WO2019220839A1 - 半導体装置および容量値測定方法 - Google Patents

半導体装置および容量値測定方法 Download PDF

Info

Publication number
WO2019220839A1
WO2019220839A1 PCT/JP2019/016253 JP2019016253W WO2019220839A1 WO 2019220839 A1 WO2019220839 A1 WO 2019220839A1 JP 2019016253 W JP2019016253 W JP 2019016253W WO 2019220839 A1 WO2019220839 A1 WO 2019220839A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
capacitive element
control signal
capacitance value
gate
Prior art date
Application number
PCT/JP2019/016253
Other languages
English (en)
French (fr)
Inventor
茂貴 森
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN201980031609.6A priority Critical patent/CN112105938A/zh
Publication of WO2019220839A1 publication Critical patent/WO2019220839A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/354Astable circuits

Definitions

  • the present disclosure relates to a semiconductor device including a capacitive element, and a capacitance value measuring method for measuring the capacitance value of the capacitive element.
  • Patent Documents 1 and 2 disclose a technique for measuring a capacitance value of a load capacitance by operating a ring oscillator having a plurality of gate circuits and a load capacitance connected to each gate circuit. .
  • JP 2013-007691 A Japanese Patent Laid-Open No. 06-268039
  • a semiconductor device includes a ring oscillator and a control signal generation circuit.
  • the ring oscillator has a plurality of gate circuits and a first load circuit.
  • the plurality of gate circuits are arranged on a circuit route and include the first gate circuit.
  • the first load circuit includes a first capacitive element that is connected to the output terminal of the first gate circuit and can be set to be valid or invalid based on the first control signal.
  • the control signal generation circuit can generate the first control signal.
  • a capacitance value measuring method is connected to a plurality of gate circuits including a first gate circuit and an output terminal of the first gate circuit, which are arranged on a circuit route, Operating a ring oscillator having a first load circuit including a first capacitive element that can be set to be valid or invalid based on a control signal, measuring current consumption of a plurality of gate circuits, and a ring oscillator Measuring the frequency of the oscillation signal generated by the first and second elements, and calculating the capacitance value of the first capacitive element based on the current consumption and the frequency.
  • a plurality of gate circuits are arranged on a circuit route.
  • the first load circuit is connected to the output terminal of the first gate circuit.
  • the first load circuit includes a first capacitive element that can be set to be valid or invalid based on the first control signal.
  • the first load circuit includes the first capacitive element that can be set to be valid or invalid based on the first control signal. Therefore, the degree of freedom of measurement operation when measuring the capacitance value can be increased.
  • the effect described here is not necessarily limited, and there may be any effect described in the present disclosure.
  • FIG. 2 is a block diagram illustrating a configuration example of a test system including the semiconductor circuit illustrated in FIG. 1.
  • 3 is a flowchart illustrating an operation example of the test system illustrated in FIG. 2.
  • FIG. 2 is an explanatory diagram illustrating an operation example of the semiconductor circuit illustrated in FIG. 1.
  • FIG. 2 is an explanatory diagram illustrating an operation example of the semiconductor circuit illustrated in FIG. 1.
  • It is a circuit diagram showing the example of 1 structure of the semiconductor circuit which concerns on a modification.
  • It is a circuit diagram showing the example of 1 structure of the semiconductor circuit which concerns on another modification.
  • It is a circuit diagram showing the example of 1 structure of the semiconductor circuit which concerns on another modification.
  • FIG. 13 is a block diagram illustrating a configuration example of a test system including the semiconductor device illustrated in FIG. 12. It is a block diagram showing the example of 1 structure of the semiconductor device which concerns on another application example.
  • FIG. 1 illustrates a configuration example of a semiconductor device (semiconductor circuit 1) according to an embodiment.
  • semiconductor circuit 1 semiconductor device
  • the capacitance value measuring method according to the embodiment of the present disclosure is embodied by the present embodiment, it will be described together.
  • the semiconductor circuit 1 includes a ring oscillator 10, a selection circuit 11, an output circuit 12, and a control circuit 19.
  • the ring oscillator 10, the selection circuit 11, the output circuit 12, and the control circuit 19 are formed on one semiconductor chip.
  • the semiconductor circuit 1 has two power supply terminals TVDD1 and TVDD2.
  • An inverting AND circuit ND (described later), a selection circuit 11, an output circuit 12, and a control circuit 19 of the ring oscillator 10 are connected to a power supply terminal TVDD1, and a power supply voltage is supplied through the power supply terminal TVDD1. ing.
  • the ring oscillator 10 includes a plurality of inverter circuits IV (N inverter circuits IV 1 to IV N in this example), a plurality of load circuits LD (N load circuits LD 1 to LD N in this example), an inversion And an AND circuit ND.
  • the N inverter circuits IV 1 to IV N and the inverted AND circuit ND are arranged on a circuit path.
  • Each of the N inverter circuits IV 1 to IV N inverts the logic signal input to the input terminal and outputs the inverted logic signal from the output terminal.
  • the input terminal of the inverter circuit IV 1 is connected to the output terminal of the inverting AND circuit ND, and the output terminal is connected to the input terminal of the inverter circuit IV 2 .
  • Input terminal of the inverter circuit IV 2 is connected to the output terminal of the inverter circuit IV 1, an output terminal connected to the input terminal of the inverter circuit IV 3.
  • the input terminal of the inverter circuit IV 3 is connected to the output terminal of the inverter circuit IV 2 , and the output terminal is connected to the input terminal of the inverter circuit IV 4 .
  • the inverter circuits IV 4 to KV N ⁇ 1 The same applies to the inverter circuits IV 4 to KV N ⁇ 1 .
  • the input terminal of the inverter circuit IV N is connected to the output terminal of the inverter circuit IV N-1, an output terminal connected to a first input terminal of the inverted logical product circuit ND. That is, the inverter circuit IV 1 is the first stage circuit among the N inverter circuits IV 1 to IV N , and the inverter circuit IV N is the last stage circuit among the N inverter circuits IV 1 to IV N. It is.
  • the number N of inverter circuits IV can be set to an even number, for example. As a result, the number of circuits that perform the inversion operation in the round path of the ring oscillator 10 can be made odd.
  • the power supply terminals of the N inverter circuits IV 1 to IV N are connected to the power supply terminal TVDD2, and the power supply voltage is supplied through the power supply terminal TVDD2.
  • the power supply terminal TVDD2 is connected to only the N inverter circuits IV 1 to IV N among various circuits integrated in the semiconductor circuit 1.
  • the power supply current IDD2 flowing through the N inverter circuits IV 1 to IV N can be measured by measuring the power supply current IDD2 flowing through the power supply terminal TVDD2.
  • Each of the N load circuits LD 1 to LD N is a load of the corresponding inverter circuit IV among the N inverter circuits IV 1 to IV N.
  • the load circuit LD 1 is connected to the output terminal of the inverter circuit IV 1
  • the load circuit LD 2 is connected to the output terminal of the inverter circuit IV 2
  • the load circuit LD 3 is connected to the output terminal of the inverter circuit IV 3.
  • the load circuit LD N is connected to the output terminal of the inverter circuit IV N.
  • Each of the N load circuits LD 1 to LD N includes a capacitive element CAP and a transistor TR.
  • the N capacitive elements CAP in the N load circuits LD 1 to LD N may include, for example, a plurality of capacitive elements having mutually different capacitance values, MIM (Metal Insulator Metal) type capacitive elements, Various types of capacitive elements such as a MIS (Metal Insulator Semiconductor) type capacitive element including a MOS (Metal Oxide Semiconductor) type may be included.
  • MIM Metal Insulator Metal
  • MIS Metal Insulator Semiconductor
  • MOS Metal Oxide Semiconductor
  • the transistor TR is an N-type MOS transistor, the drain is connected to the other end of the capacitive element CAP, and the source is grounded.
  • the control signal CTL 1 is supplied to the gate of the transistor TR of the load circuit LD 1
  • the control signal CTL 2 is supplied to the gate of the transistor TR of the load circuit LD 2
  • the control is applied to the gate of the transistor TR of the load circuit LD 3.
  • Signal CTL 3 is provided.
  • a control signal CTL N is supplied to the gate of the transistor TR of the load circuit LD N.
  • the capacitive element CAP is set to “valid” or “invalid” based on the control signal CTL. Specifically, the capacitive element CAP is set to “valid” when the transistor TR is turned on based on the control signal CTL, and the capacitive element is turned off based on the control signal CTL. CAP is set to “invalid”.
  • the capacitor element CAP that is “validated” functions as a load capacitor of the inverter circuit IV connected to the capacitor element CAP.
  • the inverting AND circuit ND obtains an inverting AND (NAND) of the logic signal input to the first input terminal and the logic signal input to the second input terminal, and outputs the obtained result from the output terminal. Is.
  • the first input terminal of the inverting AND circuit ND is connected to the output terminal of the final stage inverter circuit IV N , the enable signal EN is supplied to the second input terminal, and the output terminal is the first stage inverter circuit IV 1.
  • the enable signal EN is a signal that instructs the oscillation operation of the ring oscillator 10.
  • the inverting AND circuit ND inverts the logic signal input to the first terminal and outputs the inverted logic signal from the output terminal.
  • the ring oscillator 10 performs an oscillation operation, and the inverting AND circuit ND outputs an oscillation signal S1.
  • the enable signal EN is at a low level
  • the inverting AND circuit ND outputs a high level logic signal from the output terminal regardless of the logic signal input to the first terminal.
  • the ring oscillator 10 stops the oscillation operation.
  • the selection circuit 11 generates a plurality of control signals CTL (N control signals CTL 1 to CTL N in this example) based on an instruction from the control circuit 19.
  • CTL control signals CTL 1 to CTL N in this example
  • N pieces of the capacitor CAP in the N load circuits LD 1 ⁇ LD N Can be individually set to “valid” or “invalid”.
  • only one capacitive element CAP among the N load circuits LD 1 to LD N may be “valid”, or a plurality of N load circuits LD 1 to LD N may be set.
  • the capacitive element CAP of the load circuit may be “valid”.
  • the output circuit 12 divides the oscillation signal S1 generated by the oscillation operation of the ring oscillator 10 and outputs the divided signal.
  • the output circuit 12 includes an inverter circuit 13, a frequency divider circuit 14, and a logical product circuit 15.
  • the input terminal of the inverter circuit 13 is connected to the output terminal of the inverting AND circuit ND of the ring oscillator 10, and the output terminal is connected to the input terminal of the frequency divider circuit 14.
  • the frequency divider circuit 14 divides and outputs the signal output from the inverter circuit 13.
  • the AND circuit 15 calculates a logical product (AND) of the logic signal input to the first input terminal and the logic signal input to the second input terminal, and outputs the calculated result (oscillation signal S2) to the output terminal.
  • the first input terminal of the AND circuit 15 is connected to the output terminal of the frequency divider circuit 14, and the enable signal EN is supplied to the second input terminal.
  • the output circuit 12 when the enable signal EN is at a high level, the output circuit 12 generates the oscillation signal S2 by dividing the oscillation signal S1 supplied from the ring oscillator 10, and outputs the oscillation signal S2. To do.
  • the enable signal EN is at a low level, the output circuit 12 outputs a low level logic signal.
  • the control circuit 19 controls operations of the ring oscillator 10, the selection circuit 11, and the output circuit 12 based on a control signal supplied from the outside. Specifically, the control circuit 19 generates an enable signal EN based on a control signal supplied from the outside, supplies the enable signal EN to the ring oscillator 10 and the output circuit 12, and also supplies the selection circuit 11 with the enable signal EN. On the other hand, an instruction to generate N control signals CTL 1 to CTL N is issued.
  • FIG. 2 shows a configuration example of the test system 100 that measures the capacitance value of the capacitive element CAP of the semiconductor circuit 1.
  • the measurement of the capacitance value may be performed using, for example, a semiconductor wafer before dicing, or may be performed using a semiconductor chip after dicing and packaging.
  • the test system 100 has a tester 110.
  • the tester 110 includes a power supply voltage generation unit 111, a current measurement unit 112, a frequency measurement unit 113, and a calculation unit 114.
  • the power supply voltage generator 111 generates power supply voltages VDD1 and VDD2.
  • the voltage value of the power supply voltage VDD1 and the voltage value of the power supply voltage VDD2 may be the same or different from each other.
  • the tester 110 supplies the power supply voltage VDD1 generated by the power supply voltage generation unit 111 to the power supply terminal TVDD1 of the semiconductor circuit 1 and supplies the power supply voltage VDD2 to the power supply terminal TVDD2 of the semiconductor circuit 1.
  • the current measuring unit 112 measures the power supply current IDD2 flowing through the power supply terminal TVDD2 of the semiconductor circuit 1.
  • the frequency measuring unit 113 measures the frequency of the oscillation signal S2 generated by the semiconductor circuit 1.
  • the calculation unit 114 calculates the capacitance value of the capacitive element CAP of the semiconductor circuit 1 based on the measurement result of the current measurement unit 112 and the measurement result of the frequency measurement unit 113.
  • the tester 110 causes the ring oscillator 10 of the semiconductor circuit 1 to oscillate, measures the power supply current IDD2 flowing through the power supply terminal TVDD2, and measures the frequency of the oscillation signal S2.
  • the tester 110 calculates the capacitance value of the capacitive element CAP of the semiconductor circuit 1 based on the measured power supply current IDD2 and the measured frequency of the oscillation signal S2.
  • the semiconductor circuit 1 corresponds to a specific example of “semiconductor device” in the present disclosure.
  • the inverter circuits IV 1 to IV N correspond to a specific example of “a plurality of gate circuits” in the present disclosure.
  • the selection circuit 11 corresponds to a specific example of “control signal generation circuit” in the present disclosure.
  • the power supply terminal TVDD1 corresponds to a specific example of “first power supply terminal” in the present disclosure.
  • the power supply terminal TVDD2 corresponds to a specific example of “second power supply terminal” in the present disclosure.
  • the control circuit 19 generates an enable signal EN based on a control signal supplied from the outside, supplies the enable signal EN to the ring oscillator 10 and the output circuit 12, and supplies N select signals to the selection circuit 11.
  • the generation of the control signals CTL 1 to CTL N is instructed.
  • the selection circuit 11 generates N control signals CTL 1 to CTL N based on an instruction from the control circuit 19.
  • the N load circuits LD 1 to LD N of the ring oscillator 10 set the capacitive element CAP to “valid” or “invalid” based on the plurality of control signals CTL.
  • the ring oscillator 10 When the enable signal EN is at a high level, the ring oscillator 10 performs an oscillation operation and generates an oscillation signal S1. When the enable signal EN is at a high level, the output circuit 12 divides the oscillation signal S1 supplied from the ring oscillator 10 to generate the oscillation signal S2, and outputs this oscillation signal S2.
  • FIG. 3 illustrates an operation example of the test system 100.
  • the test system 100 makes one of the capacitive elements CAP of the N load circuits LD 1 to LD N of the ring oscillator 10 “valid” and sets the capacitance value of the capacitive element CAP made “valid”. Ask for. By repeating this operation, the capacitance values of all the capacitive elements CAP of the N load circuits LD 1 to LD N are obtained. This operation will be described in detail below.
  • the tester 110 supplies the power supply voltages VDD1 and VDD2 to the semiconductor circuit 1 (step S101). Specifically, the power supply voltage generation unit 111 generates power supply voltages VDD1 and VDD2. The tester 110 supplies the power supply voltage VDD1 generated by the power supply voltage generation unit 111 to the power supply terminal TVDD1 of the semiconductor circuit 1 and supplies the power supply voltage VDD2 to the power supply terminal TVDD2 of the semiconductor circuit 1.
  • the tester 110 supplies a control signal to the control circuit 19 of the semiconductor circuit 1, and the control circuit 19 sets the enable signal EN to a low level based on the control signal and controls the control signals CTL 1 to CTL N. Is set to a low level (step S102). Thereby, the ring oscillator 10 stops the oscillation operation. Since the control signals CTL 1 to CTL N are at a low level, the capacitive elements CAP of the N load circuits LD 1 to LD N are “invalid”.
  • the current measuring unit 112 of the tester 110 measures the power supply current IDD2 (standby current IDDQ) flowing through the power supply terminal TVDD2 of the semiconductor circuit 1 (step S103). That is, the standby current IDDQ is the power supply current IDD2 when the ring oscillator 10 stops the oscillation operation.
  • the tester 110 supplies a control signal to the control circuit 19 of the semiconductor circuit 1, and the control circuit 19 sets the enable signal EN to a high level based on this control signal (step S104).
  • the control signals CTL 1 to CTL N maintain a low level. Thereby, the ring oscillator 10 starts an oscillation operation.
  • the current measurement unit 112 of the tester 110 measures the power supply current IDD2 (power supply current IDDA) flowing through the power supply terminal TVDD2 of the semiconductor circuit 1, and the frequency measurement unit 113 measures the frequency of the oscillation signal S2 (step S105). ). That is, the power supply current IDDA is the power supply current IDD2 when the ring oscillator 10 is performing the oscillation operation.
  • the calculation unit 114 obtains a parasitic capacitance value Cpar in the ring oscillator 10 based on the measurement result of the current measurement unit 112 and the measurement result of the frequency measurement unit 113 (step S106).
  • the parasitic capacitance value Cpar is a total value of the capacitance values of the load capacitances of the N inverter circuits IV 1 to IV N when the capacitive elements CAP of the N load circuits LD 1 to LD N are “invalid”. is there.
  • the parasitic capacitance value Cpar can be calculated using the following equation.
  • IDDA-IDDQ Cpar ⁇ VDD2 ⁇ f (1)
  • IDDA is the power supply current measured in step S105
  • IDDQ is the standby current measured in step S103
  • VDD2 is the power supply voltage supplied to the power supply terminal TVDD2
  • f is the oscillation signal. This is the frequency of S1.
  • This frequency f can be calculated based on the frequency of the oscillation signal S2 measured in step S105 and the frequency dividing ratio in the frequency dividing circuit 14.
  • the tester 110 selects the capacitive element CAP of the load circuit LD 1 and makes this capacitive element CAP “valid” (step S107). Specifically, the tester 110 supplies a control signal to the control circuit 19 of the semiconductor circuit 1, and the control circuit 19 sets the control signal CTL 1 to a high level based on this control signal, and other control signals CTL. To low level. As a result, the capacitive element CAP of the load circuit LD 1 becomes “valid”, and the capacitive elements CAP of the other load circuits LD become “invalid”.
  • the current measurement unit 112 of the tester 110 measures the power supply current IDD2 (power supply current IDDA) flowing through the power supply terminal TVDD2 of the semiconductor circuit 1, and the frequency measurement unit 113 measures the frequency of the oscillation signal S2 (step S108). ).
  • the calculation unit 114 calculates the capacitance value C of the selected capacitive element CAP in the ring oscillator 10 based on the measurement result of the current measurement unit 112 and the measurement result of the frequency measurement unit 113 (step S109).
  • IDDA is the power supply current measured in step S108
  • IDDQ is the standby current measured in step S103
  • Cpar is the parasitic capacitance value calculated in step S106
  • VDD2 is applied to the power supply terminal TVDD2.
  • the power supply voltage being supplied, and f is the frequency of the oscillation signal S1.
  • the tester 110 confirms whether or not all the capacitive elements CAP in the N load circuits LD 1 to LD N have been selected (step S110).
  • step S110 when all the capacitive elements CAP are not selected, one of the capacitive elements CAP that have not been selected is selected, and this capacitive element CAP is made “valid” (step S111).
  • the tester 110 supplies a control signal to the control circuit 19 of the semiconductor circuit 1, and the control circuit 19 selects one of the capacitive elements CAP that has not been selected based on the control signal.
  • the control signal CTL corresponding to the capacitive element CAP is set to a high level, and other control signals CTL are set to a low level.
  • the selected capacitive element CAP becomes “valid”, and other capacitive elements CAP become “invalid”.
  • the process proceeds to step S108. In this manner, the operations in steps S108 to S111 are repeated until all the capacitive elements CAP are selected.
  • step S110 when all the capacitive elements CAP are selected, this flow ends.
  • the capacitance values of the plurality of capacitive elements CAP can be obtained.
  • Various information can be obtained by using the capacitance value of the capacitive element CAP obtained by using the semiconductor circuit 1.
  • the mismatch variation of the plurality of capacitor elements CAP can be calculated.
  • the gate length in the MOS structure can be calculated based on the capacitance value of the capacitive element CAP.
  • a mask misalignment amount at the time of manufacturing can be calculated based on the capacitance value of the capacitive element CAP.
  • the capacitive element CAP and the transistor TR are provided in each of the plurality of load circuits LD, the capacitive element CAP can be individually set to “valid” or “invalid”. it can.
  • the capacitance values of various capacitor elements CAP can be calculated using one semiconductor circuit 1. That is, for example, when the capacitive element is directly connected as a load to each of the plurality of inverter circuits as in the techniques described in Patent Documents 1 and 2, the capacitance value of each capacitive element cannot be obtained. Therefore, for example, when it is desired to obtain the capacitance values of various capacitive elements, it is necessary to prepare a plurality of ring oscillators. In this case, for example, the circuit area increases.
  • the capacitive element CAP and the transistor TR are provided in each of the plurality of load circuits LD.
  • the capacitance value of the capacitive element CAP can be obtained individually by turning on and off the transistors TR individually. Therefore, for example, when various types of capacitive elements such as a plurality of capacitive elements having different capacitance values, MIM type capacitive elements, and MIS type capacitive elements are mounted as a plurality of capacitive elements CAP, Using the semiconductor circuit 1, the capacitance values of these various capacitor elements CAP can be obtained. As a result, in the semiconductor circuit 1, for example, the circuit area can be suppressed.
  • the capacitance value of the capacitive element CAP is obtained using the semiconductor circuit 1, for example, as in application examples A1 and A2 described later, this semiconductor circuit 1 is replaced with another semiconductor circuit (a semiconductor circuit 20 described later). And the capacitance value of the capacitive element in the semiconductor circuit 20 can be adjusted based on the measurement result of the capacitance value of the capacitive element CAP of the semiconductor circuit 1.
  • the capacitance value of the capacitive element in the semiconductor circuit 20 is calculated based on the measurement result of the capacitance value of the capacitive element included in the process TEG.
  • the process TEG often measures only a few locations in the semiconductor wafer, and it is difficult to adjust the capacitance value by sufficiently taking into account, for example, element variations within the surface of the semiconductor wafer.
  • the semiconductor circuit 1 is integrated with the semiconductor circuit 20 on one chip, so that the semiconductor circuit 1 is formed on the same chip as the capacitive element CAP based on the measurement result of the capacitive element CAP of the semiconductor circuit 1.
  • the capacitance value of the capacitor in the semiconductor circuit 20 can be adjusted. As a result, the capacitance value can be adjusted with high accuracy.
  • one capacitive element CAP of the load circuits LD 1 to LD N is sequentially “enabled”.
  • the present invention is not limited to this, and a plurality of capacitive elements CAP are simultaneously “enabled”. Also good.
  • the capacitive elements CAP of the ten load circuits LD 1 to LD 10 have the same capacitance value and are the same type of capacitive elements.
  • the capacitive elements CAP of the 20 load circuits LD 11 to LD 30 have the same capacitance value and are the same type of capacitive elements.
  • FIG. 4A and 4B show an operation example of the semiconductor circuit 1.
  • FIG. 4A and 4B the transistor TR is illustrated using a switch indicating an on / off state.
  • the semiconductor circuit 1 by ten transistors TR of the load circuit LD 1 ⁇ LD 10 in the ON state, the capacitor CAP of the load circuit LD 1 ⁇ LD 10 simultaneously "effective" I have to.
  • the test system 100 measures the power supply current IDDA and the frequency of the oscillation signal S2 at this time, and can determine the average value of the capacitance values of these ten capacitive elements CAP based on these measurement results.
  • the semiconductor circuit 1 by a twenty transistors TR of the load circuit LD 11 ⁇ LD 30 in the ON state, the capacitor CAP of the load circuit LD 11 ⁇ LD 30 simultaneously “Enable” is set.
  • the test system 100 measures the power supply current IDDA and the frequency of the oscillation signal S2 at this time, and can determine the average value of the capacitance values of these 20 capacitive elements CAP based on these measurement results.
  • the plurality of capacitive elements CAP can be obtained in a shorter time than when the capacitive elements CAP are sequentially set to “valid” one by one.
  • the average value of the capacitance values can be obtained.
  • the measurement accuracy when measuring the capacitance value can be improved.
  • the number of capacitative elements CAP that are simultaneously “valid” may be set according to the capacitance value, or may be set according to the type of capacitative element CAP.
  • the capacitive element CAP to be “validated” can be selected or the number of capacitive elements CAP to be “validated” at the same time can be set. Can increase the degree of freedom.
  • the capacitive element and the transistor are provided in each of the plurality of load circuits. Therefore, for example, a capacitive element to be “enabled” is selected according to the application, or “ Since the number of capacitive elements to be “enabled” can be set, the degree of freedom of measurement operation can be increased.
  • one load circuit LD is provided for one inverter circuit IV.
  • the inverter circuit IV may be configured using two transistors 91 and 92 as shown in FIG.
  • the transistor 91 is an N-type MOS transistor, the drain is connected to the output terminal of the inverter circuit IV, the gate is connected to the input terminal of the inverter circuit IV, and the source is grounded.
  • the transistor 92 is a P-type MOS transistor, the drain is connected to the output terminal of the inverter circuit IV, the gate is connected to the input terminal of the inverter circuit IV, and the source is supplied with the power supply voltage VDD2.
  • the inverter circuit IV may be configured by using four transistors 93 to 96, for example, as shown in FIG.
  • the transistors 93 and 94 are N-type MOS transistors, and the transistors 95 and 96 are P-type MOS transistors.
  • the drain of the transistor 93 is connected to the output terminal of the inverter circuit IV, the gate is connected to the input terminal of the inverter circuit IV, and the source is connected to the drain of the transistor 94.
  • the drain of the transistor 94 is connected to the source of the transistor 93, the voltage Vn is supplied to the gate, and the source is grounded.
  • the voltage Vn is, for example, an analog voltage, and the resistance value of the transistor 94 is set by this voltage Vn.
  • the drain of the transistor 95 is connected to the output terminal of the inverter circuit IV, the gate is connected to the input terminal of the inverter circuit IV, and the source is connected to the drain of the transistor 96.
  • the drain of the transistor 96 is connected to the source of the transistor 95, the gate is supplied with the voltage Vp, and the source is supplied with the power supply voltage VDD2.
  • the voltage Vp is an analog voltage, for example, and the resistance value of the transistor 96 is set by this voltage Vp.
  • the voltages Vp and Vn are generated by, for example, a voltage generation unit (not shown).
  • the load circuit LD may be configured as shown in FIG. 7, for example.
  • the load circuit LD includes a transistor TR and a capacitive element CAP.
  • the transistor TR and the capacitive element CAP are replaced with each other in the load circuit LD (FIG. 1) according to the above-described embodiment.
  • the drain of the transistor TR is connected to the output terminal of the inverter circuit IV, and the source is connected to one end of the capacitor CAP.
  • One end of the capacitive element CAP is connected to the source of the transistor TR, and the other end is grounded.
  • two load circuits LD may be provided in one inverter circuit IV.
  • the load circuit LDA is connected to the output terminal of the inverter circuit IV.
  • the load circuit LDA includes a capacitive element CAP and a transistor TR.
  • the transistor TR of the load circuit LDA is set to “valid” or “invalid” based on the control signal CTLA.
  • the load circuit LDB is connected to the output terminal of the inverter circuit IV.
  • the load circuit LDB has a capacitive element CAP and a transistor TR.
  • the transistor TR of the load circuit LDB is set to “valid” or “invalid” based on the control signal CTLB. Note that the present invention is not limited to this, and three or more load circuits may be provided in one inverter circuit IV.
  • N load circuits LD 1 to LD N are connected to N inverter circuits IV 1 to IV N , respectively, but the present invention is not limited to this. Instead, for example, the load circuit LD may be connected to only some of the inverter circuits IV among the N inverter circuits IV 1 to IV N as in the semiconductor circuit 1B shown in FIG. In this example, the load circuit LD is connected to 10 inverter circuits IV at a rate of one.
  • the frequency dividing circuit 14 is provided in the output circuit 12.
  • the frequency dividing circuit 14 is not limited to this, and instead, for example, as in the semiconductor circuit 1C shown in FIG. The circuit 14 may not be provided.
  • the semiconductor circuit 1C includes an output circuit 12C.
  • the output circuit 12 ⁇ / b> C includes an inverter circuit 13 and a logical product circuit 15. This output circuit 12C is obtained by omitting the frequency divider 14 from the output circuit 12 (FIG. 1) according to the above embodiment.
  • the ring oscillator 10 is configured using the inverter circuit IV.
  • the present invention is not limited to this, and the ring oscillator can be configured using various logic gate circuits.
  • a ring oscillator may be configured using a buffer circuit as in the semiconductor circuit 1D illustrated in FIG.
  • the semiconductor circuit 1D includes a ring oscillator 10D.
  • the ring oscillator 10D includes a plurality of buffer circuits BF (N buffer circuits BF 1 to BF N in this example), a plurality of load circuits LD (N load circuits LD 1 to LD N in this example), and an inversion. And an AND circuit ND.
  • the plurality of buffer circuits BF 1 to BF N and the inverted AND circuit ND are arranged on a circuit path.
  • FIG. 12 illustrates an example of the semiconductor device 2 according to Application Example A1.
  • the semiconductor device 2 includes a semiconductor circuit 1 and a semiconductor circuit 20.
  • the semiconductor circuit 1 and the semiconductor circuit 20 are formed on one semiconductor chip.
  • the semiconductor circuit 20 is a circuit that realizes a predetermined function.
  • the semiconductor circuit 20 includes a variable capacitance element 30 and a setting unit 39.
  • the variable capacitance element 30 is configured so that the capacitance value can be adjusted.
  • the capacitance value of the variable capacitance element 30 is desired to be close to a desired value (for example, a design value). That is, the semiconductor circuit 20 is a circuit that can realize a desired characteristic by setting the capacitance value of the variable capacitance element 30 to a desired value, and is a circuit that has a high required accuracy with respect to the capacitance value.
  • the variable capacitance element 30 includes capacitance elements 31A and 32A and switches 31B and 32B. The capacitive elements 31A and 32A have different capacitance values.
  • the capacitor 31A is selected when the switch 31B is turned on, and the capacitor 32A is selected when the switch 32B is turned on.
  • the two capacitive elements 31A and 32A are provided.
  • the present invention is not limited to this, and three or more capacitive elements having different capacitance values are provided. One may be selected.
  • the setting unit 39 sets the capacitance value of the variable capacitance element 30 by setting one of the switches 31B and 32B to the ON state.
  • the setting unit 39 has, for example, a nonvolatile memory. This nonvolatile memory stores information (setting information INF) as to which of the switches 31B and 32B is to be turned on. Then, the setting unit 39 sets one of the switches 31B and 32B to an on state based on the setting information INF stored in the nonvolatile memory.
  • the setting unit 39 sets the capacitance value of the variable capacitance element 30 by setting one of the switches 31B and 32B to the on state based on the setting information INF stored in the nonvolatile memory.
  • setting information INF that can bring the capacitance value of the variable capacitance element 30 close to a desired value (for example, a design value) is stored in advance. Thereby, in the semiconductor device 2, the capacitance value of the variable capacitance element 30 can be brought close to a desired value.
  • FIG. 13 shows a configuration example of the test system 200.
  • the test system 200 has a tester 210.
  • the tester 210 has a setting information generation unit 215.
  • the setting information generation unit 215 can set the capacitance value of the variable capacitance element 30 close to a desired value (for example, a design value) based on the capacitance value of the capacitance element CAP of the semiconductor circuit 1 calculated by the calculation unit 114.
  • INF is generated.
  • the plurality of capacitive elements CAP are of the same type as the capacitive elements 31A and 32A and have a capacitive value close to each other
  • the setting information generation unit 215 and the capacitance value of the capacitive element CAP The setting information INF can be generated based on the above.
  • the tester 210 supplies the setting information INF to the setting unit 39 of the semiconductor circuit 20.
  • the semiconductor device 2 corresponds to a specific example of “semiconductor device” in the present disclosure.
  • the calculation unit 114 and the setting information generation unit 215 correspond to a specific example of “adjustment unit” in the present disclosure.
  • the tester 210 causes the ring oscillator 10 of the semiconductor circuit 1 to oscillate
  • the current measurement unit 112 measures the power supply current IDD2 flowing through the power supply terminal TVDD2, and the frequency measurement unit 113
  • the frequency of the oscillation signal S2 is measured.
  • the calculation unit 114 calculates the capacitance value of the capacitive element CAP of the semiconductor circuit 1 based on the power supply current IDD2 measured by the current measurement unit 112 and the frequency of the oscillation signal S2 measured by the frequency measurement unit 113.
  • the setting information generation unit 215 can set the capacitance value of the variable capacitance element 30 close to a desired value (for example, a design value) based on the capacitance value of the capacitance element CAP of the semiconductor circuit 1 calculated by the calculation unit 114. Generate INF. Then, the tester 210 supplies this setting information INF to the setting unit 39 of the semiconductor circuit 20. The setting unit 39 stores this setting information INF in a nonvolatile memory. Thereafter, the setting unit 39 sets one of the switches 31B and 32B to the ON state based on the setting information INF stored in the nonvolatile memory. In this way, in the test system 200, the capacitance value of the variable capacitor 30 can be adjusted.
  • a desired value for example, a design value
  • a plurality of capacitive elements having different capacitance values are provided, and among these capacitive elements, a desired value (for example, a design value) is close.
  • a capacitive element having a capacitance value is selected, the present invention is not limited to this. For example, by providing a plurality of capacitance elements having the same capacitance value and setting the number of capacitance elements selected from the plurality of capacitance elements, the capacitance value approaches a desired value (for example, a design value). It may be.
  • the capacitance value of one variable capacitance element 30 in the semiconductor circuit 20 is adjusted.
  • the present invention is not limited to this, and each capacitance value of two or more variable capacitance elements 30 may be adjusted.
  • one semiconductor circuit 1 is provided in the semiconductor device 2.
  • the present invention is not limited to this, and two or more semiconductor circuits 1 may be provided. Then, the capacitance values of the two or more variable capacitance elements 30 may be adjusted based on the capacitance elements CAP of the two or more semiconductor circuits 1.
  • FIG. 14 illustrates an example of the semiconductor device 3 according to Application Example A2.
  • the semiconductor device 3 includes a semiconductor circuit 1, a semiconductor circuit 20, and a measurement circuit 40.
  • the semiconductor circuit 1, the semiconductor circuit 20, and the measurement circuit 40 are formed on one semiconductor chip.
  • the measurement circuit 40 includes a current measurement unit 112, a frequency measurement unit 113, a calculation unit 114, and a setting information generation unit 215.
  • the measurement circuit 40 causes the ring oscillator 10 of the semiconductor circuit 1 to oscillate, the current measurement unit 112 measures the power supply current IDD2 flowing through the power supply terminal TVDD 2, and the frequency measurement unit 113. Measures the frequency of the oscillation signal S2. Then, the calculation unit 114 calculates the capacitance value of the capacitive element CAP of the semiconductor circuit 1 based on the power supply current IDD2 measured by the current measurement unit 112 and the frequency of the oscillation signal S2 measured by the frequency measurement unit 113.
  • the setting information generation unit 215 can set the capacitance value of the variable capacitance element 30 close to a desired value (for example, a design value) based on the capacitance value of the capacitance element CAP of the semiconductor circuit 1 calculated by the calculation unit 114. Generate INF.
  • the setting unit 39 of the semiconductor circuit 20 stores the setting information INF in a nonvolatile memory. Thereafter, the setting unit 39 sets one of the switches 31B and 32B to the ON state based on the setting information INF stored in the nonvolatile memory. Thus, in the semiconductor device 3, the capacitance value of the variable capacitance element 30 can be adjusted.
  • the semiconductor circuit 1 and the semiconductor circuit 20 are formed on one semiconductor chip, but the present invention is not limited to this. Alternatively, the semiconductor circuit 1 and the semiconductor circuit 20 may be formed on separate semiconductor chips. Even in this case, for example, when the semiconductor circuit 1 and the semiconductor circuit 20 are diced from the same semiconductor wafer, the variable capacitance element of the semiconductor circuit 20 is based on the capacitance value of the capacitance element CAP of the semiconductor circuit 1. The capacity value of 30 can be adjusted.
  • the ring oscillator 10 is configured using the inverted logical product circuit ND.
  • the present invention is not limited to this, and instead, for example, the ring oscillator is configured using an inverted logical sum circuit for obtaining an inverted logical sum (NOR). May be configured.
  • the plurality of gate circuits include a second gate circuit
  • the ring oscillator further includes a second load circuit including a second capacitive element connected to the output terminal of the second gate circuit and settable to be valid or invalid based on a second control signal;
  • the second load circuit includes a second switch connected in series to the second capacitive element and capable of being turned on and off based on the first control signal.
  • the semiconductor device according to (3) wherein a type of the second capacitive element is different from a type of the first capacitive element.
  • the second load circuit includes a second switch connected in series to the second capacitive element and capable of being turned on and off based on the first control signal.
  • the ring oscillator has a plurality of load circuits including the first load circuit, Each of the plurality of load circuits is connected to an output terminal of a different gate circuit among the plurality of gate circuits, The number of the load circuits is smaller than the number of the gate circuits.
  • the semiconductor device according to any one of (1) to (6).
  • the ring oscillator includes a third load circuit including a third capacitive element that is connected to the output terminal of the first gate circuit and can be set to be valid or invalid based on a third control signal.
  • the semiconductor device according to any one of (1) to (6), wherein the control signal generation circuit can also generate the third control signal.
  • a current measuring unit capable of measuring a power supply current flowing through the plurality of gate circuits;
  • a frequency measurement unit capable of measuring the frequency of the oscillation signal generated by the ring oscillator;
  • a variable capacitance element with an adjustable capacitance value;
  • An adjustment unit capable of adjusting the capacitance value of the variable capacitance element based on a measurement result in the current measurement unit and a measurement result in the frequency measurement unit, further comprising: (1) to (8) The semiconductor device described.
  • a plurality of gate circuits including a first gate circuit arranged on one circuit and an output terminal of the first gate circuit, and can be set to valid or invalid based on a first control signal
  • Operating a ring oscillator having a first load circuit including a first capacitive element Measuring current consumption of the plurality of gate circuits; Measuring the frequency of the oscillation signal generated by the ring oscillator; Calculating a capacitance value of the first capacitive element based on the consumption current and the frequency.
  • Measuring the current consumption includes measuring the first current consumption of the plurality of gate circuits when the first capacitive element is set to be invalid, and enabling the first capacitive element.
  • Measuring a second current consumption of the plurality of gate circuits when set to Measuring the frequency includes measuring the first frequency of the oscillation signal when the first capacitive element is set to invalid, and the oscillation when setting the first capacitive element to valid. Measuring a second frequency of the signal; The calculation of the capacitance value of the first capacitive element is based on the first current consumption, the second current consumption, the first frequency, and the second frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本開示の半導体装置は、一巡経路上に配置された第1のゲート回路を含む複数のゲート回路と、第1のゲート回路の出力端子に接続され、第1の制御信号に基づいて有効または無効に設定可能な第1の容量素子を含む第1の負荷回路とを有するリングオシレータと、第1の制御信号を生成可能な制御信号生成回路とを備える。

Description

半導体装置および容量値測定方法
 本開示は、容量素子を備えた半導体装置、および容量素子の容量値を測定する容量値測定方法に関する。
 半導体装置には、例えば、トランジスタ、抵抗素子、容量素子などの様々な素子が集積化される。半導体装置では、プロセスばらつきにより、これらの素子値がばらつくおそれがある。例えば、特許文献1,2には、複数のゲート回路と、各ゲート回路に接続された負荷容量とを有するリングオシレータを動作させることにより、負荷容量の容量値を測定する技術が開示されている。
特開2013-007691号公報 特開平06-268039号公報
 リングオシレータを動作させることにより、負荷容量の容量値を測定する技術では、測定動作の自由度が高いことが望まれており、さらなる自由度の向上が期待されている。
 容量値を測定する際の測定動作の自由度を高めることができる半導体装置および容量値測定方法を提供することが望ましい。
 本開示の一実施の形態における半導体装置は、リングオシレータと、制御信号生成回路とを備えている。リングオシレータは、複数のゲート回路と、第1の負荷回路とを有している。複数のゲート回路は、一巡経路上に配置されたものであり、第1のゲート回路を含むものである。第1の負荷回路は、第1のゲート回路の出力端子に接続され、第1の制御信号に基づいて有効または無効に設定可能な第1の容量素子を含むものである。制御信号生成回路は、第1の制御信号を生成可能なものである。
 本開示の一実施の形態における容量値測定方法は、一巡経路上に配置された、第1のゲート回路を含む複数のゲート回路と、第1のゲート回路の出力端子に接続され、第1の制御信号に基づいて有効または無効に設定可能な第1の容量素子を含む第1の負荷回路とを有するリングオシレータを動作させることと、複数のゲート回路の消費電流を測定することと、リングオシレータが生成する発振信号の周波数を測定することと、消費電流および周波数に基づいて、第1の容量素子の容量値を算出することとを含むものである。
 本開示の一実施の形態における半導体装置および容量値測定方法では、複数のゲート回路が一巡経路上に配置される。第1の負荷回路が、第1のゲート回路の出力端子に接続される。第1の負荷回路は、第1の制御信号に基づいて有効または無効に設定可能な第1の容量素子を含む。
 本開示の一実施の形態における半導体装置および容量値測定方法によれば、第1の負荷回路が、第1の制御信号に基づいて有効または無効に設定可能な第1の容量素子を含むようにしたので、容量値を測定する際の測定動作の自由度を高めることができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果があってもよい。
本開示の実施の形態に係る半導体回路の一構成例を表すブロック図である。 図1に示した半導体回路を含むテストシステムの一構成例を表すブロック図である。 図2に示したテストシステムの一動作例を表すフローチャートである。 図1に示した半導体回路の一動作例を表す説明図である。 図1に示した半導体回路の一動作例を表す説明図である。 変形例に係る半導体回路の一構成例を表す回路図である。 他の変形例に係る半導体回路の一構成例を表す回路図である。 他の変形例に係る半導体回路の一構成例を表す回路図である。 他の変形例に係る半導体回路の一構成例を表す回路図である。 他の変形例に係る半導体回路の一構成例を表す回路図である。 他の変形例に係る半導体回路の一構成例を表す回路図である。 他の変形例に係る半導体回路の一構成例を表す回路図である。 応用例に係る半導体装置の一構成例を表すブロック図である。 図12に示した半導体装置を含むテストシステムの一構成例を表すブロック図である。 他の応用例に係る半導体装置の一構成例を表すブロック図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態
2.応用例
<1.実施の形態>
[構成例]
 図1は、一実施の形態に係る半導体装置(半導体回路1)の一構成例を表すものである。なお、本開示の実施の形態に係る容量値測定方法は、本実施の形態により具現化されるので、併せて説明する。
 半導体回路1は、リングオシレータ10と、選択回路11と、出力回路12と、制御回路19とを備えている。リングオシレータ10、選択回路11、出力回路12、および制御回路19は、1つの半導体チップに形成される。また、半導体回路1は、2つの電源端子TVDD1,TVDD2を有している。リングオシレータ10の反転論理積回路ND(後述)、選択回路11、出力回路12、および制御回路19は、電源端子TVDD1に接続され、この電源端子TVDD1を介して電源電圧が供給されるようになっている。
 リングオシレータ10は、複数のインバータ回路IV(この例ではN個のインバータ回路IV1~IVN)と、複数の負荷回路LD(この例ではN個の負荷回路LD1~LDN)と、反転論理積回路NDとを有している。N個のインバータ回路IV1~IVNおよび反転論理積回路NDは、一巡経路上に配置されている。
 N個のインバータ回路IV1~IVNのそれぞれは、入力端子に入力された論理信号を反転し、反転された論理信号を出力端子から出力するものである。インバータ回路IV1の入力端子は反転論理積回路NDの出力端子に接続され、出力端子はインバータ回路IV2の入力端子に接続される。インバータ回路IV2の入力端子はインバータ回路IV1の出力端子に接続され、出力端子はインバータ回路IV3の入力端子に接続される。インバータ回路IV3の入力端子はインバータ回路IV2の出力端子に接続され、出力端子はインバータ回路IV4の入力端子に接続される。インバータ回路IV4~KVN-1についても同様である。そして、インバータ回路IVNの入力端子はインバータ回路IVN-1の出力端子に接続され、出力端子は反転論理積回路NDの第1の入力端子に接続される。すなわち、インバータ回路IV1は、N個のインバータ回路IV1~IVNのうちの初段の回路であり、インバータ回路IVNは、N個のインバータ回路IV1~IVNのうちの最終段の回路である。インバータ回路IVの個数Nは、例えば偶数にすることができる。これにより、リングオシレータ10の一巡経路における、反転演算を行う回路の数を奇数にすることができる。
 N個のインバータ回路IV1~IVNの電源端子は、電源端子TVDD2に接続され、この電源端子TVDD2を介して電源電圧が供給される。この電源端子TVDD2は、半導体回路1に集積された様々な回路のうち、このN個のインバータ回路IV1~IVNのみに接続される。これにより、後述するように、この電源端子TVDD2に流れる電源電流IDD2を測定することにより、N個のインバータ回路IV1~IVNに流れる電源電流IDD2を測定することができるようになっている。
 N個の負荷回路LD1~LDNのそれぞれは、N個のインバータ回路IV1~IVNのうちの対応するインバータ回路IVの負荷である。負荷回路LD1は、インバータ回路IV1の出力端子に接続され、負荷回路LD2は、インバータ回路IV2の出力端子に接続され、負荷回路LD3は、インバータ回路IV3の出力端子に接続される。負荷回路LD4~LDN-1についても同様である。負荷回路LDNは、インバータ回路IVNの出力端子に接続される。N個の負荷回路LD1~LDNのそれぞれは、容量素子CAPと、トランジスタTRとを有している。
 容量素子CAPの一端は、その容量素子CAPを有する負荷回路LDに対応するインバータ回路IVの出力端子に接続され、他端はトランジスタTRのドレインに接続されている。N個の負荷回路LD1~LDNにおけるN個の容量素子CAPは、例えば、互いに異なる容量値を有する複数の容量素子を含んでいてもよいし、MIM(Metal Insulator Metal)型の容量素子や、MOS(Metal Oxide Semiconductor)型を含むMIS(Metal Insulator Semiconductor)型の容量素子など、様々な種類の容量素子を含んでいてもよい。
 トランジスタTRは、N型のMOSトランジスタであり、ドレインは容量素子CAPの他端に接続され、ソースは接地されている。負荷回路LD1のトランジスタTRのゲートには制御信号CTL1が供給され、負荷回路LD2のトランジスタTRのゲートには制御信号CTL2が供給され、負荷回路LD3のトランジスタTRのゲートには制御信号CTL3が供給される。負荷回路LD4~LDN-1のトランジスタTRについても同様である。負荷回路LDNのトランジスタTRのゲートには制御信号CTLNが供給される。
 この構成により、負荷回路LDでは、制御信号CTLに基づいて、容量素子CAPが“有効”または“無効”に設定される。具体的には、制御信号CTLに基づいてトランジスタTRがオン状態になることにより、容量素子CAPが“有効”に設定され、制御信号CTLに基づいてトランジスタTRがオフ状態になることにより、容量素子CAPが“無効”に設定される。“有効”にされた容量素子CAPは、その容量素子CAPに接続されたインバータ回路IVの負荷容量として機能するようになっている。
 反転論理積回路NDは、第1の入力端子に入力された論理信号と、第2の入力端子に入力された論理信号の反転論理積(NAND)を求め、求めた結果を出力端子から出力するものである。反転論理積回路NDの第1の入力端子は、最終段のインバータ回路IVNの出力端子に接続され、第2の入力端子にはイネーブル信号ENが供給され、出力端子は初段のインバータ回路IV1の入力端子に接続されるとともに、出力回路12に接続される。イネーブル信号ENは、リングオシレータ10の発振動作を指示する信号である。具体的には、イネーブル信号ENが高レベルである場合には、反転論理積回路NDは、第1の端子に入力された論理信号を反転し、反転された論理信号を出力端子から出力する。これにより、リングオシレータ10は発振動作を行い、反転論理積回路NDは、発振信号S1を出力する。また、イネーブル信号ENが低レベルである場合には、反転論理積回路NDは、第1の端子に入力された論理信号に関わらず、高レベルの論理信号を出力端子から出力する。これにより、リングオシレータ10は発振動作を停止するようになっている。
 選択回路11は、制御回路19からの指示に基づいて、複数の制御信号CTL(この例ではN個の制御信号CTL1~CTLN)を生成するものである。半導体回路1では、N個の制御信号CTL1~CTLNをN個の負荷回路LD1~LDNにそれぞれ供給することにより、N個の負荷回路LD1~LDNにおけるN個の容量素子CAPを、個別に“有効”または“無効”に設定することができるようになっている。具体的には、例えば、N個の負荷回路LD1~LDNのうちの1つの容量素子CAPのみを“有効”にしてもよいし、N個の負荷回路LD1~LDNのうちの複数の負荷回路の容量素子CAPを“有効”にしてもよい。
 出力回路12は、リングオシレータ10が発振動作を行うことにより生成した発振信号S1を分周し、分周された信号を出力するものである。出力回路12は、インバータ回路13と、分周回路14と、論理積回路15とを有している。インバータ回路13の入力端子は、リングオシレータ10の反転論理積回路NDの出力端子に接続され、出力端子は分周回路14の入力端子に接続されている。分周回路14は、インバータ回路13から出力された信号を分周して出力するものである。論理積回路15は、第1の入力端子に入力された論理信号と、第2の入力端子に入力された論理信号の論理積(AND)を求め、求めた結果(発振信号S2)を出力端子から出力するものである。論理積回路15の第1の入力端子は分周回路14の出力端子に接続され、第2の入力端子にはイネーブル信号ENが供給される。この構成により、イネーブル信号ENが高レベルである場合には、出力回路12は、リングオシレータ10から供給された発振信号S1を分周することにより発振信号S2を生成し、この発振信号S2を出力する。また、イネーブル信号ENが低レベルである場合には、出力回路12は、低レベルの論理信号を出力するようになっている。
 制御回路19は、外部から供給された制御信号に基づいて、リングオシレータ10、選択回路11、および出力回路12の動作を制御するものである。具体的には、制御回路19は、外部から供給された制御信号に基づいて、イネーブル信号ENを生成して、このイネーブル信号ENをリングオシレータ10および出力回路12に供給するとともに、選択回路11に対してN個の制御信号CTL1~CTLNの生成指示を行うようになっている。
 図2は、半導体回路1の容量素子CAPの容量値を測定するテストシステム100の一構成例を表すものである。容量値の測定は、例えば、ダイシングする前の半導体ウエハを用いて行ってもよいし、ダイシングしパッケージングした後の半導体チップを用いて行ってもよい。
 テストシステム100は、テスタ110を有している。テスタ110は、電源電圧生成部111と、電流測定部112と、周波数測定部113と、演算部114とを有している。
 電源電圧生成部111は、電源電圧VDD1,VDD2を生成するものである。電源電圧VDD1の電圧値および電源電圧VDD2の電圧値は、互いに同じであってもよいし、互いに異なっていてもよい。そして、テスタ110は、電源電圧生成部111が生成した電源電圧VDD1を半導体回路1の電源端子TVDD1に供給するとともに、電源電圧VDD2を半導体回路1の電源端子TVDD2に供給するようになっている。
 電流測定部112は、半導体回路1の電源端子TVDD2に流れる電源電流IDD2を測定するものである。
 周波数測定部113は、半導体回路1が生成した発振信号S2の周波数を測定するものである。
 演算部114は、電流測定部112の測定結果、および周波数測定部113の測定結果に基づいて、半導体回路1の容量素子CAPの容量値を算出するものである。
 この構成により、テストシステム100では、テスタ110が、半導体回路1のリングオシレータ10に発振動作を行わせ、電源端子TVDD2に流れる電源電流IDD2を測定し、発振信号S2の周波数を測定する。そして、テスタ110は、測定した電源電流IDD2、および測定した発振信号S2の周波数に基づいて、半導体回路1の容量素子CAPの容量値を算出するようになっている。
 ここで、半導体回路1は、本開示における「半導体装置」の一具体例に対応する。インバータ回路IV1~IVNは、本開示における「複数のゲート回路」の一具体例に対応する。選択回路11は、本開示における「制御信号生成回路」の一具体例に対応する。電源端子TVDD1は、本開示における「第1の電源端子」の一具体例に対応する。電源端子TVDD2は、本開示における「第2の電源端子」の一具体例に対応する。
[動作および作用]
 続いて、本実施の形態の半導体回路1の動作および作用について説明する。
(全体動作概要)
 まず、図1を参照して、半導体回路1の全体動作概要を説明する。制御回路19は、外部から供給された制御信号に基づいて、イネーブル信号ENを生成して、このイネーブル信号ENをリングオシレータ10および出力回路12に供給するとともに、選択回路11に対してN個の制御信号CTL1~CTLNの生成指示を行う。選択回路11は、制御回路19からの指示に基づいて、N個の制御信号CTL1~CTLNを生成する。リングオシレータ10のN個の負荷回路LD1~LDNは、複数の制御信号CTLに基づいて、容量素子CAPを“有効”または“無効”に設定する。リングオシレータ10は、イネーブル信号ENが高レベルである場合に、発振動作を行い、発振信号S1を生成する。出力回路12は、イネーブル信号ENが高レベルである場合に、リングオシレータ10から供給された発振信号S1を分周することにより発振信号S2を生成し、この発振信号S2を出力する。
(容量値測定動作)
 次に、テストシステム100における、半導体回路1の容量素子CAPの容量値を測定する動作について詳細に説明する。
 図3は、テストシステム100の一動作例を表すものである。この例では、テストシステム100は、リングオシレータ10のN個の負荷回路LD1~LDNの容量素子CAPのうちの1つを“有効”にし、“有効”にされた容量素子CAPの容量値を求める。そして、この動作を繰り返すことにより、N個の負荷回路LD1~LDNの全ての容量素子CAPの容量値を求める。以下に、この動作について詳細に説明する。
 まず、テスタ110は、電源電圧VDD1,VDD2を半導体回路1に供給する(ステップS101)。具体的には、電源電圧生成部111は、電源電圧VDD1,VDD2を生成する。そして、テスタ110は、電源電圧生成部111が生成した電源電圧VDD1を半導体回路1の電源端子TVDD1に供給するとともに、電源電圧VDD2を半導体回路1の電源端子TVDD2に供給する。
 次に、テスタ110は、半導体回路1の制御回路19に制御信号を供給し、制御回路19は、この制御信号に基づいて、イネーブル信号ENを低レベルにするとともに、制御信号CTL1~CTLNを低レベルにする(ステップS102)。これにより、リングオシレータ10は、発振動作を停止する。制御信号CTL1~CTLNが低レベルであるので、N個の負荷回路LD1~LDNの容量素子CAPは“無効”である。
 次に、テスタ110の電流測定部112は、半導体回路1の電源端子TVDD2に流れる電源電流IDD2(待機電流IDDQ)を測定する(ステップS103)。すなわち、待機電流IDDQは、リングオシレータ10が発振動作を停止しているときの電源電流IDD2である。
 次に、テスタ110は、半導体回路1の制御回路19に制御信号を供給し、制御回路19は、この制御信号に基づいてイネーブル信号ENを高レベルにする(ステップS104)。制御信号CTL1~CTLNは、低レベルを維持する。これにより、リングオシレータ10は、発振動作を開始する。
 次に、テスタ110の電流測定部112は、半導体回路1の電源端子TVDD2に流れる電源電流IDD2(電源電流IDDA)を測定し、周波数測定部113は、発振信号S2の周波数を測定する(ステップS105)。すなわち、電源電流IDDAは、リングオシレータ10が発振動作を行っているときの電源電流IDD2である。
 次に、演算部114は、電流測定部112の測定結果、および周波数測定部113の測定結果に基づいて、リングオシレータ10における寄生容量値Cparを求める(ステップS106)。この寄生容量値Cparは、N個の負荷回路LD1~LDNの容量素子CAPが“無効”である場合における、N個のインバータ回路IV1~IVNの負荷容量の容量値の合計値である。寄生容量値Cparは、以下の式を用いて算出することができる。
IDDA-IDDQ=Cpar×VDD2×f …(1)
ここで、IDDAは、ステップS105において測定した電源電流であり、IDDQは、ステップS103において測定した待機電流であり、VDD2は、電源端子TVDD2に供給している電源電圧であり、fは、発振信号S1の周波数である。この周波数fは、ステップS105において測定した発振信号S2の周波数、および分周回路14における分周比に基づいて算出することができる。
 次に、テスタ110は、負荷回路LD1の容量素子CAPを選択し、この容量素子CAPを"有効"にする(ステップS107)。具体的には、テスタ110は、半導体回路1の制御回路19に制御信号を供給し、制御回路19は、この制御信号に基づいて、制御信号CTL1を高レベルにし、それ以外の制御信号CTLを低レベルにする。これにより、負荷回路LD1の容量素子CAPは“有効”になり、それ以外の負荷回路LDの容量素子CAPは“無効”になる。
 次に、テスタ110の電流測定部112は、半導体回路1の電源端子TVDD2に流れる電源電流IDD2(電源電流IDDA)を測定し、周波数測定部113は、発振信号S2の周波数を測定する(ステップS108)。
 次に、演算部114は、電流測定部112の測定結果、および周波数測定部113の測定結果に基づいて、リングオシレータ10における、選択した容量素子CAPの容量値Cを算出する(ステップS109)。選択した容量素子CAPの容量値Cは、以下の式を用いて算出することができる。
IDDA-IDDQ=(C+Cpar)×VDD2×f …(2)
ここで、IDDAは、ステップS108において測定した電源電流であり、IDDQは、ステップS103において測定した待機電流であり、Cparは、ステップS106において算出した寄生容量値であり、VDD2は、電源端子TVDD2に供給している電源電圧であり、fは、発振信号S1の周波数である。
 次に、テスタ110は、N個の負荷回路LD1~LDNにおける全ての容量素子CAPを選択したかどうかを確認する(ステップS110)。
 ステップS110において、全ての容量素子CAPを選択していない場合には、まだ選択していない容量素子CAPのうちの1つを選択し、この容量素子CAPを“有効”にする(ステップS111)。具体的には、テスタ110は、半導体回路1の制御回路19に制御信号を供給し、制御回路19は、この制御信号に基づいて、まだ選択していない容量素子CAPのうちの1つを選択し、この容量素子CAPに対応する制御信号CTLを高レベルにし、それ以外の制御信号CTLを低レベルにする。これにより、選択した容量素子CAPは“有効”になり、それ以外の容量素子CAPは“無効”になる。そして、ステップS108に進む。このようにして、全ての容量素子CAPを選択するまで、ステップS108~S111の動作を繰り返す。
 ステップS110において、全ての容量素子CAPを選択した場合には、このフローは終了する。
 このようにして、半導体回路1では、複数の容量素子CAPのそれぞれの容量値を求めることができる。また、半導体回路1を用いて得られた容量素子CAPの容量値を利用して、様々な情報を得ることができる。例えば、互いに同じ容量値を有し、互いに同じ種類の複数の容量素子を、複数の容量素子CAPとして搭載した場合には、それらの複数の容量素子CAPのミスマッチばらつきを算出することができる。また、MOS型の容量素子を容量素子CAPとして搭載した場合には、容量素子CAPの容量値に基づいて、MOS構造におけるゲート長を算出することもできる。また、例えば、MIM型の容量素子を容量素子CAPとして搭載した場合には、容量素子CAPの容量値に基づいて、製造時におけるマスクの合わせずれ量を算出することもできる。
 以上のように、半導体回路1では、複数の負荷回路LDのそれぞれに、容量素子CAPおよびトランジスタTRを設けるようにしたので、容量素子CAPを個別に“有効”または“無効”に設定することができる。その結果、1つの半導体回路1を用いて、様々な容量素子CAPの容量値を算出することができる。すなわち、例えば、特許文献1,2に記載の技術のように、複数のインバータ回路のそれぞれに、容量素子を負荷として直接接続した場合には、容量素子のそれぞれの容量値を求めることができない。よって、例えば、様々な容量素子の容量値を求めたい場合には、複数のリングオシレータを準備する必要があり、この場合には、例えば回路面積が大きくなってしまう。一方、半導体回路1では、複数の負荷回路LDのそれぞれに、容量素子CAPおよびトランジスタTRを設けるようにした。これにより、トランジスタTRを個別にオンオフすることにより、容量素子CAPの容量値を個別に求めることができる。よって、例えば、互いに異なる容量値を有する複数の容量素子や、MIM型の容量素子やMIS型の容量素子など様々な種類の容量素子を、複数の容量素子CAPとして搭載した場合には、1つの半導体回路1を用いて、これらの様々な容量素子CAPの容量値を求めることができる。その結果、半導体回路1では、例えば、回路面積を抑えることができる。
 また、半導体回路1を用いて容量素子CAPの容量値を求めるようにしたので、例えば、後述する応用例A1,A2のように、この半導体回路1を、他の半導体回路(後述する半導体回路20)とともに1チップに集積化し、半導体回路1の容量素子CAPの容量値の測定結果に基づいて、半導体回路20における容量素子の容量値を調整することができる。
 すなわち、例えば、半導体ウエハのスクライブラインに形成されるプロセスTEG(Test Element Group)を用い、プロセスTEGに含まれる容量素子の容量値の測定結果に基づいて、半導体回路20における容量素子の容量値を調整する場合には、容量値を精度よく調整できないおそれがある。なぜならば、プロセスTEGは、半導体ウエハ内の数か所のみしか測定しないことが多いので、例えば半導体ウエハの面内の素子ばらつきを十分に考慮して容量値を調整することは難しいからである。一方、半導体回路1では、例えば、半導体回路1を半導体回路20とともに1チップに集積化することにより、半導体回路1の容量素子CAPの測定結果に基づいて、その容量素子CAPと同じチップに形成された半導体回路20における容量素子の容量値を調整することができる。その結果、容量値を精度よく調整することができる。
 以上の例では、負荷回路LD1~LDNのうちの1つの容量素子CAPを順次“有効”にしたが、これに限定されるものではなく、複数の容量素子CAPを同時に“有効”にしてもよい。この例では、10個の負荷回路LD1~LD10の容量素子CAPは、互いに同じ容量値を有し、互いに同じ種類の容量素子である。また、20個の負荷回路LD11~LD30の容量素子CAPは、互いに同じ容量値を有し、互いに同じ種類の容量素子である。
 図4A,4Bは、半導体回路1の一動作例を表すものである。図4A,4Bでは、トランジスタTRを、オンオフ状態を示すスイッチを用いて図示している。
 図4Aに示したように、半導体回路1は、10個の負荷回路LD1~LD10のトランジスタTRをオン状態にすることにより、負荷回路LD1~LD10の容量素子CAPを同時に“有効”にしている。テストシステム100は、このときの電源電流IDDA、および発振信号S2の周波数を測定し、これらの測定結果に基づいて、これらの10個の容量素子CAPの容量値の平均値を求めることができる。
 同様に、図4Bに示したように、半導体回路1は、20個の負荷回路LD11~LD30のトランジスタTRをオン状態にすることにより、負荷回路LD11~LD30の容量素子CAPを同時に“有効”にしている。テストシステム100は、このときの電源電流IDDA、および発振信号S2の周波数を測定し、これらの測定結果に基づいて、これらの20個の容量素子CAPの容量値の平均値を求めることができる。
 このように、複数の容量素子CAPを同時に“有効”に設定することにより、1つずつ容量素子CAPを順次“有効”に設定する場合に比べて、短い時間で、これらの複数の容量素子CAPの容量値の平均値を求めることができる。言い換えれば、1つの容量素子CAPの容量値を求める時間で、複数の容量素子CAPの容量値の平均値を求めることができるので、容量値を測定する際の測定精度を高めることができる。
 同時に“有効”にする容量素子CAPの数は、例えば、容量値に応じて設定してもよいし、容量素子CAPの種類に応じて設定してもよい。
 このように、半導体回路1では、用途に応じて、例えば“有効”にする容量素子CAPを選択し、あるいは、同時に“有効”にする容量素子CAPの数を設定することができるので、測定動作の自由度を高めることができる。
[効果]
 以上のように本実施の形態では、複数の負荷回路のそれぞれに、容量素子およびトランジスタを設けるようにしたので、用途に応じて、例えば“有効”にする容量素子を選択し、あるいは、同時に“有効”にする容量素子の数を設定することができるので、測定動作の自由度を高めることができる。
[変形例1]
 上記実施の形態では、図1に示したように、1つのインバータ回路IVに1つの負荷回路LDを設けるようにした。このインバータ回路IVは、例えば、図5に示したように、2つのトランジスタ91,92を用いて構成してもよい。トランジスタ91は、N型のMOSトランジスタであり、ドレインはインバータ回路IVの出力端子に接続され、ゲートはインバータ回路IVの入力端子に接続され、ソースは接地される。トランジスタ92は、P型のMOSトランジスタであり、ドレインはインバータ回路IVの出力端子に接続され、ゲートはインバータ回路IVの入力端子に接続され、ソースには電源電圧VDD2が供給される。
 また、インバータ回路IVは、例えば、図6に示したように、4つのトランジスタ93~96を用いて構成してもよい。トランジスタ93,94は、N型のMOSトランジスタであり、トランジスタ95,96は、P型のMOSトランジスタである。トランジスタ93のドレインはインバータ回路IVの出力端子に接続され、ゲートはインバータ回路IVの入力端子に接続され、ソースはトランジスタ94のドレインに接続される。トランジスタ94のドレインはトランジスタ93のソースに接続され、ゲートには電圧Vnが供給され、ソースは接地される。電圧Vnは、例えばアナログ電圧であり、トランジスタ94の抵抗値は、この電圧Vnにより設定される。トランジスタ95のドレインはインバータ回路IVの出力端子に接続され、ゲートはインバータ回路IVの入力端子に接続され、ソースはトランジスタ96のドレインに接続される。トランジスタ96のドレインはトランジスタ95のソースに接続され、ゲートには電圧Vpが供給され、ソースには電源電圧VDD2が供給される。電圧Vpは、例えばアナログ電圧であり、トランジスタ96の抵抗値は、この電圧Vpにより設定される。電圧Vp,Vnは、例えば、図示しない電圧生成部により生成される。
 また、負荷回路LDは、例えば、図7に示したように構成してもよい。この負荷回路LDは、トランジスタTRと、容量素子CAPとを有している。本変形例に係る負荷回路LDでは、上記実施の形態に係る負荷回路LD(図1)において、トランジスタTRおよび容量素子CAPを互いに入れ替えたものである。トランジスタTRのドレインはインバータ回路IVの出力端子に接続され、ソースは容量素子CAPの一端に接続される。容量素子CAPの一端はトランジスタTRのソースに接続され、他端は接地されている。
 また、例えば、図8に示したように、1つのインバータ回路IVに2つの負荷回路LD(負荷回路LDA,LDB)を設けてもよい。負荷回路LDAは、インバータ回路IVの出力端子に接続される。この負荷回路LDAは、容量素子CAPと、トランジスタTRとを有している。負荷回路LDAのトランジスタTRは、制御信号CTLAに基づいて“有効”または“無効”に設定される。負荷回路LDBは、インバータ回路IVの出力端子に接続される。この負荷回路LDBは、容量素子CAPと、トランジスタTRとを有している。負荷回路LDBのトランジスタTRは、制御信号CTLBに基づいて“有効”または“無効”に設定される。なお、これに限定されるものではなく、1つのインバータ回路IVに3つ以上の負荷回路を設けてもよい。
[変形例2]
 上記実施の形態では、N個のインバータ回路IV1~IVNに、N個の負荷回路LD1~LDNをそれぞれ接続したが、これに限定されるものではない。これに代えて、例えば、図9に示す半導体回路1Bのように、N個のインバータ回路IV1~IVNのうちの一部のインバータ回路IVにのみ負荷回路LDを接続してもよい。この例では、10個のインバータ回路IVに1つの割合で、負荷回路LDを接続している。
[変形例3]
 上記実施の形態では、出力回路12に分周回路14を設けるようにしたが、これに限定されるものではなく、これに代えて、例えば、図10に示す半導体回路1Cのように、分周回路14を設けなくてもよい。半導体回路1Cは、出力回路12Cを備えている。出力回路12Cは、インバータ回路13と、論理積回路15とを有している。この出力回路12Cは、上記実施の形態に係る出力回路12(図1)から分周回路14を省いたものである。
[変形例4]
 上記実施の形態では、インバータ回路IVを用いてリングオシレータ10を構成したが、これに限定されるものではなく、様々な論理ゲート回路を用いてリングオシレータを構成することができる。例えば、図11に示す半導体回路1Dのように、バッファ回路を用いてリングオシレータを構成してもよい。半導体回路1Dは、リングオシレータ10Dを備えている。リングオシレータ10Dは、複数のバッファ回路BF(この例ではN個のバッファ回路BF1~BFN)と、複数の負荷回路LD(この例ではN個の負荷回路LD1~LDN)と、反転論理積回路NDとを有している。複数のバッファ回路BF1~BFNおよび反転論理積回路NDは、一巡経路上に配置されている。
<2.応用例>
 次に、本技術の応用例について、いくつか例を挙げて詳細に説明する。
(応用例A1)
 図12は、応用例A1に係る半導体装置2の一例を表すものである。半導体装置2は、半導体回路1と、半導体回路20とを備えている。半導体回路1および半導体回路20は、1つの半導体チップに形成される。
 半導体回路20は、所定の機能を実現する回路である。この半導体回路20は、可変容量素子30と、設定部39とを有している。
 可変容量素子30は、容量値を調整可能に構成されたものである。この可変容量素子30の容量値は、所望の値(例えば設計値)に近いことが望まれるものである。すなわち、半導体回路20は、この可変容量素子30の容量値を所望の値に設定することにより所望の特性を実現することができる回路であり、容量値に対する要求精度が高い回路である。可変容量素子30は、この例では、容量素子31A,32Aと、スイッチ31B,32Bとを有している。容量素子31A,32Aは、互いに異なる容量値を有している。可変容量素子30では、スイッチ31Bがオン状態になることにより容量素子31Aが選択され、スイッチ32Bがオン状態になることにより容量素子32Aが選択されるようになっている。なお、この例では、2つの容量素子31A,32Aを設けるようにしたが、これに限定されるものではなく、互いに異なる容量値を有する3以上の容量素子を設け、これらの容量素子のうちの1つを選択できるようにしてもよい。
 設定部39は、スイッチ31B,32Bのうちの一方をオン状態に設定することにより、可変容量素子30の容量値を設定するものである。設定部39は、例えば、不揮発性メモリを有している。この不揮発性メモリは、スイッチ31B,32Bのうちのどちらをオン状態にするかについての情報(設定情報INF)を記憶する。そして、設定部39は、この不揮発性メモリに記憶された設定情報INFに基づいて、スイッチ31B,32Bのうちの一方をオン状態に設定するようになっている。
 この構成により、設定部39は、不揮発性メモリに記憶された設定情報INFに基づいて、スイッチ31B,32Bのうちの一方をオン状態に設定することにより、可変容量素子30の容量値を設定する。不揮発性メモリには、あらかじめ、可変容量素子30の容量値を所望の値(例えば設計値)に近づけることができる設定情報INFが記憶される。これにより、半導体装置2では、可変容量素子30の容量値を所望の値に近づけることができるようになっている。
 図13は、テストシステム200の一構成例を表すものである。テストシステム200は、テスタ210を有している。テスタ210は、設定情報生成部215を有している。設定情報生成部215は、演算部114が算出した半導体回路1の容量素子CAPの容量値に基づいて、可変容量素子30の容量値を所望の値(例えば設計値)に近づけることができる設定情報INFを生成するものである。具体的には、例えば、複数の容量素子CAPに、容量素子31A,32Aと同じ種類であり、容量値が近い容量素子がある場合には、設定情報生成部215、その容量素子CAPの容量値に基づいて設定情報INFを生成することができる。そして、テスタ210は、この設定情報INFを半導体回路20の設定部39に供給するようになっている。
 ここで、半導体装置2は、本開示における「半導体装置」の一具体例に対応する。演算部114および設定情報生成部215は、本開示における「調整部」の一具体例に対応する。
 この構成により、テストシステム200では、テスタ210が、半導体回路1のリングオシレータ10に発振動作を行わせ、電流測定部112が、電源端子TVDD2に流れる電源電流IDD2を測定し、周波数測定部113が、発振信号S2の周波数を測定する。そして、演算部114は、電流測定部112が測定した電源電流IDD2、および周波数測定部113が測定した発振信号S2の周波数に基づいて、半導体回路1の容量素子CAPの容量値を算出する。設定情報生成部215は、演算部114が算出した半導体回路1の容量素子CAPの容量値に基づいて、可変容量素子30の容量値を所望の値(例えば設計値)に近づけることができる設定情報INFを生成する。そして、テスタ210は、この設定情報INFを半導体回路20の設定部39に供給する。設定部39は、この設定情報INFを不揮発性メモリに記憶する。これ以降、設定部39は、この不揮発性メモリに記憶された設定情報INFに基づいて、スイッチ31B,32Bのうちの一方をオン状態に設定する。このようにして、テストシステム200では、可変容量素子30の容量値を調整することができる。
 なお、この例では、互いに異なる容量値を有する複数の容量素子(この例では2つの容量素子31A,32A)を設け、これらの複数の容量素子のうち、所望の値(例えば設計値)に近い容量値を有する容量素子を選択したが、これに限定されるものではない。例えば、互いに等しい容量値を有する複数の容量素子を設け、これらの複数の容量素子のうちの選択する容量素子の数を設定することにより、容量値を所望の値(例えば設計値)に近づけるようにしてもよい。
 また、この例では、半導体回路20における1つの可変容量素子30の容量値を調整したが、これに限定されるものではなく、2以上の可変容量素子30のそれぞれの容量値を調整してもよい。また、この例では、半導体装置2に1つの半導体回路1を設けたが、これに限定されるものではなく、2つ以上の半導体回路1を設けてもよい。そして、この2つ以上の半導体回路1の容量素子CAPに基づいて、2以上の可変容量素子30のそれぞれの容量値を調整してもよい。
(応用例A2)
 図14は、応用例A2に係る半導体装置3の一例を表すものである。半導体装置3は、半導体回路1と、半導体回路20と、測定回路40とを備えている。半導体回路1、半導体回路20、および測定回路40は、1つの半導体チップに形成される。
 測定回路40は、電流測定部112と、周波数測定部113と、演算部114と、設定情報生成部215とを有している。
 この構成により、半導体装置3では、測定回路40が、半導体回路1のリングオシレータ10に発振動作を行わせ、電流測定部112が、電源端子TVDD2に流れる電源電流IDD2を測定し、周波数測定部113が、発振信号S2の周波数を測定する。そして、演算部114は、電流測定部112が測定した電源電流IDD2、および周波数測定部113が測定した発振信号S2の周波数に基づいて、半導体回路1の容量素子CAPの容量値を算出する。設定情報生成部215は、演算部114が算出した半導体回路1の容量素子CAPの容量値に基づいて、可変容量素子30の容量値を所望の値(例えば設計値)に近づけることができる設定情報INFを生成する。半導体回路20の設定部39は、この設定情報INFを不揮発性メモリに記憶する。これ以降、設定部39は、この不揮発性メモリに記憶された設定情報INFに基づいて、スイッチ31B,32Bのうちの一方をオン状態に設定する。このようにして、半導体装置3では、可変容量素子30の容量値を調整することができる。
(応用例A3)
 応用例A1,A2では、半導体回路1および半導体回路20を1つの半導体チップに形成したが、これに限定されるものではない。これに代えて、半導体回路1および半導体回路20を、それぞれ別々の半導体チップに形成してもよい。この場合でも、例えば、半導体回路1および半導体回路20が、同じ半導体ウエハからダイシングされたものである場合には、半導体回路1の容量素子CAPの容量値に基づいて、半導体回路20の可変容量素子30の容量値を調整することができる。
 以上、実施の形態および変形例、ならびにそれらの具体的な応用例を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。
 例えば、反転論理積回路NDを用いてリングオシレータ10を構成したが、これに限定されるものではなく、これに代えて、例えば反転論理和(NOR)を求める反転論理和回路を用いてリングオシレータを構成してもよい。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成とすることができる。
(1)一巡経路上に配置された第1のゲート回路を含む複数のゲート回路と、前記第1のゲート回路の出力端子に接続され、第1の制御信号に基づいて有効または無効に設定可能な第1の容量素子を含む第1の負荷回路とを有するリングオシレータと、
 前記第1の制御信号を生成可能な制御信号生成回路と
 を備えた半導体装置。
(2)前記第1の負荷回路は、前記第1の容量素子に直列に接続され、前記第1の制御信号に基づいてオンオフ可能な第1のスイッチを有する
 前記(1)に記載の半導体装置。
(3)前記複数のゲート回路は、第2のゲート回路を含み、
 前記リングオシレータは、前記第2のゲート回路の出力端子に接続され、第2の制御信号に基づいて有効または無効に設定可能な第2の容量素子を含む第2の負荷回路をさらに有し、
 前記制御信号生成回路は、前記第2の制御信号をも生成可能である
 前記(1)または(2)に記載の半導体装置。
(4)前記第2の負荷回路は、前記第2の容量素子に直列に接続され、前記第1の制御信号に基づいてオンオフ可能な第2のスイッチを有し、
 前記第2の容量素子の種類は、前記第1の容量素子の種類と異なる
 前記(3)に記載の半導体装置。
(5)前記第2の負荷回路は、前記第2の容量素子に直列に接続され、前記第1の制御信号に基づいてオンオフ可能な第2のスイッチを有し、
 前記第2の容量素子の容量値は、前記第1の容量素子の容量値と異なる
 前記(3)または(4)に記載の半導体装置。
(6)第1の電源端子および第2の電源端子をさらに備え、
 前記制御信号生成回路は、前記第1の電源端子に接続され、
 前記複数のゲート回路は、前記第2の電源端子に接続された
 前記(1)から(5)のいずれかに記載の半導体装置。
(7)前記リングオシレータは、前記第1の負荷回路を含む複数の負荷回路を有し、
 前記複数の負荷回路のそれぞれは、前記複数のゲート回路のうちの互いに異なるゲート回路の出力端子に接続され、
 前記負荷回路の数は、前記ゲート回路の数よりも少ない
 前記(1)から(6)のいずれかに記載の半導体装置。
(8)前記リングオシレータは、前記第1のゲート回路の前記出力端子に接続され、第3の制御信号に基づいて有効または無効に設定可能な第3の容量素子を含む第3の負荷回路をさらに有し、
 前記制御信号生成回路は、前記第3の制御信号をも生成可能である
 前記(1)から(6)のいずれかに記載の半導体装置。
(9)前記複数のゲート回路に流れる電源電流を測定可能な電流測定部と、
 前記リングオシレータが生成する発振信号の周波数を測定可能な周波数測定部と、
 容量値を調整可能な可変容量素子と、
 前記電流測定部における測定結果および前記周波数測定部における測定結果に基づいて、前記可変容量素子の前記容量値を調整可能な調整部と
 をさらに備えた
 前記(1)から(8)のいずれかに記載の半導体装置。
(10)一巡経路上に配置された第1のゲート回路を含む複数のゲート回路と、前記第1のゲート回路の出力端子に接続され、第1の制御信号に基づいて有効または無効に設定可能な第1の容量素子を含む第1の負荷回路とを有するリングオシレータを動作させることと、
 前記複数のゲート回路の消費電流を測定することと、
 前記リングオシレータが生成する発振信号の周波数を測定することと、
 前記消費電流および前記周波数に基づいて、前記第1の容量素子の容量値を算出することと
 を含む容量値測定方法。
(11)前記消費電流を測定することは、前記第1の容量素子を無効に設定したときに前記複数のゲート回路の第1の消費電流を測定することと、前記第1の容量素子を有効に設定したときに前記複数のゲート回路の第2の消費電流を測定することとを含み、
 前記周波数を測定することは、前記第1の容量素子を無効に設定したときに前記発振信号の第1の周波数を測定することと、前記第1の容量素子を有効に設定したときに前記発振信号の第2の周波数を測定することとを含み、
 前記第1の容量素子の前記容量値を算出することは、前記第1の消費電流、前記第2の消費電流、前記第1の周波数、および前記第2の周波数に基づいて、前記第1の容量素子の前記容量値を算出することを含む
 前記(10)に記載の容量値測定方法。
 本出願は、日本国特許庁において2018年5月17日に出願された日本特許出願番号2018-095116号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (11)

  1.  一巡経路上に配置された第1のゲート回路を含む複数のゲート回路と、前記第1のゲート回路の出力端子に接続され、第1の制御信号に基づいて有効または無効に設定可能な第1の容量素子を含む第1の負荷回路とを有するリングオシレータと、
     前記第1の制御信号を生成可能な制御信号生成回路と
     を備えた半導体装置。
  2.  前記第1の負荷回路は、前記第1の容量素子に直列に接続され、前記第1の制御信号に基づいてオンオフ可能な第1のスイッチを有する
     請求項1に記載の半導体装置。
  3.  前記複数のゲート回路は、第2のゲート回路を含み、
     前記リングオシレータは、前記第2のゲート回路の出力端子に接続され、第2の制御信号に基づいて有効または無効に設定可能な第2の容量素子を含む第2の負荷回路をさらに有し、
     前記制御信号生成回路は、前記第2の制御信号をも生成可能である
     請求項1に記載の半導体装置。
  4.  前記第2の負荷回路は、前記第2の容量素子に直列に接続され、前記第1の制御信号に基づいてオンオフ可能な第2のスイッチを有し、
     前記第2の容量素子の種類は、前記第1の容量素子の種類と異なる
     請求項3に記載の半導体装置。
  5.  前記第2の負荷回路は、前記第2の容量素子に直列に接続され、前記第1の制御信号に基づいてオンオフ可能な第2のスイッチを有し、
     前記第2の容量素子の容量値は、前記第1の容量素子の容量値と異なる
     請求項3に記載の半導体装置。
  6.  第1の電源端子および第2の電源端子をさらに備え、
     前記制御信号生成回路は、前記第1の電源端子に接続され、
     前記複数のゲート回路は、前記第2の電源端子に接続された
     請求項1に記載の半導体装置。
  7.  前記リングオシレータは、前記第1の負荷回路を含む複数の負荷回路を有し、
     前記複数の負荷回路のそれぞれは、前記複数のゲート回路のうちの互いに異なるゲート回路の出力端子に接続され、
     前記負荷回路の数は、前記ゲート回路の数よりも少ない
     請求項1に記載の半導体装置。
  8.  前記リングオシレータは、前記第1のゲート回路の前記出力端子に接続され、第3の制御信号に基づいて有効または無効に設定可能な第3の容量素子を含む第3の負荷回路をさらに有し、
     前記制御信号生成回路は、前記第3の制御信号をも生成可能である
     請求項1に記載の半導体装置。
  9.  前記複数のゲート回路に流れる電源電流を測定可能な電流測定部と、
     前記リングオシレータが生成する発振信号の周波数を測定可能な周波数測定部と、
     容量値を調整可能な可変容量素子と、
     前記電流測定部における測定結果および前記周波数測定部における測定結果に基づいて、前記可変容量素子の前記容量値を調整可能な調整部と
     をさらに備えた
     請求項1に記載の半導体装置。
  10.  一巡経路上に配置された、第1のゲート回路を含む複数のゲート回路と、前記第1のゲート回路の出力端子に接続され、第1の制御信号に基づいて有効または無効に設定可能な第1の容量素子を含む第1の負荷回路とを有するリングオシレータを動作させることと、
     前記複数のゲート回路の消費電流を測定することと、
     前記リングオシレータが生成する発振信号の周波数を測定することと、
     前記消費電流および前記周波数に基づいて、前記第1の容量素子の容量値を算出することと
     を含む容量値測定方法。
  11.  前記消費電流を測定することは、前記第1の容量素子を無効に設定したときに前記複数のゲート回路の第1の消費電流を測定することと、前記第1の容量素子を有効に設定したときに前記複数のゲート回路の第2の消費電流を測定することとを含み、
     前記周波数を測定することは、前記第1の容量素子を無効に設定したときに前記発振信号の第1の周波数を測定することと、前記第1の容量素子を有効に設定したときに前記発振信号の第2の周波数を測定することとを含み、
     前記第1の容量素子の前記容量値を算出することは、前記第1の消費電流、前記第2の消費電流、前記第1の周波数、および前記第2の周波数に基づいて、前記第1の容量素子の前記容量値を算出することを含む
     請求項10に記載の容量値測定方法。
PCT/JP2019/016253 2018-05-17 2019-04-16 半導体装置および容量値測定方法 WO2019220839A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980031609.6A CN112105938A (zh) 2018-05-17 2019-04-16 半导体装置及电容值测量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018095116A JP2019200147A (ja) 2018-05-17 2018-05-17 半導体装置および容量値測定方法
JP2018-095116 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019220839A1 true WO2019220839A1 (ja) 2019-11-21

Family

ID=68540156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016253 WO2019220839A1 (ja) 2018-05-17 2019-04-16 半導体装置および容量値測定方法

Country Status (3)

Country Link
JP (1) JP2019200147A (ja)
CN (1) CN112105938A (ja)
WO (1) WO2019220839A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186880A (ja) * 1997-12-24 1999-07-09 Matsushita Electric Ind Co Ltd 発振器
JP2001006400A (ja) * 1999-06-18 2001-01-12 Fujitsu Ltd メモリデバイス
US6728647B1 (en) * 2001-02-21 2004-04-27 Xilinx, Inc. Determination of capacitances of individual resources in programmable logic devices
JP2005302839A (ja) * 2004-04-07 2005-10-27 Toshiba Corp 半導体集積回路
JP2007037097A (ja) * 2005-05-25 2007-02-08 Infineon Technologies Ag 第2遅延回路を介してトリミングされる第1遅延回路を有する集積回路チップ、および遅延時間を調整する方法
JP2009025043A (ja) * 2007-07-17 2009-02-05 Toshiba Corp 半導体集積装置およびその検査方法
JP2013007691A (ja) * 2011-06-27 2013-01-10 Renesas Electronics Corp 容量測定回路、半導体装置および容量測定方法
JP2018029256A (ja) * 2016-08-17 2018-02-22 株式会社東芝 遅延回路、発振回路、およびブーストコンバータ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795964A (en) * 1986-08-01 1989-01-03 Texas Instruments Incorporated Method and apparatus for measuring the capacitance of complementary field-effect transistor devices
EP0416145A1 (de) * 1989-09-05 1991-03-13 Siemens Aktiengesellschaft Schaltungsanordnung für einen integrierbaren und steuerbaren Ringoszillator
US5302920A (en) * 1992-10-13 1994-04-12 Ncr Corporation Controllable multi-phase ring oscillators with variable current sources and capacitances
JP2001257567A (ja) * 2000-03-08 2001-09-21 Hitachi Ltd 電圧制御発振器およびpll回路および半導体集積回路装置
FR2874467B1 (fr) * 2004-08-17 2006-11-17 Atmel Corp Circuit pour un generateur d'eeprom haute tension
TWI448083B (zh) * 2008-12-03 2014-08-01 Mstar Semiconductor Inc 環振盪器中的延遲單元及相關方法
JP6352042B2 (ja) * 2013-06-28 2018-07-04 エイブリック株式会社 遅延回路、発振回路及び半導体装置
JP2016025644A (ja) * 2014-07-24 2016-02-08 株式会社東芝 発振回路及び位相同期回路
JP6719236B2 (ja) * 2016-03-18 2020-07-08 エイブリック株式会社 発振回路、昇圧回路及び半導体装置
CN107276566A (zh) * 2016-04-07 2017-10-20 中芯国际集成电路制造(上海)有限公司 环形振荡电路
CN105954596B (zh) * 2016-04-21 2019-06-28 上海华力微电子有限公司 一种用于小电容失配检测及绝对值测量的电路及方法
JP2018049924A (ja) * 2016-09-21 2018-03-29 ソニーセミコンダクタソリューションズ株式会社 半導体装置および半導体装置の動作方法、並びに製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186880A (ja) * 1997-12-24 1999-07-09 Matsushita Electric Ind Co Ltd 発振器
JP2001006400A (ja) * 1999-06-18 2001-01-12 Fujitsu Ltd メモリデバイス
US6728647B1 (en) * 2001-02-21 2004-04-27 Xilinx, Inc. Determination of capacitances of individual resources in programmable logic devices
JP2005302839A (ja) * 2004-04-07 2005-10-27 Toshiba Corp 半導体集積回路
JP2007037097A (ja) * 2005-05-25 2007-02-08 Infineon Technologies Ag 第2遅延回路を介してトリミングされる第1遅延回路を有する集積回路チップ、および遅延時間を調整する方法
JP2009025043A (ja) * 2007-07-17 2009-02-05 Toshiba Corp 半導体集積装置およびその検査方法
JP2013007691A (ja) * 2011-06-27 2013-01-10 Renesas Electronics Corp 容量測定回路、半導体装置および容量測定方法
JP2018029256A (ja) * 2016-08-17 2018-02-22 株式会社東芝 遅延回路、発振回路、およびブーストコンバータ

Also Published As

Publication number Publication date
CN112105938A (zh) 2020-12-18
JP2019200147A (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
US8368472B2 (en) Oscillation circuit
WO2018150737A1 (ja) 絶縁ゲート型半導体デバイス駆動回路
US7265639B2 (en) Methods and apparatus for ring oscillator based MOSFET gate capacitance measurements
US9319034B2 (en) Slew based process and bias monitors and related methods
US20020011826A1 (en) Semiconductor integrated circuit device capable of stably generating internal voltage
JP2015154453A (ja) 電源電圧調整装置
US20210208618A1 (en) On-chip reference current generating circuit
KR20160045697A (ko) 재구성 가능한 지연 회로, 및 그 지연 회로를 사용한 지연 모니터 회로, 편차 보정 회로, 편차 측정 방법 및 편차 보정 방법
US20130134788A1 (en) Semiconductor device
JP2002026099A (ja) エレクトロマイグレーション評価回路
US9239583B2 (en) Circuit for generation of an electric current with a configurable value
WO2019220839A1 (ja) 半導体装置および容量値測定方法
US11075602B1 (en) Oscillator compensation using bias current
JP2013007691A (ja) 容量測定回路、半導体装置および容量測定方法
US20050094421A1 (en) Integrated charge pump voltage converter
US6601177B1 (en) Semiconductor integrated circuit
US9444458B2 (en) Semiconductor device including inverter gate circuit with connection configuration switch circuit switching real values of gate width and gate length
JPH11145800A (ja) Cmos型可変遅延回路及びその遅延時間の制御方法並びに半導体試験装置
JP2013214915A (ja) 発振装置、半導体装置、及び発振装置の動作方法
US8264287B2 (en) Method, apparatus, and system for measuring analog voltages on die
US9726714B2 (en) Sensor device and inspection method thereof
JP7186134B2 (ja) 半導体装置及びそれを備えた半導体システム
JP4917864B2 (ja) Ad変換器およびその調整方法
JP5656760B2 (ja) 半導体集積回路装置
JP2017181313A (ja) 電子回路および電流測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803285

Country of ref document: EP

Kind code of ref document: A1