JP7147519B2 - 波長選択フィルタ及びそれを用いた熱光起電力発電装置 - Google Patents

波長選択フィルタ及びそれを用いた熱光起電力発電装置 Download PDF

Info

Publication number
JP7147519B2
JP7147519B2 JP2018225828A JP2018225828A JP7147519B2 JP 7147519 B2 JP7147519 B2 JP 7147519B2 JP 2018225828 A JP2018225828 A JP 2018225828A JP 2018225828 A JP2018225828 A JP 2018225828A JP 7147519 B2 JP7147519 B2 JP 7147519B2
Authority
JP
Japan
Prior art keywords
refractive index
wavelength
index film
film
selection filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018225828A
Other languages
English (en)
Other versions
JP2020086407A (ja
Inventor
慎司 徳丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018225828A priority Critical patent/JP7147519B2/ja
Publication of JP2020086407A publication Critical patent/JP2020086407A/ja
Application granted granted Critical
Publication of JP7147519B2 publication Critical patent/JP7147519B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Optical Filters (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、熱源から放射する光(ふく射)から所定の波長分布を持つ光だけを透過する波長選択フィルタおよびそれを用いた熱光起電力発電装置に関する。
熱光起電力(Thermophotovoltaic:TPV)発電は、工場などで発生する高温域の排熱をエネルギーとして利用する技術のひとつであり、熱源からのふく射を光電変換(Photovoltaic:PV)素子(光電池)によって電力に変換する発電技術である。熱光起電力発電では、熱エネルギー(ふく射)をエミッタやフィルタで波長選択して所定の波長分布を持つ光を光電変換素子で電気に変換する。熱光起電力発電は、熱エネルギーから直接電気エネルギーを得ることができるため、エネルギー変換効率がよい。
熱光起電力発電は、500℃以上の温度域の排熱を利用することができ、1000℃程度の高温排熱のふく射からの発電を想定した場合、光電池としてGaSb素子やInGaAs素子が適していると考えられる。
熱源からのふく射を波長選択するフィルタの透過、反射特性と、電気に変換する光電変換素子の吸収特性の波長マッチングが重要になる。このため、光電変換素子が電気に変換できる波長域で選択的に透過し、それ以外の波長域では反射するフィルタの開発が望まれている。
上述のGaSb素子が吸収して発電できる光の波長は800nm~1800nmであり、InGaAs素子が吸収して発電できる光の波長は1500nm~2500nmである。これらに比べて、1000℃熱源からのふく射の波長範囲は500nm~20000nmと広いため、熱源からのふく射を直接、GaSb光電変換素子に照射すると1800nm超の光は光電変換素子で発電してエネルギーを回収できないため加熱するだけの役割しか持たない。同様に、InGaAs光電変換素子に照射すると2500nm超の光は光電変換素子を加熱するだけの役割しか持たない。光電変換素子が加熱されることに伴う光電変換素子の破損、温度上昇による出力損失や、冷却のためのコスト上昇が問題となる。波長選択部材としてエミッタを用いる場合は、その性質上、熱源のふく射を吸収し、エミッタ自身が加熱される必要があり、ときには1000℃以上となることもある。安全裕度も考慮すると、エミッタは空気中で1000℃超の耐熱性を有する材質としなければならない。一方、波長選択フィルタは、その性質上、加熱される必要はなく、エミッタと同程度の耐熱性は必要としない。そこで、素子と熱源との間に、素子の吸収波長の光だけを透過する波長選択フィルタを配置することが、より必要とされる。
しかし、フィルタにおいては、光電変換素子の吸収波長域のみでふく射を100%透過し、それ以外の波長域で100%反射することが理想だが、前記ふく射の全波長域で吸収を0%とすることは、現実的に困難であり、ある程度のふく射の吸収はやむを得ない。また、1000℃以上の熱源からのふく射強度は非常に大きいため、わずかな吸収でもある程度の高温になってしまう。熱源が1000℃以上であり、フィルタが熱源と近接している場合、フィルタが1000℃程度となることもありえる。そのような状況で、フィルタを工業的に使用する場合には、安全裕度も考慮して、少なくとも1000℃の耐熱性を有することが望ましい。
また、波長選択フィルタは、光の干渉により、フィルタを構成する膜の表面や界面での反射を制御して、必要な波長の光を透過し、逆に不必要な波長の光は反射して透過させないようにするため、各層の屈折率の制御が必要となる。
特許文献1には、高屈折率膜/低屈折率膜を交互に積層したフィルタが開示されている。ただし、屈折率の数値範囲が特定されていない。また、高屈折率層と低屈折率層との間に薄い拡散バリア層(窒化珪素層)を挿入することによって高温に耐えられるように設計されている。しかし、高屈折率膜としてSi単相膜を用いており、空気中での1000℃以上の耐酸化性は確保できない。
特許文献2、3は、低屈折率膜と高屈折率膜を含む反射防止フィルム及び近赤外線カットフィルターを開示している。ただし、特許文献2は780nmまでの波長の光の反射を防止するもの、特許文献3は主に900~1100nmの波長の光の透過を防止するものであり、いずれも1800nmまたは2500nm超の光の反射については記載も示唆もされていない。また、ディスプレイ用の反射膜であるので、1000℃の熱源などへの耐熱性については特段考慮されていない。
特許文献4は、赤外線吸収剤(フタロシアニン化合物)を含む遮熱フィルムを開示している。ただし、360~760nmの波長の光に対しては透過率を高くし、800~1200nmの波長の光に対しては吸収率を高くしたものであり、この文献においても、1800nmまたは2500nm超の光の反射については記載も示唆もされていない。また、ビルや一般家屋や自動車などの窓ガラスに貼り付ける遮熱フィルムであるので、1000℃の熱源などへの耐熱性については特段考慮されていない。
米国特許第5403405号明細書 特開2003-121605号公報 特開2003-121636号公報 特開2005-157011号公報 特開平4-301505号公報
特許文献1~4に開示されたフィルタやフィルムは、屈折率が特定されていない、波長1800nmまたは2500nm超の光を十分に反射することができない、1000℃程度の高温の熱源を想定した耐熱性についても考慮されたものでない等の問題がある。(なお、特許文献5は、屈折率等の光学定数の測定方法に関する文献であって、特定の屈折率を有するフィルタやフィルムを開示するものではない。)
本発明は、上記の事情に鑑み、1000℃程度の高温の熱源を想定した耐熱性(1000℃程度)を有し、光電変換素子の光吸収率の高い800nm~2500nmの波長の光は透過しやすく、2000nm以上の波長の光を反射しやすい波長選択フィルタおよびそれを用いた熱光起電力発電装置を提供することを目的とする。この波長選択フィルタは、GaSb光電変換素子またはInGaAs光電変換素子を用いた熱光起電力発電において非常に有用である。
本発明者らは波長選択フィルタの耐熱性および光透過性、光反射性を高めるべく、その構成について鋭意検討し、本発明を成した。その要旨は以下のとおりである。
(1)透明基板上に、波長800nm~4000nmにおける屈折率が、2.4以上、3.4以下であるSi粒子を分散したSiOからなる高屈折率膜と、前記高屈折率膜より屈折率が低く、屈折率が1.6以上、2.8以下であるSi粒子を分散したSiOからなる中間屈折率膜と、屈折率が1.2以上、1.5以下である低屈折率膜が積層され、波長800nm~4000nmにおいて、前記それぞれの膜の消衰係数が0.1以下であり、
波長800nm~2500nmでの平均透過率が60%以上で、波長2700nm~4000nmでの平均反射率が80%以上であり、少なくとも1000℃の耐熱性を有することを特徴とする波長選択フィルタ。
(2)前記高屈折率膜が55~85vol%のSi粒子を分散したSiOからなる(1)に記載の波長選択フィルタ。
(3)前記中間屈折率膜が15~60vol%のSi粒子を分散したSiOからなる(1)または(2)に記載の波長選択フィルタ。
(4)前記低屈折率膜がSiOからなる(1)~(3)のいずれか1項に記載の波長選択フィルタ。
(5)前記透明基板が石英からなる(1)~(4)のいずれか1項に記載の波長選択フィルタ。
(6)波長800nm~1800nmでの平均透過率が80%以上で、波長2000nm~4000nmでの平均反射率が80%以上あることを特徴とする(1)~(5)のいずれか1項に記載の波長選択フィルタ。
(7)波長1500nm~2500nmでの平均透過率が80%以上であることを特徴とする(1)~(6)のいずれか1項に記載の波長選択フィルタ。
(8)請求項(1)~(6)のいずれか1項に記載の波長選択フィルタが、熱光起電力発電において熱源とGaSb光電変換素子との間に配置されることを特徴とする熱光起電力発電装置。
(9)請求項(1)~(5)または(7)のいずれか1項に記載の波長選択フィルタが、熱光起電力発電において熱源とInGaAs光電変換素子との間に配置されることを特徴とする熱光起電力発電装置。
本発明によれば、少なくとも1000℃程度の耐熱性を有し、800nm~2500nmの波長の光の平均透過率が高く、2700nm~4000nmの波長の光の平均反射率が高い波長選択フィルタを得ることができる。この波長選択フィルタは、GaSb光電変換素子またはInGaAs光電変換素子を用いた熱光起電力発電において非常に有用である。
熱光起電力発電システムの構成を模式的に示す図である。 波長選択フィルタの構成を模式的に示す縦断面図である。
以下、本発明の実施形態について詳細に説明する。
まず、図1を参照して、熱光起電力発電について説明する。熱光起電力発電では、熱源50からのふく射51を波長選択フィルタ10で所定の波長分布を持つ光54のみを透過し(所望しない波長分布を持つ光を反射光56として反射し)、透過された光54を光電変換素子60で電気に変換する。
1000℃程度の熱源50からのふく射の波長範囲は、500nm~20000nmであるが、光電変換素子60の光吸収率の高い波長域は、光電変換素子60がGaSbの場合には、800nm~1800nmであり、光電変換素子60がInGaAsの場合には、1500nm~2500nmである。
熱源50からのふく射から、直接光電変換素子60で発電しようとすると、光電変換素子60がGaSbの場合には1800nm超の光は、光電変換素子60の発電には使用されず、光電変換素子60を加熱するだけに使われることになる。光電変換素子60がInGaAsの場合には2500nm超の光は、光電変換素子60の発電には使用されず、光電変換素子60を加熱するだけに使われることになる。そして、温度が上昇した光電変換素子60は出力が低下するので、この出力低下を避けるために光電変換素子60を冷却する必要があり、それによって冷却のための電力も大きくなってしまう。
そこで、図1に示すように、熱源50と光電変換素子60との間に、光電変換素子60の吸収波長域に合わせた波長範囲で光54を選択的に透過(光電変換素子60がGaSbの場合には、約800nm~1800nmの波長域の光を選択的に透過し、光電変換素子60がInGaAsの場合には、約1500nm~2500nmの波長域の光を選択的に透過)する、波長選択フィルタ10を配置することにより、光電変換素子60の出力を低下させず、且つ光電変換素子60の冷却電力を抑えることができる。
なお、波長選択フィルタ10は、熱源50と光電変換素子60との間に配置されるので、熱源50が1000℃程度である場合、少なくとも1000℃の耐熱性が要求される。概して、波長選択フィルタ10は、熱源50と接触させることはなく、空間を挟んで熱源50から遠位に配置される(光電変換素子60側に配置される)ので、1000℃までの耐熱性があれば十分に実用的である。ここで、耐熱性とは、空気中で所定の温度(例えば1000℃)まで加熱された後で破損等の異常がなく、且つ加熱の前後で光学特性に変化がないことをいう。これは、試料を空気中で1000℃に加熱し、3時間保持した後、この加熱前後での平均透過率、平均反射率の両方の値の変化が5%未満で、且つ、波長800nm~2500nmでの平均透過率が60%以上で、波長2700nm~4000nmでの平均反射率が80%以上であるものとする。
また、波長選択フィルタ10と熱源50の間に石英ガラスを設置してもよい。これにより4000nm以上の波長の光をよりカットすることができ、光電変換素子60への熱負荷が低減される。
また、光電変換素子60と熱源50の間に、波長選択フィルタ10(第一フィルタと称することがある)に加えて、4000nm~6000nmの波長の光を反射する第二フィルタを設置してもよい。これにより4000nm~6000nmの波長の光をカットすることができ、光電変換素子60への熱負荷が低減される。
次に、波長選択フィルタについて説明する。
本実施の形態の波長選択フィルタは、透明基板と、その上に、波長800nm~4000nmにおける屈折率が、2.4以上、3.4以下であるSi粒子を分散したSiOからなる高屈折率膜と、前記高屈折率膜より屈折率が低く、屈折率が1.6以上、2.8以下であるSi粒子を分散したSiOからなる中間屈折率膜と、屈折率が1.2以上、1.5以下である低屈折率膜が積層されている。高屈折率膜、中間屈折率膜および低屈折率膜は、波長800nm~4000nmにおいて、それぞれの膜の消衰係数が0.1以下である。
透明基板は、その上に高屈折率膜と、中間屈折率膜と、低屈折率膜とが積層される。透明基板としては、代表的なものとして、石英ガラス、光学ガラスがある。ここでの透明とは、2500nm以下の波長の光を透過することを云う。
好ましくは、透明基板は石英ガラスであってもよい。石英ガラスは、最高使用温度が1000℃を超える高い耐熱性を有するからである。石英ガラスの成分は二酸化ケイ素をほぼ100%とする。石英ガラスを更に分類すると、製法の違いなどから、溶融石英ガラス、合成石英ガラスなどに分けられる。
光学ガラスとしては、ホウケイ酸ガラスが例示される。これは二酸化ケイ素を主成分としつつ酸化ホウ素などを加えて構成される。一般的なソーダガラスに比べて、光透過性が高く、光学的歪みは少ないことなどが特長である。概して、光学ガラスの耐熱性は、石英ガラスに劣ることがあるが、透明基板は熱源から遠位に配置される(光電変換素子側に配置される)ので、運用条件等によっては、透明基板そのものが1000℃までの耐熱性を有する必要はない。例えば最高使用温度が500℃以上のものや600℃以上のものを使用してもよい。
石英ガラス、および光学ガラスの透過率は、透明基板の種類によって光吸収率の高い波長域は異なっている。石英ガラスでは約4000nmを超える範囲、光学ガラスでは2500nmを超える範囲、においてより高い吸収効果が得られる場合が多い。光電変換素子の光吸収率の高い波長域は、光電変換素子がGaSbの場合には、800nm~1800nmであり、光電変換素子がInGaAsの場合には、1500nm~2500nmであるので、これらの波長域の光を透過やすい(吸収しにくい)、石英ガラス、光学ガラスが好ましい。
透明基板の厚さは、所望の光学特性を満たす限り特に限定されるものではないが、製造上の都合や、取り扱い性等を考慮して、0.1mm~100mm程度としてもよい。好ましくは、下限を1mm以上、5mm以上、10mm以上としてもよく、上限を90mm以下、75mm以下、50mm以下としてもよい。
高屈折率膜は、透明基板の上に積層される。高屈折率膜は、波長800nm~4000nmにおける屈折率が、2.4以上、3.4以下である。十数層(たとえば16層)以下の積層構造で前記波長選択性を確保するためには屈折率2.4以上とすることが必要である。2700nm超の波長の光を反射させる観点から、屈折率はなるべく大きい方が好ましいが、3.4超となると、Si成分が過多になり空気中での耐熱性が低下するので採用しない。前記の屈折率を満たしつつ、使用時の耐熱性、耐環境性を満たすことも考慮し、高屈折率膜は、Si粒子を分散したSiOからなる。
高屈折率膜は、母材としてのSiOに付加材としてのSi粒子を分散したものである。付加材としてのSi粒子は、粒径が1nm以上10nm以下程度の粒子であるのが好ましい。高屈折率膜は、付加材としてのSi粒子を55体積%以上85体積%以下含有しているのが好ましい。高屈折率膜は、付加材としてのSi粒子が55体積%未満であると充分な屈折率を確保できないため、波長を選択することが困難となり、85体積%超であると付加材同士が結合し連続膜となりやすく、1000℃の空気中で酸化してしまい波長選択性を失う可能性が生じる。
高屈折率膜の母材は、SiOで形成される。SiOは1500℃以上の融点を有し、高温の酸化雰囲気であっても蒸発しやすい酸化物組成の化合物を有さない耐熱性の高い材料であり、化学的に安定な酸化物であるので、隣接する中間屈折率膜や低屈折率膜や透明基板と反応して化合物を形成することがなく、波長選択フィルタの波長選択性が崩れることがない。また、付加材としてのSi粒子と母材としてのSiOを組み合わせた高屈折率膜では、1000℃までの高温下において、母材は付加材と反応せず、付加材は母材中で酸化されず、安定して存在する。
母材としてのSiOおよび付加材としてのSi粒子からなる高屈折率膜は、スパッタ法により好適に形成することができる。例えば、SiOターゲットの上にSiチップを積載したものを用いて、スパッタリングを行うことにより、酸化物(SiO)中に金属又は半導体(Si)を分散させた層を形成する。分散層を形成後に、ArやNガスなどの不活性ガス中で500℃~1200℃で熱処理をすることにより、高屈折率膜の母材としてのSiO中に金属又は半導体を凝集させ、付加材としてのSi粒子を形成するとともにそれぞれの層を緻密化することができる。
高屈折率膜は、波長800nm~4000nmにおいての消衰係数が0.1以下である。消衰係数が0.1以下であることにより、中間屈折率膜と低屈折率膜との組み合わせで光電変換素子の吸収波長域では熱源からの入射光をほとんど減衰せずに、光電変換素子へ透過させることができ、それ以外の波長域でほとんどを反射することができる。
高屈折率膜の物理膜厚は特に限定されるものではなく、膜厚を調整して、光学膜厚を調整してもよい。膜厚は光学薄膜として機能する5nm以上とし、材料費や生産性の点から200nm以下とするのが好ましいが、下限を適宜10nm以上、20nm以上、30nm以上、160nm以上としてもよく、上限を260nm以下、150nm以下、120nm以下、110nm以下としてもよい。
中間屈折率膜は、前記高屈折率膜や後段で詳述する低屈折率膜との組み合わせにより十数層以下の積層構造で前記波長選択性を確保するために、波長800nm~4000nmにおいての屈折率が1.6以上、2.8以下である。前記の屈折率を満たしつつ、使用時の耐熱性、耐環境性を満たすことも考慮すると、中間屈折率膜の材料としては、SiC、Al、Ta、Crなどが望ましく、これらを混合したものであってもよく、さらにSiOを加えてもよいが、この限りではない。SiOは1500℃以上の融点を有し、高温の酸化雰囲気であっても蒸発しやすい酸化物組成の化合物を有さない耐熱性の高い材料であり、化学的に安定な酸化物であるので、隣接する高屈折率膜や低屈折率膜や透明基板と反応して化合物を形成することがなく、波長選択フィルタの波長選択性が崩れることがない。
SiOは、真空蒸着法、スパッタ法、CVD法により、好適に形成することができる。いずれの手法でも、SiOの層を数10nmの薄さで容易に膜厚を管理でき、均一性を高めることもできる。さらに真空蒸着法、スパッタ法は大面積化にも有利であり、生産性に優れている。
SiCは、CVD法、スパッタ法、炭化法などにより好適に作製できる。CVD法の場合、カーボン含有ガス及びシリコン含有ガスを熱分解させ、反応させることで、SiCの層を形成できる。透明基板が石英の場合、スパッタ法により、透明基板上にSiC層を析出できる。なお、ここで用いる中間屈折率膜は、単結晶、多結晶、アモルファス相のいずれでも構わない。
中間屈折率膜は、母材に付加材を分散したものであってもよい。中間屈折率膜の付加材は、金属又は半導体で形成される。金属又は半導体は、Siであってもよい。付加材は、粒径が1nm以上10nm以下程度の粒子であるのが好ましい。中間屈折率膜は、付加材を20体積%以上60体積%以下含有しているのが好ましい。中間屈折率膜は、付加材が20体積%未満であると充分な屈折率を確保できないため、波長を選択することが困難となり、60体積%超であると所望する屈折率を超えてしまうことがある。
中間屈折率膜の母材は、付加材を構成する金属又は半導体の酸化物であってもよい。すなわち付加材がSiの場合、母材はSiOで形成される。付加材と母材をこれらの組み合わせとすることにより、1000℃までの高温下において、母材は付加材と反応せず、付加材は母材中で酸化されず、安定して存在する。
母材および付加材からなる中間屈折率膜は、スパッタ法により好適に形成することができる。例えば、SiOターゲットの上にSiチップを積載したものを用いて、スパッタリングを行うことにより、酸化物(SiO)中に金属又は半導体(Si)を分散させた層を形成する。分散層を形成後に、ArやNガスなどの不活性ガス中で500℃~1200℃で熱処理をすることにより、中間屈折率膜の母材中に金属又は半導体を凝集させ、付加材の粒子を形成するとともにそれぞれの層を緻密化することができる。
中間屈折率膜は、波長800nm~4000nmにおいての消衰係数が0.1以下である。消衰係数が0.1以下であることにより、高屈折率膜や低屈折率膜との組み合わせで光電変換素子の吸収波長域では熱源からの入射光をほとんど減衰せずに、光電変換素子へ透過させることができ、それ以外の波長域でほとんどを反射することができる。
中間屈折率膜の物理膜厚は特に限定されるものではなく、膜厚を調整して、光学膜厚を調整してもよい。膜厚は光学薄膜として機能する5nm以上とし、材料費や生産性の点から200nm以下とするのが好ましいが、下限を適宜10nm以上、20nm以上、30nm以上、40nm以上としてもよく、上限を180nm以下、150nm以下、120nm以下、110nm以下としてもよい。
波長選択フィルタは、透明基板上に、高屈折率膜および中間屈折率膜に加えて、低屈折率膜を積層したものである。波長選択フィルタに、低屈折率膜を加えることにより、光学特性の調整範囲を広げることができる。
低屈折率膜は、波長800nm~4000nmにおいての屈折率が1.2以上、1.5以下である。低屈折率膜を用いることで、透過率或いは反射率の高い波長領域を拡げたり、高屈折率膜及び中間屈折率膜それぞれの膜厚範囲を拡げられる効果がある。前記の屈折率を満たしつつ、使用時の耐熱性、耐環境性を満たすことも考慮すると、低屈折率膜は、SiOを主成分として使用することができるが、この限りではない。主成分とは、濃度が50mol%超を有することである。低屈折率膜は、屈折率を調整するために、Alを含んでもよい。SiOやAlは耐熱性が高いことから、使用時に大気中で500℃程度の高温に曝されても劣化することはなく、高温保管性に優れている。SiOは上述したように1500℃以上の融点を有し、高温の酸化雰囲気であっても蒸発しやすい酸化物組成の化合物を有さない耐熱性の高い材料であり、化学的に安定な酸化物であるので、隣接する膜や透明基板と反応して化合物を形成することがなく、波長選択フィルタの波長選択性が崩れることがない。
SiOやAlは、真空蒸着法、スパッタ法、CVD法により、好適に形成することができる。いずれの手法でも、SiOやAlの層を数10nmの薄さで容易に膜厚を管理でき、均一性を高めることもできる。さらに真空蒸着法、スパッタ法は大面積化にも有利であり、生産性に優れている。なお、ここで用いる低屈折率膜は、単結晶、多結晶、アモルファス相のいずれでも構わない。
低屈折率膜は、波長800nm~4000nmにおいての消衰係数が0.1以下である。消衰係数が0.1以下であることにより、高屈折率膜及び中間屈折率膜との組み合わせで光電変換素子の吸収波長域では熱源からの入射光をほとんど減衰せずに、光電変換素子へ透過させることができ、それ以外の波長域でほとんどを反射することができる。
低屈折率膜の物理膜厚は特に限定されるものではなく、膜厚を調整して、光学膜厚を調整してもよい。膜厚は光学薄膜として機能する5nm以上とし、材料費や生産性の点から200nm以下とするのが好ましいが、下限を適宜10nm以上、20nm以上、30nm以上、50nm以上としてもよく、上限を550nm以下、500nm以下、400nm以下、300nm以下、200nm以下、150nm以下、120nm以下、110nm以下としてもよい。
波長選択フィルタは、波長800nm~2500nmでの平均透過率が60%以上で、波長2700nm~4000nmでの平均反射率が80%以上であり、少なくとも1000℃の耐熱性を有する。これは、上記透明基板上に、上記高屈折率膜と上記中間屈折率膜と上記低屈折率膜とを積層することにより実現される。波長選択フィルタは、波長2700nm~4000nmでの平均反射率が80%以上であるため、熱源からのふく射に含まれる光電変換素子が電気に変換しない波長の光を選択的に反射することができる。また、波長選択フィルタは、波長800nm~2500nmでの平均透過率が60%以上であるため、光電変換素子が電気に変換する波長の光を選択的に透過することができる。したがって、光電変換素子がGaSbまたはInGaAsの場合に、光電変換素子の温度上昇を抑制し発電効率を高めることができる。また、少なくとも1000℃の耐熱性を有するので、1000℃程度の熱源に近い位置でも適用することができる。逆に、波長2700nm~4000nmでの平均反射率が80%未満の場合、波長選択フィルタの設置環境にもよるが、基板であるガラスの吸収率が大きいため、熱源に近い位置に設置した場合には基板自体が加熱され1000℃超になってしまう可能性がある。
本発明の一態様の波長選択フィルタは、波長800nm~2500nmでの平均透過率が60%以上で、波長2700nm~4000nmでの平均反射率が80%以上であり、少なくとも1000℃の耐熱性を満たし、さらに、波長800nm~1800nmでの平均透過率が80%以上で、波長2000nm~4000nmでの平均反射率が80%以上であってもよい。この態様は、上記透明基板上に、上記高屈折率膜と上記中間屈折率膜と上記低屈折率膜とを積層することにより実現される。この態様の波長選択フィルタは、光電変換素子がGaSbの場合に、非常に有用である。GaSb光電変換素子の光吸収率の高い波長域は、800nm~1800nmであるためである。
本発明の別の態様の波長選択フィルタは、波長800nm~2500nmでの平均透過率が60%以上で、波長2700nm~4000nmでの平均反射率が80%以上であり、少なくとも1000℃の耐熱性を満たし、さらに、波長1500nm~2500nmでの平均透過率が80%以上であってもよい。この態様は、上記透明基板上に、上記高屈折率膜と上記中間屈折率膜と上記低屈折率膜とを積層することにより実現される。この態様の波長選択フィルタは、光電変換素子がInGaAsの場合に、非常に有用である。InGaAs光電変換素子の光吸収率の高い波長域は、1500nm~2500nmであるためである。
本実施の形態の波長選択フィルタは、透明基板上に、高屈折率膜と中間屈折率膜と低屈折率膜とを積層したものである。これらの屈折率膜を積層する順序は、波長選択フィルタとして、波長800nm~2500nmでの平均透過率が60%以上で、波長2700nm~4000nmでの平均反射率が80%以上であり、少なくとも1000℃の耐熱性を有するかぎり、特に限定されるものではない。以下の積層順序を採用してもよいが、本発明はこれらに限定されるものではない。
透明基板側から積層される順に、中間屈折率膜、高屈折率膜、低屈折率膜を繰り返してもよい。または、透明基板側から積層される順に、中間屈折率膜、高屈折率膜、中間屈折率膜、低屈折率膜であってもよい。または、透明基板側から積層される順に、中間屈折率膜、高屈折率膜、中間屈折率膜、低屈折率膜を繰り返してもよい。なお、本発明において、屈折率膜の積層数は特に限定されるものではない。ただし、積層数は少ないほど厚みや作製コストが低くなりやすいので、好ましい。そのため、積層数は十数層以下(たとえば16層)であってもよい。一方で、積層数が少なすぎると、所望の光学特性が得られないことがあるので、積層数は数層(たとえば7層)以上であってもよい。
本発明の一態様の波長選択フィルタ(第一フィルタ)は、4000nm~6000nmの波長の光を反射する第二フィルタを備えてもよい。1000℃程度の高温排熱のふく射の波長範囲は0.5μm~20μmと広く、特に~6000nmでふく射強度が高い場合がある。その場合、上記の第二フィルタを備えることにより、4000~6000nmの波長の光をカットすることができ、光電変換素子への熱負荷が低減される。そのため、第二フィルタは、4000nm~6000nmの波長で、平均反射率が高いほど好ましく、平均反射率は50%以上、60%以上、70%、80%以上、90%以上であってもよい。
第二フィルタは、4000nm~6000nmの波長の光を反射するフィルタであれば特に限定されるものではなく、第一フィルタを構成する、高屈折率膜、中間屈折率膜、および低屈折率膜を適宜組み合わせることによって実現することもできる。第二フィルタは、透明基板上に、高屈折率膜、中間屈折率膜、および低屈折率膜を積層したものであってもよい。
上記の第二フィルタは、熱源に近位の位置に配置されてもよい。熱源からの4000nm~6000nmの波長の光を反射するので、第二フィルタよりも光電変換素子に近い位置にある波長選択フィルタ(第一フィルタ)は、4000~6000nmの波長の光が入射せず、第一フィルタへの熱負荷も低減される。また、GaSb光電変換素子の光吸収率の高い波長域は800nm~1800nmであり、InGaAsGaSb光電変換素子の光吸収率の高い波長域は1500nm~2500nmであるので、4000~6000nmの波長の光は光電変換素子の発電には使用されず、光電変換素子を加熱するだけに使われることになる。そして、温度が上昇した光電変換素子は出力が低下するので、この出力低下を避けるために光電変換素子を冷却する必要があり、それによって冷却のための電力も大きくなってしまう。第二フィルタにより、光電変換素子への熱負荷も低減される。
波長選択フィルタの透過率(T%)は、分光光度計を用いて、光源から空気のみを通過した入射光の測定強度を100%とし、波長選択フィルタを光源と分光光度計との間に配置した場合の測定強度を百分率(%)で表示する。透過率測定では、800~6000nmの波長の入射光を用いて、20nmごとの透過率を平均する。
波長選択フィルタの反射率(R%)は、光源から波長選択フィルタに垂直入射光(入射角度10°)を入射し、波長選択フィルタが反射した光の強度を、分光光度計を用いて測定する。光源からAgコート平面ミラー(エドモンドオプティクス社製)への垂直入射光(入射角度10°)に対する反射光の測定強度を100%とし、波長選択フィルタの反射光の相対強度を百分率(%)で表示する。反射率測定では、800~6000nmの波長の入射光を用いて、20nmごとの反射率を平均する。
各屈折率膜の分光屈折率(n(λ))と分光消衰係数(k(λ))は、前記方法で測定した各屈折率膜の透過率と反射率、および膜厚から求める。あらかじめn(λ)とk(λ)がわかっている石英ガラス基板の上に、厚さ100~300nmの各屈折率膜一層のみを成膜して、その分光透過率(T(λ)%)と分光反射率(R(λ)%)を測定する。膜厚は触針式段差計などで測定する。波長λにおけるn(λ)minとn(λ)max、およびk(λ)minとk(λ)maxを定め、それぞれの範囲内で光学定数N(λ)=n(λ)-ik(λ)を含む連立方程式を逆算することにより、前記T(λ)%とR(λ)%に合うn(λ)とk(λ)を算出する。しかし、この方法だと一般的に多重解となってしまうため、光学定数N(λ)に分散(波長依存性)が無いと仮定し、n(λ)=n(λ±20nm)=n(λ±40nm)、k(λ)=k(λ±20nm)=k(λ±40nm)とすることで、解を一つに絞ることができる(特許文献5)。波長λが800~4000nmの範囲でのnとkの範囲を表1に示した。
波長選択フィルタとエミッタとの相違について説明する。エミッタは、熱源からのふく射を灰色体で吸収し加熱され、加熱されたエミッタからのふく射を金属体、誘電体層、複合体層で波長選択するものである。一方、本発明の一態様による波長選択フィルタは、熱源からのふく射を高、中、低それぞれの屈折率膜の積層構造で透過と反射による波長選択するフィルタである。言い換えると、概して、エミッタでは必ず金属体を含む構造で放射率を設計する、一方、フィルタでは透過率と反射率を設計する。エミッタがSi分散SiO層とSiO層を含むことがあるが、本発明の一態様によるフィルタでは高屈折率膜としてのSi分散SiO層と中間屈折率膜としてのSi分散SiO層が必須構成要素である。さらに、エミッタでのSi分散SiO層ではSi含有率を30~80vol%としているだけで、特に屈折率の規定はなくその幅が広くても可(フィルタでの中間~高屈折率膜に相当)としている。
(試料の作製)
透明基板として、石英ガラス(膜厚2mm)を用意した。透明基板上に、高屈折率膜、中間屈折率膜および低屈折率膜をスパッタ法により、ターゲットを変えることで連続的に形成し、試料No.1~20の20種類の波長選択フィルタを作製した。一部の波長選択フィルタでは、比較例として、本発明の範囲外の屈折率を有する屈折率膜を採用した。表1に、各屈折率膜の屈折率(n)および消衰係数(k)を示す。表2~3に、試料No.1~20の波長選択フィルタにおける、各屈折率膜の種類や膜厚、および積層順序を示す。
SiO膜はSiOのターゲットを用いて成膜した。Si膜はSiターゲットを用いて成膜した。Si分散SiO膜はSiOターゲットの上にSiチップを積載したものを用いて成膜した。
ターゲットはいずれも直径100mmで、圧力が0.3Pa~1.5PaのArガス雰囲気で、高周波電源で300W~550Wをターゲットに印加して成膜した。
すべての層を積層した後、1気圧のNガス雰囲気で1000℃、1時間の熱処理を行った。
Si分散SiO膜に含まれる付加材(Si)の体積分率は、ターゲットに積載するチップのサイズ、枚数を変えることで制御した。実際の体積分率はX線光電子分光(XPS:X-ray Photoelectron Spectroscopy)により確認した。
また、各膜の膜厚は、あらかじめ成膜した膜厚を触針式段差計で測定し、成膜速度を求めて、所定の膜厚になるようにスパッタリング時間を制御した。
(表2)
試料No.1~12の波長選択フィルタは、屈折率膜の積層数を12層(場合により11層)としたものである。
試料No.1~5、10~12の波長選択フィルタは、高屈折率膜と中間屈折率膜と低屈折率膜を積層したものである。試料No.1~5では、原則として、透明基板側から、中間屈折率膜、高屈折率膜、中間屈折率膜、低屈折率膜の順で繰り返して積層した。但し、最上層(第12層)は調整層として、採用しないこともあった。模式図を図2(左側)に示す。
試料No.6では、透明基板側から、中間屈折率膜、中間屈折率膜、中間屈折率膜、低屈折率膜の順で繰り返して積層した。
試料No.7では、透明基板側から、中間屈折率膜、高屈折率膜、低屈折率膜の順で繰り返して積層した。模式図を図2(右側)に示す。試料No.8では、透明基板側から、高屈折率膜、中間屈折率膜、低屈折率膜の順で繰り返して積層した。模式図を図2(中央)に示す。
試料No.9では、透明基板側から、高屈折率膜、高屈折率膜、低屈折率膜の順で繰り返して積層した。
比較例1~5を示すために、一部の資料(No.4、6、9、11、12)では、屈折率が本願発明の範囲外の屈折率膜を積層した。

(表3)
試料No.13~18、20の波長選択フィルタは、屈折率膜の積層数を16層(場合により15層)、No.19の波長選択フィルタは8層としたものである。
試料No.13、14および18~20の波長選択フィルタは、高屈折率膜と中間屈折率膜と低屈折率膜を積層したものであり、原則として、透明基板側から、中間屈折率膜、高屈折率膜、中間屈折率膜、低屈折率膜の順で繰り返して積層した。但し、最上層(第16層)は調整層として、採用しないこともあった。
試料No.15では、原則として、透明基板側から、中間屈折率膜、高屈折率膜の順で繰り返して積層した。
試料No.16では、原則として、透明基板側から、高屈折率膜、中間屈折率膜の順で繰り返して積層した。
試料No.17では、透明基板側から、高屈折率膜、低屈折率膜の順で繰り返して積層した。但し、最上層(第16層)は調整層として、採用しないこともあった。
比較例6~8を示すために、一部の試料(No.15~17)では、屈折率及びその組み合わせが本願発明の範囲外の屈折率膜を積層した。
Figure 0007147519000001

Figure 0007147519000002
Figure 0007147519000003
(評価方法)
試料No.1~20(波長選択フィルタ)の透過率(T%)は、分光光度計を用いて、光源から空気のみを通過した入射光の測定強度を100%とし、試料(波長選択フィルタ)を光源と分光光度計との間に配置した場合の測定強度を百分率(%)で表示したものである。透過率測定では、800~6000nmの波長の入射光を用いて、20nmごとの透過率を平均した。
試料No.1~20(波長選択フィルタ)の反射率(R%)は、光源から試料(波長選択フィルタ)に垂直入射光(入射角度10°)を入射し、試料(波長選択フィルタ)が反射した光の強度を、分光光度計を用いて測定した。光源からAgコート平面ミラー(エドモンドオプティクス社製)への垂直入射光(入射角度10°)に対する反射光の測定強度を100%とし、波長選択フィルタの反射光の相対強度を百分率(%)で表示した。反射率測定では、800~6000nmの波長の入射光を用いて、20nmごとの反射率を平均した。
各屈折率膜の分光屈折率(n(λ))と分光消衰係数(k(λ))は、各屈折率膜の透過率と反射率、および膜厚から求めた。あらかじめn(λ)とk(λ)がわかっている石英ガラス基板の上に、厚さ100~300nmの各屈折率膜一層のみを成膜して、その分光透過率(T(λ)%)と分光反射率(R(λ)%)を測定した。膜厚は触針式段差計で測定した。波長λにおけるn(λ)minとn(λ)max、およびk(λ)minとk(λ)maxを定め、N(λ)=N(λ±20nm)=N(λ±40nm)と仮定し、それぞれの範囲内で光学定数N(λ)=n(λ)-ik(λ)を含む連立方程式を逆算することにより、波長λが800~6000nmでのn(λ)とk(λ)を求めた。
試料No.1~20(波長選択フィルタ)の耐熱性は、試料を空気中で1000℃に加熱し、3時間保持した後に試料に破損等の異常がないか、加熱前後での平均透過率、平均反射率の両方の値の変化が5%未満であるかを確認し、異常や変化が見られたものについては、事象に応じてさらにその詳細を確認するための分析を行った。
(評価結果)
試料No.1~20(波長選択フィルタ)の透過率(T%)、反射率(R%)および耐熱性の測定結果を表2~3に示す。
GaSb、InGaAs両方の光電変換素子に対して、波長選択フィルタの波長800nm~2500nmでの平均透過率が60%以上で、波長2700nm~4000nmでの平均反射率が80%以上であった場合を○、そうでなかった場合を×と判定した。GaSb光電変換素子に対して、波長800nm~1800nmでの平均透過率が80%以上で、波長2000nm~4000nmでの平均反射率が80%以上であった場合を◎と判定した。InGaAs光電変換素子に対して、波長1500nm~2500nmでの平均透過率が80%以上であった場合を◎とした。耐熱性は空気中で1000℃に加熱し、3時間保持した後に試料に破損等の異常がなく、加熱前後での平均透過率、平均反射率の両方の値の変化が5%未満であった場合を○とした。
No.11とNo.12は、多量のSi付加材またはSiが空気中での1000℃、3時間加熱により酸化し、光学特性の変化が確認され、加熱後には表2に示した値よりも減少し、波長2700nm~4000nmでの平均反射率が80%未満となってしまったため、耐熱性が十分でないと判定した。
No.6は、構成する膜に高屈折率膜を含まず、波長2700nm~4000nmでの反射率(R%)が80%未満であったため、目的とする波長選択フィルタの機能を満たさなかった。
No.9は、構成する膜に中間屈折率膜を含まず、波長2700nm~4000nmでの平均反射率(R%)が80%未満であったため、目的とする波長選択フィルタの機能を満たさなかった。
No.15、16は、構成する膜に低屈折率膜を含まず、波長800nm~2500nmでの透過率(T%)が60%未満で、目的とする波長選択フィルタの機能を満たさなかった。
No.17は、構成する膜に中間屈折率膜を含まず、波長800nm~2500nmでの透過率(T%)が60%未満であったため、目的とする波長選択フィルタの機能を満たさなかった。
No.13、14、20は、光電変換素子がGaSbの場合に好ましい光学特性、すなわち、波長800nm~1800nmでの平均透過率が80%以上で、波長2000nm~4000nmでの平均反射率が80%以上であった。また、その光学特性は、1000℃での加熱前後で光学特性の変化が確認されず、耐熱性を有すると判定した。
No.5、10、18、19は、光電変換素子がInGaAsの場合に好ましい光学特性、すなわち、波長1500nm~2500nmでの平均透過率が80%以上であった。また、その光学特性は、1000℃での加熱前後で光学特性の変化が確認されず、耐熱性を有すると判定した。
(参考例)
参考例として、4000nm~6000nmの波長の光を反射する第二フィルタを用意し、これを本発明によるフィルタ(第一フィルタと称する)と組み合わせた。第二フィルタは、第一フィルタを構成する、透明基板、高屈折率膜、中間屈折率膜、および低屈折率膜を適宜組み合わせて作製した。このようにして得られた参考例のフィルタの、積層構造および光学特性等を表4と表5に示す。
Figure 0007147519000004
Figure 0007147519000005
10 波長選択フィルタ
50 熱源
51 ふく射
54 透過光
56 反射光
60 光電変換素子

Claims (9)

  1. 透明基板上に、波長800nm~4000nmにおける屈折率が、2.4以上、3.4以下であるSi粒子を分散したSiOからなる高屈折率膜と、前記高屈折率膜より屈折率が低く、屈折率が1.6以上、2.8以下であるSi粒子を分散したSiOからなる中間屈折率膜と、屈折率が1.2以上、1.5以下である低屈折率膜が積層され、波長800nm~4000nmにおいて、前記それぞれの膜の消衰係数が0.1以下であり、
    波長800nm~2500nmでの平均透過率が60%以上で、波長2700nm~4000nmでの平均反射率が80%以上であり、少なくとも1000℃の耐熱性を有することを特徴とする波長選択フィルタ。
  2. 前記高屈折率膜が55~85vol%のSi粒子を分散したSiOからなる請求項1に記載の波長選択フィルタ。
  3. 前記中間屈折率膜が15~60vol%のSi粒子を分散したSiOからなる請求項1または2に記載の波長選択フィルタ。
  4. 前記低屈折率膜がSiOからなる請求項1~3のいずれか1項に記載の波長選択フィルタ。
  5. 前記透明基板が石英からなる請求項1~4のいずれか1項に記載の波長選択フィルタ。
  6. 波長800nm~1800nmでの平均透過率が80%以上で、波長2000nm~4000nmでの平均反射率が80%以上であることを特徴とする請求項1~5のいずれか1項に記載の波長選択フィルタ。
  7. 波長1500nm~2500nmでの平均透過率が80%以上であることを特徴とする請求項1~6のいずれか1項に記載の波長選択フィルタ。
  8. 請求項1~6のいずれか1項に記載の波長選択フィルタが、熱光起電力発電において熱源とGaSb光電変換素子との間に配置されることを特徴とする熱光起電力発電装置。
  9. 請求項1~5または7のいずれか1項に記載の波長選択フィルタが、熱光起電力発電において熱源とInGaAs光電変換素子との間に配置されることを特徴とする熱光起電力発電装置。
JP2018225828A 2018-11-30 2018-11-30 波長選択フィルタ及びそれを用いた熱光起電力発電装置 Active JP7147519B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018225828A JP7147519B2 (ja) 2018-11-30 2018-11-30 波長選択フィルタ及びそれを用いた熱光起電力発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018225828A JP7147519B2 (ja) 2018-11-30 2018-11-30 波長選択フィルタ及びそれを用いた熱光起電力発電装置

Publications (2)

Publication Number Publication Date
JP2020086407A JP2020086407A (ja) 2020-06-04
JP7147519B2 true JP7147519B2 (ja) 2022-10-05

Family

ID=70908131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018225828A Active JP7147519B2 (ja) 2018-11-30 2018-11-30 波長選択フィルタ及びそれを用いた熱光起電力発電装置

Country Status (1)

Country Link
JP (1) JP7147519B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403405A (en) 1992-06-30 1995-04-04 Jx Crystals, Inc. Spectral control for thermophotovoltaic generators
US5700332A (en) 1996-07-11 1997-12-23 The United States Of America As Represented By The United States Department Of Energy Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system
JP2003303985A (ja) 2002-04-12 2003-10-24 Sharp Corp 太陽電池の製造方法およびその方法により製造される太陽電池
JP2003332609A (ja) 2002-05-10 2003-11-21 Hitachi Ltd 光電気変換装置、及びその光電気変換装置を備えた発電装置
CN203673095U (zh) 2013-11-07 2014-06-25 江苏大学 一种用于微型热光电系统的光子晶体过滤器
JP2017098370A (ja) 2015-11-20 2017-06-01 新日鐵住金株式会社 光変換部材及びその製造方法、太陽電池モジュールと太陽電池セル
WO2017170768A1 (ja) 2016-03-31 2017-10-05 新日鐵住金株式会社 熱光変換部材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021810A (ja) * 2014-07-14 2016-02-04 株式会社デンソー 熱光発電装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403405A (en) 1992-06-30 1995-04-04 Jx Crystals, Inc. Spectral control for thermophotovoltaic generators
US5700332A (en) 1996-07-11 1997-12-23 The United States Of America As Represented By The United States Department Of Energy Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system
JP2003303985A (ja) 2002-04-12 2003-10-24 Sharp Corp 太陽電池の製造方法およびその方法により製造される太陽電池
JP2003332609A (ja) 2002-05-10 2003-11-21 Hitachi Ltd 光電気変換装置、及びその光電気変換装置を備えた発電装置
CN203673095U (zh) 2013-11-07 2014-06-25 江苏大学 一种用于微型热光电系统的光子晶体过滤器
JP2017098370A (ja) 2015-11-20 2017-06-01 新日鐵住金株式会社 光変換部材及びその製造方法、太陽電池モジュールと太陽電池セル
WO2017170768A1 (ja) 2016-03-31 2017-10-05 新日鐵住金株式会社 熱光変換部材

Also Published As

Publication number Publication date
JP2020086407A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
Chirumamilla et al. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications
Cao et al. Enhanced thermal stability of W‐Ni‐Al2O3 cermet‐based spectrally selective solar absorbers with tungsten infrared reflectors
EP2721353B1 (en) Solar selective absorber based on double nitride composite material and process for its preparation
JP6566041B2 (ja) 熱光変換部材
US6271461B1 (en) Antireflection coated refractory metal matched emitters for use in thermophotovoltaic generators
JP6498202B2 (ja) 低放射コーティングおよびそれを含む建具用機能性建築資材
JP6821084B2 (ja) 放射冷却装置
US20170336102A1 (en) Enhanced Thermal Stability on Multi-Metal Filled Cermet Based Spectrally Selective Solar Absorbers
JP2019525242A (ja) 固体サーモクロミックデバイス及びそのデバイスの製造方法
WO2013141180A1 (ja) 光選択吸収膜、集熱管、および太陽熱発電装置
WO2019216134A1 (ja) 複合タングステン酸化物膜及びその製造方法、並びに該膜を有する膜形成基材及び物品
US20080049428A1 (en) Incandescent lamp incorporating infrared-reflective coating system, and lighting fixture incorporating such a lamp
US20150300695A1 (en) Heat conversion member and heat conversion laminate
US9970684B2 (en) Optical selective film
CN113296179B (zh) 一种用于热光伏的金属超表面滤波器
Shimizu et al. High spectral selectivity for solar absorbers using a monolayer transparent conductive oxide coated on a metal substrate
JP6521176B2 (ja) 熱光変換部材
JP7147519B2 (ja) 波長選択フィルタ及びそれを用いた熱光起電力発電装置
JP7004597B2 (ja) 放射冷却装置
JP2019185009A (ja) 波長選択フィルタ及びそれを用いた熱光起電力発電装置
US10215447B2 (en) Spectrally selective semiconductor dielectric photonic solar thermal absorber
Al-Kuhaili et al. Spectrally selective energy-saving coatings based on reactively sputtered bismuth oxide thin films
KR102481460B1 (ko) 다층 박막 코팅이 구비된 투명 기재
Sakakibara High-performance metallo-dielectric photonic crystals: Design, fabrication, and testing of a practical emitter for portable thermophotovoltaic generators
Lenert et al. Robust and Spectrally Selective Aerogels for Solar Receivers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R151 Written notification of patent or utility model registration

Ref document number: 7147519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151