WO2019216134A1 - 複合タングステン酸化物膜及びその製造方法、並びに該膜を有する膜形成基材及び物品 - Google Patents

複合タングステン酸化物膜及びその製造方法、並びに該膜を有する膜形成基材及び物品 Download PDF

Info

Publication number
WO2019216134A1
WO2019216134A1 PCT/JP2019/016401 JP2019016401W WO2019216134A1 WO 2019216134 A1 WO2019216134 A1 WO 2019216134A1 JP 2019016401 W JP2019016401 W JP 2019016401W WO 2019216134 A1 WO2019216134 A1 WO 2019216134A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
tungsten oxide
composite tungsten
oxide film
wavelength
Prior art date
Application number
PCT/JP2019/016401
Other languages
English (en)
French (fr)
Inventor
佐藤 啓一
勲雄 安東
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to KR1020207032324A priority Critical patent/KR20210006910A/ko
Priority to US17/053,551 priority patent/US20210238727A1/en
Priority to AU2019265050A priority patent/AU2019265050A1/en
Priority to IL278407A priority patent/IL278407B1/en
Priority to CN201980030631.9A priority patent/CN112105756A/zh
Priority to CA3099470A priority patent/CA3099470A1/en
Priority to EP19800654.6A priority patent/EP3792371A4/en
Publication of WO2019216134A1 publication Critical patent/WO2019216134A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/219CrOx, MoOx, WOx
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Definitions

  • the present invention relates to a composite tungsten oxide film and a method for producing the same, and further relates to a film-forming substrate having the composite tungsten oxide film and an article using the function of the composite tungsten oxide film.
  • Patent Document 1 describes a light-shielding member having a mirror surface formed by vapor deposition of a metal such as aluminum as a light-shielding member such as a window material.
  • a light shielding member of a film formed by sputtering silver or the like is also used.
  • the appearance is a half mirror, so that reflection is dazzling for outdoor use, and there is a problem in landscape.
  • metal films such as aluminum and silver have high conductivity, there is a problem in that radio waves are reflected, and devices using radio waves such as mobile phones and smartphones are not easily connected.
  • the present applicant has proposed an infrared shielding fine particle dispersion having composite tungsten oxide fine particles described in Patent Document 2.
  • the composite tungsten oxide fine particles efficiently absorb sunlight, particularly light in the near infrared region, and additionally have high transparency to visible light.
  • the infrared shielding fine particle dispersion is obtained by dispersing composite tungsten oxide fine particles in an appropriate solvent to form a dispersion, adding a medium resin to the obtained dispersion, and then coating the substrate surface to form a thin film. It has both heat insulation and radio wave transmission.
  • Patent Document 3 discloses a composite tungsten oxide film manufactured by applying a solution containing a raw material compound of composite tungsten oxide to a substrate, followed by heat treatment.
  • Patent Document 2 and Patent Document 3 form a film by a coating method, a high coating technique is required to ensure film thickness control, large-area film thickness uniformity, and flatness. .
  • these methods basically use fine particles of a composite tungsten oxide compound, it is necessary to control the composition of the fine particles used in order to produce a composition deviating from the stoichiometric composition.
  • the film formed with the coating liquid containing the composite tungsten oxide fine particles described in Examples of Patent Document 2 and Patent Document 3 has a problem of absorbing light in the near infrared region.
  • a thin film formed by a physical film formation method can be a film excluding elements other than the target composition (for example, organic substances such as resins and solvents).
  • elements other than the target composition for example, organic substances such as resins and solvents.
  • it since it is not necessary to use a dispersant or a medium resin that is not suitable for high-temperature processing, it can be used in a high-temperature manufacturing process, for example, in a manufacturing process for tempered glass that is subjected to high-temperature heat treatment.
  • a thin film formed by a physical film formation method can easily control the film thickness, and can easily have a laminated structure.
  • Patent Document 4 proposes a vehicle window glass and a method for manufacturing the same, and uses a large in-line type sputtering apparatus capable of processing a large-area substrate such as a vehicle window. If such a production facility can be used, a film having a uniform film thickness, high quality and stability can be easily obtained, and productivity is high. Further, the film formation source of the physical film formation method (for example, the target material in the sputtering method) may not be a single compound, but may be a mixture of a single element composition or a mixture of a plurality of compounds, for example. The freedom of composition selection is extremely wide.
  • Patent Document 5 proposes a composite tungsten oxide film produced by a sputtering method.
  • a composite tungsten oxide film made of tungsten and at least one element selected from the group consisting of groups IVa, IIIa, VIIb, VIb and Vb of the periodic table is formed on the glass substrate.
  • the oxide film having this composition has an infrared transmittance of 40% or more and the heat ray shielding performance is not sufficient, and there is a problem that the function cannot be exhibited unless a multilayer film with another transparent dielectric film is used.
  • Patent Document 6 discloses tungsten oxide for use in which near infrared rays are absorbed and converted into heat (photothermal conversion).
  • Patent Document 7 shows that the composite tungsten oxide fine particles absorb the light energy of sunlight and are used for photoelectric conversion by charge transfer to the dye.
  • the composite tungsten oxide has a function of absorbing light to generate heat and a function of absorbing light and releasing electrons.
  • both Patent Documents 6 and 7 need to form a film by coating a solution containing fine particles, and do not have the advantage of a physical film formation method as described above.
  • the heat ray shielding performance of the composite tungsten oxide film by the conventional physical film-forming method is not yet sufficient, and in addition, examples of photothermal conversion applications and photoelectric conversion applications Not even shown.
  • a film formed by a coating method has a problem of poor transparency in the near infrared region.
  • the present invention has been made to solve such a situation, and has both transparency in the visible light region and infrared light absorption in the infrared light region, and has substantial radio wave permeability.
  • a composite tungsten film having a wavelength of 700 to 1200 nm and its manufacture. The present invention provides a method, and further provides a film-forming substrate or article utilizing any one or more of these functions.
  • the present inventors have intensively studied a composite tungsten oxide film, and according to a physical film formation method, the film is absorbed and shielded by optimizing the film formation conditions.
  • the present inventors have obtained an excellent composite tungsten film having a function of transmitting in the near infrared region, a function of generating heat by absorbing light, and a function of absorbing light and emitting electrons.
  • one embodiment of the present invention is the general formula M x W y O z (where M is one or more elements selected from alkali metals, alkaline earth metals, Fe, In, Tl, and Sn, W Is a composite tungsten oxide film whose main component is a composition represented by (Tungsten, O is oxygen), and 0.001 ⁇ x / y ⁇ 1, 2.2 ⁇ z / y ⁇ 3.0, Organic component is not substantially contained, sheet resistance is 10 5 ⁇ / ⁇ or more, transmittance at a wavelength of 550 nm is 50% or more, transmittance at a wavelength of 1400 nm is 30% or less, and absorption at a wavelength of 1400 nm is 35%.
  • the absorptance at a wavelength of 800 nm with respect to the absorptance at a wavelength of 1400 nm is 80% or less.
  • a composite tungsten oxide film having transparency in the visible light region and infrared light absorption property in the infrared light region and having substantial radio wave permeability is obtained using an infrared ray that does not cause radio wave interference. It can provide as a shielding film, a photothermal conversion film, and a photoelectric conversion film.
  • a composite tungsten oxide film having both near-infrared transmittance with a wavelength of 700 to 1200 nm and the above characteristics excellent light absorption characteristics can be obtained even in applications that require transmission in the above-mentioned wavelength region. It becomes the film
  • the composite tungsten oxide film may be derived from sputtering film formation.
  • M is one or more elements selected from Cs, Rb, K, Tl, In, Ba, Li, Na, Ca, Sr, Fe, and Sn. Also good.
  • the composite tungsten oxide film can have a thickness greater than 20 nm.
  • a composite tungsten oxide film having a high infrared shielding function, a photothermal conversion function, and a photoelectric conversion function can be obtained.
  • Another aspect of the present invention is a film-forming substrate in which a composite tungsten oxide film is formed on at least one surface of a film-forming substrate.
  • the film-forming substrate on which the above-described composite tungsten oxide film is formed By using the film-forming substrate on which the above-described composite tungsten oxide film is formed, it can be put into practical use such as mechanical characteristics and workability.
  • the film-forming substrate may have a softening point or a heat distortion temperature of 400 ° C. or higher.
  • a film-forming substrate having a more excellent function can be obtained by heat treatment after film formation.
  • the film formation substrate can be glass.
  • glass By using glass as the substrate for film formation, it is used in glass windows for vehicles and architectural windows, glass fibers, glass for photovoltaic power generation, glass for display, lenses and glass for mirrors, semiconductors and MEMS, etc.
  • An infrared shielding function, a photothermal conversion function, and a photoelectric conversion function can be imparted to equipment using glass used in a wide range of fields such as a glass substrate.
  • the article has one or more of the above-described composite tungsten oxide film and / or film-forming substrate.
  • Another aspect of the present invention is the general formula M x W y O z (where M is one or more elements selected from alkali metals, alkaline earth metals, Fe, In, Tl, and Sn, and W is Tungsten, O is oxygen, and is a method for producing a composite tungsten oxide film whose main component is a composition represented by 0.001 ⁇ x / y ⁇ 1, 2.2 ⁇ z / y ⁇ 3.0).
  • the conditions for the heat treatment step are either (1) or (2) below.
  • the film After the sputtering film formation in an inert gas in the film formation step, the film is heat-treated at a temperature of 400 ° C. to 600 ° C. in a gas containing oxygen in the heat treatment step.
  • the film is heat-treated at a temperature of 400 ° C. to 900 ° C. in an inert atmosphere or a reducing atmosphere.
  • a composite tungsten oxide film having the above-mentioned characteristics with a uniform thickness and high quality can be easily manufactured with high productivity with existing manufacturing equipment.
  • a composite tungsten oxide film having transparency in the visible light region and infrared light absorption in the infrared light region and having substantial radio wave permeability can be used as an infrared shielding film that does not cause radio wave interference. It can be provided as a photothermal conversion film and a photoelectric conversion film.
  • such a composite tungsten oxide film is widely used industrially, is a relatively harmless method at the time of film formation, and the raw material used is excellent in long-term storage, and is not subject to restrictions during storage or transportation of hazardous materials. It can be provided by a physical manufacturing method.
  • FIG. 1 is a diagram showing typical optical characteristics of the composite tungsten oxide film of the present invention, which is different from typical optical characteristics of the infrared shielding material fine particle dispersion described in Patent Document 2.
  • FIG. 2 is a representative example showing the light absorption characteristics of the composite tungsten oxide film of the present invention, and is a diagram showing the difference from the infrared shielding fine particle dispersion described in Patent Document 2.
  • FIG. 3 is a process diagram showing an outline of a process in the method for producing a composite tungsten oxide film according to one embodiment of the present invention.
  • Composite tungsten oxide film> A composite tungsten oxide film according to an embodiment of the present invention will be described.
  • the composite tungsten oxide film according to an embodiment of the present invention has a general formula M x W y O z (where M is selected from alkali metals, alkaline earth metals, Fe, In, Tl, and Sn). 1 or more elements, W is tungsten, and O is oxygen), and the film has 0.001 ⁇ x / y ⁇ 1, 2.2 ⁇ z / y ⁇ 3.0.
  • M is selected from alkali metals, alkaline earth metals, Fe, In, Tl, and Sn
  • W tungsten
  • O oxygen
  • composition range Details of the composition range are described in Patent Document 2 by the present applicant, and a film having high transparency and infrared light absorptivity is mainly composed of a composite tungsten oxide having this composition range. It is necessary to The basic optical characteristics of the composite tungsten oxide film are derived from the theoretically calculated atomic arrangement of the element M, tungsten W, and oxygen O. On the other hand, one embodiment of the present invention is a composite tungsten oxide film having characteristics different from those of the infrared shielding body described in Patent Document 2, and will be described in detail below while appropriately comparing with the invention according to Patent Document 2. To do.
  • the present applicant shows that the optical characteristics of the composite tungsten oxide are derived from two types of absorption.
  • the optical characteristics of the composite tungsten oxide film according to the present invention are different from those of the fine particle dispersion film according to Patent Document 2, and the absorption in the near infrared region of the wavelength of 700 to 1200 nm is low, which is different from the fine particle dispersion film.
  • the reason for this is presumed to be the difference between the fine particle dispersed film and the continuous film, as will be described later, but the details are still unknown.
  • the element M of the composite tungsten oxide film according to one embodiment of the present invention is one or more elements selected from alkali metals, alkaline earth metals, Fe, In, Tl, and Sn, and more preferably , Cs, Rb, K, Tl, In, Ba, Li, Na, Ca, Sr, Fe, and Sn.
  • This is a narrower range than the constituent elements described in Patent Document 2, but this is merely an element whose effect has been confirmed according to Examples, and is not included in the present invention. However, there is a possibility of having a similar function.
  • the atomic ratio x / y of the elements M and W (tungsten) is 0.001 ⁇ x / y ⁇ 1.
  • the atomic ratio z / y of O (oxygen) and W (tungsten) is 2.2 ⁇ z / y ⁇ 3.0.
  • x / y is less than 0.001, a sufficient amount of free electrons is not generated and an infrared shielding effect cannot be obtained.
  • x / y exceeds 1, an impurity phase is formed in the composite tungsten oxide film.
  • the composite tungsten oxide film according to one embodiment of the present invention does not substantially contain an organic component.
  • a dispersant or a medium resin is used as in the inventions according to Patent Document 2 and Patent Document 3.
  • substantially free of organic component means that it does not contain an intentionally added organic component such as a polymer dispersant in the film production process.
  • Patent Document 2 shows that the composite tungsten oxide fine particles preferably have a particle diameter of 800 nm or less, more preferably 100 nm or less, and a dispersion in which fine particles are dispersed in a medium. .
  • the composite tungsten oxide film according to an embodiment of the present invention the composite tungsten oxide is continuously formed without having a particle shape in a state of substantially not including an organic component, This is very different from the fine particle dispersion film of Patent Document 2.
  • the composite tungsten oxide has known crystal structures such as hexagonal crystal, cubic crystal, tetragonal crystal, orthorhombic crystal, and amorphous structure.
  • the composite tungsten oxide film according to an embodiment of the present invention may include a crystal structure such as a hexagonal crystal, a cubic crystal, a tetragonal crystal, and an orthorhombic crystal, and an amorphous structure. It is preferable that the element contains a larger hexagonal phase and a larger amount of the crystal phase.
  • FIG. 1 is a diagram showing typical optical characteristics of the composite tungsten oxide film of the present invention, which is different from the typical optical characteristics of the infrared shielding material fine particle dispersion described in Patent Document 2.
  • FIG. FIG. 4 is a typical example showing the light absorption characteristics of the composite tungsten oxide film of the present invention, and is a diagram showing a difference from the infrared shielding fine particle dispersion described in Patent Document 2.
  • the composite tungsten oxide film according to one embodiment of the present invention greatly absorbs light in the infrared region.
  • the composite tungsten oxide film according to one embodiment of the present invention is compared with the film (fine particle dispersion film) of the fine particle dispersion containing the composite tungsten oxide fine particles of Patent Document 2 as shown in FIGS.
  • the composite tungsten oxide film according to an embodiment of the present invention has an infrared shielding function, a photothermal conversion function, and a photoelectric conversion function that are lower than those of the fine particle dispersion film, but has a sufficiently high function compared to other materials.
  • the composite tungsten oxide film according to an embodiment of the present invention has a transmittance of 50% or more at a wavelength of 550 nm, a transmittance of 30% or less at a wavelength of 1400 nm, and an absorptivity at a wavelength of 1400 nm of 35% or more. That is, the transmittance at a wavelength of 550 nm needs to be 50% or more as an index of transparency in visible light, and the transmittance at a wavelength of 1400 nm is 30 as an index of light shielding performance and absorption performance in the infrared region. %, And the absorptance at a wavelength of 1400 nm needs to satisfy 35% or more.
  • the absorptance is a value obtained by subtracting the transmittance and the reflectance from 1.
  • the transmittance at a wavelength of 550 nm which is an index of transparency
  • the rear seat window is preferably black or dark gray from the viewpoint of privacy protection, and a pigment or the like may be intentionally used simultaneously with the heat ray shielding material.
  • the transparency index of the present invention refers to film characteristics in a state in which no intentional pigment or the like as described above is included. If the transparency index is lower than the above value, the daylighting will be worse, for example, the interior will be dark and the outside scenery will be difficult to see.
  • the transmittance at a wavelength of 1400 nm and the absorptivity at a wavelength of 1400 nm which are indicators of light shielding performance and absorption performance, can be configured so as not to satisfy the above values. Permeation becomes high, and heat insulation leads to a tingling sensation of the skin, an increase in room temperature, and a decrease in the amount of heat generated by photothermal conversion.
  • the composite tungsten oxide film according to an embodiment of the present invention preferably has an absorptance at a wavelength of 800 nm of 80% or less with respect to an absorptivity at a wavelength of 1400 nm. If the absorbance at a wavelength of 800 nm with respect to the absorptance at a wavelength of 1400 nm exceeds 80%, the transmission in the near-infrared region at a wavelength of 700 to 1200 nm is reduced, and light transmission in the region and high light absorption and shielding in the infrared region are aimed It becomes unsuitable for the use to do. For this reason, it becomes impossible to use a communication device, an imaging device, a sensor, or the like using near infrared light.
  • the composite tungsten oxide film according to an embodiment of the present invention is preferably formed with a film thickness exceeding 20 nm.
  • the composite tungsten oxide film according to an embodiment of the present invention is a film obtained by a physical method obtained by film formation by a sputtering method or the like, as described later, for example, after applying a solution described in Patent Document 3.
  • Films formed by heat treatment are formed by volatilizing components such as solvents and resins that are indispensable for film formation, resulting in residual stress associated with the film, resulting in residual volatile components and defects such as voids. May be inherent.
  • the composite tungsten oxide film according to an embodiment of the present invention is formed without containing a volatile component, the residual stress of the film accompanying the film formation can be reduced, and a residual volatile component, a void, etc. The defect does not occur. For this reason, a film without cracks or peeling can be formed.
  • the film thickness of the composite tungsten oxide film is 20 nm or less, sufficient absorption performance in the infrared region cannot be obtained, and the infrared transmittance at 1400 nm exceeds 30%.
  • the upper limit of the film thickness is not particularly limited as long as the thickness exceeds the film thickness.
  • the transmittance in the visible light region at a wavelength of 550 nm is less than 50%, the visible light transmittance is deteriorated, and peeling of the film occurs due to the influence of residual stress during film formation.
  • the transmittance of the membrane can be measured using a spectrophotometer.
  • the composite tungsten oxide film according to an embodiment of the present invention has a sheet resistance of 1.0 ⁇ 10 5 ⁇ / ⁇ or more, more preferably a value exceeding 1.0 ⁇ 10 10 ⁇ / ⁇ .
  • the sheet resistance of the film is lower than the above value, the free electrons of the film shield the electrostatic field and reflect the radio wave, so that the radio wave transmission is reduced, for example, communication failure of equipment using radio waves such as mobile phones, May cause interference interference due to radio wave reflection.
  • charging or clouding due to charging may occur, so even if it is too high, it may be harmful.
  • the sheet resistance can be adjusted by film formation conditions and heat treatment conditions described later. The sheet resistance can be measured using a resistivity meter, for example.
  • the composite tungsten oxide film according to an embodiment of the present invention is usually formed as a continuous film, but a form in which reflection is controlled by patterning, and a form in which lens functions are provided by providing irregularities. As long as it has the features of the present invention, it may be in any form, such as a film shape or irregularity.
  • the composite tungsten oxide film described in Patent Document 2 and Patent Document 3 has different characteristics, and has transparency in the visible light region, A composite tungsten oxide film having both infrared light absorptivity in the infrared light region and substantial radio wave permeability can be obtained.
  • FIG. 3 is a process diagram showing an outline of a method for producing a composite tungsten oxide film according to an embodiment of the present invention.
  • a method for manufacturing a composite tungsten oxide film according to an embodiment of the present invention is a method for manufacturing a composite tungsten oxide film mainly composed of an element M, tungsten W, and oxygen O, and includes a physical film formation method.
  • each step will be described in detail.
  • a film is formed using a physical film forming method.
  • the physical film forming method of the composite tungsten oxide film according to an embodiment of the present invention include a vacuum deposition method, a sputtering method, an ion plating method, and an ion beam method.
  • the sputtering method has a high energy of the film-forming particles and a strong adhesion, and the film formation is dense and the film quality is strong, and the film-forming process is stable and the film quality and film thickness can be controlled with high accuracy. .
  • the sputtering method can form refractory metals, alloys, and compounds, and it is possible to form oxides and nitrides by introducing reactive gases, making it easy to adjust the composition. It is preferable because it is widely used in a wide range of fields such as electronic devices such as liquid crystal display elements and hard disks, and general-purpose products such as window films and mirrors, and there are many manufacturing apparatuses.
  • a sputtering target for forming a composite tungsten oxide film represented by the general formula M x W y O z is, for example, an element M, a sputtering target composed of the element W, an element M, and a compound of the element W and the element O.
  • the sputtering target can be selected from various configurations, such as a sputtering target composed of a compound of element M and element O, a sputtering target composed of element W, and a sputtering target composed of a compound of element M, element W and element O.
  • a sputtering target previously formed as a compound phase is used.
  • the sputtering target may be used in the form of, for example, a green compact formed by compacting powder composed of particles of the sputtering target composition, or a sintered body formed by sintering the sputtering target composition.
  • the sputtering target is formed of a green compact or a sintered body as described above, it is substantially free of organic components and transported as a dangerous substance such as a fine particle dispersion dispersed in an organic solvent.
  • a dangerous substance such as a fine particle dispersion dispersed in an organic solvent.
  • storage or storage there are no restrictions on storage or storage, and no volatile components are contained, so safe and stable long-term storage is possible.
  • a film formed using the sputtering target does not substantially contain an organic component.
  • the sputtering target is, for example, a conductor having a specific resistance of 1 ⁇ ⁇ cm or less, a DC sputtering apparatus with high productivity can be used.
  • the sputtering target is a sintered body having a relative density of 70% or more, for example, cracks due to vibration during transportation are reduced, and it is not necessary to take extreme care in handling such as mounting to a device.
  • the form is suitable for industrial production.
  • the atmosphere of the film formation process is variously selected, but an inert gas atmosphere or a mixed atmosphere of inert gas and oxygen gas is preferable.
  • the inert gas for example, a rare gas such as helium gas or argon gas, nitrogen gas, or the like may be used. However, in the case of nitrogen gas, a nitride may be formed depending on the selection element M. Argon gas which is easily used and is readily available is more preferred.
  • the oxygen gas may be mixed at an arbitrary ratio, but if the amount of oxygen gas is large, the film forming rate becomes extremely slow, so 20% or less is preferable.
  • the film after film formation is usually amorphous, but a diffraction peak based on crystals may appear when X-ray diffraction analysis is performed.
  • the heat treatment can be performed in an oxidizing atmosphere such as air in the heat treatment step S2.
  • the oxidizing atmosphere is, for example, air or a mixed gas of oxygen and nitrogen containing 5 to 20% oxygen.
  • the heat treatment temperature is preferably 400 to 600 ° C.
  • the heat treatment temperature is lower than 400 ° C.
  • the film remains amorphous and does not crystallize, or even if crystallized, the hexagonal diffraction peak in X-ray diffraction becomes extremely weak and the absorption characteristics in the infrared region are low.
  • the heat treatment temperature is higher than 600 ° C., the characteristics of the film of the present invention can be obtained, but practical problems such as reaction of the film with the substrate and peeling of the film from the substrate occur.
  • the heat treatment step S2 is preferably performed in an inert atmosphere or an atmosphere containing a reducing gas.
  • a rare gas such as argon gas, nitrogen gas, or the like can be considered.
  • An example of the reducing gas is hydrogen gas.
  • the atmosphere containing the reducing gas is only hydrogen gas, a mixed gas of hydrogen and nitrogen, a mixed gas of rare gas such as hydrogen and argon, or the like.
  • the heat treatment temperature is preferably 400 to 900 ° C.
  • the heat treatment temperature is lower than 400 ° C.
  • the film remains amorphous and does not crystallize, or even if crystallized, the hexagonal diffraction peak in X-ray diffraction becomes extremely weak and the absorption characteristics in the infrared region are low.
  • the heat treatment temperature is higher than 900 ° C., the characteristics of the film of the present invention can be obtained, but practical problems such as the reaction between the film and the substrate and the peeling of the film from the substrate occur.
  • the atmosphere in the heat treatment step S2 is preferably an atmosphere containing a reducing gas.
  • a reducing gas is hydrogen gas.
  • the atmosphere containing the reducing gas is only hydrogen gas, a mixed gas of hydrogen and nitrogen, a mixed gas of rare gas such as hydrogen and argon, or the like.
  • the heat treatment temperature is 400 to 900 ° C.
  • the heat treatment temperature is lower than 400 ° C.
  • the film remains amorphous and does not crystallize, or even if crystallized, the hexagonal diffraction peak in X-ray diffraction becomes extremely weak and the absorption characteristics in the infrared region are low.
  • the heat treatment temperature is higher than 900 ° C., the characteristics of the film of the present invention can be obtained, but practical problems such as the reaction between the film and the substrate and the peeling of the film from the substrate occur.
  • the heat treatment atmosphere is an inert atmosphere.
  • the latter film has a lower absorption characteristic in the infrared region, and the effect of the present invention cannot be obtained.
  • the film after the heat treatment has a reduced film resistance and is inferior in radio wave permeability.
  • the heat treatment time is 5 minutes to 60 minutes, although it depends on the heat conduction of the substrate.
  • Patent Document 3 describes a method for producing a transparent conductive film using a composite tungsten oxide (paragraph 0065).
  • the transparent conductive film of Patent Document 3 is an atmosphere of any one of an inert gas, an inert gas and a reducing gas, and a reducing gas after the solution containing the composite tungsten compound is applied to the substrate as a starting tungsten raw material solution. It is shown to be obtained by heat treatment in the medium.
  • a surfactant having a polysiloxane skeleton containing an organic component is added to an ammonium metatungstate aqueous solution and an M element chloride aqueous solution to form a solution.
  • Example 2 of Patent Document 3 the characteristics of the film using rubidium (Rb) as the M element are shown in FIG. 3 of Patent Document 3, and absorption at a wavelength of 1400 nm calculated from the transmittance and reflectance that can be read from the same figure.
  • the absorptance at a wavelength of 800 nm with respect to the refractive index exceeds approximately 90%, and has the same characteristics as a film formed of a coating liquid containing a composite tungsten oxide fine particle, which is different from the composite tungsten oxide film of the present invention. is doing.
  • FIG. 2 of the present application is a diagram showing the absorptance in which the transmittance in the visible light region is equally combined.
  • the respective values are 57.3% for the cesium tungsten oxide sputtered film (the present invention) and cesium tungsten.
  • the oxide ink coating film (fine particle dispersion film) (Patent Document 2) was 83.0%. Therefore, the composite tungsten oxide film according to an embodiment of the present invention has characteristics different from those of the composite tungsten oxide films described in Patent Document 2 and Patent Document 3 around a wavelength of 800 nm (700 to 1200 nm). I understand.
  • the composite tungsten oxide film having the above-described characteristics is widely used industrially and is relatively harmless at the time of film formation. Further, it can be provided by a physical production method that is excellent in long-term storage of used raw materials and has no restrictions during transportation.
  • a film-forming substrate according to an embodiment of the present invention is obtained by forming the above-described composite tungsten oxide film on at least one surface of a film-forming substrate.
  • the film formation substrate is not particularly limited as long as the composite tungsten oxide film according to the embodiment of the present invention can be formed.
  • the substrate to be deposited is preferably a substrate having a softening point or a heat distortion temperature of 400 ° C. or higher because the heat treatment temperature of the film after film formation is 400 ° C. or higher.
  • a base material having a softening point or a heat distortion temperature of less than 400 ° C. is used, problems such as peeling of the film from the film-forming base material during the heat treatment and generation of cracks in the film occur.
  • the thermal expansion coefficient of the substrate to be deposited should be close to the thermal expansion coefficient of the film. Note that when the film is peeled off from the deposition target substrate, the above conditions are not necessarily required.
  • a substrate that dissolves at 400 ° C. or lower may be used.
  • the film formation substrate having a softening point or a heat distortion temperature of 400 ° C. or higher examples include glass, ceramics, and single crystals.
  • the film-forming substrate is not necessarily transparent, but a transparent substrate is required when the composite tungsten oxide film of the present invention is used together with the substrate.
  • the transparent substrate include single crystals such as glass, transparent ceramics such as YAG and Y 2 O 3 , and sapphire. Among these, it is preferable to use glass having a softening point of 400 ° C. or higher as a film formation substrate from the viewpoints of availability, low cost, weather resistance, chemical resistance, and the like.
  • the base material is not flat but has a curved surface or an uneven surface, the features of the present invention are not impaired, and various types may be selected.
  • a composite tungsten oxide film having transparency in the near infrared region can be obtained.
  • An article according to an embodiment of the present invention has one or more of the above-described composite tungsten oxide film and / or film-forming substrate.
  • An article having the composite tungsten oxide film and / or film-forming substrate of the present invention has a function of the composite tungsten oxide film absorbing and shielding light, a function of absorbing light and generating heat, and absorbing light. Any article may be used as long as it has any of the functions of emitting electrons or an article having a plurality of these functions.
  • the composite tungsten oxide film and / or film-forming substrate of the present invention is used together with, for example, a film or particles having other functions, it is included in an article utilizing the functions described in the present invention. .
  • An article having a function of absorbing and shielding light is, for example, heat shielding glass.
  • Thermal barrier glass has the feature of shielding heat while being transparent, and mitigates increases in indoor temperature and vehicle temperature due to sunlight in summer.
  • examples of other articles having a function of absorbing and shielding light include, for example, an optical filter that cuts off infrared light generated by a light emitting element, and an optical detection element that absorbs infrared light noise.
  • There are media for improving performance, anti-counterfeit articles such as JP-A-2015-117353, and the like.
  • Articles having a function of absorbing light and generating heat include, for example, fibers such as WO2006-049025, OLED transfer films such as JP2015-527700, inks for laser image formation such as JP2016-528343, WO2006-100799 And other curable coating agents such as JP2012-021066.
  • Examples of articles having a function of absorbing light and emitting electrons include solar cells such as Japanese Patent Application Laid-Open No. 2018-26586, and optical sensors such as Japanese Patent Application Laid-Open No. 2017-092210.
  • the article according to the embodiment of the present invention in addition to the function of absorbing and shielding light, the function of absorbing light and generating heat, the function of absorbing light and emitting electrons, the near infrared region It is possible to provide a large amount of articles with low energy consumption and a low environmental load at the time of manufacture using a composite tungsten oxide film having high permeability for various purposes.
  • Example 1 cesium tungsten oxide powder having a Cs / W atomic ratio of 0.33 (YM-01 manufactured by Sumitomo Metal Mining Co., Ltd.) was charged into a hot press apparatus, and the vacuum atmosphere, temperature 950 ° C., pressing pressure 250 kgf / Sintering was performed under the condition of cm 2 to prepare a cesium tungsten oxide sintered body.
  • Cs / W was 0.33.
  • This oxide sintered body was ground by machining to a diameter of 153 mm and a thickness of 5 mm, and joined to a stainless steel backing plate using a metal indium brazing material to produce a cesium tungsten oxide sputtering target.
  • the sputtering target was attached to a DC sputtering apparatus (SBH2306 manufactured by ULVAC, Inc.), the ultimate vacuum was 5 ⁇ 10 ⁇ 3 Pa or less, and the atmosphere during film formation was a mixed gas atmosphere of 5% oxygen / 95% argon,
  • a cesium tungsten oxide film was formed on a glass substrate (EXG manufactured by Corning Co., Ltd., thickness 0.7 mm) under conditions of a gas pressure of 0.6 Pa and an input power of 600 W DC (film formation step S1).
  • the film thickness after film formation was 400 nm.
  • the structure of the film after film formation was examined using an X-ray diffractometer (X'Pert-PRO (manufactured by Panalytical)).
  • the film after film formation was amorphous with no diffraction peak derived from the crystal structure. It was a structure.
  • the film after film formation was placed in a lamp heating furnace (HP-2-9 manufactured by Yonekura Seisakusho Co., Ltd.) and heat-treated at a temperature of 500 ° C. for 30 minutes in a nitrogen atmosphere (heat treatment step S2).
  • heat treatment step S2 heat treatment step S2
  • the Cs / W atomic ratio x / y was 0.33.
  • the film after the heat treatment had a transmittance of 65.2% at a wavelength of 550 nm, a transmittance of 6.9% at a wavelength of 1400 nm, and an absorptivity of 1400 nm at a wavelength of 76.3%.
  • the absorption rate at a wavelength of 800 nm was 51.8%, and the ratio of the absorption rate at a wavelength of 1400 nm to 76.3% was 67.9%.
  • the sheet resistance of the film after the heat treatment is 1.2 ⁇ 10 10 ⁇ / ⁇ as a result of measurement using a resistivity meter (manufactured by Mitsubishi Chemical Corporation, Hiresta), and the film after the heat treatment has a high resistance with low conductivity. It was a film.
  • the film that was heat-treated after film formation by the sputtering apparatus was a film that maintained sufficient transparency in the visible light region, and at the same time absorbed infrared light and also had high radio wave permeability.
  • Examples 2 to 25 and Comparative Examples 1 to 12 Using the same apparatus as in Example 1, a composite tungsten oxide film was created by changing the element M, film thickness, film formation atmosphere, heat treatment atmosphere and time as described in Tables 1 and 2, The characteristics of the membrane were investigated. Tables 1 and 2 show the results of Examples and Comparative Examples.
  • the transmittance at a wavelength of 550 nm has transparency in the visible light region of 50% or more, and the transmittance in the infrared light region at a wavelength of 1400 nm. It was confirmed that the film had a substantial radio wave transmissivity having an infrared light absorptivity of 35% or less at 30% or less and a resistance of 10 5 ⁇ / ⁇ or more.
  • Examples 1 to 25 included in the present invention it was also confirmed that the absorptivity at a wavelength of 800 nm with respect to the absorptance at a wavelength of 1400 nm was 80% or less and had a selective wavelength transmission from 700 nm to around 1000 nm. Since Examples 1 to 25 are all formed by sputtering, they do not contain organic components.
  • the composite tungsten oxide film and the manufacturing method thereof, and the structure of the film forming substrate and article having the film are not limited to those described in the embodiment and the examples of the present invention, and various modifications may be made. Is possible.
  • the composite tungsten oxide film according to the present invention has high transparency in the visible light region and excellent light absorption and radio wave transmission properties in the infrared region, the composite tungsten oxide film absorbs and blocks light. It has a possibility of being used for a wide range of applications using one of a function of generating heat and a function of absorbing light to emit electrons, or a plurality of functions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

可視光域における透明性、赤外光域における赤外光吸収性を併せ持ち、実質的な電波透過性を有し、光を吸収して遮蔽する機能、光を吸収して発熱する機能、光を吸収して電子を放出する機能に加え、波長が700~1200nmの光の透過性を有する複合タングステン膜とその製造方法を提供し、更にはこれらのいずれか、もしくは複数の機能を利用した膜形成基材又は物品を提供する。一般式M(ただし、Mはアルカリ金属、アルカリ土類金属、Fe、In、Tl、Snの内から選択される1種以上の元素、Wはタングステン、Oは酸素)で表される組成を主成分とする複合タングステン酸化物膜であって、0.001≦x/y≦1、2.2≦z/y≦3.0であり、有機物成分を実質的に含まず、シート抵抗が10Ω/□以上で、波長550nmにおける透過率が50%以上、波長1400nmにおける透過率が30%以下、かつ、波長1400nmにおける吸収率が35%以上であり、波長1400nmにおける吸収率に対する波長800nmにおける吸収率が80%以下である。

Description

複合タングステン酸化物膜及びその製造方法、並びに該膜を有する膜形成基材及び物品
 本発明は、複合タングステン酸化物膜及びその製造方法に関し、更には当該複合タングステン酸化物膜を有する膜形成基材や当該複合タングステン酸化物膜が有する機能を利用した物品に関する。本出願は、日本国において2018年5月9日に出願された日本特許出願番号特願2018-090939を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 窓材等に使用される遮光部材として各種材料が提案されている。例えば、特許文献1には、窓材などの遮光部材として、アルミニウムなどの金属を蒸着法により形成した鏡面状態を有する膜の遮光部材が記載されている。また、銀等をスパッタリング法により形成した膜の遮光部材もある。しかしながら、これらの遮光部材を用いた場合、外観がハーフミラー状となることから、屋外で使用するには反射がまぶしく、景観上の問題がある。さらに、アルミニウムや銀などの金属膜は高い導電性を有するため、電波を反射し、携帯電話やスマートフォンなどの電波を利用する機器が繋がりにくいという問題がある。
 これに対し本出願人は特許文献2に記載の複合タングステン酸化物微粒子を有する赤外線遮蔽微粒子分散体を提案した。複合タングステン酸化物微粒子は、太陽光線、特に近赤外線領域の光を効率よく吸収し、加えて可視光に対して高い透明性を有する。赤外線遮蔽微粒子分散体は、複合タングステン酸化物微粒子を、適宜な溶媒中に分散させて分散液とし、得られた分散液に媒体樹脂を添加した後、基材表面にコーティングして薄膜を形成するものであり、遮熱と電波透過性を併せ持つ。
 また、特許文献3には、複合タングステン酸化物の原料化合物を含む溶液を基板に塗布後、熱処理して製造する複合タングステン酸化物膜が開示されている。
 特許文献2や特許文献3に記載の発明は、塗布法で膜を形成するため、膜厚のコントロール、大面積の膜厚の均一性、平坦性を確保するためには高度な塗布技術を要する。また、これらの方法は基本的に複合タングステン酸化物化合物の微粒子を用いるため化学量論組成から外れた組成を製造するためには用いる微粒子の組成をコントロールする必要がある。
 加えて、波長が700~1200nmの近赤外域において、車載用途等の近赤外光を用いる通信機器、撮像機器、センサー等では透過性が求められることがある。特許文献2や特許文献3の実施例に記載の複合タングステン酸化物微粒子を含む塗布液で形成された膜は、前記近赤外域の光を吸収してしまう問題があった。
 このような複合タングステン酸化物薄膜を得る別の手段として、特許文献1の例に見られる蒸着法やスパッタリング法などの物理的な方法がある。物理的な成膜法の薄膜は、目的とする組成物以外の元素(たとえば樹脂や溶剤等の有機物)を除外した膜にすることができる。また、高温の処理に適さない分散剤や媒体樹脂を使用する必要がないため、高温の製造工程に供することができ、例えば、高温熱処理する強化ガラスの製造工程に供することができる。さらに、物理的な成膜法の薄膜は膜厚をコントロールすることが容易であり、積層構造とすることも容易に可能である。
 特許文献4には車両用窓ガラスとその製造方法が提案され、車両用窓等の大面積の基板への処理が可能な大型インライン方式のスパッタリング装置が用いられている。このような製造設備が使用可能であれば、容易に膜厚が均一で高品質で安定した膜を得られ、かつ、生産性も高い。また、物理的な成膜法の成膜源(例えば、スパッタリング法ではターゲット材料)は単一の化合物でなくても、例えば単体元素の組成物組合せや複数の化合物等から成る混合物でも構わず、組成選択の自由度が極めて広い。
 特許文献5には、スパッタリング法により作製した複合タングステン酸化物膜が提案されている。ガラス基板上に、タングステンと周期律表のIVa族、IIIa族、VIIb族、VIb族及びVb族から成る群から選ばれた少なくとも1種の元素からなる複合タングステン酸化物膜を形成している。しかしながら、この組成の酸化物膜は赤外線透過率が40%以上と熱線遮蔽性能は十分でなく、他の透明誘電体膜との多層膜にしなければ機能を発揮できないという問題があった。
 特許文献6には、近赤外線を吸収して熱に変える(光熱変換)用途への酸化タングステンが示されている。
 また、特許文献7には、複合タングステン酸化物微粒子が太陽光の光エネルギーを吸収し、色素への電荷移動等による光電変換用途への利用が示されている。
 このように、複合タングステン酸化物は、光を吸収して遮蔽する機能の他にも光を吸収して発熱する機能や光を吸収して電子を放出する機能を有している。しかしながら、特許文献6、7はいずれも微粒子を含む溶液をコーティングして成膜する必要があり、前記と同様に物理的な成膜法による利点を有していない。
特開平5-113085号公報 特許第4096205号公報 特開2006-096656号公報 特開2002-020142号公報 特開平8-12378号公報 特表2011-503274号公報 特開2013-025949号公報
 上述の通り、従来の物理的な成膜法による複合タングステン酸化物膜の熱線遮蔽性能は、未だ十分であるとは言えない状況であり、加えて光熱変換用途や光電変換用途に至ってはその例すら示されていない。一方で、塗布法により形成された膜は前記近赤外域における透過性に劣る問題がある。
 そこで、本発明は、このような状況を解決するためになされたものであり、可視光域における透明性、赤外光域における赤外光吸収性を併せ持ち、実質的な電波透過性を有し、光を吸収して遮蔽する機能、光を吸収して発熱する機能、光を吸収して電子を放出する機能に加え、波長が700~1200nmの光の透過性を有する複合タングステン膜とその製造方法を提供し、更にはこれらのいずれか、もしくは複数の機能を利用した膜形成基材又は物品を提供する。
 本発明者らは、上述した課題に対して、複合タングステン酸化物膜について鋭意研究し、物理的な成膜法によれば、成膜時の条件を最適化することで光吸収して遮蔽しながら近赤外域の透過性を有する機能、光を吸収して発熱する機能、光を吸収して電子を放出する機能を有する優れた複合タングステン膜を得るに至った。
 すなわち、本発明の一態様は、一般式M(ただし、Mはアルカリ金属、アルカリ土類金属、Fe、In、Tl、Snの内から選択される1種以上の元素、Wはタングステン、Oは酸素)で表される組成を主成分とする複合タングステン酸化物膜であって、0.001≦x/y≦1、2.2≦z/y≦3.0であり、有機物成分を実質的に含まず、シート抵抗が10Ω/□以上で、波長550nmにおける透過率が50%以上、波長1400nmにおける透過率が30%以下、かつ、波長1400nmにおける吸収率が35%以上であり、波長1400nmにおける吸収率に対する波長800nmにおける吸収率が80%以下である。
 本発明の一態様によれば、可視光域における透明性、赤外光域における赤外光吸収性を併せ持ち、実質的な電波透過性を有する複合タングステン酸化物膜を、電波障害が生じない赤外線遮蔽膜や光熱変換膜および光電変換膜として提供することができる。
 また、本発明の一態様では、波長が700~1200nmの近赤外域の透過性と、上記特徴を併せ持つ複合タングステン酸化物膜として、上記波長域の透過が必要な用途においても優れた光吸収特性を有する膜となる。
 また、本発明の一態様では、複合タングステン酸化物膜はスパッタリング成膜由来であるとしてもよい。
 スパッタリング成膜由来とすることで、組成選択の自由度が極めて広く、安定に成膜できる複合タングステン酸化物膜とすることができる。
 また、本発明の一態様では、Mは、Cs、Rb、K、Tl、In、Ba、Li、Na、Ca、Sr、Fe、およびSnの内から選択される1種以上の元素であるとしてもよい。
 Mを上記元素から選択することで、より高い赤外線遮蔽機能や光熱変換機能および光電変換機能を有する複合タングステン酸化物膜とすることができる。
 また、本発明の一態様では、複合タングステン酸化物膜は、20nmより厚い膜厚を有することができる。
 このような膜厚とすることにより、高い赤外線遮蔽機能や光熱変換機能および光電変換機能を有する複合タングステン酸化物膜とすることができる。
 本発明の他の態様は、複合タングステン酸化物膜が被成膜基材の少なくとも一方の面に形成されている膜形成基材である。
 上述した複合タングステン酸化物膜が形成された膜形成基材とすることで、機械特性や加工性等の実用に供する形態とすることができる。
 また、このとき、本発明の他の態様では、膜形成基材が400℃以上の軟化点もしくは熱変形温度を有するようにしてもよい。
 このような特性とすることで、成膜後の熱処理で、より優れた機能を付与した膜形成基材とすることができる。
 また、本発明の他の態様では、被成膜基材をガラスとすることができる。
 被成膜基材をガラスとすることで、車両用窓や建築用窓のガラス窓、ガラス繊維、太陽光発電用ガラス、ディスプレイ用ガラス、レンズや鏡用ガラス、半導体やMEMS等で用いられているガラス基板等、幅広い分野で使用されるガラスを用いた機材に赤外線遮蔽機能や光熱変換機能および光電変換機能を付与することができる。
 また、本発明の他の態様では、上述した複合タングステン酸化物膜及び/又は膜形成基材を1又は複数有することを特徴とする物品である。
 本発明の他の態様によれば、エネルギー削減や製造時の環境負荷の小さい物品を大量に安価で様々な用途に提供することができる。
 本発明の他の態様は、一般式M(ただし、Mはアルカリ金属、アルカリ土類金属、Fe、In、Tl、Snの内から選択される1種以上の元素、Wはタングステン、Oは酸素であり、0.001≦x/y≦1、2.2≦z/y≦3.0)で表される組成を主成分とする複合タングステン酸化物膜の製造方法であって、元素Mと元素Wと元素Oの化合物から成るスパッタリングターゲットを用いて物理的な成膜法により膜を形成する成膜工程と、膜を熱処理する熱処理工程とを有し、成膜工程と熱処理工程の条件が下記(1)、(2)のいずれかである。
(1)成膜工程において、不活性ガス中でスパッタリング成膜した後、熱処理工程において、膜を酸素が含まれるガス中で400℃~600℃の温度で熱処理する。
(2)成膜工程において、酸素を含むガス中でスパッタリング成膜した後、熱処理工程において、膜を不活性雰囲気中または還元雰囲気中で400℃~900℃の温度で熱処理する。
 このような製造方法によれば、既存の製造設備で容易に均一な厚さで高品質な前記特徴を有する複合タングステン酸化物膜を安定に高い生産性で製造することができる。
 本発明によれば、可視光域における透明性、赤外光域における赤外光吸収性を併せ持ち、実質的な電波透過性を有する複合タングステン酸化物膜を、電波障害が生じない赤外線遮蔽膜や光熱変換膜および光電変換膜として提供することができる。また、このような複合タングステン酸化物膜は、工業的に広く利用され、成膜時に比較的無害な方法で、更に使用原料が長期保存に優れ、危険物保管や輸送時の制限を受けない、物理的な製造方法で提供することができる。
図1は、本発明の複合タングステン酸化物膜の代表的な光学特性で、特許文献2に記載の赤外線遮蔽材料微粒子分散体の代表的な光学特性との違いを示す図である。 図2は、本発明の複合タングステン酸化物膜の光吸収特性を示す代表的な例で、特許文献2に記載の赤外線遮蔽微粒子分散体との違いを示す図である。 図3は、本発明の一実施形態に係る複合タングステン酸化物膜の製造方法におけるプロセスの概略を示す工程図である。
 以下、本発明に係る複合タングステン酸化物膜とその製造方法について以下の順序で説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能である。
 1.複合タングステン酸化物膜
 2.複合タングステン酸化物膜の製造方法
  2-1.成膜工程
  2-2.熱処理工程
 3.膜形成基材
 4.物品
<1.複合タングステン酸化物膜>
 本発明の一実施形態に係る複合タングステン酸化物膜について説明する。本発明の一実施形態に係る複合タングステン酸化物膜は、一般式M(ただし、Mは、アルカリ金属、アルカリ土類金属、Fe、In、Tl、Snの内から選択される1種以上の元素、Wはタングステン、Oは酸素)で表される組成を主成分とする膜であり、0.001≦x/y≦1、2.2≦z/y≦3.0の範囲の構成である。
 組成範囲の詳細については、本出願人による特許文献2に詳細が示されており、この組成範囲の複合タングステン酸化物を主成分とすることが、高い透明性と赤外光吸収性を有する膜とするためには必要である。複合タングステン酸化物膜が有する基本的な光学特性は、理論的に算出された、元素Mと、タングステンWおよび酸素Oの原子配置に由来する。一方で、本発明の一実施形態は、特許文献2に記載の赤外線遮蔽体とは異なる特性を有する複合タングステン酸化物膜であり、以下、特許文献2に係る発明と適宜対比しながら詳細に説明する。
 複合タングステン酸化物の光学特性は2種類の吸収に由来することを特許文献2に係る複合タングステン酸化物の微粒子分散膜で本出願人は示している。しかしながら、本発明における複合タングステン酸化物膜の光学特性は特許文献2に係る微粒子分散膜と異なり波長700~1200nmの近赤外域の吸収が低く、微粒子分散膜と異なる特性を示す。この理由は後述のように微粒子分散膜と連続膜の違いであると推測されるがその詳細は未だ判っていない。
 本発明の一実施形態に係る複合タングステン酸化物膜の元素Mは、アルカリ金属、アルカリ土類金属、Fe、In、Tl、Snの内から選択される1種以上の元素であり、より好ましくは、Cs、Rb、K、Tl、In、Ba、Li、Na、Ca、Sr、Fe、およびSnの内から選択される1種以上の元素である。これは、特許文献2に記載の構成元素よりも狭い範囲としているが、これは実施例に依り効果が確認できた元素を示すに過ぎず、本発明に含まれない特許文献2に記載の元素でも少なからず同様の機能を有する可能性はある。
 本発明の一実施形態に係る複合タングステン酸化物膜は、一般式Mにおいて、元素MとW(タングステン)の原子数比x/yが0.001≦x/y≦1であり、O(酸素)とW(タングステン)の原子数比z/yが2.2≦z/y≦3.0である。x/yが0.001未満であると十分な量の自由電子が生成されず赤外線遮蔽効果を得ることができない。また、x/yが1を超えると複合タングステン酸化物膜中に不純物相が形成されてしまう。z/yが2.2未満であると、複合タングステン酸化物膜中に目的以外であるWOの結晶相が現れてしまう。また、z/yが3を超えると赤外線遮蔽効果を得るための自由電子が生成されなくなってしまう。
 本発明の一実施形態に係る複合タングステン酸化物膜は、有機物成分を実質的に含まない。後述するように、本発明の一実施形態に係る複合タングステン酸化物膜は、物理的な成膜法により形成されるため、特許文献2や特許文献3に係る発明のように分散剤や媒体樹脂、あるいは界面活性剤や溶媒を使用する必要がない。ここで、有機物成分を実質的に含まないとは、膜の製造過程において、例えば高分子分散剤等、意図的に添加される有機物成分を含んでいないことを指す。
 特許文献2は、複合タングステン酸化物微粒子の粒径として800nm以下の粒子直径を有することが好ましく、更には100nm以下がより好ましいことが示されており、微粒子が媒体中に分散した分散体である。本発明の一実施形態に係る複合タングステン酸化物膜は、複合タングステン酸化物が、有機物成分を実質的に含まない状態で粒子状を有さずに連続的に形成されており、この点で、特許文献2の微粒子分散膜と大きく異なる。
 複合タングステン酸化物は、六方晶、立方晶、正方晶、斜方晶などの結晶構造、及び非晶質構造が知られている。本発明の一実施形態に係る複合タングステン酸化物膜は、六方晶、立方晶、正方晶、斜方晶などの結晶構造、及び非晶質構造を含んでいても構わないが、赤外域の吸収がより大きい六方晶相を構成する元素とその結晶相を多く含むことが好ましい。
 図1は、本発明の複合タングステン酸化物膜の代表的な光学特性で、特許文献2に記載の赤外線遮蔽材料微粒子分散体の代表的な光学特性との違いを示す図であり、図2は、本発明の複合タングステン酸化物膜の光吸収特性を示す代表的な例で、特許文献2に記載の赤外線遮蔽微粒子分散体との違いを示す図である。本発明の一実施形態に係る複合タングステン酸化物膜は、赤外領域の光を大きく吸収する。一方で、本発明の一実施形態に係る複合タングステン酸化物膜は、特許文献2の複合タングステン酸化物微粒子を含有する微粒子分散体から成る膜(微粒子分散膜)と比較すると、図1及び図2に示すように、700から1000nm付近にかけての近赤外域における光の吸収が少ない。このため、本発明の一実施形態に係る複合タングステン酸化物膜は、微粒子分散膜よりも赤外線遮蔽機能や光熱変換機能および光電変換機能が低下するが、他の材料に比べては十分高い機能を有し、加えて微粒子分散膜では難しい700nmから1000nm付近にかけての選択波長透過性を有する。この機能によって車載用途等の近赤外光を用いる通信機器、撮像機器、センサーの使用を可能とする。
 本発明の一実施形態に係る複合タングステン酸化物膜は、波長550nmにおける透過率が50%以上、波長1400nmにおける透過率が30%以下、かつ、波長1400nmにおける吸収率が35%以上である。すなわち、可視光における透明性の指標として波長550nmにおける透過率が50%以上であることが必要であり、また、赤外領域における光の遮蔽性能と吸収性能の指標として波長1400nmにおける透過率が30%以下、かつ、波長1400nmにおける吸収率が35%以上を満たす必要がある。なお、吸収率は、1から透過率と反射率を引いた値とする。
 透明性の指標とした、波長550nmにおける透過率が上記よりも低くても用途によっては使用することができる。例えば、車用のウィンドフィルムでは、後席ウィンドはプライバシー保護の観点から黒色やダークグレーが好まれ、熱線遮蔽材料と同時に顔料などを意図的に使用することがある。
 本発明の透明性の指標は、前記のような意図的な顔料などを含まない状態での膜特性を指すものである。透明性の指標が前記値より低いと採光が悪くなり、例えば屋内が暗くなる、外部の景色が見づらくなるなどに繋がる。
 同様に、光の遮蔽性能と吸収性能の指標とした、波長1400nmにおける透過率および、波長1400nmにおける吸収率が前記値を満たさない構成とすることもできるが、これらの場合は、赤外光の透過が高くなり、遮熱では皮膚のジリジリ感や室温の上昇、光熱変換では発生する熱量の低下などに繋がる。
 本発明の一実施形態に係る複合タングステン酸化物膜は、波長1400nmにおける吸収率に対する波長800nmにおける吸収率が80%以下であることが好ましい。波長1400nmにおける吸収率に対する波長800nmにおける吸収率が80%を超えると、波長700~1200nmの近赤外域の透過が低下して、当該域の光透過および赤外域の高い光吸収や遮蔽を目的とする用途に適さなくなる。このため、近赤外光を用いる通信機器、撮像機器、センサー等の使用ができなくなる。
 本発明の一実施形態に係る複合タングステン酸化物膜は、20nmを超える膜厚で形成されることが好ましい。本発明の一実施形態に係る複合タングステン酸化物膜は、後述するように、スパッタリング法等による成膜で得られる物理的な方法による膜で、例えば、特許文献3に記載の、溶液を塗布後に熱処理して成膜した膜では、成膜に不可欠となる溶媒や樹脂等の成分を揮発させて形成されるため、膜にはこれに伴う残留応力が生じ、揮発成分の残留やボイド等の欠陥が内在することがある。本発明の一実施形態に係る複合タングステン酸化物膜は、揮発成分を含むことなく成膜されるため、成膜に伴う膜の残留応力を小さくすることができるとともに、揮発成分の残留やボイド等の欠陥が生じない。このため、クラックや剥離のない膜を形成することができる。
 複合タングステン酸化物膜の膜厚が20nm以下の場合は、赤外域での十分な吸収性能が得られず、1400nmにおける赤外線透過率が30%を超えてしまう。本発明は前記膜厚を超える厚さであれば特に膜厚の上限に制限はない。しかし、膜厚が厚くなり過ぎると、波長550nmにおける可視光域の透過率が50%を下回り、可視光透過性が悪くなることや、成膜時の残留応力の影響で膜の剥離が生じることがある。膜の透過率は分光光度計を用いて測定することができる。
 本発明の一実施形態に係る複合タングステン酸化物膜は、シート抵抗が1.0×10Ω/□以上、より好ましくは1.0×1010Ω/□を超える値である。膜のシート抵抗が前記値よりも低いと、膜の自由電子が静電場を遮蔽して電波を反射するので、電波透過性が低下し、例えば携帯電話等の電波を使用した機器の通信障害や、電波反射による干渉障害を招くことがある。一方で、膜の使用用途によっては帯電や帯電による曇りが生じるため高すぎでも弊害となる場合がある。シート抵抗は後述の成膜条件や熱処理条件で調整することができる。シート抵抗は、例えば、抵抗率計を用いて測定することができる。
 また、本発明の一実施形態に係る複合タングステン酸化物膜は、通常は連続膜として形成されるが、パターンニングを行って反射の制御を付与した形態、凹凸を設けてレンズ機能を付与した形態など膜の形状や凹凸などの形態であっても、本発明の特長を有するものであればいかなる形態でも構わない。
 以上より、本発明の一実施形態に係る複合タングステン酸化物膜によれば、特許文献2や特許文献3に記載の複合タングステン酸化物膜とは異なる特性を有し、可視光域における透明性、赤外光域における赤外光吸収性を併せ持ち、実質的な電波透過性を有する複合タングステン酸化物膜とすることができる。
<2.複合タングステン酸化物膜の製造方法>
 次に、複合タングステン酸化物膜の製造方法について説明する。図3は、本発明の一実施形態に係る複合タングステン酸化物膜の製造方法の概略を示す工程図である。本発明の一実施形態に係る複合タングステン酸化物膜の製造方法は、元素MとタングステンWと酸素Oを主成分とする複合タングステン酸化物膜の製造方法であって、物理的な成膜法を用いて膜を形成する成膜工程S1と、膜を熱処理する熱処理工程S2とを有する。以下、各工程について詳細に説明する。
<2-1.成膜工程>
 成膜工程S1では、物理的な成膜法を用いて膜を形成する。本発明の一実施形態に係る複合タングステン酸化物膜の物理的な成膜方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビーム法などがある。この中でも、スパッタリング法は、成膜粒子のエネルギーが大きく付着力が強く、成膜が緻密で膜質が強く、かつ成膜プロセスが安定していて膜質、膜厚の制御が高い精度で可能である。さらに、スパッタリング法は、高融点金属・合金・化合物の成膜が可能で、反応性ガスの導入で酸化物や窒化物などの成膜が可能であり、組成の調整が比較的容易などの特長を持ち、液晶表示素子やハードディスク等の電子機器、ウィンドフィルムやミラー等の汎用品など幅広い分野で多く利用され、製造装置も多いことから好ましい。
 一般式Mで表した複合タングステン酸化物膜を形成するためのスパッタリングターゲットは、例えば、元素Mと、元素Wからなるスパッタリングターゲット、元素Mと、元素Wと元素Oの化合物から成るスパッタリングターゲット、元素Mと元素Oの化合物と、元素Wから成るスパッタリングターゲットおよび元素Mと元素Wと元素Oの化合物から成るスパッタリングターゲット等、種々の構成から選択することができる。好ましくは、予め化合物相として形成したスパッタリングターゲットを用いることが良い。スパッタリングターゲットを予め化合物相として構成すると各元素の蒸気圧の差による膜組成の依存を軽減することができ、安定した成膜が可能となる。
 スパッタリングターゲットは、例えば前記スパッタリングターゲット組成物の粒子からなる粉を圧粉して形成した圧粉体や、前記スパッタリングターゲット組成物を焼結させて形成した焼結体の形態で用いれば良い。
 また、スパッタリングターゲットは、前記の通り圧粉体や焼結体で形成されるため、有機物成分を実質的に含まず、例えば有機溶媒に分散された微粒子分散液などのような危険物としての輸送や保管における制限を受けず、揮発成分も含まないため安全かつ安定に長期保管が可能となる。また、当然ながら当該スパッタリングターゲットを用いて形成された膜は有機物成分を実質的に含んでいない。
 スパッタリングターゲットが、例えば比抵抗1Ω・cm以下の導電体であると生産性が高いDCスパッタリング装置を使用することができる。また、スパッタリングターゲットが、例えば相対密度70%以上の焼結体であると輸送時の振動による割れが少なくなり、装置への取付け時等のハンドリングで極端な注意をする必要がなくなるなどの理由により工業的な製造に適した形態となる。
 成膜工程の雰囲気は、種々選択されるが、不活性ガス雰囲気中、もしくは不活性ガスと酸素ガスの混合雰囲気が良い。不活性ガスとしては、例えば、ヘリウムガスやアルゴンガスなどの希ガス、窒素ガスなどを用いれば良いが、窒素ガスの場合は、選択元素Mによっては窒化物を形成することがあるため、一般的に使用され入手が容易なアルゴンガスがより好ましい。酸素ガスは任意の割合で混合させてよいが、酸素ガスが多いと成膜レートが極端に遅くなるので、20%以下が好ましい。
 成膜後の膜は、通常は非晶質であるが、X線回折分析した際に結晶に基づく回折ピークが出現していても構わない。
<2-2.熱処理工程>
 次に、熱処理工程S2では、成膜工程S1で得られた膜を熱処理する。本発明に記載の膜特性を得るには、成膜工程S1における成膜雰囲気の酸素ガスの割合に応じて、膜の熱処理雰囲気の条件を変える必要がある。熱処理の雰囲気は、酸化性または不活性または還元雰囲気中で行う。
 成膜工程S1での成膜雰囲気の酸素ガスの割合が0%以上1%未満の場合は、熱処理工程S2では、大気など酸化性雰囲気で熱処理を行うことができる。酸化性雰囲気は例えば大気、酸素を5~20%含む酸素と窒素の混合ガスなどである。
 この場合の熱処理温度は400~600℃が良い。熱処理温度が400℃よりも低いと膜は非晶質のままで結晶化しないか、または結晶化してもX線回折における六方晶の回折ピークが極めて微弱となり、赤外域の吸収特性が低い。熱処理温度が600℃よりも高いとしても本発明の膜の特徴を得ることができるが、膜と基材が反応する、膜が基材から剥離するなど実用上の不具合が生じる。
 成膜工程S1での成膜雰囲気の酸素ガスの割合が1%以上10%以下の場合は、熱処理工程S2の雰囲気は不活性雰囲気あるいは、還元性ガスを含む雰囲気で行うほうが良い。不活性雰囲気としては、例えばアルゴンガスなどの希ガス、窒素ガスなどが考えらえる。還元性ガスとしては、例えば水素ガスなどである。還元性ガスを含む雰囲気は、水素ガスのみ、水素と窒素の混合ガス、水素とアルゴンなど希ガスとの混合ガスなどである。
 この場合の熱処理温度は400~900℃が良い。熱処理温度が400℃よりも低いと膜は非晶質のままで結晶化しないか、または結晶化してもX線回折における六方晶の回折ピークが極めて微弱となり、赤外域の吸収特性が低い。熱処理温度が900℃よりも高いとしても本発明の膜の特徴を得ることができるが、膜と基材が反応する、膜が基材から剥離するなど実用上の不具合が生じる。
 成膜工程S1での成膜雰囲気の酸素ガスの割合が10%を超える場合は、熱処理工程S2の雰囲気は還元性ガスを含む雰囲気が良い。還元性ガスとしては、例えば水素ガスなどである。還元性ガスを含む雰囲気は、水素ガスのみ、水素と窒素の混合ガス、水素とアルゴンなど希ガスとの混合ガスなどである。
 この場合の熱処理温度は400~900℃とする。熱処理温度が400℃よりも低いと膜は非晶質のままで結晶化しないか、または結晶化してもX線回折における六方晶の回折ピークが極めて微弱となり、赤外域の吸収特性が低い。熱処理温度が900℃よりも高いとしても本発明の膜の特徴を得ることができるが、膜と基材が反応する、膜が基材から剥離するなど実用上の不具合が生じる。
 成膜雰囲気の酸素ガスの割合が1%以上で熱処理雰囲気が酸化性ガスを含む場合、もしくは、成膜雰囲気の酸素ガスの割合が10%を超える割合で熱処理雰囲気が不活性雰囲気の場合、熱処理後の膜は赤外域の吸収特性が低下して本発明の効果を得ることができない。
 成膜雰囲気の酸素ガスの割合が1%未満で熱処理雰囲気が不活性雰囲気または還元性雰囲気の場合、熱処理後の膜は膜抵抗が低下して電波透過性に劣る膜となる。
 前記いずれの熱処理温度においても、熱処理時間は、基材の熱伝導等にも依るが、5分~60分であれば十分である。
 なお、特許文献3には複合タングステン酸化物を用いた透明導電膜の製造方法が記されている(段落0065)。これによれば、特許文献3の透明導電膜は複合タングステン化合物を含む溶液を出発タングステン原料溶液として基材に塗布後に不活性ガス、不活性ガスと還元性ガス、還元性ガスのいずれかの雰囲気中で熱処理して得られることが示されている。この方法によれば、メタタングステン酸アンモニウム水溶液とM元素の塩化物水溶液に有機成分を含有するポリシロキサン骨格を有する界面活性剤を添加して溶液としている。
 特許文献3の実施例2ではM元素としてルビジウム(Rb)を用いた膜の特性が特許文献3の図3に示されており、同図から読み取れる透過率と反射率から算出した波長1400nmにおける吸収率に対する波長800nmにおける吸収率はおおよそ90%を超えており、本発明の複合タングステン酸化物膜とは異なる、従来の複合タングステン酸化物微粒子を含む塗布液で形成された膜と同様の特徴を有している。
 また、本願の図2は可視光域の透過率を同等に併せた吸収率を示す図で、この場合の各値は、セシウムタングステン酸化物スパッタ膜(本発明)が57.3%、セシウムタングステン酸化物インク塗布膜(微粒子分散膜)(特許文献2)が83.0%であった。したがって、本発明の一実施形態に係る複合タングステン酸化物膜は、波長800nmの前後(700~1200nm)において、特許文献2や特許文献3に記載の複合タングステン酸化物膜とは異なる特性を有することがわかる。
 以上より、本発明の一実施形態に係る複合タングステン酸化物膜の製造方法によれば、上述した特性を有する複合タングステン酸化物膜を、工業的に広く利用され、成膜時に比較的無害な方法で、更に使用原料の長期保存に優れ、輸送時の制限がない、物理的な製造方法で提供することができる。
<3.膜形成基材>
 本発明の一実施形態に係る膜形成基材は、上述した複合タングステン酸化物膜が被成膜基材の少なくとも一方の面に形成されたものである。被成膜基材は、本発明の一実施形態に係る複合タングステン酸化物膜の形成が可能であれば特に限定されるものではない。
 被成膜基材は、成膜後の膜の熱処理温度が400℃以上であるため、400℃以上の軟化点もしくは熱変形温度を有する基材が好ましい。軟化点もしくは熱変形温度が400℃未満の基材を用いた場合、前記熱処理の際に膜が被成膜基材から剥離する、膜にクラックが発生するなどの問題が生じる。好ましくは、被成膜基材の熱膨張係数が膜の熱膨張係数に近いほうが良い。なお、被成膜基材から膜を剥離して使用する場合は必ずしも前記条件である必要はなく、例えば、400℃以下で溶解する基材でも良い。
 400℃以上の軟化点もしくは熱変形温度を有する被成膜基材には、ガラス、セラミックス、単結晶等がある。被成膜基材は、必ずしも透明である必要はないが、本発明の複合タングステン酸化物膜を基材と共に用いる場合には透明な基材が求められる。透明基材には、例えば、ガラス、YAGやYなどの透明セラミックス、サファイヤなどの単結晶がある。なかでも、入手しやすく、安価で、耐候性、耐薬品性などの観点から、400℃以上の軟化点のガラスを被成膜基材に用いるのが好ましい。
 また、基材は、平面でなく曲面や凹凸面を有するものでも本発明の特長を損なうものでなく、種々選択すれば良い。
 以上より、本発明の一実施形態に係る膜形成基材によれば、光を吸収して遮蔽する機能、光を吸収して発熱する機能、光を吸収して電子を放出する機能に加え、近赤外域の透過性を有する複合タングステン酸化物膜とすることができる。
<4.物品>
 本発明の一実施形態に係る物品は、上述した複合タングステン酸化物膜及び/又は膜形成基材を1又は複数有する。本発明の複合タングステン酸化物膜及び/又は膜形成基材とを有する物品は、複合タングステン酸化物膜が光を吸収して遮蔽する機能、光を吸収して発熱する機能、光を吸収して電子を放出する機能のいずれか、またはそれら複数の機能を有する物品であればどのような物品でも構わない。
 加えて、本発明の複合タングステン酸化物膜及び/又は膜形成基材が、例えば他の機能を有する膜や粒子等と共に使用されていても、本発明に記載の機能を利用した物品に含まれる。
 光を吸収して遮蔽する機能を有する物品には、例えば遮熱ガラスがある。遮熱ガラスは、透明でありながら熱を遮蔽する特長があり、夏場の太陽光による室内温度の上昇や車内温度の上昇などを軽減する。また、光を吸収して遮蔽する機能を有する他の物品の例としては、例えば、発光素子により生じる赤外域の光をカットした光学フィルターや、赤外域の光ノイズを吸収して光検出素子の性能を向上させる媒体、特開2015-117353などの偽造防止用物品などがある。
 光を吸収して発熱する機能を有する物品には、例えばWO2006-049025などの繊維、特表2015-527700などのOLED用転写フィルム、特表2016-528343などのレーザー画像形成用インク、WO2006-100799などの農園芸用覆土フィルム、特開2012-021066などの硬化性コーティング剤などがある。
 光を吸収して電子を放出する機能を有する物品には、例えば特開2018-26586などの太陽電池、特開2017-092210などの光センサなどがある。
 以上より、本発明の一実施形態に係る物品によれば、光を吸収して遮蔽する機能、光を吸収して発熱する機能、光を吸収して電子を放出する機能に加え、近赤外域の透過性を有する複合タングステン酸化物膜を利用した、エネルギー削減や製造時の環境負荷の小さい物品を大量に安価で様々な用途で提供することができる。
 以下、本発明について、実施例を用いてさらに具体的に説明するが、本発明は、以下の実施例に何ら限定されるものではない。
(実施例1)
 実施例1では、Cs/W原子比が0.33のセシウムタングステン酸化物粉末(住友金属鉱山株式会社製YM-01)をホットプレス装置に投入し、真空雰囲気、温度950℃、押し圧250kgf/cmの条件で焼結し、セシウムタングステン酸化物焼結体を作製した。焼結体組成を化学分析した結果、Cs/Wは0.33であった。この酸化物焼結体を直径153mm、厚み5mmに機械加工で研削し、ステンレス製バッキングプレートに金属インジウム蝋材を用いて接合して、セシウムタングステン酸化物スパッタリングターゲットを作製した。
 次に、このスパッタリングターゲットをDCスパッタリング装置(アルバック社製SBH2306)に取り付け、到達真空度5×10-3Pa以下、成膜時の雰囲気は、酸素5%/アルゴン95%の混合ガス雰囲気とし、ガス圧は0.6Pa、投入電力は直流600Wの条件で、ガラス基板(コーニング社製EXG、厚み0.7mm)の上にセシウムタングステン酸化物膜を成膜した(成膜工程S1)。成膜後の膜厚は400nmであった。成膜後の膜の構造をX線回折装置(X’Pert-PRO(PANalytical社製)を用いて調べた。成膜後膜は、結晶構造に由来する回折ピークは認められない非晶質の構造であった。
 成膜後の膜を、ランプ加熱炉(株式会社米倉製作所製HP-2-9)に投入し、窒素雰囲気中、500℃の温度で30分間熱処理した(熱処理工程S2)。この熱処理後の膜を化学分析した結果、Cs/W原子比x/yは0.33であった。
 熱処理後の膜を、分光光度計(日立製、型番V-670)を用いて、透過率Tと反射率Rを測定した。また、(吸収率)=1-(透過率T)-(反射率R)とした。
 熱処理後の膜の、波長550nmの透過率は65.2%、波長1400nmの透過率は6.9%、波長1400nmの吸収率は76.3%であった。
 また、波長800nmの吸収率は51.8%であり、波長1400nmの吸収率76.3%に対する比は67.9%であった。
 熱処理後の膜のシート抵抗は、抵抗率計(三菱化学社製、ハイレスタ)を用いた測定の結果、1.2×1010Ω/□であり、熱処理後の膜は導電性が低い高抵抗の膜であった。
 以上より、スパッタリング装置で成膜後に熱処理を行った膜は、可視光域に十分な透明性を保つと同時に、赤外域の光を吸収し、高い電波透過性も有する膜であった。
(実施例2~25および比較例1~12)
 実施例1と同様に同じ装置を用い、表1及び表2に記載されているように元素M、膜厚、成膜雰囲気、熱処理雰囲気および時間を変えて複合タングステン酸化物膜の作成を行い、膜の特性を調べた。表1及び表2に実施例及び比較例の結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2より、本発明に含まれる実施例1~25では、波長550nmにおける透過率が50%以上の可視光域における透明性を有し、波長1400nmの赤外光域における透過率が30%以下で吸収率が35%以上の赤外光吸収性を併せ持ち、抵抗が10Ω/□以上の実質的な電波透過性を有する膜となることが確認できた。さらに、本発明に含まれる実施例1~25では、波長1400nmにおける吸収率に対する波長800nmにおける吸収率が80%以下であり、700nmから1000nm付近にかけての選択波長透過性を有することも確認できた。なお、実施例1~25はいずれもスパッタリング法により成膜したものであるため、有機物成分を含むものではない。
 なお、上記のように本発明の一実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、複合タングステン酸化物膜及びその製造方法、並びに該膜を有する膜形成基材及び物品の構成も本発明の一実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。
 本発明に係る複合タングステン酸化物膜は、可視光域の高い透明性と赤外域の優れた光吸収性および電波透過性を備えているため、光を吸収して遮蔽する機能、光を吸収して発熱する機能、光を吸収して電子を放出する機能のいずれか、もしくは複数を利用した幅広い用途へ利用できる可能性を有している。

Claims (9)

  1.  一般式M(ただし、Mはアルカリ金属、アルカリ土類金属、Fe、In、Tl、Snの内から選択される1種以上の元素、Wはタングステン、Oは酸素)で表される組成を主成分とする複合タングステン酸化物膜であって、
     0.001≦x/y≦1、2.2≦z/y≦3.0であり、
     有機物成分を実質的に含まず、シート抵抗が10Ω/□以上で、
     波長550nmにおける透過率が50%以上、波長1400nmにおける透過率が30%以下、かつ、波長1400nmにおける吸収率が35%以上であり、
     波長1400nmにおける吸収率に対する波長800nmにおける吸収率が80%以下であることを特徴とする複合タングステン酸化物膜。
  2.  スパッタリング成膜由来であることを特徴とする請求項1に記載の複合タングステン酸化物膜。
  3.  前記Mは、Cs、Rb、K、Tl、In、Ba、Li、Na、Ca、Sr、Fe、およびSnの内から選択される1種以上の元素であることを特徴とする請求項1又は請求項2に記載の複合タングステン酸化物膜。
  4.  20nmより厚い膜厚を有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の複合タングステン酸化物膜。
  5.  請求項1乃至請求項4のいずれか1項に記載の複合タングステン酸化物膜が被成膜基材の少なくとも一方の面に形成されている膜形成基材。
  6.  400℃以上の軟化点もしくは熱変形温度を有することを特徴とする請求項5に記載の膜形成基材。
  7.  前記被成膜基材がガラスであることを特徴とする請求項5又は請求項6に記載の膜形成基材。
  8.  請求項1乃至請求項4のいずれか1項に記載の複合タングステン酸化物膜及び/又は請求項5乃至請求項7のいずれか1項に記載の膜形成基材を1又は複数有することを特徴とする物品。
  9.  一般式M(ただし、Mはアルカリ金属、アルカリ土類金属、Fe、In、Tl、Snの内から選択される1種以上の元素、Wはタングステン、Oは酸素であり、0.001≦x/y≦1、2.2≦z/y≦3.0)で表される組成を主成分とする複合タングステン酸化物膜の製造方法であって、
     元素Mと元素Wと元素Oの化合物から成るスパッタリングターゲットを用いて物理的な成膜法により膜を形成する成膜工程と、
     前記膜を熱処理する熱処理工程とを有し、
     前記成膜工程と前記熱処理工程の条件が下記(1)、(2)のいずれかであることを特徴とする複合タングステン酸化物膜の製造方法。
    (1)前記成膜工程において、不活性ガス中でスパッタリング成膜した後、前記熱処理工程において、前記膜を酸素が含まれるガス中で400℃~600℃の温度で熱処理する。
    (2)前記成膜工程において、酸素を含むガス中でスパッタリング成膜した後、前記熱処理工程において、前記膜を不活性雰囲気中または還元雰囲気中で400℃~900℃の温度で熱処理する。
PCT/JP2019/016401 2018-05-09 2019-04-17 複合タングステン酸化物膜及びその製造方法、並びに該膜を有する膜形成基材及び物品 WO2019216134A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207032324A KR20210006910A (ko) 2018-05-09 2019-04-17 복합 텅스텐 산화물 막 및 그의 제조 방법, 및 상기 막을 갖는 막 형성 기재 및 물품
US17/053,551 US20210238727A1 (en) 2018-05-09 2019-04-17 Composite tungsten oxide film and method for producing same, and film-deposited base material and article each provided with said film
AU2019265050A AU2019265050A1 (en) 2018-05-09 2019-04-17 Composite tungsten oxide film and method for producing same, and film-deposited base material and article each provided with said film
IL278407A IL278407B1 (en) 2018-05-09 2019-04-17 Tungsten oxide composite film and a method for creating it, a base material and an item on which a film can be deposited and each of which has said film
CN201980030631.9A CN112105756A (zh) 2018-05-09 2019-04-17 复合钨氧化物膜及其制造方法、以及具有该膜的膜形成基材和物品
CA3099470A CA3099470A1 (en) 2018-05-09 2019-04-17 Composite tungsten oxide film and method for producing same, and film-deposited base material and article each provided with said film
EP19800654.6A EP3792371A4 (en) 2018-05-09 2019-04-17 TUNGSTEN OXIDE COMPOSITE FILM AND ITS PRODUCTION PROCESS, AND SUBSTRATE AND ARTICLE FORMED FROM ONE FILM CONTAINING EACH THESE FILM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-090939 2018-05-09
JP2018090939A JP6540859B1 (ja) 2018-05-09 2018-05-09 複合タングステン酸化物膜及びその製造方法、並びに該膜を有する膜形成基材及び物品

Publications (1)

Publication Number Publication Date
WO2019216134A1 true WO2019216134A1 (ja) 2019-11-14

Family

ID=67212092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016401 WO2019216134A1 (ja) 2018-05-09 2019-04-17 複合タングステン酸化物膜及びその製造方法、並びに該膜を有する膜形成基材及び物品

Country Status (10)

Country Link
US (1) US20210238727A1 (ja)
EP (1) EP3792371A4 (ja)
JP (1) JP6540859B1 (ja)
KR (1) KR20210006910A (ja)
CN (1) CN112105756A (ja)
AU (1) AU2019265050A1 (ja)
CA (1) CA3099470A1 (ja)
IL (1) IL278407B1 (ja)
TW (1) TWI807020B (ja)
WO (1) WO2019216134A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940435A1 (en) * 2020-07-15 2022-01-19 Sumitomo Metal Mining Co., Ltd. Optical film and method of producing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022038474A (ja) * 2020-08-26 2022-03-10 住友金属鉱山株式会社 近赤外線遮蔽膜、近赤外線遮蔽膜の製造方法
WO2022202640A1 (ja) 2021-03-22 2022-09-29 住友金属鉱山株式会社 透明導電膜、透明導電膜の製造方法、透明導電部材、電子ディスプレイ機器、および太陽電池
US20240117485A1 (en) 2021-05-25 2024-04-11 Sumitomo Metal Mining Co., Ltd., Sputtering target and method for forming cesium tungsten oxide film

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113085A (ja) 1991-10-21 1993-05-07 Dainippon Printing Co Ltd 遮光フイルム
JPH0812378A (ja) 1994-06-30 1996-01-16 Nissan Motor Co Ltd 熱線遮断ガラス及びその製造方法
JP2002020142A (ja) 2000-06-29 2002-01-23 Nippon Sheet Glass Co Ltd 車両用窓ガラスおよびその製造方法
JP2006096656A (ja) 2004-08-31 2006-04-13 Sumitomo Metal Mining Co Ltd 透明導電膜およびその製造方法、透明導電物品、並びに赤外線遮蔽物品
WO2006049025A1 (ja) 2004-11-08 2006-05-11 Sumitomo Metal Mining Co., Ltd. 近赤外線吸収繊維およびこれを用いた繊維製品
WO2006100799A1 (ja) 2005-03-18 2006-09-28 Sumitomo Metal Mining Co., Ltd. 農園芸用覆土フィルム
WO2006103871A1 (ja) * 2005-03-25 2006-10-05 Asahi Glass Company, Limited 電気伝導性材料
JP4096205B2 (ja) 2003-10-20 2008-06-04 住友金属鉱山株式会社 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2010215451A (ja) * 2009-03-17 2010-09-30 Bridgestone Corp 熱線遮蔽ガラス、及びこれを用いた複層ガラス
JP2011503274A (ja) 2007-11-05 2011-01-27 ビーエーエスエフ ソシエタス・ヨーロピア 近赤外線の熱入力量を増加させるために使用される酸化タングステン
JP2012021066A (ja) 2010-07-13 2012-02-02 Kaneka Corp 近赤外線吸収能を有する硬化性コーティング剤、および近赤外線吸収材
JP2013025949A (ja) 2011-07-19 2013-02-04 Sumitomo Metal Mining Co Ltd 色素増感型太陽電池
CN104006560A (zh) * 2014-05-28 2014-08-27 北京天瑞星光热技术有限公司 一种WOx/ZrOx高温太阳能选择性吸收涂层及其制备方法
JP2015117353A (ja) 2013-12-20 2015-06-25 住友金属鉱山株式会社 偽造防止インク及び偽造防止印刷物
JP2015527700A (ja) 2012-07-13 2015-09-17 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 可視光透過性に優れた光熱変換フィルム及びこれを用いたoled用転写フィルム
JP2016528343A (ja) 2013-07-30 2016-09-15 データレース リミテッドDatalase Ltd. レーザー画像形成用インク
WO2017002763A1 (ja) * 2015-06-30 2017-01-05 住友金属鉱山株式会社 熱線遮蔽膜、熱線遮蔽合わせ透明基材、自動車、建造物、分散体、混合組成物、および分散体の製造方法、分散液、分散液の製造方法
JP2017092210A (ja) 2015-11-09 2017-05-25 株式会社豊田中央研究所 光センサ
JP2018026586A (ja) 2012-09-12 2018-02-15 コリア リサーチ インスティテュート オブ ケミカル テクノロジー 光吸収構造体が備えられた太陽電池
JP2018090939A (ja) 2016-11-28 2018-06-14 日本製紙株式会社 繊維と無機粒子の複合体
WO2019058737A1 (ja) * 2017-09-22 2019-03-28 住友金属鉱山株式会社 セシウムタングステン酸化物膜とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457106A (en) * 1966-12-21 1969-07-22 Ppg Industries Inc Metal-tungsten bronze films
CN101023498B (zh) * 2004-08-31 2012-02-29 住友金属矿山株式会社 导电性粒子、可见光透过型粒子分散导电体及其制造方法、透明导电薄膜及其制造方法、使用它的透明导电物品、红外线屏蔽物品
JP5169888B2 (ja) * 2009-02-04 2013-03-27 住友金属鉱山株式会社 複合タングステン酸化物ターゲット材とその製造方法
WO2014162619A1 (ja) * 2013-04-03 2014-10-09 住友金属鉱山株式会社 熱線遮蔽膜、熱線遮蔽合わせ透明基材、自動車および建造物
TWI666352B (zh) * 2014-07-18 2019-07-21 日商住友金屬礦山股份有限公司 熱射線遮蔽微粒子、熱射線遮蔽微粒子分散液、熱射線遮蔽薄膜、熱射線遮蔽玻璃、熱射線遮蔽微粒子分散體及熱射線遮蔽用夾層透明基材
MY191130A (en) * 2015-12-02 2022-05-31 Sumitomo Metal Mining Co Heat ray shielding microparticle, heat ray shielding microparticle dispersion solution, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent base material

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113085A (ja) 1991-10-21 1993-05-07 Dainippon Printing Co Ltd 遮光フイルム
JPH0812378A (ja) 1994-06-30 1996-01-16 Nissan Motor Co Ltd 熱線遮断ガラス及びその製造方法
JP2002020142A (ja) 2000-06-29 2002-01-23 Nippon Sheet Glass Co Ltd 車両用窓ガラスおよびその製造方法
JP4096205B2 (ja) 2003-10-20 2008-06-04 住友金属鉱山株式会社 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2006096656A (ja) 2004-08-31 2006-04-13 Sumitomo Metal Mining Co Ltd 透明導電膜およびその製造方法、透明導電物品、並びに赤外線遮蔽物品
WO2006049025A1 (ja) 2004-11-08 2006-05-11 Sumitomo Metal Mining Co., Ltd. 近赤外線吸収繊維およびこれを用いた繊維製品
WO2006100799A1 (ja) 2005-03-18 2006-09-28 Sumitomo Metal Mining Co., Ltd. 農園芸用覆土フィルム
WO2006103871A1 (ja) * 2005-03-25 2006-10-05 Asahi Glass Company, Limited 電気伝導性材料
JP2011503274A (ja) 2007-11-05 2011-01-27 ビーエーエスエフ ソシエタス・ヨーロピア 近赤外線の熱入力量を増加させるために使用される酸化タングステン
JP2010215451A (ja) * 2009-03-17 2010-09-30 Bridgestone Corp 熱線遮蔽ガラス、及びこれを用いた複層ガラス
JP2012021066A (ja) 2010-07-13 2012-02-02 Kaneka Corp 近赤外線吸収能を有する硬化性コーティング剤、および近赤外線吸収材
JP2013025949A (ja) 2011-07-19 2013-02-04 Sumitomo Metal Mining Co Ltd 色素増感型太陽電池
JP2015527700A (ja) 2012-07-13 2015-09-17 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 可視光透過性に優れた光熱変換フィルム及びこれを用いたoled用転写フィルム
JP2018026586A (ja) 2012-09-12 2018-02-15 コリア リサーチ インスティテュート オブ ケミカル テクノロジー 光吸収構造体が備えられた太陽電池
JP2016528343A (ja) 2013-07-30 2016-09-15 データレース リミテッドDatalase Ltd. レーザー画像形成用インク
JP2015117353A (ja) 2013-12-20 2015-06-25 住友金属鉱山株式会社 偽造防止インク及び偽造防止印刷物
CN104006560A (zh) * 2014-05-28 2014-08-27 北京天瑞星光热技术有限公司 一种WOx/ZrOx高温太阳能选择性吸收涂层及其制备方法
WO2017002763A1 (ja) * 2015-06-30 2017-01-05 住友金属鉱山株式会社 熱線遮蔽膜、熱線遮蔽合わせ透明基材、自動車、建造物、分散体、混合組成物、および分散体の製造方法、分散液、分散液の製造方法
JP2017092210A (ja) 2015-11-09 2017-05-25 株式会社豊田中央研究所 光センサ
JP2018090939A (ja) 2016-11-28 2018-06-14 日本製紙株式会社 繊維と無機粒子の複合体
WO2019058737A1 (ja) * 2017-09-22 2019-03-28 住友金属鉱山株式会社 セシウムタングステン酸化物膜とその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940435A1 (en) * 2020-07-15 2022-01-19 Sumitomo Metal Mining Co., Ltd. Optical film and method of producing the same

Also Published As

Publication number Publication date
IL278407B1 (en) 2024-04-01
AU2019265050A1 (en) 2020-11-26
US20210238727A1 (en) 2021-08-05
EP3792371A4 (en) 2021-09-29
TW201947048A (zh) 2019-12-16
IL278407A (ja) 2021-03-01
JP6540859B1 (ja) 2019-07-10
TWI807020B (zh) 2023-07-01
CA3099470A1 (en) 2019-11-14
EP3792371A1 (en) 2021-03-17
JP2019196521A (ja) 2019-11-14
KR20210006910A (ko) 2021-01-19
CN112105756A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2019216134A1 (ja) 複合タングステン酸化物膜及びその製造方法、並びに該膜を有する膜形成基材及び物品
Fan et al. Thermal control properties of radiative cooling foil based on transparent fluorinated polyimide
JP7081183B2 (ja) セシウムタングステン酸化物膜とその製造方法
JP4626284B2 (ja) 日射遮蔽体形成用タングステン酸化物微粒子の製造方法、および日射遮蔽体形成用タングステン酸化物微粒子
WO2019058737A1 (ja) セシウムタングステン酸化物膜とその製造方法
JP2022041986A (ja) 赤外線吸収粒子の製造方法
JP2023155281A (ja) 複合タングステン酸化物膜及び該膜を有する膜形成基材、並びに物品
JP7395826B2 (ja) 複合タングステン酸化物膜及びその製造方法、並びに該膜を有する膜形成基材及び物品
KR101768311B1 (ko) 열변색 특성 및 투명도가 우수한 도핑된 열변색 나노입자의 제조 방법 및 그를 이용한 열변색 필름 제조방법
JPWO2019054497A1 (ja) 日射遮蔽用合わせ構造体およびその製造方法
Peng et al. Near-infrared luminescent and antireflective in SiO2/YVO4: Yb3+ bilayer films for c-Si solar cells
JP2011190528A (ja) 酸化亜鉛系透明導電膜の形成方法、酸化亜鉛系透明導電膜および透明導電性基板
US12006566B2 (en) Composite tungsten oxide film and method for producing same, and film-deposited base material and article each provided with said film
Zhao et al. Effect of sputtering pressure on the structure and properties of SiO2 films prepared by magnetron sputtering
Wada et al. Characterization of the VO2 thin films grown on glass substrates by MOD
Al-Kuhaili et al. Spectrally selective energy-saving coatings based on reactively sputtered bismuth oxide thin films
JP7147519B2 (ja) 波長選択フィルタ及びそれを用いた熱光起電力発電装置
WO2022209712A1 (ja) 赤外線吸収粒子、赤外線吸収粒子分散液、赤外線吸収粒子分散体、赤外線吸収合わせ透明基材、赤外線吸収透明基材
Raza et al. Single layer broadband spectrally selective SiON coatings for passive radiative cooling
Gaponenko et al. Upconversion emission from erbium doped sol-gel derived ВаТiOз powders and coatings
Niaz et al. FABRICATION AND CHARACTERIZATION OF MULTILAYER HfO2/Ag/HfO2 FILMS
Jin et al. Extraordinary infrared emittance property of Mo-, W-incorporated Sm 0. 5 Sr 0. 5 CoO 3− δ
KR101506085B1 (ko) 나노 합금 박막 및 이의 제조방법
JP2004292194A (ja) 低反射膜付きガラス板の製造方法および低反射膜付きガラス板
CN117043299A (zh) 红外线吸收粒子、红外线吸收粒子分散液、红外线吸收粒子分散体、红外线吸收夹层透明基材、红外线吸收透明基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3099470

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019265050

Country of ref document: AU

Date of ref document: 20190417

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019800654

Country of ref document: EP

Effective date: 20201209