WO2017170768A1 - 熱光変換部材 - Google Patents

熱光変換部材 Download PDF

Info

Publication number
WO2017170768A1
WO2017170768A1 PCT/JP2017/013057 JP2017013057W WO2017170768A1 WO 2017170768 A1 WO2017170768 A1 WO 2017170768A1 JP 2017013057 W JP2017013057 W JP 2017013057W WO 2017170768 A1 WO2017170768 A1 WO 2017170768A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
layer
metal
conversion member
light conversion
Prior art date
Application number
PCT/JP2017/013057
Other languages
English (en)
French (fr)
Inventor
徳丸 慎司
宇野 智裕
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US16/089,249 priority Critical patent/US10978988B2/en
Priority to JP2018509379A priority patent/JP6521176B2/ja
Priority to CN201780010421.4A priority patent/CN108633316A/zh
Priority to EP17775302.7A priority patent/EP3439048A4/en
Publication of WO2017170768A1 publication Critical patent/WO2017170768A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • F24S70/12Details of absorbing elements characterised by the absorbing material made of metallic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/02Oxides or hydrates thereof
    • C01G37/033Chromium trioxide; Chromic acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a heat-light converting member that converts radiant energy (radiated light) from a heat source into light having a predetermined wavelength distribution.
  • thermophotovoltaic (TPV) power generation is attracting attention as a method of using exhaust heat in a temperature range of 500 ° C. or higher.
  • heat energy radiated light
  • thermophotovoltaic power generation heat energy (radiated light) is wavelength-selected by a heat-light conversion member and converted into light having a predetermined wavelength distribution, and the converted light is emitted from the heat-light conversion member to be converted into heat.
  • Light emitted from the member is converted into electricity by a photoelectric conversion (PV: photovoltaic) element.
  • PV photoelectric conversion
  • Thermophotovoltaic power generation has good energy conversion efficiency because it can directly obtain electrical energy from thermal energy.
  • the wavelength matching between the radiation characteristics of the heat-light conversion member that selects the wavelength of the radiation energy (radiation light) generated from the heat source and the absorption characteristics of the photoelectric conversion element that converts the radiation light from the heat-light conversion member into electricity is important. For this reason, development of the heat-light conversion member which can selectively radiate
  • Patent Document 1 discloses a heat-light conversion member including a composite material of at least one semiconductor and at least one metal material.
  • Ag, Mo, and Cu are exemplified as metal materials.
  • Patent Document 2 discloses a heat-light conversion member that includes a composite material of at least one semiconductor and a dielectric.
  • Patent Document 2 exemplifies FeS 2 , Mg 2 Si, Zn 3 As 2 , and Ge as semiconductors, and SiO 2 , Al 2 O 3 , and AlN as dielectrics.
  • Patent Document 3 discloses a heat conversion element in which an infrared radiation material layer and an antireflection layer are laminated on an upper surface and a lower surface of a base material.
  • a heat exchange element an example is disclosed in which the infrared radiation material layer is a cermet film of Cr and Cr 2 O 3 and the antireflection film is Cr 2 O 3 .
  • Patent Document 4 discloses an emitter for thermophotovoltaic power generation in which an antireflection film such as ⁇ -FeSi 2 is provided on a substrate such as Fe, Co, Ni, and stainless steel.
  • the heat-light conversion members disclosed in Patent Documents 1 to 4 have sufficient heat resistance because the wavelength selectivity deteriorates when the materials constituting the composite material react at high temperatures up to 1000 ° C. There is a problem that cannot be obtained.
  • an object of the present invention is to provide a heat-light conversion member capable of obtaining heat resistance up to 1000 ° C.
  • a metal body a lower layer made of a dielectric provided on one surface of the metal body, a composite layer provided on another surface of the lower layer opposite to the metal body, and the composite layer And an upper layer made of a dielectric provided on the other surface opposite to the lower layer, wherein the composite layer is formed by dispersing a metal or a semiconductor in an oxide of the metal or the semiconductor.
  • a heat-light conversion member characterized by being a layer.
  • the metal or semiconductor dispersed in the composite layer is one selected from Cr, Si, Ta and Ti, and the lower layer and the upper layer are oxides of the metal or the semiconductor.
  • the heat-light conversion member according to (1) characterized in that it is characterized in that
  • the metal or semiconductor dispersed in the composite layer is one selected from Cr, Si, Ta, and Ti, and the lower layer is the oxide of the metal or the semiconductor, or SiO 2 ,
  • the composite layer is a layer in which a metal or a semiconductor is dispersed in the oxide of the metal or the semiconductor.
  • the metal or semiconductor dispersed in the composite layer is one selected from Cr, Si, Ta and Ti, and the upper layer is an oxide of the metal or the semiconductor.
  • the heat-light conversion member is one selected from Cr, Si, Ta and Ti, and the upper layer is an oxide of the metal or the semiconductor.
  • the dispersed metal or semiconductor in the composite layer is one selected Cr, Si, Ta and Ti, the top layer, the thermal light of the (5), which is a SiO 2 Conversion member.
  • the composite layer is a layer in which a metal or a semiconductor is provided dispersed in the oxide of the metal or the semiconductor.
  • the metal or semiconductor dispersed in the composite layer is one selected from Cr, Si, Ta, and Ti, and the lower layer is an oxide of the metal or the semiconductor.
  • the gray body includes at least one of SiC, Fe oxide, Cr oxide, Ni oxide, or a composite oxide of Fe oxide, Cr oxide, and Ni oxide.
  • the heat-light conversion member according to any one of (18).
  • a heat-light conversion member having heat resistance up to 1000 ° C. can be obtained.
  • thermophotovoltaic power generation system It is a figure which shows typically the structure of a thermophotovoltaic power generation system. It is a figure which shows typically the relationship between the radiant energy (radiated light) from the heat source in a thermophotovoltaic power generation system, the radiated light from a heat-light conversion member, and the absorption wavelength range of a photoelectric conversion element. It is a longitudinal cross-sectional view which shows typically the structure of the heat-light conversion member which concerns on 1st Embodiment. It is a longitudinal cross-sectional view which shows typically the structure of the heat-light conversion member which concerns on 2nd Embodiment. It is a longitudinal cross-sectional view which shows typically the structure of the heat-light conversion member which concerns on 3rd Embodiment.
  • FIG. 20 It is a figure which shows the spectral emissivity of the light radiated
  • FIG. 12 It is a figure which shows the spectral emissivity of the light radiated
  • FIG. It is a figure which shows the spectral emissivity of the light radiated
  • thermophotovoltaic power generation will be described with reference to FIGS. 1 and 2.
  • heat energy (radiated light) 51 from the heat source 50 is wavelength-selected by the heat-light conversion member 10 and converted into light 54 having a predetermined wavelength distribution, and the converted light 54 is converted into heat-light.
  • Light 54 emitted from the member 10 and emitted from the heat-light conversion member is converted into electricity by the photoelectric conversion element 60.
  • the wavelength range of radiant heat from the heat source 50 at about 1000 ° C. is 0.5 ⁇ m to 20 ⁇ m, but the absorption wavelength region 62 of the photoelectric conversion element 60 is 0.8 ⁇ m to when the photoelectric conversion element 60 is GaSb.
  • the thickness is 1.5 ⁇ m to 2.5 ⁇ m.
  • the photoelectric conversion element 60 When the photoelectric conversion element 60 directly generates power from the radiation light from the heat source 50, light exceeding 1.8 ⁇ m is used when the photoelectric conversion element 60 is GaSb, and more than 2.5 ⁇ m when the photoelectric conversion element 60 is InGaAs. This light is not used for power generation of the photoelectric conversion element 60 but is used only for heating the photoelectric conversion element 60. And since the output of the photoelectric conversion element 60 whose temperature has increased decreases, the power for cooling the photoelectric conversion element 60 also increases.
  • light 54 is selectively emitted between the heat source 50 and the photoelectric conversion element 60 in a wavelength range that matches the absorption wavelength region 62 of the photoelectric conversion element 60 (the photoelectric conversion element 60 is GaSb).
  • the photoelectric conversion element 60 is GaSb
  • light in the wavelength range of about 0.8 ⁇ m to 1.8 ⁇ m is selectively emitted, and in the case where the photoelectric conversion element 60 is InGaAs, light in the wavelength range of about 1.5 ⁇ m to 2.5 ⁇ m is emitted.
  • the photoelectric conversion element 60 is GaSb
  • the surface 102 on the photoelectric conversion element 60 side of the heat-light conversion member 10 selectively emits light in the wavelength range of about 0.8 ⁇ m to 1.8 ⁇ m.
  • the photoelectric conversion element 60 is InGaAs
  • light in a wavelength range of about 1.5 ⁇ m to 2.5 ⁇ m is selectively emitted, so that the heat-light conversion member 10 rises to a temperature close to the temperature of the heat source 50.
  • the layer (gray body) 24 having a high emissivity on the surface 101 of the heat-light conversion member 10 on the heat source 50 side, the excess heat 56 is returned to the heat source 50, so that the heat source 50 is also kept warm.
  • the heat-light conversion member 10 of the present embodiment has a substrate 22, a gray body 24 provided on the surface 222 of the substrate 22, and a surface 221 opposite to the surface 222 of the substrate 22.
  • the metal body 12 provided, and the laminated body 30 provided on the one surface 121 of the metal body 12 are laminated with the lower layer 16 made of a dielectric, the composite layer 14, and the upper layer 26 made of a dielectric. .
  • the composite layer 14 contains an additional material 18 and a base material 20.
  • the additional material 18 is provided dispersed in the base material 20.
  • the lower layer 16 is provided on the one surface 121 of the metal body 12.
  • the composite layer 14 is provided on one surface 161 of the lower layer 16.
  • the upper layer 26 is provided in contact with the surface 141 of the composite layer 14.
  • the heat-light converting member 10 selects the wavelength of heat energy (radiated light) emitted from the heat source and selectively emits light having a wavelength that can be converted into electricity by the photoelectric conversion element 60.
  • the heat-to-light conversion member 10 has a high emissivity in the wavelength range of 0.8 to 1.8 ⁇ m and an emissivity of 1.8 ⁇ m or more.
  • the emissivity is high in the wavelength range of 1.5 or more and less than 2.5 ⁇ m, and the emissivity of the wavelength of 2.5 ⁇ m or more is suppressed.
  • the emissivity refers to the ratio between the radiation intensity of a radiator and the radiation intensity of a black body at the same temperature as the radiator.
  • the lower layer 16 and the upper layer 26 are provided between the metal body 12 and the composite layer 14, so that the layers used for wavelength selection are the lower layer 16 and the composite layer 14.
  • the upper layer 26 has many combinations of the thicknesses of these layers, and even if the thicknesses of the respective layers fluctuate slightly, the influence on the wavelength selectivity is small, so that the heat-light conversion member 10 can be easily manufactured. It is.
  • the metal body 12 preferably has a high reflectance and heat resistance at a wavelength of 0.5 ⁇ m or more.
  • the metal body 12 preferably does not react with Ta 2 O 5 , TiO 2 , Cr 2 O 3 , and SiO 2 , which are preferable materials for the base material 20 of the composite layer 14 described later, even at a high temperature up to 1000 ° C.
  • the metal body 12 can be formed from one metal whose main component is selected from W, Mo, Fe, Ni, and Cr. The main component is that the concentration has more than 50% by weight.
  • the metal body 12 may be formed of an alloy, for example, an Fe alloy, a Ni alloy, or the like.
  • the metal body 12 is formed of titanium tungsten silicide (Ti—W—Si) or a laminate of titanium tungsten silicide and tungsten silicide (W—Si), the diffusion and reaction between the metal body 12 and the lower layer 16 is suppressed. Since heat resistance of 1200 ° C. or higher can be secured, it is particularly preferable from the viewpoint of heat resistance.
  • the thickness of the metal body 12 in this embodiment is preferably 100 nm or more.
  • the additional material 18 of the composite layer 14 is formed of metal or semiconductor.
  • the metal or semiconductor is preferably one kind selected from Ta, Ti, Cr, and Si.
  • the additive 18 is preferably a particle having a particle size of about 1 nm to 10 nm.
  • the composite layer 14 preferably contains 30% by volume or more and 80% by volume or less of the additional material 18. When the additional material 18 is less than 30% by volume, the composite layer 14 cannot secure a sufficient refractive index, making it difficult to select a wavelength. When the additional material 18 exceeds 80% by volume, the additional material 18 is bonded to each other to form a continuous film. When the metal layer or the semiconductor layer is formed in the composite layer 14, the wavelength selectivity may be lost.
  • the base material 20 of the composite layer 14 is a metal or semiconductor oxide constituting the additional material 18. That is, when the additional material 18 is Ta, the base material 20 is Ta 2 O 5, when the additional material 18 is Ti, the base material 20 is TiO 2, if additional material 18 is Cr, the base material 20 is Cr 2 O 3, When the additional material 18 is Si, the base material 20 is formed of SiO 2 .
  • the base material 20 does not react with the additional material 18 at a high temperature up to 1000 ° C., and the additional material 18 is not oxidized in the base material 20 and is stable. Exist.
  • the physical film thickness of the composite layer 14 is preferably 5 nm or more and 200 nm or less.
  • the lower layer 16 and the upper layer 26 are formed of a dielectric material that does not react with the base material 20 of the composite layer 14 even at a high temperature up to 1000 ° C.
  • the lower layer 16 and the upper layer 26 are preferably composed of the oxide of the additional material 18 or SiO 2 .
  • the oxide of the additional material 18 is an oxide that forms the base material 20 of the composite layer 14. That is, the lower layer 16 and the upper layer 26 are preferably the same as the oxide forming the base material 20 when other than SiO 2 is used.
  • SiO 2 can be applied to the lower layer 16 and the upper layer 26 in the case of all the additional materials 18 regardless of metals or semiconductors.
  • SiO 2 has a melting point of 1500 ° C. or higher, is a highly heat-resistant material that does not have a compound having an oxide composition that easily evaporates even in a high-temperature oxidizing atmosphere, and is a chemically stable oxide. The compound does not react with the composite layer 14 or the metal body 12, and the wavelength selectivity of the heat-light conversion member is not lost. In particular, it is effective to use SiO 2 as the upper layer 26 in contact with the outside air.
  • the lower layer 16 and the upper layer 26 preferably have a physical film thickness of 10 nm to 300 nm.
  • the composite layer 14 Since the additional material 18 is dispersed in the composite layer 14, the composite layer 14, the lower layer 16, and the upper layer 26 have different refractive indexes. As a result, the laminate 30 of the composite layer 14, the lower layer 16, and the upper layer 26 has wavelength selectivity.
  • the substrate 22 of the heat-light conversion member 10 is preferably formed of Si, metal, or quartz.
  • the metal for example, an Fe alloy or a Ni alloy can be used.
  • SUS304 is preferably exemplified as the Fe alloy, and Inconel is preferably exemplified as the Ni alloy.
  • the substrate 22 is formed of metal, the metal body 12 can be integrated with the substrate 22 and the surface of the metal substrate 22 can be used as the metal body 12.
  • Si is used for the substrate 22, it is desirable that a SiO 2 film is formed on the surface of the Si substrate in order to suppress a reaction with the metal body 12 at a high temperature.
  • the SiO 2 film is preferably a thermal oxide film of Si.
  • the heat-light conversion member 10 is connected to a heat source via the gray body 24.
  • a SiC layer may be provided on the surface 222 of the substrate 22 as the gray body 24. Since the SiC layer functions as a gray body with an absorption rate close to that of a black body, the heat-light conversion member 10 itself is likely to become a high temperature by efficiently absorbing the incident heat, and in a temperature range of 550 ° C. or higher. The amount of radiated light emitted from the metal body 12 side can be increased.
  • the substrate 22 is formed of Si, metal, or quartz, thereby efficiently transferring heat from the gray body 24 to the metal body 12 and having heat resistance.
  • the substrate 22 is formed from a commercially available mirror-polished Si wafer, the surface 22 has less surface irregularities and excellent flatness. Therefore, the metal body 12 and the composite layer 14, the lower layer 16, and the upper layer formed on the substrate 22. 26 can be improved, and as a result, the reflectance can be increased and the wavelength selectivity can be improved.
  • the substrate 22 formed of Si may be either polycrystalline or single crystal.
  • an Fe, Cr, Ni oxide layer or a composite oxide layer thereof may be provided.
  • the oxide layer has a high absorptance, and can efficiently transfer the heat incident on the surface of the oxide layer to the substrate 22. As a result, in the temperature region of 550 ° C. or higher, the radiation light emitted from the metal body 12 side is transmitted. The amount can be increased.
  • the incident direction of the thermal energy (radiated light) incident on the heat-light converting member 10 may be two types, that is, incident from the gray body 24 and the substrate 22 side and incident from the upper layer 26 side.
  • the heat-light conversion member 10 emits light of wavelength-selected light from the upper layer 26 when heat energy (radiated light) radiated from a heat source such as factory exhaust heat is incident from the gray body 24 and the substrate 22 side.
  • the heat-light conversion member 10 is cooled because light is incident from the upper layer 26 side, so that light is wavelength-selected by the heat-light conversion member 10 and heat is efficiently absorbed, and no extra light is emitted. It is hard to be done.
  • the absorbed heat is radiated through the substrate 22 and the gray body 24 and can be applied to solar thermal power generation.
  • the metal body 12 can be suitably formed by a vacuum deposition method or a sputtering method. In any method, the metal bodies 12 such as W, Mo, Fe, Ni, and Cr can be formed thinly and uniformly, and film formation with good flatness is possible.
  • the composite layer 14 can be suitably formed by a sputtering method. For example, using a Cr chip on a Cr 2 O 3 target, a Ti chip on a TiO 2 target, a Ta chip on a Ta 2 O 5 target, or a Si chip on a SiO 2 target, By performing sputtering, a layer in which a metal (Cr Ti or Ta) or a semiconductor (Si) is dispersed in an oxide (Cr 2 O 3 , TiO 2 , Ta 2 O 5 , or SiO 2 ) is formed.
  • a sputtering method For example, using a Cr chip on a Cr 2 O 3 target, a Ti chip on a TiO 2 target, a Ta chip on a Ta 2 O 5 target, or a Si chip on a SiO 2 target.
  • the lower layer 16 and the upper layer 26 can be suitably formed by vacuum deposition, sputtering, or CVD.
  • a layer of Ta 2 O 5 , TiO 2 , Cr 2 O 3 , or SiO 2 that is a dielectric can be easily managed with a thickness of several tens of nanometers, and uniformity can be improved.
  • the vacuum evaporation method and the sputtering method are advantageous for increasing the area and are excellent in productivity.
  • heat treatment is performed at 600 ° C. to 1200 ° C. in an inert gas such as Ar or N 2 gas, so that a metal or semiconductor is contained in the base material 20 of the composite layer 14.
  • an inert gas such as Ar or N 2 gas
  • the SiC layer used as the gray body 24 can be suitably manufactured by chemical vapor deposition (CVD: Chemical Vapor Deposition), sputtering, carbonization, or the like.
  • CVD chemical vapor deposition
  • the SiC layer can be formed on the substrate 22 by thermally decomposing the carbon-containing gas and the silicon-containing gas and reacting them on the substrate 22.
  • a SiC layer can be deposited on the substrate 22 by sputtering.
  • the SiC layer can be formed by carbonizing the surface of the substrate 22 with a hydrocarbon gas by a carbonization method.
  • an oxide layer used as the gray body 24 can be formed by sputtering.
  • the oxide layer used as the gray body 24 can be easily formed on the surface of the substrate 22 by heating the substrate 22 in an oxidizing atmosphere. Adhesion with 22 is also good.
  • the composite layer 14 containing the additional material 18 and the base material 20 is provided on the one surface 121 of the metal body 12, and the upper layer 26 made of a dielectric is in contact with the surface 141 of the composite layer 14.
  • a stacked body 30 is formed. That is, it differs from the first embodiment in that there is no lower layer made of a dielectric between the metal body 12 and the composite layer 14. In the present embodiment, the same heat resistance and wavelength selectivity as in the first embodiment can be obtained.
  • the metal body 12 and the composite layer 14 since there is no lower layer made of a dielectric between the metal body 12 and the composite layer 14, it is necessary to pay attention to diffusion and reaction between the metal body 12 and the composite layer 14 at a high temperature.
  • the base material 20 of the composite layer 14 is made of SiO 2 , the metal body 12 and the composite layer 14 form a compound even at 1000 ° C., and the wavelength selectivity is not lost, which is preferable.
  • the reaction between the metal body 12 and the composite layer 14 can be performed regardless of the main component of the composite layer 14. Since it can suppress, it is preferable.
  • the same reference numerals are given to the same constituent members as those in the first embodiment.
  • the lower layer 16 made of a dielectric is provided on one surface 121 of the metal body 12, and the composite layer 14 containing the additional material 18 and the base material 20 is provided in contact with the surface 161 of the lower layer 16.
  • the laminated body 30 is formed. That is, it differs from the first embodiment in that there is no upper layer made of a dielectric on the surface of the composite layer 14 opposite to the lower layer 16.
  • the same heat resistance and wavelength selectivity as in the first embodiment can be obtained.
  • the composite layer 14 there is no upper layer made of a dielectric on one surface of the composite layer 14 and it is in direct contact with the atmosphere.
  • a heat-light conversion member was prepared and heat resistance was evaluated.
  • the heat-light conversion member 10 was formed by continuously forming the metal body 12, the lower layer 16, the composite layer 14, and the upper layer 26 on the substrate 22 by changing the target by sputtering. Some of the heat-light conversion members are configured to include only one of the lower layer 16 and the upper layer 26.
  • a Si wafer with a thermal oxide film (SiO 2 film thickness 0.3 ⁇ m) was used, and the film was formed at room temperature (a state where the substrate was not heated). Film formation was performed in a Ar atmosphere (flow rate 25 sccm, pressure 0.7 Pa) using a target having a diameter of 6 inches.
  • the gray body was formed using an SiC target under conditions of 800 W with an AC power supply (SiC film thickness 0.3 ⁇ m).
  • the metal body 12 was formed using a target of W, Mo, Cr, Fe, Ni, or TiW (Ti: 10 mass%, W: 90 mass%) under a condition of 500 W with a DC power source.
  • the lower layer 16 and the upper layer 26 were formed using a Cr 2 O 3 , TiO 2 , SiO 2 , or Ta 2 O 5 target under conditions of 800 W with an AC power source.
  • the composite layer 14 is formed by stacking a Cr chip on a Cr 2 O 3 target, a Ti chip on a TiO 2 target, an Si chip on an SiO 2 target, or a Ta chip on a Ta 2 O 5 target.
  • the film was formed under the same conditions as the lower layer 16 and the upper layer 26. After film formation, it was heated at 1000 ° C. for 1 hour in an N 2 gas atmosphere.
  • the volume fraction of the additional material contained in the composite layer 14 was controlled by changing the size and number of chips loaded on the target. The actual volume fraction was confirmed by XPS (X-ray Photoelectron Spectroscopy).
  • the film thickness of each layer was measured with a stylus type step meter to determine the film formation rate in advance, and the sputtering time was controlled so as to obtain a predetermined film thickness.
  • a Ti—W layer or a W / Ti—W stack was formed as the metal body 12, and the lower layer 16, the composite layer 14, and the upper layer 26 were formed. 1000 ° C. in a N 2 gas atmosphere after the film formation, when heated at 1 hour Ti-W layer or W / Ti-W layer is silicided to react with Si, Ti-W-Si layer or the W-Si / Ti-W -Si layer.
  • Ti—W—Si eg, Ti: 7 wt%, W: 65 wt%, Si: 28 wt%) or W—Si (eg, W: 77 wt%, Si: 23 wt%) is used as a target, and Si Sputter deposition may be performed directly on a wafer or other substrate.
  • the sample was prepared according to the photoelectric conversion element to which the heat-light conversion member 10 is applied. That is, Examples 1 to 39 were made according to GaSb, and Examples 40 to 57 were made according to InGaAs. Tables 1 to 3 show the configurations of the samples.
  • the room temperature emissivity is the value obtained by measuring the regular reflectance R (%) at normal incidence (incidence angle 10 °) in a near-infrared-infrared spectrometer, and calculating from 100 (%)-R (%). did.
  • the high temperature emissivity was measured by spectroscopically measuring the radiation from the black body furnace heated to 1000 ° C. and the radiation from the sample heated in the sample heating furnace with a spectroscope via a light guide. First, the spectroscope was corrected by radiation from a black body furnace heated to 1000 ° C. Next, the emitted light from the sample heated to the same temperature was measured, and the high temperature emissivity was determined. The true temperature of the heated sample was measured by heating the substrate with black body spray (Japan Sensor, JSC-3, emissivity 0.94) on the surface in a sample heating furnace, and measuring the emitted light of the substrate. And decided. The true temperature was in the range of 1000 ⁇ 10 ° C. in all experiments.
  • the heat-light conversion member has a high emissivity at 0.8 ⁇ m to 1.8 ⁇ m, which has a high light absorption rate, and a low emissivity on the longer wavelength side.
  • a high emissivity is preferable.
  • the average emissivity in the wavelength range of 0.8 ⁇ m to 1.8 ⁇ m is A if the average emissivity is 90% or more, B if it is less than 90% and 80% or more. C was defined as less than 80% and 70% or more.
  • the average emissivity in the wavelength range of 3.5 ⁇ m to 10 ⁇ m preferably low emissivity is 10% or less, A is more than 10% and 20% or less is B. % Or less was defined as C.
  • Tables 1 and 2 The results are shown in Tables 1 and 2.
  • the spectral emissivities of the light emitted from the heat-light conversion members of Examples 5, 12, 19, 23, 25, 26, 29, and 33 are shown in FIGS. 6 to 13, respectively.
  • the heat-to-light conversion member preferably has a high emissivity at a light absorption rate of 1.5 ⁇ m to 2.5 ⁇ m and a low emissivity on the longer wavelength side.
  • a high emissivity is preferable.
  • the average emissivity in the wavelength range of 1.5 ⁇ m to 2.5 ⁇ m is A if the average emissivity is 90% or more, B if it is less than 90% and 80% or more. C was defined as less than 80% and 70% or more.
  • the average emissivity in the wavelength range of 4 ⁇ m to 10 ⁇ m, where low emissivity is preferable is 10% or less A for more than 10% and 20% or less for B.
  • the case of C was designated as C.
  • Table 3 The results are shown in Table 3.
  • the spectral emissivities of the light emitted from the heat-light converting members of Examples 44, 48, 49, and 52 are shown in FIGS. 14 to 17, respectively.
  • the heat-light converting members according to Examples 1 to 57 have excellent wavelength selectivity at room temperature, and the degradation of wavelength selectivity is suppressed even at high temperatures, up to 1000 ° C. It was confirmed to have the heat resistance of In addition, when quartz is used as the substrate, the configuration is substantially the same as that of the Si wafer with a thermal oxide film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

1000℃までの耐熱性を得ることができる熱光変換部材であって、金属体と、上記金属体の一表面上に設けられた第1の誘電体層と、上記第1の誘電体層の上記金属体側と反対側の他の表面上に設けられた複合層と、上記複合層の上記第1の誘電体層と反対側の他の表面上に設けられた第2の誘電体層とを備え、上記複合層は、金属又は半導体が、上記金属又は上記半導体の酸化物中に分散して設けられた層であることを特徴とする。

Description

熱光変換部材
 本発明は、熱源からの放射エネルギー(放射光)を所定の波長分布を持つ光に変換する熱光変換部材に関する。
 500℃以上の温度域の排熱を利用する方法として熱光起電力(TPV: thermophotovoltaic)発電が注目されている。熱光起電力発電では、熱エネルギー(放射光)を熱光変換部材で波長選択して所定の波長分布を持つ光に変換し、変換された光を熱光変換部材から放射し、熱光変換部材から放射された光を光電変換(PV: photovoltaic)素子で電気に変換する。熱光起電力発電は、熱エネルギーから直接電気エネルギーを得ることができるため、エネルギー変換効率がよい。
 熱源から発生する放射エネルギー(放射光)を波長選択する熱光変換部材の放射特性と、熱光変換部材からの放射光を電気に変換する光電変換素子の吸収特性の波長マッチングが重要になる。このため、光電変換素子が電気に変換できる波長を選択的に放射できる熱光変換部材の開発が望まれている。
 特許文献1には、熱光変換部材として、少なくとも1種の半導体と少なくとも1種の金属材料とのコンポジット材を含むものが開示されている。特許文献1には、半導体としてFeSi(X=0.5~4)が例示されており、金属材料としてAg、Mo、Cuが例示されている。
 特許文献2には、熱光変換部材として、少なくとも1種の半導体と誘電体とのコンポジット材を含むものが開示されている。特許文献2には、半導体としてFeS、MgSi、ZnAs、Geが例示されており、誘電体としてSiO、Al、AlNが例示されている。
 特許文献3には、基材の上面、下面に、赤外放射材料層と反射防止層が積層された熱変換素子が開示されている。このような熱交換素子の一例として、赤外放射材料層がCrとCrのサーメット膜、反射防止膜がCr2O3である例が開示されている。
 特許文献4には、Fe、Co、Ni、ステンレス等の基板上に、β-FeSi2等の反射防止膜が設けられた熱光起電力発電用エミッタが開示されている。
特開2014-85099号公報 特開2014-85101号公報 国際公開第2012/056806号 特開2011-096770号公報
 特許文献1~4に開示された熱光変換部材は、コンポジット材を構成する材料同士が1000℃までの高温下において反応することで、波長選択性が劣化してしまうので、十分な耐熱性を得ることができないという問題がある。
 本発明は、上記の事情に鑑み、1000℃までの耐熱性を得ることができる熱光変換部材を提供することを目的とする。
 本発明者らは熱光変換部材の耐熱性を高めるべく、その構成について鋭意検討し、本発明を成した。その要旨は以下のとおりである。
 (1)金属体と、上記金属体の一表面上に設けられた誘電体からなる下層と、上記下層の上記金属体側と反対側の他の表面上に設けられた複合層と、上記複合層の上記下層と反対側の他の表面上に設けられた誘電体からなる上層とを備え、上記複合層は、金属又は半導体が、上記金属又は上記半導体の酸化物中に分散して設けられた層であることを特徴とする熱光変換部材。
 (2)前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、前記下層と、前記上層は、上記金属又は上記半導体の酸化物であることを特徴とする前記(1)の熱光変換部材。
 (3)前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、前記下層は、上記金属又は上記半導体の酸化物、又はSiOであり、前記上層は、SiOであることを特徴とする前記(1)の熱光変換部材。
 (4)前記複合層の物理膜厚が5nmから200nm、前記下層及び前記上層の物理膜厚が10nmから300nmであることを特徴とする前記(1)~(3)のいずれかの熱光変換部材。
 (5)金属体と、上記金属体の一表面上に設けられた複合層と、上記複合層の上記金属体と反対側の他の表面上に設けられた誘電体からなる上層とを備え、上記複合層は、金属又は半導体が、上記金属又は上記半導体の酸化物中に分散して設けられた層であることを特徴とする熱光変換部材。
 (6)前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、前記上層は、上記金属又は上記半導体の酸化物であることを特徴とする前記(5)の熱光変換部材。
 (7)前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、前記上層は、SiOであることを特徴とする前記(5)の熱光変換部材。
 (8)前記複合層の物理膜厚が5nmから200nm、前記上層の物理膜厚が10nmから300nmであることを特徴とする前記(5)~(7)のいずれかの熱光変換部材。
 (9)金属体と、上記金属体の一表面上に設けられた誘電体からなる下層と、上記下層の上記金属体側と反対側の他の表面上に設けられた複合層とを備え、上記複合層は、金属又は半導体が、上記金属又は上記半導体の酸化物中に分散して設けられた層であることを特徴とする熱光変換部材。
 (10)前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、前記下層は、上記金属又は上記半導体の酸化物であることを特徴とする前記(9)の熱光変換部材。
 (11)前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、前記下層は、SiOであることを特徴とする前記(9)の熱光変換部材。
 (12)前記複合層の物理膜厚が5nmから200nm、前記下層の物理膜厚が10nmから300nmであることを特徴とする前記(9)~(11)のいずれかの熱光変換部材。
 (13)前記金属体はTi-W-Si層、又はW-Si/Ti-W-Si層であることを特徴とする前記(1)~(12)のいずれかの熱光変換部材。
 (14)前記金属体の前記一表面とは反対側の他の表面に設けられた基板と、前記基板の前記金属体側と反対側の表面に設けられた灰色体とを備えることを特徴とする前記(1)~(13)のいずれかの熱光変換部材。
 (15)前記基板がSi又は石英からなることを特徴とする前記(14)の熱光変換部材。
 (16)前記基板がSiからなり、前記基板と前記金属体との間にSiO膜を備えることを特徴とする前記(14)の熱光変換部材。
 (17)前記基板が金属基板であることを特徴とする前記(14)の熱光変換部材。
 (18)前記金属基板は、Fe合金又はNi合金で形成されていることを特徴とする前記(17)に記載の熱光変換部材。
 (19)前記灰色体は、SiC、Fe酸化物、Cr酸化物、Ni酸化物、又は、Fe酸化物、Cr酸化物及びNi酸化物の複合酸化物の少なくとも一つを備える前記(14)~(18)のいずれかの熱光変換部材。
 本発明によれば、1000℃までの耐熱性を有する熱光変換部材を得ることができる。
熱光起電力発電システムの構成を模式的に示す図である。 熱光起電力発電システムにおける熱源からの放射エネルギー(放射光)と、熱光変換部材からの放射光と、光電変換素子の吸収波長域との関係を模式的に示す図である。 第1の実施の形態に係る熱光変換部材の構成を模式的に示す縦断面図である。 第2の実施の形態に係る熱光変換部材の構成を模式的に示す縦断面図である。 第3の実施の形態に係る熱光変換部材の構成を模式的に示す縦断面図である。 実施例5の熱光変換部材から放射される光の分光放射率を示す図である。 実施例12の熱光変換部材から放射される光の分光放射率を示す図である。 実施例19の熱光変換部材から放射される光の分光放射率を示す図である。 実施例23の熱光変換部材から放射される光の分光放射率を示す図である。 実施例25の熱光変換部材から放射される光の分光放射率を示す図である。 実施例26の熱光変換部材から放射される光の分光放射率を示す図である。 実施例29の熱光変換部材から放射される光の分光放射率を示す図である。 実施例33の熱光変換部材から放射される光の分光放射率を示す図である。 実施例44の熱光変換部材から放射される光の分光放射率を示す図である。 実施例48の熱光変換部材から放射される光の分光放射率を示す図である。 実施例49の熱光変換部材から放射される光の分光放射率を示す図である。 実施例52の熱光変換部材から放射される光の分光放射率を示す図である。
 以下、図面を参照して本発明の実施形態について詳細に説明する。
 (全体構成)
 まず、図1、図2を参照して、熱光起電力発電について説明する。熱光起電力発電では、熱源50からの熱エネルギー(放射光)51を熱光変換部材10で波長選択して所定の波長分布を持つ光54に変換し、変換された光54を熱光変換部材10から放射し、熱光変換部材から放射された光54を光電変換素子60で電気に変換する。
 1000℃程度の熱源50からの放射熱の波長範囲は、0.5μm~20μmであるが、光電変換素子60の吸収波長域62は、光電変換素子60がGaSbの場合には、0.8μm~1.8μmであり、光電変換素子60がInGaAsの場合には、1.5μm~2.5μmである。
 熱源50からの放射光から、直接光電変換素子60で発電しようとすると、光電変換素子60がGaSbの場合には1.8μm超の光、光電変換素子60がInGaAsの場合には2.5μm超の光は、光電変換素子60の発電には使用されず、光電変換素子60を加熱するだけに使われることになる。そして、温度が上昇した光電変換素子60は出力が低下するので、光電変換素子60を冷却するための電力も大きくなってしまう。
 そこで、図1に示すように、熱源50と光電変換素子60との間に、光電変換素子60の吸収波長域62に合わせた波長範囲で光54を選択的に放射(光電変換素子60がGaSbの場合には、約0.8μm~1.8μmの波長域の光を選択的に放射し、光電変換素子60がInGaAsの場合には、約1.5μm~2.5μmの波長域の光を選択的に放射)する、熱光変換部材10を配置することにより、光電変換素子60の出力を低下させず、且つ光電変換素子60の冷却電力を抑えることができる。
 熱光変換部材10の熱源50側の面101に放射率の高い層(灰色体)24を形成することにより、熱源50からの放射光の全波長の光を吸収して、熱光変換部材10自体が加熱され、熱光変換部材10の光電変換素子60側の面102では、光電変換素子60がGaSbの場合には、約0.8μm~1.8μmの波長域の光を選択的に放射し、光電変換素子60がInGaAsの場合には、約1.5μm~2.5μmの波長域の光を選択的に放射するので、熱光変換部材10は熱源50の温度に近い温度まで上昇するが、冷却されにくく、熱光変換部材10でのエネルギーロスは小さい。また、熱光変換部材10の熱源50側の面101に放射率の高い層(灰色体)24を形成することにより、余分な熱56は熱源50に戻すので、熱源50の保温にもなる。
 次に、熱光変換部材10について説明する。
 (第1の実施の形態)
 図3に示すように、本実施の形態の熱光変換部材10は、基板22と、基板22の表面222に設けられた灰色体24と、基板22の表面222とは反対側の表面221に設けられた金属体12と、金属体12の一表面121上に設けられた、誘電体からなる下層16、複合層14、及び誘電体からなる上層26が積層された積層体30を備えている。
 複合層14は、付加材18及び母材20を含有する。付加材18は、母材20中に分散して設けられている。下層16は、金属体12の一表面121上に設けられている。複合層14は、下層16の一表面161上に設けられている。上層26は、複合層14の表面141に接して設けられている。
 熱光変換部材10は、熱源が放射した熱エネルギー(放射光)を波長選択し、光電変換素子60が電気に変換できる波長の光を選択的に放射する。本実施の形態に係る熱光変換部材10は、光電変換素子60がGaSbの場合には、波長0.8以上1.8μm未満の範囲で放射率が高く、波長1.8μm以上の放射率を抑え、光電変換素子60がInGaAsの場合には、波長1.5以上2.5μm未満の範囲で放射率が高く、波長2.5μm以上の放射率を抑える。放射率とは、放射体の放射強度とその放射体と同温度の黒体の放射強度との比をいう。
 本実施の形態の熱光変換部材10は、金属体12と複合層14の間に下層16、及び上層26が設けられていることにより、波長選択に用いられる層が、下層16、複合層14、上層26となり、これらの層の膜厚の組み合わせが多く、また、それぞれの層の膜厚が多少変動しても、波長選択性に及ぼす影響は小さいので、熱光変換部材10の製造が容易である。
 金属体12は、波長0.5μm以上で高い反射率と耐熱性を有していることが好ましい。金属体12は、後に述べる複合層14の母材20の好ましい材料であるTa、TiO、Cr、SiOと1000℃までの高温下でも反応しないことが好ましい。金属体12は、主成分がW、Mo、Fe、Ni、及びCrから選ばれる1種の金属から形成されることができる。主成分とは、濃度が50重量%超を有することである。金属体12は、合金で形成してもよく、例えばFe合金、Ni合金などで形成することができる。金属体12がチタンタングステンシリサイド(Ti-W-Si)、又はチタンタングステンシリサイドとタングステンシリサイド(W-Si)の積層で形成されると、金属体12と下層16との拡散、反応を抑制することができ、1200℃以上の耐熱性が確保できるので、耐熱性の観点から特に好ましい。本実施形態における金属体12の厚さは、100nm以上であることが好ましい。
 複合層14の付加材18は、金属又は半導体で形成される。金属又は半導体は、Ta、Ti、Cr、及びSiから選ばれる1種であることが好ましい。付加材18は、粒径が1nm以上10nm以下程度の粒子であるのが好ましい。複合層14は、付加材18を30体積%以上80体積%以下含有しているのが好ましい。複合層14は、付加材18が30体積%未満であると充分な屈折率を確保できないため、波長を選択することが困難となり、80体積%超であると付加材18同士が結合し連続膜となりやすく、複合層14の中に金属層や半導体層を形成することにより、波長選択性を失う可能性が生じる。
 複合層14の母材20は、付加材18を構成する金属又は半導体の酸化物である。すなわち付加材18がTaの場合、母材20はTa、付加材18がTiの場合、母材20はTiO、付加材18がCrの場合、母材20はCr、付加材18がSiの場合、母材20はSiOで形成される。付加材18と母材20のこれらの組み合わせとすることにより、1000℃までの高温下において、母材20は付加材18と反応せず、付加材18は母材20中で酸化されず、安定して存在する。
 複合層14の物理膜厚が5nm以上200nm以下であるのが好ましい。
 下層16、及び上層26は、1000℃までの高温下でも複合層14の母材20と反応しない誘電体材料で形成される。下層16、及び上層26は、上記付加材18の酸化物、又はSiOで構成されるのが好ましい。ここで付加材18の酸化物は、複合層14の母材20を形成する酸化物である。すなわち下層16、及び上層26は、SiO以外を用いる場合、母材20を形成する酸化物と同じであるのが好ましい。
 SiOは下層16、及び上層26として、金属又は半導体に関わらず全ての付加材18の場合に適用し得る。SiOは1500℃以上の融点を有し、高温の酸化雰囲気であっても蒸発しやすい酸化物組成の化合物を有さない耐熱性の高い材料であり、化学的に安定な酸化物であるので、複合層14や金属体12と反応して化合物を形成することがなく、熱光変換部材の波長選択性が崩れることがない。特に、外気に接する上層26としてSiO用いるのは効果的である。
 下層16、及び上層26は、物理膜厚が10nm以上300nm以下であるのが好ましい。
 複合層14には付加材18が分散されているので、複合層14と、下層16及び上層26は、屈折率が互いに異なる。その結果、複合層14、下層16、及び上層26の積層体30は波長選択性を持つ。
 熱光変換部材10の基板22は、Si、金属又は石英で形成されていることが好ましい。金属としては、例えばFe合金やNi合金などを用いることができる。Fe合金としては、SUS304が好ましく例示され、Ni合金としては、インコネルが好ましく例示される。基板22を金属で形成する場合には、金属体12を基板22と一体化して、金属の基板22の表面を金属体12として使用することができる。基板22に、Siを用いる場合は、金属体12との高温での反応を抑制するため、Si基板表面にはSiO膜が形成されていることが望ましい。SiO膜はSiの熱酸化膜であることが好ましい。
 熱光変換部材10は、灰色体24を介して熱源に接続される。灰色体24として、SiC層を基板22の表面222に設けてもよい。SiC層は、吸収率が黒体に近い灰色体として機能するため、入射された熱を効率的に吸収することで、熱光変換部材10自体が高温になりやすく、550℃以上の温度域で、金属体12側から放射される放射光の量を多くすることができる。
 基板22は、Si、金属又は石英で形成することにより、灰色体24からの熱を効率良く金属体12に伝えるとともに、耐熱性を有する。基板22は、市販されている鏡面研磨されたSiウェハーで形成すると、表面の凹凸が少なく平坦性が優れているため、基板22上に形成された金属体12及び複合層14や下層16及び上層26の平坦性を向上することができ、結果として反射率を高め、波長選択性を向上することができる。Siで形成される基板22は、多結晶、単結晶のいずれでも構わない。
 灰色体24として、Fe、Cr、Ni酸化物層又はこれらの複合酸化物層を、設けてもよい。酸化物層は、吸収率が高く、酸化物層表面に入射した熱を効率良く基板22に伝えることができ、結果として550℃以上の温度域で、金属体12側から放射される放射光の量を多くすることができる。
 熱光変換部材10に入射する熱エネルギー(放射光)の入射方向は、灰色体24及び基板22側から入射する場合と、上層26側から入射する場合の2通りが考えられる。熱光変換部材10は、主に、工場排熱などの熱源から放射される熱エネルギー(放射光)が灰色体24及び基板22側から入射すると、波長選択された光を上層26から放射する。
 一方、熱光変換部材10は、上層26側から光が入射することにより、光が熱光変換部材10によって波長選択され熱が効率的に吸収されるとともに、余分な光を放射しないため、冷却されにくい。吸収された熱は、基板22及び灰色体24を通じて放射され、太陽熱発電に適用可能となる。
 次に、本実施形態の熱光変換部材の製造方法について説明する。
 金属体12は、真空蒸着法、スパッタ法により好適に形成することができる。いずれの手法でもW、Mo、Fe、Ni、及びCrなどの金属体12を薄く均一に形成し、平坦性が良好な成膜が可能である。
 複合層14は、スパッタ法により好適に形成することができる。例えば、Crターゲットの上にCrチップ、TiOターゲットの上にTiチップ、Taターゲットの上にTaチップ、又はSiOターゲットの上にSiチップを積載したものを用いて、スパッタリングを行うことにより、酸化物(Cr 、TiO 、Ta 、又はSiO)中に金属(Cr Ti 又はTa)又は半導体(Si)を分散させた層を形成する。
 下層16、及び上層26は、真空蒸着法、スパッタ法、CVD法により、好適に形成することができる。いずれの手法でも誘電体である例えば、Ta、TiO、Cr、SiOの層を数10nmの薄さで容易に膜厚を管理でき、均一性を高めることもできる。さらに真空蒸着法、スパッタ法は大面積化にも有利であり、生産性に優れている。
 複合層14、下層16、及び上層26の形成後に、ArやNガスなどの不活性ガス中で600℃~1200℃で熱処理をすることにより、複合層14の母材20中に金属又は半導体を凝集させ、付加材18の粒子を形成するとともにそれぞれの層を緻密化することができる。
 灰色体24として用いるSiC層は、化学気相成長法(CVD法:Chemical Vapor Deposition)、スパッタ法、炭化法などにより好適に作製できる。CVD法の場合、カーボン含有ガス及びシリコン含有ガスを熱分解させ基板22上で反応させることで、SiC層を基板22上に形成できる。
 基板22が石英やFe合金やNi合金などの金属の場合、スパッタ法により、基板22上にSiC層を析出できる。基板22がSiの場合、炭化法により、炭化水素ガスで基板22の表面を炭化させることによりSiC層を形成できる。
 基板22がSiや石英の場合、灰色体24として用いる酸化物層をスパッタ法で形成できる。基板22がFe合金やNi合金の場合は、灰色体24として用いる酸化物層を、基板22を酸化雰囲気で加熱することで基板22の表面に容易に形成することができ、酸化物層の基板22との密着性も良好である。
 (第2の実施の形態)
 第2の実施の形態について図4を参照して説明する。図4では、第1の実施の形態と同じ構成部材について同じ符号を付してある。第2の実施の形態では、金属体12の一表面121上に、付加材18及び母材20を含有する複合層14を設け、複合層14の表面141に接して誘電体からなる上層26を設けて積層体30を形成する。すなわち、第1の実施の形態とは、金属体12と複合層14の間に誘電体からなる下層がない点で異なる。本実施の形態においても、第1の実施の形態と同様の耐熱性と波長選択性が得られる。
 第2の実施の形態では金属体12と複合層14の間に誘電体からなる下層がないため、高温での金属体12と複合層14の間の拡散、反応に注意する必要がある。複合層14の母材20がSiOとすると、1000℃であっても金属体12と複合層14とが化合物を形成し、波長選択性が崩れることはないので好ましい。
 また、金属体12をTi-W-Si層、又はW-Si/Ti-W-Si層にすることで、複合層14の主成分によらず、金属体12と複合層14との反応を抑制できるので好ましい。
 (第3の実施の形態)
 第3の実施の形態について図5を参照して説明する。図5では、第1の実施の形態と同じ構成部材について同じ符号を付してある。第3の実施の形態では、金属体12の一表面121上に、誘電体からなる下層16を設け、下層16の表面161に接して付加材18及び母材20を含有する複合層14を設けて積層体30を形成する。すなわち、第1の実施の形態とは、複合層14の下層16と反対側の表面に誘電体からなる上層がない点で異なる。本実施の形態においても、第1の実施の形態と同様の耐熱性と波長選択性が得られる。
 第3の実施の形態では複合層14の一方の面に誘電体からなる上層がなく、直接大気に接する点に注意する必要がある。複合層14の付加材18をSi、母材20をSiOとすると、酸化雰囲気においても耐熱性が高いので好ましい。
 (試料)
 上記製造方法の記載に従い、熱光変換部材を作製し、耐熱性を評価した。熱光変換部材10は、基板22上に、金属体12、下層16、複合層14、上層26を、スパッタ法により、ターゲットを変えることで連続的に形成し、作製した。一部の熱光変換部材は、下層16、上層26の一方のみを備える構成とした。
 基板22としては、熱酸化膜(SiO膜厚0.3μm)付Siウェハーを用い、常温(基板を加熱しない状態)で成膜を行った。成膜は、直径6インチのターゲットを用い、Ar雰囲気(流量25sccm、圧力0.7Pa)で行った。
 灰色体はSiCターゲットを用い、交流電源で800Wの条件で成膜した(SiC膜厚0.3μm)。
 金属体12はW、Mo、Cr、Fe、Ni又はTiW(Ti:10質量%、W:90質量%)のターゲットを用い、直流電源で500Wの条件で成膜した。
 下層16及び上層26は、Cr、TiO、SiO、又はTaのターゲットを用い、交流電源で800Wの条件で成膜した。
 複合層14は、Crターゲットの上にCrチップ、TiOターゲットの上にTiチップ、SiOターゲットの上にSiチップ、又はTaターゲットの上にTaチップを積載したものを用い、下層16及び上層26と同じ条件で成膜した。成膜後にNガス雰囲気で1000℃、1時間加熱した。複合層14に含まれる付加材の体積分率は、ターゲットに積載するチップのサイズ、枚数を変えることで制御した。実際の体積分率はXPS(X線光電子分光(X-ray Photoelectron Spectroscopy))により確認した。
 また、各層の膜厚は、あらかじめ成膜した膜厚を触針式段差計で測定し、成膜速度を求めて、所定の膜厚になるようにスパッタリング時間を制御した。
 基板22としてSUS304、Ni基合金(インコネル、Ni:76質量%、Cr:15.5質量%、Fe:8.0質量%)を用いた実験も行った。この場合、基板22の鏡面研磨した表面を金属体12とし、別途スパッタ法により金属体12を形成することはしなかった。
 基板22としてSiウェハーを用いた実験も行った。金属体12としてTi-W層又はW/Ti-W積層を形成し、前記の下層16、複合層14及び上層26を形成した。成膜後にNガス雰囲気で1000℃、1時間で加熱するとTi-W層又はW/Ti-W層はSiと反応しシリサイド化して、Ti-W-Si層又はW-Si/Ti-W-Si層になる。ターゲットとして、Ti-W-Si(例えばTi:7重量%、W:65重量%、Si:28重量%)またはW-Si(例えばW:77重量%、Si:23重量%)を用い、Siウェハーや他の基板に直接、スパッタ成膜してもよい。
 試料は、熱光変換部材10が適用される光電変換素子に合わせて作製した。すなわち実施例1~39はGaSb、実施例40~57はInGaAsに合わせて作製した。試料の構成を表1~表3に示す。
 (評価方法)
 常温放射率は、近赤外-赤外分光器内で垂直入射(入射角度10°)での正反射率R(%)を測定し、100(%)-R(%)により求めた値とした。
 高温放射率は、1000℃に加熱した黒体炉からの放射光と、試料加熱炉で加熱された試料からの放射光を、導光器を経由して分光器で分光して測定した。最初に1000℃に加熱された黒体炉からの放射光により分光器の補正を行った。次に、同温度に加熱された試料からの放射光を測定し、高温放射率を求めた。なお加熱された試料の真温度は、表面に黒体スプレー(ジャパンセンサー製、JSC-3号、放射率0.94)を塗布した基板を試料加熱炉で加熱し、当該基板の放射光を測定して決定した。尚、真温度はいずれの実験でも1000±10℃の範囲内であった。
 各試料の評価は、光電変換素子がGaSbの場合に必要な特性と、光電変換素子がInGaAsの場合に必要な特性に合わせて行った。
 光電変換素子がGaSbの場合、熱光変換部材は、光吸収率の高い0.8μm~1.8μmで放射率が高く、それ以上の長波長側では放射率が低いことが好ましい。高い放射率が好ましい0.8μm~1.8μmの波長範囲での平均放射率が90%以上の場合をA、90%未満80%以上の場合をB、改善すれば使用の可能性があるため80%未満70%以上の場合をCとした。また、低い放射率が好ましい3.5μm~10μmの波長範囲での平均放射率が10%以下をA、10%超20%以下をB、改善すれば使用の可能性があるため20%超30%以下の場合をCとした。その結果を表1及び表2に示す。実施例5、12、19、23、25、26、29、33の熱光変換部材から放射される光の分光放射率を図6~図13にそれぞれ示す。
 光電変換素子がInGaAsの場合、熱光変換部材は、光吸収率の高い1.5μm~2.5μmで放射率が高く、それ以上の長波長側では放射率が低いことが好ましい。高い放射率が好ましい1.5μm~2.5μmの波長範囲での平均放射率が90%以上の場合をA、90%未満80%以上の場合をB、改善すれば使用の可能性があるため80%未満70%以上の場合をCとした。また、低い放射率が好ましい4μm~10μmの波長範囲での平均放射率が10%以下をA、10%超20%以下をB、改善すれば使用の可能性があるため20%超30%以下の場合をCとした。その結果を表3に示す。実施例44、48、49、52の熱光変換部材から放射される光の分光放射率を図14~17にそれぞれ示す。
 表1~表3より、実施例1~57に係る熱光変換部材は、常温において優れた波長選択性を有しており、高温においても波長選択性の劣化が抑制されており、1000℃までの耐熱性を有していることが確認された。なお、基板として石英を使用した場合は、熱酸化膜付Siウェハーと実質的に同じ構成である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 10  熱光変換部材
 12  金属体
 14  複合層
 16  下層
 18  付加材
 20  母材
 26  上層
 30  積層体

Claims (19)

  1.  金属体と、
     上記金属体の一表面上に設けられた誘電体からなる下層と、
     上記下層の上記金属体側と反対側の他の表面上に設けられた複合層と、
     上記複合層の上記下層と反対側の他の表面上に設けられた誘電体からなる上層と
    を備え、
     上記複合層は、金属又は半導体が、上記金属又は上記半導体の酸化物中に分散して設けられた層である
    ことを特徴とする熱光変換部材。
  2.  前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、
     前記下層と、前記上層は、上記金属又は上記半導体の酸化物であることを特徴とする請求項1に記載の熱光変換部材。
  3.  前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、
     前記下層は、上記金属又は上記半導体の酸化物、又はSiOであり、
     前記上層は、SiOであることを特徴とする請求項1に記載の熱光変換部材。
  4.  前記複合層の物理膜厚が5nmから200nm、前記下層及び前記上層の物理膜厚が10nmから300nmであることを特徴とする請求項1~3のいずれか1項に記載の熱光変換部材。
  5.  金属体と、
     上記金属体の一表面上に設けられた複合層と、
     上記複合層の上記金属体と反対側の他の表面上に設けられた誘電体からなる上層と
    を備え、
     上記複合層は、金属又は半導体が、上記金属又は上記半導体の酸化物中に分散して設けられた層である
    ことを特徴とする熱光変換部材。
  6.  前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、
     前記上層は、上記金属又は上記半導体の酸化物であることを特徴とする請求項5に記載の熱光変換部材。
  7.  前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、
      前記上層は、SiOであることを特徴とする請求項5に記載の熱光変換部材。
  8.  前記複合層の物理膜厚が5nmから200nm、前記上層の物理膜厚が10nmから300nmであることを特徴とする請求項5~7のいずれか1項に記載の熱光変換部材。
  9.  金属体と、
     上記金属体の一表面上に設けられた誘電体からなる下層と、
     上記下層の上記金属体側と反対側の他の表面上に設けられた複合層と
    を備え、
     上記複合層は、金属又は半導体が、上記金属又は上記半導体の酸化物中に分散して設けられた層であることを特徴とする熱光変換部材。
  10.  前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、
     前記下層は、上記金属又は上記半導体の酸化物であることを特徴とする請求項9に記載の熱光変換部材。
  11.  前記複合層に分散した金属又は半導体は、Cr、Si、Ta及びTiから選択された1種であり、
     前記下層は、SiOであることを特徴とする請求項9に記載の熱光変換部材。
  12.  前記複合層の物理膜厚が5nmから200nm、前記下層の物理膜厚が10nmから300nmであることを特徴とする請求項9~11のいずれか1項に記載の熱光変換部材。
  13.  前記金属体はTi-W-Si層、又はW-Si/Ti-W-Si層であることを特徴とする請求項1~12のいずれか1項に記載の熱光変換部材。
  14.  前記金属体の前記一表面とは反対側の他の表面に設けられた基板と、
     前記基板の前記金属体側と反対側の表面に設けられた灰色体と
    を備えることを特徴とする請求項1~13のいずれか1項に記載の熱光変換部材。
  15.  前記基板がSi又は石英からなることを特徴とする請求項14に記載の熱光変換部材。
  16.  前記基板がSiからなり、前記基板と前記金属体との間にSiO膜を備えることを特徴とする請求項14に記載の熱光変換部材。
  17.  前記基板が金属基板であることを特徴とする請求項14に記載の熱光変換部材。
  18.  前記金属基板は、Fe合金又はNi合金で形成されていることを特徴とする請求項17に記載の熱光変換部材。
  19.  前記灰色体は、SiC、Fe酸化物、Cr酸化物、Ni酸化物、又は、Fe酸化物、Cr酸化物及びNi酸化物の複合酸化物の少なくとも一つを備える請求項14~18のいずれか1項記載の熱光変換部材。
PCT/JP2017/013057 2016-03-31 2017-03-29 熱光変換部材 WO2017170768A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/089,249 US10978988B2 (en) 2016-03-31 2017-03-29 Selective emitter for thermophotovoltaic power generator
JP2018509379A JP6521176B2 (ja) 2016-03-31 2017-03-29 熱光変換部材
CN201780010421.4A CN108633316A (zh) 2016-03-31 2017-03-29 热光转换构件
EP17775302.7A EP3439048A4 (en) 2016-03-31 2017-03-29 THERMO-OPTICAL CONVERSION ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-071272 2016-03-31
JP2016071272 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170768A1 true WO2017170768A1 (ja) 2017-10-05

Family

ID=59964716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013057 WO2017170768A1 (ja) 2016-03-31 2017-03-29 熱光変換部材

Country Status (5)

Country Link
US (1) US10978988B2 (ja)
EP (1) EP3439048A4 (ja)
JP (1) JP6521176B2 (ja)
CN (1) CN108633316A (ja)
WO (1) WO2017170768A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019185009A (ja) * 2018-04-02 2019-10-24 日本製鉄株式会社 波長選択フィルタ及びそれを用いた熱光起電力発電装置
JP2020086407A (ja) * 2018-11-30 2020-06-04 日本製鉄株式会社 波長選択フィルタ及びそれを用いた熱光起電力発電装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687788B (zh) * 2021-03-19 2021-06-22 苏州大学 光谱选择性热辐射器及其设计方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274362A (ja) * 1995-03-29 1996-10-18 Us Government ミラー層を含む熱光起電力セル
JP2000272955A (ja) * 1999-03-26 2000-10-03 Ube Ind Ltd 希土類選択エミッター材料
US6271461B1 (en) * 2000-04-03 2001-08-07 Jx Crystals Inc. Antireflection coated refractory metal matched emitters for use in thermophotovoltaic generators
JP2003152207A (ja) * 2001-11-13 2003-05-23 Toyota Motor Corp 光電変換素子及びその製造方法
JP2004103649A (ja) * 2002-09-05 2004-04-02 Toyota Motor Corp 熱光発電用光電変換素子
JP2006298671A (ja) * 2005-04-18 2006-11-02 Ube Ind Ltd 熱光起電力発電用エミッタ材料
US7166797B1 (en) * 2001-08-23 2007-01-23 The United States Of America As Represented By The United States Department Of Energy Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system
JP2011222211A (ja) * 2010-04-07 2011-11-04 Stanley Electric Co Ltd 赤外光源
WO2012056806A1 (ja) * 2010-10-29 2012-05-03 スタンレー電気株式会社 発電装置、熱発電方法および太陽光発電方法
JP2012204605A (ja) * 2011-03-25 2012-10-22 Fujifilm Corp 波長変換素子および光電変換装置
JP2014067968A (ja) * 2012-09-27 2014-04-17 Dainippon Printing Co Ltd 太陽電池モジュール
JP2015041620A (ja) * 2013-08-20 2015-03-02 日本電気株式会社 光電変換素子及び光電変換素子の製造方法
CN105152688A (zh) * 2015-08-11 2015-12-16 南京理工大学 应用于热光伏发电装置的波长选择性辐射体涂层及制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177628B1 (en) * 1998-12-21 2001-01-23 Jx Crystals, Inc. Antireflection coated refractory metal matched emitters for use in thermophotovoltaic generators
US20030034065A1 (en) * 2001-08-14 2003-02-20 The Charles Stark Draper Laboratory, Inc. Method and device for selectively emitting photons
US6812496B2 (en) * 2002-01-10 2004-11-02 Sharp Kabushiki Kaisha Group III nitride semiconductor laser device
US6683243B1 (en) * 2002-06-06 2004-01-27 The United States Of America As Represented By The United States Department Of Energy Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator
US8278823B2 (en) * 2007-03-30 2012-10-02 General Electric Company Thermo-optically functional compositions, systems and methods of making
TWI379427B (en) * 2007-12-31 2012-12-11 Ind Tech Res Inst Transparent solar cell module
JP2011096770A (ja) 2009-10-28 2011-05-12 Kyoto Univ 反射防止膜及び熱光起電力発電用エミッタ
JP6059952B2 (ja) 2012-10-26 2017-01-11 株式会社豊田自動織機 熱変換部材及び熱変換積層体
JP5994569B2 (ja) 2012-10-26 2016-09-21 株式会社豊田自動織機 熱変換部材及び熱変換積層体

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274362A (ja) * 1995-03-29 1996-10-18 Us Government ミラー層を含む熱光起電力セル
JP2000272955A (ja) * 1999-03-26 2000-10-03 Ube Ind Ltd 希土類選択エミッター材料
US6271461B1 (en) * 2000-04-03 2001-08-07 Jx Crystals Inc. Antireflection coated refractory metal matched emitters for use in thermophotovoltaic generators
US7166797B1 (en) * 2001-08-23 2007-01-23 The United States Of America As Represented By The United States Department Of Energy Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system
JP2003152207A (ja) * 2001-11-13 2003-05-23 Toyota Motor Corp 光電変換素子及びその製造方法
JP2004103649A (ja) * 2002-09-05 2004-04-02 Toyota Motor Corp 熱光発電用光電変換素子
JP2006298671A (ja) * 2005-04-18 2006-11-02 Ube Ind Ltd 熱光起電力発電用エミッタ材料
JP2011222211A (ja) * 2010-04-07 2011-11-04 Stanley Electric Co Ltd 赤外光源
WO2012056806A1 (ja) * 2010-10-29 2012-05-03 スタンレー電気株式会社 発電装置、熱発電方法および太陽光発電方法
JP2012204605A (ja) * 2011-03-25 2012-10-22 Fujifilm Corp 波長変換素子および光電変換装置
JP2014067968A (ja) * 2012-09-27 2014-04-17 Dainippon Printing Co Ltd 太陽電池モジュール
JP2015041620A (ja) * 2013-08-20 2015-03-02 日本電気株式会社 光電変換素子及び光電変換素子の製造方法
CN105152688A (zh) * 2015-08-11 2015-12-16 南京理工大学 应用于热光伏发电装置的波长选择性辐射体涂层及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439048A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019185009A (ja) * 2018-04-02 2019-10-24 日本製鉄株式会社 波長選択フィルタ及びそれを用いた熱光起電力発電装置
JP2020086407A (ja) * 2018-11-30 2020-06-04 日本製鉄株式会社 波長選択フィルタ及びそれを用いた熱光起電力発電装置
JP7147519B2 (ja) 2018-11-30 2022-10-05 日本製鉄株式会社 波長選択フィルタ及びそれを用いた熱光起電力発電装置

Also Published As

Publication number Publication date
US10978988B2 (en) 2021-04-13
US20200127596A1 (en) 2020-04-23
EP3439048A4 (en) 2019-12-04
EP3439048A1 (en) 2019-02-06
JPWO2017170768A1 (ja) 2019-01-31
JP6521176B2 (ja) 2019-05-29
CN108633316A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
Trucchi et al. Solar thermionic‐thermoelectric generator (ST2G): concept, materials engineering, and prototype demonstration
JP5687606B2 (ja) 太陽光−熱変換部材、太陽光−熱変換装置、及び太陽熱発電装置
JP6566041B2 (ja) 熱光変換部材
JP5830468B2 (ja) 発電装置
US20140130794A1 (en) Solar selective absorber based on double nitride composite material and process for its preparation
WO2017170768A1 (ja) 熱光変換部材
JP6059952B2 (ja) 熱変換部材及び熱変換積層体
WO2014181586A1 (ja) 太陽光-熱変換部材、太陽光-熱変換積層体、太陽光-熱変換装置及び太陽熱発電装置
Shin et al. Study on the effects of different sulfur vaporization temperature on the properties of CuInS2 thin films
US11149987B2 (en) Solar heat collector tube and production method thereof
WO2014065107A1 (ja) 熱変換部材及び熱変換積層体
CN109416201A (zh) 太阳能选择性涂层
CN108603693B (zh) 太阳能集热管
JP7147519B2 (ja) 波長選択フィルタ及びそれを用いた熱光起電力発電装置
Okuhara et al. Solar selective absorbers consisting of semiconducting silicide absorbing layers with thermally stabilized Ag base
CN112639374A (zh) 太阳能集热管
EP3255357B1 (en) Solar heat collection tube, solar light/heat conversion device, and solar power generation device
CN115692532A (zh) 一种基于多层膜选择性发射器的热光伏系统及其制备方法
JP2019185009A (ja) 波長選択フィルタ及びそれを用いた熱光起電力発電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509379

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775302

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775302

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775302

Country of ref document: EP

Kind code of ref document: A1