの柱状体の側面とによって規定される空間の断面積に対して、隆起体の断面積が占める割合が平均25%以上である。
 このようなリチウムイオン二次電池用負極によれば、電池の充電時において膨張した柱状体及び隆起体が互いに接触することにより、負極活物質層内に発生した内部応力を分散させるとともに、負極活物質の膨張が制限される。これにより、負極活物質にクラック等が発生することを抑制できる。また、複数の柱状体間に形成された空間に配された隆起体が電池の容量確保に寄与する。従って、同じ量の合金系負極活物質を集電体に担持する場合において、空間を有効利用できるために、負極活物質層内に生じる内部応力の集中を抑制することができる。
 本発明の他の一局面のリチウムイオン二次電池は、リチウムイオン二次電池用負極と、リチウムイオンを吸蔵および放出する正極と、負極および正極を隔離するセパレータと、リチウムイオン伝導性を有する電解質と、を備える。
 このようなリチウムイオン二次電池は、高容量であり、サイクル特性にも優れている。
 本発明によれば、サイクル特性に優れた高容量のリチウムイオン二次電池を提供することができる。
図1は本実施形態におけるリチウムイオン二次電池用負極の上面模式図である。 図2は、図1のII-II線における断面模式図である。 図3は、リチウムイオン二次電池の充電時における負極10の一面の縦断面模式図である。 図4は、負極活物質層を形成するための蒸着装置の一例を示す概略図である。 図5は、隆起体の形成を説明するための説明図である。 図6は、本実施形態における積層型リチウムイオン二次電池の縦断面模式図である。
 図面を参照して本実施形態のリチウムイオン二次電池用負極10について詳しく説明する。図1は負極10の一面の上面模式図である。図2は図1のII-II線における縦断面の模式図である。また、図3は、リチウムイオン二次電池(以下単に電池とも呼ぶ)の充電時における負極10の一面の断面模式図を示す。負極10は、負極集電体1と、負極集電体1の両面に支持された負極活物質層2とを備える。図2に示すように、負極集電体1は、その両表面に規則的な間隔を有するパターンに沿って配置された、高さH3の複数の凸部1aを有し、且つ、凸部1a間に平坦部1bを有する、金属シートである。負極活物質層2は、リチウムイオンを吸蔵および放出する合金系負極活物質(以下単に負極活物質とも呼ぶ)からなる。負極活物質層2は、集電体1の凸部1aに支持された高さH1の略紡錘状の柱状体2aと、集電体1の平坦部1bに支持された中央部が隆起した高さH2の隆起体2bとを含む。なお、図1及び図2では、放電状態の負極活物質層2の様子が示されている。
 合金系負極活物質としては、ケイ素やスズの、単体,酸化物,及びこれらの合金など、従来から知られた、リチウムイオンと合金を形成する物質が特に限定なく用いられる。これらの中では、SiOx(0≦x≦1.5)で表される酸化ケイ素が、特に高容量を維持できる点から好ましい。xが1.5を超える場合には、容量を確保するためにより厚い負極活物質層2を形成する必要があり、その場合には負極集電体1が反りやすくなる傾向がある。xは、さらに好ましくは、0.3以上1.2以下である。xが0.3以上の場合には、ケイ素単体に比べて充放電に伴う負極活物質の膨張および収縮が小さくなり、膨張収縮時に発生する応力変化を低減することができる。
 図1及び図2に示すように、隆起体2bは、隣接する柱状体2aに挟まれた平坦部1bの表面に存在する。そして、隆起体2bは、負極10を上面視した場合における隆起体2bの中心部と、隆起体2bに隣接する2つの柱状体2aのそれぞれの中心部とを通過する直線で垂直切断したときの仮想の縦断面において、柱状体2a同士の最近接位置を結んだ線分Aと、平坦部1bの表面と、2つの柱状体2aの側面とによって規定される空間B内に存在する。図2においては、空間Bは破線で囲まれた領域である。そして、放電状態において、隆起体2bの断面積は、空間Bの断面積の25%以上を占める。ここで、「放電状態」とは、負極10が組み込まれたリチウムイオン二次電池の使用初期の充放電期間(慣らし充放電)における放電状態を意味する。空間Bの断面積に対する隆起体2bの断面積の割合は、放電状態のリチウムイオン二次電池から負極10を取り出し、走査型電子顕微鏡(SEM)で、負極10の任意の断面または水平方向から観察した面の画像を撮影し、空間Bの断面積及び隆起体2bの断面積を測定し、空間Bの断面積に対する隆起体2bの断面積を算出することにより得られる。
 負極10においては、複数の柱状体2a間に形成された空間に充放電反応に寄与する負極活物質からなる隆起体2bが形成されている。このような隆起体2bを有する負極活物質層2によれば、負極活物質の膨張時においては、図3に示すように、膨張した隆起体2bと膨張した柱状体2aとが接触することにより、負極活物質層2内に発生した内部応力が分散される。また、電池の充電時においては、柱状体2aと隆起体2bはリチウムイオンを吸蔵して膨張している。そして、膨張した柱状体2aが膨張した隆起体2bに接触して支えられる。これにより、膨張により発生した内部応力による負極活物質層2の膨張が規制される。その結果、電池の充放電を繰り返した場合に、負極活物質が膨張しすぎることによるクラックの発生や、負極集電体の損傷や、負極集電体からの負極活物質の剥離等が抑制される。それにより、サイクル特性が向上する。また、隣接する柱状体2a間の空間に容量確保に寄与する隆起体2を配置することにより、より高い容量を確保することができる。
 空間Bの断面積に対する隆起体2bの断面積の割合は25%以上であり、好ましくは30~60%、さらに好ましくは30~40%である。空間Bの断面積に対する隆起体2bの断面積の割合が25%を下回る場合には、容量確保のための隆起体2bの寄与が小さくなり、また、負極活物質が膨張しすぎることによりクラックが発生したりする。一方、空間Bの面積に対する隆起体2bの面積の割合の上限は特に限定されないが、高すぎる場合には、柱状体2a間に存在する空間による応力緩和の効果が低くなる傾向がある。
 ここで、空間Bに対する隆起体2bの面積の割合を求める方法について詳しく説明する。はじめに、使用初期の負極10が組み込まれたリチウムイオン二次電池を充電する。充電は、例えば、20℃の環境下において、充電レート1Cで電池電圧が4.2Vになるまで定電流充電を行い、引き続いて、電流値が0.05Cになるまで定電圧充電を行う。そして充電されたリチウムイオン二次電池を放電する。放電は放電レート0.2Cで、電池電圧2.5Vになるまで定電流放電を行う。このような、リチウムイオン二次電池の使用初期における、定電流放電後の状態を「初期放電状態」とする。
 次に、初期放電状態におけるリチウムイオン二次電池から負極10を含む極板群を取り出す。そして、取り出された極板群から負極10を取り出す。そして、得られた負極10の任意の断面または水平面を走査型電子顕微鏡(SEM)で、例えば、2000倍の倍率で観察する。そして、得られたSEM画像から、2つの柱状体2aの最近接位置を結ぶ線分Aを引く。そして、線分Aと平坦部1bの表面と柱状体2aの側面によって囲まれた領域である空間Bの断面積を測定する。同様にして、同じSEM画像から、空間B内に存在する隆起体2bの断面積を測定する。そして、測定された空間Bの断面積に対する隆起体2bの断面積の占有割合を算出する。占有割合は、空間Bの断面積に対する隆起体2bの断面積を数点、例えば5点算出し、各点の面積割合を算術平均する。このようにして、初期放電状態における負極10の空間Bの断面積に対する隆起体2bの断面積の占有割合が算出される。
 放電状態における柱状体2aの断面の形状は側面が部分的に膨らんでいる略紡錘状であり、好ましくは、中央部よりも上側で膨らんだ略紡錘状である。そして、柱状体2aの高さH1は、負極集電体1の平坦部1bからその頂部までの高さとして20~30μm程度、さらには22~24μm程度であることが好ましい。柱状体2aの高さH1が高すぎる場合には膨張した柱状体2a同士が密着することにより柱状体2a間で膨張が規制される。しかし、この場合には、空間Bが垂直方向に広がる結果、隆起部2bと柱状体2aとの接触面積が小さくなるために、柱状体2aの下部の膨張を規制しにくくなる傾向がある。また、H1が低すぎる場合には、空間Bが水平方向に広がる結果、隆起部2bと柱状体2aとの接触面が大きくなる傾向がある。しかし、膨張した柱状体2a同士が密着しにくくなるために柱状体2a同士の接触による膨張を規制しにくくなる傾向がある。
 放電状態における隆起体2bの頂部の高さH2は、負極集電体1の平坦部1bの表面からその頂部までの高さとして3~6μm程度、さらには、3~4μm程度であることが好ましい。
 放電状態における隆起体2bの頂部の高さH2は、柱状体2aの頂部の高さH1に対して10~30%、さらには10~25%であることが好ましい。隆起体2bの頂部の高さH2の割合が柱状体2aの頂部の高さH1に対して低すぎる場合には、隆起体2bによる容量確保の効果が小さくなり、また、柱状体2aと接触することによる膨張を規制する効果も小さくなる傾向がある。一方、隆起体2bの高さの割合が高すぎる場合には、柱状体2a間に存在する空間による応力緩和の効果が低くなる傾向がある。
 放電状態における隆起体2bの形状は、図2に示すように、その中央部がその周囲よりも丘状に隆起していることが、略紡錘状の柱状体の下部の形状に沿った形状であるために好ましい。そして、隆起体2bの中央部の頂部の高さが端部2cの高さの1.3倍以上、さらには1.3~2.5倍であることが好ましい。このように隆起体2bの頂部の高さが端部2cの高さの1.3倍以上になるように隆起体2bの中央部分が隆起した形状になっている場合には、柱状体2aと隆起体2bとの間で応力を分散させる効果が高くなる点から好ましい。
 初期放電状態における負極活物質層2の空隙率は、20~70%、さらには30~40%程度であることが好ましい。空隙率が高すぎる場合には負極活物質の密度が小さくなる傾向があり、空隙率が低すぎる場合には柱状体2a間に存在する空間による応力緩和の効果が低くなる傾向がある。負極活物質層2の空隙率は、例えば、水銀ポロシメータを用いた測定によって求めることができる。
 なお、負極活物質層2の空隙率が高すぎる場合には、負極活物質層2中の隆起体2bの体積割合が低くなっている傾向がある。すなわち、隣接する柱状体2a同士の間に、容量確保に充分寄与する程度の充分な体積の隆起体2bが形成されていない傾向がある。一方、活物質層2の空隙率が低すぎる場合には、負極活物質層2中の隆起体2bの体積割合が高くなっている傾向がある。このような場合には、柱状体2a間に存在する空間による応力緩和の効果が低くなる傾向がある。
 次に、負極10の製造方法の一例について、詳しく説明する。
 負極10は、規則的なパターンに沿って配置された複数の凸部1aと平坦部2bとを備えた負極集電体1の表面に、例えば、蒸着プロセスのような気相薄膜形成法を用いて合金系負極活物質を被着させる際に、凸部1aにおける合金系負極活物質の成長速度、及び、凸部1aの陰になる平坦部1bにおける合金系負極活物質の成長速度をコントロールしながら、柱状体2a、及び、隆起体2bを成長形成させることにより得られる。
 負極集電体1は、例えば、凸部1aの形状に対応した凹部を表面に備える鋼鉄製ローラでシート状の集電体材料をプレスすることによって形成することができる。
 集電体材料の具体例としては、銅箔、銅合金箔、ニッケル箔などが挙げられる。銅合金箔の具体例としては、銅に対してクロム、スズ、亜鉛、ケイ素、ニッケルなどを0.2質量%ずつ添加した銅合金箔、銅に対してスズを0.05~0.2質量%添加した銅合金箔、銅にジルコニウムを0.02~0.2質量%添加した銅合金箔、銅にチタンを1~4質量%添加した銅合金箔などが挙げられる。
 凸部1aの高さH3は特に限定されないが、3~15μm、さらには5~10μmであることが好ましい。凸部1aの高さが低すぎる場合には、後述するように、合金系負極活物質を蒸着する際の平坦部1bへの蒸着速度を凸部1aの遮蔽効果によりコントロールするシャドウイング効果が現れにくくなり、平坦部1bに合金系活物質が成長形成しすぎてしまう。この場合には隣接する柱状体2a間に空間が形成されにくくなる傾向がある。また、凸部1aの高さが高すぎる場合には、シャドウイング効果が高くなりすぎて、平坦部1bの表面に隆起体2bが形成されにくくなる傾向がある。
 各凸部1aの形状は特に限定されず、具体的には、例えば、菱柱状等の柱状、錐状、台形状などが挙げられる。これらの中では、菱柱状が加工の容易性の点から好ましい。
 また、凸部1aの規則的な配置パターンも特に限定されないが、具体的には、例えば、格子配列、千鳥配列等が挙げられる。これらの中では、千鳥配列が蒸着後の空隙率が適度であるために、応力緩和に優れる点から好ましい。
 負極集電体1表面に占める平坦部1bの面積割合は、30~50%、さらには、30~35%の範囲であることが好ましい。平坦部1bの面積割合が低すぎる場合には、隣り合う柱状体2a間に充分な空間を維持することができず、また、後述する蒸着プロセスの際のシャドウイング効果が高くなりすぎて、隆起体2bが形成されにくくなる傾向がある。また、平坦部1bの面積割合が高すぎる場合には、隣り合う柱状体2a同士の間の空間が大きくなりすぎて、そのために、後述する蒸着プロセスの際のシャドウイング効果が低くなりすぎて、隣接する柱状体2a間に空間が形成されにくくなる傾向がある。
 柱状体2aおよび隆起体2bは、負極集電体1の表面に対して斜方向から、合金系負極活物質源を所定の条件で蒸着(以下、斜方蒸着プロセスとも呼ぶ)させることにより成長形成させることができる。このような方法によれば蒸着時において、平坦部1bが凸部1aの陰になる。そのために、凸部1aにおける合金系活物質の成長速度よりも、平坦部1bにおける合金系活物質の成長速度のほうが低くなる。その結果、柱状体2aと、柱状体2aよりも小さい隆起体2bが形成される。また、隣接する凸部1a間の中央部は、各凸部1aの周囲よりも陰になりにくいために、中央部がその周囲に比べて隆起した形状を有する隆起体2bが形成される。
 斜方蒸着プロセスは、例えば、図4に示すような蒸着装置40を用いて、ターゲット45に対する負極集電体1の角度を変えながら蒸着する多段蒸着により行われる。
 蒸着装置40は、真空チャンバ41と、原料ガス等を供給するためのノズル43と、負極集電体1を固定するための固定台44と、ケイ素,スズ,これらの酸化物又は合金等からなる蒸着源であるターゲット45と、ターゲットを蒸発させるための電子ビーム銃46とを備える。固定台44は、図4の矢印で示した方向に可動可能である。
 はじめに、固定台44に負極集電体1を固定する。このとき、ターゲット45からの蒸気が、負極集電体1の表面に対して斜め方向から接触するように、固定台44の水平方向とのなす角度α1を、例えば、50~72°、さらには60~65°程度の範囲になるように調整しておくことが好ましい。そして、真空チャンバ41内を図示しない排気ポンプを用いて減圧した後、ノズル43からガスを所定の流量で流す。ガスの具体例としては、例えば、ケイ素酸化物を形成させるための酸素等の原料ガスの他、ヘリウム(He),アルゴン(Ar),窒素等の不活性ガスであるキャリアガスが挙げられる。そして、真空チャンバ41内の圧力を図略のレギュレーターにより所定の圧力に調整する。そして、電子ビーム銃46の加速電圧を調整しながら、ターゲット45に電子ビームを照射することにより、ケイ素等であるターゲット45を蒸発させる。そして、ターゲット45の蒸発物及びノズル43から供給された酸素等の原料ガスが負極集電体1の表面に蒸着される。このような蒸着処理を所定の時間行う。この工程においては、ターゲット45に対して負極集電体1の表面が一定の角度で傾けられているために、ターゲット45の方向に対して、凸部1a間に形成された平坦部1bは部分的に陰になる。その結果、凸部1aの一方向側の蒸着膜の成長が早くなり、陰の部分である平坦部1bの表面における蒸着膜の成長は遅くなる。なお、このように凸部1aの陰を利用して、蒸着膜の成長速度を調整する効果をシャドウイング効果と呼ぶ。このようにして、第1段目の蒸着を行う。
 なお、上述した斜方蒸着プロセスにおいては、例えば、ノズル43から供給されるガスの流量を比較的大きくしたり、真空チャンバ41内の圧力を比較的高くしたり、電子ビーム銃46の加速電圧を適宜変化させたりすることにより、ターゲット45から蒸発した原料原子50と、ノズル43から供給されたガス51との衝突頻度を高めることが好ましい。それにより、図5に示すように、ターゲット45から蒸発した原料原子50の、負極集電体1表面に対する入射方向に変化を与えることができる。その結果、凸部1aの影になる平坦部1bに対して被着する、原料原子50やガス51の量を調整することができる。その結果、柱状体2aと隆起体2bとの成長速度を、よりコントロールしやすくなる。このような蒸着条件の具体例としては、例えば、真空チャンバ41内を、例えば7×10-3Pa(abs)以下になるまで減圧した後、不活性ガスを導入することにより、例えば1×10-2~5×10-2Pa(abs)程度に圧力調整する。このような条件によれば、分子の衝突頻度が高くなるために、平坦部1bに対する蒸着膜の成長を促進させることができる。
 次に、上述したような、第1段目の蒸着の後、固定台44を可動させることにより、ターゲット45に対する負極集電体1の表面の傾きを、水平方向とのなす角度α2に調整する。角度α2は通常、第1段目に調整した角度α1とは水平方向に対して-α1度になるように調整される。そして、第1段目の蒸着条件と同様の条件で蒸着処理を行う。このようにして第2段目の蒸着を行う。
 このような角度α1側からの斜方蒸着および角度α2側からの斜方蒸着を交互に所定の段数で繰り返すことにより、負極集電体1表面に柱状体2aと隆起体2bとが形成される。このようにして、負極10が得られる。
 次に、図5を参照して、負極10を用いたリチウムイオン二次電池の一例である、ラミネート型リチウムイオン二次電池11について説明する。
 ラミネート型リチウムイオン二次電池11は、負極10、正極12、およびこれらを隔離するセパレータ13からなる電極群と、リチウムイオン伝導性を有する電解質と、を備える。電極群と電解質とは外装ケース14に収容されている。負極10は、負極集電体1と負極集電体1上に形成された負極活物質層2とを有する。正極12は、正極集電体17と、正極集電体17上に形成された正極活物質層18とを有する。負極集電体1および正極集電体17には、それぞれ負極リード19および正極リード20の一端が接続されており、各リード19、20の他端は、外装ケース14の外部に導出されている。外装ケース14は、樹脂フィルムにアルミニウム箔をラミネートしたラミネートフィルムであって、その開口部21は、樹脂材料からなるガスケット22によって封止されている。
 正極12は、例えば、正極活物質、導電剤、結着剤等を分散媒に分散させた正極合剤液を正極集電板の表面に塗布し、乾燥及び圧延することにより得られる。
 正極活物質の具体例としては、例えば、コバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。
 導電剤の具体例としては、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラックや、各種グラファイト等が挙げられる。結着剤の具体例としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、アクリレート単位を有するゴム粒子等が挙げられる。これらはそれぞれ単独で用いても、2種以上を組み合わせて用いてもよい。本実施形態におけるセパレータ、および非水電解質としては、特に限定されず、この分野で公知の各種の材料を用いることができる。
 次に、本発明を実施例により具体的に説明する。なお、本発明の範囲は実施例の内容により、何ら限定されるものではない。
 [実施例1]
 (1)負極集電体の作製
 一方のローラの表面に複数の円形の凹部を有する一対の鋼鉄製ローラを用いて合金銅箔を圧延することにより、両表面に凸部を有する負極集電体を作製した。合金銅箔としては、厚さ26μmの合金銅箔(Zr含有量0.02質量%、日立電線(株)製)を用いた。また、圧延の線圧は、1000kgf/cm(約9.81kN/cm)であった。
 負極集電体の表面には、千鳥配列パターンに沿って配置された複数の円柱状の凸部が形成されていた。各凸部は、高さ約7μm、直径約10μmであった。また、隣り合う凸部間の中心間距離は30μmであった。また、負極集電体の平坦部の面積割合は30~40%であった。
 (2)負極の作製
 図4に示したような蒸着装置40を用いて、次のようにして、得られた負極集電体の両表面に合金系負極活物質からなる負極活物質層を形成した。
 蒸着源であるターゲットとして純度99.9999%のケイ素を用いた。はじめに、得られた負極集電体を蒸着装置40の固定台44に設置し、負極集電体の表面と水平方向とのなす角α1を60°に調整した。そして、真空チャンバ41内の圧力を7×10-3Pa(abs)に減圧した。そして、真空チャンバ41内にノズル43から酸素ガス及びHeガスを供給した。なお、酸素ガスの流量は400sccm(25℃)、Heガスの流量は80sccm(25℃)に設定した。そして、ガスの供給及びレギュレーターの調整により、真空チャンバ41内の圧力を5×10-2Pa(abs)に調整した。そして、加速電圧を-8kV、エミッション500mAの条件で電子ビーム銃からターゲットに電子ビームを照射することにより第1段目の蒸着を行った。なお、蒸着時間は5秒間であった。この第1段目の蒸着により、凸部の表面に厚みが80nmのケイ素酸化物層が形成された。
 1段目の蒸着後、固定台44を可動させることにより負極集電体の表面と水平方向とのなす角α2を60°に調整した。そして、第1段目の蒸着と同様の条件で、第2段目の蒸着を行った。さらに、奇数段目の蒸着は第1段目と同様に、偶数段目の蒸着は第2段目と同様にして、負極集電体の表面と水平方向とのなす角度を交互に変えながら、合計8段の蒸着を行った。
 このようにして、負極集電体の両表面に、SiOx(x=1.2)で表される組成を有する合金系負極活物質層を形成した。このようにして、負極A1が得られた。蒸着直後の負極A1をSEMで観察すると、図2に示すような、各凸部に支持された、高さ約20μmの柱状体と、各平坦部に支持された、高さ約5.5μmの中央部が隆起した隆起体が形成されていた。なお、柱状体は、中央部よりも上側で膨らんだ略紡錘状であり、膨らんだ部分の直径は約25μmであった。また、隆起体の高さは、隣接する柱状体の最近接位置の高さよりも低かった。
 (3)正極の作製
 平均粒径5μmのコバルト酸リチウム(LiCoO2)100質量部、アセチレンブラック3質量部、ポリフッ化ビニリデン(PVdF)4質量部、及び所定量の分散媒(N-メチル-2-ピロリドン)を混合することにより、正極合剤ペーストを得た。この正極合剤ペーストを厚み15μmのアルミニウム箔からなる正極集電体の片面に塗布し、乾燥させることにより、正極活物質層を形成した。そして、正極活物質層の厚みが85μmとなるように圧延することにより正極が形成された。
 (4)ラミネート型リチウムイオン二次電池の作製
 負極と、正極と、負極A1と正極との間に介在させるセパレータとを積層することにより電極群を作製した。なお、セパレータとしては、ポリエチレン製微多孔膜(商品名:ハイポア、厚さ20μm、旭化成株式会社製)を用いた。次に、ポリプロピレンからなるガスケット用タブが形成されたニッケル製負極リードの一端を、負極A1のリード取付け部に溶接した。一方、ポリプロピレンからなるガスケット用タブが形成されたアルミニウム製正極リードの一端を、正極のリード取付け部に溶接した。そして、電極群をアルミニウムラミネートシートからなる外装ケースに挿入した。さらに、外装ケースに電解液を注液した。電解液としては、エチレンカーボネートとエチルメチルカーボネートとジエチルカーボネートとを体積比3:5:2の割合で含む混合溶媒に、LiPF6を1mol/Lの濃度で溶解させた非水電解液を用いた。
 そして、負極リード及び正極リードのそれぞれを外装ケースの開口部から外部へと導出させた状態で、外装ケースの開口部を溶着した。このようにして、ラミネート型リチウムイオン二次電池Aが得られた。
 (5)負極およびリチウムイオン二次電池の評価
(2つの柱状体同士の最近接位置を結ぶ線分と平坦部の表面と柱状体の側面とによって規定される空間Bの断面積に対する隆起体の断面積の割合)
 20℃の恒温槽に電池Aを所定の時間放置した。そして、両極間の電圧が4.2Vに達するまで、充電レート1Cで定電流充電を行った。両極間の電圧が4.2Vに達した後、電流値が0.05Cになるまで定電圧充電を行った。そして、充電後の電池Aを、両極間電圧が2.5Vになるまで放電レート0.2Cで定電流放電を行うことにより、初期放電状態とした。
 そして、初期放電状態の電池Aから負極A1を取り出した。そして、初期放電状態における負極A1の表面および断面の状態をSEMで観察した。初期放電状態における柱状体の高さは平均23μmであり、隆起体の高さは平均6μmであった。従って、初期放電状態における隆起体の高さは、柱状体の高さの約26%であった。また、初期放電状態における隆起体の中央部の高さは、隆起体の端部の高さの約2.5倍であった。
 隆起体の高さは、隣接する柱状体同士の最近接位置の高さよりも低く、隣接する柱状体間に形成された空間内に存在していた。また、放電状態においては、柱状体と隆起体とは互いに接触していなかった。
 そして、SEM画像において、図1及び図2に示すように、隣接する2つの柱状体同士の最近接位置を結ぶ線分と平坦部の表面と柱状体の側面とによって規定される空間Bの断面積、及び、隆起体の断面積を求め、空間Bの断面積に対する隆起体の断面積の割合を求めた。なお、空間Bの断面積に対する隆起体の断面積の割合は、満遍なく選ばれた5点で測定したデータを数平均した。その結果得られた初期放電時における、負極A1の空間Bの断面積に対する隆起体の断面積は、平均60%であった。
 なお、充電状態の電池Aから負極A1を取り出し、その断面の状態をSEMで観察したところ、柱状体及び隆起体は著しく膨張していた。そして、隣接する柱状体同士が互いに接触しているとともに、隣接する柱状体間に形成された空間において膨張した隆起体の上部が、隣接する柱状体の下部を支えるように接触していた。
 (サイクル容量維持率の評価)
 初期放電状態の電池Aに対して、両極間の電圧が4.2Vになるまで充電レート1Cで定電流充電を行った。両極間の電圧が4.2Vに達した後、電流値が0.05Cになるまで定電圧充電を行った。そして、充電後、休止時間を20分間保持した。そして、充電後の電池Aを、両極間電圧が2.5Vになるまで放電レート0.2Cで定電流放電を行った。この充放電サイクルを1サイクルとして、合計100サイクル繰り返した。このとき、1サイクル目の放電容量W1[mAh]と100サイクル目の放電容量W100[mAh]を測定し、サイクル容量維持率[%]をW100/W1×100の式により算出した。その結果、電池Aのサイクル容量維持率は90%であった。また、サイクル容量維持率の評価後の負極A1の柱状体及び隆起体にはクラックが殆ど観察されなかった。
 [実施例2]
 「負極の作製(2)」において、ガス供給後の圧力を5×10-2Pa(abs)に調整する代わりに、1×10-2Pa(abs)となるように調整した以外は、実施例1と同様にして負極B1を作製した。そして、負極A1の代わりに負極B1を用いた以外は実施例1と同様にして、電池Bを作製した。そして、実施例1と同様にして、負極及び電池の評価を行った。
 初期放電状態において、柱状体の高さは約23μm、隆起体の高さは約3μmであり、柱状体の高さに対する隆起体の高さの割合は約13%であった。また、負極B1の隆起体の断面積は、前記空間の断面積の30%であった。また、電池Bのサイクル容量維持率は85%であった。また、サイクル容量維持率の評価後の負極B1の柱状体及び隆起体にはクラックが殆ど観察されなかった。
 [実施例3]
 「負極の作製(2)」において、ガス供給後の圧力を5×10-2Pa(abs)に調整する代わりに、2×10-2Pa(abs)となるように調整した以外は、実施例1と同様にして負極C1を作製した。そして、負極A1の代わりに負極C1を用いた以外は実施例1と同様にして、電池Cを作製した。そして、実施例1と同様にして、負極及び電池の評価を行った。
 初期放電状態において、柱状体の高さは約23μm、隆起体の高さは約4.9μmであり、柱状体の高さに対する隆起体の高さの割合は約21%であった。また、負極C1の隆起体の断面積は、前記空間の断面積の40%であった。また、電池Cのサイクル容量維持率は87%であった。また、サイクル容量維持率の評価後の負極C1の柱状体及び隆起体にはクラックが殆ど観察されなかった。
 [比較例1]
 「負極の作製(2)」において、ガス供給後の圧力を5×10-2Pa(abs)に調整する代わりに、8×10-3Pa(abs)となるように調整した以外は、実施例1と同様にして負極D1を作製した。そして、負極A1の代わりに負極D1を用いた以外は実施例1と同様にして、電池Dを作製した。そして、実施例1と同様にして、負極及び電池の評価を行った。
 初期放電状態において、柱状体の高さは約23μm、隆起体の高さは約2.6μmであり、柱状体の高さに対する隆起体の高さの割合は約11%であった。また、負極D1の隆起体の断面積は、前記空間の断面積の20%であった。また、電池Cのサイクル容量維持率は80%であった。なお、充電状態の電池Dから負極D1を取り出し、その断面の状態をSEMで観察したところ、柱状体及び隆起体は何れも膨張していた。そして、隣接する柱状体同士は互いに接触していたが、柱状体と隆起体の上部とは殆ど接触していなかった。また、柱状体には、クラックが観察された。これは、柱状体に発生した内部応力により柱状体が膨張しすぎて、発生したものであると思われる。
 以上の結果から、合金系負極活物質の蒸着時の真空チャンバ41内の減圧度の調整により、平坦部に対する合金系負極活物質の被膜の成長を調整できることがわかる。本発明者らは、この現象は、蒸着時の減圧度を調整することにより、蒸発したシリコン原子等の運動性が変化して、凸部間に形成された空間に入り込む原料ガスの量が変化することによると考えている。
 また、所定の隆起体を形成して活物質内で応力を均等化することにより、サイクル容量維持率が大きく改善されることがわかる。
 本発明のリチウムイオン二次電池用負極は、合金系活物質の特徴である高い充放電容量を有し、充放電サイクル特性に優れたリチウムイオン二次電池を提供するための負極として有用である。また、本発明のリチウムイオン二次電池用負極は、リチウムイオンキャパシタにおける負極の用途にも応用することができる。
 1 負極集電体、 1a 凸部、 1b 平坦部、 2 負極活物質層、 2a 柱状体、 2b 隆起体、 2c 端部、 10 リチウムイオン二次電池用負極、 11 ラミネート型リチウムイオン二次電池、 12 正極、 13 セパレータ、 14 外装ケース、 17 正極集電体、 18 正極活物質層、 19 負極リード、 20 正極リード、 21 開口部、 22 ガスケット、 40 蒸着装置、 41 真空チャンバ、 43 ノズル、 44 固定台、 45 ターゲット、 50 原料原子、 51 不活性ガス、 A 線分、 B 空間、 H1 柱状体2aの高さ、 H2 隆起体2bの高さ、 H3 凸部1aの高さ

Claims (14)

  1.  リチウムイオン二次電池に用いられる負極であって、
     集電体シートと、前記集電体シートに支持された負極活物質層とを備え、
     前記集電体シートは、規則的な間隔を有するパターンに沿って配置された複数の凸部と、前記複数の凸部間に存在する複数の平坦部と、からなる表面を有し、
     前記負極活物質層は、合金系負極活物質からなる、前記各凸部に支持された複数の略紡錘状の柱状体と前記各平坦部に支持された複数の隆起体とを備え、
     前記隆起体の高さは、隣接する前記柱状体の最近接位置の高さよりも低く、
     リチウムイオン二次電池の放電状態において、
     上面視した場合における、隣接する2つの前記柱状体のそれぞれの中央部及び前記2つの柱状体間に挟まれた前記隆起体の中央部を通過する仮想直線から、前記集電体シートの表面に向けて仮想切断した鉛直断面において、隣接する2つの前記柱状体同士の最近接位置を結ぶ線分と前記平坦部の表面と2つの前記柱状体の側面とによって規定される空間の断面積に対して、前記隆起体の断面積が占める割合が平均25%以上である、リチウムイオン二次電池用負極。
  2.  前記放電状態における、前記隆起体の高さが3~6μmの範囲である請求項1に記載のリチウムイオン二次電池用負極。
  3.  前記放電状態においては前記柱状体と前記隆起体の上部とは接触せず、充電時においては前記柱状体の下部と前記隆起体の上部とが接触している請求項1に記載のリチウムイオン二次電池用負極。
  4.  前記放電状態において、前記隆起体はその中央部がその周囲よりも隆起しており、前記中央部の頂部の高さが前記周囲の端部の高さの1.3倍以上である請求項1に記載のリチウムイオン二次電池用負極。
  5.  前記柱状体が、中央部よりも上側で膨らんだ略紡錘状である請求項1に記載のリチウムイオン二次電池用負極。
  6.  前記放電状態における、前記柱状体の高さが20~30μmの範囲である請求項1に記載のリチウムイオン二次電池用負極。
  7.  前記放電状態における、前記隆起体の高さが前記柱状体の高さの10~30%の範囲である請求項1に記載のリチウムイオン二次電池用負極。
  8.  前記柱状体が、前記合金系負極活物質からなる積層体である請求項1に記載のリチウムイオン二次電池用負極。
  9.  前記凸部の高さが3~15μmの範囲である請求項1に記載のリチウムイオン二次電池用負極。
  10.  前記規則的な間隔を有するパターンが千鳥配列である請求項1に記載のリチウムイオン二次電池用負極。
  11.  前記集電体シートの表面における、前記平坦部の面積割合が30~50%の範囲である請求項1に記載のリチウムイオン二次電池用負極。
  12.  前記負極活物質層の空隙率が、前記放電状態において20~70%である請求項1に記載のリチウムイオン二次電池用負極。
  13.  前記放電状態が、リチウムイオン二次電池の初期充放電期間における放電状態である請求項1に記載のリチウムイオン二次電池用負極。
  14.  請求項1に記載の負極と、リチウムイオンを吸蔵および放出する正極と、前記負極および前記正極を隔離するセパレータと、リチウムイオン伝導性を有する電解質と、を備える、リチウムイオン二次電池。
     
PCT/JP2010/005789 2009-07-10 2010-09-27 リチウムイオン二次電池用負極およびリチウムイオン二次電池 WO2011043026A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080003421XA CN102232252A (zh) 2009-10-07 2010-09-27 锂离子二次电池用负极及锂离子二次电池
JP2011535267A JPWO2011043026A1 (ja) 2009-10-07 2010-09-27 リチウムイオン二次電池用負極およびリチウムイオン二次電池
US13/140,706 US20110250501A1 (en) 2009-07-10 2010-09-27 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-233116 2009-10-07
JP2009233116 2009-10-07

Publications (1)

Publication Number Publication Date
WO2011043026A1 true WO2011043026A1 (ja) 2011-04-14

Family

ID=43856511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005789 WO2011043026A1 (ja) 2009-07-10 2010-09-27 リチウムイオン二次電池用負極およびリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20110250501A1 (ja)
JP (1) JPWO2011043026A1 (ja)
KR (1) KR20110083750A (ja)
CN (1) CN102232252A (ja)
WO (1) WO2011043026A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235811A (ja) * 2011-12-07 2013-11-21 Semiconductor Energy Lab Co Ltd リチウム二次電池用負極及びリチウム二次電池並びにその製造方法
WO2014156053A1 (ja) * 2013-03-26 2014-10-02 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
CN110556541A (zh) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 锂二次电池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367702B (zh) * 2013-07-18 2017-05-03 东莞新能源科技有限公司 锂离子电池极片及包含该极片的锂离子电池
CN105493317A (zh) * 2013-09-27 2016-04-13 三洋电机株式会社 非水电解质二次电池用负极
KR102053239B1 (ko) 2016-09-09 2019-12-06 주식회사 엘지화학 고용량의 전극을 포함하는 이차전지의 제조 방법
JP7113227B2 (ja) * 2018-03-09 2022-08-05 パナソニックIpマネジメント株式会社 リチウム二次電池
JP7334201B2 (ja) * 2021-03-01 2023-08-28 プライムプラネットエナジー&ソリューションズ株式会社 二次電池用電極および該電極の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073212A (ja) * 2004-08-31 2006-03-16 Sanyo Electric Co Ltd 非水電解質電池
JP2008210786A (ja) * 2007-02-01 2008-09-11 Matsushita Electric Ind Co Ltd 電池とその負極の検査方法、製造方法、負極の検査装置、製造装置
WO2009019869A1 (ja) * 2007-08-09 2009-02-12 Panasonic Corporation リチウム二次電池用電極およびそれを備えたリチウム二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838153B2 (en) * 2006-08-29 2010-11-23 Panasonic Corporation Current collector, electrode, and non-aqueous electrolyte secondary battery
JP5151343B2 (ja) * 2006-12-13 2013-02-27 パナソニック株式会社 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
US8951672B2 (en) * 2007-01-30 2015-02-10 Sony Corporation Anode, method of manufacturing it, battery, and method of manufacturing it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073212A (ja) * 2004-08-31 2006-03-16 Sanyo Electric Co Ltd 非水電解質電池
JP2008210786A (ja) * 2007-02-01 2008-09-11 Matsushita Electric Ind Co Ltd 電池とその負極の検査方法、製造方法、負極の検査装置、製造装置
WO2009019869A1 (ja) * 2007-08-09 2009-02-12 Panasonic Corporation リチウム二次電池用電極およびそれを備えたリチウム二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235811A (ja) * 2011-12-07 2013-11-21 Semiconductor Energy Lab Co Ltd リチウム二次電池用負極及びリチウム二次電池並びにその製造方法
CN107180941A (zh) * 2011-12-07 2017-09-19 株式会社半导体能源研究所 锂二次电池用负极、锂二次电池及其制造方法
US10026966B2 (en) 2011-12-07 2018-07-17 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for lithium secondary battery, lithium secondary battery, and manufacturing methods thereof
CN107180941B (zh) * 2011-12-07 2021-01-05 株式会社半导体能源研究所 锂二次电池用负极、锂二次电池及其制造方法
WO2014156053A1 (ja) * 2013-03-26 2014-10-02 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
CN110556541A (zh) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 锂二次电池

Also Published As

Publication number Publication date
US20110250501A1 (en) 2011-10-13
CN102232252A (zh) 2011-11-02
JPWO2011043026A1 (ja) 2013-02-28
KR20110083750A (ko) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2011043026A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP4027966B2 (ja) リチウム二次電池用負極およびその製造方法、ならびにリチウム二次電池用負極を備えたリチウム二次電池
EP1912270B1 (en) Negative electrode for lithium secondary battery and method for producing same
JP5313761B2 (ja) リチウムイオン電池
JP4865673B2 (ja) リチウム二次電池
JP4351732B2 (ja) リチウム二次電池用電極およびそれを備えたリチウム二次電池
JP5143700B2 (ja) 電気化学素子用電極およびそれを用いた電気化学素子
US8236454B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
US8367240B2 (en) Lithium secondary battery with wound electrodes
US20100003599A1 (en) Method for producing current collector for non-aqueous electrolyte secondary battery, method for producing electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2011001620A1 (ja) リチウムイオン電池用負極、その製造方法、およびリチウムイオン電池
JP2010080432A5 (ja)
WO2011132428A1 (ja) リチウムイオン電池用負極およびその製造方法、ならびにリチウムイオン電池
JP2009117267A (ja) 電気化学素子用電極
JPWO2008023733A1 (ja) 非水電解質二次電池用負極とその製造法および非水電解質二次電池
EP3618150B1 (en) Negative electrode active material, negative electrode including negative electrode active material, and secondary battery including negative electrode
JP2008098157A (ja) リチウムイオン二次電池用負極およびそれを用いるリチウムイオン二次電池
WO2011071154A1 (ja) シリコン膜およびリチウム二次電池
WO2009095973A1 (ja) 電気化学素子用電極の製造方法
WO2008072430A1 (ja) 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
KR101016077B1 (ko) 전기 화학 소자용 전극과 그 제조 방법 및 이를 이용한전기 화학 소자
JP2011023131A (ja) 非水系二次電池用負極板およびこれを用いた非水系二次電池
JP2012009330A (ja) リチウムイオン二次電池
JP2010182620A (ja) リチウムイオン二次電池
JP4748970B2 (ja) エネルギーデバイス及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003421.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011535267

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117013828

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13140706

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10821704

Country of ref document: EP

Kind code of ref document: A1