JP5143700B2 - 電気化学素子用電極およびそれを用いた電気化学素子 - Google Patents

電気化学素子用電極およびそれを用いた電気化学素子 Download PDF

Info

Publication number
JP5143700B2
JP5143700B2 JP2008273520A JP2008273520A JP5143700B2 JP 5143700 B2 JP5143700 B2 JP 5143700B2 JP 2008273520 A JP2008273520 A JP 2008273520A JP 2008273520 A JP2008273520 A JP 2008273520A JP 5143700 B2 JP5143700 B2 JP 5143700B2
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
active material
columnar particles
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008273520A
Other languages
English (en)
Other versions
JP2009123695A (ja
Inventor
万郷 藤川
秀治 武澤
美有紀 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008273520A priority Critical patent/JP5143700B2/ja
Priority to US12/594,472 priority patent/US20100112442A1/en
Priority to KR1020097022895A priority patent/KR101179292B1/ko
Priority to CN2008800167801A priority patent/CN101682023B/zh
Priority to PCT/JP2008/003039 priority patent/WO2009054149A1/ja
Publication of JP2009123695A publication Critical patent/JP2009123695A/ja
Application granted granted Critical
Publication of JP5143700B2 publication Critical patent/JP5143700B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、電気化学素子に関し、より詳しくは電気化学素子用電極における活物質の改良に関する。
近年、携帯電話やデジタルカメラ、ビデオカメラ、およびノート型パソコンなどの携帯型電子機器、ならびに移動体通信機器の駆動用電源として、リチウムイオン二次電池の需要が拡大している。リチウムイオン二次電池に代表される非水電解質二次電池は、電気化学素子のなかでも、軽量であり、かつ高起電力および高エネルギー密度を有する。
リチウムイオン二次電池では、たとえば、正極活物質にリチウム含有複合酸化物が用いられ、負極活物質にリチウム金属またはリチウム合金が用いられる。また、負極には、たとえば、黒鉛などの炭素材料(活物質)、および高分子結着剤を含む負極合剤層が集電体上に形成された負極が用いられる。
ハイレート放電特性(以下、ハイレート特性)および低温環境下での放電特性(以下、低温特性)を向上させるには、負極の比表面積を大きくすることが考えられる。負極に炭素材料などの活物質のみを用いる場合、炭素材料の比表面積を大きくし、炭素材料とリチウムイオンとの接触面積(反応面積)を大きくすることが考えられる。
しかし、炭素材料のリチウムイオンとの接触面積が大きくなると、活物質の電解液との接触による発熱の量が増加し、安全性・信頼性および自己放電特性が低下する(たとえば、非特許文献1)。したがって、ハイレート特性および低温特性と、安全性・信頼性および自己放電特性とのバランスを図るためには、負極の比表面積の最適化が重要である。
しかし、上記比表面積の評価は、負極活物質(炭素材料)のみで構成した負極に対する評価であり、負極活物質および高分子結着剤を含む負極合剤層を有する負極に対する評価ではない。また、負極作製時に用いた結着剤の種類、および負極合剤層形成時の圧縮成形の条件により電池特性は変化する。たとえば、活物質が結着剤で覆われる程度、圧縮成形時における活物質粒子の割れや崩壊により、実質的な比表面積は変わる。
そこで、炭素材料(活物質)および結着剤の混合物からなる負極合剤層を用いた負極について、BET比表面積が検討されている(たとえば、特許文献1)。
ところで、近年、電子機器の小型・高性能化に伴い、電気化学素子のさらなる高容量化・高機能化が求められている。しかし、炭素材料を含む負極合剤層を有する負極では、負極の容量を、炭素材料の理論容量密度を超える量に高めることはできない。また、比表面積を大きくすると、高温環境下における活物質の電解液との接触による発熱量が増大する。
さらなる高容量化を実現するため、上記の炭素材料を含む負極合剤層の代わりに、理論容量密度が833mAh/cm3を超える負極活物質材料(以下、高容量の負極活物質)に関する研究が行われている。なお、833mAh/cm3は、黒鉛の理論容量密度(372mAh/g×2.24g/cm3)である。このような活物質材料としては、たとえば、リチウムと合金化可能なケイ素(Si)、スズ(Sn)、およびゲルマニウム(Ge)、これらの元素を含む酸化物、およびこれらの元素を含む合金が挙げられる。これらのなかでも、安価なSi、酸化ケイ素などのケイ素を含む化合物が、幅広く検討されている。
上記負極は、たとえば、化学蒸着(CVD)法やスパッタリング法により、集電体上に高容量の負極活物質薄膜を形成することにより得られる。しかし、これらの負極活物質は、充電時のリチウムイオン吸蔵量が多く、体積変化が大きい。負極活物質がSiの場合、リチウムイオンが最も吸蔵された状態ではLi4.4Siとなる。Li4.4Siの体積は、Siの体積の4.12倍である。
高容量の負極活物質では、充放電サイクルにおいて、リチウムイオンの吸蔵・放出、すなわち負極活物質の膨張・収縮が繰り返されると、負極活物質の膨張・収縮による体積変化が大きいため、負極活物質と負極集電体との密着性が低下し、負極活物質層のクラック発生や負極活物質の負極集電体からの脱落が起こりやすい。また、負極活物質の体積変化により生じる応力により集電体に皺が生じやすい。
上記問題を解決する方法としては、様々な検討が行われている。
たとえば、特許文献2では、集電体の表面に凹凸を設け、その集電体上に負極活物質層を形成し、エッチングにより厚み方向に空隙を形成することが提案されている。特許文献3では、集電体の表面に凹凸を設け、その凸部位置が開口部となるようにレジストパターンを形成し、その集電体上に負極活物質薄膜を電析により形成した後、レジストを除去し、活物質の柱状体を形成することが提案されている。特許文献4では、集電体上にメッシュを配置し、メッシュの枠に対応する部分以外において負極活物質層を形成することが提案されている。
Solid State Ionics 69 (1994) pp284-290、Ulrich von Sauken 著 特許第3139390号明細書 特開2003−17040号公報 特開2004−127561号公報 特開2002−279974号公報
特許文献2〜4記載の二次電池では、複数の柱状粒子を含む負極活物質層が形成され、柱状粒子間に空隙部が形成される。これにより、充放電時の活物質の膨張・収縮(体積変化)に伴い発生する応力が緩和され、負極活物質層の集電体からの脱落および集電体の皺の発生を防止することができる。
容量の大きい負極活物質を用いた負極では、高容量化に対する効果は大きいが、上記と同様に、依然として、高温環境下での負極の電解液との接触により発熱するという問題は解消されない。また、炭素材料よりも高容量の負極活物質のみで負極を構成する場合における、負極の比表面積と、負極の電解液との接触による発熱の量との関係は依然として明らかではない。
そこで、本発明は、上記従来の問題を解決するため、高容量を有し、かつハイレート特性、低温特性、および安全性に優れた電気化学素子用電極およびそれを用いた電気化学素子を提供することを目的とする。
本発明は、集電体、および前記集電体上に形成された活物質層を有する電気化学素子用電極であって、前記活物質層は、リチウムイオンを可逆的に吸蔵・放出が可能な、理論容量密度が833mAh/cm3超である活物質を含み、前記活物質層のBET比表面積が502/g以上80m2/g以下である。電気化学素子用電極は、非水電解質二次電池用負極である。前記活物質は、一般式:SiOxまたはSnOx(ただし、0<x<2)で表される化合物からなる。
充電状態の前記活物質層のBET比表面積が0.1m2/g以上5m2/g以下であるのが好ましい。
前記集電体は、表面に凸部を有し、前記活物質層は、少なくとも1つの柱状粒子を含み、前記柱状粒子は、前記凸部上に形成されている。前記柱状粒子は、前記集電体の法線方向に対して傾斜している。
前記柱状粒子は、前記集電体の面方向と鈍角を成す側の表面に、離散的に形成された複数の突状体を有する。
前記柱状粒子中にリチウムイオンが吸蔵されるにつれて、前記柱状粒子の、前記集電体の面方向に対して鋭角に傾斜する角度が増大するのが好ましい。
記柱状粒子は、一般式:SiOx(ただし、0<x<2)で表される化合物からなり、前記柱状粒子は、前記集電体の面方向において、前記集電体の面方向と鋭角を成す側から鈍角を成す側に向かうにつれて、前記xの値が大きくなるのが好ましい。
また、本発明は、正極、上記負極、および非水電解質を備えた非水電解質二次電池に関する。
本発明によれば、高温時の電解液との発熱反応が抑制され、安全性に優れていると同時に、ハイレート特性および低温特性に優れた、高容量の電極およびそれを用いた電気化学素子を提供することができる。
本発明は、集電体、および前記集電体上に形成された活物質層を有する電気化学素子用電極に関する。そして、本発明は、リチウムイオンを可逆的に吸蔵・放出が可能であり、理論容量密度が833mAh/cm3超である活物質を含み、前記活物質層は、BET比表面積が5m2/g以上80m2/g以下である点に特徴を有する。
これにより、高温時の電解液との接触による発熱が抑制され、信頼性が向上するとともに、ハイレート特性および低温特性に優れた高容量の電気化学素子用電極が得られる。
なお、上記BET比表面積は、活物質層の単位重量あたりの値である。また、上記BET比表面積は、リチウムが吸蔵されていない状態の活物質層のBET比表面積を意味する。以降、単にBET比表面積と記載している場合は、このBET比表面積を意味する。上記理論容量密度とは、活物質1cm3あたりの理論容量である。
活物質層のBET比表面積が5m2/g未満であると、活物質の電解液との接触面積が減少し、活物質の電解液との接触による発熱が抑制される。しかし、活物質層において反応に寄与する活物質量の割合(活物質利用率)が減少するため、ハイレート特性および低温特性が低下する。活物質層のBET比表面積が80m2/g超であると、活物質の電解液との接触面積が増大し、活物質の電解液との接触による発熱の量が増大し、信頼性が低下する。
また、充電状態の前記活物質層のBET比表面積が0.1m2/g以上5m2/g以下であるのが好ましい。このとき、活物質利用率が高く、ハイレート特性および低温特性に優れた電池が得られる。ここでいう、充電状態とは、SOC(state of charge)が100%である負極をいう。なお、SOCとは、負極の理論容量(満充電量)に対する充電された量の割合をいう。
集電体は、表面に凸部を有し、柱状粒子は凸部に形成されているのが好ましい。
柱状粒子は、集電体の法線方向に対して傾斜しているのが好ましい。
ここでいう、集電体の法線方向とは、集電体の主要平坦面(単に表面ともいう)に対して垂直な方向である。
柱状粒子は、1つ以上の粒層からなる。
柱状粒子は複数の粒層の積層体を含み、複数の粒層は、集電体の法線方向に対して傾斜しているのが好ましい。
複数の粒層が、集電体の法線方向に対し、第1方向と第2方向に交互に傾斜して積み重ねられているのが好ましい。すなわち、柱状粒子の底部から数えて奇数段目の粒層は、集電体の表面の法線方向に対し、第1方向に傾斜し、偶数段目の粒層は、集電体の表面の法線方向に対し、第2方向に傾斜しているのが好ましい。
複数の粒層からなる柱状粒子で構成された活物質層のBET比表面積は、8m2/g以上50m2/g以下であるのが好ましい。
上記のように活物質層を柱状粒子(粒層)で構成することにより、隣接する柱状粒子間に空隙部が容易に形成され、リチウムイオンの吸蔵・放出時において、隣接する柱状粒子間において、非水電解質が移動可能な空間が維持される。
柱状粒子は、集電体の面方向と鈍角を成す側の表面に、離散的に形成された複数の突状体を有するのが好ましい。これにより、比表面積の大きな活物質層が得られ、ハイレート特性および低温特性が向上する。ここでいう、集電体の面方向とは、集電体の主要平坦面(単に表面ともいう)に対して平行な方向である。
突状体を有する柱状粒子で構成された活物質層のBET比表面積は、50m2/g以上80m2/g以下であるのが好ましい。
柱状粒子(粒層)は、一般式:SiOx(0<x<2)で表される化合物からなるのが好ましい。これにより、電極反応効率および容量が高く、比較的安価な電気化学素子用電極が得られる。
集電体の法線方向に対して傾斜する柱状粒子(粒層)は、集電体の面方向において、集電体の法線方向と鋭角を成す側から鈍角を成す側に向かうにつれて、上記の一般式中におけるx値が大きくなるように形成されているのが好ましい。これにより、充放電時の柱状粒子(粒層)の膨張収縮による応力変化に基づく機械的ストレスから柱状粒子(粒層)を保護するとともに、柱状粒子(粒層)の集電体の法線方向に対する傾斜角度を可逆的に変化させることができる。
柱状粒子(粒層)において、上記のようにx値が変化する場合、柱状粒子(粒層)は、リチウムイオンを吸蔵して膨張するにしたがい、柱状粒子(粒層)の成長方向と集電板の面方向とで成る鋭角の角度が大きくなる。柱状粒子(粒層)がリチウムイオンを吸蔵し膨張しても、集電体の法線方向に対する柱状粒子(粒層)の傾斜角度が大きくなり、隣接する柱状粒子間においてリチウムイオンが移動可能な空間が維持される。
また、本発明は、上記電極を備える電気化学素子に関する。これにより、安全性、ハイレート特性、および低温特性に優れた高容量の電気化学素子が得られる。
電気化学素子としては、たとえば、リチウムイオン二次電池などの非水電解質二次電池、リチウムイオンキャパシタなどの容量素子が挙げられる。非水電解質二次電池は、正極、負極、および非水電解質を備え、正極および負極の少なくとも一方に、上記電極を用いる。
以下、本発明の電気化学素子の一例として、負極に上記電極を用いた非水電解質二次電池を、図面を参照しながら説明する。図1は、本発明の電気化学素子の一例である非水電解質二次電池の概略縦断面図である。
図1に示すように、積層型の非水電解質二次電池8は、負極1と、正極2と、これらの間に介在するセパレータ3とからなる電極群を具備する。電極群およびリチウムイオン伝導性を有する電解質は、外装ケース4の内部に収容されている。リチウムイオン伝導性を有する電解質は、セパレータ3に含浸されている。負極1は、負極集電体1aと、負極集電体1a上に形成された負極活物質層1bを有する。正極2は、正極集電体2aと、正極集電体2a上に形成された正極活物質層2bを有する。正極集電体2aおよび負極集電体1aには、それぞれ正極リード5および負極リード6の一端が接続され、他端は外装ケース4の外部に導出されている。さらに、外装ケース4の開口部は、樹脂材料7により封止されている。外装ケース4には、例えば、樹脂フィルムにアルミニウム箔をラミネートしたシートが用いられる。
正極活物質層2bは、充電時にリチウムを放出し、放電時に負極活物質層1bが放出したリチウムを吸蔵する。負極活物質層1bは、充電時に正極活物質層2bが放出したリチウムを吸蔵し、放電時にリチウムを放出する。負極活物質層1bは、リチウムイオンを可逆的に吸蔵・放出する理論容量密度が833mAh/cm3を超える負極活物質からなる。
負極活物質層1bのBET比表面積は、負極活物質の単位重量あたり5m2/g以上80m2/g以下である。負極活物質層1bのBET比表面積が、負極活物質の単位重量あたり5m2/g未満であると、負極活物質は、電解液との接触面積が小さく、電解液との発熱反応が抑制されるが、負極活物質層において反応に寄与する活物質量の割合(負極活物質利用率)が減少するため、ハイレート特性および低温特性が低下する。負極活物質層1bのBET比表面積が、負極活物質の単位重量あたり80m2/g超であると、負極活物質は、電解液との接触面積が増大し、電解液との反応による発熱量が増大し、安全性などの信頼性が大幅に低下する。
理論容量密度が833mAh/cm3を超える負極活物質としては、例えば、ケイ素(Si)単体、ケイ素を含む材料、スズ(Sn)単体、またはスズを含む材料が挙げられる。ケイ素を含む材料としては、SiOx(0<x<2)が好ましい。また、ケイ素を含む材料としては、Siと、Al、In、Cd、Bi、Sb、B、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N、およびSnからなる群より選択される少なくとも1つの元素と、を含む合金、化合物、または固溶体が挙げられる。スズを含む材料としては、Ni2Sn4、Mg2Sn、SnOx(0<x<2)、SnSiO3、LiSnOが挙げられる。
これらの活物質を単独で用いてもよく、2種以上を組み合わせて用いてもよい。例えば、Si、酸素、および窒素を含む化合物や、Siと酸素とを含み、Siと酸素との構成比率が異なる複数の化合物の混合物または複合物などが挙げられる。
負極集電体1aには、たとえば、ステンレス鋼、ニッケル、銅、チタンなどの金属箔、炭素や導電性樹脂などの薄膜が用いられる。上記金属箔や薄膜の表面を、さらにカーボン、ニッケル、チタンなどで被覆してもよい。
正極活物質層2bは、正極活物質のみで構成してもよく、正極活物質と、導電剤と、結着剤とを含む正極合剤で構成してもよい。
正極活物質には、たとえば、LiCoO2、LiNiO2、Li2MnO4のようなリチウム含有複合酸化物が用いられる。また、正極活物質には、一般式:LiMPO4(式中、Mは、V、Fe、Ni、およびMnからなる群より選択される少なくとも一種である。)で表されるオリビン型リン酸リチウム、一般式:Li2MPO4F(式中、Mは、V、Fe、Ni、およびMnからなる群より選択される少なくとも一種である。)で表されるフルオロリン酸リチウムが用いられる。さらに、上記化合物を構成する元素を異種元素で置換してもよい。正極活物質の表面を、金属酸化物、リチウム酸化物、または導電剤などで被覆してもよく、疎水化処理してもよい。
導電剤としては、たとえば、天然黒鉛、人造黒鉛などのグラファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;フェニレン誘導体などの有機導電性材料が用いられる。
結着剤としては、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが用いられる。また、結着剤には、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンからなる群より選択された2種以上の共重合体を用いてもよい。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
正極集電体2aには、たとえば、アルミニウム、炭素材料、導電性を有する樹脂が用いられる。また、これらを、カーボンで被覆してもよい。
セパレータ3には、不織布や微多孔性フィルムが用いられる。セパレータ3の材料としては、ポリエチレン、ポリプロピレン、アラミド樹脂、アミドイミド、ポリフェニレンサルファイド、ポリイミドが用いられる。セパレータ3は、アルミナ、マグネシア、シリカ、チタニアなどの耐熱性フィラーを含んでもよい。さらに、セパレータと電極との間に、フィラーおよび上記結着剤を含む耐熱層を設けてもよい。
セパレータ3は、非水電解質を含む。非水電解質は、たとえば、有機溶媒、および有機溶媒に溶解するリチウム塩からなる。
リチウム塩には、たとえば、LiPF6、LiBF4、LiClO4、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiNCF3CO2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiF、LiCl、LiBr、LiI、クロロボランリチウム、ビス(1,2−ベンゼンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,3−ナフタレンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,2’−ビフェニルジオレート(2−)−O,O’)ホウ酸リチウム、ビス(5−フルオロ−2−オレート−1−ベンゼンスルホン酸−O,O’)ホウ酸リチウム、(CF3SO22NLi、LiN(CF3SO2)(C49SO2)、(C25SO22NLi、テトラフェニルホウ酸リチウムが用いられる。
有機溶媒には、たとえば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート、エチルメチルカーボネート(EMC)、ジプロピルカーボネート、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、ジメトキシメタン、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジエトキシエタン、1,2−ジメトキシエタン、エトキシメトキシエタン、トリメトキシメタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのテトラヒドロフラン誘導体、ジメチルスルホキシド、1,3−ジオキソラン、4−メチル−1,3−ジオキソランなどのジオキソラン誘導体、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、酢酸エステル、プロピオン酸エステル、スルホラン、3−メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、エチルエーテル、ジエチルエーテル、1,3−プロパンサルトン、アニソール、フルオロベンゼンが用いられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記非水電解質に、さらに、ビニレンカーボネート、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル、ビニルエチレンカーボネート、ジビニルエチレンカーボネート、フェニルエチレンカーボネート、ジアリルカーボネート、フルオロエチレンカーボネート、カテコールカーボネート、酢酸ビニル、エチレンサルファイト、プロパンサルトン、トリフルオロプロピレンカーボネート、ジベニゾフラン、2,4−ジフルオロアニソール、o−ターフェニル、m−ターフェニルなどの添加剤を加えてもよい。
非水電解質には、有機溶媒、有機溶媒に溶解するリチウム塩、および高分子材料で非流動化された、いわゆるポリマー電解質層が用いられる。
非水電解質としては、上記リチウム塩および高分子材料からなる固体電解質を用いてもよい。高分子材料には、たとえば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンが用いられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
固体電解質には、上記以外に、リチウム窒化物、リチウムハロゲン化物、リチウム酸素酸塩、Li4SiO4、Li4SiO4−LiI−LiOH、Li3PO4−Li4SiO4、Li2SiS3、Li3PO4−Li2S−SiS2、硫化リン化合物などの無機材料を用いてもよい。
非水電解質には、上記有機溶媒、リチウム塩、および高分子材料、およびリチウム塩からなるゲル状電解質を用いてもよい。ゲル状電解質を用いる場合、ゲル状電解質をセパレータ3の代わりに負極1と正極2との間に配置してもよい。または、ゲル状電解質は、セパレータ3に隣接する位置に配置してもよい。
以下、非水電解質二次電池用負極の好ましい形態について説明する。
参考形態1
参考形態の非水電解質二次電池用負極を、図2を用いて説明する、図2は、本参考形態の非水電解質二次電池用負極の要部縦断面図である。
図2に示すように、負極10は、片面に凸部12を有する負極集電体11と、凸部12に形成された柱状粒子15からなる。柱状粒子15は、8個の粒層151、152、153、154、155、156、157、および158の積層体からなる。
柱状粒子15の底部から数えて奇数段目(1、3、5、7段目)の粒層151、153、155、および157は、集電体の法線方向に対し、第1方向Pに傾斜する。柱状粒子15の底部から数えて偶数段目(2、4、6、8段目)の粒層152、154、156、および158は、集電体11の表面の法線方向に対し、第1方向とは異なる第2方向Qに傾斜する。このように、柱状粒子15を構成する各粒層は、段数に応じて、集電体11の法線方向に対する傾斜方向が、第1方向と第2方向に交互に変化する。
第1方向Pおよび第2方向Qは、集電体の法線方向に対する傾斜角度の大きさが同じであり、各段の粒層の成長方向の長さが同じである場合、柱状粒子50の粒子全体としての平均的な成長方向を、集電体の表面の法線方向とほぼ平行にすることができる。
高温時の負極の電解液との接触による発熱が抑制され、信頼性が向上するとともに、優れたハイレート特性および低温特性が得られるため、複数の粒層からなる柱状粒子15で構成された負極活物質層13は、BET比表面積8m2/g以上50m2/g以下であるのが好ましい。より好ましくは、負極活物質層13は、BET比表面積10m2/g以上30m2/g以下である。
また、充電状態の負極活物質層13は、BET比表面積0.1m2/g以上5m2/g以下が好ましく、より好ましくは、BET比表面積1.7m2/g以上3.5m2/g以下である。
集電体に傾斜して形成される各粒層(柱状粒子)は、たとえば、スパッタリング法または真空蒸着法を用いて、集電体の法線方向に対して斜め上より粒層を構成する材料を蒸着させることにより得られる。粒層の段数、柱状粒子の形状、および集電体の単位面積あたりの柱状粒子の数を調整することにより、活物質層の比表面積を制御することができる。
たとえば、SiO0.3において、40段の粒層からなる柱状粒子を、集電体1mm2あたり500個形成することにより、BET比表面積8m2/gの活物質層が得られる。たとえば、SiO0.6において、2段の粒層からなる柱状粒子を集電体1mm2あたり500個形成することにより、BET比表面積50m2/gの活物質層が得られる。
各粒層は、SiOx(0<x<2)からなる。
ここで、図3は、各粒層の集電体の面方向(図2のA−A方向)に対するSiOxにおけるx値(酸素含有比率)の変化を示す。図3に示すように、8個の粒層151、152、153、154、155、156、157、および158は、負極集電体の面方向において、負極集電体の面方向と鋭角を成す側から鈍角を成す側に向かうにつれて、xの値が大きくなるように形成されている。すなわち、奇数段目の粒層151、153、155、157は、図3(図2のA−A方向)において左から右へ向かうにつれてx値が減少するのに対して、偶数段目の粒層152、154、156、158は、図3(図2のA−A方向)において左から右へ向かうにつれて、x値が増大する。このように、奇数段目の粒層は、偶数段目の粒層と、酸素の濃度勾配が逆方向である。なお、図3において、図2のA−A方向に対するxの変化量(傾き)は一定であるが、変化量(傾き)は一定でなくてもよい。
ここで、図4は電池の充電前(充電初期)の状態を示す模式図であり、図5は電池の充電後の状態を示す模式図である。なお、正極と負極との間にはセパレータが配されているが、図4および5では、セパレータを図示せずに省略する。
図4に示すように、充電初期に、柱状粒子15は、正極18から供給された、電解液19中を移動するリチウムイオンを、外部に露出する表面の全てから吸蔵することができる。図5に示すように、充電が進行すると、柱状粒子15がリチウムイオンを吸蔵し、柱状粒子15が膨張する。
そして、放電時に、柱状粒子15がリチウムイオンを放出すると、図4に示すように、柱状粒子15は充電前(充電初期)の大きさに戻る。図4に示す充電前の負極活物質層13はBET比表面積8m2/g以上50m2/g以下と大きいが、負極活物質層13を複数の柱状粒子15で構成することにより、たとえば150℃前後の高温環境下における負極の電解質との接触による発熱量を、従来の負極の発熱量の1/5程度まで低減することが可能である。
柱状粒子を構成する各粒層の集電体11の法線方向に対する傾斜により、柱状粒子15は側面にこぶ状の突出部を有する。正極18側から負極10をみると、集電体11の凸部12間に形成される凹部は、この突出部により部分的に隠れている。したがって、図4に示すように、充電時に正極18から放出されたリチウムイオンは、隣接する柱状粒子15間において、そのほとんどが、柱状粒子15の突出部に捕捉され、柱状粒子15内に吸蔵される。このように、充電時に正極18から放出されたリチウムイオンが、柱状粒子15間に露出する集電体11の凹部に直接到達するのが抑制されるため、リチウム金属が集電体11上へ直に析出するのが抑制される。
また、柱状粒子15は、リチウムイオンの吸蔵・放出により、各粒層の集電体11の面方向に対する傾斜角度が可逆的に変化する。具体的には、充電時には、柱状粒子15がリチウムイオンを吸蔵し、膨張するにしたがい、各粒層の集電体11の面方向に対する傾斜角度が増大し、各粒層は起立する。逆に、放電時には、柱状粒子15がリチウムイオンを放出し、収縮するにしたがい、各粒層の集電体11の面方向に対する傾斜角度が減少し、各粒層は傾斜する。
図5に示すように、充電後では、柱状粒子15を構成する各粒層は膨張し、集電体11の面向に対する各粒層の傾斜角度が大きくなる。すなわち、各粒層は集電体15上でほぼ起立した状態となり、柱状粒子15側面の突出部の突出が軽減される。このため、図5中の矢印で示すように、柱状粒子15が膨張しても、上記集電体11の面方向に対する各粒層の傾斜角度の増大により、柱状粒子15間において電解液19(リチウムイオン)が移動可能な空間が確保される。充電時および放電時のいずれの場合にも、柱状粒子15間の隙間を介して電解液19が対流するため、リチウムイオンは容易に移動できる。これにより、負極活物質層13の電解液との接触による発熱が抑制されるとともに、ハイレート特性および低温特性が大幅に向上する効果が顕著に得られる。また、負極活物質層13は、柱状粒子15間に空隙を有するため、充放電時の活物質の膨張・収縮(体積変化)に伴い発生する応力が緩和され、負極活物質層13の集電体11からの脱落および集電体11の皺の発生を防止することができる。
ここで、柱状粒子15が、リチウムイオンの吸蔵・放出により、集電体11の面方向に対する各粒層の傾斜角度が可逆的に変化するメカニズムについて、図6および7を用いて説明する。なお、図4および5の柱状粒子15は8段の粒層で構成されているが、説明を容易にするため、ここでは、柱状粒子が1つの粒層からなる場合を示す。図6は、柱状粒子(1つの粒層)の充電前の状態を示す概略図であり、図7は、柱状粒子(1つの粒層)の充電後の状態を示す概略図である。
図6に示すように、柱状粒子25は、集電体11の凸部12上に、集電体11の法線方向(面方向)に対して傾斜して形成されている。柱状粒子25の成長方向(B−B方向)と、集電体11の面方向(A−A方向)とで成る鋭角の傾斜角度はθ10である。柱状粒子25は、SiOx(ただし、0<x<2)からなる。柱状粒子25は、集電体11の面方向において、集電体11の面方向と鋭角を形成する下部側25aから、集電体11の面方向と鈍角を形成する上部側25bへ向かうにつれて、SiOx(ただし、0<x<2)におけるx値(酸素原子の含有比率)がしだいに大きくなるように、形成されている。SiOxにおけるx値が大きいほど、リチウムイオンの吸蔵によるSiOxの膨張量は小さい。
充電初期には、柱状粒子25のリチウムイオンの吸蔵にともない柱状粒子が膨張し、柱状粒子内において膨張による応力が生じる。図6に示すように、x値は下部側25aから上部側25b側へ向かうにつれて増大するため、柱状粒子の膨張により生じる膨張応力は、下部側25aの膨張応力F1から上部側25bの膨張応力F2へと連続的に減少する。この膨張時の応力の勾配により、図6および7に示すように、柱状粒子25の成長方向(B−B方向)と、集電体11の面方向(A−A方向)とで成る鋭角の傾斜角度は、角度θ10から角度θ11へと増大し、図6の矢印Cで示す方向に、柱状粒子25が起立する。角度θ10<角度θ11であり、角度θ10は、例えば、30〜60°であり、角度θ11は、例えば、45〜80°である。
一方、放電時にはリチウムイオンの放出にともない柱状粒子25が収縮し、柱状粒子15内の応力が減少し、柱状粒子25は充電前の状態に戻る。すなわち、柱状粒子25の傾斜角度は、θ11からθ10へと減少し、図7の矢印Dで示す方向に柱状粒子25が傾倒する。
以下、本参考形態の負極の製造方法について、図8〜13を参照しながら説明する。図8〜12は、本参考形態の負極の製造過程を示す概略図である。図13は本参考形態の負極の製造装置の一例を示す概略図である。
図13に示すように、製造装置40は、装置40内部の雰囲気を制御するための真空容器41、加熱手段である電子ビーム発生装置(図示せず)、真空容器41内に酸素ガスを導入するためのガス導入配管42、および集電体11を固定する固定台43を備える。製造装置40には、真空容器41内を減圧するための真空ポンプ47が設けられている。ガス導入配管42の端部には、真空容器41内の集電体に向けて酸素ガスを放出するノズル45が設けられ、ノズル45の上方に固定台43が設置されている。固定台43の下方には、集電体上に蒸着させるための材料を含む蒸着ソース46が設置されている。固定台43の角度により、集電体と蒸着ソース46との位置関係を変更可能である。すなわち、集電体の法線方向に対する柱状粒子の傾斜角度は、集電体11(固定台43)の法線方向と、水平方向とが成す角度ωを調整することにより制御することができる。
以下、具体的な手順の一例を示す。蒸着ソース46にSiを用い、SiOxからなる負極活物質層を形成する例を示す。
まず、図8に示すような、片面に複数の凸部12(たとえば、高さ7.5μm、幅20μm、間隔20μm)を有する帯状の電解銅箔(たとえば、厚み30μm)からなる集電体11を準備する。凸部12は、たとえば、めっき法にて形成すればよい。この集電体11を固定台43に固定する。固定台43上の集電体11の法線方向と水平方向とが成す角度ω(たとえば60°)を調整する。真空容器41の内部の雰囲気を調整する。たとえば、真空容器41の内部を、所定の雰囲気(たとえば、圧力3.5Paの酸素雰囲気)に調整する。蒸着ソース46として、Si(たとえば、純度99.999%のスクラップシリコン)を準備する。
蒸着ソース46に電子ビームを照射して、Siを加熱して気化させる。気化したSiを、図9中の矢印の方向から、集電体11に入射させるとともに、ノズル45から集電体11に向けて酸素ガスを供給する。ケイ素は酸素と結合して集電体上にSiOx(活物質)が堆積する。そして、集電体11の凸部12上に、集電体11の法線方向に対して角度ωで傾斜する1段目の粒層151を形成する。集電体の法線方向における粒層151の高さは、例えば2.5μmである。このとき、SiOxのx値は、集電体11の面方向(A−A方向)に対して連続的に変化する。図9中の粒層151において、右側から左側へ向かうにつれてx値が大きくなる。x値の範囲は、例えば、0.01〜1.95である。
このようなx値の変化は、集電体上に一定の間隔で傾斜して形成される粒層による陰影効果により生じると考えられる。集電体へ供給される酸素ガスのほとんどは、粒層の先端部に到達するが、その一部は、粒層の側面部に到達する。粒層の側面に到達する酸素ガスのほとんどは、集電体の面方向と鋭角を形成する側の表面には到達せずに、集電体の面方向と鈍角を形成する側の表面に到達する。このため、集電体の面方向と鋭角を形成する側と比べて集電体の面方向と鋭角を形成する側の方が、酸素含有比率が高くなると考えられる。
また、粒層の面方向において、粒層の集電体の面方向と鋭角を形成する側から鈍角を形成する側にかけて、集電体へ供給するSi量および酸素ガス量を変えることにより、x値を変化させてもよい。
つぎに、固定台43を回転させて、凸12上に粒層151が形成された集電体11を、図13中の一点鎖線で示す位置、すなわち、固定台43(集電体11)の法線方向と、水平方向とが成す角度(180−ω)(たとえば120°)の位置に調整する。そして、蒸着ソースに電子ビームを照射して、Siを気化させる。気化したSiを、図10中の矢印の方向から、集電体11の粒層151上に入射させるとともに、ノズル45から集電体11に向けて酸素ガスを供給する。
ケイ素は酸素と結合して集電体上にSiOx(活物質)が堆積する。そして、集電体11の粒層151上に、集電体11の法線方向に対して角度(180−ω)の方向に傾斜する2段目の粒層152を形成する。集電体の法線方向における粒層152の高さは、例えば2.5μmである。1段目の粒層151は2段目の粒層152と、集電体の法線方向に対して傾斜する向きが逆であり、かつ集電体11の法線方向におけるx値の勾配の向きが逆である。
固定台43を、再び、図13に示す実線の位置に戻す。図11に示すように、粒層152上に、1段目の粒層の場合と同じ条件で3段目の粒層153を形成する。その後、4〜8段目の粒層を順次形成する。4、6、および8段目の粒層を、2段目の粒層の場合と同じ条件で形成する。5、および7段目の粒層を、1段目の粒層の場合と同じ条件で形成する。
このようにして、図12に示すような、8段の粒層の積層体からなる柱状粒子15を形成する。奇数段目(1、3、5、および7段目)の粒層は、偶数段目の粒層と、集電体の法線方向に対する傾斜方向が逆であり、集電体の法線方向におけるx値の濃度勾配の向きが逆である。
なお、上記では、粒層の段数を8としたが、粒層の段数は、これに限定されない。粒層の段数に応じて、粒層151の作製工程と、粒層152の作製工程を交互に繰り返し実施すればよい。 また、本参考形態では、集電体の片面に、凸部を形成し、負極活物質層を形成する場合を示すが、集電体の両面に、凸部を形成し、負極活物質層を形成してもよい。
参考形態2
参考形態の非水電解質二次電池用負極を、図14を用いて説明する。図14は、本参考形態の負極の要部縦断面図である。
図14に示すように、負極100は、負極集電体111、および負極集電体111の表面を覆う負極活物質層115を有する。負極活物質は、SiOx(0<x<2)が好ましい。負極活物質層115は、層内において、集電体111の一部が露出するような空隙部を有さず、集電体111の表面を密に覆う。負極活物質層115の表面には、凹凸部116が形成されている。このような負極活物質層115は、BET比表面積5m2/g以上8m2/g以下であるのが好ましい。より好ましくは、負極活物質115は、BET比表面積5.5m2/g以上7.5m2/g以下である。また、充電時(リチウムイオン吸蔵時)の負極活物質層115は、BET比表面積0.1m2/g以上1.7m2/g以下であるのが好ましい。
負極100は、たとえば、スパッタリング法または真空蒸着法により、負極集電体111上に、平滑な表面を有する負極活物質層を形成し、さらにサンドブラスト法またはエッチング法により、負極活物質層の表面に凹凸を形成することにより得られる。負極集電体111には、たとえば、表面粗さRaが0.1μm〜10μmの金属箔が用いられる。
サンドブラスト法は、砂状の粒子を含む高圧ガスを材料の表面に吹き付ける表面処理方法である。サンドブラスト法では、たとえば、使用する研磨剤の種類、ブラスト処理の時間を調整することにより、活物質層の比表面積を制御することができる。
エッチング法では、たとえば、エッチング液の濃度、エッチング液に浸漬する時間を調整することにより、活物質層の比表面積を制御することができる。
BET比表面積8m2/g超となるように、負極活物質層115の凹凸部116を形成することは可能であるが、加工し易さおよびBET比表面積の調整のし易さの観点から、柱状粒子により負極活物質層を構成するのが好ましい。
上記構成の負極を用いることにより、比表面積が大きいにもかかわらず、高温時における負極の電解液との接触による発熱量を、従来の負極の場合の1/6〜1/10程度に抑制することができる。比表面積が大きいため、優れたハイレート特性および低温特性が得られる。
実施形態
本実施形態の非水電解質二次電池用負極を、図15を用いて説明する。図15は、本実施形態の負極の要部縦断面図である。
図15に示すように、負極200は、集電体211の表面の凸部212に、集電体211の法線方向に対して傾斜して形成された柱状粒子215を有する。柱状粒子215は、集電体211の面方向と鈍角を成す側の表面において、離散的に形成された複数の突状体216を有する。複数の突状体216は、集電体表面において、互いに重なり合うことなく、散在する。より詳細には、複数の突状体216は、柱状粒子215の成長方向(B−B方向)において、集電体11の面方向(A−A方向)と鈍角の角度θ1を成す側の表面に、離散して形成されている。複数の突状体216は、柱状粒子215の成長方向(B−B方向)と垂直な方向に対して角度θ2で傾斜して、集電体211から遠ざかるように、柱状粒子215の表面から延びている。角度θ1は、30〜60°が好ましい。角度θ2は、例えば45〜85°である。
突状体216は、たとえば、柱状であり、柱状粒子215よりも小さい。突状体216の形状は、柱状以外でもよい。突状体216は、たとえば、柱状粒子215の約10000〜20分の1の大きさである。柱状粒子215は、たとえば、成長方向の長さ1μm〜100μmである。突状体216は、たとえば、成長方向の長さ0.1μm〜50μmである。柱状粒子215は、たとえば、成長方向と垂直な断面の径1μm〜100μmである。突状体216は、たとえば成長方向と垂直な断面の径0.1μm〜10μmである。
複数の突状体216を有する柱状粒子215により構成される負極活物質層213は、BET比表面積50m2/g以上80m2/g以下であるのが好ましい。より好ましくは、負極活物質層213は、BET比表面積55m2/g以上75m2/g以下である。また、充電時(リチウムイオン吸蔵時)の負極活物質層213は、BET比表面積3.5m2/g以上5m2/g以下であるのが好ましい。
上記負極200を用いることにより、高温時の負極の電解液との接触による発熱が抑制され、信頼性が向上するとともに、優れたハイレート特性および低温特性が得られる。負極活物質層213は、柱状粒子215間に空隙を有するため、充放電時の活物質の膨張・収縮(体積変化)に伴い発生する応力が緩和され、負極活物質層213の集電体211からの脱落および集電体11の皺の発生を防止することができる。リチウムイオンの吸蔵時に柱状粒子が膨張して隣接する柱状粒子同士が接触する場合でも、突状体の存在により、隣接する柱状粒子同士の接触による影響を緩和することができるとともに、電解液が移動し易くなる。
以下、本実施形態の負極の作製方法について、図16〜20を用いて説明する。図16〜19は、本実施形態の負極の製造過程を示す概略図である。図20は本実施形態の負極の製造装置の一例を示す概略図である。なお、図17および18では、理解しやすくするため、集電体の凸部212を拡大して示す。
図20に示すように、製造装置240は、装置240内の雰囲気を制御可能な真空容器246、加熱手段である電子ビーム発生装置(図示せず)、巻出しロール241、成膜ロール244aおよび244b、巻取りロール245、蒸着ソース243aおよび243b、マスク242、酸素ノズル248aおよび248bを備える。また、製造装置240には、真空容器246内を減圧するための真空ポンプ247が接続されている。
以下、具体的な手順の一例を示す。ここでは、蒸着ソース243aにSiを用い、SiOxからなる活物質層を形成する例を示す。
図16に示すような、片面に凸部212を有する集電体211を準備する。凸部212は、たとえば、めっき法により形成すればよい。集電体には、たとえば、厚み30μmの帯状電解銅箔が用いられる。凸部212は、たとえば、15μmの間隔で形成される。巻出しロール241に集電体211を配置する。蒸着ソース243aとして、Si(たとえば、純度99.999%のスクラップシリコン)を準備する。集電体211の下方において、集電体211の法線方向に対して角度ω(たとえば60°)の方向に蒸着ソース243aを配置する。図20に示すように、酸素ノズル248aを、成膜ロール244aの中心からみて、蒸着ソース243aとは異なる方向に(例えば、Siの入射角度に対して90°の角度から酸素ガスを入射可能なように)配置する。真空容器246の内部を所定の雰囲気(たとえば、圧力2×10-2Paの酸素雰囲気)に調整する。
蒸着ソースに243aに電子ビームを照射して、蒸着ソースを加熱してSiを気化させる。気化したSiを、集電体211の凸部212上に、図17中の矢印の方向から入射させる。同時に、酸素ノズル248aから集電体211に向けて、図17中の矢印の方向から酸素ガスを供給する。
成膜ロール244aにより集電体211は、マスク242により成膜範囲が制限された領域に送り出される。この領域において、集電体の一方の面にSiおよび酸素ガスを供給する。集電体上において、Siと酸素が結合し、SiOxが堆積し、凸部212上に柱状粒子215が形成される。このとき、柱状粒子215は集電体211の法線方向に対して角度ωで傾斜して成長する。
ここで、図17における、Siおよび酸素ガスの入射方向を示す矢印の長さは、Siおよび酸素ガス量に対応し、矢印の長さが短いほど、入射量が少ないことを示す。図17に示すように、成膜時において、左から右へ向かうにつれて、集電体に供給する酸素ガス量を少なくし、集電体に供給するSi量を多くする。このようにして、柱状粒子は、集電体211の面方向において、集電体211の面方向と鋭角を成す側から鈍角を成す側へ向かうにつれて、x値を大きくすることができる。すなわち、図17中の粒層215において、右から左へ向かうほどx値を大きくすることができる。なお、このようなx値の変化は、柱状粒子が集電体の法線方向に対して傾斜することにより生じる陰影効果によっても得られる。
上記作製方法では、さらに、図18に示すように、柱状粒子215の成長とともに、柱状粒子の215の成長方向において集電体の面方向と鈍角を形成する側の表面(x値が大きい側の表面)に突状体216が形成される。このようにして、図19に示すように、集電体211の凸部上に、突状体216を有する柱状粒子215で構成された負極活物質層を有する負極200を得ることができる。
この製造装置では、両面に凸部を有する集電体を用いて、両面に負極活物質層を有する集電体を形成することができる。この製造装置では、一方の面の負極活物質層形成工程の後、他方の面の負極活物質層形成工程を連続して実施することができる。
図20に示すように、一方の面に柱状粒子が形成された集電体211を、成膜ロール244bへ供給する。成膜ロール244bで集電体211をマスク242により成膜範囲を制限する領域に供給する。この領域を通過する間に、上記と同様に蒸着ソース243bおよび酸素ノズル248bよりSiおよび酸素ガスを集電体上に供給する。集電体211の他方の面に柱状粒子を形成する。このようにして、集電体の両面に突状体を有する柱状粒子を形成する。巻取りロール245で負極を巻き取る。
突状体216は、気化したSiが、集電体上に入射する際、酸素ガスと結合または衝突して散乱することにより形成されると考えられる。したがって、このSiの散乱の度合いにより、柱状粒子の集電体の面方向と鈍角を形成する側の表面おける単位面積当たりの突状体の数、突状体の大きさ、形状等を制御することができる。突状体216の形成は、成膜条件(たとえば、成膜速度および真空度)に依存する。たとえば、成膜速度が10nm/s以下の場合、散乱成分が多くなるため、柱状粒子215のみが形成されやすい。しかし、この条件は、一義的に決まるものではなく、たとえば真空度などの他の条件に応じて適宜決めればよい。また、上記のように、集電体上への酸素ガスおよびSiの供給量を変えること、酸素ガスの導入方向がSiの入射方向と異なることも突状体の形成(Siの散乱)に影響していると考えられる。
柱状粒子215上に突状体216が形成されるメカニズムは明らかではないが、以下のように推測される。
蒸着ソースから蒸発粒子を集電体211の法線方向に対して斜め上から入射させる。これにより、集電体11の凸部212上に柱状粒子215を形成し、柱状粒子215間に空隙を有する活物質層を形成する。蒸発粒子を集電体の法線方向に対して斜め上から蒸着させるため、柱状粒子215の成長過程において、成長初期には、凸部212による陰影効果が発現し、柱状粒子215の成長期には、柱状粒子215自身による陰影効果が発現する。これにより、凸部212上において蒸発粒子の入射方向に柱状粒子215が成長し、集電体の法線方向に傾斜する柱状粒子215が形成される。柱状粒子215による影の部分には蒸発粒子は飛来しないため、隣接する柱状粒子215間には、空隙が形成される。この現象は、真空度が高く、蒸発粒子の直進性が高いほど(散乱成分が少ないほど)顕著に現れる。
一方、酸素ガスなどを導入し、真空度が低い場合、蒸着ソースから飛来する蒸発粒子は、平均自由工程距離が短く、酸素ガスとの結合や衝突により散乱する成分(蒸発粒子が、その入射角度と異なる角度に移動する成分)が多くなる。この散乱成分の割合を変えることにより、突状体の成長度合いを制御することができる。
成長方向に入射する蒸発粒子のほとんどは、柱状粒子の成長面(先端部)に到達し、柱状粒子の側面部には到達しない。柱状粒子が成長する方向の面(柱状粒子の先端部)では、蒸発粒子の散乱成分が、柱状粒子の傾斜角度と異なる角度で入射しても、最終的には散乱成分の蒸発粒子の大部分は柱状粒子本体の成長に取り込まれ、柱状粒子の一部となる。
蒸発粒子の散乱成分は、ある程度、柱状粒子の側面部に到達する。この柱状粒子の側面部に到達する蒸発粒子の散乱成分のほとんどは、柱状粒子の陰影効果により、集電体の面方向と鋭角を成す側に到達せず、集電体の面方向と鈍角を成す側に到達する。蒸発粒子の散乱成分は、柱状粒子の成長方向に入射する蒸発粒子の数に比べて非常に少ない。このため、柱状粒子における集電体の面方向と鈍角を成す側の側面において、離散的に突状体が形成されると考えられる。
突状体は蒸発粒子の散乱成分により形成されるため、突状体の形態(大きさ、傾斜角度)は、真空度、成膜速度、導入ガスの種類、導入ガスの流量、および集電体の凸部形状等を変えることにより制御することができる。
上記実施形態では、電気化学素子用電極を非水電解質二次電池の負極に用いるが、本発明はこれに限定されない。たとえば、リチウムイオンキャパシタに用いてもよく、上記と同様の効果が得られる。
以下、本発明の実施例を詳細に説明するが、本発明は以下の実施例に限定されない。
参考例1》
図1に示すような積層型の非水電解質二次電池を作製した。
(1)負極の作製
めっき法を用いて、帯状の電解銅箔からなる負極集電体11(厚み30μm、幅300mm)を得た。具体的には、50℃の硫酸銅水溶液に銅箔を浸し、銅対極に対して−1.9Vの電圧を30秒間印加した後、−0.7Vの電圧を30秒間印加した。表面に凹凸を有するローラーで負極集電体11をプレスし、負極集電体11の両面に、複数の帯状凸部(高さ7.5μm、幅20μm)を形成した。このとき、凸部の間隔は、20μmとした。
次に、図13に示す、電子ビーム発生装置(図示しない)を具備する製造装置を用いて、30段の粒層からなる複数の柱状粒子で構成される負極活物質層を負極集電体の両面に形成した。
ノズル45の上方に、負極集電体11を固定した固定台43を設置した。固定台43の角度ωを60°に調整した。蒸着ソースには、半導体ウェハを形成する際に生じる端材(スクラップシリコン:純度99.999%)を用いた。真空容器の内部は、圧力6×10-3Paの酸素雰囲気とした。電子ビームを蒸着ソースに照射し、Siを気化させた。気化したSiを集電体に蒸着させた。このとき、ノズル45から真空容器41内へ純度99.7%の酸素ガスを導入した。約8nm/sの成膜速度で一段目の粒層(高さ0.5μm、断面積150μm2)を形成した。
つぎに、一段目の粒層を形成した集電体を固定した固定台43を回転させて、集電体11を、図13中の破線で示す位置、すなわち固定台43(集電体11)の法線方向と水平方向とが成す角度(180−ω)が120°となる位置に調整した。そして、蒸着ソースに電子ビームを照射して、Siを気化させた。気化したSiを、図10中の矢印の方向から、集電体11の粒層151上に蒸着させた。このとき、ノズル45から集電体11に向けて酸素ガスを供給した。
そして、3段目以降、奇数段目の粒層については、1段目の粒層と同じ条件で形成した。偶数段目の粒層については、2段目の粒層と同じ条件で形成した。このようにして、負極活物質層を30段の粒層からなる柱状粒子で構成した。
各粒層の集電体の法線方向に対する傾斜角度を、走査型電子顕微鏡(日立製作所(株)製、S−4700)を用いて調べた。その結果、各段の粒層の集電体の法線方向に対する傾斜角度(すなわち、第1方向および第2方向の傾斜角度)は約41°であった。負極活物質層の厚み(集電体の法線方向における柱状粒子の高さ)は、15μmであった。
後述のする方法により、負極活物質のBET比表面積を測定した結果、負極活物質層のBET比表面積は、8.0m2/gであった。
電子線プローブマイクロアナライザー(EPMA)を用いて、柱状粒子を構成する各段の粒層の断面方向(集電体の法線方向に沿った断面方向)の酸素分布を調べた。その結果、各粒層は、集電体の面方向において、集電体の面方向と鋭角を成す側から鈍角を成す側にかけて、酸素濃度(x値)が連続的に増加することが確認された。そして、奇数段の粒層は、偶数段の粒層と、集電体の面方向に沿って酸素濃度(xの値)が増加する方向は逆であった。このとき、各粒層のx値は0.1〜2の範囲であり、x値の平均は0.3であった。
その後、真空蒸着法にて負極活物質層表面にSiOxの不可逆容量に相当する量のLi金属を蒸着し、負極活物質層表面に厚み11μmのLi金属膜を形成した。負極の内周側端部において、正極と対向しない部分に集電体の露出部を設け、その露出部に銅製の負極リードを溶接した。
(2)正極の作製
正極活物質であるLiCoO2粉末93重量部と、導電剤であるアセチレンブラック4重量部とを混合した。得られた混合粉末に、結着剤であるポリフッ化ビニリデン(PVDF)のN−メチル−2−ピロリドン(NMP)溶液(呉羽化学工業(株)製、♯1320)を、混合粉末およびPVDFの重量比が100:3となるように加えた後、さらに適量のNMPを加えて、正極合剤ペーストを得た。ドクターブレード法によりアルミニウム箔(厚み15μm)からなる正極集電体の両面に正極合剤ペーストを塗布した後、85℃で乾燥させた。正極合剤層の密度が3.6g/ccおよび厚みが160μmとなるように、正極を圧延した。正極の内周側の端部における、負極と対向しない部分に集電体の露出部を設け、その露出部にアルミニウム製の正極リードを溶接した。
(3)電池の作製
上記のようにして作製した負極および正極を、厚み20μmの微多孔性ポリエチレンフィルムからなるセパレータを介して、積層し、電極群を構成した。そして、電極群を、電解液とともに、アルミニウムラミネートシートからなる外装ケースに収容した。電解液には、エチレンカーボネートおよびジエチルカーボネートの混合溶媒(体積比1:1)にLiPF6を1mol/Lで溶解した非水電解液を用いた。このようにして、電池A1(設計容量3500mAh)を作製した。
参考例2》
図13の製造装置を用いた負極作製において、真空容器内を圧力2×10-2Paの酸素雰囲気とし、厚み4μmの粒層を5段形成して、厚み20μmの柱状粒子を含む負極活物質層を形成した以外、参考例1と同様の方法により、負極を作製した。負極活物質層のBET比表面積は12.5m2/gであった。上記負極を用いて、参考例1と同様の方法により、電池A2を作製した。
参考例3》
厚み10μmの粒層を2段形成して、厚み20μmの柱状粒子を含む負極活物質層を形成した以外、参考例1と同様の方法により、負極を作製した。負極活物質層のBET比表面積は50m2/gであった。上記負極を用いて、参考例1と同様の方法により、電池A3を作製した。
参考例4》
図13に示す製造装置を用いて、厚み30μmの帯状電解銅箔からなる負極集電体の両面に、SiOxで表される厚み10μmの負極活物質層を、スパッタリング法を用いて形成した。このとき、角度ωを0°に調整した。SiOxにおいてx値が0.3となるように、ノズルより放出する酸素ガス量を調整した。負極活物質層は、負極集電体の一部が露出するような空隙を有さず、集電体を密に覆うように形成された。
さらに、サンドブラスト法を用いて、負極活物質層の表面に凹凸を形成した。具体的には、コンプレッサーを用いてアルミナ粒子を圧力0.15MPaの圧縮空気とともに負極活物質層の表面に吹き付けた。負極活物質層のBET比表面積は5.0m2/gであった。
その後、真空蒸着法にて負極活物質層表面にLi金属を蒸着し、負極活物質層表面に厚み11μmのLi金属膜を形成した。負極の内周側端部において、正極と対向しない部分に集電体の露出部を設け、その露出部に銅製の負極リードを溶接した。上記負極を用いて、参考例1と同様の方法により、電池A4を作製した。
参考例5》
サンドブラスト処理において圧縮空気の圧力を0.3MPaと変えた以外、参考例4と同様の方法により負極を作製した。負極活物質層のBET比表面積は8.0m2/gであった。上記負極を用いて、参考例1と同様の方法により、電池A5を作製した。
《実施例
図20に示す製造装置240を用いて負極を作製した。
めっき法にて、帯状の電解銅箔(厚み30μm、幅300mm)からなる負極集電体211の両面に、複数の帯状凸部(高さ7.5μm、幅20μm)を形成した。このとき、各凸部の間隔は、15μmとした。
負極集電体211を固定台に設置した。蒸着ソース243aおよび243bには、半導体ウェハを形成する際に生じる端材(スクラップシリコン:純度99.999%)を用いた。マスク242の開口部の形状を調整し、集電体211の法線方向に対するSiの入射角度ωを60°に調整した。真空容器246の内部を、圧力1.5×10-2Paの酸素雰囲気とした。電子ビーム発生装置(図示せず)より発生した電子ビームを蒸着ソース243aおよび243bに照射し、Siを加熱し気化させ、気化したSiを集電体211上に入射させた。酸素ガスの入射方向を、Siの入射方向と垂直な方向とした。成膜速度を約20nm/sとした。
集電体211の面方向に対して、x値の範囲0.2〜1.1、およびx値の平均0.6となるように、Siおよび酸素ガスを供給した。このとき、Siおよび酸素ガスを集電体211の幅方向における一方の端部(柱状粒子と鋭角を形成する側の端部)から他方の端部(柱状粒子と鈍角を形成する側の端部)にかけて、集電体211に供給する酸素ガス量を増大させ、集電体211に供給するSi量を減少させた。このようにして、負極を形成した。
負極活物質層を走査型電子顕微鏡((株)日立製作所製、S−4700)にて調べた。その結果、柱状粒子の形成が確認され、集電体の面方向に対する柱状粒子の傾斜角度θ1は約50°であった。負極活物質層の厚み(集電体の法線方向おける柱状粒子の高さ)は20μmであった。柱状粒子の表面に複数の突状体(平均長さ3μm、平均径0.5μm)が形成されていた。柱状粒子の成長方向と垂直な方向に対する突状体216の傾斜角度θ2は約75°であった。負極活物質層のBET比表面積が80m2/gであった。
電子線プローブマイクロアナライザー(EPMA)を用いて、集電体の面方向に沿った柱状粒子の断面の酸素分布を調べた。その結果、柱状粒子は、集電体の面方向において、集電体の面方向と鋭角を成す側から鈍角を成す側にかけて、酸素濃度(x値)が連続的に増加することが確認された。このとき、各柱状粒子のx値は0.2〜1.1の範囲であり、x値の平均は0.6であった。
その後、真空蒸着法により負極活物質層の表面にLi金属を蒸着させ、負極活物質層表面に厚み11μmのLi金属層を形成した。その後、負極の内周側に、正極と対向しないCu箔に30mmの露出部を設け、Cu製の負極リードを溶接した。
上記負極を用いて、参考例1と同様の方法により、電池A6を作製した。
《実施例
図20の製造装置を用いた負極作製において真空容器内を圧力6×10-3Paの酸素雰囲気とした以外、実施例と同様の方法により、負極を作製した。負極活物質層のBET比表面積は50m2/gであった。上記負極を用いて、参考例1と同様の方法により、電池A7を作製した。
《比較例1》
サンドブラスト処理しない以外、参考例4と同様の方法により、負極を作製した。負極活物質層のBET比表面積が4.3m2/gであった。上記負極を用いて、参考例1と同様の方法により、電池B1を作製した。
《比較例2》
実施例と同様の方法により作製した負極の柱状粒子を、さらにエッチング処理して、柱状粒子の表面全体に凹凸を形成した。エッチング液には、フッ酸を用いた。このとき、負極活物質層のBET比表面積が250m2/gであった。上記負極を用いて、参考例1と同様の方法により、電池B2を作製した。
上記で作製した各電池について、以下の評価を行った。
[評価]
(1)負極活物質層のBET比表面積の測定
上記において各負極を作製した時点で、以下の方法で負極(初期の負極活物質層)のBET比表面積を測定した。負極を100℃で2時間真空脱気した後、測定装置(MICROMERITICS社製、ASAP2010)を用いて、BET比表面積を測定した。測定圧力範囲は0〜127KPaとした。吸着元素はKrとした。
電池作製後において、25℃環境下にて、各電池(設計容量:3500mAh)を、電池電圧が4.2Vに達するまで、時間率1.0C(3500mA)の定電流で充電した後、充電電流値が時間率0.05C(175mA)に減少するまで、4.2Vの定電圧で充電した。充電した電池を解体し、負極を取り出し、上記と同じ方法で充電状態の負極(充電後の負極活物質層)についても、BET比表面積を測定した。
(2)ハイレート放電特性の評価
25℃環境下にて、各電池(設計容量:3500mAh)を、電池電圧が4.2Vに達するまで、時間率1.0C(3500mA)の定電流で充電した後、充電電流値が時間率0.05C(175mA)に減少するまで、4.2Vの定電圧で充電した。30分間休止した後、電池電圧が3.0Vに達するまで、時間率0.2C(700mA)で放電し、放電容量Aを求めた。
次に、25℃環境下にて、各電池を、電池電圧が4.2Vに達するまで、時間率1.0C(3500mA)の定電流で充電した後、充電電流値が時間率0.05C(175mA)に減少するまで、4.2Vの定電圧で充電した。30分間休止した後、電池電圧が3.0Vに達するまで、時間率2C(7000mA)で放電し、放電容量Bを求めた。
放電容量Aに対する放電容量Bの割合(百分率)をハイレート比率(%)として求めた。
(3)低温特性の評価
25℃環境下にて、各電池(設計容量:3500mAh)を、電池電圧が3.0Vに達するまで、時間率0.2C(700mA)で放電し、初期の放電容量Cを求めた。
次に、0℃環境下にて、各電池を、電池電圧が4.2Vに達するまで、時間率1.0C(3500mA)の定電流で充電した後、充電電流値が時間率0.05C(175mA)に減少するまで、4.2Vの定電圧で充電した。30分間休止した後、電池電圧が3.0Vに達するまで、時間率0.2C(700mA)で放電した。
この充放電を10回繰り返した後、再度25℃環境下にて、電池電圧が4.2Vに達するまで、時間率1.0C(3500mA)の定電流で充電した後、充電電流値が時間率0.05C(175mA)に減少するまで、4.2Vの定電圧で充電した。30分間休止した後、電池電圧が3.0Vに達するまで、時間率0.2C(700mA)で放電し、0℃環境下で充放電10サイクル後の放電容量Dを求めた。
放電容量Cに対する放電容量Dの割合(百分率)を低温特性(%)として求めた。
(4)耐熱性の評価
各電池を、上記と同条件で充電した後、30分間休止した。
その後、電池を分解して、電池内から負極を取り出し、エチルメチルカーボネートにて負極を洗浄し、負極活物質を採取した。そして、負極活物質1mgをSUS製の容器に投入した後、電解液1mgを加えた。電解液には、エチレンカーボネートおよびジエチルカーボネートの混合溶媒(体積比1:1)にLiPF6を1mol/Lの濃度で溶解させたものを用いた。容器を封入した後、アルゴン雰囲気中にて、(株)リガク製のTAS300を用い、昇温速度10℃/minおよび常温〜400℃の範囲で、示差走査熱量(DSC:Differential Scanning Calorimetry)測定を行った。その測定結果に基づいて100℃〜200℃の範囲での発熱量(J/g:充電状態の負極活物質重量1gあたりの発熱量)を求め、耐熱性を評価した。
評価結果を表1に示す。
Figure 0005143700
負極活物質層のBET比表面積が5m2/g以上80m2/g以下である電池A1〜電池A7では、発熱量が少なく、良好な安全性、ハイレート特性、および低温特性が得られた。
負極活物質層のBET比表面積5m2/g未満である電池B1では、発熱量は小さいが、ハイレート特性および低温特性が低下した。これは、活物質層の表面積が小さいため、負極からのリチウム脱離反応による反応抵抗が高くなったためと考えられる。
負極活物質層のBET比表面積80m2/g超である電池B2では、電池A3と同程度のハイレート特性および低温特性が得られたが、発熱量が増大した。これは、活物質層の表面積が大きいため、高温環境下での活物質の電解液との反応が激しくなったためと考えられる。
なお、上記参考例および実施例では、活物質としてSiおよびSiOxを用いたが、リチウムイオンを可逆的に吸蔵・放出可能な元素であれば上記と同様の結果が得られる。たとえば、Al、In、Zn、Cd、Bi、Sb、Ge、Pb、およびSnからなる群より選択される少なくとも1種の元素を用いてもよい。活物質としては、上記各元素以外の元素を含んでいてもよい。遷移金属および2A族元素を含んでいてもよい。
本発明の電気化学素子は、高容量を有するとともに、ハイレート特性、低温特性、および安全性に優れているため、携帯電話やPDAなどの携帯機器や情報機器などの電子機器の電源として好適に用いられる。
本発明の電気化学素子の一例である非水電解質二次電池の概略縦断面図である。 参考形態1の負極の要部縦断面図である。 参考形態1の負極における各粒層の負極集電体の法線方向に対するx値の変化を示す図である。 参考形態1の負極の充電前の状態を示す要部縦断面図である。 参考形態1の負極の充電後の状態を示す要部縦断面図である。 柱状粒子の充電前の状態を示す要部縦断面図である。 柱状粒子の充電後の状態を示す要部縦断面図である。 参考形態1の負極に用いられる負極集電体の要部縦断面図である。 負極集電体上に1段目の粒層が形成された状態を示す要部縦断面図である。 負極集電体上に2段目の粒層が形成された状態を示す要部縦断面図である。 負極集電体上に3段目の粒層が形成された状態を示す要部縦断面図である。 負極集電体上に柱状粒子(8段の粒層)が形成された負極を示す要部縦断面図である。 参考形態1の負極の製造装置の一例を示す概略図である。 参考形態2の負極の要部縦断面図である。 本発明の実施形態の負極の要部縦断面図である。 本発明の実施形態の負極に用いられる負極集電体の要部縦断面図である。 負極集電体上に柱状粒子が成長する過程を示す要部縦断面図である。 柱状粒子上に突状体が形成される過程を示す要部縦断面図である。 負極集電体上に、複数の突状体を有する柱状粒子が形成された負極の要部縦断面図である。 本発明の実施形態の負極の製造装置の一例を示す概略図である。
符号の説明
1、10、100、200 負極
1a,11,111、211 負極集電体
1b、13、213 負極活物質層
2,18 正極
2a 正極集電体
2b 正極合剤層
3 セパレータ
4 電極群
5 外装ケース
8 非水電解質二次電池
12、212 凸部
15、25、115、215 柱状粒子
19 電解液
25a 柱状粒子の下部側
25b 柱状粒子の上部側
40 製造装置
41,246 真空容器
42 ガス導入配管
43 固定台
45 ノズル
46,243a,243b 蒸着ソース
47,247 真空ポンプ
116 凹凸部
151、152、153、154、155、156、157、158 粒層
216 突状体
241 巻出しロール
242 マスク
244a,244b 成膜ロール
245 巻取りロール
248a、248b 酸素ノズル

Claims (5)

  1. 集電体、および前記集電体上に形成された活物質層を有する電気化学素子用電極であって、
    前記活物質層は、リチウムイオンを可逆的に吸蔵・放出が可能な、理論容量密度が833mAh/cm3超である活物質を含み、
    前記活物質は、一般式:SiOxまたはSnOx(ただし、0<x<2)で表される化合物からなり、
    前記活物質層のBET比表面積が502/g以上80m2/g以下であり、
    前記集電体は、表面に凸部を有し、
    前記活物質層は、少なくとも1つの柱状粒子を含み、
    前記柱状粒子は、前記凸部上に形成され、前記集電体の法線方向に対して傾斜し、かつ、前記集電体の面方向と鈍角を成す側の表面に、離散的に形成された複数の突状体を有することを特徴とする非水電解質二次電池用負極
  2. 充電状態の前記活物質層のBET比表面積は3.42/g以上5m2/g以下である請求項1記載の非水電解質二次電池用負極
  3. 前記柱状粒子中にリチウムイオンが吸蔵されるにつれて、前記柱状粒子の、前記集電体の面方向に対して鋭角に傾斜する角度が増大する請求項記載の非水電解質二次電池用負極
  4. 前記柱状粒子は、一般式:SiOx(ただし、0<x<2)で表される化合物からなり、
    前記柱状粒子は、前記集電体の面方向において、前記集電体の面方向と鋭角を成す側から鈍角を成す側に向かうにつれて、前記xの値が大きくなる請求項記載の非水電解質二次電池用負極
  5. 正極、請求項1〜のいずれかに記載の負極、および非水電解質を備えた非水電解質二次電池
JP2008273520A 2007-10-24 2008-10-23 電気化学素子用電極およびそれを用いた電気化学素子 Expired - Fee Related JP5143700B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008273520A JP5143700B2 (ja) 2007-10-24 2008-10-23 電気化学素子用電極およびそれを用いた電気化学素子
US12/594,472 US20100112442A1 (en) 2007-10-24 2008-10-24 Electrode for electrochemical device and electrochemical device using the same
KR1020097022895A KR101179292B1 (ko) 2007-10-24 2008-10-24 전기 화학 소자용 전극 및 그것을 이용한 전기 화학 소자
CN2008800167801A CN101682023B (zh) 2007-10-24 2008-10-24 电化学元件用电极以及使用了该电极的电化学元件
PCT/JP2008/003039 WO2009054149A1 (ja) 2007-10-24 2008-10-24 電気化学素子用電極およびそれを用いた電気化学素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007276211 2007-10-24
JP2007276211 2007-10-24
JP2008273520A JP5143700B2 (ja) 2007-10-24 2008-10-23 電気化学素子用電極およびそれを用いた電気化学素子

Publications (2)

Publication Number Publication Date
JP2009123695A JP2009123695A (ja) 2009-06-04
JP5143700B2 true JP5143700B2 (ja) 2013-02-13

Family

ID=40815591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273520A Expired - Fee Related JP5143700B2 (ja) 2007-10-24 2008-10-23 電気化学素子用電極およびそれを用いた電気化学素子

Country Status (4)

Country Link
US (1) US20100112442A1 (ja)
JP (1) JP5143700B2 (ja)
KR (1) KR101179292B1 (ja)
CN (1) CN101682023B (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782926A (zh) * 2010-02-24 2012-11-14 松下电器产业株式会社 锂二次电池
JP5095863B2 (ja) * 2010-04-23 2012-12-12 パナソニック株式会社 リチウムイオン電池用負極およびその製造方法、ならびにリチウムイオン電池
GB2492167C (en) * 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
CN104094454B (zh) 2012-01-30 2019-02-01 奈克松有限公司 Si/c电活性材料的组合物
GB2499984B (en) 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
JP5761761B2 (ja) 2012-04-19 2015-08-12 エルジー・ケム・リミテッド 多孔性電極活物質、その製造方法及び二次電池
JP5686441B2 (ja) 2012-04-19 2015-03-18 エルジー・ケム・リミテッド ケイ素系正極活物質及びこれを含む二次電池
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
KR101578262B1 (ko) 2012-07-24 2015-12-28 주식회사 엘지화학 다공성 규소계 전극 활물질 및 이를 포함하는 이차전지
KR101634843B1 (ko) 2012-07-26 2016-06-29 주식회사 엘지화학 이차전지용 전극 활물질
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101604352B1 (ko) 2014-04-22 2016-03-18 (주)오렌지파워 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR101666788B1 (ko) 2014-12-04 2016-10-17 오상현 종패 살포 장치
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
JP6353517B2 (ja) * 2015-12-30 2018-07-04 友達晶材股▲ふん▼有限公司AUO Crystal Corporation リチウム電池負極材及びその製造方法
CN107068419A (zh) * 2017-02-27 2017-08-18 河南师范大学 MIL‑101(Cr)@TiO2在电极材料中的应用
CN111213261B (zh) * 2017-10-20 2023-07-07 富士胶片株式会社 电极层叠体、全固态层叠型二次电池及其制造方法
KR102242252B1 (ko) 2017-11-13 2021-04-21 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
TWI779200B (zh) * 2019-06-12 2022-10-01 達興材料股份有限公司 鋰離子電池負極活性材料、鋰離子電池負極以及鋰離子電池
DE102021125494A1 (de) * 2021-10-01 2023-04-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen einer Elektrode, Elektrode sowie Energiespeicherzelle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520084A (en) * 1984-06-07 1985-05-28 Standard Oil Company (Indiana) Etched metal electrodes and their use in nonaqueous electrochemical cells
JP2002279972A (ja) * 2001-03-21 2002-09-27 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
KR101107041B1 (ko) * 2002-05-08 2012-01-25 가부시키가이샤 지에스 유아사 비수전해질 2차전지
JP5060010B2 (ja) * 2002-10-18 2012-10-31 株式会社Gsユアサ 非水電解質二次電池
JP3952180B2 (ja) * 2002-05-17 2007-08-01 信越化学工業株式会社 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
TWI278429B (en) * 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2004119176A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP2004265806A (ja) * 2003-03-04 2004-09-24 Canon Inc リチウム金属複合酸化物粒子、前記リチウム金属複合酸化物粒子の製造方法、前記リチウム金属複合酸化物粒子を含有す電極構造体、前記電極構造体の製造方法、及び前記電極構造体を有するリチウム二次電池
JP4081676B2 (ja) * 2003-04-24 2008-04-30 信越化学工業株式会社 非水電解質二次電池用負極材
JP2004335195A (ja) * 2003-05-02 2004-11-25 Japan Storage Battery Co Ltd 非水電解質二次電池及び非水電解質二次電池用負極の製造方法
JP4632016B2 (ja) * 2003-05-21 2011-02-16 株式会社Gsユアサ 非水電解質電池
JP3992708B2 (ja) * 2003-10-31 2007-10-17 日立マクセル株式会社 非水二次電池の電極材料およびその製造方法、並びにそれを用いた非水二次電池
KR100904351B1 (ko) * 2005-11-07 2009-06-23 파나소닉 주식회사 리튬 이차전지용 전극, 리튬 이차전지 및 그 제조법
KR101020909B1 (ko) * 2006-01-25 2011-03-09 파나소닉 주식회사 리튬 이차전지용 음극 및 그 제조 방법, 및 리튬이차전지용 음극을 구비한 리튬 이차전지
CN101361209B (zh) * 2006-02-14 2012-03-21 松下电器产业株式会社 非水电解质二次电池用电极及其制造方法以及具备该电极的非水电解质二次电池

Also Published As

Publication number Publication date
KR101179292B1 (ko) 2012-09-03
JP2009123695A (ja) 2009-06-04
CN101682023A (zh) 2010-03-24
KR20090129504A (ko) 2009-12-16
US20100112442A1 (en) 2010-05-06
CN101682023B (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5143700B2 (ja) 電気化学素子用電極およびそれを用いた電気化学素子
JP4831075B2 (ja) 非水電解質二次電池
KR101038178B1 (ko) 비수 전해질 2차 전지용 음극과 그 제조 방법 및 그것을이용한 비수 전해질 2차 전지
JP4613953B2 (ja) 非水電解質二次電池
US8389156B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4865673B2 (ja) リチウム二次電池
JP5151343B2 (ja) 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
JP2008192594A (ja) 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
US8257869B2 (en) Electrode for electrochemical element and electrochemical element using the electrode
JP5177153B2 (ja) 非水電解質二次電池用負極の製造方法
JP2008277256A (ja) 電気化学素子用電極の製造方法
JP5250998B2 (ja) 電気化学素子用電極とその製造方法およびそれを用いた電気化学素子
JP5056045B2 (ja) 非水電解質二次電池
JP2008277255A (ja) 電気化学素子用電極とそれを用いた電気化学素子
JP2008258139A (ja) 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
JP4479769B2 (ja) 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
JP2008226812A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees